
Soft Condensed Matter
Lecture notes for the course given by Prof. David Andelman, TAU 2009

Guy Cohen

May 25, 2009

Contents

1 Introduction and Preliminaries 2

2 Polymers 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Brief history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 What is a polymer? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Types of polymer structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4 Polymer phases of matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Ideal Polymer Chains in Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Some basic models of polymer chains . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Calculating the end-to-end radius . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Gyration radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Polymers and Gaussian distributions . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Rigid and Semi-Rigid Polymer Chains in Solution . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Worm-like chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Free Energy of the Ideal Chain and Entropic Springs . . . . . . . . . . . . . . . . . . . 13
2.5 Polymers and Fractal Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Introduction to fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 Linking fractals to polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Polymers, Path Integrals and Green’s Functions . . . . . . . . . . . . . . . . . . . . . . 16
2.6.1 Local Gaussian chain model and the continuum limit . . . . . . . . . . . . . . . 16
2.6.2 Functional path integrals and the continuum distribution function . . . . . . . 18
2.6.3 Relationship to quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.4 Dominant ground state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Polymers in Good Solutions and Self-Avoiding Walks . . . . . . . . . . . . . . . . . . . 22
2.7.1 Virial expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7.2 Lattice model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1



1 INTRODUCTION AND PRELIMINARIES

2.7.3 Renormalization group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7.4 Flory model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7.5 Field Theory of SAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Scattering and Polymer Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.8.1 The form factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.8.2 The gyration radius and small angle scattering . . . . . . . . . . . . . . . . . . 26
2.8.3 Debye scattering function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8.4 The structure factor and monomer correlations . . . . . . . . . . . . . . . . . . 28

2.9 Polymer Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9.1 Dilute and semi-dilute solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9.2 Free energy of mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.9.3 The Flory-Huggins model for polymer solutions . . . . . . . . . . . . . . . . . . 30
2.9.4 Polymer/solvent phase transfers . . . . . . . . . . . . . . . . . . . . . . . . . . 31

03/05/2009

1 Introduction and Preliminaries
Times: Thursdays, 13:00-16:00.

We will make several assumptions throughout the course:

1. The physics in question are generally in the classical regime, ~→ 0.

2. Materials are “soft”: quantitatively, this implies that all relevant energy scales are of the order
of kBT .

3. Condensed matter physics deals with systems composed of O
(
1023) particles, and statistical

mechanics applies. We are always interested in a reduced description, in terms of continuum
mechanics and elasticity, hydrodynamics, macroscopic electrodynamics and so on.

We begin with an example from Chaikin & Lubensky, the story of an H2O molecule. This molecule is
bound together by a chemical bond which is around 20kBT at room temperature and not easily broken
under normal circumstances. What happens when we put ∼ 1023 water molecules is a container? First
of all, with such large numbers we can safely discuss phases of matter: namely

solid
(amorphous/crystal ice)

↔ fluid
(water)

↔ gas
(steam)

.

Gas is typical to low density, high temperature and low pressure. It is generally prone to changes
in shape and volume, homogeneous, isotropic, weakly interacting and insulating. This is the least
ordered form of matter relevant to our scenario, and relatively easy to treat since order parameters
are small.
The liquid phase is typical of intermediate temperatures. It flows but is not very compressible. It

is homogeneous, isotropic, dense and strongly interacting. Its response to external forces depends on
the rate of its deformation. Liquids are hard to treat theoretically, as their intermediate properties
make simple approximations less effective.
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1 INTRODUCTION AND PRELIMINARIES

The solid is a dense ordered phase with low entropy and strong interactions. It is anisotropic and
does not flow, it strongly resists compression and its response to forces depends on the amount of
deformation they cause (elastic).
Transitions between these phases occur at specific values of thermodynamic parameters (see di-

agram (1)). First order changes (volume/density “jumps” at the transition, and no jump in pres-
sure/temperature) occur on the lines; at the critical liquid/gas point, second order phase transitions
occur; at the triple point, all three phases (solid/liquid/gas) coexist.
The systems we are interested in are characterized by several kinds of interactions between their

constituent molecules: for example, Coulombic interactions of the form q2

r2 when charged particles are
present, fixed dipole interaction of the form p1·p2

r3 when permanent dipoles exist, and almost always
induced dipole/van der Waals interaction of the form ∆p1·∆p2

r6 . At close range we also have the “hard
core” or steric repulsion, sometimes modeled by a ∼ 1

r12 potential. Simulations often use the so-called
12 − 6 Lennard-Jones potential U = 4ε

[(
σ
r

)12 −
(
σ
r

)6](as pictured in (2)), which with appropriate
parameters correctly describes both condensation and crystallization in some cases1. Starting from a
classical Hamiltonian such as H =

∑
i

(
p2
i

2m + VV dW

)
, we can predict all three phases of matter and

the transitions between them.
In biological systems, this simple picture does not suffice: the basic consideration behind this is

that of effects which occur at different scales between the nanometric scale, through the mesoscopic
and up to the macroscopic scale. Biological systems are mesoscopic in nature, and their properties
cannot be described correctly when a coarse-graining is performed without accurately accounting for
mesoscopic properties. A few examples follow:

Liquid crystals

The most basic assumption we need in order to model liquid crystals is that isotropy at the molec-
ular level is broken: molecules are represented by rods rather than spheres. Such a description was
suggested by Onsager and others, and leads to three phases as shown in (3).

Polymers

When molecules are interconnected at mesoscopic ranges, new phases and properties are encountered.

Soap/beer foam

This kind of substance is approximately 95% air and 1% foaming (detergent) agent, with the remainder
water - yet it behaves like a weak solid as long as its deformations are small. This is because a tight
formation of ordered cells separated by thin liquid films is formed, and in order for the material to
change shape the cells must be rearranged. This need for restructuring is the cause of such systems’
solid-like resistance to change.

1When only the repulsive potential exists (for instance, for billiard balls), crystallization still takes place but no con-
densation/evaporation phase transition between the liquid and gas phases exists.
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2 POLYMERS

Structured fluids

Polymers or macromolecules in liquid state, liquid crystals, emulsions and colloidal solutions and gels
display complex visco-elastic behavior as a result of mesoscopic super-structures within them.

Soft 2D membranes

Interfaces between fluids have interesting properties: they act as a 2D liquid within the interface,
yet respond elastically to any bending of the surface. Surfactant molecules will spontaneously form
membranes within the same fluid, which also have these properties at appropriate temperatures.
Surfactants in solution also form lamellar structures - multilayered structures in which the basic units
are the membranes rather than single molecules.
03/19/2009

2 Polymers
Books: Doi, de Gennes, Rubinstein, Doi & Edwards.

2.1 Introduction
2.1.1 Brief history

Natural polymers like rubber have been known since the dawn of history, but not understood. The
first artificial polymer was made ∼ 1905. Stadinger was the first to understand that polymers are
formed by molecular chains and is considered to be the father of synthetic polymers. Most polymers
were made by petrochemical industry. Nylon was born in 1940. Various uses and unique properties
(light, strong, thermally insulating; available in many different forms from strings and sheets to bulk;
cheap, easy to process, shape and mass-produce...) have made them very attractive commercially.
Later on, some leading scientists were Kuhn and Flory in chemistry (30’s to 70’s) and Stockmayer in
physical chemistry (50’s and 60’s). The famous modern theory of polymers was first formulated by
P.G. de Gennes and Sam Edwards.

2.1.2 What is a polymer?

Material composed of chains, having a repeating basic unit (monomer). Connections between monomers
are made by chemical (covalent) bonds, and are strong at room temperature.

[A]N ≡
N times︷ ︸︸ ︷

A−A−A− ...−A.

N is the polymerization index2. Polymerization is also the name of the process by which polymers are
synthesized, which involves a chain reaction where a reactive site exists at the end of the chain. Some

2More generally, this kind of structure is called a homopolymer. Heteropolymers - which have several repeating con-
stituent units - also exist. These can have a random structure (A − B − B − A − B − A...) or a block structure
([A]n [B]m [C]l), in which case they are called block copolymers. These can self-assemble into complex ordered struc-
tures and are often very useful.
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2.1 Introduction 2 POLYMERS

chemical reactions increase the chain length by one unit, while simultaneously moving the reactive
site to the new end3:

[A]N + [A]1 → [A]N+1 .

There also exist condensation processes, by which chains unite:

[A]N + [A]M → [A]N+M ,

where N, M ≥ 1. A briefer notation, dropping the name of the monomer, is

(N) + (M)→ (N +M) .

Consider the example of hydrocarbon polymers, where we have a monomer which is C2H4(Check
this...). As a larger number of such units is joined together to become polyethylene molecules, the
material composed of these molecules changes drastically in nature:

N phase type of material
1-4 gas flammable gas
5-15 thin liquid liquid fuel/organic solvents
16-25 thick liquid motor oil
20-50 soft solid wax, paraffin
>1000 hard solid plastic

2.1.3 Types of polymer structures

Polymers can exist in different topologies, which affect the macroscopic properties of the material they
form (see (4)):

• Linear chains (this is the simplest case, which we will be discussing).

• Rings (chains connected at the ends).

• Stars (several chain arms connected at a central point).

• Tree (connected stars).

• Comb (one main chain with side chains branching out).

• Dendrimer (ordered branching structure).

2.1.4 Polymer phases of matter

Depending on the environment and larger-scale structure, polymers can exist in many states:

• Gas of isolated chains (not very relevant).

• In solution (water or organic solvents). In dilute solutions, polymer chains float freely like gas
molecules, but their length alters their behavior.

3For an example, look up ester monomers and polyester, or polyethylene.
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2.2 Ideal Polymer Chains in Solution 2 POLYMERS

• In a liquid state of chains (called a melt).

• In solid state (plastic) - crystals, poly-crystals, amorphous/glassy materials.

• Liquid crystal formed by polymer chains (Polymeric Liquid Cristal or PLC)

• Gels and rubber: networks of chains tied together.

2.2 Ideal Polymer Chains in Solution
2.2.1 Some basic models of polymer chains

The simplest model of an ideal polymer chain is the freely jointed chain (FJC), where each monomer
performs a completely independent random rotation. Here, at equilibrium the end-to-end length of
the chain is R0 ' N 1/2` = L1/2`1/2, where L = N` is the contour length.
A slightly more realistic model is the freely rotating chain (FRC), where monomers are locked at

some chemically meaningful bond angle ϑ and rotate freely around it via the torsional angle ϕ. Here,

R2
0 ' L`eff ∼ N

1/2,

`eff = `
1 + cosϑ
1− cosϑ

.

Note that for 〈cosϑ〉 = 0 we find that `eff = ` and this is identical to the FJC. For very small ϑ ∼ ε,
we can expand the cosine an obtain

`eff −→
ϑ→0

2`
ε

(
1− ε

2

)
� `.

This is the rigid rod limit (to be discussed later in detail).
A second possible improvement is the hindered rotation (HR) model. Here the angles ϕi have

a minimum-energy value, and are taken from an uncorrelated Boltzmann distribution with some
potential V (ϕi). This gives

R2
0 ' L`eff ∼ N,

`eff = `

(1 + cosϑ
1− cosϑ

)(1 + 〈cosϕ〉
1− 〈cosϕ〉

)
.

Another option4 is called the rotational isomeric state model. Here, a finite number of angles
are possible for each monomer junction and the state of the full chain is given in terms of these.
Correlations are also taken into account and the solution is numeric, but aside from a complicated
`eff this is still an ideal chain with R2

0 ' L`eff ∼ N .

4See Flory’s book for details.
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2.2 Ideal Polymer Chains in Solution 2 POLYMERS

2.2.2 Calculating the end-to-end radius

For the polymer chain of (5), obviously we will always have 〈RN 〉 = 0. The variance, however, is
generally not zero: using RN =

∑N
i=1 ri,

〈
R2
N

〉
=

N∑
i,j=1

ri · rj =
N∑

i,j=1
`2 〈cosϑij〉 .

FJC In the freely jointed chain (FJC) model, there are neither correlations between different sites
nor restrictions on the rotational angles. We therefore have 〈cosϑij〉 = 1

`2 〈ri · rj〉 = δij , and〈
R2
N

〉
=
∑
ij

`2δij = N`2 = L` .

Therefore5, R0 ≡
√〈

R2
N

〉
= N 1/2`.

FRC In the freely rotating chain model, the bond angles are held constant at angles ϑi while the
torsion angles ϕi are taken from a uniform distribution between −π and π. This introduces some
correlation between the angles: since (for one definition of the ϕi) ri+1 = cosϑiri + sinϑi(sinϕiŷ ×
ri + cosϕix̂ × ri), and since the ϕi are independent and any averaging over a sine of cosine of one
or more of them will result in a zero, only the ϕi independent terms survive and by recursion this
correlation has the simple form

〈ri · rj〉 = `2 (cosϑ)|i−j| .

The end-to-end radius is

R2
0 =

N∑
ij=1
〈ri · rj〉

=
N∑
i=1

=`2︷ ︸︸ ︷〈
r2
i

〉
+ `2

N∑
i=1

k=i−j︷ ︸︸ ︷
i−1∑
j=1

(cosϑ)i−j + `2
N∑
i=1

k=j−i︷ ︸︸ ︷
N∑

j=i+1
(cosϑ)j−i

= N`2 + `2
N∑
i=1

[
i−1∑
k=1

(cosϑ)k +
N−i∑
k=1

(cosϑ)k
]
.

At large N we can approximate the two sums in k by the series
∑∞
k=1 cosk ϑ = cosϑ

1−cosϑ , giving

R2
0 ' N`2 + 2`2

N∑
i=1

cosϑ
1− cosϑ

= N`2
1 + cosϑ
1− cosϑ

.

5The mathematics are similar to that of a random walk or diffusion process, where in 1D
√
〈x2〉 ∼ t1/2.
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2.2 Ideal Polymer Chains in Solution 2 POLYMERS

To extract the Kuhn length `eff from this expression, we rewrite in in the following way:

R2
0 = N

`
√

1 + cosϑ
1− cosϑ

2

≡ N``eff = L`eff ,

`eff = `
1 + cosϑ
1− cosϑ

.

To go back from this to the FRC limit, we would consider a chain with a random distribution of ϑ
angles such that 〈cosϑ〉 = 0.

2.2.3 Gyration radius

Consider once again the polymer chain of (5). Define:

R2
g = 1

N

N∑
i=1

(
R′i −R′CM

)2 ≡ 1
N

N∑
i=1

R2
i .

The unprimed coordinate system is refocused on the center of mass, such that
∑
i Ri = 0. Now, it is

easier to work with the following expression:

1
2N2

∑
ij

(Ri −Rj)2 = 1
2N2

∑
ij

(−2Ri ·Rj + 2Ri ·Ri)

= 2N
2N2

∑
i

R2
i −

1
N2

=0︷ ︸︸ ︷(∑
i

Ri

)
·

=0︷ ︸︸ ︷∑
j

Rj


= R2

g.

We will calculate Rg for a long FJC. For N � 1 we can replace the sums with integrals, obtaining

〈
R2
g

〉
= 1

2N2

∑
ij

|i−j|`2︷ ︸︸ ︷〈
(Ri −Rj)2

〉

= 1
2N2

� N

0
du

� N

0
dv `2 |u− v|

= 2
2N2

� N

0
du

� u

0
dv `2 (u− v)

= `2

N2

� N

0
du
[
u2 − 1

2
u2
]

= 1
6
N`2.
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2.2 Ideal Polymer Chains in Solution 2 POLYMERS

This gives the gyration radius for an FJC:

R2
g = 1

6
N`2 .

2.2.4 Polymers and Gaussian distributions

An ideal chain is a Gaussian chain, in the sense that the end-to-end radius is taken from a Gaussian
distribution. We will see two proofs of this.

Random walk proof One way to show this (see Rubinstein, de Gennes) is to begin with a random
walk. For one dimension, if we begin at x = 0 and at each time step i move left or right with moves
xi = ±` and the final displacement x =

∑
i xi, then

x = ` (N+ −N−) ≡ `N.

We define ZN (x) as the number of configurations of N steps with a final displacement of x. PN (x) is
the associated normalized probability.

ZN (x) = N !
(N+)! (N−)!

−→
N→∞

C√
N
e
− x2

2〈x2〉 ,〈
x2
〉

= N`2.

In fact, for N →∞ the central limit theorem tells us that x =
∑
i xi will have a Gaussian distribution

for any distribution of the xi. This can be extended to d dimensions with a displacement R =
∑
i xi:

ZdN =
(
C√
N

)d
exp

{
− dR2

2 〈R2〉

}
,〈

R2
〉

= d
〈
x2
i

〉
= N`2.

To find the normalization constant C we must integrate over all dimensions:

1 =
�

dRZN (R) =
(�

dxZN (x)
)d

=
(
C√
N

√
2π 〈x2〉

)d
,

⇓

P dN (R) =
(

d

2πN`2

)d/2

exp
{
− dR2

2N`2

}
.

Some notes:

• An ideal chain can now be redefined as one such that P dN (R) is Gaussian in any dimension d ≥ 1.
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2.2 Ideal Polymer Chains in Solution 2 POLYMERS

• This is also true for a long chain with local interactions only, such that R2
0 = N``eff = L`eff ∼

N .

• The probability of being in a spherical shell with radius R is 4πR2PN (R).

• The chance of returning to the origin PN (R = 0) is
(

d
2π`2N

)d/2
∼
(

1
N

)d/2
≡ N−γ . γ = d

2 is
typical of an ideal chain.

• For any dimension d ≥ 1, R0 =
√
〈R2〉 ∼ N 1/2.

Formal proof Another way to show this follows, which is also extensible to other distributions of the
{ri} 6.
In general, we can write

PN (R) =
�

dr1

�
dr2...

�
drNΨ (r1, ..., rN ) δ

(
R −

N∑
i=1

ri

)
.

In the absence of correlations, we can factorize Ψ:

Ψ (r1, ..., rN ) = ψ (r1) ...ψ (rN ) .

For example, for a freely jointed chain ψ (ri) = αδ (|ri| − `). The normalization constant is found from�
ψ (ri) 4πr2i dri = 4πα`2 = 1, giving

ψ (ri) = 1
4π`2

δ (|ri| − `) .

We can replace the delta functions with δ (r) = 1
(2π)3

�
dkeik·r, leaving us with

PN (R) = 1
(2π)3

�
dkeik·R

�
dr1...

�
drN

∏
i

[
e−ik·riψ (ri)

]
= 1

(2π)3

�
dkeik·R

[�
dre−ik·rψ (r)

]N
.

In spherical coordinates,�
dre−ik·rψ (r) =

�
r2drdϑdϕ sinϑe−ikr cosϑ 1

4π`2
δ (r − `)

α=cosϑ= 1
2

� 1

−1
dαe−ik`α

= sin k`
k`

,

which gives

PN (R) =
( 1

2π

)3 �
dkeik·r

(sin k`
k`

)N
.

6This proof can be found in Doi and Edwards.
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We are left with the task of evaluating the integral. This can be done analytically with the Laplace
method for large N , since the largest contribution is around k` = 0: we can approximate

(
sin k`
k`

)N
by(

1− (k`)2

6 + ...
)N
' e−

(k`)2N
6 . The integral is then

Pn (R) =
( 1

2π

)3 �
dkeik·Re−

k2`2N
6

=
( 1

2π

)3 �
dk1dk2dk3 exp

[∑
α

(
ikαRα −

Nk2
α`

2

6

)]

=
( 1

2π

)3∏
α

�
dkα exp

(
ikαRα −

Nk2
α`

2

6

)

=
( 3

2πN`2

)3/2

exp
{
− 3R2

2N`2

}
.

This is, of course, the same Gaussian form we have obtained from the random walk (we have done the
special case of d = 3, but once again this process can be repeated for a general dimension d ≥ 1).
03/26/2009

2.3 Rigid and Semi-Rigid Polymer Chains in Solution
2.3.1 Worm-like chain

In considering the ϑ → 0 limit of the freely rotating chain, we have seen that `eff ∼ `
ϑ2 → ∞. This

is of course unphysical, and this limit is actually important for many interesting cases of stiff chains
(for instance, DNA). If we take the N →∞ limit along with ϑ→ 0 and start over, we can make the
following change of variables:

〈ri · rj〉 = `2 〈cosϑij〉
= `2 (cosϑ)|i−j|

= `2 exp
[
−|i− j| `

`p

]
,

which defines the persistence length `p. For the FRC model,

`p = − `

ln cosϑ
.

This is a useful concept in general, however: it defines the typical length scale over which correlations
between chain angles dies out, and is therefore an expression of the chain’s rigidity.
At small ϑ we can expand the logarithm to get

ln cosϑ ' ln
(

1− ϑ2

2

)
≈ −ϑ

2

2
⇓

11



2.3 Rigid and Semi-Rigid Polymer Chains in Solution 2 POLYMERS

`p '
2`
ϑ2 .

Taking the continuum limit carefully then requires us to consider N → ∞ and ` → 0 such that
Rmax = N` cos ϑ2 ' N` is constant. Now, we can calculate the end-to-end length R2

0 =
〈
R2
N

〉
at the

continuum limit using out the new form for the correlations:

R2
0 = `

∑
ij

(cosϑ)|i−j| = `2
∑
ij

exp
{
−` |i− j|

`p

}

→ `2
� Rm

0

du
`

� Rm

0

dv
`

exp
{
−|u− v|

`p

}
.

To simplify the calculation, we can define the dimensionless variable u′ = u/`p, v′ = v/`p and R′m =
Rm/`p. With these replacements,

R2
0
`2p

=
� R′m

0
du′

� R′m

0
dv′e−|u′−v′|

=
� R′m

0
du′

� u′

0
dv′e−u′ev′ +

� R′m

0
du′

� R′m

u′
dv′eu′e−v′

=
� R′m

0
du′e−u′

(
eu
′ − 1

)
+
� R′m

0
du′eu′

(
e−u

′ − e−R′m
)

= R′m +
(
e−R

′
m − 1

)
+R′m − e−R

′
m

(
eR
′
m − 1

)
= 2R′m − 2

(
1− e−R′m

)
.

The final result (known as the Kratchky-Porod worm-like-chain or WLC) is

R2
0 =

〈
R2
N

〉
= 2`pRmax − 2`2p

(
1− e−

Rmax
`p

)
.

Importantly, is does not depend on ϑ or N but only on the physically transparent persistence length
and contour length.
We will consider the two limits where one parameter is much larger than the other. First, for

`p � Rmax we encounter the rigid rod limit: we can expand the previous expression into

R2
0 = 2`pRmax − 2`2p

1− 1 + Rmax
`p
− 1

2

(
Rmax
`p

)2

+ ...


= R2

max + ϑ

(
R3
max

`3p

)
,

⇓
R0 ∼ N.

12
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The fact that R0 ∼ N rather than R0 ∼ N 1/2 is a result of the long-range correlations we have
introduced, and is an indication that at this regime the material is in an essentially different phase7.
Somewhere between the ideal chain and the rigid rod, a crossover regime must exist.
For `p � Rmax we can neglect the exponent, obtaining

R2
0 ' 2`pRmax,

`p '
2`
ϑ2 ,

Rmax ' N`.

This therefore returns us to the ideal chain limit, with a Kuhn length `eff = 2`p. The crossover
phenomenon we discussed occurs on the chain itself here as we observe correlation between its pieces
at differing length scales: at small scales (∼ `p) it behaves like a rigid rod, while at long scales we have
an uncorrelated random walk. An interesting example is a DNA chain, which can be described by a
worm-like chain with `p ≈ 500Å and Rmax ' 10µm� `p: it will therefore typically cover a radius of
R0 ∼ 7000Å.

2.4 Free Energy of the Ideal Chain and Entropic Springs
We have calculated distributions of R for Gaussian chains with N components, ZN (R). Let’s consider
the entropy of such chains:

SN (R) = kB lnZN (R)

PN (R) = ZN (R)�
dRZN (R)

=
( 3

2πN`2

)3/2

exp
(
− 3R2

2N`2

)
.

The logarithm of ZN (R) is the same as that of PN (R), aside from a factor which does not depend
on R. Therefore,

SN (R) =

=SN (0)︷ ︸︸ ︷
kB ln

(�
ZN (R) dR

)
+ 3

2
kB ln

( 3
2πN`2

)
− 3

2
kB

R2

N`2

= SN (0)− 3
2
kB

R2

N`2
.

The free energy is

FN (R) = UN (R)− TSN (R)

= 3
2
kBT

R2

N`2
+ FN (0)︸ ︷︷ ︸

UN (0)−TSN (0)

since UN (R) = UN (0) for an ideal chain.
7While an ideal chain has R0 ∼ N

1/2 and a rigid rod has R0 ∼ N , in general polymer chains can have a scaling law
R0 ∼ Nν . The power ν need not be an integer.

13



2.4 Free Energy of the Ideal Chain and Entropic Springs 2 POLYMERS

What does FN (R) mean? It represents the energy needed to stretch the polymer, and this energy
is ∼ R2 like a harmonic spring (U ∼ 1

2kx
2) with k = 3kBT

N`2 ∼
T
N . Note that the polymer becomes less

elastic (more rigid) as the temperature increases, unlike most solids. This is a physical result and can
be verified experimentally: for instance, the spring constant of rubber (which is made of networks of
polymer chains) increases linearly with temperature.
Consider an experiment where instead of holding the chain at constant length, we apply a perturba-

tively weak force ±f to its ends and measure its average length. We can perform a Legendre transform
between distance and force: from equality of forces along the direction in which they are applied,

fx = ∂FN
∂Rx

= ∂

∂Rx

(3kBT
2N`2

R2
)

=

≡k︷ ︸︸ ︷
3kBT
N`2

Rx,

⇓
f = kR.

To be in this linear response (f ∼ r) region, we must demand that R ∼ |R0| � Rmax = N`, and to
stress this we can write

f =
(3kBT

`

) R
Rmax

.

Numerically, with a nanometric ` and at room temperature the forces should be in the picoNewton
range to meet this requirement.
A more rigorous treatment which works at arbitrary forces can be carried out by considering an

FJC with oppositely charged (±q) ends in an electric field E ‖ ẑ. The chain’s sites are at ri with
R ≡ RN −R0. The potential is

Uelec = +qE ·R0 − qE ·RN = fR
⇓

f = qE.

Since R =
∑
i ri, we can write the potential as

Uelec = −qE ·R = −qE ·
(∑

i

ri

)
= −f`

∑
i

cosϑi,

with cosϑi = ẑ·ri. The partition function is

ZN (f) =
�

dr1...

�
drNΨ ({ri}) e−βUelec({ri})

= TrΨie−βU({ψi}).

The function Ψ is separable into product of functions ψ (ri) = 1
4π`2 δ (|ri| − `). Now,

exp
{
−Uelec
kBT

}
= exp

{
f`

kBT

∑
i

cosϑi

}
.
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In spherical coordinates ri = (ri, ϑi, ϕi) we can solve the integral:

ZN (f) =
[� ∞

0
dr r2

4π`2
δ (r − `)

]N
×
[� 2π

0
dϕ
]N
×
∏
i

� π

0
dϑi sinϑie

f`
kBT

cosϑi

=
x=cosϑ

( 1
4π

)N
(2π)N

[� 1

−1
dxe

f`
kBT

x

]N

= 1
2N

[2kBT
f`

sinh
(
f`

kBT

)]N
=

[
kBT

f`
sinh

(
f`

kBT

)]N
.

The Gibbs free energy (Gibbs because the external force is fixed) is then

GN (f) = −kBT lnZN (f) = −kBTN ln
[
sinh

(
f`

kBT

)]
+ kBTN ln

(
f`

kBT

)
,

and the average extension

〈R〉f = −∂GN (f)
∂f

= −kBTN coth


≡α︷ ︸︸ ︷
f`

kBT

 `

kBT
+ kBTN

1
f

= N`

[
cothα− 1

α

]
≡ N`L (α)

The Langevin function L (α) = cothα − 1
α is also typical of spin magnetization in external magnetic

fields and of dipoles in electric fields at finite temperatures.
04/02/2009

2.5 Polymers and Fractal Curves
2.5.1 Introduction to fractals

Book: B. Mandelbrot.

A fractal is an object with fractal dimensionality, called also the Hausdorff dimension. This implies a
new definition of dimensionality, which we will discuss.
Consider a sphere of radius R. It is considered three-dimensional because it has V = 4π

3 R
3 and

M = ρV ∼ RD for D = 3. A plane has by the same reasoning M ∼ RD for D = 2, and is therefore a
2D object. Fractals are mathematical objects such that by the same sort of calculation they will have
M ∼ RDf , for a Df which is not necessarily an integer number (this definition is due to Hausdorff).
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One example is the Koch curve (see (7)): in each of its iterations, we decrease the length of a segment
by a factor of 3 and decrease its mass by a factor of 4. We will therefore have

M2 = 1
4
M1 = A (r2)Df = A

(1
3
r1

)Df
,

M1 = A (r1)Df .
⇓

1
4

=
(1

3

)Df
⇒ Df = ln 4

ln 3
' 1.26 and 1 < Df < 2.

Note that a fractal’s “real” length is infinite, and its approximations will depend on the resolution.
The structure exhibits self-similarity: namely, on different length scales it will look the same. This
can be seen in the Koch snowflake: at any magnification, a part of the curve looks similar to the whole
curve. There’s a very nice animation of this in Wikipedia.
The total length of the curve depends on the the ruler used to measure it: the actual length at

iteration n is L0
(

4
3

)n
. Another definition for the fractal dimension is

Df =
ln L0

`0

ln `1
`0

= ln 4
ln 3

.

2.5.2 Linking fractals to polymers

Consider the ideal Gaussian chain again. It has R2
0 = N`2 ∼ N . Since N is proportional to the mass,

we have an object with a fractal dimension of 2 no matter what the dimensionality of the actual space
is. We can say that a polymer in d-space fills only Df ≤ d dimensions of the space it occupies, where
Df is 2 for an ideal polymer Gaussian and 2 ≤ Df ≤ d in general. Flory8 has shown that in some cases
a non-ideal polymer can also have Df < 2, in particular when a self-avoiding walk (SAW) is accounted
for. The SAW as opposed to the Gaussian walk (GW) is the defining property of a physical rather
than ideal polymer, and gives a fractal dimension of Df ≈ 1.66. A collapsed polymer has Df = 3 and
fills space completely. Note that two polymers with fractal dimensions Df and D∗f do not “feel” each
other statistically if Df +D∗f < d.

2.6 Polymers, Path Integrals and Green’s Functions
Books: Doi & Edwards, F. Wiegel, or Feynman & Hibbs.

2.6.1 Local Gaussian chain model and the continuum limit

This model is also known as LGC. We start from an FJC in 3D where Ψ =
∏
i ψ (ri) and ψ (ri) =

1
4π`2 δ (ri − `). By the central limit theorem R =

∑
i ri will always be taken from a Gaussian distri-

bution when the number of monomers is large (whatever the form of ψ, as long as it is symmetrical

8The Flory exponent is defined from R ∼ Nν such that ν = 1
Df

.
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around zero such that 〈ri〉 = 0):

PN (R) =
( 3

2πN`2

)3/2

exp
(
− 3R2

2N`2

)
.

In the LGC approximation we exchange the rigid rods for Gaussian springs with 〈ri〉 = 0 and
〈
r2
i

〉
= `2,

by setting

ψ (ri) =
( 3

2π`2

)3/2

exp
(
−3R2

2`2

)
.

We can then obtain for the full probability distribution

Ψ ({ri}) =
∏
i

ψ (ri)

=
( 3

2π`2

)3N/2

exp
(
−

N∑
i=1

3 (Ri −Ri−1)2

2`2

)
,

where ri = Ri −Ri−1. Ψ describes N harmonic springs with k = 3kBT
`2 connected in series:

U0 ({Ri}) = 3
2`2

kBT
N∑
i=1

(Ri −Ri−1)2 ,

Ψ ∼ e
− U0
kBT .

An exact property of the Gaussian distributions we have been using is that a sub chain of m − n
monomers (such as the sub chain starting at index m and ending at n) will also have a a Gaussian
distribution of the end-to-end length:

P (Rm −Rn,m− n) =
( 3

2π |n−m| `2
)3/2

exp
(
− 3R2

2 |n−m| `2

)
,〈

(Rm −Rn)2
〉

= `2 |n−m| .

At the continuum limit, we will get Wiener distributions: the correct way to calculate the limit is to
take N →∞ and `→ 0 with N` = L remaining constant. The length along the chain up to site n is
then described by n` → s, 0 ≤ s ≤ L. At this limit we can also substitute derivatives ∂R

∂s = 1
`
∂R
∂n for

the finite differences Ri−Ri−1
` , such that

N∑
i=1

1
`2

(Ri −Ri−1)2 →
� L

0

ds
`

(
∂R
∂s

)2
=

� N

0
dn 1
`2

(
∂R (n)
∂n

)2

Ψ ({Ri}) → const.× exp
{
− 3

2`2

� N

0

(
∂R (n)
∂n

)2
dn
}
.

If we add an external spatial potential U (Ri) (which is single-body), its contribution to the free
energy will amount in a factor of

exp
{
− 1
kBT

N∑
i=1

U (Ri)
}
→ exp

{
− 1
kBT

� N

0
U (R (n)) dn

}
.
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to the Boltzmann factor.
04/23/2009

2.6.2 Functional path integrals and the continuum distribution function

Books: F. Wiegel, Doi & Edwards.

Consider what happens when we hold the ends of a chain defined by {Ri} in place, such that R0 = R′
and RN = R. We can calculate the probability of this configuration from

PN (R0,RN ) =
N−1∏
i=1

�
dRiΨ ({Ri}) .

At the continuum limit the definition of the chain configurations translates into a function R (n) and
the product of integrals can be taken as a path integral according to

∏N−1
i=1

�
dRi →

�
DR (n). The

probability for each configuration with our constraint is a functional of R (n). The partition function
is:

ZN
(
R,R′

)
=

� RN=R

R0=R′
DR (n) exp

{
− 3

2`2

� N

0

(
∂R (n)
∂n

)2
dn− 1

kBT

� N

0
U (R (n)) dn

}
,

and we can normalize it to obtain a probability distribution function, given in terms of this path
integral:

PN
(
R,R′

)
= ZN (R,R′)�

ZN (R,R′) dRdR′
.

We now introduce the Green’s function G (R,R′;N) ,which as we will soon see describes the evolu-
tion from R′ to R in N steps. We define it as:

G
(
RN = R,R0 = R′;N

)
≡

� RN=R
R0=R′ DR (n) exp

{
− 3

2`2
� N
0

(
∂R(n)
∂n

)2
dn− 1

kBT

� N
0 U (R (n)) dn

}
�

dRdR′
� RN=R

R0=R′ DR (n) exp
{
− 3

2`2
� N
0

(
∂R(n)
∂n

)2
dn
} .

Note that while the nominator is proportional to the probability PN , the denominator does not include
include the external potential.
G has several important properties:

1. It is equal to the exact probability PN for Gaussian chains in the absence of external potential.

2. If we consider that the chain might be divided into one sub chain between step 0 and i and a
second sub chain from step i to step N , then

G
(
R,R′;N

)
=

�
dR′′G

(
R,R′′;N − i

)
G
(
R′′,R′; i

)
.

We can use this property to compute expectations values of observables. If we have some function
of a specific monomer A (Ri), for instance:

〈A (Ri)〉 =
�

dRNdR0dRiG (RN ,Ri;N − i)A (Ri)G (Ri,R0; i)�
dRNdR0G (RN ,R0;N)

.
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3. The Green’s function is the solution of the differential equation (see proof in Doi & Edwards
and in homework):

∂G

∂N
− `2

6
∂2G

∂R2 + U (R)
kBT

G = δ
(
R −R′

)
δ (N) .

4. The Green’s function is defined as 0 for N < 0 and is equal to δ (R −R′) when N → 0 in order
to satisfy the boundary conditions.

2.6.3 Relationship to quantum mechanics

This equation for N > 0, R 6= R′ is very similar in form to the Schrödinger equation. To see this, we
can rewrite it as: ∂

∂N
−

≡L︷ ︸︸ ︷
`2

6
∂2

∂R2 + U (R)
kBT

G (R,R′;N
)

=
[
∂

∂N
− L

]
G
(
R,R′;N

)
= 0.

If we make the replacementN → it
~ , L → H and `2

6 →
~2

2m this is identical to−i~ ∂
∂tG =

[
−~2O2

2m + V (R)
]
G =

HG. Like the quantum Hamiltonian the Hermitian operator L has eigenfunctions such that Lϕk =
Ekϕk, which according to Sturm-Liouville theory span the solution space (

∑
k ϕ
∗
k (r′)ϕk (r) = δ (r− r′))

and can be orthonormalized (
�
ϕ∗kϕmdr = δkm).

The solution of the non-homogeneous problem is therefore

G
(
R,R′;N

)
=
∑
k

ϕ∗k (R)ϕk
(
R′
)
e−NEk ,

where the ϕk are solutions of the homogeneous equation (L − En)ϕn = 0.

Example A polymer chain in a box of dimensions Lx × Ly × Lz:
The potential U is 0 within the box and∞ on the edges. The boundary conditions areG (R,R′;N) =

0 if R or R′ are on the boundary. The function is also separable in Cartesian coordinates:

G
(
R,R′;N

)
=

3∏
i=1

gi
(
Ri, R

′
i;N

)
.

Let’s solve for g1 ≡ gx (the other g functions are similar):(
∂

∂N
− `2

6
∂2

∂R2
1

)
u (R1, N) = 0.

If we separate variables again with the ansatz u (R1, N) = ϕ (R1) e−EN we obtain

−Eϕ− `2

6
ϕ′′ = 0,

⇓
ϕ (R1) = A sin k1R1 +B cos k1R1.
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With the boundary condition {
ϕ (0) = 0 ⇒ B = 0,
ϕ (Lx) = 0 ⇒ k1 = nπ

Lx
.

This gives an expression for the energy and eigenfunctions:

En =
(
`2π2

6Lx

)
n2 = E1n

2,

ϕn (R1) =
√

2
Lx

sin
(
nπ

Lx
R1

)
,

un (R1) =
√

2
Lx

sin
(
nπ

Lx
R1

)
e−EnN .

The Green’s function can finally be written as

g1
(
R1, R

′
1;N

)
=
∞∑
n=1

2
Lx

sin
(
nπ

Lx
R1

)
sin
(
nπ

Lx
R′1

)
e−NEn .

Since with the Cartesian symmetry of the box the partition function Z =
∏3
i=1 Zi is also separable

and using � Lx

0
sin nπ

Lx
xdx =

{2Lx
nπ n = 2, 4, 6, ... (even),
0 n ∈ 1, 3, 5, ... (odd)

we can calculate

Zx =
�

dx
�
dx′g1

(
x, x′;N

)
= 2

Lx

∑
n=1, 3, 5...

(2Lx
nπ

)2
exp

(
−N `2π2n2

6L2
x

)

= 8Lx
π2

∑
n=1, 3, 5...

1
n2 e

−n2E1N .

We can now go on to calculate F = −kBT lnZxZyZz, and we can for instance calculate the pressure
on the box edges in the x direction:

Px = − 1
LyLz

∂F

∂Lx
.

Two limiting cases can be done analytically: first, if the box is much larger than the polymer, Li �
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√
N` and

1
n2 exp

{
−π

2`2N

L2
x

n2
}
≈ 1

n2 ,

∑
n=1, 3, 5...

1
n2 = π2

8
,

⇓

Px = − 1
LyLz

∂

∂Lx
(−kBT lnZxZyZz)

= − kBT
LyLz

1
Zx

∂Zx
∂Lx

= kBT

ZxZyZz
.

This is equivalent to a dilute gas of polymers (done here for a single chain). At the opposite limit,
Li �

√
N`, the polymer should be “squeezed”. The Gaussian approximation will be no good if we

squeeze too hard, but at least for some intermediate regime we can neglect all but the first term in
the series:

Zx = 8Lx
π2

∑
n=1, 3, 5...

1
n2 e

−π
2`2n2
6L2
x

N

≈ 8Lx
π2 e

−π
2`2

6L2
x
N
,

Px = − kBT
LyLz

∂ lnZx
∂Lx

≈ kBT

V

{
1
Lx

+ π2`2N

3L3
x

}

= kBT

V

{
1 + π2`2N

3L2
x

}
.

There is a large extra pressure caused by the “squeezing” of the chain and the corresponding loss of
its entropy.
04/30/2009
The same formalism can be used to treat polymers near a wall or in a well near a wall, for instance

(see the homework for details). In the well case, like in the similar quantum problem, we will have
bound states for T < Tc (where the critical temperature is defined by a critical value of βcV0 = V0

kBTc
,

and describes the condition for the potential well to be “deep” enough to contain a bound state).

2.6.4 Dominant ground state

Note that since
G =

∞∑
n=0

ϕn (x)ϕ∗n
(
x′
)
e−NEn ,
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where N is positive and the En are real and ordered (assuming no degeneracy, E0 < E1 < E2 < ...),
at large N we can neglect all but the leading terms (smallest energies) and

G ≈ ϕ0 (x)ϕ∗0
(
x′
)
e−NE0 + ϕ1 (x)ϕ∗1

(
x′
)
e−NE1 + ....

This is possible because the exponent is decreasing rather than oscillating, as it is in the quantum
mechanics case. Taking only the first term in this series is called the dominant ground state approxi-
mation.

2.7 Polymers in Good Solutions and Self-Avoiding Walks
2.7.1 Virial expansion

So far, in treating Gaussian chains, we have neglected any long-ranged interactions. However, polymers
in solution cannot self-intersect, and this introduces interactions V (Ri −Rj) into the picture which
are local in real-space, but are long ranged in terms of the contour spacing - that is, they are not
limited to i ≈ j. The importance of this effect depends on dimensionality: it is easy to imagine that
intersections in 2D are more effective in restricting a polymer’s shape than intersections in 3D.
The interaction potential V (r) can in general have both attractive and repulsive parts, and depends

on the detailed properties of the solvent. If we consider it to be due to a long ranged attractive Van
der-Waals interaction and a short ranged repulsive hard-core interaction, it might be modeled by a
6 − 12 Lennard-Jones potential. To treat interaction perturbatively within statistical mechanics, we
can use a virial expansion (this is a statistical-mechanical expansion in powers of the density, useful
for systematic perturbative corrections to non-interacting calculations when one wants to include
many-body interactions). The second virial coefficient is

v2 =
�

d3r

[
1− e−

V (r)
kBT

]
.

To make the calculation easy, consider a potential even simpler than the 6− 12 Lennard-Jones:

V (r) =


∞ r < σ,

−ε σ < r < 2σ,
0 r > 2σ.

This gives

v2 =

= 4π
3 σ

3≡V0︷ ︸︸ ︷�
r<σ

d3r

[
1− e−

V (r)
kBT

]
+

= 4π
3 [(2σ)3−σ3](1−eβε)︷ ︸︸ ︷�

σ<r<2σ
d3r

[
1− e−

V (r)
kBT

]
= 8V0 − 7V0e

βε.

This can be positive (signifying net repulsion between the particles) at kBT > ε
ln 8

7
or negative (sig-

nifying attraction) for kBT < ε
ln 8

7
. While the details of this calculation depend on our choice and
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parametrization of the potential, in general we will have some special temperature known as the ϑ
temperature (in our case kBϑ = ε

ln 8
7
) where

v2 (ϑ) = 0 .

This allows us to define a good solvent: such a solvent must have T > ϑ at our working temperature.
This assures us (within the second Virial approximation, at least) that the interactions are repulsive
and (as can be shown separately) the chain is swollen. A bad solvent for which T < ϑ will have
attractive interactions, resulting in collapse. A solvent for which T = ϑ is called a ϑ solvent, and
returns us to a Gaussian chain unless the next Virial coefficient is taken.

2.7.2 Lattice model

A common numerical treatment for this kind of system is to draw the polymer on a grid and make
Monte-Carlo runs, where steps must be self-avoiding and their probability is taken from a thermal
distribution while maintaining detailed balance. This gives in 3D RN ' `Nν where ν ≈ 0.588.

2.7.3 Renormalization group

A connection between SAWs and critical phenomena was made by de Gennes in the 1970’s. Some of
the similarities are summarized in the table below.Using renormalization group methods, de Gennes
showed by analogy to a certain spin model that

ν (ε) = 1
2

+ 1
16
ε+ 15

512
ε2 + ϑ

(
ε3
)
,

ε ≡ 4− d.

This gives in 3D a result very close to the SAW: νRG = 1
2 + 1

16 + 15
512 + ϑ

(
ε3
)

= 0.5625 + ϑ
(
ε3
)
.

Polymers Magnetic Systems
N →∞, 1

N � 1. Tc (critical temperature)⇒ T − Tc is a small parameter.
Rg ≈ `Nν = `

(
1
N

)−ν
. Correlation length ξ = ξ0 |T − Tc|−ν - critical exponent ν.

Gaussian chains (non-SAW). Mean field theory.
ν (d = 3) 6= νGaussian = 1/2. ν (d = 3) 6= νMFT .

For d > du = 4, ν (d) = νGaussian. MFT is accurate for d > du (Ising model: du = 4).

2.7.4 Flory model

This is a very crude model which gives surprisingly good results. We write the free energy as Ftot (R) =
Fint + Fent. For the entropic part we take the expression for an ideal chain: SN (R) = −d

2kB
R2

N`2 +
SN (0), Fent = −TSN . For the interaction, we use the second virial coefficient:

Fint (R)
kBT

= 1
2
ν2

�
[c (r)]2 d3r.
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Here c (r) is a local density such that its average value is 〈c〉 = N
V ∼

N
Rd

. If we neglect local fluctuations
in c, then

�
[c (r)]2 d3r = V

〈
c2 (r)

〉
≈ V 〈c (r)〉2 = R2

(
N

Rd

)2
,

Fint
kBT

≈ 1
2
v2N

2R−d.

The total free energy is then
Ftot
kBT

≈ d

2
R2

N`2
+ 1

2
v2N2R−d .

The free parameter here is R, but we do not know how it relates to N . For constant N the minimum
is at

RF =
(
v2
2
`2
) 1
d+2

N
3
d+2 ,

which gives the Flory exponent

νF = 3
d+ 2

.

This exponent is exact for 1, 2 and 4 dimensions, and gives a very good approximation (0.6) for 3
dimensions, but it misses completely for more than 4 dimensions. For a numerical example consider
a polymer of ∼ 105 monomers each of which is about 5Å in length. From the expressions above,

R =


1600Å GW,
5000Å Flory,
4400Å SAW.

This difference is large enough to be experimentally detectable by the scattering techniques to be
explained next.
The reason the Flory method provides such good results turns out to be a matter of lucky cancel-

lation between two mistakes, both of which are by orders of magnitude: the entropy is overestimated
and the correlations are underestimated. This is discussed in detail in all the books.

2.7.5 Field Theory of SAW

Books: Doi & Edwards, Wiegel

The seminal article of S.F. Edwards in 1965 was the first application of field-theoretic methods to
the physics of polymers. To insert interactions into the Wiener distribution, we take sum over the
two-body interactions 1

2
∑
ij V (Ri −Rj) to the continuum limit 1

2
� N
0 dn

� N
0 dmV (R (m)−R (n)).

This formalism is rather complicated and not much can be done by hand. One possible simplification
is to consider an excluded-volume (or self-exclusion) interaction of Dirac delta function form, which
prevents two monomers from occupying the same point in space:

V (Ri −Rj) = kBTv2δ (Ri −Rj) .
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The advantage of this is that a simple form is obtained in which only the second virial coefficient v2
is taken into account. The expression for the distribution is then

Ψ ({Rn}) ∼ exp
{
− 3

2`2

� N

0
dn
(
∂R (n)
∂n

)2
− v2

2

� N

0
dn

� N

0
dmδ (Rm −Rn)

}
.

With expressions of this sort, one can apply standard field-theory/many-body methods to evaluate
the Green’s function and calculate observables. This is more advanced and we will not be going into
it.
05/07/2009

2.8 Scattering and Polymer Solutions
2.8.1 The form factor

Materials can be probed by scattering experiments, and for dilute polymer solutions this is one way
to learn about the polymers within them. Laser scattering requires relatively little equipment and
can be done in any lab, while x-ray scattering (SAXS) requires a synchrotron and neutron scattering
(SANS) requires a nuclear reactor. We will discuss structural properties on the scale of chains rather
than individual monomers, which means relatively small wavenumbers. It will also soon be clear that
small angles are of interest.
If we assume that the individual monomers act as point scatterers9 (see (8)) and consider a process

which scatters the incoming wave10 at ki to kf , we can define a scattering angle ϑ and a scattering
wave vector k = kf − ki (which becomes smaller in magnitude as the angle ϑ becomes smaller). We
then measure scattered waves at some outgoing angle for some incoming angle as illustrated in (9),
where in fact many chain scatterers are involved we should have an ensemble average over the chain
configurations (which should be incoherent since the chains are far apart compared with the typical
decoherence length scale). All this is discussed in more detail below.
Within a chain scattering is mostly coherent such that that the scattered wavefunction is Ψ =∑N
i=1 aie

ik·Ri . The intensity or power should be proportional to I = |Ψ|2 =
∑N
i,j=1 aia

∗
je
ik·(Ri−Rj)). If

we specialize to homogeneous chains where ai = a, then

I = |a|2
N∑

i,j=1
eik·(Ri−Rj).

This expression is suitable for a single static chain in a specific configuration {Ri}. For an ensemble of
chains in solution, we average over all chain configurations incoherently, defining the structure factor

9This is reasonable when considering probing on the scale of the complete chain.
10For this kind of experiment to work with lasers or x-rays, there must be a contrast: the polymer and solvent must

have different indices of refraction. X-Ray experiments rely on different electronic densities. In neutron scattering
experiments, contrast is achieved artificially by labeling the polymers or solvent - that is, replacing hydrogen with
deuterium.
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S (k):

〈I〉 =
〈
Ψ2
〉
,

S (k) ≡

〈
|Ψ (k)|2

〉
〈
|Ψ (0)|2

〉 .
The normalization is with respect to the unscattered wave at k = 0, |Ψ (0)|2 = a2N2. Note that in
an isotropic system like the system of chain molecules in a solvent, the structure factor must depend
only on the magnitude of k.
Inserting the expression for Ψ2 into the above equation gives

S (k) = 1
N2

〈
N∑

i,j=1
eik·(Ri−Rj)

〉
.

We now switch to spherical coordinates with z parallel to k with the added notation Rij = Ri −Rj .
Since in these coordinates k ·Rij = kRij cosϑ, we can write

〈
eiq·Rij

〉
= 1

4π

� 2π

0
dϕ

� π

0
dϑ sinϑeikRij cosϑ

= 1
2

� 1

−1
dxeikRijx

= sin (kRij)
kRij

,

S (k) = 1
N2

∑
ij

〈
sin (kRij)
kRij

〉
configurations

.

2.8.2 The gyration radius and small angle scattering

For small k (which at least in the elastic case implies small ϑ), we can expand the above expression
for S (k) in powers of kRij to obtain

S (k) ' 1
N2

∑
ij

〈
1−

(
kRij
3!

)2〉

= 1
N2N

2 − 1
6

1
N2 |k|

2∑
ij

〈
R2
ij

〉
= 1− 1

3
k2R2

g.

The last equality is due to the fact R2
g = 1

2N2
∑
ij

〈
R2
ij

〉
.

26



2.8 Scattering and Polymer Solutions 2 POLYMERS

If the scattering is elastic, |ki| = |kf | = 2π
λ and

k = |ki − kf | =
√

k2
i + k2

f − 2ki · kf = |ki|
√

1 + 1− 2 cosϑ = 2π
λ
· 2 sin ϑ

2
.

With this expression for k in terms of the angle ϑ, the structure factor is then

S (k) ' 1− 1
3
k2R2

g.

= 1− 16π2

3
sin2 ϑ

2
λ2 R2

g.

From an experimental point of view, we can plot S as a function of k2 ∼ sin2 ϑ
2 and determine the

polymer’s gyration radius Rg from the slope.
The approximation we have made is good when kRg ∼

sin ϑ
2

λ Rg � 1, and this determines the range
of angles that should be taken into account: we must have sin ϑ

2 ∼
ϑ
2 . λ

Rg
. For laser scattering

usually λ ∼ 500nm (about enough to measure Rg) while for neutron scattering λ ∼ 0.3nm (meaning
we must take only very small angles into account to measure Rg, but also allowing for more detailed
information about correlations within the chain to be collected).

2.8.3 Debye scattering function

Around 1947, Debye gave an exact result (the Debye function) for Gaussian chains:〈
eik·(Ri−Rj)

〉
= e−

`2k2
6 |i−j|,

SD (k) = 2(
k2R2

g

)2

k2R2
g − 1 + e−

=x︷ ︸︸ ︷
k2R2

g

 ,

SD (x) = 2
x2
(
x− 1 + e−x

)
.

At the limit where x � 1 we can expand S (x) around x = 0, yielding the k → 0 limit we have
encountered earlier. For x� 1, S (x) = 2

x2 (x− 1 + e−x) ' 2
x .

This also works very well for non-Gaussian chains in non-dilute solutions, where a small percentage
of the chains is replaced by isotopic variants. This gives an effectively dilute solution of isotopic chains,
which can be distinguished from the rest, and these chains are effectively Gaussian for reasons which
we will mention later11. An example from Rubinstein is neutron scattering from PMMA as done by R.
Kirste et al (1975), which fits very nicely to the Debye function for Rg ≈ 130Å. In general, however,
a SAW in a dilute solution modifies the tail of the Debye function, since ρ (k) ∼ k−Df and Df = 5

3 for
a SAW.

11Another way to observe GW behavior is to use a ϑ-solvent.
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2.8.4 The structure factor and monomer correlations

Consider the full distribution function of the distances Rij = Ri−Rj . This is related to the correlation
function for monomer i:

gi (r) = 1
N

N∑
j=1
〈δ (r−Rij)〉 .

This function is evaluated by fixing a certain monomer i and counting which other monomers are at
a distance r from it, averaging over all chain configurations. If we now average over all monomers
1 ≤ i ≤ N , we obtain

g (r) = 〈gi (r)〉 = 1
N2

∑
ij

〈δ (r−Rij)〉 .

Fourier transforming it, �
dr g (r) eik·r = 1

N2

∑
ij

〈
eik·Rij

〉
= S (k) .

The fact that the structure function is the Fourier transform of the scatterer density correlation
function is, of course, not unique to the case of polymers.
At large k, it can be shown (homework) that if S (k) ∼ k−Df then g (r) ∼ 1

r
d−Df

. We can therefore
determine the fractal dimension of the chain from the large k tail of the structure factor (see table).

(d,Df ) g (r) S (k)

3D GW 3, 2 1
r

(
1
k

)2

3D SAW 3, 5/2
(

1
r

)4/3 (
1
k

)5/3

3D collapsed chain 3, 3
(

1
r

)0
ln r

(
1
k

)3

2.9 Polymer Solutions
2.9.1 Dilute and semi-dilute solutions

Up to this point, we have considered only independent chains in dilute solutions. We have also
discussed the quality of solvents and the ϑ temperature. Now, we consider multiple chains in a good
solvent (good because we do not want them in a collapsed state).
The concentrations of monomers c is defined as the number of monomers (for all chains) per unit

volume. A solution is dilute if the typical distance between chains is more that Rg and semi-dilute if it
is more that Rg. Between these limits12, the concentration passes through a crossover value c∗ where
the inter-chain distance is equal to the typical chain size Rg. We can calculate c∗ by calculating the
concentration of monomers within a single chain and equating it to the average monomer concentration:

c∗ ∼ N

Rdg
= N1−dν

`d
.

12A concentrated solution is defined by c > c∗∗. If the solvent is removed completely, one obtains a melt, composed of
polymer chains in a liquid state (a viscoelastic material). We will not be discussing these cases further - see Rubinstein
for details.
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For instance, in a 3D SAW d = 3 and ν = 3
5 such that c∗ = N−0.8`−3. We can also work in terms

of volume fraction φ = `3c. This turns out to be very small (for N = 106 it is about 0.001% and for
N = 103 it is about 0.4%).
05/14/2009

2.9.2 Free energy of mixing

If we have a mixture of two components - NA units of A and NB units of B on a lattice model with
cell length ` such that NA +NB = N is the total number of cells - we can define the relative volumes
φ ≡ φA = NA

NA+NB and φB = 1− φ. The free energy of mixing (in the simple isotropic case) is then

Fmix = Umix − TSmix.

From a combinatorical argument and with the help of the Stirling series,

Smix = kB ln (NA +NB)!
NA!NB!

' −NA ln

=φ︷ ︸︸ ︷
NA

NA +NB
−NB

=1−φ︷ ︸︸ ︷
NB

NA +NB
.

The average entropy of mixing per cell is therefore

− Smix
kB (NA +NB)

= −σmix
kB

= φ lnφ+ (1− φ) ln (1− φ) .

We now consider interactions UAA, UBB and UAB between nearest neighbors of the two species.
The specific form of the interaction depends on the coordination number z, or the number of nearest
neighbors per grid point: for instance, on a square 2D grid z = 4. The mixing interaction energy can
be written as

Umix = NABUAB + NAAUAA + NBBUBB,

where the Nij count the number of boundaries of the different types within the system. In the mean
field approximation, we can evaluate them by neglecting local variations in density:

NAB = NAz
NB

NA +NB
= z (NA +NB)φ (1− φ) ,

NBB = z

2
(NA +NB) (1− φ)2 ,

NAA = z

2
(NA +NB)φ2.

The interaction energy per-particle due to mixing is then

umix = Umix
NA +NB

= zφ (1− φ)UAB + z

2
(1− φ)2 UBB + z

2
φ2UAA,

and we will subtract from it the enthalpy of the “pure” system, where the components are unmixed:

U0
NA +NB

= (1− φ) z
2
UBB + φ

z

2
UAA.
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The difference between these two quantities it the change in enthalpy per unit cell due to mixing:

∆umix = Umix − U0
NA +NB

=

≡kBTχ︷ ︸︸ ︷
z

(
UAB −

1
2
UAA −

1
2
UBB

)
φ (1− φ) = kBTχφ (1− φ) ,

χ = 1
kBT

[
UAB −

UAA − UBB
2

]
z .

The sign of the Flory parameter χ determines whether the minimum of the energy will be at the
center or edges of the parabola in φ.

∆fmix = ∆Fmix
NA +Nb

= ∆umix − Tσmix,

∆fmix = kBTχφ (1− φ) + kBTφ lnφ+ kBT (1− φ) ln (1− φ) .

This is the MFT approximation for the free energy of mixing13.

2.9.3 The Flory-Huggins model for polymer solutions

This is based on work mostly done by Huggins around 1942. The basic idea is to consider a lattice
like the one shown in (11), with chains (inhabiting N = 5 blocks in the example) in a solvent (which
can also be a set of chains, but in the example the number of blocks per solvent unit is S = 1).
The enthalpy of mixing Umix is approximately independent of the change from the molecule-solvent

system to this polymer-solvent system, at least within the MFT approximation. We can therefore set
φ = NP

NP+NS (NP is the number of monomers and NS the number of solvent units; NpN is the number
of chains) and use the previous expressions for ∆umix and χ. The fact we have chains rather than
individual monomers is of crucial importance when we calculate the entropy, though: chains have more
constraints and therefore a lower entropy than isolated monomers14. We will make an approximation
(correct to first order in N for N � 1) based on the assumption that the chains are solid objects and
can only be transformed, rather than also rotated and conformed around their center of mass. This
gives, making the Stirling approximation as before,

Smix ' kB
(NP +NS)!
NS !

(
NP
N

)
!
,

−σmix
kB

' φ

N
lnφ+ (1− φ) ln (1− φ) + αφ,

α = 1
N

ln
(
NS +NP

N

)
− ln (NS +NP ) + 1− 1

N
.

13If the two components have different volumes, then

φA = vANA
vANA + vBNB

,

φB = 1− φA.

Otherwise, the treatment is very similar (see homework).
14This is treated in detail in the books by Flory and by Doi & Edwards.
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If we neglect the term linear in φ, which we will later show is of no importance, these two expressions
lead to the Flory-Huggins free energy of mixing15:

f (φ, T ) = ∆fmix
kBT

= χφ (1− φ) + φ

N
lnφ+ (1− φ) ln (1− φ) .

Compared to our previous expression, we see that the only difference is in the division of the second
term by N .

2.9.4 Polymer/solvent phase transfers

A system composed of a polymer immersed in a solvent can be in a uniform phase (corresponding to
a good solvent) or separated into two distinct phases (a bad solvent). Qualitatively, this depends on
χ: the entropic contribution to the free energy from σmix will always prefer mixing, but the preference
of ∆umix depends on the the sign of χ. Phase transfers can only possibly exist if χ > 0, because
otherwise the total change in energy due to mixing is always negative.
When discussing Helmholtz free energy, φ is the degree of freedom - however, in the physical case

of interest it constant and we must perform a Legendre transformation, or in other words introduce a
Lagrange multiplier to impose the constraint that φ = Φ. We therefore define

g = f − µφ,

and after g is minimized µ will be determined so as to maintain our constraint (it turns out that µ
is the difference between the chemical potentials of the polymer and solvent). When g has multiple
minima ( dgdφ = df

dφ − µ = 0 for more than one φ), a phase transfer can exist.
If g has only one minimum at φ, then we must have f ′ (φ) = µ. If g has two minima, a first order

phase transfer will exist when the free energy g at these two minima is the same. This amount to a
common tangent construction condition for f (see 12):{

f (φ1)− µφ1 = f (φ2)− µφ2,

f ′ (φ1) = f ′ (φ2) = µ.

This requires f (φ1)− f (φ2) = µ (φ1 − φ2). The two formulations (in terms of g and f) are of course
identical. The common tangent actually describes the free energy f of a mixed phase system (having a
volume v1 at concentration φ1 and a volume v2 at concentration φ2, such that Φ = v1φ1

v1φ1+v2φ2
). When

φ1 < φ < φ2 this line is always lower than the concave profile of the uniform system with concentration
φ, and therefore the mixed-phase system must be the stable state.

15This formula is for S = 1, but it is easy to show (homework) that for a blend of two polymers with N1 and N2, we
will still have φ = φA = 1− φB and

f (φ, T ) = ∆fmix

kBT
= χφ (1− φ) + φ

N1
lnφ+ (1− φ)

N2
ln (1− φ) .

Similarly, if the molecular volumes are different we can define φA = NAVA
NAVA+NBVB

and φB = NBVB
NAVA+NBVB

and continue
to use the same expression.
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Note that any additional term to f which is linear in φ will only produce a shift in µ, and not
qualitatively change the phase diagram. This is because

f → f + αφ

⇓
g → (f + αφ)− µφ = f − (µ− α)φ.

Returning to the Flory-Huggins mixing energy, for χ > 0 we can see that f has two minima and
the system can therefore be in two phases. For χ < 0 only one minimum exist, and therefore only one
phase. Generalizing beyond the Flory-Huggins model, at any temperature T there exists some χ (T ),
and often a dependence χ (T ) = A− B

T works well experimentally (we have found a dependence ∼ 1
T

assuming that the interactions are independent of temperature). For every T or χ, we can find φ1 and
φ2 from the procedure above where two phases exist. This produces a phase diagram similar to (13),
where the φ (T ) curve is known as the binodal or demixing curve.
The phase diagram (13) includes a few more details: one is the critical point (Tc, φc) or (χc, φc),

beyond which two solution can no longer exist. Another is the spinodal curve, existing within the
demixing curve at f ′′ = 0, marks the point of transition between metastability and instability (within
the spinodal curve, phase spearation occurs spontaneously, while between the spinodal and binodal
curves it requires some initial nucleation). The spinodal curve is usually quite close to the binodal
curve, and since it can be found analytically provides a useful estimate:

f (φ) = χφ (1− φ) + φ

N
lnφ+ (1− φ) ln (1− φ) ,

⇓

f ′′ (φ) = −2χ+ 1
N

1
φ

+ 1
1− φ

,

⇓ f ′′(φ)=0

2χs = 1
1− φ

+ 1
N

1
φ
.

The endpoint of the spinodal curve is also the endpoint of the binodal curve; also, this endpoint is the
same for the χ (φ) and T (φ) curves. We can find it from

0 = ∂χs
∂φ

∣∣∣∣
c

= 1
2

[
− 1
N

1
φ2
c

+ 1
(1− φc)2

]
,

⇓

φc = 1
1 +
√
N
.

Inserting this into the equation for χs gives

χc = 1
2

(
1 + 1√

N

)2
.

There is a great deal to expand on here. Chapter 4 in Rubinstein is a good place to start.
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