Inhaltsverzeichnis

1	SIC	HERHE	ITSVORSCHRIFTEN	5
	1.1	SICHE	RHEITSVORSCHRIFTEN	5
2	Q U.	ALITAT	IVE ANALYSE	11
		2.0.1	NACHWEISREAGENZIEN	11
	2.1	Vorp	ROBEN	13
		2.1.1	FLAMMENFÄRBUNG	13
		2.1.2	BORAX- UND PHOSPHORSALZPERLE	23
		2.1.3	OXIDATIONSSCHMELZE	27
		2.1.4	KALIUMHYDROXIDSCHMELZE	29
	2.2	AUFS	CHLÜSSE	30
		2.2.1	SODAAUSZUG	30
		2.2.2	SODA-POTTASCHE-AUFSCHLUSS	31
		2.2.3	Freiberger Aufschluss	32
		2.2.4	SAURER AUFSCHLUSS	33
		2.2.5	KALIUMHYDROXIDAUSZUG	34
	2.3	NACH	WEISREAKTIONEN	35
		2.3.1	Antimon	35
		2.3.2	ALUMINIUM	37
		2.3.3	Arsen	41
		2.3.4	BARIUM	50
		2.3.5	BISMUT	52
		2.3.6	Blei	55
		2.3.7	BOR	58
		2.3.8	BORAT	58
		2.3.9	CADMIUM	61

	2.3.10	CARBONAT 63
	2.3.11	CHROM
	2.3.12	COBALT
	2.3.13	EISEN
	2.3.14	HALOGENIDE 82
	2.3.15	Brom
	2.3.16	CHLOR 89
	2.3.17	IOD 90
	2.3.18	KALIUM 91
	2.3.19	KUPFER
	2.3.20	LITHIUM
	2.3.21	Magnesium
	2.3.22	Mangan
	2.3.23	Molybdän
	2.3.24	Natrium
	2.3.25	NICKEL
	2.3.26	STICKSTOFF
	2.3.27	Ammonium
	2.3.28	CYANID
	2.3.29	PERMANGANAT
	2.3.30	PHOSPHAT
	2.3.31	QUECKSILBER
	2.3.32	SILBER
	2.3.33	SILICIUM
	2.3.34	Schwefel
	2.3.35	Vanadium
	2.3.36	ZINK
	2.3.37	ZINN
2.4	KATIO	NENTRENNUNGSGANG
	2.4.1	Salzsäuregruppe 177
	2.4.2	Schwefelwasserstoffgruppe 180
	2.4.3	Ammoniumsulfidgruppe 196
	2.4.4	Ammoniumcarbonatgruppe 201
	2.4.5	KALIUMHYDROXIDAUSZUG

3	QUANTITATIVE ANALYSE 20)7
	3.1 TITRIMETRIE)7
	3.1.1 Messgeräte 21	0
	3.1.2 ABLESEN	3
	3.1.3 Konzentrationsangaben 21	5
	3.1.4 VERDÜNNEN	8
	3.1.5 TITERBESTIMMUNG	20
	3.1.6 SÄURE-BASE-TITRATION 22	25
4	AUTOREN 23	31
	4.1 TEXT	31
	4.1.1 WIKIPEDIA	31
	4.2 BILDER	74
5	AUTOREN 27	7
6	BILDNACHWEIS 28	31

Lizenz

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License, see http://creativecommons.org/licenses/by-sa/3.0/

1 Sicherheitsvorschriften

1.1 Sicherheitsvorschriften

Bei allen Arbeiten im Labor muss immer eine Schutzbrille und ein Schutzkittel sowie geeignete Kleidung (lange Hose und geschlossene Schuhe) getragen werden. Gegebenenfalls muss zusätzlich eine Gummi- oder Lederschürzegetragen werden. Gearbeitet wird in der Regel im Abzug. Zum einen verhindert man so das austreten von Gasen und Dämpfen in die Raumluft und ist zusätzlich noch vor Spritzern usw. sicher. Bei Arbeiten, die bekanntermaßen sicher sind, wie z.B. Titrationen oder bei vielen Reaktionen in der Tüpfelplatte, kann auch auf dem Labortisch gearbeitet werden. Die Schutzscheibe des Abzugs muss so weit wie möglich geschlossen gehalten werden, damit er eine wirkungsvolle Sogwirkung entfalten kann und einen Spritz- und Explosionsschutz bietet. Ein Bunsenbrenner sollte in einem gewissen Abstand zur Scheibe aufgestellt werden, da eine dauerhafte thermische Belastung zu Rissen führen kann und wieder die Sicherheit gefährdet. Substanzen, die ätzende oder giftige Gase absondern, sollten auch unter dem Abzug nur in verschlossenen Gefäßen aufbewahrt werden.

Beim Umgang mit einigen Substanzen muss außerdem ein Gesichtsschutz verwendet werden (z. B. Flusssäure). Handschuhe sind beim Umgang mit giftigen oder ätzenden Stoffen angebracht. Sie sollten jedoch nicht dazu verleiten unsauber zu Arbeiten. Außer-

dem ist nicht jedes Handschuhmaterial ist für jeden Stoff geeignet. ¹ Vor allem Einmalhandschuhe sind vor allem als Schutz gegen Lösungsmittel gänzlich ungeeignet. Gegen wässrige Lösungen und manche Feststoffe bieten sie einen begrenzten Schutz. Handschuhe aus Nitril sind gegen manche Lösungsmittel, vor allem Aceton, unbeständig. Daher informiere man sich vor Arbeitsbeginn anhand der Beständigkeitsliste des Herstellers über die Eignung des Materials. Über die genauen Schutzmaßnahmen geben die Sicherheitsdatenblätter des Herstellers oder Händlers von Chemikalien Auskunft. Außerdem sind Betriebsanweisungen zu beachten!

Abbildung 1: Augenschutz benutzen

2:

he-

Abbildung Handschutz nutzen

Abbildung 3: Schutzkleidung benutzen

 $^{^1}$ Bericht der Berufsgenossenschaft Chemie über einen tödlichen Unfall bei Verwendung ungeeigneter Handschuhe 2

Abbildung 4: Gebrauchsanweisung beachten

Falls besonders giftige Substanzen entstehen, wird in diesem Arbeitsbuch mit dem Totenkopf darauf aufmerksam gemacht. Das entbindet jedoch nicht vor der Pflicht, sich vor Beginn eines Versuches genau über die Gefahren-, Sicherheits- und Entsorgungshinweise genau zu informieren. Gefahrstoffe sind stets mit den Gefahrensymbolen und R- UND S-SÄTZEN³ (Risiko und Sicherheit) zu kennzeichnen. Zuverlässige Internetquellen findet man unter WIKIPEDIA:REDAKTION CHEMIE/QUELLEN⁴.

3HTTP://DE.WIKIPEDIA.ORG/WIKI/R-%20UND%20S-S%c3%A4TZE

⁴http://de.wikipedia.org/wiki/Wikipedia%3aRedaktion% 20Chemie%2FQuellen

Abbildung 5: explosiv (**E**)

Abbildung 6: brandfördernd (**O**)

Abbildung 7: leichtentzündlich (**F**)

Abbildung 8: hochentzündlich (**F**+)

Abbildung 9: giftig (T)

Abbildung 10: hochgiftig (**T+**)

Abbildung gesundheitss-chädlich (Xn)

12:

Abbildung reizend (**Xi**)

Abbildung 13: ätzend (**C**)

Abbildung 14: umweltgefährlich (N)

Vor jeder Arbeitspause, nach dem Arbeitsende und natürlich auch bei direktem Kontakt mit Chemikalien gründlich die Hände waschen!

Gefahrstoffwarnung! Alle Blei- und Quecksilbersalze sowie sechswertige Chromverbindungen sind giftig und sollten daher nur in kleinstmöglichen Mengen verwendet werden. Jeglicher Hautkontakt mit der Probe- bzw. Salzlösung ist zu vermeiden (evtl. Hand-

schuhe), da vor allem Chromate sowie Nickel auch Kontaktallergien auslösen können. Sechswertige Chromverbindungen (Chromate und Dichromate) sind außerdem krebserregend (Kategorie I)! Entsorgung von Chromaten und Dichromaten: Im gekennzeichneten Becherglas sammeln und mit NASZIERENDEM WASSERSTOFF⁵ (aus der Reaktion von Salzsäure mit unedlem Metall, z.B. Zink) oder mit Ethanol in Gegenwart von Schwefelsäure über längere Zeit behandeln. Das hierbei entstehende grüne Chrom(III) entsprechend den anderen Schwermetallen entsorgen.

⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/NASZIERENDER% 20WASSERSTOFF

2 Qualitative Analyse

2.0.1 Nachweisreagenzien

Dies ist eine Liste von Nachweisreaktionen geordnet nach Reagenzien. Sie ist möglicherweise nützlich, wenn eine Nachweisreaktion nicht so klappt wie gewünscht und man nun auf der Suche nach einem Hinweis ist, was stattdessen reagiert hat.

	EISEN(III) ¹	Cobalt ²	KUPFER(II) ³	Kupfer(I) ⁴
Thiocyanat	[Fe(SCN)(H ₂ O)	₅j2t ₂ [H ₂ O] ₅ [SC	NJCu(SCN)2	Cu(SCN)
	stierblutrot	pink, nach Ex-	schwarz	weiß
		traktion mit		
		Pentanol blau		

In ammoniakalischen Lösungen bilden sich folgende Färbungen/Niederschläge mit dem Chelatkomplexbildner DIACETYL-DIOXIM⁵:

Nickel ⁶	Kupfer ⁷	EISEN(II) ⁸	Cobalt ⁹	BISMUT ¹⁰	BLEI ¹¹	PALLADIU	м ¹²
himbeerot	braunrot	rot	braunrot	zitronengel	b weiß	gelblich]

 $^{^{1}}$ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_EISEN

 $^{^2}$ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_COBALT

³HTTP://DE.WIKIBOOKS.ORG/WIKI/../_KUPFER

⁴HTTP://DE.WIKIBOOKS.ORG/WIKI/../_KUPFER

⁵HTTP://DE.WIKIPEDIA.ORG/WIKI/DIACETYLDIOXIM

⁶ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_NICKEL 7 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_KUPFER

⁸HTTP://DE.WIKIBOOKS.ORG/WIKI/../_EISEN

⁹HTTP://DE.WIKIBOOKS.ORG/WIKI/../ COBALT

¹⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_BISMUT

¹¹HTTP://DE.WIKIBOOKS.ORG/WIKI/../_BLEI

¹² HTTP://DE.WIKIBOOKS.ORG/WIKI/../_PALLADIUM

Blutlaugensalze

	EISEN(II) ¹³	EISEN(III) ¹⁴	Kupfer ¹⁵	ZINK ¹⁶
$K_4[FE(CN)_6]^1$	17	K[Fe ^{III} Fe ^{II} (CN	$_{6}$ μ_{2} [Fe(CN) ₆] \downarrow	K ₂ Zn ₃ [Fe(CN) ₆]
gelbes Blut-		BERLINER	roter Nieder-	weißer
laugensalz		BLAU ¹⁸	schlag	Niederschlag
$K_3[FE(CN)_6]^1$	⁹ K[Fe ^{III} Fe ^{II} (CN)6]		Zn ₃ [Fe(CN) ₆] ₂
rotes Blutlau-	TURNBULLS	~		gelb-brauner
gensalz	BLAU ²⁰			Niederschlag

Iodidlösung

	BLEI ²¹	BISMUT ²²
Iodidlösung	PbI ₂ ↓ gelber	BiI ₃ ↓schwarzer
	Niederschlag	Niederschlag
Iodidlösung	[PbI ₄] ²⁻ farbloser	[BiI ₄] ⁻ orangefarbener
Überschuss	Komplex	Komplex

¹³ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_EISEN

¹⁴ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_EISEN

¹⁵ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_KUPFER

 $^{^{16}}$ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_ZINK

 $^{^{17}\}mathrm{HTTP://De.wikipedia.org/wiki/Kaliumhexacyanidoferrat(II)}$

¹⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/BERLINER%20BLAU

 $^{^{19}\}mathrm{HTTP://DE.WIKIPEDIA.ORG/WIKI/KALIUMHEXACYANIDOFERRAT(III)}$

²⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/TURNBULLS%20BLAU

²¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/../ BLEI

²² HTTP://DE.WIKIBOOKS.ORG/WIKI/../_BISMUT

2.1 Vorproben

2.1.1 Flammenfärbung

Die FLAMMENFÄRBUNG²³ ist eine Vorprobe für viele Kationen und besonders bei Alkali- und Erdalkalimetallen zum Nachweis geeignet. Die Flammenfärbung wird mit einem Bunsen- oder Teclubrenner durchgeführt. Die Brennertypen unterscheiden sich in der Form und der Bedienung leicht. Während beim Bundesbrenner die unterschiedlichen Flammtypen durch Verstellen der Abdeckung über den Lüftungsschlitzen eingestellt werden, geschieht dies beim Teclubrenner durch Verstellen der Abdeckung an der Unterseite des Brennerkamins. Die wichtigsten Flammtypen sind die leuchtende Flamme, bei welcher die Luftöffnungen verschlossen sind und eine unvollständige Verbrennung stattfindet. Die Flamme ist durch verglühende Rußteilchen gelb gefärbt. Bei nahezu vollständig geöffneter Belüftung entsteht eine Flamme, die leicht blau gefäbrt ist und in die Reduktionszone im inneren Kegel und die Oxidationszone im äußeren Kegel eingeteilt werden kann. Sie ist wesentlich heißer und ist die in der Regel verwendete Flamme bei beiden Brennertypen.

 $^{^{23}{\}tt HTTP://DE.WIKIPEDIA.ORG/WIKI/FLAMMENF\%C3\%A4RBUNG}$

Abbildung 15: Bunsenbrenner

Abbildung 16: Flammentypen in Abhängigkeit von der Luftmenge, die das Luftventil passiert:

- 1: Ventil geschlossen (Diffusionsflamme)
- 2: Ventil zur Hälfte geöffnet
- 3: Ventil fast vollständig offen
- 4: Ventil voll geöffnet (Vormischflamme)

Abbildung Teclubrenner

17:

Abbildung 18: NATRIUM-D-LINIE²⁴ durch ein Spektroskop bei 589&nmnbsp;

Man nimmt einen Magnesiastab und glüht diesen 5 Minuten lang im BUNSENBRENNER²⁵ aus, bis die gelbe Farbe verschwindet. Es handelt sich um eine Natriumflammenfärbung, da alles, was man berührt mit kleinen Mengen Handschweiß kontaminiert ist. Danach nimmt man mit dem heißen Magnesiastab etwas Analysensubstanz auf und hält ihn in die Brennerflamme, am besten in einem abgedunkeltem Abzug. Durch die Farbe der Flamme kann man einen ersten Hinweis erhalten. Eine exakte Unterscheidung ist jedoch nur mit einem Handspektroskop möglich. Falls Natrium in der Probe ist, werden alle anderen Flammenfärbungen überdeckt, hier hilft ein Blick durch Cobaltglas, welches das intensive Natriumgelb herausfiltert.

Farben

²⁴

²⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/NATRIUM-D-LINIE

²⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/BUNSENBRENNER

Abbildung 19: AN-TIMON²⁶, fahlblau

Abbildung 20: AR-SEN²⁷, fahlblau

Abbildung 2 BLEI²⁸, fahlblau 21:

²⁶ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_ANTIMON

²⁷ 27_{HTTP}://de.wikibooks.org/wiki/../_Arsen

²⁸ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_BLEI

Abbildung 22: Borat (BOR²⁹), kräftig grün

Abbildung 23: CALCIUM³⁰, ziegelrot

Abbildung 24: KALIUM³¹, violett

²⁹

 $^{^{29}}$ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_BOR

³⁰

³⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_CALCIUM

³¹

³¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_KALIUM

Abbildung 25: KUPFER³², grün, auch blau

Abbildung 26: Kupfersulfat, stark grün

Abbildung 27: LITHIUM³³, karminrot

32

3

³² HTTP://DE.WIKIBOOKS.ORG/WIKI/../_KUPFER

³³ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_LITHIUM

Abbildung 28: NA- Abbildung 29: TRIUM³⁴, gelb NATRIUM³⁵ durch Cobaltglas

Abbildung STRONTIUM³⁶, rot

³⁴ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_NATRIUM

³⁵ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_NATRIUM

³⁶ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_STRONTIUM

Spektren

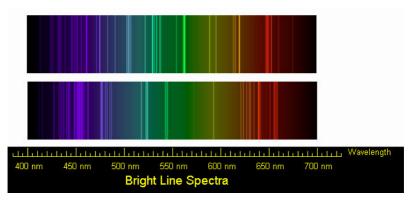


Abbildung 31: zentriert

Erklärung

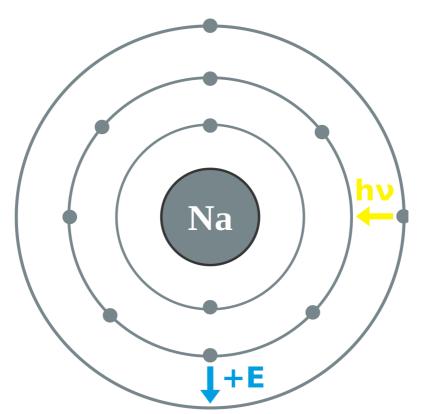


Abbildung 32: Elektronenanhebung und Zurückfallen im Valenzschalenmodell

Durch die Wärmeenergie werden die Elektronen auf ein höheres Energieniveau befördert (ANGEREGTER ZUSTAND³⁷). Diese Energie geben sie aber oft schnell wieder ab und fallen auf ihr vorheriges Niveau zurück. Die Energie, die sie abgeben, wird in Form von Licht

^{37&}lt;sub>HTTP://de.wikiped</sub>ia.org/wiki/angeregter%20Zustand

spezifischer Wellenlänge abgegeben und ist bei gleichen Niveauänderungen immer gleich. Deshalb kann dies zur Identifikation eines Elementes dienen. Mit einem Spektroskop, dass das Licht in seine Spektralfarben (vgl. Regenbogen) aufbricht, kann man die charakteristischen LINIENSPEKTREN³⁸ erkennen. Was vom menschlichen Auge als eine Farbe wahrgenommen wird ist in Wirklichkeit ein diskontinuierliches Spektrum mit einzelnen Banden.

2.1.2 Borax- und Phosphorsalzperle

Die Schmelzperle aus Borax oder Phosphorsalz ist eine beliebte Vorprobe für Kationen. Man sollte sich jedoch nicht 100% auf das Ergebnis verlassen, sondern es eher als Hinweis sehen und versuchen die Indizien durch spezifische Nachweisreaktionen zu erhärten.

 $^{^{38}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/LINIENSPEKTRUM

Durchführung

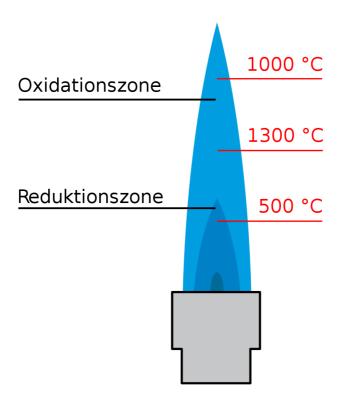


Abbildung 33: äußerste Spitze des inneren Flammenkegels wirkt reduzierend, gesamte äußere Flammenkegel ist Oxidationszone

Man erhitzt ein Magnesiastäbchen oder ein Öse vom Platindraht im Bunsenbrenner. Der Platindraht bringt in dieser Probe aber keinen Vorteil gegenüber dem Magnesiastäbchen. Nun tunkt man sie in ein wenig NaNH4HPO4 NATRIUMAMMONIUMHYDROGENPHOS-

PHAT³⁹ oder Na₂[B₄O₅(OH)₄]·8 H₂O BORAX⁴⁰ (Natriumtetraborat) und schmilzt diese in der Bunsenbrennerflamme, nimmt wieder ein wenig Salz und schmilzt weiter, bis man zu einer möglichst gleichmäßigen, durchsichtigen Perle gelangt. Diese stippt man direkt in die Analyselösung oder kurz in eine wenig verdünnte Salzsäure und dann in die Analysensubstanz. Dann wieder kurz in die Bunsenbrennerflamme halten und versuchen die Substanz in die Perle einzuschmelzen. Je nachdem ob man in der Oxidations- oder der Reduktionsflamme glüht, erhält man andere Färbungen. Die tiefblaue Cobaltperle ist am eindeutigsten, überdeckt jedoch auch alle anderen Perlenfärbungen.

Farben

	Oxidationsflamme			Reduktionsflamme				
	Phosphorsalz		Borax	Phosphorsalz Bo		Borax	3orax	
	heiß	kalt	heiß	kalt	heiß	kalt	heiß	kalt
CHROM	⁴¹ dunkelge	ell g rün	grün	grün	grün	grün	grün	grün
MANGA	N∜folett	violett	violett	violett	farblos	farblos	farblos	farblos
EISEN ⁴³	gelbrot	gelb	gelbrot	gelbrot	grünlich	grünlich	orange	grün
COBALT	¹⁴ blau	blau	blau	blau	blau	blau	blau	blau
NICKEL	⁴⁵ rotbraun	gelb	rotbraun	farblos	farblos	farblos	farblos	farblos
KUPFER	⁴⁶ grün	blaugrün	grün	blaugrün	farblos	lackrot	grünlich	lackrot

³⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/AMMONIUMHYDROGENPHOSPHAT

⁴⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BORAX

⁴¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20CHROM

⁴² HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE% 20CHEMIE/% 20MANGAN

⁴³ http://de.wikibooks.org/wiki/Praktikum% 20Anorganische%20Chemie/%20Eisen

⁴⁴ http://de.wikibooks.org/wiki/Praktikum% 20Anorganische%20Chemie/%20Cobalt

^{45&}lt;sub>HTTP</sub>://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20NICKEL

⁴⁶ http://de.wikibooks.org/wiki/Praktikum% 20Anorganische%20Chemie/%20Kupfer

Erklärung

Boraxperle

Das Borax-Anion kann bei dem Schmelzvorgang ein Sauerstoff-Ion aufnehmen:

$$[B_4O_5(OH)_4]^{2-} + O^{2-} \longrightarrow 4\ BO^{2-} + 2H_2O$$

Tetraborat reagiert mit einem Sauerstoffion zu einem Metaboration und Wasser

Das Metaboration verbindet sich dann mit einem Metallkation zu einer farbigen Verbindung:

$$Na_2B_4O_7 + CoSO_4 \longrightarrow 2 NaBO_2 + Co(BO_2)_2 + SO_3 \uparrow$$

Borax reagiert Cobaltsulfat zu Natriummetaborat, Cobaltmetaborat und Sulfit

Phosphorsalzperle

Beim Erhitzen kondensiert NaNH₄HPO₄ zu Polyphosphaten, z.B. in ringförmige Metaphosphate Na₃(P₃O₉). In der Reaktionsgleichung wird vereinfachend von dem Monomer NaPO₃ ausgegangen.

$$NaNH_4HPO_4 \longrightarrow NaPO_3 + NH_3 \uparrow + H_2O \uparrow$$

Natriumammoniumhydrogenphosphat reagiert zu Natriumphophat, Ammoniak und Wasser

Bei der Reaktion mit Sulfaten ergibt sich folgende Reaktionsgleichung

$$NaPO_3 + CoSO_4 \longrightarrow NaCoPO_4 + SO_3 \uparrow$$

Natriummetaphosphat und Cobaltsulfat reagieren zu Natriumcobaltphosphat und Schwefeltrioxid

2.1.3 Oxidationsschmelze

Abbildung 34: blaugrün: Manganat;

gelb: Chromat

Die Oxidationsschmelze eignet sich als Nachweis für CHROM⁴⁷ und MANGAN⁴⁸ und wird auch als Aufschluss für säureschwerlösliche Stoffe verwendet.

Durchführung

Die Substanz wird sehr fein gepulvert, mit der dreifachen Menge einer 1:1-Mischung von Soda (NATRIUMCARBONAT⁴⁹) und Kalisalpeter (KALIUMNITRAT⁵⁰) vollständig vermischt und im Porzellantiegel oder auf der Magnesiarinne vorsichtig zur Schmelze gebracht.

Erklärung

Oxidationsschmelze von Chrom-(III)-Oxid (grün) zu gelbem Chromat

$$Cr_2O_3 + 2\ Na_2CO_3 + 3\ KNO_3 \longrightarrow 2\ Na_2CrO_4 + 2\ CO_2 + 3\ KNO_2$$

Oxidationsschmelze von Eisen-(II)-Chromit zu gelbem Chromat und Eisen-III-oxid

$$2\;FeCr_2O_4 + 4\;K_2CO_3 + 7\;NaNO_3 \longrightarrow Fe_2O_3 + 4\;K_2CrO_4 + 7\;NaNO_2 + 4\;CO_3 + 10^{-3}$$

⁴⁷ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20CHROM

 $^{^{48}}$ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM%

²⁰Anorganische%20Chemie/%20Mangan

⁴⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/NATRIUMCARBONAT

^{50&}lt;sub>HTTP://DE.WIKIPEDIA.ORG/WIKI/KALIUMNITRAT</sub>

2.1.4 Kaliumhydroxidschmelze

Die Oxidationsschmelze eignet sich als Nachweis bzw. Vorprobe für MANGAN⁵¹. Sie kann auch als Aufschluss in größerem Maßstab im Nickeltiegel durchgeführt werden.

Durchführung

Die Substanz wird mit einem Kaliumhydroxid-Plätzen auf einer Magnesiarinne vorsichtig geschmolzen. Nach beendeter Reaktion und Vorhandensein von Mangan bildet sich ein, teils nur sehr leichter, grüner Rand auf der Rinne. Zur besseren Überprüfung wird die Schmelze mit Wasser in eine Porzellanschale gespült. Dabei bildet sich eine grüne Lösung. Versetzt man die Lösung vom Rand her mit konzentrierter Essigsäure färbt sie sich rosa und man beobachtet einen schwarzen Niederschlag. Am besten führt man hier eine Blindprobe durch.

Erklärung

Mangan wird in der Schmelze bis zur Oxidationszahl +VII oxidiert. Grünes Kaliummangan(VII)oxid ist in alkalischer Lösung stabil und disproportioniert in saurer Lösung in Permangant und Mangan(IV).

⁵¹ http://de.wikibooks.org/wiki/Praktikum% 20Anorganische%20Chemie/%20Mangan

2.2 Aufschlüsse

2.2.1 Sodaauszug

Metallkationen stören viele Anionennachweise und müssen daher vorher abgetrennt werden.

Durchführung

Hierfür kocht man 0,1g der Ursubstanz mit der vierfachen Menge Soda und eineinhalb Reagenzgläsern Wasser etwa 15 Minuten lang. Dann lässt man die Lösung wieder abkühlen, damit möglichst vollständig ausgefällt wird. Man filtriert oder zentrifugiert die Lösung und verwirft den Rückstand. Durch leichtes Ansäuern und Erwärmen wird das enthaltene CO₂ ausgetrieben. Aus dem klaren Filtrat können nun Anionennachweise durchgeführt werden.

Erklärung

Es fallen die Kationen aus, die schwerlösliche Carbonate bilden:

$$MeA_2 + Na_2CO_3 \longrightarrow MeCO_3 + 2 Na^+ + 2 A^-$$

Metallsalz und Natriumcarbonat reagiert zu Metallcarbonat, Anion geht in Lösung

und diejenigen, die im alkalischen Milieu schwerlösliche Hydroxide bilden:

$$MeA_3 + 3 Na_2CO_3 + 3 H_2O \longrightarrow Me(OH)_3 + 6 Na^+ + 3 HCO_3^- + 3 A^-$$

Metallsalz und Natriumcarbonat reagiert zu Metallhydroxid und Hydrogencarbonta, Anion geht in Lösung

2.2.2 Soda-Pottasche-Aufschluss

Der Soda-Pottasche-Aufschluss erlaubt die Überführung von Erdalkalisulfaten, hochgeglühten Oxiden, Silikaten und Silberhalogeniden in leichter lösliche Verbindungen. Durch die Verwendung eines Salzgemisches aus Soda und Pottasche wird der Schmelzpunkt gegenüber den reinen Verbindungen abgesenkt.

Das Tiegelmaterial wird durch die Zusammensetzung der Ursubstanz bestimmt.

Durchführung

Zunächst versucht man, die Ursubstanz in Salzsäure zu lösen. Der unlösliche Rückstand wird mit destilliertem Wasser gewaschen und im Trockenschrank getrocknet. Die Substanz wird sehr fein gepulvert, mit der vier- bis sechsfachen Menge einer 1:1-Mischung von Soda (NATRIUMCARBONAT⁵²) und Pottasche (KALIUMCARBONAT⁵³) vollständig vermischt und im Porzellantiegel (für Aluminiumoxid und Silikate) oder in einem Nickeltiegel (für Sulfate und hochgeglühte Oxide) vorsichtig bis zur klaren Schmelze erhitzt. Es ist zu beachten, dass dabei immer Verunreinigungen durch Aluminium und Silicium bzw. Nickel in die Analysensubstanz übergehen.

Nach dem Abkühlen wird die Schmelze gemörsert und in Wasser aufgenommen. Solange mit verdünnter Natriumcarbonatlösung

⁵² HTTP://DE.WIKIPEDIA.ORG/WIKI/NATRIUMCARBONAT

⁵³ HTTP://DE.WIKIPEDIA.ORG/WIKI/KALIUMCARBONAT

waschen, bis das Filtrat sulfatfrei ist (keine Trübung von Bariumchloridlösung mehr).

Erklärung

Erdalkalisulfate werden in Carbonate überführt:

$$BaSO_4 + Na_2CO_3 \longrightarrow BaCO_3 + Na_2SO_4$$

Schwerlösliche Silikate werden in lösliches Natriumsilikat überführt:

$$CaAl_2Si_2O_8 + 5 Na_2CO_3 \longrightarrow 2 Na_4SiO_4 + CaCO_3 + 2 NaAlO_2 + 4 CO_2$$

2.2.3 Freiberger Aufschluss

Mit dem Freiberger Aufschluss ist ein Aufschluss für ZINN(IV)- $OXID^{54}$ (SnO₂, Zinnstein). Zinn bildet ein leichtlösliches Thiostanat. Er kann aber auch zum Aufschluss anderer Metalloxide, die leichtlösliche Thioverbindungen bilden, verwendet werden.

Durchführung

Die Substanz, normalerweise der in Salzsäure unlösliche Rückstand, wird im bedeckten Porzellantiegel mit der sechsfachen Menge eines Gemisches aus Schwefel und wasserfreiem Nariumcarbonat (1:1) geschmolzen. Während der Reaktion entsteht Schefeldioxid und Kohlendioxid. Hört die Gasentwicklung auf, ist die Reaktion

⁵⁴HTTP://DE.WIKIPEDIA.ORG/WIKI/ZINN(IV)-OXID

beendet. Der Schmelzkuchen wird in verdünnter Natronlauge gelöst und unlösliche Bestandteile abgetrennt. Die Lösung wird dann mit verdünnter Salzsäure angesäuert. Dabei fallen die entsprechenden Sulfidverbindungen aus. Sie können dann mit den entsprechenden Nachweisen nachgewiesen werden.

Erklärung

Aufschluss von Zinndioxid

$$2 SnO_2 + 2 Na_2CO_3 + 9 S \longrightarrow 2 Na_2SnS_3 + 2 CO_2 + 3 SO_2$$

2.2.4 Saurer Aufschluss

Der saure Aufschluss wird verwendet um basische oder amphotere Metalloxide, vor allem Eisen(III)-oxid Fe_2O_3 , Chrom(III)-oxid Cr_2O_3 und Aluminiumoxid Al_2O_3 , aufzuschließen.

Durchführung

Die Substanz wird mit der sechsfachen Menge KALIUMHYDRO-GENSULFAT⁵⁵ verrieben und bei so niedriger Temperatur wie möglich (s.u.) in einem Nickel- oder Platintiegel(!) geschmolzen. Porzellantiegel sind ungeeignet, da das Reagens Aluminium aus dem Porzellan löst und die Analyse verfälschen kann. Die Reaktion ist beendet, sobald aus der klaren Schmelze Schwefeltrioxid als weißer Nebel zu entsteigen beginnt. Der Schmelzkuchen wird in verdünnter Schwefelsäure gelöst. Zum Aufschluss von Aluminiumoxid kann der Schmelzkuchen auch in verdünnter Natronlauge

⁵⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/KALIUMHYDROGENSULFAT

gelöst werden (Bildung von Tetrahydroxyaluminat). Der entstandene Komplex kann durch Säure als Aluminiumhydroxid gefällt werden.

Erklärung

Das eigentliche Aufschlussreagens ist das in der Hitze entstehende Kaliumdisulfat und das sich daraus entwickelnde Schwefeltrioxid. Bei ca. 250 °C bildet sich zunächst aus Kaliumhydrogensulfat Kaliumdisulfat (Pyrosulfat):

$$2 \; KHSO_4 \longrightarrow \; K_2S_2O_7 + 2 \; H_2O$$

Kaliumdisulfat zersetzt sich bei höheren Temperaturen in Kaliumsulfat und Schwefeltrioxid:

$$K_2S_2O_7 \longrightarrow \ K_2SO_4 + \ SO_3$$

Aufschluß von Eisen(III)-oxid:

$$Fe_2O_3 + 6 \text{ KHSO}_4 \longrightarrow Fe_2(SO_4)_3 + 3 \text{ K}_2SO_4 + 3 \text{ H}_2O$$

2.2.5 Kaliumhydroxidauszug

Da der alkalische Sturz nach der Ammoniumsulfidfällung⁵⁶ Anfängern häufig Schwierigkeiten bereitet, kann für schwer nachweisbare Stoffe ein Kaliumhydroxidauszug aus der Ursubstanz hergestellt werden. Hierfür wird die Ursubstanz mit 3 Kaliumhydroxid-Plätzchen und 5 ml Wasser versetzt. Es fallen

⁵⁶ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANTSCHE%20CHEMIE/%20AMMONIUMSULFIDGRUPPE

Kupfer, Bismut, Nickel, Cobalt, Eisen und Mangan unter Bildung schwerlöslicher Hydroxide aus. In Lösung verbleiben. ANTIMON⁵⁷, ZINN⁵⁸, ALUMINIUM⁵⁹, ZINK⁶⁰ und CHROM⁶¹, die nun mit spezifischen Nachweisreaktionen nachgewiesen werden können.

2.3 Nachweisreaktionen

2.3.1 Antimon

Nachweis als Antimonsulfid

Nachweisreaktion					
Reaktionstyp	Fällungsreaktion				
рН					
Indikation	oranger Niederschlag				

Durchführung

Hier wird konzentrierte Schwefelwasserstoffsäurelösung oder eine Alkalisulfidlösung zur Stoffprobe gegeben. Es muss jedoch beachtetet werden, dass vorher störende Arsen- und Zinn-Ionen auszufällen sind.

⁵⁷ http://de.wikibooks.org/wiki/Praktikum% 20Anorganische%20Chemie/%20Antimon

⁵⁸ http://de.wikibooks.org/wiki/Praktikum% 20Anorganische%20Chemie/%20Zinn

⁵⁹ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20ALUMINIUM

^{60&}lt;sub>HTTP</sub>://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20ZINK

⁶¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20 ANORGANISCHE \$20 CHEMTE / \$20 CHROM

Erklärung

$$2 \text{ Sb}^{3+} + 3 \text{ S}^{2-} \longrightarrow \text{Sb}_2 \text{S}_3 \downarrow$$

Antimon- und Sulfid-Ionen reagieren im wässrigen Milieu zu Antimon(III)-sulfid.

Eisennagelprobe

Nachweisreaktion				
Reaktionstyp	REDOXREAKTION ⁶²			
pН	<7			
Indikation	schwarze Flocken			

Durchführung

Dazu wird ein Eisennagel in die Antimonsalz-Lösung gelegt. Es bilden sich nach einigen Minuten bis Stunden eine schwarze Schicht elementarem Antimon. Lässt man den Nagel jedoch über Nacht im Reagenzglas liegen, so scheidet sich alles mögliche, was noch in der Lösung schwimmt, ab. Beobachtet man jedoch eine schwarze Schicht, so kann diese im Sauren wieder gelöst werden und weiter untersucht werden, z.B. durch eine Sulfidfällung (siehe oben).

Erklärung

$$2 \text{ Sb}^{3+} + 3 \text{ Fe} \longrightarrow 2 \text{ Sb} + 3 \text{ Fe}^{2+}$$

Antimon(III)-Ionen zu elementarem Antimon reduziert und elementares Eisen zu Eisen(II)-Ionen oxidiert.

Antimon-Nachweis mittels Marhscher Probe

Alternativ kann auch die $Marshsche Probe^{63}$ direkt aus der Ursubstanz durchgeführt werden.

2.3.2 Aluminium

ALUMINIUM⁶⁴ Aluminium kommt in der AMMONIUMSULFID-GRUPPE⁶⁵ vor und fällt nach dem Alkalisturz als farbloses Hydroxid aus. Alternativ kann man auch einen KALIUMHYDROXIDAUSZUG⁶⁶ versuchen und das Aluminium dort fällen.

Nachweis als Cobaltaluminat

auch Cobaltblau, Dumonts Blau, Coelestinblau, Leithners Blau, Thénards Blau

Nachweisreaktion	
Reaktionstyp	Entstehung eines MISCHPHASENOXIDPIG- MENTS ⁶⁷
pH	egal
Indikation	blaue Schmelze

⁶³HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20MARSHSCHE%20PROBE

 $^{^{64}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/ALUMINIUM

^{65&}lt;sub>HTTP://DE.WIKIBOOKS.ORG/WIKI/../_AMMONIUMSULFIDGRUPPE</sub>

 $^{^{66}}$ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_KALIUMHYDROXIDAUSZUG

Durchführung

Auf eine Magnesiarinne wird wenig Analysensubstanz und darauf ein paar Tropfen einer verdünnten COBALTNITRATLÖSUNG⁶⁸ gegeben. Ist die Schmelze nach dem Glühen im Bunsenbrenner blau, war Aluminium in der Probe.

Erklärung

Thénards Blau⁶⁹

$$2 \text{ Al}^{3+} + \text{Co}^{2+} + 4 \text{ O}^{2-} \longrightarrow \text{CoAl}_2\text{O}_4$$

Aluminium-Ionen, Cobalt-Ionen und Oxidionen reagieren zum blauen Cobaltaluminat.

Cobaltaluminat ist ein Cobalt-Aluminium-Spinell, die Strukturformel lautet

CoO·Al₂O₃ (Cobalt(II)-oxid und Aluminiumoxid)

Nachweis als fluoreszierender Morinfarblack

Nachweisreaktion	
Reaktionstyp	Komplexbildung
pН	neutral bis essigsauer, vorher basisch
Indikation	grüne Fluoreszens mit UV-Licht

Durchführung

Zunächst mit SALZSÄURE⁷⁰ versetzen, um eventuell vorhandenes

⁶⁸HTTP://DE.WIKIPEDIA.ORG/WIKI/COBALTNITRAT

⁶⁹HTTP://DE.WIKIPEDIA.ORG/WIKI/TH%c3%a9NARDS%20BLAU

⁷⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/SALZS%C3%A4URE

Aluminium zu lösen. Anschließend mit KALIUMHYDROXID⁷¹ stark alkalisch machen. Nun mit etwas Morin-Lösung versetzen und mit Eisessig (konzentrierte ESSIGSÄURE⁷²) ansäuern. Unter der UV-Lampe sollte die Lösung nun stark grün fluoreszieren. Hinweis: unbedingt Blindprobe machen und vergleichen, da MORIN⁷³ auch eine gewisse Eigenfluoreszenz hat.

Erklärung

Al(III) bildet in neutralen sowie essigsauren Lösungen in Verbindung mit Morin eine fluoreszierende kolloidale Suspension.

Abbildung 35

⁷¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/KALIUMHYDROXID

^{72&}lt;sub>HTTP</sub>://DE.WIKIPEDIA.ORG/WIKI/ESSIGS%C3%A4URE

⁷³ HTTP://DE.WIKIPEDIA.ORG/WIKI/MORIN%20 (CHEMISCHE% 20SUBSTANZ)

Nachweis als Alizarin-S-Farblack

Nachweisreaktion	
Reaktionstyp	Komplexbildung
pН	neutral bis essigsauer, vorher basisch
Indikation	Rotfärbung

Eine saure Lösung mit Aluminium-Ionen wird mit möglichst wenig Kaliumhydroxid basisch gemacht und zentrifugiert. 1 Tropfen des Zentrifugats wird auf der Tüpfelpalette oder auf dem Objektträger mit 1 Tropfen 0,1%ige Natriumalizarinsulfonatlösung (Alizarin S) versetzt und 1 mol/l Essigsäure bis zum Verschwinden der rotvioletten Farbe und danach noch ein weiterer Tropfen Essigsäure zugegeben. Die Bildung eines roten Niederschlags oder eine Rotfärbung zeigt Aluminium an. Der Niederschlag wird häufig erst nach einigem Stehen sichtbar. Die rotgefärbte Verbindung ist in verdünnter Essigsäure schwer löslich, während die rotviolette Färbung der ammoniakalischen Alizarin-S-Lösung beim Ansäuern in Gelb umschlägt.

Störung

Eisen, Chrom und Titan geben ähnlich gefärbte, gegen Essigsäure stabile Lacke. Auch Erdalkaliionen in konzentrierter Lösung geben gefärbte Niederschläge mit Alizarin, die jedoch in Essigsäure löslich sind.

Erklärung

Aluminium-Ionen bilden mit dem Farbstoff Alizarin S einen sogenannten Farblack

$$A1^{3+} + 2 C_{14}H_9SO_7Na + 3 OH^- \longrightarrow Na_2[AlOH(C_{14}H_6O_4)_2] \downarrow +2 SO_2 + 4$$

Aluminium-Ionen und Natriumalizarinsulfonat reagieren im alkalischen Milieu zum Alizarin Aluminium-Natriumkomplex, Schwefeldioxid und Wasser.

2.3.3 Arsen

ARSEN⁷⁴ Arsen fällt in der Schwefelwasserstoffgruppe⁷⁵ als gelbes Arsensulfid aus.

Nachweis mittels Marhscher Probe

Man sollte unbedingt die MARSHSCHE PROBE⁷⁶ ausprobieren. Auch wenn diese aus der Ursubstanz durchgeführt wird und wie eine Vorprobe wirkt, ist die Nachweisreaktion sehr spezifisch und kann auch kleinste Menge Arsen zuverlässig anzeigen.

Nachweis mittels Bettendorfsche Probe

BETTENDORFSCHE PROBE⁷⁷

⁷⁴HTTP://DE.WIKIPEDIA.ORG/WIKI/ARSEN

⁷⁵ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM%

²⁰Anorganische%20Chemie/%20Schwefelwasserstoffgruppe

⁷⁶ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM%

²⁰Anorganische%20Chemie/%20Marshsche%20Probe

⁷⁷HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM%
20ANORGANISCHE%20CHEMIE/%20BETTENDORFSCHE%20PROBE

Nachweis mittels Gutzeitsche Probe

GUTZEITSCHE PROBE⁷⁸

Nachweis mittels Fleitmannsche Probe

FLEITMANNSCHE PROBE⁷⁹

Arsenat-Nachweis mit Magnesiumsalz

ARSENAT⁸⁰-Ionen ähneln dem PHOSPHAT⁸¹-Anion. Entsprechend gibt es weitere, den Phosphat-Nachweisen ähnliche Reaktionen zur Identifikation von Arsenat:

Gibt man zu einer ammoniakalischen, ammoniumchloridhaltigen Lösung von Arsenat Magnesium-Ionen, so erhält man einen kristallinen Niederschlag von Magnesiumammoniumarsenat-Hexahydrat:

$$AsO_4^{3-} + Mg^{2+} + NH_4^+ + 6 \ H_2O \longrightarrow MgNH_4AsO_4 \cdot 6 \ H_2O$$

Arsenat reagiert mit Magnesiumionen, Ammoniumionen und Wasser zu Magnesiumammoniumarsenat-Hexahydrat.

⁷⁸ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM%

²⁰Anorganische%20Chemie/%20Gutzeitsche%20Probe

⁷⁹ http://de.wikibooks.org/wiki/Praktikum%

²⁰Anorganische%20Chemie/%20Fleitmannsche%20%20Probe

 $^{^{80}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/ARSENAT

⁸¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20PHOSPHAT

Arsenatnachweis mit Molybdatlösung

Eine weitere, dem Phosphatnachweis ähnliche Nachweisreaktion von Arsenat in wässriger Lösung ist die Fällung mit AMMONIUM-MOLYBDAT⁸². Der gelbe Niederschlag ist schwerlöslich in Säuren, aber gut löslich in Basen:

$$H_2 As O_4^- + 22 \ H^+ + 3 \ NH_4^+ + 12 \ MoO_4^{2-} \longrightarrow (NH_4)_3 [As (Mo_3O_{10})_4 \cdot aq] + \\$$

Dihydrogenarsenat reagiert mit Wasserstoffionen, Ammoniumionen und Molybdationen zu Ammoniumarsenomolybdat und Wasser.

Bettendorfsche Probe

Nachweisreaktion	
Reaktionstyp	REDOXREAKTION ⁸³
pН	<7 salzsauer
Indikation	schwarzer Niederschlag / Braunfärbung der Lö-
	sung

Gefahrstoffwarnung!

Durchführung

Bei der Bettendorfschen Probe wird die reduzierende Wirkung des ZINN(II)-CHLORID⁸⁴s ausgenutzt. Dieser Nachweis ist innerhalb der Arsengruppe⁸⁵ spezifisch für Arsen⁸⁶. Es werden 5 Tropfen

Schwefelwasserstoffgruppe%23Arsen-Zinn-Gruppe

^{82&}lt;sub>HTTP://de.wikipedia.org/wiki/Ammoniummolybdat</sub>

 $^{^{84}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/ZINN(II)-CHLORID

⁸⁵HTTP://DE.WIKIBOOKS.ORG/WIKI/../_

⁸⁶ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_ARSEN

der Probelösung auf einem Uhrglas mit 3 Tropfen verdünntem AM-MONIAKWASSER⁸⁷, 1 Tropfen 30%-igem WASSERSTOFFPEROX-ID⁸⁸ und 3 Tropfen 0,1 molarer MAGNESIUMCHLORID⁸⁹lösung versetzt und langsam zur Trockne eingedampft. Der Rückstand wird nach kurzem Erhitzen auf Rotglut mit 3 bis 5 Tropfen Zinn(II)-chloridlösung versetzt und schwach erwärmt. Ein schwarzer Niederschlag bzw. eine Braunfärbung der Lösung deutet auf Anwesenheit von Arsen. Sehr kleine Arsenmengen lassen sich nachweisen, wenn man mit Ether⁹⁰ oder Amylalkohol⁹¹ ausschüttelt, die Folge ist eine schwarze Zone in der Grenzschicht.

Erklärung

$$2~As^{3+} + 3~Sn^{2+} + 18~Cl^{-} \longrightarrow 2~As \downarrow + 3~[SnCl_{6}]^{2-}$$

 $\label{lem:argin} Arsen(III)\mbox{-}Ionen \ \ reagieren \ \ mit \ \ Zinn(II)\mbox{-}Ionen \ \ und \ Chlorid\mbox{-}Ionen \ zu \ braunschwarzem, elementarem \ Arsen \ \ und \ dem \ Hexachlorostannat(IV)\mbox{-}Komplexion.$

⁸⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/AMMONIAKWASSER

⁸⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/WASSERSTOFFPEROXID

 $^{^{89}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/MAGNESIUMCHLORID

⁹⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/ETHER

⁹¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/AMYLALKOHOL

Nachweis von Arsen und Antimon mittels Fleitmannscher Probe

Nachweisreaktion	
Reaktionstyp	REDOXREAKTION ⁹²
pН	>7 alkalisch
Indikation	Gelbfärbung, allmählich schwarz

Gefahrstoffwarnung! Bei der Fleitmannschen Probe wird im alkalischen Medium Arsenwasserstoff gebildet:

Durchführung

Dazu wird die Probelösung in einem kleinen Erlenmeyerkolben mit Kaliumhydroxid⁹³ und Aluminium⁹⁴pulver erhitzt. Eventuell entstehender Schwefelwasserstoff wird mit Blei(II)-ACETAT⁹⁵lösung (auf einem Wattebausch in der Mündung des Reagenzglases) abgefangen. Die Öffnung des Kolbens wird mit einem Filterpapier bedeckt, das mit Silbernitratlösung⁹⁶ oder Quecksilber(II)-Chlorid⁹⁷lösung getränkt ist. Eine Gelbfärbung, die allmählich in Schwarz übergeht bzw. eine sofortige Braunfärbung zeigen Arsen an.

Erklärung

Reaktionsgleichungen für die Reaktion mit Silbernitrat sind identisch mit der Gutzeitschen Probe⁹⁸.

 $^{^{93}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/KALIUMHYDROXID

 $^{^{94}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/ALUMINIUM

 $^{^{95}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/BLEI(II)-ACETAT

 $^{^{96}}$ HTTP://de.wikipedia.org/wiki/Silbernitratl%c3%b6sung

⁹⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/QUECKSILBER(II)-CHLORID

⁹⁸HTTP://DE.WIKIBOOKS.ORG/WIKI/../_GUTZEITSCHE%20PROBE

$$As^{3+} + 3 H_2O + 5 OH^- + 2 Al \longrightarrow AsH_3 \uparrow + 2 [Al(OH)_4]^-$$

Arsen(III)-Ionen reagieren mit Aluminium im alkalischen Medium zu Arsenwasserstoff⁹⁹ und zum Tetrahydroxoaluminat(III)-Ion.

$$2\ AsH_3 + 3\ HgCl_2 \longrightarrow As_2Hg_3 + 6\ HCl$$

Arsenwasserstoff reagiert mit Quechsilber(II)-chlorid zum braungefärbten Arsenmercurid und CHLOR-WASSERSTOFF¹⁰⁰.

Nachweis von Arsen und Antimon mittels Gutzeitscher Probe

Nachweisreaktion	
Reaktionstyp	REDOXREAKTION ¹⁰¹
pН	<7 schwefelsauer
Indikation	Gelbfärbung, anschließende Schwärzung

Gefahrstoffwarnung!

Durchführung

Etwas Ursubstanz wird in einem kleinem Erlenmeyerkolben mit einer ZINK 102 granalie und etwas SCHWEFELSÄURE 103 versetzt. Der

⁹⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/ARSENWASSERSTOFF

 $^{^{100}\}mathrm{HTTP://De.wikiPedia.org/wiki/Chlorwasserstoff}$

¹⁰² HTTP://DE.WIKIPEDIA.ORG/WIKI/ZINK

 $^{^{103}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/SCHWEFELS%C3%A 4 URE

Kolben wird mit einem Wattebausch verschlossen und auf seine Öffnung ein Filterpapier mit etwas festem SILBERNITRAT¹⁰⁴ und einigen Tropfen Wasser gelegt. Durch ARSENWASSERSTOFF¹⁰⁵ kommt es zur Gelbfärbung des Nitrats und anschließender Schwärzung durch elementares Silber.

Erklärung

Arsen(III)-Ionen bilden mit naszierendem Wasserstoff Arsenwasserstoff, welcher mit Silbernitrat zu dem gelben Doppelsalz Silberarsenidnitrat reagiert. Dieses färbt sich nach einigem Stehen unter Silberbildung schwarz.

$$AsH_3 + 6 AgNO_3 \longrightarrow Ag_6As(NO_3)_3 + 3 HNO_3$$

Arsenwasserstoff reagiert mit Silbernitrat zu Silberarsenidnitrat und Salpetersäure.

$$Ag_6As(NO_3)_3 + 3 H_2O \longrightarrow 6 Ag + H_3AsO_3 + 3 HNO_3$$

Silberarsenidnitrat reagiert mit Wasser zu elementarem Silber, arseniger Säure und Salpetersäure.

Nachweis von Arsen und Antimon mittels Marshscher Probe

Nachweisreaktion	
Reaktionstyp	REDOXREAKTION ¹⁰⁶
pН	<7 salzsauer
Indikation	orange Flamme, schwarzer Spiegel

¹⁰⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/SILBERNITRAT 105 HTTP://DE.WIKIPEDIA.ORG/WIKI/ARSENWASSERSTOFF

Gefahrstoffwarnung!

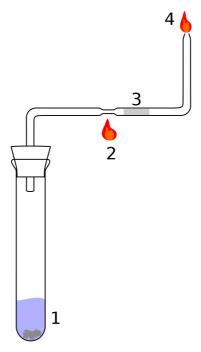


Abbildung 36: Aufbau

Die MARSHSCHE PROBE¹⁰⁷ ist eine Nachweisreaktion mit der man noch kleinste Mengen Arsen oder Antimon zuverlässig nachweisen kann. Sie stammt von dem englischen Chemiker James Marsh und erlangte 1832 Bekanntheit, weil es der erste gute gerichtsmedizinische Nachweis für das hochgiftige Arsen war. Es eignet sich gut als Vorprobe aus der Ursubstanz.

^{107&}lt;sub>HTTP://de.wikipedia.</sub>org/wiki/Marshsche%20Probe

Durchführung

Gefahren: Es gibt ein paar Dinge zu beachten: Arsensalze sowie das entstehende Arsenwasserstoffgas sind hochgiftig, also mit Handschuhen und unter dem Abzug arbeiten. Das Gasgemisch ist brisant, also vorher Knallgasprobe machen, ansonsten gibt es eine unangenehme kleine Explosion im Reagenzglas mit hochgiftigen Substanzen. Wenn man den Versuch aber richtig durchführt und sich an die Sicherheitsvorschriften hält, ist er nicht gefährlich.

Zunächst erwärmt man eine Tropfpipette, zieht diese vorsichtig aus und biegt sie wie in der Abbildung zurecht und steckt einen Stopfen durch das dickere Ende der Pipette. Die Konstruktion kann mehrfach verwendet werden. Man gibt etwas Salzsäure, Zinkperlen, Kupfersulfat und einen Teil der Analysensubstanz in ein Reagenzglas (1). Es sollte eine sprudelnde Reaktion unter Bildung von Wasserstoffgas entstehen. Bevor man weitermacht sollte man eine KNALL-GASPROBE¹⁰⁸ machen: wenn es nur noch leicht ploppt setzt man die präparierte Pipette mit Stopfen auf. Man kann jetzt einen Teil der des Glasrohres erwärmen (2) und im Glas auf eine Metallspiegel achten (3). Meist zündet man jedoch den Wasserstoff an dem verjüngten Ende Pipette an (4) und kann dann mit der Flamme auf der Unterseite einer Porzellanabdampfschale einen schwarzen Spiegel hinterlassen. Man kann damit regelrecht "malen".

Um nun zu prüfen ob Antimon oder Arsen in der Probe ist, gibt man eine ammoniakalische Wasserstoffperoxid-Lösung auf den schwarzen Spiegel. Arsen löst sich, Antimon nicht. Man kann den schwarzen Spiegel auch weiter untersuchen um zweifelsfrei Arsen nachzuweisen. Dafür erhitzt man die Lösung um Wasserstoffperoxid zu vertreiben, säuert an und versucht eine Fällung mit Schwefel-

-

 $^{^{108}{}m HTTP://DE.WIKIPEDIA.ORG/WIKI/KNALLGASPROBE}$

wasserstoff. $ARSEN^{109}$ fällt dabei als gelbes Arsensulfid und kann weiter untersucht werden.

Erklärung

Der Nachweis beruht darauf, dass Zink und Säure NASZIEREN-DEN¹¹⁰ (sehr reaktiven) Wasserstoff bilden, der sofort mit AR-SENIK¹¹¹ den ARSENWASSERSTOFF¹¹² bildet. Das Kupfersulfat dient dazu die Reaktion durch Bildung eines Lokalelements an den Zinkstückchen zu beschleunigen.

$$As_2O_3 + 6Zn + 12H^+ \longrightarrow 2AsH_3 + 6Zn^{2+} + 3H_2O$$

Arsen(III)-oxid reagiert mit Zink in saurer Lösung zu Arsenwasserstoff, Zink(II) und Wasser

Barium¹¹³

2.3.4 Barium

Barium verbleibt im Trennungsgang in der AMMONIUMCAR-BONATGRUPPE¹¹⁴. Es lässt sich wie die meisten Erdalkaliionen bevorzugt mittels FLAMMENFÄRBUNG¹¹⁵ aufspüren.

```
109 HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM%
20 ANORGANISCHE% 20 CHEMIE/% 20 ARSEN
110 HTTP://DE.WIKIPEDIA.ORG/WIKI/NASZIERENDER% 20 STOFF
111 HTTP://DE.WIKIPEDIA.ORG/WIKI/ARSENIK
112 HTTP://DE.WIKIPEDIA.ORG/WIKI/ARSENWASSERSTOFF
113 HTTP://DE.WIKIPEDIA.ORG/WIKI/BARIUM
114 HTTP://DE.WIKIBOOKS.ORG/WIKI/../
AMMONIUMCARBONATGRUPPE
115 HTTP://DE.WIKIBOOKS.ORG/WIKI/../ FLAMMENF% C3% A4 RBUNG
```

Nachweis als Bariumsulfat

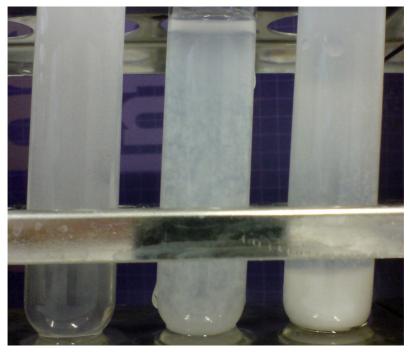


Abbildung 37: 1. Bariumhydroxid, 2. Bariumcarbonat, 3. Bariumsulfat

Nachweisreaktion	
Reaktionstyp	FÄLLUNGSREAKTION ¹¹⁶
pН	egal
Indikation	weißer Niederschlag

Durchführung

Zur Probelösung wird Sulfatlösung (z.B. verdünnte SCHWEFEL-SÄURE¹¹⁷) geben. Mit Ba²⁺ entsteht ein weißer Niederschlag.

Erklärung

$$Ba^{2+} + SO_4^{2-} \longrightarrow BaSO_4 \downarrow$$

Bariumkationen und Sulfatanionen reagieren zum weißen BARIUMSULFAT¹¹⁸.

Störung

CALCIUM¹¹⁹ und STRONTIUM¹²⁰ stören.

2.3.5 Bismut

Nachweis als Bismutiodid

Nachweisreaktion	
Reaktionstyp	Fällungsreaktion, Komplexbildung
pН	<7 HNO ₃ oder H ₂ SO ₄
Indikation	schwarzer Niederschlag, orange Lösung

¹¹⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/SCHWEFELS%C3%A4URE

 $^{^{118}{\}rm HTTP://DE.WIKIPEDIA.ORG/WIKI/BARIUMSULFAT}$

¹¹⁹ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_CALCIUM

¹²⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_STRONTIUM

Durchführung

Nach Zugabe von Iodidlösung fällt schwarzes Bismutiodid aus, welches sich im Iodidüberschuss als orangener Komplex löst.

Erklärung

Zunächst eine Fällungsreaktion zu schwarzem Bismutiodid:

$$Bi^{3+} + 3I^{-} \longrightarrow BiI_{3} \downarrow$$

Bismut(III)-Ionen und Iodid-Ionen reagieren zu Bismut(III)-iodid.

Im Überschuss von Iodidlösung kommt es zur Bildung eines orangenen Komplexes:

$$BiI_3 + I^- \longrightarrow [Bi(I)_4]^-$$

Bismut(III)-iodid und Iodid-Ionen reagieren zum Tetraiodobismutat(III)-Komplex.

Nachweis als Bismut

Nachweisreaktion	
Reaktionstyp	Redoxreaktion
pН	6,5-8
Indikation	schwarzer Niederschlag

Durchführung

Zum Nachweis von Bismut(III)-Kationen sollte die zu untersuchende Lösung erst einmal neutralisiert werden (pH 6,5-8).

Anschließend wird alkalische Zinn(II)-Lösung hinzugegeben. Die Zinn(II)-Ionen wirken dabei als Reduktionsmittel, sie reduzieren also Bismut(III)-Ionen zu elementarem, schwarzem Bismut, welches in wässriger Lösung ausfällt.

Erklärung

$$2 \; Bi^{3+} + 3 \; Sn^{2+} \longrightarrow 2 \; Bi \downarrow + 3 \; Sn^{4+}$$

Bismut(III)-Ionen und Zinn(II)-Ionen reagieren zu elementarem Bismut und Zinn(IV)-Ionen.

Nachweis mittels Bismutrutsche

Nachweisreaktion	
Reaktionstyp	KOMPLEXBILDUNGSREAKTION ¹²¹
pН	<7 HNO ₃
Indikation	zitronengelber Komplex

Durchführung

Zum Nachweis aus der Ursubstanz kann man die "Bismutrutsche" mit THIOHARNSTOFF¹²² verwenden. Dieser Nachweis gilt als ziemlich sicher da eventuell störende Ionen vorher ausfallen. Ein angefeuchtetes Filterpapier wird in der Mitte geknickt und in folgender Reihenfolge mit der Ursubstanz und den Fällungsmitteln beschichtet. Zunächst legt man die Ursubstanz auf das Filterpapier, dann NATRIUMFLUORID¹²³, welches mit ALUMINIUM¹²⁴ und

¹²² HTTP://DE.WIKIPEDIA.ORG/WIKI/THIOHARNSTOFF

¹²³ HTTP://DE.WIKIPEDIA.ORG/WIKI/NATRIUMFLUORID

¹²⁴ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_ALUMINIUM

EISEN¹²⁵ ein Komplex bildet, nun NATRIUMCHLORID¹²⁶, welches SILBER¹²⁷ und QUECKSILBER¹²⁸ fällt , es folgt KALIUMNATRIUMTARTRAT¹²⁹, das mit ANTIMON¹³⁰ und ZINN¹³¹ ein Komplex bildet und schließlich Thioharnstoff als eigentliche Nachweisreagenz. Nun hält man das Filterpapier schräg und tropft verdünnte SALPETERSÄURE¹³² darauf und lässt diese auf dem Filterpapier "rutschen". Bei Anwesenheit von Bismut entsteht ein zitronengelber Thioharnstoff-Komplex.

Erklärung

$$Bi^{3+} + 3 SC(NH_2)_2 \longrightarrow [Bi(SC(NH_2)_2)_3]^{3+}$$

2.3.6 Blei

Nachweis als Bleiiodid

Nachweisreaktion	
Reaktionstyp	Fällungsreaktion
pН	<7 bis 7
Indikation	gelber Niederschlag

^{125&}lt;sub>HTTP</sub>://DE.WIKIBOOKS.ORG/WIKI/../_EISEN

 $^{^{126}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/NATRIUMCHLORID

¹²⁷ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_SILBER

¹²⁸ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_QUECKSILBER

¹²⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/KALIUMNATRIUMTARTRAT

 $^{^{130}}$ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_ANTIMON

 $^{^{131}}$ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_ZINN

¹³² HTTP://DE.WIKIPEDIA.ORG/WIKI/SALPETERS%C3%A4URE

Durchführung

Gefahrstoffwarnung! A Gibt man zur der Analysenlösung etwas KALIUMIODID¹³³ so entsteht ein voluminöser gelber Niederschlag, der sich im Überschuss von Iodidlösung wieder löst.

Die Verbindung lässt sich auch Umkristallisieren: dafür erhitzt man die Lösung mit einem Bunsenbrenner, so dass das BLEI(II)-IODID¹³⁴ wieder in Lösung geht. Nach dem Abkühlen fällt das Bleiiodid wieder in gelben glitzernden Plättchen aus.

Erklärung

$$Pb^{2+} + 2I^{-} \longrightarrow PbI_{2} \downarrow$$

Blei(II)-Ionen und Iodid-Ionen reagieren zum schwer löslichen, gelbfarbenden Blei(II)-iodid.

Nach Zugabe weiterer Iodidlösung reagiert das Blei(II)-Iodid zum farblosen Tetraiodoplumbat(II)-komplex weiter.

$$PbI_2 + 2 I^- \longrightarrow [Pb(I)_4]^{2-}$$

Blei(II)-iodid und Iodid-Ionen reagieren zum gut löslichen, farblosen Tetraiodoplumbat(II)-komplex.

Störung

Der Nachweis wird durch viele andere Schwermetall-Kationen

^{133&}lt;sub>HTTP://de.wikipedia.org/wiki/Kaliumiodid</sub>
134_{HTTP://de.wikipedia.org/wiki/Blei(II)-iodid}

gestört, daher müssen diese vorher abgetrennt werden. Im Kationentrennungsgang erfolgt dies in der SALZSÄUREGRUPPE¹³⁵ und in der SCHWEFELWASSERSTOFFGRUPPE¹³⁶.

Nachweis als Bleichromat

Nachweisreaktion	
Reaktionstyp	Fällungsreaktion
pН	>7
Indikation	gelber Niederschlag, in Natronlauge rot

Durchführung

Gefahrstoffwarnung! № Bei Versetzen einer Blei(II)-Ionenhaltigen Lösung mit KALIUMCHROMAT¹³⁷ kommt es zur Bildung eines gelben, in ESSIGSÄURE¹³⁸ und AMMONIAK¹³⁹ unlöslichen, jedoch in NATRONLAUGE¹⁴⁰ und SALPETERSÄURE¹⁴¹ löslichen, kristallinen Niederschlages. Die Kristallstruktur kann unter dem Mikroskop betrachtet werden. Dabei ist zu beachten, dass die Reaktion aufgrund des "Chromat-Dichromat-Gleichgewichtes" im richtigen pH-Wert-Bereich (am besten >6) durchgeführt wird.

Die schwach alkalische Lösung wird mit wenig verdünnter Kaliumchromat-Lösung versetzt und anschließend mit verdünnter Essigsäure schwach angesäuert, Folge: ein Niederschlag von gelbem, schwer löslichem Bleichromat, das sich in Essigsäure nicht

¹³⁵ http://de.wikibooks.org/wiki/Praktikum%
20Anorganische%20Chemie/_Salzs%c3%a4uregruppe
136 http://de.wikibooks.org/wiki/Praktikum%
20Anorganische%20Chemie/_Schwefelwasserstoffgruppe
137 http://de.wikipedia.org/wiki/Kaliumchromat
138 http://de.wikipedia.org/wiki/Essigs%c3%a4ure
139 http://de.wikipedia.org/wiki/Ammoniak

¹⁴⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/NATRONLAUGE

¹⁴¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/SALPETERS%c3%a4ure

löst, entsteht. Beim Behandeln mit etwas Natronlauge bildet sich rotes, basisches Bleichromat.

Erklärung

$$Pb^{2+} + CrO_4^{2-} \longrightarrow PbCrO_4 \downarrow$$

Blei(II)-Ionen und Chromat-Ionen reagieren zum schwer löslichen, gelbem Bleichromat.

$$2 \text{ PbCrO}_4 + 2 \text{ NaOH} \longrightarrow \text{Pb}_2(\text{CrO}_4)(\text{OH})_2 + \text{Na}_2\text{CrO}_4$$

Bleichromat reagiert mit Natronlauge zu rotbraunem basischem Bleichromat und Natriumchromat.

2.3.7 Bor

 BOR^{142} Bor kommt im anorganischen Praktikum als Borat $\mathrm{BO_3}^{2-}$ vor.

2.3.8 Borat

BORATE¹⁴³ Die Standardreagenz dieser Stoffklasse ist BORAX¹⁴⁴ (Natriumborat), ein weißes bis gräulich gefärbtes Salz.

¹⁴² HTTP://DE.WIKIPEDIA.ORG/WIKI/BOR

¹⁴³ HTTP://DE.WIKIPEDIA.ORG/WIKI/BORATE

¹⁴⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BORAX

Borat-Nachweis als Methylester

Durchführung

Nachweisreaktion	n
Reaktionstyp	Veresterung
pН	<7 schwefelsauer
Indikation	grüne Flamme

Gefahrstoffwarnung! 🙎

Abbildung 38: Boratflamme

Die Analysensubstanz wird mit METHANOL¹⁴⁵ und einigen Tropfen Schwefelsäure als Katalysator versetzt. Die Dämpfe werden in einem abgedunkelten Abzug vorsichtig angezündet. Der Nachweis ist positiv, wenn sich die Flamme grün färbt.

^{145&}lt;sub>HTTP://DE.WI</sub>KIPEDIA.ORG/WIKI/METHANOL

Erklärung

$$BO_3^{3-} + 3 CH_3OH \longrightarrow (CH_3)_3BO_3 + 3 OH^-$$

Borat-Ionen und Methanol reagieren unter dem Katalysator Schwefelsäure zu Trimethylborat und Hydroxid-Ionen.

Die Dämpfe des Methanol/Trimethylborat-Gemisches werden entzündet. Es erscheint eine leuchtend grüne Flamme.

$$2 (CH_3)_3BO_3 + 9 O_2 \longrightarrow 6 CO_2 + 9 H_2O + B_2O_3$$

Beim Verbrennen des Trimethylborats entsteht Kohlenstoffdioxid, Wasser und Bortrioxid

2.3.9 Cadmium

CADMIUM¹⁴⁶

Nachweis als Cadmiumsulfid

Cadmium weist man durch Zugabe von Natrium- oder Ammoniumsulfidlösung zur essigsauren Cadmiumsalzlösung nach: Es entsteht ein gelber Niederschlag von Cadmiumsulfid. Im Kationentrenngang ist Cadmium zuvor von störenden Begleitmetallen bzw. schwermetallkationen im SCHWEFELWASSERSTOFFGRUPPE¹⁴⁷ zu

¹⁴⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/CADMIUM
147 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_
SCHWEFELWASSERSTOFFGRUPPE

trennen. Insbesondere KUPFER¹⁴⁸ionen stören hier diesen Nachweis und müssen zuvor mit giftigem Kaliumcyanid "maskiert" werden.

Durchführung

Nachweisreaktion	
Reaktionstyp	Fällungsreaktion
pН	>7
Indikation	gelber Niederschlag

Gefahrstoffwarnung! Kupfersalze müssen im Kationentrenngang vor dem Cadmiumnachweis aufwändig in einen farblosen Tetracyanidocuprat(II)-Komplex überführt werden: Nach Zugabe von Zyankali¹⁴⁹ (KCN) zur Hauptlösung der Kupfergruppe muss sich die Lösung entfärben (ein zusätzlicher Nachweis für Cu; Achtung: Ab hier die Lösung nicht mehr ansäuern, sonst entsteht hochgiftige Blausäure¹⁵⁰ (HCN-Gas)! Bei der Entsorgung beachten – mit konz. Wasserstoffperoxid¹⁵¹ entgiften!). Wenn man bis zur vollständigen Entfärung KCN zugegeben hat, kann man dann mit einer Sulfid-Lösung das gelbe Cadmiumsulfid¹⁵² CdS ausfällen, ohne dass schwarzes Kupfer(II)-sulfid stört.

Erklärung

$$Cu^{2+} + 4 \ KCN \longrightarrow [Cu(CN)_4]^{2-} + 4 \ K^+$$

¹⁴⁸ HTTP://DE.WIKIBOOKS.ORG/WIKI/../ KUPFER

¹⁴⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/ZYANKALI

¹⁵⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BLAUS%c3%A4URE

¹⁵¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/WASSERSTOFFPEROXID

¹⁵² HTTP://DE.WIKIPEDIA.ORG/WIKI/CADMIUMSULFID

Kupfer und Cyanid reagiert zum farblosen Tetracyanidocuprat(II)-Komplex

$$Cd^{2+} + S^{2-} \longrightarrow CdS \downarrow$$

Cadmium(II)-Ionen und Sulfid-Ionen reagieren im wässrigen Milieu zum gelben Cadmiumsulfid, welches ausfällt.

2.3.10 Carbonat

Carbonat-Nachweis nach Kohlendioxidentwicklung

Nachweisreaktion	
Reaktionstyp	VERDRÄNGUNGSREAKTION ¹⁵³
pН	<7 salzsauer
Indikation	getrübtes Barytwasser

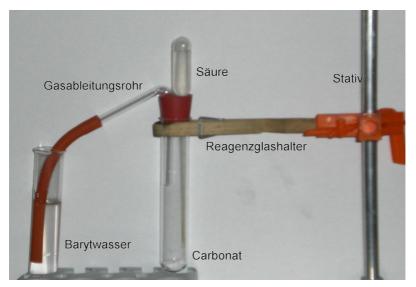


Abbildung 39: Mögliche Versuchsanordnung

Durchführung

Carbonat-Ionen (${\rm CO_3}^{2-}$) lassen sich durch Zugabe von Salzsäure nachweisen, bei der Kohlenstoffdioxid entsteht. Als Vorversuch kann man festes Analysegut mit konzentrierter Salzsäure versetzen. Eine Gasentwicklung (${\rm CO_2}$) deutet auf Carbonat hin. Bei Durchführung dieses Tests im Reagenzglas sollte die Flamme eines eingebrachten brennenden Spans erstickt werden.

Das entstehende Gas kann auch durch eine Fällungsreaktion identifiziert werden: Das gasförmige Kohlenstoffdioxid wird in Kalk- oder BARYTWASSER¹⁵⁴ geleitet, z. B. über eine Rohrkonstruktion. Einfacher ist es, ein Gärröhrchen (Carbonatröhrchen), das an dem einen

¹⁵⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BARYTWASSER

Ende in einem durchbohrten Stopfen steckt, mit Kalk- oder Barytwasser zu füllen und mit Stopfen auf das Reagenzglas mit Säure und Analysensubstanz zu stecken. Der Nachweis ist positiv wenn sich eine weiße Trübung von Calcium- bzw. Bariumcarbonat bildet.

Falls man Blasen sieht, aber die Kalk-/Barytwasserlösungen sich nicht trüben, kann es sein, dass das Carbonat zu schnell ausgetrieben wird. Dann bietet es sich an, eine schwächere Säure zu nehmen (z. B. Essigsäure) und das Gemisch länger im Wasserbad mit Gärröhrchen zu erwärmen. Die Trübung bildet sich dann mit der Zeit.

Erklärung

$$CO_3^{2-} + 2 HCl \longrightarrow CO_2 \uparrow + 2 Cl^- + H_2O$$

Carbonate reagieren mit Salzsäure zu gasförmigem Kohlendioxid, Chlorid und Wasser

$$Ba(OH)_2 (aq) + CO_2 (g) \longrightarrow BaCO_3 \downarrow +H_2O (l)$$

Bariumhydroxid und Kohlenstoffdioxid reagieren zu Bariumcarbonat und Wasser

Störung

Bei dem Versuch ist der störende Einfluss von Sulfit- und Thiosulfationen zu beachten. Diese können durch vorheriges Zutropfen von Wasserstoffperoxidlösung entfernt werden.

2.3.11 Chrom

CHROM¹⁵⁵ Chrom kommt in den klassischen Trennungsgängen in der AMMONIUMSULFIDGRUPPE¹⁵⁶ im alkalischen Sturz vor und kann auch im KALIUMHYDROXIDAUSZUG¹⁵⁷ abgetrennt werden.

Nachweis als Chromat

Nachweisreaktion	
Reaktionstyp	Redoxreaktion
pН	>7
Indikation	gelbe Lösung (in Säuren orange), mit Barium
	orangefarbener NS

$$2~Cr^{3+} + 3~H_2O_2 + 10~OH^- \longrightarrow 2~CrO_4^{2-} + 8~H_2O$$

Chrom(III)-Ionen reagieren im alkalischen Bad zu gelbem Chromat-Ionen und Wasser.

Auch im sauren Medium können Chrom(III)-salze aufoxidiert werden. Dazu sind jedoch besonders starke Oxidationsmittel notwendig, so zum Beispiel Peroxodisulfate.

¹⁵⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/CHROM

¹⁵⁶ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_AMMONIUMSULFIDGRUPPE

¹⁵⁷ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_KALIUMHYDROXIDAUSZUG

 $^{^{158}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/WASSERSTOFFPEROXID

¹⁵⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/CHROMATE

$$2 \; Cr^{3+} + 3 \; S_2O_8^{2-} + 7 \; H_2O \longrightarrow Cr_2O_7^{2-} + 6 \; SO_4^{2-} + 14 \; H^+$$

Chrom(III)-Ionen reagieren im wässrigen Milieu mit Peroxodisulfaten zu orangefarbenden Dichromat-Ionen sowie Sulfat-Ionen und Wasserstoff-Ionen.

Bei der OXIDATIONSSCHMELZE¹⁶⁰ mit Soda und Salpeter werden Chrom(III)-Ionen hingegen wieder zu gelben Chromat-Ionen gemäß folgender Reaktionsgleichung aufoxidiert:

$$Cr_2O_3 + 2 Na_2CO_3 + 3 KNO_3 \longrightarrow 2 Na_2CrO_4 + 3 KNO_2 + 2 CO_2$$

Chrom(III)oxid reagiert mit Soda und Salpeter zu gelbfarbendem Natriumchromat, Kaliumnitrit und Kohlenstoffdioxid

Auch bei den Vorproben tritt beim Schmelzen der Salzperle mit Phosphorsalz oder Borax¹⁶¹ eine charakteristisch grüne Färbung mit Chrom(III)-Ionen auf.

Mit Bariumsalzen entsteht ein orangefarbenes BARIUMCHRO-MAT¹⁶². Hierfür wird alkalische Chromatlösung mit EISESSIG¹⁶³ sauer gemacht (pH 3-5) und mit NATRIUMACTETAT¹⁶⁴ gepuffert. Anschließend kann mit BARIUMCHLORID¹⁶⁵ ausgefällt werden. Bariumchromat löst sich in HCl wieder.

¹⁶⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_OXIDATIONSSCHMELZE
161 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_BORAX-%20UND%
20PHOSPHORSALZPERLE
162 HTTP://DE.WIKIPEDIA.ORG/WIKI/BARIUMCHROMAT
163 HTTP://DE.WIKIPEDIA.ORG/WIKI/EISESSIG
164 HTTP://DE.WIKIPEDIA.ORG/WIKI/NATRIUMACTETAT
165 HTTP://DE.WIKIPEDIA.ORG/WIKI/BARIUMCHLORID

$$Ba^{2+} + CrO_4^{2-} \longrightarrow BaCrO_4 \downarrow$$

Bariumsalzen fällen CHROMATE¹⁶⁶ als orangefarbenes Bariumchromat

Nachweis als Chrompentoxid

Nachweisreaktion	
Reaktionstyp	Komplexbildung
рН	<7
Indikation	blaue Etherschicht (oben)

Durchführung

Gefahrstoffwarnung! Die Lösung muss salpetersauer sein. Sie wird im Reagenzglas mit ETHER¹⁶⁷ überschichtet, mit einigen Tropfen WASSERSTOFFPEROXID¹⁶⁸ (30%) versetzt und geschüttelt. Bei einer blauen Etherschicht (oben) war Chrom vorhanden. Die Färbung verschwindet bald wieder und ist wenn überhaupt dann nur leicht blau.

$$Cr_2O_7^{2-} + 4 H_2O_2 + 2 H^+ \longrightarrow 2 CrO(O_2)_2 + 5 H_2O$$

Erklärung

Der blaue Komplex von Chrompentoxid (auch Chrom(VI)-peroxid oder Schmetterlingskomlex) ist nur in Ether stabil.

¹⁶⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/CHROMATE

¹⁶⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/DIETHYLETHER

 $^{^{168}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/WASSERSTOFFPEROXID

Cobalt¹⁶⁹

^{169&}lt;sub>HTTP://de.Wikipedia.org/Wiki/Cobalt</sub>

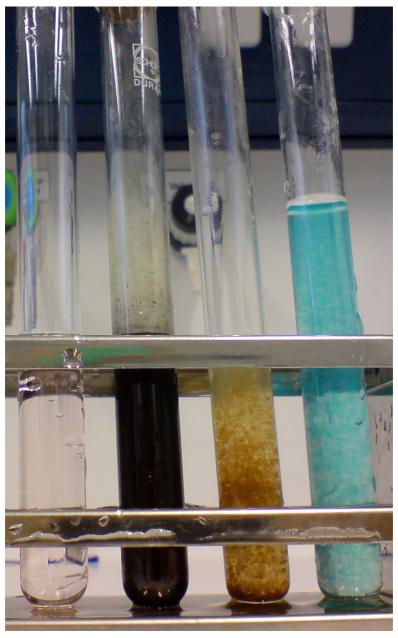


Abbildung 40: 1: Cobaltnitrat, 2: Cobaltsulfid, 3: Cobalthydroxid, 4: blaue Carbonate wechselnder Zusammensetzung

2.3.12 Cobalt

COBALT¹⁷⁰-Kationen werden im Kationentrennungsgang in der Ammoniumsulfidgruppe¹⁷¹ neben Nickel-Kationen als schwarzes Cobalt(II)-sulfid gefällt.

$$Co^{2+} + (NH_4)_2S \longrightarrow CoS \downarrow +2 NH_4^+$$

Cobalt-Kationen reagieren in nichtsaurer, acetathaltiger Lösung mit Ammoniumsulfid zum schwarzem Cobalt(II)-sulfid und Ammonium-Ionen.

Wird unter starkem Luftzutritt und bei Gegenwart von überschüssigem Ammoniumsulfid gefällt, bildet sich aus Cobalt(II)-sulfid zunächst Hydroxocobalt(III)-sulfid, das in Cobalt(III)-sulfid übergeht.

$$4 \text{ CoS} + \text{O}_2 + 2 \text{ H}_2\text{O} \longrightarrow 4[\text{Co(OH)}]\text{S}$$

$$2 [Co(OH)]S + H_2S \longrightarrow Co_2S_3 + 2 H_2O$$

Cobaltsulfid reagiert in wässriger Lösung mit Sauerstoff zum Hydroxocobalt(III)-sulfid, welches mit Schwefelwasserstoff zum Cobalt(III)-sulfid weiterreagiert. Als Nebenprodukt entsteht Wasser.

¹⁷⁰HTTP://DE.WIKIBOOKS.ORG/WIKI/../_COBALT
171
HTTP://DE.WIKIBOOKS.ORG/WIKI/../ AMMONIUMSULFIDGRUPPE

Eine relativ aussagekräftige Vorprobe für Cobalt ist die BORAX-UND PHOSPHORSALZPERLE¹⁷², die von Cobaltionen intensiv blau gefärbt wird.

Nachweis als Cobalthydroxid

Nachweisreaktion	
Reaktionstyp	Komplexbildung
pН	>>7
Indikation	blauer, im Überschuss roter Niederschlag

Bei Zugabe einer starken Hydroxidlösung, z. B. Natriumhydroxidlösung zu der zu untersuchenden Stoffprobe bildet sich zuerst ein blauer Niederschlag eines basischen Cobaltsalzes wechselnder Zusammensetzung.

$$Co^{2+} + OH^{-} \longrightarrow [Co(OH)]^{+}$$

Cobalt-Kationen reagieren in der Kälte (max. 15°C) mit Hydroxid-Ionen zum Hydroxocobalt(II)-komplexion. Der Komplex kann mit verschiedensten Anionen basische Salze bilden.

Bei Erhitzung der immer noch alkalischen Probelösung zerfällt das Hydroxocobalt(II)-komplexion und es bildet sich das rosenrote Cobalt(II)hydroxid.

$$[Co(OH)]^+ + OH^- \longrightarrow Co(OH)_2 \downarrow$$

¹⁷² HTTP://DE.WIKIBOOKS.ORG/WIKI/../_BORAX-%20UND%

Hydroxocobalt(II)-Ionen reagieren unter Hitze in alkalischer Lösung in das rosenrote Cobalt(II)hydroxid.

Nachweis als Thiocyanatokomplex

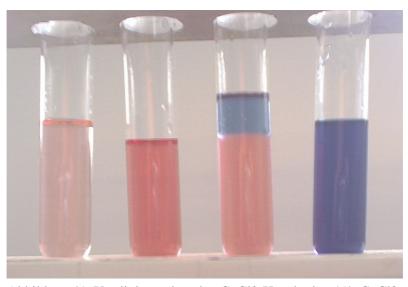


Abbildung 41: Von links nach rechts:CoCl2-Hexahydrat 1%; CoCl2-Lösung + 2% NH4SCN; CoCl2-Lösung + 2% NH4SCN + 40% Butanol; CoCl2-Lösung + 20% NH4SCN

Nachweisreaktion	
Reaktionstyp	Komplexbildung
рН	
Indikation	pinke Lösung

Bei Zugabe von Thiocyanat (am besten festes Salz statt Lösung) entsteht je nach Konzentration eine pinkfarbene bis blaue Lösung. Der blaue Komplex kann mit einem organischen Lösungsmittel (z. B. Butanol) extrahiert werden.

Erklärung

$$Co^{2+} + SCN^- + 5 \; H_2O \longrightarrow [Co(H_2O)_5(SCN)]^+$$

Cobalt-Kationen reagieren im wässrigen Milieu bei Zugabe von Thiocyanat-Ionen zum pinken Pentaaquathiocyanatocobalt(II)-komplex.

Störung

Der Nachweis mit Thiocyanat interferiert mit EISEN¹⁷³- und KUPFER¹⁷⁴-Kationen.

2.3.13 Eisen

EISEN¹⁷⁵ Eisen lässt sich mit Blutlaugensalzen aus der Ursubstanz nachweisen, falls kein weiterer Stoff mit dem Blutlaugensalz ebenfalls zu farbigen Niederschlägen reagiert, siehe NACHWEIS-REAGENZIEN#BLUTLAUGENSALZE¹⁷⁶.

¹⁷³ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_EISEN

¹⁷⁴ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_KUPFER

¹⁷⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/EISEN

¹⁷⁶ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM%

²⁰Anorganische%20Chemie/%20Nachweisreagenzien% 23Blutlaugensalze

Im Kationentrennungsgang fällt Eisen erstmalig in der Hydrolysegruppe als braunes EISENHYDROXID¹⁷⁷: Zu dem Filtrat aus der Schwefelwasserstoffgruppe¹⁷⁸ gibt man konzentrierte Salpetersäure¹⁷⁹ um Fe²⁺ zu Fe³⁺ zu oxidieren. Dann gibt man dazu noch konzentriertes Ammoniakwasser.

$$Fe^{3+} + 3 NH_3 + 3 H_2O \longrightarrow Fe(OH)_3 \downarrow +3 NH_4^+$$

Eisen(III)-Kationen reagieren mit Ammoniak zu braunem Eisenhydroxid und Ammoniumionen

Danach erfolgt die Abtrennung in der Ammoniumsulfid-GRUPPE¹⁸⁰:

$$2 Fe(OH)_3 + 3 (NH_4)_2 S \longrightarrow 2 FeS \downarrow + 3 (NH_4)OH$$

Eisenhydroxid und Ammoniumsulfid 181 reagiert zu braunem Eisen(II)-sulfid 182 und Ammoniumhy-droxid 183

¹⁷⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/EISENHYDROXID

¹⁷⁸ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_

SCHWEFELWASSERSTOFFGRUPPE

¹⁷⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/SALPETERS%C3%A4URE

¹⁸⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_AMMONIUMSULFIDGRUPPE

¹⁸¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/AMMONIUMSULFID

¹⁸² HTTP://DE.WIKIPEDIA.ORG/WIKI/EISEN(II)-SULFID

¹⁸³ HTTP://DE.WIKIPEDIA.ORG/WIKI/AMMONIUMHYDROXID

Eisen(II) mit rotem Blutlaugensalz

Nachweisreaktion			
Reaktionstyp	Bildung	eines	CHARGE-TRANSFER-
	KOMPLEX	$E^{184}s$	
pН	<7 salzsau	er	
Indikation	tiefblauer l	Niederschla	ıg

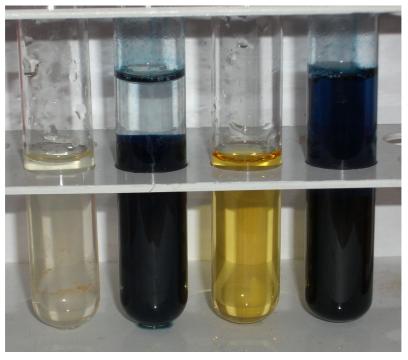


Abbildung 42: Eisen(II)-sulfat (schwach gelb-grünlich) sowie Eisen(III)-chlorid (gelb-bräunlich) und deren Nachweise mit Blutlaugensalzen

Hierfür wird die Analysenlösung mit verdünnter Salzsäure und ROTEM BLUTLAUGENSALZ¹⁸⁵ versetzt. Dabei entsteht ein Eisen(II)-Eisen(III)-Komplex, der tiefblau ist und sich in wässriger Lösung langsam absetzt, er ist also schwer wasserlöslich (siehe Bild zweites Reagenzglas von links). Das Pigment trägt den Namen BERLINER BLAU¹⁸⁶ (auch Pariser Blau, Französischblau, Eisencyanblau, Turnbulls Blau, Bronzeblau, Preußisch Blau, Pottascheblau, Chinesischblau, Miloriblau, Stahlblau, Tintenblau, Tonerblau).

Erklärung

Es läuft in gewissem Sinne jedoch keine KOMPLEXBIL-DUNGSREAKTION¹⁸⁷ ab, sondern zunächst lediglich ein Ionenaustausch / FÄLLUNGSREAKTION¹⁸⁸, in dessen Niederschlagsprodukt dann jedoch beide Eisenionen unterschiedlicher Wertigkeit wie in einem agieren können (engl.: *charge transfer*):

$$3 \text{ Fe}^{2+} + 2 \text{ K}_3[\text{Fe}(\text{CN})_6](\text{aq}) \longrightarrow \text{Fe}_3[\text{Fe}(\text{CN})_6]_2 + 6 \text{ K}^+$$

Eisen(II)-Ionen reagieren mit Kaliumhexacynanidoferrat(III) zu einem Eisenhexacyanidoferratkomplex und Kaliumionen

Eisen(III) mit gelbem Blutlaugensalz

Durchführung

Eisen(III)-Ionen lassen sich analog mit GELBEM BLUTLAU-

¹⁸⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/ROTES%20BLUTLAUGENSALZ

 $^{^{186}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/BERLINER\$20BLAU

¹⁸⁷ HTTP://de.wikipedia.org/wiki/Komplexbildungsreaktion

¹⁸⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/F%c3%a4LLUNGSREAKTION

GENSALZ¹⁸⁹ nachweisen, wobei ein Eisen(III)-Eisen(II)-Komplex entsteht, der auch tiefblau gefärbt ist, aber im Gegensatz zum Eisen(II)-Eisen(III)-Komplex sich kolloid in Wasser löst.

Erklärung

$$4 \; Fe^{3+} + 3 \; K_4 [Fe(CN)_6](aq) \longrightarrow Fe_4 [Fe(CN)_6]_3 + 12 \; K^+$$

Eisen(III)-Ionen reagieren mit Kaliumhexacyanidoferrat(II) zu einem Eisenhexacyanidoferratkomplex und Kaliumionen.

Bei dieser Nachweisreaktion entsteht BERLINER BLAU¹⁹⁰, ein wichtiger Farbstoff. Turnbulls Blau und Berliner Blau sind trotz der hier angegebenen, unterschiedlichen Formeln identisch – nur ihre Herstellungswege sind unterschiedlich: Die Gewinnung von Turnbulls Blau erfolgt durch das Umsetzen von Eisen(II)-salzen mit Kaliumhexacyanoferrat(III) (rotem Blutlaugensalz) in wässriger Lösung – die von Berliner Blau durch Umsetzen von Eisen(III)-salzen mit Kaliumhexacyanoferrat(II) (gelbes Blutlaugensalz).

Mittels EPR-¹⁹¹ und MÖSSBAUERSPEKTROSKOPIE¹⁹² konnte jedoch festgestellt werden, dass die Reaktionsprodukte beider Nachweisreaktionen weitgehend identisch sind, da folgendes Gleichgewicht besteht:

¹⁸⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/GELBES%20BLUTLAUGENSALZ

¹⁹⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BERLINER%20BLAU

¹⁹¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/ELEKTRONENSPINRESONANZ

¹⁹² HTTP://DE.WIKIPEDIA.ORG/WIKI/M%c3%B6%c3%

⁹FBAUER-EFFEKT

$$Fe^{2+} + [Fe(CN)_6]^{3-} \implies Fe^{3+} + [Fe(CN)_6]^{4-}$$

Eisen(III) mit Thiocyanat

Nachweisreaktion	
Reaktionstyp	Komplexbildung
pН	<7 salzsauer
Indikation	blutroter Niederschlag

Abbildung 43: Eisen(III)-Lösung und Eisen(III)thiocyanat

Durchführung

Alternativ kann man Eisen(III)-salze (siehe Bild linkes Reagenzglas, hier als Beispiel Eisen(III)-chlorid). Die Analysenlösung wird mit verdünnter Salzsäure versetzt und in dieser kann dann durch Zugabe einer Thiocyanatlösung Eisen nachgewiesen werden. Als Reagen-

zien eignen sich Kaliumthiocyanat¹⁹³ oder Ammoniumthiocyanat¹⁹⁴ ("Rhodanid"). Dieser Nachweis wird manchmal wegen der Färbung bei positiver Probe auch als "Stierblutprobe" bezeichnet.

Die Probe ist sehr empfindlich und wird auch in der Spurenanalytik eingesetzt. Hier ist besonders sauberes Arbeiten nötig, um das Ergebnis nicht zu verfälschen (z. B. keinen Edelstahlspatel in die salzsaure Probelösung eintauchen). Sicherheitshalber auch eine Blindprobe durchführen um eine Verunreinigung der Salzsäure oder des Reagens' selbst durch Eisen, z. B. aus Rost, welcher in kleinsten Partikeln in der Luft vorhanden sein könnte, und somit ein falschpositives Ergebnis, auszuschließen.

Erklärung

Es reagieren dabei die Eisen(III)-Kationen mit den Thiocyanat-Ionen zu einem blutroten Komplex, dem Pentaaquathiocyanatoferrat(III). (siehe Bild rechtes Reagenzglas)

$$Fe^{3+} + SCN^{-} + 5 H_2O \longrightarrow [Fe(SCN)(H_2O)_5]^{2+}$$

Eisen(III)-Ionen und Thiocyanat-Ionen reagieren in einem wässrigen Milieu zum Pentaaquathiocyanatoferrat(III)-komplex.

HALOGENIDE¹⁹⁵

 $^{^{193}\}mathrm{HTTP://DE.WIKIPEDIA.ORG/WIKI/KALIUMTHIOCYANAT}$

 $^{^{194}\}mathrm{HTTP://DE.wikipedia.org/wiki/Ammoniumthiocyanat}$

¹⁹⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/HALOGENIDE

2.3.14 Halogenide

Halogenide sind chemischen Verbindungen der 7. Hauptgruppe des PSE (Halogene) mit der Oxidationszahl -I und kommen in Salzen als einfach negativ geladene Ionen daher.

Nachweise mit Silbersalzlösung

Nachweisreaktion	
Reaktionstyp	Fällungsreaktion
pН	<7 salpetersauer
Indikation	weiße Niederschläge

Die Silbersalze der Halogenide Chlorid, Bromid und Iodid zeichnen sich durch ihre Schwerlöslichkeit aus. Aus salpetersaurer Lösung fallen sie als dicker ("käsiger") weißer (Chlorid) bzw. gelblicher (Bromid, Iodid) Niederschlag aus.

Zu beachten ist, dass FLUORID¹⁹⁶-Ionen, die ja auch unter die Halogenid-Ionen zählen, keinen Niederschlag mit Silbersalzlösung bilden, da Silberfluorid ein in Wasser gut lösliches Salz ist.

Durchführung

^{196&}lt;sub>HTTP</sub>://de.wikibooks.org/wiki/Praktikum% 20Anorganische%20Chemie/%20Fluorid

Abbildung 44: AgX Niederschläge: X = I, Br, Cl; NH₃ Zugabe daneben)

Zum Nachweis wird die Probelösung mit Salpetersäure HNO_3 angesäuert und mit etwas Silbernitratlösung $AgNO_3$ versetzt. Der Niederschlag von Silberchlorid AgCl ist in Ammoniumcarbonatlösung $(NH_4)_2CO_3$ löslich, wobei der Diamminsilber(I)-chlorid-Komplex $[Ag(NH_3)_2]Cl$ entsteht. Der Niederschlag von Silberbromid AgBr löst sich in konzentrierter Ammoniaklösung NH_3 aq, und der von Silberiodid AgI bleibt zurück.

Erklärung

Bei IODID¹⁹⁷-Ionen (siehe Bild Reagenzglas 1): Ausbildung eines käsig-gelben Niederschlags. Silberiodid ist gänzlich unlöslich in Ammoniakwasser.

$$I^- + AgNO_3 \longrightarrow AgI \downarrow + NO_3^-$$

¹⁹⁷ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20Anorganische%20Chemie/%20Iodid

Iodid-Ionen reagieren mit Silbernitrat zu Silberiodid und Nitrat-Ionen.

Bei Bromid 198-Ionen (siehe Bild Reagenzglas 3): Ausbildung eines weiß/gelblichen Niederschlags.

$$Br^- + AgNO_3 \longrightarrow AgBr \downarrow +NO_3^-$$

Bromid-Ionen reagieren mit Silbernitrat zu Silberbromid und Nitrat-Ionen.

Silberbromid ist in konz. Ammoniakwasser etwas löslich. (Reagenzglas 4)

$$AgBr + 2 NH_3 \longrightarrow Ag[(NH_3)_2]^+ + Br^-$$

Silberbromid reagiert mit Ammoniakwasser zum löslichen Silberdiammin-Komplexion und Bromid-Ionen.

Bei Chlorid 199-Ionen (siehe Bild Reagenzglas 5): Ausbildung eines weißen Niederschlags.

$$Cl^- + AgNO_3 \longrightarrow AgCl \downarrow +NO_3^-$$

Chlorid-Ionen reagieren mit Silbernitrat zu Silberchlorid und Nitrat-Ionen.

¹⁹⁸ http://de.wikibooks.org/wiki/Praktikum% 20Anorganische%20Chemie/%20Bromid 199 http://de.wikibooks.org/wiki/Praktikum% 20Anorganische%20Chemie/%20Chlorid

Silberchlorid ist selbst in schwach konz. Ammoniakwasser recht gut löslich. (Reagenzglas 6)

$$AgCl + 2 NH_3 \longrightarrow Ag[(NH_3)_2]^+ + Cl^-$$

Silberchlorid reagiert mit Ammoniakwasser zum löslichen Silberdiammin-Komplexion und Chlorid-Ionen.

Abbildung 45: Ag-Cl (links); +NH₃ (rechts)

Abbildung 46: Ag-Br (links); +NH₃ (rechts)

Abbildung 47: AgI (links); +NH₃ (rechts)

Störung

Wenn man das Filtrat mit verdünnter Salpetersäure ansäuert, sollte das störende Ausfallen von Silbercarbonat vor der Zugabe von Silbernitratlösung verhindert werden.

Vor der Analyse sollte eine SODAAUSZUG²⁰⁰ vorgenommen werden, da z. B. Kupferionen stören, weil eine Kupfer(II)-salzlösung bei

²⁰⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_SODAAUSZUG

Zugabe von Ammoniak aufgrund der Bildung des Amminkomplexes $[Cu(NH_3)_4]^{2+}$ tiefblau wird.

Silberhalogenidfällungen mit Zink unterscheiden

Gibt man zu dem in Ammoniak gelösten Silberbromid elementarem Zink (Zn), so wird das Silber reduziert und somit Br⁻ in der Lösung freigesetzt. Dieses lässt sich nun mit Chlorwasser über die braune Färbung nachweisen.

Auch der Silberiodid-Niederschlag kann mit Zn reduziert werden, wobei die freiwerdenden Iodid-Ionen in Lösung gehen können. Auch dieses kann durch versetzen mit Chlorwasser nachgewiesen werden (violette Färbung)

Nachweisreaktion	
Reaktionstyp	Redoxreaktion ²⁰¹
pН	<8
Indikation	Brom: orangebraun
	Iod: rosaviolett, in O-haltigen LöMi braun

Nachweis als Brom und Iod

Eine weitere Unterscheidungsmöglichkeit für Bromid und Iodid ist die Zugabe von Chlorwasser²⁰² oder (wenig) Chloramin T²⁰³ mit Salzsäure²⁰⁴ wobei die Halogenidionen zum Halogen oxidiert werden. Man gibt dann ein organisches Lösungsmittel wie N-Hexan²⁰⁵ hinzu und löst die Halogene durch kräftiges Schütteln in der organischen Phase (Extraktion²⁰⁶). Brom oder Iod kann

²⁰² HTTP://DE.WIKIPEDIA.ORG/WIKI/CHLORWASSER

 $^{^{203}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/CHLORAMIN%20T

²⁰⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/SALZS%C3%A4URE

 $^{^{205}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/N-HEXAN

 $^{^{206}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/EXTRAKTION

dort einfach aufgrund der Färbung identifiziert werden. Alternativ kann man auch mit Chloroform²⁰⁷ extrahieren. Die organische Phase färbt sich braun bei Bromid und violett bei Iodid. Liegen beide Elemente vor, so ergibt sich eine Mischfarbe. Mit einiger Übung kann hier der Anteil der beiden Halogenide an der Mischung abgeschätzt werden. In sauerstoffhaltigen Lösungsmitteln wie DI-ETHYLETHER²⁰⁸ ist Iod braun.

Erklärung

Löst man Chloramin T in Wasser so entsteht HYPOCHLORIT²⁰⁹, welches wiederum in Salzsäure nicht stabil ist.

$$OCl^- + 2HCl \longrightarrow Cl_2 + H_2O + Cl^-$$

Hypochlorit mit Salzsäure SYNPROPORTIONIERT²¹⁰ zu Chlor und Chlorid.

Aufgrund der ELEKTROCHEMISCHEN SPANNUNGSREIHE²¹¹ entsteht zunächst Iod und anschließend Brom.

$$2\;I^- + Cl_2 \longrightarrow I_2 \uparrow + 2\;Cl^-$$

Iodid-Ionen werden durch Chlor zu elementarem Iod oxidiert, welches sich in Hexan mit einer dunkelviolet-

²⁰⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/CHLOROFORM

²⁰⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/DIETHYLETHER

 $^{^{209}{\}rm {\tt HTTP://DE.WIKIPEDIA.org/WIKI/HYPOCHLORIT}}$

 $^{^{210}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/SYNPROPORTIONIERUNG

²¹¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/ELEKTROCHEMISCHE% 20Spannungsreihe

ten Färbung löst.

$$2 Br^- + Cl_2 \longrightarrow Br_2 \uparrow + 2 Cl^-$$

Bromid-Ionen werden durch Chlor zu elementarem Brom oxidiert, welches sich in Hexan mit einer braunorangenen Färbung löst.

Die Folgereaktion zu Bromchlorid färbt die Lösung weingelb.

$$Br_2 + Cl_2 \longrightarrow 2 BrCl$$

Brom und Chlor reagieren weingelben Bromchlorid

Störung

Gestört wird dieser Nachweis, wenn die zu untersuchende Lösung gleichzeitig SULFID²¹²- oder THIOSULFAT²¹³-Anionen enthält. In diesem Fall fällt gelbweißer SCHWEFEL²¹⁴ als Trübung aus, da das Chlorwasser Sulfid zu Schwefel oxidiert. Auch darf der pH-Wert nicht über 8 liegen, da Halogene im alkalischen zu Hypohalogenitionen reagieren.

Im Überschuss von Chloramin T kann die Lösung farblos werden, daher am besten nur eine 10-prozentige Lösung ansetzen.

²¹² HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20SULFID

²¹³ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20THIOSULFAT

²¹⁴ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20SCHWEFEL

2.3.15 Brom

 ${\sf BROM}^{215}$ Brom fällt in anorganischen Salzen als Bromid- und Bromatanion an.

Bromid

 ${\sf BROMID}^{216}$ kann mit den anderen HALOGENIDEN 217 nachgewiesen werden.

Nachweis von Bromid mit Schwefelsäure

Eine weitere Möglichkeit ist, die Substanz mit konzentrierter SCHWEFELSÄURE²¹⁸ zu erhitzen, wobei braune Dämpfe aufsteigen (elementares Brom). Hält man ein Filterpapier, das man mit FLU-ORESCEIN²¹⁹ (z. B. von einem gelben Textmarker) versehen und angefeuchtet hat, über das Reagenzglas, färben die braunen Dämpfe das Papier an der entsprechenden Stelle braunrot.

2.3.16 Chlor

CHLOR²²⁰ Chlor fällt in anorganischen Salzen als Chlorid, Chlorit, Hypochlorit, Chlorat und Perchlorat an.

^{215&}lt;sub>HTTP</sub>://DE.WIKIPEDIA.ORG/WIKI/BROM

²¹⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/BROMID

²¹⁷ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM%

²⁰Anorganische%20Chemie/%20Halogenide

²¹⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/SCHWEFELS%C3%A4URE

²¹⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/FLUORESCEIN

²²⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/CHLOR

Chlorid

CHLORIDE²²¹ können mit den anderen HALOGENIDEN²²² nachgewiesen werden.

Perchlorat

PERCHLORATE²²³ können als Kaliumperchlorat nachgewiesen werden.

Durchführung

Ein Teil der Urprobe wird mit einer Kaliumlösung versetzt und danach gut abgekühlt (Eiswasser). Ein feinkristalliner Niederschlag zeigt das Vorliegen von Perchlorat an.

$$ClO_4^- + K^+ \rightarrow KClO_4 \downarrow$$

2.3.17 Iod

 ${\rm IOD}^{224}$ Iod fällt in anorganischen Salzen als Iodidanion ${\rm I}^-$ und Iodatanion ${\rm IO_3}^-$ an.

²²¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/CHLORIDE

 $^{^{222}{\}tt HTTP://DE.WIKIBOOKS.org/WIKI/PRAKTIKUM\%}$

²⁰Anorganische%20Chemie/%20Halogenide

²²³ HTTP://DE.WIKIPEDIA.ORG/WIKI/PERCHLORATE

²²⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/IOD

Iodid

IODIDE²²⁵ in Lösung ergeben, erhitzt mit konzentrierter SCHWE-FELSÄURE²²⁶, violette Dämpfe von elementarem Iod. Sie können mit den anderen HALOGENIDEN²²⁷ nachgewiesen werden.

1. redirect Praktikum Anorganische Chemie/ Fluo-Rid²²⁸

2.3.18 Kalium

KALIUM²²⁹ Kalium verbleibt im Trennungsgang in der LÖSLICHEN GRUPPE²³⁰. Es lässt sich wie die meisten Alkalikationen bevorzugt mittels FLAMMENFÄRBUNG²³¹ aufspüren.

Nachweis als Kaliumperchlorat

Nachweisreaktion	
Reaktionstyp	Fällungsreaktion
pН	egal
Indikation	weißer Niederschlag

²²⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/IODIDE

²²⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/SCHWEFELS%C3%A4URE

²²⁷ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM%

²⁰Anorganische%20Chemie/%20Halogenide

²²⁸ http://de.wikibooks.org/wiki/Praktikum% 20Anorganische%20Chemie/%20Fluorid

 $^{^{229} {\}tt http://de.wikipedia.org/wiki/Kalium}$

²³⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_L%c3%B6SLICHE% 20GRUPPE

²³¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_FLAMMENF%C3%A4RBUNG

Durchführung

Zur Probelösung werden einige Tropfen PERCHLORSÄURE²³² (65 %) gegeben. Es fällt ein weißer Niederschlag aus. Zur Sicherheit wird mit dem Niederschlag noch eine FLAMMENFÄRBUNG²³³ durchgeführt (Cobaltglas!). Falls ein Spektrometer zur Verfügung steht, wird natürlich auch dieses verwendet. Der Nachweis ist nicht sehr empfindlich.

Erklärung

$$K^+ + ClO_4^- \longrightarrow KClO_4$$

Kalium-Ionen und Perchlorat-Ionen reagieren zum weißen Kaliumperchlorat²³⁴.

Perchlorsäure ist die stärkste anorganische Säure und verdrängt alle anderen Säuren aus ihren Salzen.

²³² HTTP://DE.WIKIPEDIA.ORG/WIKI/PERCHLORS%C3%A4URE

²³³ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_FLAMMENF%C3%A4RBUNG

 $^{^{234}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/KALIUMPERCHLORAT

2.3.19 Kupfer

Abbildung 48: Kupfersulfid

KUPFER²³⁵ **Tipp:** Kupfer(II)-salze färben Lösungen meist bläulich.

^{235&}lt;sub>HTTP://de.wikipedia.</sub>org/wiki/Kupfer

Eine mögliche Vorprobe ist die BORAX UND PHOSPHORSALZPER-LE²³⁶, welche in der Oxidationsflamme grün und in der Reduktionsflamme rötlich gefärbt ist.

Im Kationentrennungsgang fällt es in der SCHWEFELWASSERSTOF-FGRUPPE²³⁷ aus:

$$Cu^{2+} + H_2S \longrightarrow CuS \downarrow + 2 H^+$$

Nachweis als Kupfertetramminkomplex

Nachweisreaktion	
Reaktionstyp	Komplexbildungsreaktion ²⁴⁰
pН	>>7 stark ammoniakalisch
Indikation	tiefblaue Lösung

Durchführung

Versetzt man die Analysenlösung mit AMMONIAKWASSER²⁴¹ so bilden sich bei pH-Werten über 8 tiefblaue Komplexsalz-Lösungen (siehe Bild mittiges Reagenzglas).

²³⁶HTTP://DE.WIKIBOOKS.ORG/WIKI/../_BORAX-%20UND%
20PHOSPHORSALZPERLE
237
HTTP://DE.WIKIBOOKS.ORG/WIKI/../_
SCHWEFELWASSERSTOFFGRUPPE
238
HTTP://DE.WIKIPEDIA.ORG/WIKI/SCHWEFELWASSERSTOFF
239
HTTP://DE.WIKIPEDIA.ORG/WIKI/KUPFER(II)-SULFID
241
HTTP://DE.WIKIPEDIA.ORG/WIKI/AMMONIAKWASSER

Erklärung

$$Cu^{2+} + 4 \ NH_3 \longrightarrow [Cu(NH_3)_4]^{2+}$$

Kupfer(II)-Ionen und Ammoniak reagieren zum tiefblauen Komplex-Ion Tetraamminkupfer(II)

Störungen

Ni(II)-Ionen bilden ebenfalls blaue Komplexe, die nur geringfügig heller sind.

Nachweis als Kupferhexacyanidoferrat

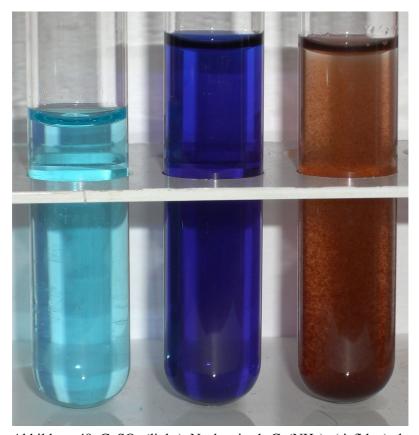


Abbildung 49: $CuSO_4$ (links), Nachweis als $Cu(NH_3)_4$ (tiefblau) als $Cu_2[Fe(CN)_6]$ (braunrot)

Nachweisreaktion	
Reaktionstyp	KOMPLEXBILDUNGSREAKTION ²⁴²
pН	?
Indikation	braunroter Niederschlag

Durchführung

Eine weitere Variante Kupfer(II)-Ionen nachzuweisen erfolgt mit einer Kaliumhexacyanidoferrat(II)²⁴³-lösung (Gelbes Blutlaugensalz, früher: Kaliumhexacyanoferrat-II). Nach Zugabe von Blutlaugensalz zur Analysenlösung fällt ein braunroter Niederschlag aus (siehe Bild, rechtes Reagenzglas).

Erklärung

$$2 \ Cu^{2+} + K_4 [Fe(CN)_6] \longrightarrow Cu_2 [Fe(CN)_6] + 4 \ K^+$$

Kupfer(II)-Ionen und Kaliumhexacyanidoferrat(II) reagieren zum roten Komplex Kupfer(II)-hexacyanidoferrat(II) und Kalium-Ionen

Nachweis als Kupferthiocyanat

Nachweisreaktion		
Reaktionstyp	REDOXREAKTION ²⁴⁴ ,	KOMPLEXBIL-
	DUNGSREAKTION ²⁴⁵	
pН		
Indikation	zunächst grün, im Überschu	ıss schwarz, mit Sul-
	fit weiß	

 $^{^{243} \}mathtt{http://de.wikipedia.org/wiki/Kaliumhexacyanidoferrat(II)}$

Abbildung 50: zunächst grün, im Überschuss schwarz, mit Sulfit weiß

Durchführung

Bei Reaktion von Thiocyanat-Ionen mit Kupfer(II)-Ionen beobachtet man zunächst eine grüne Färbung der Lösung (siehe Bild linkes Reagenzglas). Beim Vorhandensein von Thiocyanat-Ionen oder Kupfer(II)-Ionen im Überschuss bildet sich ein schwarzer Niederschlag. (siehe Bild mittiges Reagenzglas) Wird der Niederschlag mit

SULFIT²⁴⁶-Ionen behandelt, so löst sich der schwarze Niederschlag und es bildet sich ein weißer Niederschlag. (Redoxreaktion, siehe Bild rechtes Reagenzglas)

Erklärung

$$2\;SCN^- + Cu^{2+} \longrightarrow Cu(SCN)_2 \downarrow$$

Reaktion: Thiocyanat-Ionen reagieren mit Kupfer(II)-Ionen zu schwarzem, wasserunlöslichem Kupfer(II)-thiocyanat.

$$2~Cu(SCN)_2 + SO_3^{2-} + H_2O \longrightarrow 2~CuSCN \downarrow + 2~SCN^- + SO_4^{2-} + 2~H^+$$

Reaktion: Schwarzes Kupfer(II)-thiocyanat reagiert mit Sulfit-Ionen im wässrigen Milieu zu weißem Kupfer(I)-thiocyanat, Thiocyanat-Ionen, Sulfat-Ionen und Wasserstoff-Ionen.

2.3.20 Lithium

LITHIUM²⁴⁷ Lithium bleibt im Kationentrennungsgang in der LÖS-LICHEN GRUPPE²⁴⁸ zurück. Wer versuchen möchte es zu fällen, kann versuchen dies durch Eindampfen und Aufnahme mit konz. HCl als LITHIUMCHLORID²⁴⁹ hinzubekommen. Zum Abtrennen kann man sich zu nutze machen, dass es sich als einziges Alkalichlorid in AMYLALKOHOL²⁵⁰ löst.

^{246&}lt;sub>HTTP</sub>://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20Anorganische%20Chemie/%20Sulfit

²⁴⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/LITHIUM

²⁴⁸ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_L%c3%B6SLICHE% 20GRUPPE

²⁴⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/LITHIUMCHLORID

²⁵⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/AMYLALKOHOL

Nasschemische Nachweise von Lithium sind schwierig, die karminrote FLAMMENFÄRBUNG²⁵¹ ist der einzig wirklich einfache und sichere Nachweis.

Nachweis als Lithiumphosphat

Nachweisreaktion	
Reaktionstyp	FÄLLUNGSREAKTION ²⁵²
pН	>>7
Indikation	weißer Niderschlag

Durchführung

Die Lösung wird stark alkalisch gemacht und festes DINATRIUMHY-DROGENPHOSPHAT²⁵³ hinzugegeben. Nach einiger Zeit sollte sich ein Niederschlag bilden. Ansonsten kann man versuchen mehr Na₂HPO₄ hinzuzugeben. Die Lösung muss jedoch wirklich viel Li⁺ enthalten, damit es funktioniert.

Erklärung

$$3 \text{ Li}^+ + \text{HPO}_4^{2-} + \text{OH}^- \longrightarrow \text{Li}_3 \text{PO}_4 \downarrow + \text{H}_2 \text{O}$$

²⁵¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_FLAMMENF%C3%A4RBUNG 253 HTTP://DE.WIKIPEDIA.ORG/WIKI/DINATRIUMHYDROGENPHOSPHAT

2.3.21 Magnesium

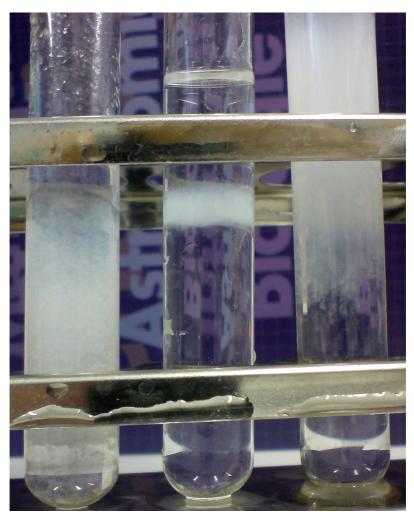


Abbildung 51: Magnesiumhydroxide und -carbonate

MAGNESIUM²⁵⁴ Magnesium verbleibt im Trennungsgang in der LÖSLICHEN GRUPPE²⁵⁵. Erstes Anzeichen für Magnesium in der Probe kann eine sprühende Flamme (vgl. Wunderkerze) sein. Zum Nachweis muss stets sehr sauber abgetrennt werden, was Magnesium in Gemischen schwer nachweisbar macht.

Nachweis als Ammoniummagnesiumphosphat

Nachweisreaktion	
Reaktionstyp	FÄLLUNGSREAKTION ²⁵⁶
pН	>>7 NH ₃
Indikation	weißer Niderschlag

Durchführung

Die Lösung wird mit konz. NH₃ alkalisch gemacht und AMMONIUMCHLORID²⁵⁷ und NATRIUMHYDROGENPHOSPHAT²⁵⁸ hinzuzugeben. Nach Erwärmen (~5 min) entsteht ein weißer Niederschlag. Unter dem Mikroskop sehen die Kristalle wie "Sargdeckel" aus: VERGLEICHSBILD²⁵⁹.

Erklärung

$$Mg^{2+} + NH_4^+ + [PO_4]^{3-} \longrightarrow MgNH_4PO_4] \downarrow$$

²⁵⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/MAGNESIUM

²⁰GPHPPE 20GPHPPE

²⁵⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/AMMONIUMCHLORID

 $^{^{258} {\}tt http://de.wikipedia.org/wiki/Natriumhydrogenphosphat}$

²⁵⁹ HTTP://www.biorama.ch/biblio/b50chem/k30niere/album/albumbig/big009.jpg

Störung

CALCIUM²⁶⁰, STRONTIUM²⁶¹, BARIUM²⁶² und ZINK²⁶³ stören, weil sie ebenfalls einen Niederschlag bilden. Die Kristallform ist jedoch charakteristisch.

Nachweis als Chinalizarin-Farblack

Nachweisreaktion	
Reaktionstyp	FARBLACK ²⁶⁴ -Bildung
pН	<7 salzsauer
Indikation	Blaufärbung

Durchführung

Die mit HCl dil. angesäuerte Lösung wird mit CHINALIZARIN²⁶⁵-Lösung versetzt und mit NaOH stark alkalisiert. Falls ein KORNBLU-MENBLAUER²⁶⁶ Niederschlag ausfällt, ist dies ein positiver Hinweis auf Magnesium.

Störung

ALUMINIUM²⁶⁷, BERYLLIUM²⁶⁸, BOR²⁶⁹, CALCIUM²⁷⁰,

²⁶⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_CALCIUM
261 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_STRONTIUM
262 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_BARIUM
263 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_ZINK
265 HTTP://DE.WIKIPEDIA.ORG/WIKI/CHINALIZARIN
266 HTTP://DE.WIKIPEDIA.ORG/WIKI/KORNBLUME
267 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_ALUMINIUM
268 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_BERYLLIUM
269 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_BOR
270 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_BOR

 ${\rm COBALT^{271}},\ {\rm FLUORIDE^{272}},\ {\rm GALLIUM^{273}},\ {\rm INDIUM^{274}},\ {\rm NICKEL^{275}},\ {\rm ZINK^{276}}$ stören.

Nachweis als Thiazolgelb-Farblack

Nachweisreaktion	
Reaktionstyp	FARBLACK ²⁷⁷ -Bildung
pН	<7 salzsauer
Indikation	Rotfärbung

Durchführung

Die Probe wird in Wasser gelöst und angesäuert. Anschließend wird sie mit einem Tropfen der Thiazolgelb²⁷⁸-Lösung (auch Titangelb genannt, obwohl kein Titan vorkommt) versetzt und mit verdünnter Natronlauge alkalisch gemacht. Bei Anwesenheit von Magnesium entsteht ein hellroter Niederschlag.

Störung

NICKEL²⁷⁹-, ZINK²⁸⁰-, MANGAN²⁸¹- und COBALT²⁸²-Ionen stören diesen Nachweis und sollten vorher als Sulfide ausgefällt werden.

²⁷¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_COBALT
272 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_FLUORID
273 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_GALLIUM
274 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_INDIUM
275 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_NICKEL
276 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_ZINK
278 HTTP://DE.WIKIPEDIA.ORG/WIKI/THIAZOLGELB
279 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_NICKEL
280 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_ZINK
281 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_MANGAN
282 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_MANGAN

2.3.22 Mangan

Nachweis als Braunstein

Nachweisreaktion	
Reaktionstyp	REDOXREAKTION ²⁸³
pН	>>7
Indikation	schwarz-braune Lösung

Durchführung

Mangan(II)-Kationen werden zum Nachweis im Kationentrenngang im so genannten "Alkalischen Bad" – einer Mischung aus konz. Wasserstoffperoxid²⁸⁴ und Natriumhydroxid²⁸⁵ – zum Mangan(IV)-Kation oxidiert.

Erklärung

$$Mn^{2+} + H_2O_2 + 2 OH^- \longrightarrow MnO(OH)_2 \downarrow +H_2O$$

Farblose Mangan(II)-Ionen reagieren mit Wasserstoffperoxid in alkalischer Lösung zu braunem Manganoxidhydroxid (Braunstein) und Wasser.

 $^{^{284}\}mbox{HTTP://DE.WIKIPEDIA.ORG/WIKI/WASSERSTOFFPEROXID}$ $^{285}\mbox{HTTP://DE.WIKIPEDIA.ORG/WIKI/NATRIUMHYDROXID}$

Nachweis als Permanganat

Nachweisreaktion	
Reaktionstyp	REDOXREAKTION ²⁸⁶
pН	<7
Indikation	violette Lösung

Das Mangan(IV)-oxid-hydroxid "Braunstein" wird dann durch Kochen in konz. Salpetersäure²⁸⁷ gelöst und mit Blei(IV)-oxid zum violetten Permanganat²⁸⁸ aufoxidiert:

$$2~Mn^{4+} + 3~PbO_2 + 2~H_2O \longrightarrow 2~MnO_4^- + 3~Pb^{2+} + 4~H^+$$

Braune Mangan(IV)-Ionen reagieren mit Blei(IV)-oxid in Wasser zu violetten Permanganat-Ionen, Blei(II)-Ionen und Wasserstoff-Ionen.

Nachweis über Oxidationsschmelze

Nachweisreaktion	
Reaktionstyp	Redoxreaktion ²⁸⁹
pН	entfällt
Indikation	blaugrüne Salze

Durchführung

Nachweis über die OXIDATIONSSCHMELZE²⁹⁰: Die Probe wird

²⁸⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/SALPETERS%C3%A4URE

²⁸⁸ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_PERMANGANAT

 $^{^{290}}$ http://de.wikibooks.org/wiki/../_Oxidationsschmelze

mit einer stöchiometrisch angepassten Menge eines Soda-Salpeter-Salzgemisches gemörsert und im Porzellantiegel erhitzt - blaugrünes Manganat(VI) zeigt Mangansalze an.

Tipp: Das Manganat(VI) disproportioniert bei Kontakt mit ESSIGSÄURE²⁹¹ zum rosavioletten PERMANGANAT²⁹² und braunen Mangan(IV)-oxid (Redoxreaktion).

Erklärung

$$MnO_2 + Na_2CO_3 + KNO_3 \longrightarrow Na_2MnO_4 + CO_2 \uparrow + KNO_2$$

Mangan(IV)oxid reagiert mit Natriumcarbonat und Kaliumnitrat zu Natriummanganat(VI) (blaugrün), Kohlenstoffdioxid und Kaliumnitrit.

2.3.23 Molybdän

MOLYBDÄN²⁹³ Molybdän kommt im KTG in der Schwefel-wasserstoffgruppe²⁹⁴, genauer in der Arsen-Gruppe vor.

²⁹¹http://de.wikipedia.org/wiki/Essigs%c3%a4ure

²⁹² HTTP://DE.WIKIBOOKS.ORG/WIKI/../ PERMANGANAT

 $^{^{293}}$ HTTP://de.wikipedia.org/wiki/Molybd%c3%a4n

²⁹⁴ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_
SCHWEFELWASSERSTOFFGRUPPE

Vorprobe als Molybdänblau

Man raucht etwas Ursubstanz mit wenig ZINNCHLORID²⁹⁵ und 20 mL konz. SCHWEFELSÄURE²⁹⁶ in einer offenen Schale fast bis zur Trockene ab. Beim Erkalten tritt eine intensive Blaufärbung ein, die von einem Oxid der ungefähren Zusammensetzung Mo_3O_8 (= $MoO_3\cdot Mo_2O_5$) hervorgerufen wird.

Störungen

WOLFRAM²⁹⁷ bildet ein himmelblaues Oxid (Wolframblau) und VANADIUM²⁹⁸ zeigt ebenfalls eine hellblaue Färbung.

Nachweis als Molybdophosphat

Nachweisreaktion	
Reaktionstyp	FÄLLUNGSREAKTION ²⁹⁹
pН	<<7 salpetersauer
Indikation	gelbe Kristalle

Durchführung

Die stark salpetersaure Lösung wird in einem kleinen Reagenzglas mit wenig AMMONIUMCHLORID 300 bzw. KALIUMCHLORID 301 sowie 1-2 Tropfen 2 mol/L NATRIUMHYDROGENPHOSPHAT 302 versetzt und erwärmt. Es scheiden sich äußerst feine gelbe

²⁹⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/ZINNCHLORID
296 HTTP://DE.WIKIPEDIA.ORG/WIKI/SCHWEFELS%C3%A4URE
297 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_WOLFRAM
298 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_VANADIUM
300 HTTP://DE.WIKIPEDIA.ORG/WIKI/AMMONIUMCHLORID
301 HTTP://DE.WIKIPEDIA.ORG/WIKI/KALIUMCHLORID
302 HTTP://DE.WIKIPEDIA.ORG/WIKI/NATRIUMHYDROGENPHOSPHAT

Kristalle von Ammonium- bzw. KALIUMMOLYBDOPHOSPHAT³⁰³ ab.

Erklärung

$$Mo^{6+} + Na_2HPO_4 + 3 \ NH_4Cl \longrightarrow (NH_4)_3[Mo(PO_4)] \downarrow +2 \ NaCl + HCl$$

Molybdän-Ionen reagieren mit Natriumhydrogenphosphat und Ammoniumchlorid zu gelbem Ammoniummolybdophosphat, welches ausfällt, sowie Natriumchlorid und Salzsäure.

$$Mo^{6+} + Na_2HPO_4 + 3 KCl \longrightarrow K_3[Mo(PO_4)] \downarrow +2 NaCl + HCl$$

Molybdän-Ionen reagieren mit Natriumhydrogenphosphat und Kaliumchlorid zu gelbem Kaliummolybdophosphat, welches ausfällt, sowie Natriumchlorid und Salzsäure.

2.3.24 Natrium

NATRIUM³⁰⁴ Natrium verbleibt im Trennungsgang in der LÖS-LICHEN GRUPPE³⁰⁵. Es lässt sich wie die meisten Alkalikationen bevorzugt mittels FLAMMENFÄRBUNG³⁰⁶ aufspüren. Dort muss

^{303&}lt;sub>HTTP://DE.W</sub>IKIPEDIA.ORG/WIKI/KALIUMMOLYBDOPHOSPHAT

³⁰⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/NATRIUM

³⁰⁵ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_L%c3%B6SLICHE%

³⁰⁶ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_FLAMMENF%C3%A4RBUNG

es jedoch lange (mindestens 3 Minuten) zu sehen sein, da Natriumverunreinigungen überall vorkommen (z.B. Handschweiß). Weil fast alle Natriumsalze gut löslich sind, ist es schwierig Natrium nasschemisch mit Fällungsreaktionen zu finden.

Nachweis als Natriumhexahydroxoantimonat(V)

Nachweisreaktion	
Reaktionstyp	FÄLLUNGSREAKTION ³⁰⁷
pН	>>7 KOH
Indikation	weißer feinkristalliner Niederschlag

Durchführung

Die Lösung wird stark alkalisch gemacht und auf einem Uhrglas mit einigen Tropfen K[SB(OH)6]³⁰⁸-Lösung versetzt. Nach einer Viertelstunde bildet sich ein weißer feinkristalliner Niederschlag, der sich mit Wasser nicht abspülen lässt und sich sandig anfühlt.

Erklärung

$$Na^+ + [Sb(OH)_6]^- \longrightarrow Na[Sb(OH)_6] \downarrow$$

Störung

LITHIUM³⁰⁹ und AMMONIUM³¹⁰ stören, weil sie ebenfalls einen Niederschlag bilden. Der Versuch funktioniert nur mit konzentrierter Natriumlösung

 $^{^{308}}$ HTTP://de.wikipedia.org/wiki/Kaliumhexahydroxidoantimonat

³⁰⁹ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_LITHIUM

³¹⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_AMMONIUM

Nachweis als Natrium-Magnesium-triuranyl-nonaacetat

Nachweisreaktion	
Reaktionstyp	FÄLLUNGSREAKTION ³¹¹
pH	<7 essigsauer
Indikation	gelbe Kristalle

Durchführung

Die Lösung wird essigsauer gemacht und mit ein paar Tropfen MAGNESIUMURANYLACETAT³¹²-Lösung versetzt. Nach einiger Zeit fallen gelbe Kristalle aus.

Erklärung

$$Na^{+} + Mg^{2+} + 3 UO_{2}^{2+} + 9 CH_{3}COO^{-} + 9 H_{2}O$$

 $\longrightarrow NaMg(UO_{2})_{3}(CH_{3}COO)_{9} \cdot 9 H_{2}O \downarrow$

Störung

LITHIUM³¹³ stört, weil es ebenfalls einen Niederschlag bildet.

³¹² HTTP://DE.WIKIPEDIA.ORG/WIKI/URANYLACETAT

³¹³ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_LITHIUM

2.3.25 Nickel

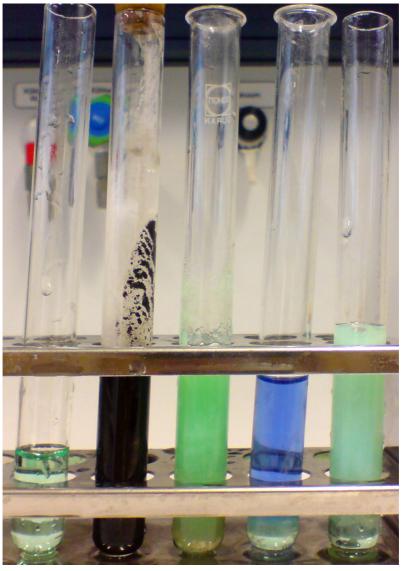


Abbildung 52: (1) grünes Nickel(II)nitrat,

- (2) schwarzes Nickelsulfid,
- (3) hellgrünes Nickelhydroxid,
- (4) blaues Hexamethylnickel,
- (5) basische grüne Carbonatsalze wechselnder Zusammensetzung

Nickelsalze fallen im Trennungsgang in der Ammoniumsulfid-GRUPPE³¹⁴ als schwarze Sulfide aus.

$$Ni^{2+} + (NH_4)_2S \longrightarrow NiS \downarrow +2 NH_4^+$$

Nickel(II)-Ionen reagieren mit Ammoniumsulfid zu Nickel(II)sulfid und Ammonium-Ionen.

Des Weiteren ist die Fällung des Hydroxids möglich, das man an seiner spezifisch grünen Farbe erkennen kann. Als Fällungsmittel wird meist NATRONLAUGE³¹⁵ verwendet.

$$Ni^{2+} + 2 NaOH \longrightarrow Ni(OH)_2 \downarrow + 2 Na^+$$

Nickel(II)-Ionen reagieren mit Natronlauge zu grünem, wasserunlöslichem Nickel(II)hydroxid und Natrium-Ionen.

Durch Zugabe von starken Oxidationsmitteln wie CHLOR³¹⁶ oder BROM³¹⁷, jedoch nicht mit Wasserstoffperoxid, geht das grüne Hydroxid in ein höheres, schwarzes Oxid über.

$$Ni(OH)_2 + Br_2 \longrightarrow NiO_2 \downarrow +2 HBr$$

Grünes Nickel(II)hydroxid reagiert mit Brom zu schwarzem, wasserunlöslichem Nickel(IV)oxid und Bromwasserstoff.

 $^{^{314}\}mathrm{HTTP://DE.WIKIBOOKS.org/WIKI/PRAKTIKUM\%}$

²⁰Anorganische%20Chemie/%20Ammoniumsulfidgruppe

³¹⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/NATRONLAUGE

³¹⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/CHLOR

³¹⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/BROM

Wird zu einer Probelösung, die Nickel(II)-Ionen enthalten soll, AMMONIAK-LÖSUNG³¹⁸ zugetropft, kann man beobachten, das sich zuerst ein grüner Niederschlag von Nickel(II)-hydroxid bildet, der bei Überschuss von Ammoniak sich unter Blaufärbung wieder auflöst.

$$Ni^{2+} + 2NH_3 + 2H_2O \longrightarrow Ni(OH)_2 \downarrow +2NH_4^+$$

Nickel(II)-Ionen reagieren im wässrigen Milieu mit Ammoniak zu grünem, wasserunlöslichem Nickel(II)hydroxid und Ammonium-Ionen.

$$Ni(OH)_2 + 6 NH_3 \longrightarrow [Ni(NH_3)_6]^{2+} + 2 OH^-$$

Nickel(II)-Ionen reagieren bei Überschuss von Ammoniak zu blauen, wasserlöslichen Hexaaminnickel(II)-Ionen und Hydroxid-Ionen.

Nachweis mit DAD

Nachweisreaktion	
Reaktionstyp	CHELATKOMPLEXBILDUNG ³¹⁹
pН	>7 alkalisch
Indikation	himbeerroter Niederschlag

Durchführung

Man versetzt die zuvor alkalische gemachte Analysenlösung mit einer alkoholischen Lösung von DIACETYLDIOXIM³²⁰ (=Dimethylgly-

 $^{^{318}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/AMMONIAKWASSER 320 HTTP://DE.WIKIPEDIA.ORG/WIKI/DIACETYLDIOXIM

oxim), die auch Tschugajews Reagens genannt wird. Es bildet sich ein himbeerroter voluminöser Niederschlag, der in verdünnten Mineralsäuren wieder zerfällt. In Natronlauge und in Gegenwart von starken Oxidationsmitteln wie Peroxodisulfat erscheint eine ebenfalls intensiv rote, jedoch lösliche Nickel(III)-Verbindung.

Erklärung

$$Ni^{2+} + 2$$
 $NOH \xrightarrow{+2OH^-}$
 $OH \xrightarrow{-2H_2O}$
 $OH \xrightarrow{NI}$
 $OH \xrightarrow{NI}$

Abbildung 53

Diacetyldioxim bildet mit Nickel in alkalischer Lösung einen Chelatkomplex.

2.3.26 Stickstoff

STICKSTOFF 321 Anorganisch gebundener **Stickstoff** kommt als NH₄⁺ AMMONIUMKATION 322 sowie in den Anionen CYANID 323

 $^{^{321}\}mathrm{HTTP://DE.WIKIPEDIA.ORG/WIKI/STICKSTOFF}$

³²² HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20AMMONIUM

³²³ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20CYANID

CN $^-$, Thiocyanat 324 SCN $^-$, Nitrat 325 NO $_3^-$ und Nitrit NO $_2^-$ vor.

2.3.27 Ammonium

Nachweis mittels Kreuzprobe

Nachweisreaktion	
Reaktionstyp	VERDRÄNGUNGSREAKTION ³²⁶
pH	>7 alkalisch
Indikation	verfärbtes Indikatorpapier

³²⁴ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20THIOCYANAT

³²⁵ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20NITRAT

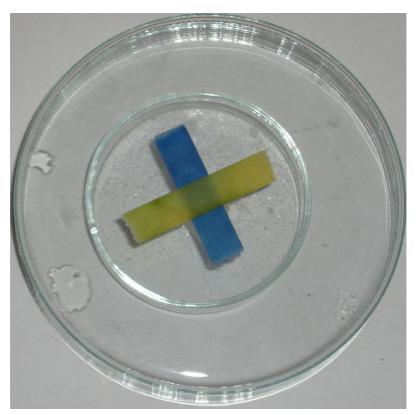


Abbildung 54: positive Kreuzprobe

Durchführung

In einem Uhrglas wird angefeuchtetes Universalindikatorpapier befestigt, in ein zweites Uhrglas gibt man die Probe, etwas NATRON-LAUGE³²⁷ und einige Tropfen Wasser und bedeckt nun das zweite Uhrglas mit dem ersten. Eine Blaufärbung des Indikatorpapiers zeigt

³²⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/NATRONLAUGE

Hydroxidionen, die durch Ammoniak entstanden sind, das aus dem Ammoniumsalz freigesetzt wurde. Das Indikatorpapier kann dabei nicht die Lauge, die durch das NaOH eingebracht wurde, anzeigen, weil dieses die wässrige Lösung nicht verlassen können. Das Indikatorpapier sollte also nicht in die Lösung fallen. Zum Vergleich legt man meist außerhalb der beiden Uhrgläser nochmal einen Streifen Indikatorpapier darüber und befeuchtet ihn mit dest. Wasser, das auch schon leicht alkalisch ist.

Erklärung

$$NH_4^+ + OH^- \longrightarrow NH_3 \uparrow + H_2O$$

Ammonium-Ionen und Hydroxid-Ionen reagieren zu gasförmigem Ammoniak und Wasser.

Nachweis mittels Neßlers-Reagenz

Durchführung

Nachweisreaktion	
Reaktionstyp	KOMPLEXBILDUNG ³²⁸
pН	>7 alkalisch
Indikation	gelbbrauner Niederschlag

Beim Nachweis mit der NESSLERS-REAGENZ³²⁹ wird eine Kaliumtetraiodomercurat(II)-lösung mit Natronlauge alkalisiert. Die Probelösung, die auf Ammonium-Ionen untersucht werden soll, wird mit wenig Neßlers Reagenz umgesetzt. Bei gelbbrauner Färbung

³²⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/NE%c3%9FLERS-REAGENZ

bzw. brauner Ausflockung sind Ammonium-Ionen nachgewiesen, es entsteht das Iodidsalz der MILLONSCHE BASE³³⁰.

Erklärung

$$NH_4^+ + 2 K_2[HgI_4] + 3 NaOH + OH^- \longrightarrow [Hg_2N]I \downarrow + 4 KI + 3 NaI + 4 H_2OH^-$$

Ammonium-Ionen, Kaliumtetraiodomercurat(II), Natronlauge und Hydroxid-Ionen reagieren zum Iodidsalz der Millonschen Base, die in wässriger Lösung ausflockt, Kaliumiodid, Natriumiodid und Wasser.

2.3.28 Cyanid

Nachweis als Berliner Blau

Nachweisreaktion	
Reaktionstyp	KOMPLEXBILDUNG ³³¹
pН	8-9
Indikation	tiefblaue Lösung

Durchführung

Gefahrstoffwarnung!

Zur Prüfung auf Cyanid-Ionen in einer Probe wird, sofern noch nicht geschehen, die Probe mit Natronlauge auf pH-Wert 8 bis 9 alkalisiert. Anschließend wird EISEN(II)-SULFAT³³²²lösung im Unterschuss hinzugegeben und diese Mis-

³³⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/MILLONSCHE%20BASE 332 HTTP://DE.WIKIPEDIA.ORG/WIKI/EISEN(II)-SULFAT

chung mit fächelnder Flamme bis zur Trocknung eingedampft (Arbeit unter dem Abzug unabdingbar! Giftige Cyaniddämpfe können entweichen!). Anschließend wird der Rückstand mit verdünnter Salzsäure gelöst, es entsteht eine klare Lösung, die mit verdünnter EISEN(III)CHLORID³³³lösung versetzt wird. Bei Anwesenheit von Cyanid bildet sich das tiefblaue Pigment BERLINER BLAU³³⁴.

Erklärung

$$6~CN^- + Fe^{2+} \longrightarrow [Fe(CN)_6]^{4-}$$

Cyanid-Ionen reagieren mit Eisen(II)-Ionen zu Hexacyanidoferrat(II)-Ionen.

$$3 \left[Fe(CN)_6 \right]^{4-} + 4 Fe^{3+} \longrightarrow Fe_4 \left[Fe(CN)_6 \right]_3 \downarrow$$

Hexacyanoferrat(II)-Ionen reagieren mit Eisen(III)-Ionen zu blauem Eisen(III)hexacyanoferrat(II).

Nachweis mit Polysulfiden

Nachweisreaktion	
Reaktionstyp	KOMPLEXBILDUNG ³³⁵
pН	
Indikation	tiefrote Lösung

³³³ http://de.wikipedia.org/wiki/Eisen(III)chlorid

³³⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BERLINER%20BLAU

Durchführung

Alternativ können Cyanide mit Polysulfiden zu Thiocyanat umgesetzt werden. Dazu werden einige Tropfen Ammoniumpolysulfidlösung (gelbes Ammoniumsulfid) zu der in Wasser gelösten Ursubstanz gegeben. Die Lösung wird bis zur Trocknung erhitzt und der Rückstand in wenig verdünnter Salzsäure suspensiert. Anschließend wird filtriert. Die klare Lösung wird mit wenig verdünnter Eisen(III)-chloridlösung versetzt. Beim Entstehen einer tiefroten Färbung, hervorgerufen durch EISEN(III)-THIOCYANAT³³⁶, war Cyanid zugegen.

Erklärung

$$x CN^- + S_{x+1}^{2-} \longrightarrow x SCN^- + S^{2-}$$

Cyanid-Ionen reagieren mit Polysulfid-Ionen zu Thiocyanat-Ionen und Sulfid-Ionen.

$$3 \text{ SCN}^- + \text{Fe}^{3+} \longrightarrow \text{Fe}(\text{SCN})_3$$

Thiocyanat-Ionen reagieren mit Eisen(III)-Ionen zu blutrotem Eisen(III)-thiocyanat.

³³⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/EISEN(III)-THIOCYANAT

Thiocyanat

Stierblutprobe

Nachweisreaktion	l
Reaktionstyp	Komplexbildung ³³⁷
pН	
Indikation	tiefrote Färbung

Abbildung 55: Eisensalzlösung (links) und Eisen-III-thiocyanat

THIOCYANAT³³⁸-, oder auch Rhodanid-Ionen werden qualitativ mit der "Stierblutprobe" nachgewiesen. Diese Reaktion wird auch zum Nachweis von EISEN³³⁹ mit Thiocyanatlösung eingesetzt.

Durchführung

Dabei wird der zu untersuchenden Lösung eine gesättigte EISEN(III)-CHLORID³⁴⁰-Lösung zugegeben. Erscheint eine intensiv "stierblutrote" Färbung, so waren Thiocyanat-Ionen vorhanden.

Erklärung

$$SCN^- + Fe^{3+} + 5 \; H_2O \longrightarrow [Fe(SCN)(H_2O)_5]_{aq}^{2+}$$

Reaktion: Thiocyanat-Ionen und Eisen(III)-Ionen reagieren im wässrigen Milieu zum Komplex Pentaaquathiocyanatoferrat(III), welcher blutrot erscheint.

Nachweis mit Kupfersulfat

Nachweisreaktion	n
Reaktionstyp	REDOXREAKTION ³⁴¹ , KOMPLEXBILDUNG ³⁴²
pН	
Indikation	zunächst grün, im Überschuss schwarz, mit Sul-
	fit weiß

³³⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/THIOCYANAT

³³⁹ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20EISEN

³⁴⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/EISEN(III)-CHLORID

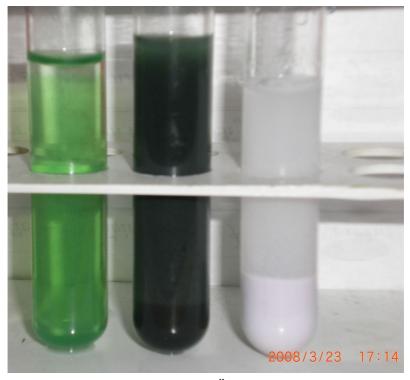


Abbildung 56: zunächst grün, im Überschuss schwarz, mit Sulfit weiß

Ein weiterer spezifischer Nachweis kann mit Kupfersulfatlösung erfolgen.

Durchführung

Zur in Wasser gelösten Ursubstanz wird frisch bereitete Kupfer(II)-sulfat zugegeben. Bei Reaktion von Thiocyanat-Ionen mit Kupfer(II)-Ionen beobachtet man zunächst eine grüne Färbung der Lösung (siehe Bild linkes Reagenzglas). Beim Vorhandensein

von Thiocyanat-Ionen oder Kupfer(II)-Ionen im Überschuss bildet sich ein schwarzer Niederschlag. (siehe Bild mittiges Reagenzglas) Wird der Niederschlag mit SULFIT³⁴³-Ionen behandelt, so löst sich der schwarze Niederschlag und es bildet sich ein weißer NS. (Redoxreaktion, siehe Bild rechtes Reagenzglas)

Erklärung

 $2~SCN^- + Cu^{2+} \longrightarrow Cu(SCN)_2 \downarrow \qquad \text{Reaktion:} \qquad \text{Thiocyanat-Ionen} \\ \text{reagieren} \quad \text{mit} \quad \text{Kupfer(II)-Ionen} \quad \text{zu} \quad \text{schwarzem,} \quad \text{wasserunl\"oslichem} \\ \text{Kupfer(II)-thiocyanat.} \\$

$$2 \text{ Cu}(\text{SCN})_2 + \text{SO}_3^{2-} + \text{H}_2\text{O} \longrightarrow 2 \text{ CuSCN} \downarrow + 2 \text{ SCN}^- + \text{SO}_4^{2-} + 2 \text{ H}^+$$
 Reaktion: Schwarzes Kupfer(II)-thiocyanat reagiert mit Sulfit-Ionen im wässrigen Milieu zu weißem Kupfer(I)-thiocyanat, Thiocyanat-Ionen, Sulfat-Ionen und Wasserstoff-Ionen.

Nitrat

Nitratnachweis mittels Ringprobe

Nachweisreaktion	n
Reaktionstyp	REDOXREAKTION ³⁴⁴ , KOMPLEXBILDUNG ³⁴⁵
рН	<<7 schwefelsauer
Indikation	brauner Ring

^{343&}lt;sub>HTTP</sub>://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20Anorganische%20Chemie/%20Sulfit

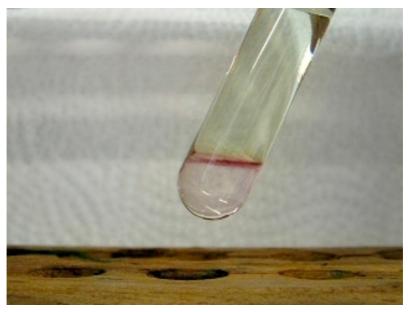


Abbildung 57: positive Ringprobe

Durchführung

Zum Nitratnachweis mittels Ringprobe wird die Analysensubstanz mit einigen Tropfen EISEN(II)-SULFAT³⁴⁶-Lösung und verdünnter SCHWEFELSÄURE³⁴⁷ versetzt. Anschließend hält man das Reagenzglas schräg und lässt am Rand vorsichtig einige Tropfen konzentrierter SCHWEFELSÄURE³⁴⁸ herunterlaufen, um die Lösung zu unterschichten. Eine ringförmige Braunfärbung an der Grenzschicht zeigt Nitrat an. Zum besseren Erkennen bei geringer Konzentration hält man das Reagenzglas vor einen weißen Kittelärmel oder gegen ein

³⁴⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/EISEN(II)-SULFAT

³⁴⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/SCHWEFELS%C3%A4URE

³⁴⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/SCHWEFELS%C3%A4URE

Blatt Papier. Je nach Konzentration kann der Ring auch bis auf ein fahles Violett verringert sein, es ist daher eine Negativprobe zum Vergleich sehr hilfreich.

Erklärung

An der Schichtgrenze von Probelösung und Schwefelsäure findet eine Redoxreaktion statt:

$$3 \, \text{Fe}^{2+} + \text{NO}_3^- + 4 \, \text{H}^+ \rightarrow \text{NO} + 3 \, \text{Fe}^{3+} + 2 \, \text{H}_2 \text{O}$$

Nitrat-Ionen werden zu Stickstoffmonoxid reduziert und die Eisen(II)-Ionen zu Eisen(III)-Ionen oxidiert

Im weiteren Reaktionsverlauf bildet sich ein Komplex, der für die Braunfärbung sorgt, die namensgebend für die Nachweisreaktion ist:

$$[Fe(H_2O)_6]^{2+} + NO \rightarrow [Fe(H_2O)_5NO]^{2+} + H_2O$$

Aus Eisen(II)-Ionen an den sich Stickstoffmonoxid angelagert hat, bildet sich in wässriger Lösung der Pentaaquanitrosyleisen(II)-Komplex

Störung

Es kann zu Konzentrationsniederschlag entlang der Schichtgrenze kommen. Diese ist meist weiß und lässt subtil positive Ergebnisse nicht mehr erkennen.

NITRIT³⁴⁹-Ionen stören ebenfalls diesen Nachweis, da sich die Lösung bereits bei der Zugabe der Eisen(II)-Lösung braun färbt. Durch

^{349&}lt;sub>HTTP://DE.WIKIBOOKS.</sub>ORG/WIKI/../_NITRIT

Kochen mit ${\rm HARNSTOFF^{350}}$ werden anwesende Nitrit-Ionen beseitigt.

$$2 \text{ HNO}_2 + (\text{NH}_2)_2 \text{CO} \longrightarrow 2 \text{ N}_2 \uparrow + \text{CO}_2 + 3 \text{ H}_2 \text{O}$$

Salpetrige Säure und Harnstoff reagieren zu Stickstoff, Kohlendioxid und Wasser

Nitratnachweise mit Lunges Reagenzien

Nachweisreaktion	
Reaktionstyp	Redoxreaktionen, Bildung eines AZOFARB- STOFFES ³⁵¹
pН	< essigsauer
Indikation	rote Farbe

Durchführung

Bei dieser Reaktion muss die Lösung Nitritionen-frei sein. Man kann entweder eine Abtrennung (siehe #NITRATNACHWEIS MITTELS RINGPROBE³⁵²) probieren oder vor der Zugabe von Zink die Nitrationen mit AMIDOSCHWEFELSÄURE³⁵³ zu Stickstoff reduzieren.

Die Lösung wird, wenn sie sauer ist, mit Carbonationen neutralisiert und anschließend mit Essigsäure, auf einer Tüpfelplatte, angesäuert. Danach kommen einige Tropfen Sulfanilsäure und ein Kristall 1-Naphthylamin hinzu. Es darf an dieser Stelle keine Färbung auftreten, ansonsten ist die Probelösung nitrithaltig, was mit

 $^{^{350}\}mathrm{HTTP://DE.WIKIPEDIA.ORG/WIKI/HARNSTOFF}$

³⁵² HTTP://DE.WIKIBOOKS.ORG/WIKI/%23NITRATNACHWEIS% 20MITTELS%20RINGPROBE

 $^{^{353}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/AMIDOSCHWEFELS%c3%a4ure

Zugabe von Harnstoff behoben werden muss. Nun wird noch etwas Zinkstaub hinzugegeben, der Nitrationen zu Nitritionen reduziert und für eine langsame gelb-orange Färbung der Lösung und eine rote Färbung des Kristalls sorgt.

Erklärung

$$NO_3^- + Zn + 2 \ H^+ \rightarrow \ NO_2^- + Zn^{2+} + H_2O$$

Nitrat wird durch Zinkstaub und Eisessig (Ethansäure) zu Nitrit reduziert.

$$HNO_2 + (NH_2)HSO_3 \rightarrow H_2SO_4 + N_2 + H_2O$$

Salpetrige Säure wird Amidoschwefelsäure zu Schwefelsäure, Stickstoff und Wasser reduziert

Der Rest ist analog zum NITRITNACHWEIS MIT LUNGES REAGENZIEN³⁵⁴.

Störung

Der Nachweis wird durch die Anwesenheit von Nitrit-, Sulfit-, Thiosulfat- und Hexacyanoferrat(III)-Ionen gestört.

³⁵⁴ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_NITRIT%
23NITRITNACHWEIS%20MIT%20LUNGES%20REAGENZIEN

Nitrit (NO₂-)

Nitritnachweis mit Lunges Reagenzien

Nachweisreaktion	
Reaktionstyp	Bildunges eines AZOFARBSTOFFES ³⁵⁵
pН	<7 schwach sauer
Indikation	Rotfärbung

Durchführung

Die Probelösung muss bei Untersuchung auf Nitrit-Ionen keine besonderen Eigenschaften besitzen. Sie sollte nur nicht zu sauer sein, ansonsten muss die Lösung mit Carbonat-Ionen neutralisiert werden. Nun wird die Probelösung wiederum mit stark konzentrierter ESSIGSÄURE 356 angesäuert. Danach kommen jeweils 2–3 Tropfen Tropfen SULFANILSÄURE 357 (Lunge I) hinzu und ein Kristall β -NAPHTHOL 358 (Lunge II). Nimmt der Kristall an dieser Stelle eine rote Färbung an, so sind Nitrit-Ionen in der Lösung enthalten.

Erklärung

Durch Zugabe von Sulfanilsäure (1) und 1-NAPHTHYLAMIN³⁵⁹ (3) bildet sich zuerst ein DIAZONIUMSALZ³⁶⁰ (2), das mit Naphthylamin weiter zu einem AZOFARBSTOFF³⁶¹ (4) reagiert und die Lösung sehr schnell rot färbt:

 $^{^{356} \}mathrm{HTTP://DE.WIKIPEDIA.ORG/WIKI/ESSIGS\%C3\%A4URE}$

³⁵⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/SULFANILS%C3%A4URE

 $^{^{358}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/%CE%B2-NAPHTHOL

 $^{^{359}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/1-NAPHTHYLAMIN

³⁶⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/DIAZONIUM

 $^{^{361}\}mathrm{HTTP://DE.WIKIPEDIA.ORG/WIKI/AZOFARBSTOFF}$

$$\begin{array}{c} \text{CH}_3\text{COOH} \\ \text{-O}_3\text{S} & \begin{array}{c} \\ \\ \end{array} & \begin{array}{c} \\ \\ \\ \end{array} & \begin{array}{c} \\ \\ \end{array} & \begin{array}{c}$$

Abbildung 58: Reaktionsschema der Reaktion des Lunges Reagenz mit Nitrit

2.3.29 Permanganat

Nachweisreaktion	
Reaktionstyp	REDOXREAKTION ³⁶² , IODPROBE ³⁶³
pН	<<7 schwefelsauer
Indikation	Gelbfärbung, mit stärke intensiv blau bis
	schwarz

Um PERMANGANAT³⁶⁴-Ionen nachzuweisen, gibt es eine Reihe von Experimenten, wobei immer auf die Fähigkeit des MnO₄⁻, Stoffe zu oxidieren, zurückgegriffen wird.

³⁶⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/PERMANGANAT

Nachweis mit Iodid

Eine Reaktion, bei der man sehr schön erkennen kann, dass es sich um Permanganat-Ionen handelt, ist die Oxidation von IODID³⁶⁵-Ionen in einer KALIUMIODID³⁶⁶-Lösung.

Durchführung

Der Probelösung (schwach violett bis violett, schwefelsauer) wird eine gesättigte Kaliumiodidlösung zugegeben. Eine Gelbfärbung ist erstes Anzeichen für die Oxidation der Iodid-Ionen zu elementarem IOD³⁶⁷. Um jedoch sicher zu sein, wird etwas STÄRKE³⁶⁸ zu der vermeintlichen IOD-KALIUMIODID-LÖSUNG³⁶⁹ gegeben: Eine intensive blaue bis schwarze Färbung zeigt elementares Iod an.

Erklärung

$$2~MnO_4^- + 10~I^- + 16~H^+ \longrightarrow 5~I_2 + 2~Mn^{2+} + 8~H_2O$$

Permangant-Ionen, Iodid-Ionen und Wasserstoff-Ionen reagieren zu Iod, Mangan(II)-Ionen und Wasser.

$$n \; I_2 + -[C_6 H_{10} O_5]_n - \longrightarrow -[C_6 H_{10} O_5 (I_2)]_n - \downarrow$$

 $^{^{365}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/IODID

³⁶⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/KALIUMIODID

³⁶⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/IOD

 $^{^{368}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/ST%C3%A4RKE

³⁶⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/IOD-KALIUMIODID-L%c3%

Iod (gelb) und Stärke (weiß) reagieren zu Iodstärke (blau-schwarz), welches in wässriger Lösung ausfällt.

PHOSPHOR³⁷⁰ Die quantitative und qualitative Bestimmung von Phosphor erfolgt über das Phosphat (genauer Orthophosphat PO_4^{3-}). Gebundener Phosphor wird hierzu gegebenenfalls durch oxidierenden Aufschluss in Phosphat überführt.

2.3.30 Phosphat

Phosphat als Zirkoniumphosphat

Nachweisreaktion	
Reaktionstyp	Fällungsreaktion
pН	<< 7 stark salzsauer
Indikation	durchsichtiger Niederschlag

Durchführung

Phosphat (PO₄³⁻) lässt sich als Zirkoniumphosphat nachweisen. Dazu wird die stark salzsaure Analysenlösung mit möglichst frisch hergestellter Lösung von ZIRCONIUMOXIDCHLORID³⁷¹ auch Zirkonylchlorid (ZrOCl₂) oder ZIRCONIUMOXIDNITRAT³⁷² auch Zirkonylnitrat (ZrO(NO₃)₂) versetzt. Es fällt ein durchsichtigmilchiger, gallertartiger, flockiger Niederschlag aus. Bei verdünnten Lösungen kann ein Erwärmen der Probe die Reaktion beschleunigen.

 $^{^{370}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/PHOSPHOR

³⁷¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/ZIRCONIUMOXIDCHLORID

³⁷² HTTP://DE.WIKIPEDIA.ORG/WIKI/ZIRCONIUMOXIDNITRAT

Erklärung

$$4 \text{ PO}_4^{3-} + 3 \text{ ZrOCl}_2 + 12 \text{ H}^+ \xrightarrow{(\Delta)} \text{ Zr}_3(\text{PO}_4)_4 + 3 \text{ H}_2\text{O} + 6 \text{ HCl}$$

Phosphat und Zirconylchlorid reagieren in saurer Lösung zu einem milchigen Niederschlag von Zirkoniumphosphat, Wasser und Salzsäure.

Nachweis mit Molybdatlösung

Nachweisreaktion	n
Reaktionstyp	Komplexbildung
pН	<7
Indikation	gelber Niederschlag

Durchführung

Die schwermetallfreie Probelösung wird mit konzentrierter SALPETERSÄURE³⁷³ aufgekocht (Oxidation störender Reduktionsmittel), mit AMMONIUMMOLYBDATLÖSUNG³⁷⁴ versetzt und erneut kurz aufgekocht. Dabei weist eine gelbe Trübung auf Phosphate hin, die mit Molybdaten den gelben Ammoniummolybdatophosphatkomplex bilden.

Erklärung

^{373&}lt;sub>HTTP://DE.WIKIPEDIA.ORG/WIKI/SALPETERS%C3%A4URE</sub>
374_{HTTP://DE.WIKIPEDIA.ORG/WIKI/AMMONIUMMOLYBDAT}

$$\begin{split} &H_{2}PO_{4}^{-} + 3~NH_{4}^{+} + 12~MoO_{4}^{2-} + 22~H^{+} + x~H_{2}O\\ &\longrightarrow (NH_{4})_{3}[P(Mo_{3}O_{10})_{4}(H_{2}O)_{x}] + 12~H_{2}O \end{split}$$

Ammoniummolybdat und Phosphationen bilden in sauer Lösung den gelben Ammoniummolybdatophosphatkomplex

Störung

In Anwesenheit reduzierender Ionen wie Sulfid, Bromid, Iodid, Thiosulfat oder auch Zinn(II)-Kationen entsteht stattdessen MOLYBDÄNBLAU³⁷⁵.

Nachweis mit ammoniakalischer Magnesiumsalzlösung

Nachweisreaktion	
Reaktionstyp	Fällungsreaktion
рН	>7
Indikation	weißer Niederschlag

Durchführung

Die schwermetallfreie, mit AMMONIAK³⁷⁶ und AMMONIUMCHLO-RID³⁷⁷ auf pH 8–9 gepufferte Probelösung wird mit Magnesiumchloridlösung versetzt. Eine weiße Trübung von Magnesiumammoniumphosphat (MgNH₄PO₄) zeigt ebenfalls Phosphat an (säurelöslich):

³⁷⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/MOLYBD%c3%A4NBLAU

³⁷⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/AMMONIAKWASSER

³⁷⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/AMMONIUMCHLORID

Erklärung

$$Mg^{2+} + NH_4^+ + PO_4^{3-} \longrightarrow MgNH_4PO_4$$

Magnesiumssalze bilden in ammoniakalischer Lösung Magnesiumammoniumphosphat (weiß).

2.3.31 Quecksilber

QUECKSILBER³⁷⁸ **Gefahrstoffwarnung!** Quecksilber wird im Kationentrennungsgang in der SALZSÄUREGRUPPE³⁷⁹ abgetrennt und fällt gegebenfalls auch in der SCHWEFELWASSERSTOFFGRUPPE³⁸⁰ als schwarzes Sulfid aus.

Fast alle anorganischen Quecksilbersalze sind hochgiftig. Elementares Quecksilber verdampft bei Zimmertemperatur. Eingeatmete Dämpfe sind ebenfalls stark toxisch und führen zur QUECK-SILBERVERGIFTUNG³⁸¹.

Nachweis mit Ammoniak

Nachweisreaktion	
Reaktionstyp	DISPROPORTIONIERUNG ³⁸²
pН	<7 salz- und salpetersauer
Indikation	schwarzer Filter

³⁷⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/QUECKSILBER

³⁷⁹ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_SALZS%c3%A4UREGRUPPE

 $^{^{380}}$ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_

SCHWEFELWASSERSTOFFGRUPPE

 $^{^{381}\}mathrm{HTTP://de.wikipedia.org/wiki/Quecksilbervergiftung}$

Durchführung

Löst man die Analysensubstanz in HNO₃ und versetzt mit HCl liegt Quecksilber als QUECKSILBER(I)-CHLORID³⁸³ (Hg₂Cl₂) vor (passiert im Kationentrennungsgang in der SALZSÄURE-GRUPPE³⁸⁴). Versetzt man nun mit halbkonzentriertem Ammoniak, so färbt sich der Filter schwarz.

Erklärung

Es entsteht ein Gemisch von weißem Quecksilber(I)-amidochlorid und feinverteiltem, schwarzem Quecksilber, welches den Niederschlag schwarz färbt.

$$Hg_2Cl_2 + 2 NH_3 \longrightarrow Hg + Hg(NH_2)Cl + NH_4Cl$$

Quecksilber(I)-chlorid und Ammoniak reagiert zu elementarem Quecksilber (schwarz) und Quecksilber(I)-amidochlorid (weiß) und Ammoniumchlorid

Amalganprobe

Nachweisreaktion	
Reaktionstyp	REDOXREAKTION ³⁸⁵
рН	
Indikation	silbriger Belag

Durchführung

Ein Kupferblechschnipsel wird auf einem Uhrglas unter dem Abzug

³⁸³ http://de.wikipedia.org/wiki/Quecksilber(I)-chlorid 384 http://de.wikibooks.org/wiki/../_Salzs%c3%a4uregruppe

mit einem kleinen Tropfen der gelösten Analysensubstanz befeuchtet. Nach einigen Minuten sitzt auf dem Kupfer-Blech ein silbriger Belag, der beim Polieren mit einem Filterbausch silberglänzend wird (Bildung von AMALGAM³⁸⁶ nach Redoxreaktion). Wenn der Belag vollständig abgerieben werden kann, liegt kein Quecksilber sondern ausschließlich Silber vor.

Erklärung

$$Hg^{2+} + Cu \longrightarrow Hg + Cu^{2+}$$

Quecksilberkationen oxidieren Kupfer zu Kupferionen und Quecksilber.

Nachweis als Cobaltthiocyanatomercurat(II)

Nachweisreaktion	
Reaktionstyp	FÄLLUNGSREAKTION ³⁸⁷
pН	
Indikation	blaue Kristalle

Durchführung

Quecksilber(II)-Kationen können auch mit einer cobalthaltigen Thiocyanat-Lösung nachgewiesen werden. Dazu wird 1 Tropfen der Lösung auf dem Objektträger mit 1 Tropfen 14 mol/l Salpetersäure vorsichtig zur Trockne eingedampft. Der Rückstand wird mit 1 Tropfen 1 mol/l Essigsäure und danach mit einem kleinen Tropfen

 $^{^{386}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/AMALGAM

Reagenzlösung versetzt, wobei die Reagenzlösung aus 3,3 g Ammoniumthiocyanat und 3 g Cobaltnitrat welches zusammen in 5 ml Wasser gelöst wurde, besteht. Die Bildung blauer, keilförmiger Kristalle von Cobaltthiocyanatomercurat(II) zeigt Quecksilber(II)-Ionen an.

Erklärung

$$Hg^{2+} + Co^{2+} + 4 SCN^{-} \longrightarrow Co[Hg(SCN)_{4}] \downarrow$$

Quecksilber-Ionen, Cobalt-Ionen und Thiocyanat-Ionen reagieren zum blauen, keilförmigen Cobaltthiocyanatomercurat(II).

2.3.32 Silber

SILBER³⁸⁸ Silber wird im Kationentrennungsgang in der SALZSÄUREGRUPPE³⁸⁹ abgetrennt. Durch Ansäuern der Diamminsilberchlorid-Lösung (z.B. mit HNO₃) lässt es sich nachweisen, wobei farbloses Silberchlorid (AgCl) ausfällt.

^{388&}lt;sub>HTTP://DE.WIKIPEDIA.ORG/WIKI/SILBER</sub>

³⁸⁹ http://de.wikibooks.org/wiki/../_Salzs%c3%a4uregruppe

Nachweis mit Chloridlösung

Nachweisreaktion	
Reaktionstyp	FÄLLUNGSREAKTION ³⁹⁰ , Komplexbildung
pН	<7 salpetersauer
Indikation	weißer Niederschlag, der im Überschuss oder
	durch Zugabe von Ammoniak verschwindet

Der Nachweis erfolgt analog zu den HALOGENID-NACHWEISEN MIT SILBERSALZSLÖSUNG³⁹¹

 $[\]overline{^{391}_{\text{HTTP://DE.WIKIBOOKS.org/WIKI/PRAKTIKUM}}}$ 20Anorganische%20Chemie/%20Halogenide%23Nachweise% 20mit%20SilbersalzL%c3%b6sung

Abbildung 59: AgCl als weißer NS; rechts: AgCl gelöst in Ammoniakwasser

Durchführung

Der Nachweis erfolgt durch Zugabe einer wässrigen Chloridlösung zur Stoffprobe. Chlorid-Ionen bilden mit Silber(I)-Ionen einen weißen, käsigen Niederschlag, der sehr lichtempfindlich ist und sich nach einiger Zeit infolge der Zersetzung von Silber(I)-chlorid in freies Chlor und feinverteiltem, kolloidalem Silber blaugrau verfärbt. Silber(I)-chlorid löst sich jedoch im Chlorid-Überschuss unter Bildung eines Dichloroargentat-Komplexes. Auch löst sich Silber(I)-chlorid in verdünntem Ammoniakwasser unter Bildung des Amminkomplexes wieder auf.

Erklärung

$$Ag^+ + Cl^- \longrightarrow AgCl \downarrow$$

Silber(I)-Ionen und Chlorid-Ionen reagieren in wässriger Lösung zum einem weißen Niederschlag von Silber(I)-chlorid.

$$AgCl + Cl^{-} \longrightarrow [AgCl_{2}]^{-}$$

Silberchlorid reagiert bei Chlorid-Ionen-Überschuss zum löslichen Dichloroargentat(I)-komplexion.

$$AgCl + 2NH_3 \longrightarrow [Ag(NH_3)_2]^+ + Cl^-$$

Das in Wasser unlösliche Silber(I)-chlorid reagiert nach Zugabe von Ammoniakwasser zu einem farblosen Komplex, dem Diamminsilber(I)-komplex und Chlorid-Ionen.

Nachweis mit Cyanid oder Thiocyanat

Nachweisreaktion	
Reaktionstyp	Komplexbildung
pН	7 neutral
Indikation	weißer Niederschlag, im Überschuss löslich

Gefahrstoffwarnung!

Durchführung

Eine weitere Methode ist die Fällung mit Cyanid-Ionen bzw. Thiocyanat-Ionen in neutraler Lösung. Sie sind nicht säurelöslich, lösen sich jedoch im Fällungsmittel unter Bildung der komplexen Anionen.

Erklärung

$$Ag^{+} + 2 CN^{-} \longrightarrow AgCN \downarrow +CN^{-} \longrightarrow [Ag(CN)_{2}]^{-}$$

Silber(I)-Ionen und Cyanid-Ionen reagieren in wässriger Lösung zum einem weißen Niederschlag von Silber(I)-cyanid, der sich mit Cyanid-Ionen im Überschuss zum komplexen Anion Dicyanidoargentat(I) löst.

$$Ag^+ + 2 SCN^- \longrightarrow AgSCN \downarrow +SCN^- \longrightarrow [Ag(SCN)_2]^-$$

Silber(I)-Ionen und Thiocyanat-Ionen reagieren in

wässriger Lösung zum einem weißen Niederschlag von Silber(I)-thiocyanat, der sich mit Thiocyanat-Ionen im Überschuss zum komplexen Anion Dithiocyanatoargentat(I) löst.

Nachweis mit Chromat

Nachweisreaktion	
Reaktionstyp	Komplexbildung
pН	7 neutral
Indikation	rotbrauner Niederschlag

Gefahrstoffwarnung!

Durchführung

Auch ist der Nachweis als SILBERCHROMAT³⁹² charakteristisch. Das Silber(I)-Ion fällt aus neutraler Probelösung mit Chromat-Ionen als rotbraunes Silberchromat. Es ist in verdünnter Salpetersäure sowie Ammoniak löslich.

Erklärung

$$2 \text{ Ag}^+ + \text{CrO}_4^{2-} \longrightarrow \text{Ag}_2\text{CrO}_4 \downarrow$$

Silber(I)-Ionen und Chromat-Ionen reagieren in wässriger Lösung zum einem rotbraunen Niederschlag von Silber(I)-chromat.

³⁹² HTTP://DE.WIKIPEDIA.ORG/WIKI/SILBERCHROMAT

2.3.33 Silicium

SILICIUM³⁹³ Silicium kommt im anorganischen Praktikum als Silicat SiO₃²⁻ vor.

Silicat

 ${
m SILICATANIONEN}^{394} {
m SiO_4}^{4-}$ bilden säureschwerlösliche Salze. In Mineralien kommt sie sehr häufig vor.

Bleitiegelprobe / Wassertropfenprobe

Nachweisreaktion	
Reaktionstyp	VERDRÄNGUNGSREAKTION ³⁹⁵
pН	<7 schwefelsauer
Indikation	weißes SILICUMOXID ³⁹⁶

Durchführung Gefahrstoffwarnung!

^{393&}lt;sub>HTTP://DE.WIKIPEDIA.</sub>ORG/WIKI/SILICIUM

 $^{^{394} \}mathrm{HTTP://DE.WIKIPEDIA.ORG/WIKI/SILICATE}$

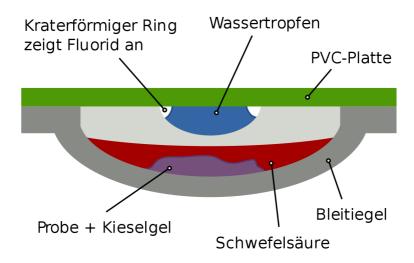


Abbildung 60: Bleitiegeltest mit Wassertropfen

Zum Nachweis der Silikatanionen wird eine kleine Portion der Probe in einen Bleitiegel gegeben, mit gepulverter CALCIUMFLUORID³⁹⁷ versetzt (Mengenverhältnis Probe : Calciumfluorid etwa 3:1) und vermischt. Anschließend überschichtet man vorsichtig mit SCHWEFELSÄURE³⁹⁸. Es bildet sich das gasförmige SILICIUMTETRAFLUORID³⁹⁹.

Man verschließt den Tiegel mit einer PVC-Platte, an deren Unterseite sich ein kleiner Wassertropfen befindet (dieser darf natürlich nicht in die Probe hängen) und lässt ihn ungefähr eine Minute stehen. Das SiF₄ reagiert mit dem Wasser wieder zu weißem Siliciumoxid, das sich kraterförmig im Tropfen absetzt.

³⁹⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/CALCIUMFLUORID

³⁹⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/SCHWEFELS%C3%A4URE

³⁹⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/SILICIUMTETRAFLUORID

Eine Alternative zur PVC-Platte mit Wassertropfen ist ein schwarzes Filterpapier, das angefeuchtet wird. Das entweichende SiF₄-Gas zersetzt sich dort zu SiO₂, was an einem weißen Fleck erkennbar ist.

Hinweis: Keinen Überschuss von CaF_2 benutzen, da sonst H_2SiF_6 gebildet wird.

Erklärung

$$2 \ F^- + H_2 SO_4 \longrightarrow SO_4^{2-} + 2 \ HF$$

Fluoridanionen reagieren mit Schwefelsäure zu Sulfatanionen und FLUORWASSERSTOFF⁴⁰⁰.

$$SiO_2 + 4 HF \rightleftharpoons SiF_4 \uparrow +2 H_2O$$

Siliciumdioxid reagiert mit Fluorwasserstoff zu Siliciumtetrafluorid und Wasser.

Die Hinreaktion läuft unten im Tiegel ab, die Rückreaktion oben am Deckel.

2.3.34 Schwefel

SCHWEFEL⁴⁰¹ Schwefel kommt im anorganischen Praktikum als Sulfat SO_4^{2-} , Thiosulfat $S_2O_3^{2-}$, Sulfit SO_3^{2-} und Sulfid S^{2-} vor.

^{400&}lt;sub>HTTP://de.wikipedia.</sub>org/wiki/Fluorwasserstoff

⁴⁰¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/SCHWEFEL

Sulfid

Nachweisreaktion	
Reaktionstyp	FÄLLUNGSREAKTION ⁴⁰²
pН	?
Indikation	schwarze Färbung

Sulfid-Ionen (S^{2-}) lassen sich mit Bleiacetatpapier 403 nachweisen, wobei eine schwarze Färbung des Papiers eintritt, hervorgerufen von Bleisulfid 404 .

Erklärung

$$S^{2-} + Pb(CH_3COO)_2 \longrightarrow PbS + 2 \ CH_3COO^-$$

Sulfid-Ionen reagieren mit Blei(II)acetat zu Blei(II)sulfid und Acetat-Ionen.

Stinkprobe: Nachweis als Schwefelwasserstoff

Nachweisreaktion	
Reaktionstyp	VERDRÄNGUNGSREAKTION ⁴⁰⁵
pН	<<7
Indikation	Gestank

Gefahrstoffwarnung! Eine weitere Möglichkeit ist das Ansäuern einer festen Probe mit einer starken Säure. Es entsteht ein

⁴⁰³ HTTP://DE.WIKIPEDIA.ORG/WIKI/BLEIACETAT

⁴⁰⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BLEISULFID

abscheulicher, charakteristischer Geruch nach faulen Eiern, hervorgerufen durch das Gas Schwefelwasserstoff 406 , welches mit der Säure aus dem Sulfid verdrängt werden konnte. Das H_2S -Gas hat die gleiche Toxizität wie Blausäure und sollte entsprechend unter dem Abzug gehandhabt werden.

Erklärung

$$S^{2-} + 2 H^+ \longrightarrow H_2S \uparrow$$

Sulfid-Ionen reagieren mit Wasserstoff-Ionen zu dem Gas Schwefelwasserstoff.

Iod-Azid-Reaktion

Nachweisreaktion	
Reaktionstyp	Redoxreaktion ⁴⁰⁷
pН	?
Indikation	Entfärbung, Gasentwicklung

Reine Lösungen von NATRIUMAZID⁴⁰⁸ (NaN₃) und IOD⁴⁰⁹ (I₂) sind längere Zeit nebeneinander beständig. Sie werden aber durch Einwirkung von S²⁻ (auch schwerlösliche Schwermetallsulfide) katalytisch zersetzt. SCN^{-410} reagiert analog.

Durchführung

Reagenz: 1 g NaN3 in 75 ml Wasser bzw. 1 g I2 in 75 ml

 $^{^{406}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/SCHWEFELWASSERSTOFF

 $^{^{408}{\}rm HTTP://DE.WIKIPEDIA.ORG/WIKI/NATRIUMAZID}$

⁴⁰⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/IOD

⁴¹⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_THIOCYANAT

ETHANOL⁴¹¹ **Gefahrstoffwarnung!** Auf der Tüpfelplatte wird etwas Ursubstanz oder eine kleine Menge Niederschlag mit 1 Tropfen Reagenzlösung versetzt. Die Entwicklung von freien *Gasbläschen* (durch Zersetzung von Azid-ionen) und gleichzeitige *Entfärbung* der Reaktionslösung (durch Reduktion von Iod) deuten auf Anwesenheit von S^{2-} .

Da die eingesetzten Substanzmengen meist relativ gering sind, ist die Gasentwicklung nicht immer gut zu erkennen.

Erklärung

$$S^{2-} + I_2 \longrightarrow S + 2 I^-$$

Sulfidanionen und Iod reagieren zu Schwefel und Iodid. (Entfärbung)

$$S + 2 N_3^- \longrightarrow S^{2-} + 3 N_2 \uparrow$$

Schwefel und Azidionen reagieren zu Sulfid und molekularem Stickstoff. (Gasentwicklung)

Störungen

⁴¹¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/ETHANOL

⁴¹² HTTP://DE.WIKIPEDIA.ORG/WIKI/QUECKSILBER(II)-NITRAT

Sulfit

Sulfit mit Permanganat

Nachweisreaktion	
Reaktionstyp	Redoxreaktion
pН	<7 essigsauer
Indikation	Entfärbung

Schon die Redoxreaktion mit Kaliumpermanganat als Oxidationsmittel kann einen Hinweis auf Sulfit (${\rm SO_3}^{2-}$) geben (wie auch auf Eisen(II)-Ionen und alle anderen Reduktionsmittel). Diese Reaktion kann man sich jedoch für einen indirekten Nachweis zu Nutze machen

Abbildung 61: links: Permanganat; mitte: Lösung entfärbt, Bariumsulfat gefällt; rechts: Reaktion zu langsam

Durchführung

Man gibt zu 10 ml einer essigsauren (keinesfalls schwefelsauer!) KALIUMPERMANGANAT⁴¹³-Lösung (schwach rosaviolett) 10 Tropfen verdünnte BARIUMCHLORID⁴¹⁴lösung. (siehe Bild: linkes Reagenzglas)

⁴¹³ HTTP://DE.WIKIPEDIA.ORG/WIKI/KALIUMPERMANGANAT

⁴¹⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BARIUMCHLORID

Die zu untersuchende Substanz wird nun dieser Reagenzlösung zügig zugegeben. Beim Verschwinden der rosavioletten Farbe und Ausfällen eines weißen Niederschlages, enthielt die Ursubstanz Sulfit-Ionen (siehe Bild: mittiges Reagenzglas).

Erklärung der Erscheinung: Kaliumpermanganat oxidiert wie oben beschrieben Sulfit-Ionen zu Sulfat-Ionen; das Permanganat selbst wird zu farblosem Mangan(II) reduziert; Folge: Entfärbung. Das entstandene SULFAT⁴¹⁵ kann nun mit der Nachweisreaktion #SULFAT ALS BARIUMSULFAT⁴¹⁶ bestätigt werden.

Achtung! Es kann passieren, dass die violette Farbe anfangs immer schwächer wird, ein weißer Niederschlag auch ausfällt, jedoch eine gewisse Farblichkeit bestehen bleibt und diese trotz Zugabe weiterer Ursubstanz nicht verschwindet (siehe Bild: rechtes Reagenzglas). Dann haben sich Permanganat-Ionen im regelmäßigen Kristallgitter des Bariumsulfats eingelagert. Diese sind dort fest angeordnet und können folglich nicht reduziert werden. Dieser Sachverhalt tritt hauptsächlich ein, wenn die Ursubstanz zu langsam zugegeben wurde oder die Konzentration der Sulfit-Ionen zu schwach ist. Der Vorgang sollte dann wiederholt werden.

Erklärung

Erklärung der Erscheinung: Kaliumpermanganat oxidiert wie oben beschrieben Sulfit-Ionen zu Sulfat-Ionen; das Permanganat selbst wird zu farblosem Mangan(II) reduziert; Folge: Entfärbung.

$$5~SO_3^{2-} + 2~MnO_4^- + 6~H_3O^+ \longrightarrow 2~Mn^{2+} + 5~SO_4^{2-} + 9~H_2O$$

⁴¹⁵ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20Anorganische%20Chemie/%20Sulfat 416 HTTP://DE.WIKIBOOKS.ORG/WIKI/%23Sulfat%20ALS% 20Bariumsulfat

Sulfit-Ionen reagieren mit Permanganat-Ionen in saurer Umgebung zu Mangan(II)-Ionen, Sulfat-Ionen und Wasser.

Störung

Um das Entstehen von Bariumcarbonat zu verhindern, muss die Reagenzlösung essigsauer sein. Bevor man den Nachweis durchführt, ist die Probelösung mit salzsaurer Bariumchloridlösung unbedingt auf Sulfat-Ionen zu prüfen. Bei Anwesenheit dieser müssen sie zuvor vollständig entfernt werden. Dies kann man wie folgt beschrieben ohne Sulfit-Verlust erreichen:

Zum Gelingen der Trennung ist zügiges Arbeiten zu verlangen. 20 mL der Probesubstanz werden mit 10 ml einer HCl/BaCl₂-Lösung (c(H⁺)=1 mol/L) filtriert. (Zusammenführen der Lösungen erst kurz vor Filtrierung!) Im Erlenmeyerkolben werden 10 mL einer 0,5-molaren Natronlauge vorgelegt. Die Sulfat-Ionen werden gefällt und bleiben als Bariumsulfat im Rückstand. Entstehendes Bariumsulfit ist säurelöslich, sodass die Sulfit-Ionen ins Filtrat gelangen. Die vorhandene Natronlauge verhindert den Verlust der Sulfit-Ionen durch eventuelle Reaktion mit den Wasserstoff-Ionen der Säure. Ein Niederschlag im Filtrat durch entstehendes Bariumhydroxid kann in einem sauberen Filter abfiltriert werden. Jetzt kann die Lösung auf Sulfit-Ionen geprüft werden.

Sulfit mit Schwefelsäure

Nachweisreaktion	
Reaktionstyp	VERDRÄNGUNGSREAKTION ⁴¹⁷
pН	<7 essigsauer
Indikation	Schwefeldioxidgas

Gefahrstoffwarnung! 🙎

Durchführung

Sulfit-Ionen (SO_3^{2-}) lassen sich auch per Verdrängungsreaktion mit (konzentrierter) SCHWEFELSÄURE⁴¹⁸ nachweisen. Es entsteht ein stechender Geruch von SCHWEFELDIOXID⁴¹⁹, der mittels feuchtem Unitest-Papier nachgewiesen werden kann:

Erklärung

$$SO_3^{2-} + H_2SO_4 \longrightarrow SO_2 + H_2O + SO_4^{2-}$$

Sulfit-Ionen reagieren mit Schwefelsäure zu Schwefeldioxid, Wasser und Sulfat-Ionen.

Sulfat

Sulfat als Bariumsulfat

Nachweisreaktion	
Reaktionstyp	Fällungsreaktion
pН	<7 leicht salzsauer
Indikation	farbloser Niederschlag

Sulfat (SO_4^{2-}) lässt sich durch Fällung als Bariumsulfat nachweisen.

⁴¹⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/SCHWEFELS%C3%A4URE

⁴¹⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/SCHWEFELDIOXID

Durchführung

Dazu wird die leicht angesäuerte Probenlösung mit einigen Tropfen BARIUMCHLORID⁴²⁰ (BaCl₂) versetzt. Ist Sulfat vorhanden, so fällt unmittelbar ein farbloser, feinkristalliner Niederschlag aus.

Erklärung

$$SO_4^{2-} + Ba^{2+} \longrightarrow BaSO_4 \downarrow$$

Störung

Dieser Nachweis kann durch Vorliegen von F⁻-Ionen gestört werden. In diesem Fall kann sich BaF₂ bilden, welches ebenfalls ausfällt. Dieses geht allerdings beim Erhitzen mit Salzsäure wieder in Lösung.

Thiosulfat

Sonnenuntergang

Nachweisreaktion	
Reaktionstyp	Fällungsreaktion, Disproportionierung (Redox)
pН	<7 leicht salzsauer
Indikation	weißer Niederschlag, dann über gelb, orange,
	braun zu schwarz

THIOSULFAT⁴²¹-Anionen ($S_2O_3^{2-}$) werden durch Zugabe von Silbernitratlösung im Überschuss bei pH um 7 nachgewiesen ("Sonnenuntergang"): Es entsteht ein weißer Niederschlag, der sich

⁴²⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BARIUMCHLORID

⁴²¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/THIOSULFAT

langsam von gelb, orange über braun bis hin zum schwarzen Silbersulfid verfärbt (Reaktion in 2 Schritten – Ausfällung mit anschließender Redoxreaktion in Form einer Disproportionierung).

Erklärung

$$S_2O_3^{2-} + 2 Ag^+ \longrightarrow Ag_2S_2O_3 \downarrow$$

1. Schritt: Thiosulfat wird durch Silberionen schnell ausgefällt, es entsteht sofort weißes Silberthiosulfat.

$$Ag_2S_2O_3 + H_2O \longrightarrow Ag_2S + H_2SO_4$$

2. Schritt: Das Thiosulfat (Oxidationszahl Schwefel: +II) zerfällt langsam in Verbindungen mit günstigerer Oxidationszahl: Sulfide (-II) und SulfatelSulfat (+VI).

Thiocyanat

Stierblutprobe

Nachweisreaktion	
Reaktionstyp	Komplexbildung ⁴²²
pН	
Indikation	tiefrote Färbung

Abbildung 62: Eisensalzlösung (links) und Eisen-III-thiocyanat

THIOCYANAT⁴²³-, oder auch Rhodanid-Ionen werden qualitativ mit der "Stierblutprobe" nachgewiesen. Diese Reaktion wird auch zum Nachweis von EISEN⁴²⁴ mit Thiocyanatlösung eingesetzt.

^{423&}lt;sub>HTTP://DE.WIKIPEDIA.ORG/WIKI/THIOCYANAT</sub>

⁴²⁴ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20EISEN

Durchführung

Dabei wird der zu untersuchenden Lösung eine gesättigte EISEN(III)-CHLORID⁴²⁵-Lösung zugegeben. Erscheint eine intensiv "stierblutrote" Färbung, so waren Thiocyanat-Ionen vorhanden.

Erklärung

$$SCN^- + Fe^{3+} + 5 \; H_2O \longrightarrow [Fe(SCN)(H_2O)_5]^{2+}_{aq}$$

Reaktion: Thiocyanat-Ionen und Eisen(III)-Ionen reagieren im wässrigen Milieu zum Komplex Pentaaquathiocyanatoferrat(III), welcher blutrot erscheint.

Nachweis mit Kupfersulfat

Nachweisreaktion	1
Reaktionstyp	REDOXREAKTION ⁴²⁶ , KOMPLEXBILDUNG ⁴²⁷
pН	
Indikation	zunächst grün, im Überschuss schwarz, mit Sul-
	fit weiß

 $^{^{425}\}text{HTTP://DE.WIKIPEDIA.ORG/WIKI/EISEN(III)-CHLORID}$

Abbildung 63: zunächst grün, im Überschuss schwarz, mit Sulfit weiß

Ein weiterer spezifischer Nachweis kann mit Kupfersulfatlösung erfolgen.

Durchführung

Zur in Wasser gelösten Ursubstanz wird frisch bereitete Kupfer(II)-sulfat zugegeben. Bei Reaktion von Thiocyanat-Ionen mit Kupfer(II)-Ionen beobachtet man zunächst eine grüne Färbung der Lösung (siehe Bild linkes Reagenzglas). Beim Vorhandensein

von Thiocyanat-Ionen oder Kupfer(II)-Ionen im Überschuss bildet sich ein schwarzer Niederschlag. (siehe Bild mittiges Reagenzglas) Wird der Niederschlag mit SULFIT⁴²⁸-Ionen behandelt, so löst sich der schwarze Niederschlag und es bildet sich ein weißer NS. (Redoxreaktion, siehe Bild rechtes Reagenzglas)

Erklärung

 $\begin{array}{lll} 2~SCN^- + Cu^{2+} \longrightarrow Cu(SCN)_2 \downarrow & Reaktion: & Thiocyanat\text{-}Ionen \\ reagieren & mit & Kupfer(II)\text{-}Ionen & zu & schwarzem, & wasserunlöslichem \\ Kupfer(II)\text{-}thiocyanat. & \end{array}$

$$2 \text{ Cu}(\text{SCN})_2 + \text{SO}_3^{2-} + \text{H}_2\text{O} \longrightarrow 2 \text{ CuSCN} \downarrow + 2 \text{ SCN}^- + \text{SO}_4^{2-} + 2 \text{ H}^+$$
 Reaktion: Schwarzes Kupfer(II)-thiocyanat reagiert mit Sulfit-Ionen im wässrigen Milieu zu weißem Kupfer(I)-thiocyanat, Thiocyanat-Ionen, Sulfat-Ionen und Wasserstoff-Ionen.

2.3.35 Vanadium

VANADIUM⁴²⁹ Eine Vorprobe liefert die PHOSPHORSALZPER-LE⁴³⁰, bei der Vanadium in der Reduktionsflamme charakteristisch heiß bräunlich und kalt grün erscheint. Die Oxidationsflamme ist heiß rotbraun und kalt: orange.

Nachweis als Sulfid

Mit Ammoniumsulfid⁴³¹ erfolgt aus neutraler oder basischer Lösung keine Fällung. Es bilden sich stattdessen lösliche braun bis

⁴²⁸HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM%
20ANORGANISCHE%20CHEMIE/%20SULFIT
429
HTTP://DE.WIKIPEDIA.ORG/WIKI/VANADIUM
430
HTTP://DE.WIKIBOOKS.ORG/WIKI/../_BORAX-%20UND%
20PHOSPHORSALZPERLE
431
HTTP://DE.WIKIPEDIA.ORG/WIKI/AMMONIUMSULFID

rotviolette Thiovanadate. Beim Sättigen der Lösung mit SCHWE-FELWASSERSTOFF 432 beobachtet man eine Rotviolettfärbung durch $[VS_4]^{3-}$. Durch Versetzen mit Säure fällt braunes V_2S_5 aus.

$$4 H_2O + VO_4^{3-} + 4 S^{2-} \longrightarrow VS_4^{3-} + 8 OH^-$$

Nachweis mit Wasserstoffperoxid

Nachweisreaktion		
Reaktionstyp	OXIDATIONSREAKTION ⁴³³	
pН	<7 sauer	
Indikation	rötlich-braun bis gelb	

In saurer Lösung entsteht mit WASSERSTOFFPEROXID⁴³⁴ zunächst das rötlich-braune $[V(O_2)]^{3+}$, aus dem sich bei weiterem Peroxidzusatz gelb gefärbte Peroxovanadinsäure $[VO_2(O_2)_2]^{3-}$ bzw. $H_3[VO_2(O_2)_2]$ bildet.

$$VO_4^{3-} + H_2O_2 + 6 \; H^+ \longrightarrow [V(O_2)]^{3+} + 4 \; H_2O$$

$$VO_4^{3-} + H_2O_2 \longrightarrow [HVO_2(O_2)_2]^{2-} + OH^- + H_2O$$

Störung

TITAN(IV)⁴³⁵ gibt eine analoge Reaktion und muss daher vorher abgetrennt werden.

⁴³² HTTP://DE.WIKIPEDIA.ORG/WIKI/SCHWEFELWASSERSTOFF

⁴³⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/WASSERSTOFFPEROXID

 $^{^{435}}$ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_TITAN

DICHROMAT⁴³⁶ und Vanadat lassen sich nebeneinander nachweisen, da sich Dichromat mit organischen Lösungsmitteln ausschütteln lässt, während Vanadat in der wässrigen Phase verbleibt. Aufpassen: bei zu niedrigem pH zerfällt CrO₅.

2.3.36 Zink

Nachweis als Zinksulfid

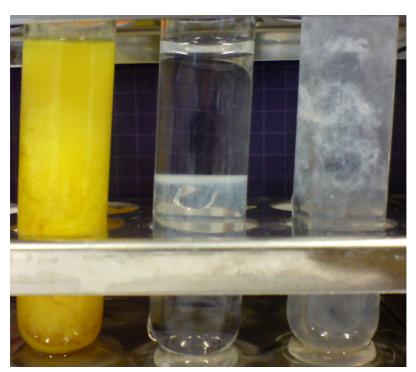


Abbildung 64: weißes ZnS in gelbem $(NH_4)_2S$, $Zn(OH)_2$ (weißlich), Zinkcarbonate (weißlich)

^{436&}lt;sub>HTTP://DE.WIKIBOOKS.ORG/WIKI/../_CHROM</sub>

Nachweisreaktion		
Reaktionstyp	Fällungsreaktion	
pH	7 neutral	
Indikation	weißer voluminöser Niederschlag	

Zink-Kationen können mit einer Alkalisulfidlösung oder einer konz. Schwefelwasserstofflösung nachgewiesen werden. Eigentlich handelt es sich um eine Sulfidfällung im Kationentrennungsgang, die Reaktion ist aber spezifisch für Zink-Ionen, da Zinksulfid das einzige schwerlösliche Sulfid ist, das eine weiße Farbe hat. Er wird jedoch durch alle anderen dunkleren Sulfidniederschläge verdeckt, so dass diese vorher abgetrennt werden müssen.

Durchführung

Die Fällung von Zinksulfid kann etwas kniffliger werden. Es sollte im neutralen pH-Bereich gefällt werden, da Zinksulfid schon in verdünnten Mineralsäuren löslich ist. Eine Fällung mit Ammoniumacetat gepufferter Essigsäure⁴³⁷ und Ammoniumsulfidlösung⁴³⁸ sei hier empfohlen. Falls man in der Ammoniumsulfidgruppe⁴³⁹ auf Schwierigkeiten stößt, kann man auch versuchen aus dem Kaliumhydroxidauszug⁴⁴⁰ zu arbeiten.

Erklärung

$$Zn^{2+} + S^{2-} \longrightarrow ZnS \downarrow$$

⁴³⁷ http://de.wikipedia.org/wiki/Essigs%c3%a4ure
438 http://de.wikipedia.org/wiki/Ammoniumsulfid
439 http://de.wikibooks.org/wiki/Praktikum%
20 Anorganische%20 Chemie/%20 Ammoniumsulfidgruppe
440 http://de.wikibooks.org/wiki/Praktikum%
20 Anorganische%20 Chemie/%20 Kaliumhydroxidauszug

Zink-Kationen reagieren mit Sulfid-Ionen zum weißen, schwerlöslichen Zinksulfid

Nachweis mit gelben Blutlaugensalz

Abbildung 65: links: Reaktion mit rotem Blutlaugensalz; rechts: Reaktion mit gelbem Blutlaugensalz

Nachweisreaktion		
Reaktionstyp	Fällungsreaktion	
рН	7 neutral	
Indikation	schmutzig weißer Niederschlag	

Durchführung

Einige Tropfen einer salzsauren, mit Acetat gepufferten Lösung werden mit wenigen Tropfen verdünnter KALIUMHEXACYANIDOFERRAT(II)⁴⁴¹-Lösung versetzt. Es entsteht ein schmutzig weißer Niederschlag, der sich in der Wärme bildet und sich in konzentrierter Salzsäure sowie verdünnter Natronlauge wieder löst. Der Niederschlag ist auf einer dunklen Tüpfelplatte am besten sichtbar.

Erklärung

$$3 \operatorname{Zn}^{2+} + 2 \operatorname{K}^{+} + 2 \operatorname{[Fe(CN)_{6}]^{4-}} \longrightarrow \operatorname{K}_{2} \operatorname{Zn}_{3} \operatorname{[Fe(CN)_{6}]_{2}} \downarrow$$

 $\label{eq:Zink} Zink(II) \ \ reagiert \ \ mit \ \ Kaliumhexacyanoferrat(II) \ \ zu \\ Kaliumzinkhexacyanidoferrat(II)$

Nachweis als Rinmans Grün

Nachweisreaktion	
Reaktionstyp	Bildung eines Gemisches von ZnO und CoO
pН	egal
Indikation	grüne Rinne

⁴⁴¹ http://de.wikipedia.org/wiki/Kaliumhexacyanidoferrat(II)

Gefahrstoffwarnung! Dieser Nachweis kann als Vorprobe aus der Ursubstanz oder aus dem Trennungsgang durchgeführt werden.

Durchführung

Man gibt Analysensubstanz und wenige Tropfen einer stark verdünnte COBALTNITRAT⁴⁴²-Lösung auf eine Magnesiarinne und glüht diese kurz in der oxidierenden Flamme des Bunsenbrenners. Arbeitet man mit einer Lösung aus dem Kationentrennungsgang, so stippt man die Rinne zuerst in die Cobaltnitratlösung und pipettiert dann etwas Analysenlösung darauf. Ist Zink in der Lösung so bildet sich RINMANS GRÜN⁴⁴³. Ist die Rinne schwarz gefärbt so war zu viel Cobaltnitrat im Gemisch.

Erklärung

$$Zn^{2+} + 2 Co(NO_3)_2 \longrightarrow ZnCo_2O_4 + 4NO_2$$

Zink(II) reagiert mit Cobaltnitrat zu einer grünen Zink-Cobalt-Spinellverbindung

2.3.37 Zinn

Zinn fällt im Kationentrennungsgang in der ARSENGRUPPE⁴⁴⁴ aus.

^{442&}lt;sub>HTTP://DE.WIKIPEDIA.ORG/WIKI/COBALTNITRAT</sub>

⁴⁴³ HTTP://DE.WIKIPEDIA.ORG/WIKI/RINMANS%20GR%c3%BCN

⁴⁴⁴ http://de.wikibooks.org/wiki/Praktikum% 20Anorganische%20Chemie/%20Schwefelwasserstoffgruppe% 23Arsen-Zinn-Gruppe

Nachweis mittels Leuchtprobe

Nachweisreaktion	
Reaktionstyp	Redoxreaktion
pН	<7 salzsauer
Indikation	blaue Lumineszenz

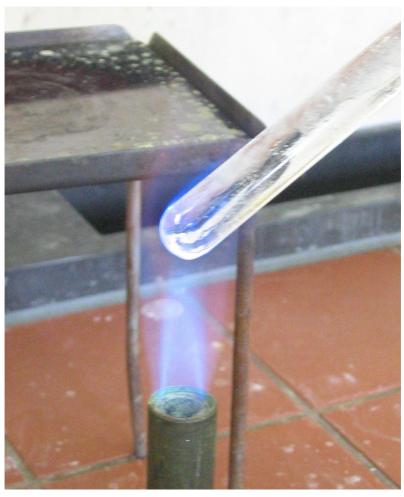


Abbildung 66: blaue Lumineszenz am Reagenzglasrand

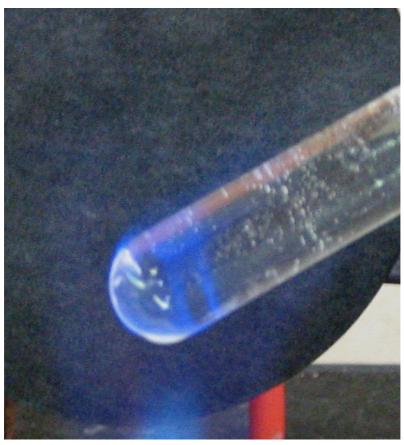


Abbildung 67: Detailaufnahme

Die Leuchtprobe ist ein empfindlicher Nachweis für Zinn(II)-Ionen. Sie kann als Vorprobe oder als Nachweis im Kationentrennungsgang erfolgen.

Durchführung

Die zu prüfende feste Substanz wird mit etwas festem Zink und 20-prozentiger Salzsäure vermischt. Nachdem man 15 Minuten gewartet hat, füllt man ein Reagenzglas mit kaltem Wasser oder Eis. Jetzt stippt man das Reagenzglas mit der Außenseite in die Mischung aus Zink, Salzsäure und Analysensubstanz und hält es in eine entleuchtete Bunsenbrennerflamme. Sieht man am Rand des Reagenzglases eine blaue Lumineszenz, so war Zinn in der Probe.

Die blaue Lumineszenz kann man leicht mit der blauen Bunsenbrennerflamme verwechseln, deshalb sollte man vorher eine Vergleichsprobe mit einer zinnhaltigen Substanz und eine Blindprobe ohne Zinn gemacht haben. Auf der anderen Seite kann das Leuchten auch schwer zu erkennen sein. **Tipp:** Statt Wasser, eine dunkel gefärbte Kaliumpermanganatlösung⁴⁴⁵ in das Reagenzglas füllen, damit man einen besseren Kontrast hat. Ein abgedunkelter Abzug hilft auch die Lumineszenz besser zu erkennen.

Erklärung

Hält man das Reagenzglas in die Bunsenbrennerflamme, so entsteht die blaue Lumineszenz, zu deren Ursprung es verschiedene Meinungen gibt. Es entsteht entweder durch das Gas STANNAN⁴⁴⁶ oder Zinnchloride in verschiedenen Oxidationsstufen.⁴⁴⁷

Bei der Zugabe von Salzsäure zu Zink entsteht naszierender Wasserstoff, ein sehr gutes Reduktionsmittel.

$$Zn + 2 HCl \longrightarrow 2 H_{naszierend} + ZnCl_2$$

⁴⁴⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/KALIUMPERMANGANAT

⁴⁴⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/STANNAN

⁴⁴⁷Zum Nachweis von Zinn (II) DOI:10.1007/BF00533516⁴⁴⁸

Zink und Salzsäure reagiert zu naszierendem Wasserstoff und Zinkchlorid.

Das Gas Stannan⁴⁴⁹ sorgt für das Leuchten

$$\operatorname{Sn}^{2+} + 4 \operatorname{H}_{\operatorname{naszierend}} + 2 \operatorname{e}^{-} \longrightarrow \operatorname{SnH}_{4}$$

Zinn(II)-Ionen reagieren mit naszierendem Wasserstoff zu Stannan.

Das Zink reduziert eventuell vorhandene schwerlösliche Sn(IV)-Verbindungen in Sn(II)-Verbindungen:

$$Zn + Sn^{4+} \longrightarrow Zn^{2+} + Sn^{2+}$$

Es entsteht durch ZINN(II)-CHLORID⁴⁵⁰.

$$Sn^{2+} + 2 Cl^{-} \longrightarrow SnCl_{2}$$

Es entsteht direkt ZINN(IV)-CHLORID⁴⁵¹.

$$Sn^{4+} + 4 Cl^{-} \longrightarrow SnCl_{4}$$

Störung

Niob bildet ähnlich fluoreszierende Verbindungen und führt zu

⁴⁴⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/STANNAN

⁴⁵⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/ZINN(II)-CHLORID

⁴⁵¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/ZINN(IV)-CHLORID

falsch positiven Nachweisen. Größere Mengen ARSEN⁴⁵² stören ebenfalls, da AsH₃ auch mit blauer Flamme brennt.

Nachweis als Molybdänblau

Nachweisreaktion		
Reaktionstyp	Redoxreaktion	
pН	7	
Indikation	blaue Ringe	

Durchführung

Zur Probe auf Zinn wird die Probelösung mit Zinkperlen versetzt um Zinn(IV) zu Zinn(II) zu reduzieren. Auf ein mit 5-prozentiger AMMONIUMMOLYBDAT⁴⁵³-Lösung getränktes Filterpapier wird die Lösung pipettiert. Es entstehen blaue Ringe (Molybdänblau, CAS 66771-43-5), die beim Trocknen des Filterpapiers deutlicher zu sehen sind und Zinn anzeigen.

Erklärung

$$2~\text{MoO}_4^{2-} + \text{Sn}^{2+} + 2~\text{H}_2\text{O} \longrightarrow 2~\text{MoO}_2(\text{OH}) + \text{SnO}_2 + 2~\text{OH}^-$$

Molbdatlösung reagiert mit Zinn(II)-Kationen zu Molybdänblau und Zinnoxid

⁴⁵² HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20ARSEN

⁴⁵³ HTTP://DE.WIKIPEDIA.ORG/WIKI/AMMONIUMMOLYBDAT

2.4 Kationentrennungsgang

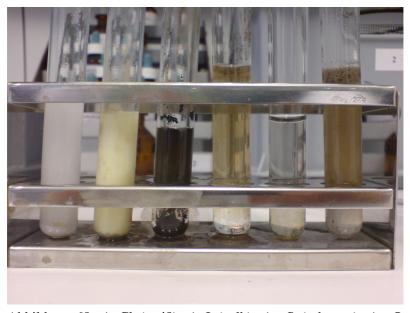


Abbildung 68: AgCl (weiß), AgI (gelb), Ag₂S (schwarz), Ag₂O (bräunlich), $[Ag(NH_3)_2]^+$ (durchsichtig), Ag₂CO₃ (bräunlich)

2.4.1 Salzsäuregruppe

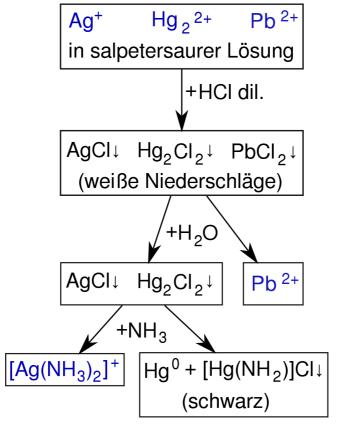


Abbildung 69: Schema der Salzsäuregruppe

Fällung und Filtration der Salzsäuregruppe

Bei einem pH-Wert von 0 bis 3,5 fallen in HCl-haltiger Lösung die weißen/farblosen Chloride von Ag(I), Pb(II) und Hg(I/II) aus:

- QUECKSILBER(I)-CHLORID⁴⁵⁴ Hg₂Cl₂
- QUECKSILBER(II)-CHLORID⁴⁵⁵ HgCl₂
- BLEI(II)-CHLORID⁴⁵⁶ PbCl₂ löslich in heißem Wasser
- SILBERCHLORID⁴⁵⁷ AgCl als Silberdiamminkomplex löslich in konz. Ammoniakwasser. Ist die Konzentration der Salzsäure zu hoch, kann das AgCl komplexiert werden und geht dann als [AgCl₂]⁻ in Lösung. Bei Verdacht auf Silber sollte die Lösung u.U. etwas mit Wasser verdünnt werden. AgCl fällt dann aus.

Abtrennung des Blei(II)-chlorides

Der Niederschlag wird unter dem Abzug mehrmals mit 1 ml Wasser und 1 Tropfen ca. 2-molarer Salzsäure aufgekocht und heiß durch einen durch kochendes Wasser oder im Trockenschrank und mit Filterpapier auf rund 100 Grad Celsius vorgewärmten Glastrichter filtriert. Das Filtrat lässt man abkühlen, um hieraus BLEI⁴⁵⁸ durch Zugabe von einem Tropfen ca. 0,5-molarer Kaliumchromatoder Kaliumdichromatlösung⁴⁵⁹ ALS GELBES BLEI(II)-CHROMAT PBCRO₄ NACHZUWEISEN⁴⁶⁰.

```
454
HTTP://DE.WIKIPEDIA.ORG/WIKI/QUECKSILBER (I) - CHLORID
455
HTTP://DE.WIKIPEDIA.ORG/WIKI/QUECKSILBER (II) - CHLORID
456
HTTP://DE.WIKIPEDIA.ORG/WIKI/BLEI (II) - CHLORID
457
HTTP://DE.WIKIPEDIA.ORG/WIKI/SILBERCHLORID
458
HTTP://DE.WIKIBOOKS.ORG/WIKI/../_BLEI
459
HTTP://DE.WIKIPEDIA.ORG/WIKI/KALIUMDICHROMAT
460
HTTP://DE.WIKIBOOKS.ORG/WIKI/../_BLEI%23NACHWEIS%
20ALS%20BLEICHROMAT
```

Alternativ kann Natriumiodidlösung zugegeben, mit der Blei(II)-Ionen ALS GELBES BLEI(II)-IODID PBI₂ AUSFALLEN⁴⁶¹. Alternativ kann man auch eine Nadel auskristallisierendes Blei(II)-chlorid nehmen und diese auf ein Kaliumiodid-Papier legen. Da sich das schwerlöslichere gelbe Bleiiodid bildet, ist nach einigen Minuten um die Nadel herum ein gelber Hof von Blei(II)-Iodid zu sehen.

Trennung des Quecksilber(I)-chlorides (Hg₂Cl₂) vom Silberchlorid

Ein Teil des Filterrückstandes wird im Reagenzglas mit 1 ml konz. Ammoniaklösung behandelt. Das Auftreten einer Schwarzfärbung (durch Bildung u.a. von QUECKSILBER⁴⁶²) beweist die Gegenwart von Quecksilbersalzen. Der schwarze Niederschlag wird abfiltriert und das Filtrat mit einem Tropfen Salzsäure angesäuert. Es entsteht unter Umständen ein weißer Niederschlag von Silberchlorid, der sich bei Zugabe von verdünntem Ammoniakwasser unter Bildung des Diammin-Silber(I)-komplexes [Ag(NH₃)₂]⁺ löst.

$$Hg_2Cl_2 + NH_3 \longrightarrow Hg^0 \downarrow + [Hg(NH_2)]Cl \downarrow + HCl$$

$$AgCl + 2\;NH_3 \longrightarrow [Ag(NH_3)_2]Cl$$

nachzuweisende Kationen in der Salzsäuregruppe

Blei⁴⁶³ - Silber⁴⁶⁴ - Quecksilber⁴⁶⁵

⁴⁶¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_BLEI%23NACHWEIS% 20ALS%20BLEIIODID

⁴⁶² HTTP://DE.WIKIBOOKS.ORG/WIKI/../_QUECKSILBER

2.4.2 Schwefelwasserstoffgruppe

Die Gruppenfällung mit Schwefelwasserstoff

Bei einem pH-Wert von 0 bis 5 fallen in H₂S-haltiger Lösung die Sulfide von As(III,V), Sb(III,V), Sn(II,IV), Hg(II), Cu(II), Pb(II), Bi(III,V) und Cd aus. Die zu analysierende Lösung muss zu Beginn der Fällung schwach salzsauer bis essigsauer sein. Ist die Analyse in konzentrierten oxidierenden Säuren gelöst worden, muss dieses Oxidationsmittel komplett durch Sieden vertrieben werden, da sich sonst während der Zugabe von H₂S eventuell S₈ bilden könnte. Bei gleichen Mengen der Stoffe in der Analysesubstanz fallen die Sulfide dann in folgender Reihenfolge aus:

- 1. As_2S_3 (gelb)
- 2. SnS₂ (hellgelb)
- 3. Sb₂S₅ (orange)
- 4. HgS (schwarz)
- 5. PbS (schwarz)
- 6. CuS (schwarz)
- 7. SnS (schwarz bis braun)
- 8. Bi₂S₃ (schwarz bis braun)
- 9. zuletzt CdS (eigelb)

Gefahrstoffwarnung! ♣ Da H₂S ein sehr giftiges Gas ist, wird stattdessen oft mit einem Gemisch von Na₂S mit NH₄Cl/HCl Puffer (alles aq) gearbeitet. Eine weitere Möglichkeit ist 5 ml Ammoniumsulfid in 80 ml verdünnte Salzsäure einzurühren. Nach einer Stunde sinkt die ~0.15 molare Lösung auf 0.1 molar ab.

$$(NH_4)_2S + 2 HCl \longrightarrow H_2S + 2 NH_4Cl$$

AMMONIUMSUFILD 466 und Salzsäure 467 reagieren zu Schwefelwasserstoff 468 und Ammonium-Chlorid 469

Achtung: Auch wenn hier mit wässrigen Lösungen gearbeitet wird, bilden sich ständig giftige Schwefelwasserstoffdämpfe. Das H_2S -Wasser nur unter dem Abzug und am besten in einem abgedeckelten Gefäß aufbewahren.

Zunächst werden aus relativ saurer Lösung (niedriger pH) die schwerlöslichen Sulfide gefällt. Dann wird die Lösung verdünnt und bei max. pH 3,5 die weniger schwerlöslichen, aber noch im Sauren fällbaren Sulfide gefällt. Der pH Wert ist ständig zu kontrollieren, besonders wenn der pH-Wert nicht nur durch weitere Zugabe der Na₂S-Lösung (hier Na₂S-Lösung=H₂S Wasser) erhöht wird.

(Hinweise: Logarithmische Skala! In der Praxis wird häufig zusätzlich $\mathrm{NH_3}^{470}$ dazu gegeben. Dies wird jedoch als unsaubereres Arbeiten betrachtet! Wird der pH-Wert nicht eingehalten fällt unter Umständen CdS nicht, bzw. die Sulfide der nachfolgenden Gruppe $(NH_4)_2$ S-Gruppe fallen zu früh aus. Hier ist das LÖSLICHKEIT-SPRODUKT⁴⁷¹ zu beachten!)

Man verfährt mithin z.B. folgendermaßen: Das Filtrat der SALZSÄUREGRUPPE⁴⁷² wird bis fast zur Trockene eingedampft

⁴⁶⁶ http://de.wikipedia.org/wiki/Ammoniumsufild
467 http://de.wikipedia.org/wiki/Salzs%c3%a4ure
468 http://de.wikipedia.org/wiki/Schwefelwasserstoff
469 http://de.wikipedia.org/wiki/Ammoniumchlorid
470 http://de.wikipedia.org/wiki/Ammoniak
471 http://de.wikipedia.org/wiki/L%c3%b6slichkeitsprodukt
472 http://de.wikibooks.org/wiki/Praktikum%
20 Anorganische% 20 Chemie/% 20 Salzs%c3%a4 uregruppe

(Befreiung von Salpetersäure), mit etwa 0,5 mL halbkonz. Salzsäure unter Erwärmen gelöst und in ein Normal-Reagenzglas überführt. Durch eine Kapillarpipette wird etwa 3 min Schwefelwasserstoff eingeleitet (oder es werden unter dem Abzug 1-2 mL Ammoniumsulfid-Lösung zugegeben, wobei der - ggf. gepufferte - pH-Wert unter 4-5 bleiben muss!).

Nach einer Minute wird die Lösung auf etwa das Fünffache verdünnt - also max. 10 mL. Danach wird erneut der pH-Wert kontrolliert, gegebenenfalls wieder angesäuert und filtriert. Der Filterrückstand wird - immer noch unter dem Abzug - mit Schwefelwasserstoff-Lösung (ca. 1 mol/L) gewaschen. In einen halben mL des mit dem Waschwasser vereinigten Filtrates wird erneut Schwefelwasserstoff-Wasser gegeben. Wenn dabei nichts mehr ausfällt (pH stets unter 7 halten!), war die Fällung quantitativ - ansonsten ist das Einleiten und Filtrieren zu wiederholen.

(Hinweise: Zur Kontrolle kann ein kleiner Teil des Filtrats auch mit Cd-Acetat versetzt werden. Fällt sofort das typische gelbe Kadmiumsulfid CdS aus, so ist der S²- Gehalt der Analyselösung hoch genug und man kann annehmen das alle Sulfide die in der Analyse enthalten sind bereits gefallen sind. Bei Verwendung der Na₂S-Lösung entsteht mitunter auch rotes HgS. As(V), Sb(V), Bi(V) und Sn(IV) oxidieren S²- zu elementarem Schwefel. Dieser schwimmt häufig oben auf der Lösung auf oder bleibt sogar nach dem Filtrieren kolloid in Lösung).

Trennung der H_2S Gruppe in 2 Untergruppen

Zunächst muss die Arsen- von der Kupfergruppe getrennt werden:

Der Niederschlag (Nd.) der Schwefelwasserstoff-Gruppe wird im Reagenzglas mit 2 mL gelber Ammoniumpolysulfid-Lösung bei et-

wa 50-60°C ausgelaugt (auslaugen = Feststoffgemisch zwecks teilweiser Auflösung desselben unter Umrühren in Flüssigkeit erwärmen), danach filtriert. Der Filterrückstand ist mit 1-2 mL Wasser auszuwaschen: Im Filtrat findet sich die As-Sn-Gruppe (lösliche Thiosalze: ${\rm AsS_4}^{3-}~{\rm SbS_4}^{3-}~{\rm SnS_3}^{2-}$), im Filterrückstand die Cu-Gruppe.

z.B.
$$\label{eq:signal_signal} As_2S_3 + 2~S_2^{2-} + S^{2-} \longrightarrow 2~AsS_4^{3-}$$

Sodann wird Schwefel unter Sieden und Rühren im Ammoniumsulfidlösung gelöst. Es bildet sich gelbe **Ammoniumpolysulfidlösung**. Die Sulfide von As, Sb und Sn (Arsen-Gruppe) bilden also mit dieser Ammoniumpolysulfidlösung (NH₄)₂S_x- bzw. mit LiOH/KNO₃- Lösung lösliche Thiometallat- bzw. Oxothiometallat-Komplexe. Die Sulfide von Hg, Pb, Bi, Cu und Cd (Kupfer-Gruppe) lösen sich nicht und bleiben zurück. Die Sulfidfällung ist mit ausreichend H₂S Wasser zu waschen, solange bis kein Cl⁻ mehr im Waschwasser ist. (Nachweis: AgNO₃ Lösung zum Waschwasser tropfen). Danach den Niederschlag (Nd.) mit (NH₄)₂S_x digerieren.

z.B.

$$As_2S_3 + 2\ NO_3^- + 6\ OH^- \longrightarrow AsO_2S_2^{3-} + AsO_3S^{3-} + 2\ NO_2^- + 3\ H_2O$$

Kupfergruppe, Abtrennung von Quecksilberionen

Der Nd. der Cu-Gruppe wird mit 1-2 mL warmer halbkonzentrierter HNO₃ (ca. 4-7 mol/L Salpetersäure) erwärmt. Es lösen sich alle Sulfide bis auf HgS.

(Hinweise: Proben auf QUECKSILBER⁴⁷³ durchführen, z.B. "Amalgamprobe" mit einem Stück Kupferblech, Zur Sicherheit HgS in

⁴⁷³ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20Anorganische%20Chemie/%20Ouecksilber

wenig konz. HCL/ konz HNO_3 , lösen HNO_3 abrauchen und weitere Hg Proben durchführen. Reduktion mit $SnCl_2$ usw.)

Abtrennung von Blei(II)-Ionen

Das salzsaure Filtrat vom HgS-Rückstand wird unter Zusatz von 0,5 mL konz. Schwefelsäure im Porzellanschälchen eingedampft, bis dass weiße Nebel entstehen (Schwefeltrioxid). Nach dem Abkühlen wird vorsichtig mit verdünnter Schwefelsäure verdünnt: In Gegenwart von BLEI⁴⁷⁴ bildet sich ein weißer Niederschlag (PbSO₄ Blei-II-Sulfat). Dieser wird abfiltriert, in Ammoniumtartratlösung gelöst (Komplexbildungsreaktion) und wie in der HCl-Gruppe nachgewiesen mit Iodid-, Natriumsulfid-, Kaliumdichromat-Lösung.

⁴⁷⁴ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20BLEI

Bismut sowie Kupfer neben Cadmium nachweisen

Abbildung 70: CuI (weiß), Cu(NO₃)₂ + (NH₄)₂S (keine Reaktion), CuS (schwarz), Cu(OH)₂ (blau), [Na₂Cu(OH)₄] (blau), [Cu(NH₃)₄]²⁺ (blau), CuCO₃ (blau)

Die Lösung ist nun ammoniakalisch zu machen. KUPFER⁴⁷⁵ ist sofort an der blauen Farbe der Lösung zu erkennen:

$$Cu^{2+} + 4 NH_3 \longrightarrow [Cu(NH_3)_4^{2+}$$

Kupfer(II)-Kationen reagieren mit Ammoniak zu dem blauem Tetraaminkupfer(II)-Komplex.

(Achtung die Färbung kann auch sehr schwach sein! NH₃ im Überschuss zugeben, bei Anwesenheit von Bi fällt weißes Bi(OH)₃. Dieses löst sich in HCl. Zum Nachweis Niederschlag neutralisieren und mit alkalischer STANNAT(II) LSG. 476 versetzten (Elementares BISMUT⁴⁷⁷ fällt schwarz aus) oder mit Natriumiodidlösung (zunächst fällt schwarzes Bismut-III-iodid aus, das sich dann im Iodidüberschuss als orangefarbiger Tetraiodobismutat-Komplex löst).

Gefahrstoffwarnung! Anch Zugabe von KCN⁴⁷⁸ zur Hauptlösung der Kupfergruppe muss sich die Lösung entfärben (ein zusätzlicher Nachweis für Cu).

$$2 \left[Cu(NH_3)_4 \right]^{2+} + 10 CN^- \longrightarrow 2 \left[Cu(CN)_4 \right]^{3-} + (CN)_2 \uparrow$$

Der blaue Kupfertetraminkomplex reagiert mit Cyanid zu einem Kupfer(I)tetracyanido-Komplex und dem giftigen Gas DICYAN⁴⁷⁹

⁴⁷⁵ http://de.wikibooks.org/wiki/Praktikum% 20Anorganische%20Chemie/%20Kupfer 476 http://de.wikipedia.org/wiki/Stannat 477 http://de.wikibooks.org/wiki/Praktikum% 20Anorganische%20Chemie/%20Bismut 478 http://de.wikipedia.org/wiki/Kaliumcyanid 479 http://de.wikipedia.org/wiki/Dicyan

Achtung: Ab hier die Lösung nicht mehr ansäuern, sonst entsteht hochgiftige BLAUSÄURE⁴⁸⁰ (HCN-Gas)! Bei der Entsorgung beachten – mit konz. Wasserstoffperoxid entgiften!).

Wenn man bis zur vollständigen Entfärbung KCN zugegeben hat, kann man dann mit H₂S-Wasser CADMIUM⁴⁸¹ als gelbes Cadmiumsulfid CdS ausfällen, ohne dass schwarzes Kupfer-II-sulfid stört (Entsteht dennoch ein dunkler Nd., so hat die Trennung innerhalb der Gruppe versagt. Falls Unsicherheiten aufgetreten sind, ist die gesamte Trennung der Kupfer-Gruppe zu wiederholen).

Arsen-Zinn-Gruppe

Im **vereinfachten** Kationentrenngang in Abwesenheit giftigen Arsens verfährt man folgendermaßen:

Trennung Sb von Sn

Die As-Sn-Gruppe (Filtrat der Cu-Gruppe, s.o.) wird unter dem Abzug mit 7M HCl kurz aufgekocht und durch mehrmaliges Filtrieren durch den gleichen Filter weitgehend von kolloidalem Schwefel befreit.

Durchführung der Nachweisreaktionen für Zinn und Antimon

Das Filtrat wird durch unedle Metalle (Mg-, Al-, Zn-, Fe-Pulver) reduziert, so dass schwarzes, elementares SB⁴⁸² ausfällt (zum Einzelnachweis im Filter waschen, in Königswasser lösen, abrauchen

⁴⁸⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BLAUS%c3%A4URE

⁴⁸¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_CADMIUM

⁴⁸² HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20ANORGANISCHE%20CHEMIE/%20ANTIMON

und mit Ammoniumsulfid-Lösung als orangefarbenen Antimon-V-sulfid-Nd. nachweisen) und das Sn(IV) zu Sn(II) reduziert wird (zum Einzelnachweis Sn per Leuchtprobe s.u.)

Abtrennung von Arsen und Nachweisreaktionen für Zinn und Antimon

Gefahrstoffwarnung! Im um ARSEN⁴⁸³ erweiterten Trennungsgang verfährt man hier anders:

Die Lösung der Thiometallat- bzw. Oxothiometallat-Komplexe von As, Sb, Sn ist zunächst mit HCl anzusäuern (Achtung: Schwefelwasserstoff entweicht!): Die Sulfide von As, Sb und Sn fallen erneut aus (die Farben erneut beobachten!). Die Sulfide sind nun abzutrennen und mit wenig konz. HCl zu erwärmen: As₂S_S bleibt als gelbes Sulfid zurück, Sb und Sn gehen in Lösung. Mit NH₃/H₂O₂ lässt sich das Arsensulfid in Lösung bringen und danach getrennt nachweisen, z.B. durch die MARSHSCHE PROBE⁴⁸⁴.

Die Lösung ist danach einzuengen um ${\bf Sb}$ und ${\bf Sn}$ anschließend nebeneinander nachzuweisen (Nagelprobe: Einen Eisennagel in die Lösung legen, an ihm bildet sich elementares ANTIMON⁴⁸⁵ (Sb). Diese kann erneut im Sauren gelöst und mit H_2S Wasser als orangefarbenes Sulfid gefällt werden. SN^{486} verbleibt in der Lösung. Es kann sehr gut mit der Leuchtprobe nachgewiesen werden.

⁴⁸³ http://de.wikibooks.org/wiki/Praktikum% 20Anorganische%20Chemie/%20Arsen

⁴⁸⁴ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM%

²⁰Anorganische%20Chemie/%20Marshsche%20Probe

 $^{^{485} \}mathrm{HTTP://DE.WIKIBOOKS.org/WIKI/PRAKTIKUM\%}$

²⁰Anorganische%20Chemie/%20Antimon

⁴⁸⁶ http://de.wikibooks.org/wiki/Praktikum% 20Anorganische%20Chemie/%20Zinn

nachzuweisende Kationen in der Schwefelwasserstoffgruppe ${\rm ARSEN}^{487} - {\rm ANTIMON}^{488} - {\rm ZINN}^{489} - {\rm QUECKSILBER}^{490} - {\rm BLEI}^{491} - {\rm KUPFER}^{492} - {\rm BISMUT}^{493} - {\rm CADMIUM}^{494}$

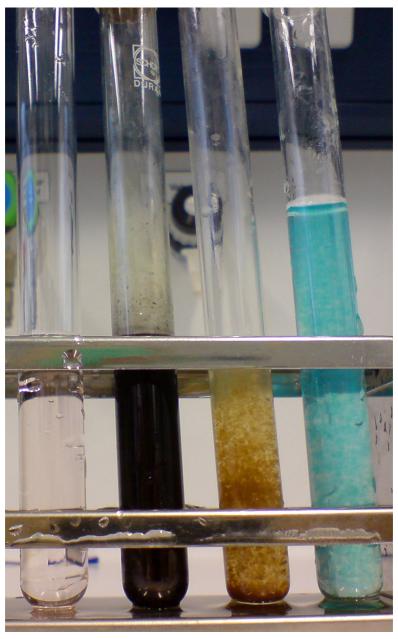


Abbildung 71: CoNO₃ (schwach pink), CoS (schwarz), Co(OH)₂ (rotbraun), Cobaltcarbonate (blau)

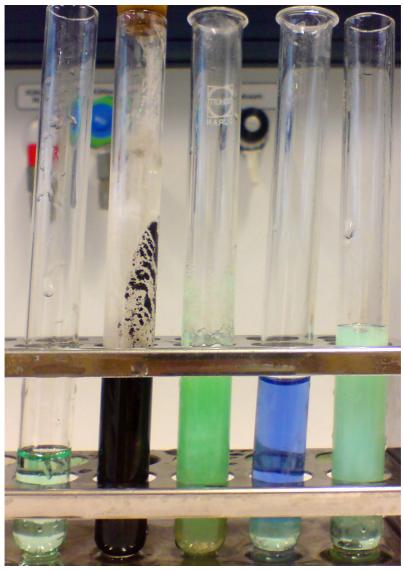


Abbildung 72: $NiNO_3$ (grün), NiS (schwarz), $Ni(OH)_2$ (grün), $[Ni(NH_3)_6]^{2+}$ (blau), Nickel (grün)

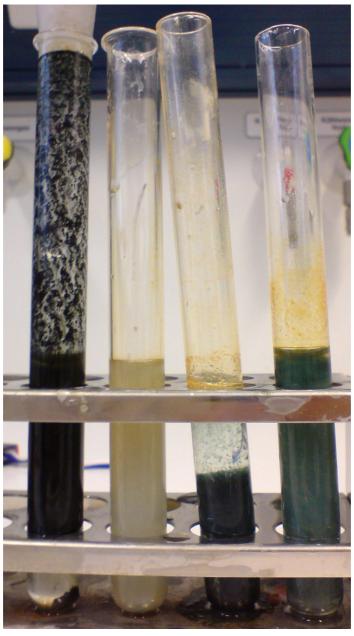


Abbildung 73: FeS (schwarz), $Fe(OH)_2$ (weiß), $Fe(OH)_3$ (braun), $FeCO_3$ (eigentlich weiß)

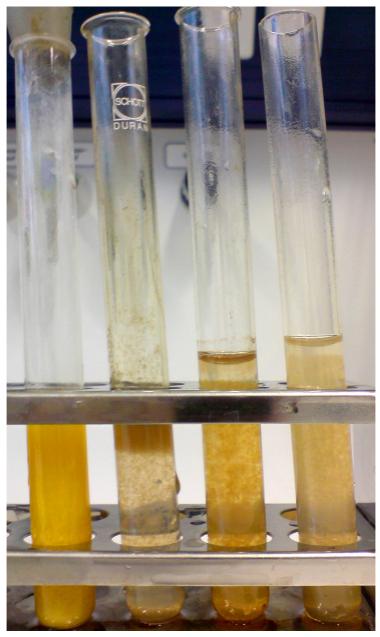


Abbildung 74: MnS (orangegelb), MnO(OH) (bräunlich), MnCO₃ (bräunlich, natürliches Mineral rosa)

Abbildung 75: links: Al(OH)₃ (weiß), rechts: Al₂(CO₃)₃ (weiß)

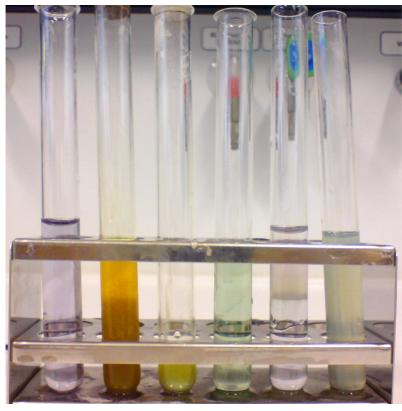


Abbildung 76: $Cr(NO_3)_3$ (bläulich), $Cr(OH)_3$ in gelbem $(NH_4)_2S$, $Cr(OH)_3$ (graugrün), $[Cr(OH)_6]^{3-}$ (grünlich), $[Cr(NH_3)_6]^{3+}$ (gelblich), $Cr(NO_3)_3/Cr(OH)_3$ (graugrün)

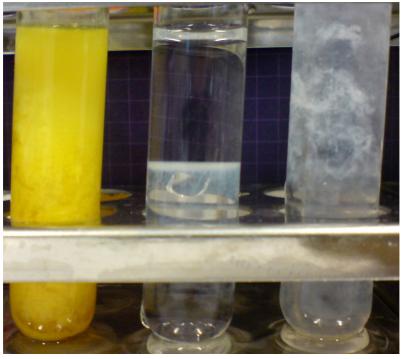


Abbildung 77: weißes ZnS in gelbem $(NH_4)_2S$, $Zn(OH)_2$ (weißlich), Zinkcarbonate (weißlich)

2.4.3 Ammoniumsulfidgruppe

Die Gruppenfällung mit Ammoniumsulfidlösung

Bei einem pH-Wert von 8 bis 9 fallen in $(NH_4)_2S$ -haltiger Lösung die Sulfide von Co(II), Ni(II), Mn(II), Zn(II), Eisen(II,III) – letzteres als FeS (Redoxreaktion mit Sulfidanionen als Reduktionsmittel für

Eisen-III-Kationen). Als unlösliche Hydroxide fallen Al(OH)3 und Cr(OH)3 aus.

$$Ni^{2+} + S^{2-} \longrightarrow NiS \downarrow$$

NICKEL⁴⁹⁵ fällt als schwarzes NICKEL(II)-SULFID⁴⁹⁶.

$$Co^{2+} + S^{2-} \longrightarrow CoS \downarrow$$

COBALT⁴⁹⁷ fällt als schwarzes COBALT(II)-SULFID⁴⁹⁸.

$$Mn^{2+} + S^{2-} \longrightarrow MnS \downarrow$$

MANGAN⁴⁹⁹ fällt als rosafarbenes MANGAN(II)-SULFID⁵⁰⁰.

$$Zn^{2+} + S^{2-} \longrightarrow ZnS$$

ZINK⁵⁰¹ fällt als weißes ZINK(II)-SULFID⁵⁰².

$$2 \text{ Fe}^{3+} + 3 \text{ S}^{2-} \longrightarrow 2 \text{ FeS} \downarrow + \text{S} \downarrow$$

⁴⁹⁵ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_NICKEL

⁴⁹⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/NICKEL(II)-SULFID

⁴⁹⁷ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_COBALT

⁴⁹⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/COBALT(II)-SULFID

 $^{^{499}}$ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_MANGAN

⁵⁰⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/MANGAN(II)-SULFID

⁵⁰¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_ZINK

 $^{^{502}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/ZINK(II)-SULFID

EISEN(III)⁵⁰³ wird zu hellbraunem EISEN(II)-SULFID⁵⁰⁴ reduziert. Dabei entsteht elementarer Schwefel.

Bei der Ausfällung der (NH₄)₂S -Gruppe bilden sich neben diesen Sulfidniederschlägen auch Ausfällungen von Aluminiumund Chromhydroxid. Die Ursache zeigt sich beim Vergleich der Löslichkeitsprodukte zu Ammoniumsulfidgruppe.

Das Filtrat der Schwefelwasserstoffgruppe wird dazu in einer Porzellanschale oder einem kleinen Becherglas unter Zusatz von 1 Spatelspitze festem Ammoniumchlorid auf ca. 1 mL eingeengt. Bis zur deutlich alkalischen Reaktion wird konz. Ammoniak zugeträufelt, mit 1-2 mL Ammoniumsulfidlösung versetzt und der Nd. einige min. erwärmt, dann abfiltriert. 1 Tropfen Filtrat wird mit 1 Tropfen Blei-II-acetat versetzt (oder auf Bleiacetatpapier gegeben). Schwarzes PbS zeigt Vollständigkeit der Fällung an. Der Nd. wird sofort mit stark verdünnter Ammoniumsulfidlösung gewaschen.

(Hinweis: Bei orangeroter oder violetter Farbe zuvor mit Ethanol kochen! - Filtrat prüfen: Bei gelbbrauner Trübung durch NiS-Kolloid mit Ammoniumacetat und Filterpapierschnipseln kochen und neu filtrieren. Das wird u.U. erforderlich, denn NiS und CoS bilden Kolloide; Kolloide sind große Molekülverbände, wobei die Moleküle nur durch intermolekulare Kräfte zusammengehalten werden (Dipol, Wasserstoffbrücken). Durch ihre molekulare Struktur (hydrophile und lipophile Bereiche der Seifenmoleküle) oder durch elektrische Ladungen werden diese Molekülaggregate in Lösung gehalten (kolloidale Lösung; Thyndall-Effekt). Das Erwärmen der Lösung mit Filterpapierschnitzeln führt zu einer Vergrößerung der Teilchen, die man filtrieren kann. Durch Zugabe von Ammoniumacetat kann die

 503 HTTP://DE.WIKIBOOKS.ORG/WIKI/../_EISEN

 $^{^{504}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/EISEN(II)-SULFID

elektrische Ladung aufgehoben werden und die Aggregate fallen aus).

Alkalischer Sturz

Abtrennung und Nachweis von Cobalt und Nickel

Der Sulfidniederschlag wird sofort mit 1-2 mL verdünnter Salzsäure behandelt, um anschließend den ungelösten Rest (CoS, NiS) abzufiltrieren und in je einigen mL verdünnter Essigsäure und konz. Wasserstoffperoxidlösung zu lösen. Danach ist aus der essigsaueren Co-Ni-Lösung Fe-Reste mit Ammoniak auszufällen, abzufiltrieren und vom Fe-Rest befreites Filtrat für die einzelnen Nachweisreaktionen von Co und Ni zu nutzen.

Abtrennung von Eisen(III)-hydroxid und Braunstein (Mangandioxid)

Von Ni & Co befreites Filtrat der Sulfide aufkochen, konz. Salpetersäure zugeben und eindampfen, neutralisierte Rest-Tröpfchen in alkalisches Bad geben (aus Ätznatron und konz. Wasserstoffperoxid) und erhitzen, abfiltrierten Niederschlag mit warmem Wasser waschen, in HCl lösen; in einem Teil der Lösung Fe nachweisen, den anderen Teil 2 mal mit 1 mL konz Salpetersäure abrauchen und mit konz. Salpetersäure und Blei(IV)-oxid aufkochen, filtrieren (Nachweisreaktion: Violettfärbung zeigt Permanganat an).

$$Mn^{2+} + 2 \ OH^- + H_2O_2 \longrightarrow MnO(OH)_2 \downarrow + H_2O$$

 $MANGAN(II)^{505}$ + Natronlauge + Wasserstoffperoxid ergibt Braunstein⁵⁰⁶.

⁵⁰⁵ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_MANGAN 506 HTTP://DE.WIKIPEDIA.ORG/WIKI/BRAUNSTEIN

$$Fe^{3+} + 3 OH^{-} \longrightarrow Fe(OH)_{3} \downarrow$$

EISEN(III)⁵⁰⁷ fällt als braunes EISENHYDROXID⁵⁰⁸

Abtrennung von Aluminiumhydroxid

Stark alkalische Lösung durch Kochen von Wasserstoffperoxid befreien (Nachweisreaktion: bei Gelbfärbung Chromat!), mit HCl neutralisieren, einige Tropfen Ammoniak und 2-3 Spatelspitze Ammoniumchlorid zugeben, aufkochen, den weißen Aluminiumhydroxid-Niederschlag abfiltrieren und ALUMINIUMEINZELNACHWEISE⁵⁰⁹ durchführen.

$$Al^{3+} + 4 OH^{-} \longrightarrow [Al(OH)_{4}]^{-}$$

Aluminium fällt als Aluminiumhydroxid, dass im Überschuss als farbloser Komplex gelöst wird.

Abtrennung von Chrom(at) zum Nachweis von Zink

Filtrat vom Aluminiumhydroxid-Nd. bei Gelbfärbg. mit Bariumchlorid-Lösung behandeln (nach Pufferung mit HAc/NaAc!) und Bariumchromat abfiltrieren, gelben Filterrückstand in verdünnter Schwefelsäure lösen, mit Wasserstoffperoxid und Ether schütteln (Nachweisreaktion ähnlich wie beim alkalischen Bad: zusätzl. CHROMNACHWEIS⁵¹⁰, kann bei eindeutiger Vorprobe und Gelbfärbung u.U. entfallen (**Vorsicht:** Etherdämpfe können sich in Flammennähe explosionsartig entzünden!). In schwach essigsaures

⁵⁰⁷ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_EISEN

⁵⁰⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/EISENHYDROXID

⁵⁰⁹ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_ALUMINIUM

⁵¹⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_CHROM

Filtrat vom Bariumchromat Schwefelwasserstoff-Gas einleiten, weißen ZnS-Niederschlag abfiltrieren, in HCl lösen, mit NaOH kochen und - falls nötig - störende Niederschläge abfiltrieren (im Filtrat ist Zn als Hydroxidozinkat-Komplex farblos gelöst), mit HAc/NaAc puffern und erneut ZnS zum ZINKEINZELNACHWEIS⁵¹¹ ausfällen.

$$2 \text{ Cr}^{3+} + 10 \text{ OH}^- + 3 \text{ H}_2\text{O}_2 \longrightarrow 2 \text{ Cr}\text{O}_4^{2-} + 8 \text{ H}_2\text{O}$$

Chrom(III) wird zu einer gelben CHROMATLÖSUNG⁵¹² oxidiert.

$$Zn^{2+} + 4 OH^{-} \longrightarrow [Zn(OH)_4]^{2-}$$

Zink geht als farbloser Hydroxidozinkat-Komplex in Lösung.

nachzuweisende Kationen in der Ammoniumsulfidgruppe NICKEL⁵¹³ - COBALT⁵¹⁴ - MANGAN⁵¹⁵ - ZINK⁵¹⁶ - EISEN⁵¹⁷

2.4.4 Ammoniumcarbonatgruppe

Die Gruppenfällung mit Ammoniumcarbonatlösung

Filtrat der Ammoniumsulfidgruppe mit HCl ansäuern und Schwefelwasserstoff verkochen; aus nicht allzu verdünnter Lösung (gegf. Volumen durch Sieden auf einige mL einengen) im ammoniakalischen mit einem Überschuss an konzentrierter Ammoniumcarbonatlösung

⁵¹¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_ZINK

⁵¹² HTTP://DE.WIKIPEDIA.ORG/WIKI/CHROMATE

ausfällen. Bei einem pH-Wert von 8 bis 9 fallen] in (NH₄)₂CO₃-haltiger Lösung die Carbonate von Ca(II), Sr(II) und Ba(II) mit Carbonat-Anionen. Filtrat auf Vollständigkeit der Fällung prüfen und den Niederschlag mit Ammoniumcarbonatlösung waschen.

Abtrennung des Bariums

Carbonatniederschläge in 1-2 mL 2molarer Essigsäure (HAc) lösen und das Kohlendioxid durch Kochen vertreiben, mit 2-3 Spatelspitzen Salmiaksalz abpuffern und tropfenweise orange Dichromatlösung Cr₂O₇²⁻ zugeben, bis das gelbe Bariumchromat ausfällt und überstehende Lösung durch Chromate gelb gefärbt ist (Aufheben!). Niederschlag abfiltrieren, mit H₂O waschen und in 2-3 Tropfen verdünnter HCl lösen. Mit etwas verdünnter oder 1 Tropfen konzentrierter Schwefelsäure das Bariumsulfat fällen und im Filter waschen (zur Prüfung der FLAMMENFÄRBUNG⁵¹⁸):

$$SO_4^{2\text{-}} + BaCl_2 \longrightarrow BaSO_4 \downarrow + 2Cl^{\text{-}}$$

Untersuchung auf Strontium und Calcium

Das Filtrat der Bariumchromatfällung wird mit 1 mL konzentrierter Ammoniumcarbonatlösung gekocht (ca. 1 min), filtriert und der Niederschlag wird chromatfrei gewaschen und danach in 5m HCl gelöst. Das Kohlendioxid wird verkocht und die Lösung geviertelt (1:2:1):

a) ein 1. Teil wird mit Ammoniumsulfatlösung versetzt, filtriert und das Filtrat mit Ammoniumoxalatlösung auf noch vorhandene, überschüssige Calciumionen untersucht. Der

⁵¹⁸ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20Anorganische%20Chemie/%20Flammenf%c3%a4RBUNG

Calciumoxalatniederschlag sollte eine ziegelrote Flammenfärbung ergeben.

- b) der 2. und 3. Teil werden vereinigt, mit Ammoniumoxalatlösung versetzt, um Calciumionen auszufällen (wie oben), und das Filtrat mit gesättigter Gipslösung versetzen, um das noch schwerer lösliche Strontiumsulfat auszufällen. Der Strontiumsulfatniederschlag wird mit Wasser gewaschen und auf Flammenfärbung untersucht: tiefrote Flamme (ggf. mit je einem Salzkorn Calcium- und Strontiumsalz vergleichen).
- c) der 4. Teil wird ebenfalls mit gesättigter Gipslösung versetzt, um das noch schwerer lösliche Strontiumsulfat auszufällen. Der Strontiumsulfatniederschlag wird mit Wasser gewaschen und auf FLAMMENFÄRBUNG⁵¹⁹ untersucht: tiefrote Flamme (ggf. mit dem Niederschlag aus b) und je einem Salzkorn Calcium- und Strontiumsalz vergleichen).

Ion FLAMN	1EN Rærlistion nG ⁵	mit	mit	mit
	mit	CO_3^{2-522}	$C_2O_4^{2-523}$	3 CrO ₄ $^{2-524}$
	OH^{-521}			
BERYLLIU kein e	$Be(OH)_2$	$BeCO_3$?	BeCrO ₄
	fällt aus	ist		ist
	1	löslich		löslich
Magnesiukvainte	$Mg(OH)_2$	$MgCO_3$	MgC_2O_4	$MgCrO_4$
	fällt aus	fällt aus	ist lös-	ist lös-
			lich	lich

⁵¹⁹ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM%

²⁰Anorganische%20Chemie/%20Flammenf%c3%a4rbung

⁵²⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_FLAMMENF%C3%A4RBUNG

⁵²¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/HYDROXIDE

⁵²² HTTP://DE.WIKIPEDIA.ORG/WIKI/CARBONATE

⁵²³ HTTP://DE.WIKIPEDIA.ORG/WIKI/OXALATE

⁵²⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/CHROMATE

⁵²⁵ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_BERYLLIUM

⁵²⁶ HTTP://DE.WIKIBOOKS.ORG/WIKI/../_MAGNESIUM

CALCIUM ⁵ 27egelrot	$Ca(OH)_2$	CaCO ₃	CaC_2O_4	CaCrO ₄
	fällt aus	fällt aus	fällt aus	fällt aus
STRONTIU m tensiv	$Sr(OH)_2$	$SrCO_3$	SrC_2O_4	SrCrO ₄
rot	fällt aus	fällt aus	ist	fällt aus
			löslich	
BARIUM ⁵²⁹ gelb-	$Ba(OH)_2$	BaCO ₃	BaC_2O_4	BaCrO ₄
grün	ist lös-	fällt aus	ist	fällt aus
	lich		löslich	

Die Kationen der **Löslichen Gruppe** bleibt im Anschluss an die Salzsäure-, Schwefelwasserstoff-, Ammoniumsulfid- und Ammoniumcarbonatgruppe im Filtrat übrig. Hierzu gehören nämlich diejenigen Elemente, die mit keinem der Trennmittel schwerlösliche Niederschläge bilden: NH₄⁺⁵³⁰, MG²⁺⁵³¹, K⁺⁵³², NA⁺⁵³³, LI⁺⁵³⁴. Diese können mittels spezifischer Nachweisreaktionen und FLAM-MENFÄRBUNG⁵³⁵ identifiziert werden.

nachzuweisende Kationen in der löslichen Gruppe Kalium⁵³⁶ - Magnesium⁵³⁷ - Ammonium⁵³⁸ - Natrium⁵³⁹

527 http://de.wikibooks.org/wiki/../_Calcium
528 http://de.wikibooks.org/wiki/../_Strontium
529 http://de.wikibooks.org/wiki/../_Barium
530 http://de.wikibooks.org/wiki/Praktikum%
20 Anorganische% 20 Chemie/% 20 Ammonium
531 http://de.wikibooks.org/wiki/Praktikum%
20 Anorganische% 20 Chemie/% 20 Magnesium
532 http://de.wikibooks.org/wiki/Praktikum%
20 Anorganische% 20 Chemie/% 20 Kalium
533 http://de.wikibooks.org/wiki/Praktikum%
20 Anorganische% 20 Chemie/% 20 Kalium
534 http://de.wikibooks.org/wiki/Praktikum%
20 Anorganische% 20 Chemie/% 20 Natrium
535 http://de.wikibooks.org/wiki/Praktikum%
20 Anorganische% 20 Chemie/% 20 Lithium
535 http://de.wikibooks.org/wiki/../_Flammenf% C3% A4 RB ung

2.4.5 Kaliumhydroxidauszug

Da der alkalische Sturz nach der Ammoniumsulfidfällung⁵⁴⁰ Anfängern häufig Schwierigkeiten bereitet, kann für schwer nachweisbare Stoffe ein Kaliumhydroxidauszug aus der Ursubstanz hergestellt werden. Hierfür wird die Ursubstanz mit 3 Kaliumhydroxid-Plätzchen und 5 ml Wasser versetzt. Es fallen Kupfer, Bismut, Nickel, Cobalt, Eisen und Mangan unter Bildung schwerlöslicher Hydroxide aus. In Lösung verbleiben. AN-TIMON⁵⁴¹, ZINN⁵⁴², ALUMINIUM⁵⁴³, ZINK⁵⁴⁴ und CHROM⁵⁴⁵, die nun mit spezifischen Nachweisreaktionen nachgewiesen werden können.

⁵⁴⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20Anorganische%20Chemie/%20Ammoniumsulfidgruppe

⁵⁴¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20Anorganische%20Chemie/%20Antimon

⁵⁴² HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20Anorganische%20Chemie/%20Zinn

⁵⁴³ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20Anorganische%20Chemie/%20Aluminium

⁵⁴⁴ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20Anorganische%20Chemie/%20Zink

⁵⁴⁵ HTTP://DE.WIKIBOOKS.ORG/WIKI/PRAKTIKUM% 20Anorganische \$20Chemie / \$20Chrom

3 Quantitative Analyse

3.1 Titrimetrie

TITRATION¹

¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/TITRATION

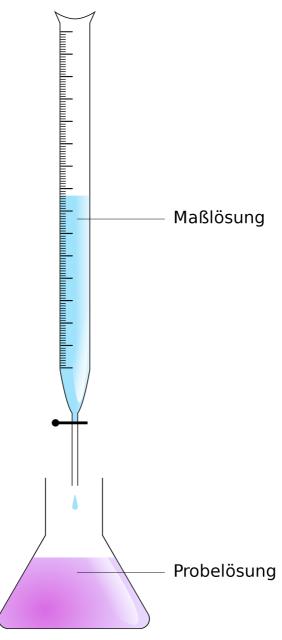


Abbildung 78: Versuchsaufbau für eine Titration mit Bürette und Erlenmeyerkolben

Die Titrimetrie (Maßanalyse, Volumetrie) ist eine vielfach gebrauchte Methode für die Gehaltsbestimmung vor allem in wässrigen Lösungen. Das Prinzip ist sehr einfach: Man gibt mit einer Bürette Maßlösung (Titrator, Titrant, Normallösung) bekannter Konzentration zu einer Probelösung (Titrand) bis der Äquivalenzpunkt erreicht ist. Durch stöchiometrische Rechnungen kann dann die Konzentration des gesuchten Stoffes in der Probelösung bestimmt werden. Als Indikator dient entweder eine chemische Verbindung, die unter den Versuchsbedingungen am Äquivalenzpunkt die Farbe ändert, eine Meßelektrode, die über ein Meßgerät den Äquivalenzpunkt anzeigt (z.B. pH-Wert, Potentiometrie) oder die Verfärbung des Niederschlages (z.B. Chloridbestimmung nach Mohr).

Die Titration läßt sich in mehrere Gebiete einteilen:

- SÄURE-BASE-TITRATIONEN² (Acidometrie, Alkalimetrie)
- FÄLLUNGSREAKTION³
- Komplexometrie⁴
- REDOX-TITRATIONEN⁵
- Spezielle Methoden wie die Zwei-Phasen-Titration nach Epton oder die Polyelektrolyttitration zur Bestimmung des kationischen Bedarfs

Als Methoden kommen die *direkte Titration*, bei der direkt in Probelösung titriert wird oder eine Maßlösung mit Probelösung titriert wird (inverse Titration) und die *indirekte Titration*, bei der entweder

²http://de.wikibooks.org/wiki/../_S%c3% a4ure-Base-Titrationen

³HTTP://DE.WIKIBOOKS.ORG/WIKI/../_F%C3% A4LLUNGSREAKTION

⁴HTTP://DE.WIKIBOOKS.ORG/WIKI/../_KOMPLEXOMETRIE

⁵HTTP://DE.WIKIBOOKS.ORG/WIKI/../_REDOX-TITRATIONEN

eine Umsetzung der Probelösung mit einer Reagenslösung bekannter Menge und Konzentration stattfindet und die Reagenslösung dann titriert wird (Rücktitration) oder der zu bestimmende Stoff nach Reageszugabe aus dem Reagens einen Stoff freisetzt der dann titriert wird (Substitutionstitration), in Frage.

3.1.1 Meßgeräte

Bei der Titration werden vor allem die Volumenmeßgeräte Bürette, Pipette, Messzylinder und Messkolben verwendet.

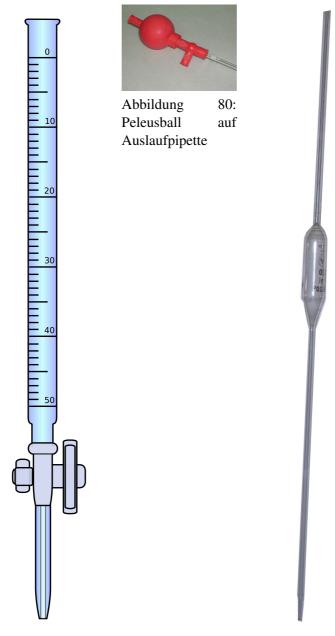


Abbildung Bürette 79:

Abbildung Vollpipette 81:

Abbildung 82: Maßkolben/Messkolben

3.1.2 Ablesen

Wasser (A) bildet durch hydrophile Wechselwirkungen mit dem Glas eine nach unten gewölbte Oberfläche (konkaver MENISKUS⁶). Bei Quecksilber (B) ist es übrigens anders herum: es kommt zu einer nach oben gewölbten Flüssigkeitsoberlfäche. Bei Wasser wird stets der untere Meniskus abgelesen, bei Stoffen, die einen konvexen Meniskus ausbilden, der obere. Meist wird der abzulesende Strich in der Skalierung durch die Lichtbrechung mit dem Wasser vergrößert und kann so bequem abgelesen werden.

⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/MENISKUS

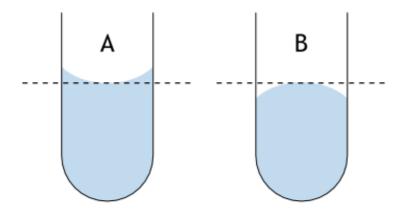


Abbildung 83

Desweiteren sollte darauf geachtet werden auf Augenhöhe abzulesen da ansonsten durch den Parallaxenfehler⁷ erhebliche Messfehler auftreten können.

^{7&}lt;sub>HTTP://de.wikipedia.org/wiki/Parallaxenfehler</sub>

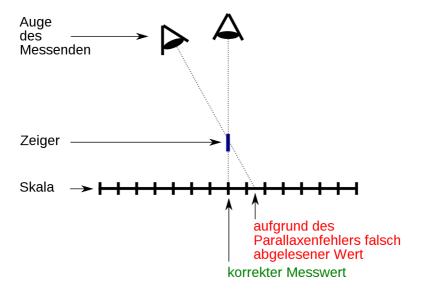


Abbildung 84

3.1.3 Konzentrationsangaben

Ein wichtiger Begriff in der Maßanalyse, wie auch in der gesamten quantitativen Analyse überhaupt, ist die Konzentration. Konzentrationsangaben werden in der Maßanalyse in Form der Stoffmengenkonzentration (c, Molarität, Volummolarität). Diese gibt an, wieviel Mol eines Stoffes in einem Liter Lösungsmittel gelöst sind ([c] = 1 mol/l). Anstelle der Einheit "mol/l" wird sehr gerne die nicht-gesetzliche Einheit "Molar" (Einheitenzeichen: M) verwendet. Streng genommen darf sie aufgrund der gesetzlichen Bestimmungen nicht verwendet werden; "M" kann heute nur als Abkürzung von "mol/l" verstanden werden.

Besonders in der Maßanalyse spielt auch noch die Normalität eine Rolle, die angibt wieviele entsprechende Teilchen (z.B. Protonen) übertragen werden.

3.1.4 Verdünnen

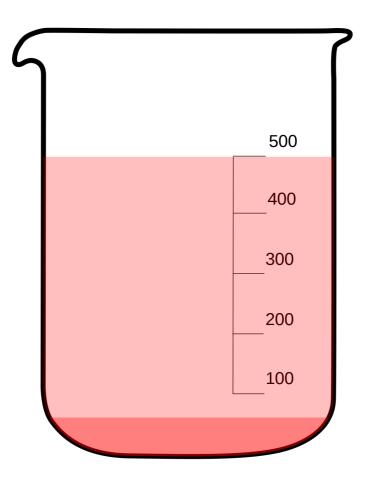


Abbildung 85: 1:10 Verdünnung: 50 mL Lösung (dunkelrot) werden mit 450 mL Wasser (hellrot) auf 500 mL aufgefüllt; **Hinweis:** Die Skalierung von Bechergläsern ist viel zu ungenau für die quantitative Analyse und dient nur als anschauliches Beispiel.

Das Verdünnen von konzentrierten Lösungen ist in der Titrimetrie von Bedeutung, wenn die zu analysierende Substanz viel niedriger konzentriert ist als die Maßlösung. Es macht keinen Sinn in fünf Tropfen bis zum Umschlagspunkt zu titrieren. Die Messungenauigkeit wird viel zu hoch. Dagegen kann ein Verdünnen der Maßlösung für die Bürette die Genauigkeit erhöhen, denn der Bürettenfehler (ist immer als ± 0 ,X aufgedruckt) bleibt konstant. Der relative Fehler = Bürettenfehler/Titriervolumen wird kleiner:

$$\frac{0,1mL}{1mL} = 0, 1 = 10$$

Man titriert 1 mL mit einem Bürettenfehler von 0,1 mL. Egal wie gut man sich anstellt, man hat im Mittel immer 10% Abweichung. Der Wert ist so ungenau, dass das Ergebnis praktisch wertlos ist.

$$\frac{0.1mL}{10mL} = 0.01 = 1$$

Titriert man dagegen 10 mL bis zum Umschlagspunkt in der gleichen Bürette ist man gleich zehnmal so genau.

$$\frac{0.1mL}{20mL} = 0.005 = 0.5$$

Bei 20 mL ist die Ungenauigkeit gleich nochmal halbiert. Jedoch ist zu beachten, dass beim Verdünnen ebenfalls Ablesefehler und Gerätefehler (ebenfalls auf Auslaufpipetten und Messkolben als ± 0 ,X gedruckt) auftreten.

3.1.5 Titerbestimmung

Der Titer oder Normalfaktor f ist ein Faktor, der die Abweichung der tatsächlichen Konzentration einer Maßlösung von der Nennkonzentration der Lösung angibt.

$$f := \frac{c_{exp.}}{c_{theor}}$$

Daraus ergibt sich bei der Titration mit der eingestellten Lösung

$$n = V \cdot f \cdot c_{theor.}$$

Der Titer ist ein für die jeweilige Maßlösung spezifischer Wert. Je nach Bestimmungsmethode kann ein leicht unterschiedlicher Titer für ein und dieselbe Maßlösung bestimmt werden. Sinnvollerweise wird die gleiche Methode für die Messung und die Titer-Bestimmung verwendet, da die Endpunkt-Bestimmung bei jeder Methode unterschiedlich ist und so Differenzen entstehen.

Einige Maßlösungen sind so instabil, dass der Titer bei jeder Verwendung der Maßlösung neu ermittelt werden muss. Dies gilt besonders für niedrig konzentrierte Lösungen von IOD8, Salzsäure, NATRON-LAUGE9 und KALIUMPER-MANGANAT¹⁰; Iod und Chlorwasserstoff verdampfen aus der Lösung, Natriumhydroxid bildet mit dem Kohlendioxid der Luft Natriumcarbonat und Kaliumpermanganat zersetzt sich in einem autokatalytischen Prozess zu BRAUN-STEIN¹¹.

Einigermaßen stabil sind höherkonzentrierte Maßlösungen von Salz- und Schwefelsäure, Natriumthiosulfat,

^{8&}lt;sub>HTTP://DE.WIKIPEDIA.ORG/WIKI/IOD</sub>

⁹HTTP://DE.WIKIPEDIA.ORG/WIKI/NATRONLAUGE

¹⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/KALIUMPERMANGANAT

¹¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BRAUNSTEIN

Kaliumdichromat, Cer(IV), Silbernitrat (unter Lichund tausschluss) natürlich Urtitermaßlösungen. Aber diese Maßlösungen auch müssen mindestens einmal pro Monat geprüft werden.

Zur Bestimmung des Titers werden sog. Urtitersubstanzen verwenden. Dies sind Substanzen, die sich zum einen leicht in einer definierten Zusammensetzung (wasserfrei, bestimmtes Hydrat) herstellen lassen, ein möglichst Molekulargewicht hohes haben und sich daher leicht mit geringem Fehler abwiegen lassen. Sie sind Feststoffe wie z.B. OXALSÄURE¹² und Natriumcarbonat.

Bestimmung des Titers einer Salzsäurelösung

Als Urtitersubstanz wird NA-TRIUMCARBONAT¹³ gewählt, das mit SALZSÄURE¹⁴ wie folgt reagiert:

¹² HTTP://DE.WIKIPEDIA.ORG/WIKI/OXALS%c3%A4URE

¹³ HTTP://DE.WIKIPEDIA.ORG/WIKI/NATRIUMCARBONAT

¹⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/SALZS%C3%A4URE

$$2 \text{ HCl} + \text{Na}_2\text{CO}_3 \longrightarrow \text{H}_2\text{O} + \text{CO}_2 \uparrow + 2 \text{ NaCl}$$

Aus der Reaktionsgleichung ist ersichtlich, dass die halbe Stoffmenge Natriumcarbonat der verbrauchten Stoffmenge Salzsäure entspricht.

Es wird eine bestimmte Menge Natriumcarbonat, einer gesättigten das aus Lösung mit Kohlendioxid ausgefällt, gewaschen und bis zur Massenkonstanz getrocknet wurde, möglichst genau abgewogen, in Wasser gelöst und mit einem Indikator METHYLORANGE¹⁵ wie versetzt. Nun wird bis zum Umschlagpunkt titriert. Aus dem Verbrauch an Maßlösung und der eingesetzten Stoffmenge an Natriumcarbonat kann die Konzentration der Salzsäurelösung bestimmt werden.

Vorlage: $m(Na_2CO_3) = 0,4000 \text{ g } (~3.77 \text{ mmol});$ c(HCl) = ca. 0,1 mol/l

^{15&}lt;sub>HTTP://DE.WIKIPEDIA.ORG/WIKI/METHYLORANGE</sub>

Verbrauch an Maßlösung: 75,0 ml

Stöchiometrie:

$$2 n(Na_2CO_3) = n(HCl) = n(H^+)$$

$$\frac{m(Na_2CO_3)}{\frac{1}{2} \cdot M(Na_2CO_3)} = c(HCl) \cdot V(HCl)$$

(gemäß Beispiel: 2 * 3,77 mmol = 7,5 mmol)

$$\frac{m(Na_2CO_3)}{\frac{1}{2} \cdot M(Na_2CO_3) \cdot V(HCl)} = c(HCl)$$

$$\frac{0,4000g}{0,5 \cdot 105,9888g/mol \cdot 0,0750l} = 0,10064mol/l$$

Die Salzsäurelösung hat also eine tatsächliche Konzentration von 0,1006 mol/l. Um den Titer zu errechnen, teilt man nun die gemessene tatsächliche Konzentration durch die Nennkonzentration und erhält:

$$f = \frac{c_{exp.}}{c_{theor.}} = 1,006$$

3.1.6 Säure-Base-Titration

Bei der Säure-Base-Titration reagieren Säuren und Basen in einer NEUTRALISATION-SREAKTION¹⁶ miteinander. Wird eine Säure untersucht und mit einer Base titriert spricht man von Alkalimetrie. Wird eine basische Probelösung mit einer sauren Maßlösung titriert so spricht man von einer Acidimetrie.

Herstellung einer Maßlösung und Titerbestimmung

Die Maßlösung wird in einem Messkolben hergestellt. Um den Fehler hier zu minimieren sollte ein möglichst großes Volumen angesetzt werden. Maßlösungen werden vorteilhafterweise entweder in "geraden" Molaritäten (1 mol/l, 0,1 mol/l usw.) oder Normalitäten (0,5 mol/l entspricht 1 normal usw. beispielsweise bei Schwefelsäure) angeset-

.

¹⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/NEUTRALISATIONSREAKTION

zt. Als Maßlösungen kommen meist nur starke Basen und starke Säuren zum Einsatz.

Fehlerquellen

Natronund besonders Kalilauge verändern beim Stehen an Luft ihre Konzentration etwas. Dies geschieht aufgrund der Aufnahme von Kohlendioxid aus der Luft; dabei bildet sich das entsprechende Carbonat. Auch auf festem Natriumund Kaliumhydroxid bildet sich leicht eine Carbonatschicht. Zur Herstellung der Lauge wird daher zunächst die entsprechende Menge Hydroxid eingewogen dieses dann durch sehr kurzes Abspülen mit Wasser vom Carbonat befreit. Der geringe Unterschied zwischen Eintatsächlicher waage und Masse nach dem Abspülen wird durch die Bestimmung des Titers ausgeglichen. Für sehr genaue Arbeiten ist unter Umständen das Herstellen von carbonatfreiem Wasser nötig.

Wahl der Indikatoren

Es stehen eine große Anzahl von Indikatoren mit verschiedenen Umschlagsbereichen zur Verfügung:

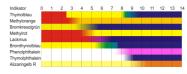


Abbildung 86: pH-Indikatoren und ihre Farbskala

Es gilt:

- Starke Säuren und starke Basen können unter Verwendung aller Indikatoren, die zwischen METHY-LORANGE¹⁷ und PHENOLPHTHALEIN¹⁸ umschlagen, miteinander titriert werden.
- Schwache Säuren mit starken Laugen können nur mit Indikatoren, die im schwach alkalischen Gebiet umschlagen titri-

 $^{^{17}{\}mbox{\scriptsize HTTP:}}/\mbox{\scriptsize DE.WIKIPEDIA.ORG/WIKI/METHYLORANGE}$

 $^{^{18}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/PHENOLPHTHALEIN

- ert werden (z.B. Phenolphthalein).
- · Schwache Basen mit starken Säuren lassen sich nur mit Indikatoren, die im schwach sauren Bereich schlagen titrieren (z.B. Methylorange, besser METHYLROT¹⁹)
- Titrationen schwacher Säuren mit schwachen Basen oder umgekehrt sind zu vermeiden, weil sie ungenaue Resultate bringen. Der richtige Indikator muss individuell mit Vergleichslösungen ermittelt werden.

Bestimmung der **Konzentration von** Salzsäure mit Natronlauge

Zu einem bekannten Volumen an SALZSÄURE²⁰ mit unbekannter Konzentration wird aus einer Bürette die Maßlö-

¹⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/METHYLROT 20 HTTP://DE.WIKIPEDIA.ORG/WIKI/SALZS%C3%A4URE

sung (NATRONLAUGE²¹ mit bekannter Konzentration) bis Umschlagspunkt Indikators hinzugetropft. Es handelt sich um eine Titration einer starken Säure mit einer starken Base, daher sind alle Indikatoren im Umschlagsbis pH=10 bereich pH=4 zulässig wenn im Konzentrationsbereich 0.1 mol/L mit 0,1% Bestimmungsfehler gearbeitet wird. Im Konzentrationsbereich 0,01 mol/L die pH-Grenzwerte dürfen 5 und 9 nicht unter- bzw. überschritten werden.

Aufgrund des Volumen der untersuchten Salzsäure und verbrauchten Menge an Natronlauge bis zum Umschlagspunkt kann unter Zuhilfenahme der Reaktionsgleichung die Konzentration der Salzsäure berechnet werden.

Die Stoffmenge n der eingesetzten Natronlauge ergibt sich aus der Stoffmengenkonzentration c und dem Volumen V

²¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/NATRONLAUGE

$$n(NaOH) = c(NaOH) \cdot V(NaOH)$$

Die Reaktionsgleichung der Neutralisation lautet:

$$HCl+NaOH \longrightarrow NaCl+H_2O$$

Salzsäure und Natronlauge reagieren zu Kochsalz und Wasser

Daraus folgt: Salzsäure reagiert mit Natronlauge im Stoffmengenverhältnis eins zu eins:

$$\frac{n(NaOH)}{n(HCl)} = \frac{1}{1}$$

Die Konzentration der Salzsäure lässt sich nun aus der bekannten Stoffmenge und dem verwendeten Volumen errechnen:

$$c(HCl) = \frac{n(HCl)}{V(HCl)} = \frac{n(NaOH)}{V(HCl)}$$

4 Autoren

4.1 Text

•

BENUTZER: HOLGERB¹

• BENUTZER: MATTHIAS M.²

• BENUTZER:JANINAM³

4.1.1 Wikipedia

Teile dieses Wikibooks stammen aus Wikipedia-Artikeln, die aufgrund des stark sachbuchhaften Anleitungscharakters dort unpassend waren. Die Autoren der jeweiligen Artikel sind unten separat aufgeführt. Die Listen wurden mit dem Programm

¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/BENUTZER%3AHOLGERB

²http://de.wikibooks.org/wiki/Benutzer%3aMatthias%20M.

³HTTP://DE.WIKIBOOKS.ORG/WIKI/BENUTZER%3AJANINAM

CONTRIBUTORS⁴ von BE-NUTZER: DUESENTRIEB⁵ auf dem Wikimedia Toolserver erstellt.

NACHWEIS (CHEMIE)⁶

bis 2006-04-02 danach #NACH-WEIS (CHEMIE, METHODEN-TEIL)⁷

- 87 WÄCHTER⁸ 2006-01-05 11:35 – 2006-03-22 17:56
- 28 82.207.144.171⁹
 (anon) 2006-01-11
 12:25 2006-02-01
 14:16
- 9 80.143.235.108¹⁰ (anon) 2006-01-09

⁴HTTP://META.WIKIMEDIA.ORG/WIKI/USER:DUESENTRIEB/ CONTRIBUTORS

⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3ADUESENTRIEB

⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/NACHWEIS%20(CHEMIE)

⁷HTTP://DE.WIKIBOOKS.ORG/WIKI/%23NACHWEIS%20(CHEMIE%
2C%20METHODENTEIL)

⁸ http://de.wikipedia.org/wiki/Benutzer%3aW%c3%a4chter9 http://de.wikipedia.org/wiki/Benutzer%3a82.207.144.

¹⁰ http://de.wikipedia.org/wiki/Benutzer%3a80.143.235.
108

11:52 – 2006-01-09 12:05

- 2 CHRISTOPH D¹¹ 2005-03-19 16:10 — 2005-10-18 18:21
- 6 80.143.89.144¹²
 (anon) 2006-01-13
 16:14 2006-01-13
 16:52
- 5 193.158.3.10¹³ (anon) 2005-09-26 08:14 2005-09-26 08:27
- 4 BAULTBEAR¹⁴ 2005-12-04 19:16 - 2005-12-04 19:22
- 4 80.143.110.129¹⁵ (anon) 2006-01-05 11:28 - 2006-01-05 11:45
- 3 80.137.216.237¹⁶ (anon) 2005-11-22

¹¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3ACHRISTOPH_D

¹² HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A80.143.89.144

 ¹³ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A193.158.3.10
 14 HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3ABAULTBEAR

^{15&}lt;sub>HTTP</sub>://de.wikipedia.org/wiki/Benutzer%3a80.143.110.

¹⁶HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A80.137.216.
237

20:28 - 2005-11-22 20:40

- 3 84.166.237.225¹⁷
 (anon) 2005-11-23
 17:11 2005-11-23
 17:16
- 3 80.143.73.138¹⁸ (anon) 2006-01-06 13:41 - 2006-01-06 13:47
- 3 80.143.244.68¹⁹ (anon) 2006-01-10 12:03 - 2006-01-10 12:16
- 3 80.143.77.155²⁰ (anon) 2006-02-01 16:51 - 2006-02-01 16:53
- 2 PIGSGRAME²¹ 2006-02-01 17:37 – 2006-02-03 15:14
- 2 145.254.213.29²² (anon) 2004-10-24

¹⁷HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.166.237.225

¹⁸http://de.wikipedia.org/wiki/Benutzer%3a80.143.73.138
¹⁹http://de.wikipedia.org/wiki/Benutzer%3a80.143.244.68

²⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER*3A80.143.244.00

THTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER*3A8U.143.//.155 21 HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER*3APIGSGRAME

^{22&}lt;sub>HTTP</sub>://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A145.254.213.

14:49 - 2004-10-24 14:51

- 2 128.130.142.16²³ (anon) 2005-10-20 11:55 2005-10-20 11:57
- 2 AGABUGA²⁴ 2005-11-16 19:55 - 2005-11-16 20:02
- 2 158.64.68.1²⁵ (anon) 2005-12-13 07:40 — 2005-12-13 07:44
- 2 85.75.108.22²⁶
 (anon) 2005-12-22
 11:47 2005-12-22
- 2 PROLINESERVER²⁷ 2006-03-06 20:01 – 2006-03-07 18:53
- 1 HATI²⁸ 2006-03-11 15:54 — 2006-03-11 16:41

²³ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A128.130.142.

²⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AAGABUGA

²⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A158.64.68.1

 $^{^{26}}$ HTTP://de.wikipedia.org/wiki/Benutzer%3a85.75.108.22

²⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3APROLINESERVER

²⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AHATI

- 2 88.73.214.237²⁹
 (anon) 2006-03-19
 19:42 2006-03-19
 19:45
- 1 ThomasM³⁰ 2004-03-14 18:39 — 2004-03-14 18:39
- 1 HENHEI³¹ 2004-03-14 18:51 - 2004-03-14 18:51
- 1 REC³² 2004-03-20 12:08 - 2004-03-20 12:08
- 1 80.134.250.78³³ (anon) 2004-12-07 09:07 2004-12-07 09:07
- 1 62.226.215.189³⁴ (anon) 2005-03-02 16:36 - 2005-03-02 16:36
- 1 212.204.24.73³⁵ (anon) 2005-03-26

²⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A88.73.214.237

 $^{^{30}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER\$3aThomasM

³¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AHENHEI

³² HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AREC

³³ http://de.wikipedia.org/wiki/Benutzer%3a80.134.250.78

³⁴ http://de.wikipedia.org/wiki/Benutzer%3a62.226.215.

³⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A212.204.24.73

- 1 213.54.225.30³⁶ (anon) 2005-07-23 16:35 - 2005-07-23 16:35
- 1 84.175.127.175³⁷ (anon) 2005-10-18 12:46 – 2005-10-18 12:46
- 1 84.189.120.107³⁸ (anon) 2005-11-21 22:07 - 2005-11-21 22:07
- 1 213.39.153.228³⁹ (anon) 2005-11-30 12:23 – 2005-11-30 12:23
- 1 80.143.81.126⁴⁰
 (anon) 2006-01-05
 08:01 2006-01-05
 08:01

36 HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A213.54.225.30

³⁷ http://de.wikipedia.org/wiki/Benutzer%3a84.175.127. 175

³⁸ http://de.wikipedia.org/wiki/Benutzer%3a84.189.120. 107

³⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A213.39.153. 228

 $^{^{40}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER3A80.143.81.126

- 1 86.56.9.11⁴¹ (anon) 2006-01-08 17:32 — 2006-01-08 17:32
- 1 85.74.61.20⁴² (anon) 2006-01-12 21:24 — 2006-01-12 21:24
- 1 ELYA⁴³ 2006-01-12 21:38 - 2006-01-12 21:38
- 1 80.171.73.187⁴⁴ (anon) 2006-01-13 19:40 – 2006-01-13 19:40
- 1 80.143.75.169⁴⁵
 (anon) 2006-01-17
 17:43 2006-01-17
 17:43
- 1 84.180.43.201⁴⁶ (anon) 2006-01-20 17:42 2006-01-20 17:42
- 1 84.139.27.1⁴⁷ (anon) 2006-01-25 17:40 — 2006-01-25 17:40

⁴¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A86.56.9.11

⁴² HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A85.74.61.20

⁴³ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AELYA

⁴⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A80.171.73.187

⁴⁵ http://de.wikipedia.org/wiki/Benutzer%3a80.143.75.169

⁴⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.180.43.201

⁴⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.139.27.1

- 1 80.184.171.204⁴⁸ (anon) 2006-01-26 12:34 – 2006-01-26 12:34
- 1 62.203.4.203⁴⁹ (anon) 2006-01-28 09:36 - 2006-01-28 09:36
- 1 80.133.104.149⁵⁰ (anon) 2006-01-29 17:31 – 2006-01-29 17:31
- 1 COTTBUS⁵¹ 2006-02-16 14:21 - 2006-02-16 14:21
- 1 MKILL⁵² 2006-02-17 01:16 - 2006-02-17 01:16
- 1 132.195.66.162⁵³ (anon) 2006-02-23 07:45 2006-02-23 07:45

48

^{48&}lt;sub>HTTP</sub>://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A80.184.171. 204

⁴⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A62.203.4.203

⁵⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A80.133.104. 149

⁵¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3ACOTTBUS

^{52&}lt;sub>HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AMKILL</sub>

⁵³ http://de.wikipedia.org/wiki/Benutzer%3a132.195.66. 162

- 1 87.122.146.57⁵⁴
 (anon) 2006-03-04
 09:21 2006-03-04
 09:21
- 1 83.135.218.4⁵⁵
 (anon) 2006-03-06
 18:52 2006-03-06
 18:52
- 1 80.143.94.149⁵⁶ (anon) 2006-03-11 12:08 - 2006-03-11 12:08
- 1 193.171.131.240⁵⁷ (anon) 2006-03-18 12:54 - 2006-03-18 12:54
- 1 WG0867⁵⁸ 2006-03-25 23:48 - 2006-03-25 23:48
- 1 89.51.248.40⁵⁹
 (anon) 2006-03-30
 18:26 2006-03-30
 18:26

⁵⁴ HTTP://de.wikipedia.org/wiki/Benutzer%3a87.122.146.57

⁵⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A83.135.218.4

⁵⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A80.143.94.149 57 HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A193.171.131.

⁵⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AWG0867

⁵⁹http://de.wikipedia.org/wiki/Benutzer%3a89.51.248.40

NACHWEIS (CHEMIE, METHODENTEIL)⁶⁰

bis 2006-11-26

danach Inhalt
ausgelagert nach
NACHWEIS
(CHEMIE)⁶¹,
NACHWEISE
FÜR ANIONEN⁶²,
NACHWEISE FÜR
KATIONEN⁶³,
NACHWEISE
ORGANISCHER
STOFFE⁶⁴; siehe
WIKIPEDIA:REDAKTION
CHEMIE/ARCHIV/2006/DEZEMBER#KATIONENNACH

• 8 84.151.235.36⁶⁶ (anon) 2006-10-09 10:28 - 2006-10-09 10:35

60HTTP://DE.WIKIPEDIA.ORG/WIKI/NACHWEIS%20(CHEMIE%2c% 20METHODENTEIL)

⁶¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/NACHWEIS%20(CHEMIE)

⁶² HTTP://DE.WIKIPEDIA.ORG/WIKI/NACHWEISE%20F%c3%BCR% 20ANIONEN

⁶³ HTTP://DE.WIKIPEDIA.ORG/WIKI/NACHWEISE%20F%c3%BCR% 20KATIONEN

⁶⁴http://de.wikipedia.org/wiki/Nachweise%20organischer% 20Stoffe

⁶⁵http://de.wikipedia.org/wiki/Wikipedia% 3aRedaktion%20Chemie%2fArchiv%2f2006%2fDezember% 23Kationennachweise

⁶⁶HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.151.235.36

- 3 NEUROTIKER⁶⁷ 2006-09-17 20:55 – 2006-11-26 23:34
- 4 84.170.137.15⁶⁸ (anon) 2006-05-21 19:16 – 2006-05-21 19:20
- 1 STEFAN HORN⁶⁹ 2006-07-27 07:43 – 2006-07-27 07:47
- 1 WG0867⁷⁰ 2006-04-02 21:12 - 2006-04-02 21:36
- 2 84.170.8.76⁷¹ (anon) 2006-06-20 14:27 – 2006-06-20 14:28
- 2 W!B:⁷² 2006-08-02 01:24 - 2006-08-06 16:47
- 2 217.230.58.106⁷³ (anon) 2006-10-18 14:55 – 2006-10-18 14:56

⁶⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3ANEUROTIKER

^{68&}lt;sub>HTTP://de.wikipedia.org/wiki/Benutzer%3a84.170.137.15</sub>

⁶⁹HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3ASTEFAN_HORN

⁷⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AWG0867

⁷¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.170.8.76

^{72&}lt;sub>HTTP</sub>://de.wikipedia.org/wiki/Benutzer%3aW!B%3a

⁷³ http://de.wikipedia.org/wiki/Benutzer%3a217.230.58. 106

- 1 Hangy⁷⁴ 2006-04-26 16:27 – 2006-04-26 16:27
- 1 84.136.219.94⁷⁵ (anon) 2006-05-10 16:54 2006-05-10 16:54
- 1 84.180.147.186⁷⁶ (anon) 2006-06-12 17:38 – 2006-06-12 17:38
- 1 80.132.108.240⁷⁷ (anon) 2006-07-27 11:15 - 2006-07-27 11:15
- 1 MKILL⁷⁸ 2006-07-29 20:08 — 2006-07-29 20:08
- 1 84.136.206.55⁷⁹
 (anon) 2006-07-30
 15:58 2006-07-30
 15:58

⁷⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AHANGY

⁷⁵ HTTP://de.wikipedia.org/wiki/Benutzer%3a84.136.219.94

^{76&}lt;sub>HTTP</sub>://de.wikipedia.org/wiki/Benutzer%3a84.180.147. 186

⁷⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A80.132.108. 240

⁷⁸HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AMKILL

⁷⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.136.206.55

- 1 ONKEL MARKUS⁸⁰ 2006-08-21 15:22 – 2006-08-21 15:22
- 1 217.255.172.186⁸¹ (anon) 2006-08-24 08:22 2006-08-24 08:22
- 1 WAH⁸² 2006-08-24 13:38 - 2006-08-24 13:38
- 1 87.78.157.232⁸³ (anon) 2006-09-14 14:15 – 2006-09-14 14:15
- 1 62.178.201.41⁸⁴ (anon) 2006-09-15 20:39 – 2006-09-15 20:39
- 1 88.64.190.51⁸⁵
 (anon) 2006-10-25
 15:23 2006-10-25
 15:23

⁸⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AONKEL_MARKUS 81 HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A217.255.172.

 $^{^{82}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER 83 AWAH

⁸³ http://de.wikipedia.org/wiki/Benutzer%3a87.78.157.232

⁸⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A62.178.201.41

⁸⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A88.64.190.51

- 1 217.227.215.186⁸⁶ (anon) 2006-11-12 12:45 – 2006-11-12 12:45
- 1 87.168.222.228⁸⁷ (anon) 2006-11-22 05:05 2006-11-22 05:05

NACHWEISE FÜR ANIONEN⁸⁸

- 41 SIEGERT⁸⁹ 2007-03-04 07:16 — 2008-08-10 17:02
- 18 KUEBI⁹⁰ 2008-01-25 08:55 — 2008-01-25 09:02
- 4 NEUROTIKER⁹¹ 2006-11-26 22:23 – 2008-04-21 17:39

⁸⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A217.227.215. 186

⁸⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A87.168.222. 228

⁸⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/NACHWEISE%20F%c3%BCR% 20ANIONEN

⁸⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3ASIEGERT

⁹⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AKUEBI

⁹¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3ANEUROTIKER

- 7 217.93.173.69⁹² (anon) 2006-12-14 14:24 – 2006-12-14 15:13
- 3 84.173.201.201⁹³ (anon) 2007-03-01 21:37 - 2007-03-01 21:40
- 3 90.186.37.30⁹⁴ (anon) 2007-04-28 15:49 – 2007-04-28 15:51
- 3 90.186.25.28⁹⁵ (anon) 2007-04-30 14:42 2007-04-30 14:43
- 3 141.43.142.19⁹⁶
 (anon) 2008-01-11
 17:58 2008-01-11
 18:25
- 3 MATTHIAS M.⁹⁷ 2008-02-26 23:27 – 2008-05-18 19:38

^{92&}lt;sub>HTTP</sub>://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A217.93.173.69 93_{HTTP}://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.173.201.

⁹⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A90.186.37.30

⁹⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A90.186.25.28

⁹⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A141.43.142.19

⁹⁷HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AMATTHIAS_M.

- 1 HYSTRIX⁹⁸ 2007-06-26 19:58 — 2007-10-23 12:12
- 2 JPIDTFAZ⁹⁹ 2008-07-23 18:32 — 2008-07-23 18:32
- 1 195.93.60.66¹⁰⁰ (anon) 2007-01-05 15:18 - 2007-01-05 15:18
- 1 139.14.30.170¹⁰¹ (anon) 2007-01-26 13:13 – 2007-01-26 13:13
- 1 141.52.232.84¹⁰²
 (anon) 2007-02-02
 09:06 2007-02-02
 09:06
- 1 84.150.89.86¹⁰³ (anon) 2007-02-25 14:28 - 2007-02-25 14:28

⁹⁸ HTTP://de.wikipedia.org/wiki/Benutzer%3aHystrix

⁹⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AJPIDTFAZ

¹⁰⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A195.93.60.66

¹⁰¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A139.14.30.170

¹⁰² http://de.wikipedia.org/wiki/Benutzer%3a139.14.30.170

¹⁰³ http://de.wikipedia.org/wiki/Benutzer%3a84.150.89.86

- 1 84.185.221.242¹⁰⁴
 (anon) 2007-04-11
 12:40 2007-04-11
 12:40
- 1 82.82.189.32¹⁰⁵ (anon) 2007-05-19 15:28 - 2007-05-19 15:28
- 1 84.178.253.236¹⁰⁶ (anon) 2007-09-08 17:54 – 2007-09-08 17:54
- 1 89.49.225.230¹⁰⁷
 (anon) 2007-10-06
 14:25 2007-10-06
 14:25
- 1 80.63.151.42¹⁰⁸ (anon) 2007-10-23 09:34 2007-10-23 09:34
- 1 87.162.81.70¹⁰⁹
 (anon) 2007-11-15
 22:10 2007-11-15
 22:10

¹⁰⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.185.221.

¹⁰⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A82.82.189.32 106 HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.178.253.

¹⁰⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A89.49.225.230

¹⁰⁸ http://de.wikipedia.org/wiki/Benutzer%3a80.63.151.42

¹⁰⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A87.162.81.70

- 1 84.58.36.135¹¹⁰ (anon) 2008-02-06 22:29 - 2008-02-06 22:29
- 1 77.5.242.50¹¹¹ (anon) 2008-03-15 15:59 - 2008-03-15 15:59
- 1 62.47.7.104¹¹² (anon) 2008-04-04 09:45 - 2008-04-04 09:45
- 1 MUCK31¹¹³ 2008-04-06 12:47 2008-04-06 12:47
- 1 129.217.132.31¹¹⁴ (anon) 2008-04-21 13:55 2008-04-21 13:55
- 1 JOHNNY CONTRO-LETTI¹¹⁵ 2008-04-21 14:20 - 2008-04-21 14:20

110 HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.58.36.135

¹¹¹HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A77.5.242.50

¹¹² HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A62.47.7.104

¹¹³ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AMUCK31

¹¹⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A129.217.132. 31

¹¹⁵http://de.wikipedia.org/wiki/Benutzer%3aJohnny_
Controletti

- 1 89.247.229.20¹¹⁶ (anon) 2008-06-01 10:43 2008-06-01 10:43
- 1 79.196.247.141¹¹⁷
 (anon) 2008-09-08
 13:16 2008-09-08
 13:16
- 1 84.186.113.38¹¹⁸
 (anon) 2008-11-11
 12:35 2008-11-11
 12:35
- 1 LEYO¹¹⁹ 2008-12-06 21:28 - 2008-12-06 21:28

NACHWEISE FÜR KATIONEN¹²⁰

• 71 SIEGERT¹²¹ 2007-03-16 18:27 - 2008-07-06 09:35

¹¹⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A89.247.229.20

^{117&}lt;sub>HTTP://de.Wikipedia.org/wiki/Benutzer%3a79.196.247.</sub>

¹¹⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.186.113.38

¹¹⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3ALEYO

¹²⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/NACHWEISE%20F%C3%BCR% 20KATIONEN

¹²¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3ASIEGERT

- 1 WÄCHTER¹²² 2006-09-08 11:47 – 2008-04-04 10:30
- 7 91.1.226.160¹²³
 (anon) 2007-06-04
 17:41 2007-06-04
 18:01
- 2 NEUROTIKER¹²⁴ 2006-11-26 22:16 — 2007-01-05 22:15
- 4 87.122.15.149¹²⁵
 (anon) 2007-02-13
 07:22 2007-02-13
 07:23
- 2 217.235.74.111¹²⁶ (anon) 2007-03-12 20:36 – 2007-03-12 20:36
- 2 MATTHIAS M.¹²⁷ 2008-02-26 23:10 – 2008-05-18 19:37
- 1 88.70.118.175¹²⁸ (anon) 2006-11-15

¹²²HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AW%c3%A4CHTER

¹²³ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A91.1.226.160

¹²⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3ANEUROTIKER

¹²⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A87.122.15.149

¹²⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A217.235.74.

¹²⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AMATTHIAS_M.

¹²⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A88.70.118.175

- 22:11 2006-11-15 22:11
- 1 TANGO8¹²⁹ 2006-12-12 23:02 - 2006-12-12 23:02
- 1 80.129.14.97¹³⁰ (anon) 2006-12-15 00:01 - 2006-12-15 00:01
- 1 89.51.124.18¹³¹
 (anon) 2007-01-05
 20:44 2007-01-05
 20:44
- 1 139.14.30.170¹³²
 (anon) 2007-01-26
 13:13 2007-01-26
 13:13
- 1 AKKARIN¹³³ 2007-02-13 07:24 - 2007-02-13 07:24
- 1 84.173.234.212¹³⁴
 (anon) 2007-02-21
 23:24 2007-02-21
 23:24

¹²⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3ATANGO8

¹³⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A80.129.14.97

¹³¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A89.51.124.18

¹³² http://de.wikipedia.org/wiki/Benutzer%3a139.14.30.170

¹³³ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AAKKARIN

¹³⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.173.234.

- 1 Blaufisch¹³⁵ 2007-03-17 09:16 — 2007-03-17 09:16
- 1 195.93.60.100¹³⁶ (anon) 2007-03-22 18:05 – 2007-03-22 18:05
- 1 81.189.67.108¹³⁷
 (anon) 2007-04-10
 15:10 2007-04-10
 15:10
- 1 84.185.204.10¹³⁸ (anon) 2007-05-09 15:41 - 2007-05-09 15:41
- 1 212.183.65.13¹³⁹ (anon) 2007-05-27 15:05 – 2007-05-27 15:05
- 1 TAFKAS¹⁴⁰ 2007-06-04 17:56 — 2007-06-04 17:56

^{135&}lt;sub>HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3ABLAUFISCH</sub>

¹³⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A195.93.60.100

 ¹³⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A81.189.67.108
 138 HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.185.204.10

¹³⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.185.204.10

¹³⁹ HTTP://de.wikipedia.org/wiki/Benutzer%3a212.183.65.13

¹⁴⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3ATAFKAS

- 1 217.228.105.26¹⁴¹ (anon) 2007-06-08 20:06 – 2007-06-08 20:06
- 1 84.178.65.250¹⁴²
 (anon) 2007-07-19
 18:17 2007-07-19
 18:17
- 1 130.133.10.10¹⁴³ (anon) 2007-08-26 14:03 — 2007-08-26 14:03
- 1 MUCK31¹⁴⁴ 2007-10-14 21:08 — 2007-10-14 21:08
- 1 88.73.38.51¹⁴⁵ (anon) 2007-10-30 21:58 – 2007-10-30 21:58
- 1 82.135.87.215¹⁴⁶ (anon) 2008-01-10 19:06 – 2008-01-10 19:06

¹⁴¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A217.228.105.

¹⁴² HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.178.65.250

¹⁴³ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A130.133.10.10

¹⁴⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AMUCK31

¹⁴⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A88.73.38.51

¹⁴⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A82.135.87.215

- 1 Don Magnifico¹⁴⁷ 2008-01-27 11:48 – 2008-01-27 11:48
- 1 141.30.211.71¹⁴⁸ (anon) 2008-03-11 00:52 2008-03-11 00:52
- 1 84.179.221.32¹⁴⁹
 (anon) 2008-04-30
 09:59 2008-04-30
 09:59
- 1 FK1954¹⁵⁰ 2008-05-25 15:47 - 2008-05-25 15:47
- 1 79.194.62.11¹⁵¹ (anon) 2008-11-11 07:26 2008-11-11 07:26
- 1 HASEE¹⁵² 2009-01-23 13:00 - 2009-01-23 13:00

¹⁴⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3aDon_Magnifico

¹⁴⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A141.30.211.71

¹⁴⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.179.221.32

¹⁵⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AFK1954

¹⁵¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A79.194.62.11

¹⁵² HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AHASEE

SALZSÄUREGRUPPE¹⁵³

- 7 WÄCHTER¹⁵⁴ 2006-01-21 08:18 – 2008-03-03 07:35
- 2 MATTHIAS M.¹⁵⁵ 2008-03-04 08:33 – 2008-03-12 16:33
- 2 HOLGERB¹⁵⁶ 2006-01-23 17:45 - 2007-02-10 18:23
- 2 62.203.4.203¹⁵⁷
 (anon) 2006-01-28
 13:26 2006-01-28
 13:28
- 1 84.168.241.111¹⁵⁸
 (anon) 2006-04-17
 14:51 2006-04-17
 14:51
- 1 EPHRAIM33¹⁵⁹ 2006-07-29 17:48 — 2006-07-29 17:48

¹⁵³ HTTP://DE.WIKIPEDIA.ORG/WIKI/SALZS%C3%A4UREGRUPPE

¹⁵⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AW%C3%A4CHTER

^{155&}lt;sub>HTTP</sub>://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AMATTHIAS_M.

¹⁵⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AHOLGERB

¹⁵⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A62.203.4.203

¹⁵⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.168.241.

¹⁵⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3aEphraim33

- 1 139.14.30.170¹⁶⁰ (anon) 2007-01-26 13:16 – 2007-01-26 13:16
- 1 62.227.119.38¹⁶¹ (anon) 2007-05-10 22:24 – 2007-05-10 22:24

SCHWEFELWASSERSTOFF-GRUPPE¹⁶²

- 20 WÄCHTER¹⁶³ 2006-01-21 09:22 – 2006-03-11 14:52
- 1 FrankOE¹⁶⁴ 2006-02-22 10:36 - 2006-03-02 10:04
- 2 MATTHIAS M.¹⁶⁵ 2008-02-27 12:56 – 2008-03-08 16:48
- 3 80.143.78.175¹⁶⁶ (anon) 2006-02-13

¹⁶⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A139.14.30.170

¹⁶¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A62.227.119.38

¹⁶² HTTP://DE.WIKIPEDIA.ORG/WIKI/SCHWEFELWASSERSTOFFGRUPPE

¹⁶³ http://de.wikipedia.org/wiki/Benutzer%3aW%c3%a4chter

¹⁶⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AFRANKOE

¹⁶⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AMATTHIAS_M.

¹⁶⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A80.143.78.175

17:33 - 2006-02-13 17:38

- 2 213.39.176.29¹⁶⁷ (anon) 2007-04-26 11:28 – 2007-04-26 11:28
- 2 88.207.212.42¹⁶⁸ (anon) 2008-03-03 14:22 - 2008-03-03 14:26
- 1 84.156.207.165¹⁶⁹ (anon) 2006-05-16 16:52 – 2006-05-16 16:52
- 1 139.14.30.170¹⁷⁰ (anon) 2007-01-26 13:13 – 2007-01-26 13:13
- 1 84.56.232.58¹⁷¹
 (anon) 2007-01-26
 15:04 2007-01-26
 15:04

^{167&}lt;sub>HTTP://de.wikipedia.org/wiki/Benutzer%3a213.39.176.29</sub>

¹⁶⁸ http://de.wikipedia.org/wiki/Benutzer%3a88.207.212.42

¹⁶⁹ http://de.wikipedia.org/wiki/Benutzer%3a84.156.207.

¹⁷⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A139.14.30.170

¹⁷¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.56.232.58

- 1 128.176.223.173¹⁷²
 (anon) 2007-02-22
 12:14 2007-02-22
 12:14
- 1 62.227.119.38¹⁷³ (anon) 2007-05-10 22:08 – 2007-05-10 22:08
- 1 87.180.7.137¹⁷⁴ (anon) 2007-05-29 16:20 - 2007-05-29 16:20
- 1 87.180.9.92¹⁷⁵
 (anon) 2007-06-05
 17:41 2007-06-05
- 1 193.171.244.138¹⁷⁶ (anon) 2008-01-08 13:38 – 2008-01-08 13:38
- 1 DON MAGNIFICO¹⁷⁷ 2008-01-10 13:16 — 2008-01-10 13:16

¹⁷² HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A128.176.223.

¹⁷³ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A62.227.119.38

¹⁷⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A87.180.7.137

¹⁷⁵ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A87.180.9.92

¹⁷⁶HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A193.171.244.
138

¹⁷⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3ADON_MAGNIFICO

AMMONIUMSULFID-GRUPPE¹⁷⁸

- 14 WÄCHTER¹⁷⁹ 2006-01-21 15:39 – 2008-04-18 10:53
- 2 MATTHIAS M. 180 2008-03-04 08:37 — 2008-03-08 15:37
- 1 84.190.247.89¹⁸¹
 (anon) 2006-02-05
 18:07 2006-02-05
- 1 Benjaminw¹⁸² 2006-05-01 10:56 – 2006-05-01 10:56
- 1 84.187.21.167¹⁸³
 (anon) 2006-05-11
 09:17 2006-05-11
- 1 AHZ¹⁸⁴ 2006-05-26 13:06 - 2006-05-26 13:06

¹⁷⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/AMMONIUMSULFIDGRUPPPE

¹⁷⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AW%C3%A4CHTER

¹⁸⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AMATTHIAS_M.

 $^{^{181}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER384.190.247.89

¹⁸² HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3ABENJAMINW

¹⁸³ http://de.wikipedia.org/wiki/Benutzer%3a84.187.21.167

¹⁸⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AAHZ

- 1 139.14.30.170¹⁸⁵ (anon) 2007-01-26 13:14 – 2007-01-26 13:14
- 1 128.176.223.172¹⁸⁶ (anon) 2007-03-22 07:38 2007-03-22 07:38
- 1 88.64.123.194¹⁸⁷
 (anon) 2007-11-04
 19:17 2007-11-04
 19:17

AMMONIUMCARBONAT-GRUPPE¹⁸⁸

- 4 WÄCHTER¹⁸⁹ 2006-01-22 13:47 – 2006-03-12 10:55
- 2 MATTHIAS M.¹⁹⁰ 2008-03-04 08:38 — 2008-03-08 16:08
- 1 80.143.77.155¹⁹¹ (anon) 2006-02-01

^{185&}lt;sub>HTTP</sub>://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A139.14.30.170 186_{HTTP}://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A128.176.223. 172

¹⁸⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A88.64.123.194

¹⁸⁸ HTTP://DE.WIKIPEDIA.ORG/WIKI/AMMONIUMCARBONATGRUPPE

¹⁸⁹ HTTP://de.wikipedia.org/wiki/Benutzer%3aW%c3%a4chter

¹⁹⁰ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AMATTHIAS_M.

¹⁹¹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A80.143.77.155

16:48 - 2006-02-01 16:48

- 1 84.187.224.171¹⁹²
 (anon) 2006-04-21
 16:39 2006-04-21
 16:39
- 1 84.58.169.132¹⁹³
 (anon) 2006-05-07
 20:16 2006-05-07
 20:16
- 1 129.13.72.33¹⁹⁴ (anon) 2006-09-25 20:12 - 2006-09-25 20:12
- 1 139.14.30.170¹⁹⁵ (anon) 2007-01-26 13:15 – 2007-01-26
- 1 193.18.239.4¹⁹⁶ (anon) 2007-05-28 09:25 - 2007-05-28 09:25

¹⁹² HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.187.224. 171

¹⁹³ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A84.58.169.132

 $^{^{194}}$ HTTP://de.wikipedia.org/wiki/Benutzer\$3a129.13.72.33

^{195&}lt;sub>HTTP://de.wikipedia.org/wiki/Benutzer%3a139.14.30.170</sub>

¹⁹⁶ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3A193.18.239.4

LÖSLICHE GRUPPE¹⁹⁷

- 5 WÄCHTER¹⁹⁸ 2006-01-22 14:19 – 2006-03-12 10:49
- 2 MATTHIAS M.¹⁹⁹ 2008-03-04 08:43 — 2008-03-08 16:21
- 1 139.14.30.170²⁰⁰ (anon) 2007-01-26 13:11 – 2007-01-26 13:11
- 1 89.245.14.251²⁰¹ (anon) 2007-09-24 17:39 – 2007-09-24 17:39
- 1 MILKY0208²⁰² 2008-02-14 16:08 — 2008-02-14 16:08

¹⁹⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/L%c3%B6SLICHE%20GRUPPE

 $^{^{198}}$ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AW%c3%a4CHTER

¹⁹⁹ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AMATTHIAS_M.

^{200&}lt;sub>HTTP://de.wikipedia.org/wiki/Benutzer%3a139.14.30.170</sub>

²⁰¹ HTTP://de.wikipedia.org/wiki/Benutzer%3a89.245.14.251

²⁰² HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AMILKY0208

SÄURE-BASE-TITRATION²⁰³

- 6 ROLFS²⁰⁴ 2004-04-10 17:03 - 2004-11-25 18:21
- 5 ROLAND.CHEM²⁰⁵ 2007-01-21 13:36 – 2009-02-08 13:18
- 2 FLOKRU²⁰⁶ 2004-05-10 22:30 — 2004-05-10 22:35
- 1 SOLID STATE²⁰⁷ 2007-01-17 21:36 — 2007-06-24 18:11
- 3 WIKIAUTOR²⁰⁸ 2006-01-14 11:10 – 2006-01-21 19:29
- 3 84.135.202.125²⁰⁹ (anon) 2006-03-17

 $^{^{203}\}mathrm{HTTP}://\mathrm{DE.WIKIPEDIA.ORG/WIKI/S\%c3\%}$

A4ure-Base-Titration

 $^{^{204}\}mbox{HTTP://DE.WIKIBOOKS.ORG/WIKI/}{3aw}{3aBenutzer}{3aRolfS}$ $^{205}\mbox{HTTP://DE.WIKIBOOKS.ORG/WIKI/}{3aw}{3aBenutzer}{}^{8}$

³aRoland.chem

^{206&}lt;sub>HTTP</sub>://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3AFLOKRU
207_{HTTP}://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3ASOLID_

^{208&}lt;sub>HTTP</sub>://de.wikibooks.org/wiki/%3aw%3aBenutzer%3aWikiAutor

²⁰⁹ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A84. 135.202.125

- 3 82.212.52.181²¹⁰ (anon) 2006-12-12 16:50 - 2006-12-12 16:51
- 2 82.212.60.141²¹¹
 (anon) 2005-02-05
 22:35 2005-02-05
 22:47
- 2 172.182.152.116²¹²
 (anon) 2006-02-01
 17:44 2006-02-01
 17:45
- 2 87.79.138.148²¹³
 (anon) 2007-07-29
 19:15 2007-07-29
 19:16
- 2 84.168.90.2²¹⁴
 (anon) 2006-03-15
 18:31 2006-03-15
 18:42

210_{HTTP}://de.wikibooks.org/wiki/%3aw%3aBenutzer%3a82. 212.52.181

²¹¹HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A82.
212.60.141

²¹²http://de.wikibooks.org/wiki/%3aw%3aBenutzer%3a172.
182.152.116

²¹³ http://de.wikibooks.org/wiki/%3aw%3aBenutzer%3a87.79.
138.148

 $^{^{214}\}mbox{HTTP://DE.WIKIBOOKS.org/WIKI/$3aw$3aBenutzer$3a84.}$ 168.90.2

- 1 BIRGITLACHNER²¹⁵ 2004-04-09 20:09 – 2004-04-09 20:12
- 2 83.99.65.186²¹⁶
 (anon) 2007-06-24
 14:45 2007-06-24
 14:46
- 2 84.156.64.212²¹⁷
 (anon) 2005-06-06
 15:02 2005-06-06
 15:02
- 2 80.139.107.167²¹⁸ (anon) 2007-05-02 14:38 - 2007-05-02 14:39
- 1 87.122.55.30²¹⁹
 (anon) 2005-11-28
 22:27 2005-11-28
 22:27
- 1 217.93.254.204²²⁰ (anon) 2008-09-03

^{215&}lt;sub>HTTP</sub>://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3ABIRGITLACHNER

^{216&}lt;sub>HTTP</sub>://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A83.99.

²¹⁷HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A84.
156.64.212

²¹⁸HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A80.
139.107.167

²¹⁹http://de.wikibooks.org/wiki/%3aw%3aBenutzer%3a87.
122.55.30

²²⁰HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A217.
93.254.204

17:26 - 2008-09-03 17:26

- 1 84.173.162.156²²¹ (anon) 2006-05-31 14:10 - 2006-05-31 14:10
- 1 84.132.108.19²²² (anon) 2007-05-10 06:17 - 2007-05-1006:17
- 1 213.3.249.224²²³ (anon) 2007-01-22 21:10 - 2007-01-2221:10
- 1 217.85.230.216²²⁴ (anon) 2006-06-21 14:04 - 2006-06-2114:04
- 1 217.228.156.108²²⁵ (anon) 2007-02-04 15:44 - 2007-02-04 15:44

221 HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A84. 173.162.156

²²²HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A84. 132.108.19

²²³ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A213.3.

²²⁴ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A217. 85.230.216

²²⁵ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A217. 228.156.108

- 1 93.129.219.64²²⁶ (anon) 2009-01-20 15:28 2009-01-20 15:28
- 1 84.58.108.5²²⁷
 (anon) 2006-07-26
 17:53 2006-07-26
 17:53
- 1 145.254.239.130²²⁸ (anon) 2005-02-13 14:18 – 2005-02-13 14:18
- 1 134.147.110.105²²⁹ (anon) 2007-02-20 15:27 - 2007-02-20 15:27
- 1 212.152.169.204²³⁰ (anon) 2009-02-10 14:38 2009-02-10 14:38

²²⁶ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A93. 129.219.64

²²⁷HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A84.58.
108.5

²²⁸ http://de.wikibooks.org/wiki/%3aw%3aBenutzer%3a145. 254.239.130

²²⁹ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A134.
147.110.105

 $^{^{230}}$ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A212. 152.169.204

- 1 84.169.127.146²³¹ (anon) 2006-09-17 11:48 – 2006-09-17 11:48
- 1 91.89.9.41²³² (anon) 2009-03-03 13:01 — 2009-03-03 13:01
- 1 84.135.231.107²³³ (anon) 2005-06-13 06:59 2005-06-13 06:59
- 1 69.152.221.194²³⁴ (anon) 2006-12-06 13:10 – 2006-12-06 13:10
- 1 TERABYTE²³⁵ 2005-06-13 19:07 — 2005-06-13 19:07
- 1 89.54.72.56²³⁶ (anon) 2006-03-20

231HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A84. 169.127.146

2

²³² HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A91.89.

²³³HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A84.
135.231.107

^{234&}lt;sub>HTTP</sub>://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A69. 152.221.194

²³⁵ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3ATERABYTE

^{236&}lt;sub>HTTP</sub>://de.wikiBooks.org/wiki/%3aw%3aBenutzer%3a89.54.72.56

13:58 – 2006-03-20 13:58

- 1 217.88.44.157²³⁷ (anon) 2007-04-13 10:10 - 2007-04-13 10:10
- 1 143.107.55.161²³⁸ (anon) 2006-05-13 00:16 - 2006-05-13 00:16
- 1 85.176.3.196²³⁹
 (anon) 2007-04-17
 22:02 2007-04-17
 22:02
- 1 217.82.176.166²⁴⁰ (anon) 2004-06-02 15:09 – 2004-06-02 15:09
- 1 81.172.157.23²⁴¹
 (anon) 2007-01-08
 18:27 2007-01-08
 18:27

^{237&}lt;sub>HTTP://de.wikiBooks.org/wiki/%3aw%3aBenutzer%3a217.88.44.157</sub>

²³⁸ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A143. 107.55.161

²³⁹ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A85. 176.3.196

^{240&}lt;sub>HTTP</sub>://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A217. 82.176.166

²⁴¹http://de.wikibooks.org/wiki/%3aw%3aBenutzer%3a81.
172.157.23

- 1 80.134.234.98²⁴²
 (anon) 2006-05-30
 13:04 2006-05-30
 13:04
- 1 Louis Bafrance²⁴³ 2007-05-02 14:53 — 2007-05-02 14:53
- 1 FEDI²⁴⁴ 2004-07-13 18:31 - 2004-07-13 18:31
- 1 217.186.183.28²⁴⁵ (anon) 2005-12-12 20:54 - 2005-12-12 20:54
- 1 HOFFMEIER²⁴⁶ 2006-06-01 03:49 — 2006-06-01 03:49
- 1 217.251.104.113²⁴⁷ (anon) 2004-12-08 18:44 – 2004-12-08 18:44

242
http://de.wikibooks.org/wiki/%3aw%3aBenutzer%3a80.
134.234.98

²⁴³ http://de.wikibooks.org/wiki/%3aw%3aBenutzer%3aLouis_ Bafrance

²⁴⁴HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3AFEDI

²⁴⁵HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A217.
186.183.28

²⁴⁶HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%
3AHOFFMEIER

²⁴⁷http://de.wikibooks.org/wiki/%3aw%3aBenutzer%3a217.
251.104.113

- 1 TALOS²⁴⁸ 2006-01-19 21:15 — 2006-01-19 21:15
- 1 217.88.222.227²⁴⁹ (anon) 2006-06-28 13:54 – 2006-06-28 13:54
- 1 SUMPFSCHNECKE²⁵⁰ 2009-02-06 15:54 – 2009-02-06 15:54
- 1 131.246.90.63²⁵¹ (anon) 2007-02-26 13:17 – 2007-02-26 13:17
- 1 89.13.186.88²⁵²
 (anon) 2006-11-15
 17:58 2006-11-15
 17:58
- 1 DR.CUEPPERS²⁵³ 2007-11-02 15:10 -2007-11-02 15:10

²⁴⁸ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3ATALOS

^{249&}lt;sub>HTTP</sub>://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A217. 88.222.227

²⁵⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER% 3ASUMPFSCHNECKE

²⁵¹HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A131. 246.90.63

²⁵² http://de.wikibooks.org/wiki/%3aw%3aBenutzer%3a89.13. 186.88

²⁵³ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3ADR.

- 1 87.139.52.245²⁵⁴
 (anon) 2007-03-20
 09:27 2007-03-20
 09:27
- 1 88.70.112.55²⁵⁵ (anon) 2006-11-19 22:04 2006-11-19 22:04
- 1 85.180.26.200²⁵⁶ (anon) 2008-04-25 07:16 - 2008-04-25 07:16
- 1 134.99.18.167²⁵⁷ (anon) 2005-06-13 19:05 – 2005-06-13 19:05
- 1 62.47.144.132²⁵⁸ (anon) 2006-03-18 18:24 - 2006-03-18 18:24

254 HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A87. 139.52.245

²⁵⁵HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A88.70.
112.55

²⁵⁶ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A85. 180.26.200

²⁵⁷HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A134.
99.18.167

²⁵⁸ http://de.wikibooks.org/wiki/%3aw%3aBenutzer%3a62.47.
144.132

- 1 132.199.38.123²⁵⁹
 (anon) 2006-04-20
 13:34 2006-04-20
 13:34
- 1 80.145.33.113²⁶⁰ (anon) 2004-05-27 13:30 2004-05-27 13:30
- 1 80.108.228.220²⁶¹ (anon) 2007-01-08 17:29 - 2007-01-08 17:29
- 1 84.155.222.140²⁶² (anon) 2005-10-26 20:43 – 2005-10-26 20:43

4.2 Bilder

:DATEL:BORATELAMME.JPG²⁶³

²⁵⁹HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A132.
199.38.123

^{260&}lt;sub>HTTP</sub>://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A80. 145.33.113

²⁶¹HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A80.
108.228.220

²⁶² HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AW%3ABENUTZER%3A84.
155.222.140

 $^{^{263}\}mbox{HTTP://DE.WIKIBOOKS.org/WIKI/$3aDaTeI$3aBoraTfLamme.}$ JPG

- GNU FDL - BE-NUTZER:ERTUA²⁶⁴

•

:Datei:Leuchtprobe1.jpg²⁶⁵, :Bild:Leuchtprobe2.jpg²⁶⁶ - GNU FDL - User:The viewer²⁶⁷ (David Mülheims)

•

:Datei:Sulfidniederschläge.jpg²⁶⁸
- GNU FDL - BeNUTZER:WÄCHTER²⁶⁹

²⁶⁴ HTTP://DE.WIKIPEDIA.ORG/WIKI/BENUTZER%3AERTUA

^{265&}lt;sub>HTTP</sub>://de.wikibooks.org/wiki/%3aDatei%3aLeuchtprobe1.

^{266&}lt;sub>HTTP</sub>://DE.WIKIBOOKS.ORG/WIKI/%3ABILD%3ALEUCHTPROBE2. JPG

²⁶⁷ HTTP://COMMONS.WIKIMEDIA.ORG/WIKI/USER: THEVIEWER

²⁶⁸http://de.wikibooks.org/wiki/%3aDatei%
3aSulfidniederschl%c3%a4ge.jpg

 $^{^{269} \}mathtt{http://de.wikipedia.org/wiki/Benutzer\$3aW\$c3\$a4chter}$

²⁷⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3ADATEI%3AREADING% 20THE%20MENISCUS.PNG

²⁷¹ HTTP://COMMONS.WIKIMEDIA.ORG/WIKI/USER:JLEEDEV

5 Autoren

Edits User 1 AZH¹ 1 BSPENDRIN² 1 COMMONSDELINKER³ 2 DAS F⁴ 7 DERJOSHI⁵ 22 DIRK HUENNIGER⁶ 2 EPHRAIM33⁷ 7 FK1954⁸ 1 GERBIL⁹

 $^{^{1}{\}tt HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER:} \\ AZH$

²HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: BSPENDRIN

³HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER:
COMMONSDELINKER

⁴http://de.wikibooks.org/w/index.php?title=Benutzer: Das_f

⁵ HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: DERJOSHI

⁶ HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: DIRK HUENNIGER

⁷HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER:
EPHRAIM33

⁸ HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: FK1954

⁹ HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: GERBII

- 15 HEULER06¹⁰
 - 2 HOFFMEIER¹¹
- 37 HOLGERB¹²
 - 1 JCS¹³
 - $1 JD^{14}$
 - 6 Janinam¹⁵
 - 1 Juetho¹⁶
 - 2 Klartext¹⁷
- 21 Klaus Eifert¹⁸
 - 1 LETHARGOR¹⁹
 - $1 \quad LEYO^{20}$
 - 1 LINKSFUSS²¹

¹⁰HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER:
HEULER06

¹¹ HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: HOFFMEIER

 $^{^{12}}$ HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: HOLGERB

¹³ HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: .TCS

 $^{^{14}}$ HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER:JD

¹⁵ HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER:
JANINAM

 $^{^{16}}$ HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: JUETHO

¹⁷ HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: KLARTEXT

¹⁸HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER:
 KLAUS_EIFERT

¹⁹HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER:
 LETHARGOR

²⁰HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER:

²¹ HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: LINKSFUSS

- 359 MATTHIAS M.²²
 - 2 MIRABELLENSAFT²³
 - $1 \quad \text{My Name}^{24}$
 - $1 \quad \text{Nowic}^{25}$
 - $1 \quad ORCI^{26}$
 - 1 PIGSGRAME²⁷
 - 1 RolfS²⁸
 - 2 SUNDANCE

RAPHAEL²⁹

- 1 THEPACKER³⁰
- 1 Тнот³¹
- 1 Trovidus³²
- 1 TSCHÄFER³³

22HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: MATTHIAS M.

23HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER:
 MIRABELLENSAFT

24 HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: MY_NAME

25 HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: NOWIC

26HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER:
 ORCI

27 HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: PIGSGRAME

28 HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER:

29 HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: SUNDANCE_RAPHAEL

30 HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: THEPACKER

31 HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: THOT

32 HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: TROVIDUS

33 HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER: TSCH%C3%A4FER

- 1 XAV³⁴
- 1 ZNELOR³⁵

^{34&}lt;sub>HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER:</sub> XAV

^{35&}lt;sub>HTTP://DE.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=BENUTZER:</sub>
ZNELOR

6 Bildnachweis

In der nachfolgenden Tabelle sind alle Bilder mit ihren Autoren und Lizenen aufgelistet.

Für die Namen der Lizenzen wurden folgende Abkürzungen verwendet:

- GFDL: Gnu Free Documentation License. Der Text dieser Lizenz ist in einem Kapitel diese Buches vollständig angegeben.
- cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License.
 Der Text dieser Lizenz kann auf der Webseite http://creativecommons.org/licenses/by-sa/3.0/ nachgelesen werden.
- cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License.
 Der Text dieser Lizenz

kann auf der Webseite http://creativecommons.org/licenses/bysa/2.5/ nachgelesen werden.

- cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. Der Text der englischen Version dieser Lizenz kann auf der Webseite http://creativecommons.org/licenses/bysa/2.0/nachgelesen werden. Mit dieser Abkürzung sind jedoch die Versionen auch dieser Lizenz für andere Sprachen bezeichnet. Den an diesen Details interessierten Leser verweisen wir auf die Onlineversion dieses Buches.
- cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License.
 Der Text dieser Lizenz kann auf der Webseite http://creativecommons.org/licenses/by-sa/1.0/ nachgelesen werden.
- cc-by-2.0: Creative Commons Attribu-

tion 2.0 License. Der Text der englischen Version dieser Lizenz kann auf der Webseite http://creativecommons.org/licenses/by/2.0/ nachgelesen werden. Mit dieser Abkürzung sind jedoch auch die Versionen dieser für Lizenz andere Sprachen bezeichnet. Den an diesen Details interessierten Leser verweisen wir auf die Onlineversion dieses Buches.

- cc-by-2.5: Creative
 Commons Attribu tion 2.5 License. Der
 Text dieser Lizenz
 kann auf der Webseite
 http://creativecommons.org/licenses/by/2.5/deed.en
 nachgelesen werden.
- cc-by-3.0: Creative
 Commons Attribution 3.0 License. Der
 Text dieser Lizenz
 kann auf der Webseite
 http://creativecommons.org/licenses/by/2.5/deed.en
 nachgelesen werden.
- GPL: GNU General Public License

Version 2. Der Text dieser Lizenz kann auf der Webseite http://www.gnu.org/licenses/gpl-2.0.txt nachgelesen werden.

- PD: This image is in the public domain. Dieses Bild ist gemeinfrei.
- ATTR: The copyright holder of this file allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted.

Bild	Autor	Lizenz
1	Torsten Henning ¹	PD
2	TORSTEN HENNING ²	PD
3	TORSTEN HENNING ³	PD
4	Torsten Henning ⁴	PD
5		PD
6		PD
7		PD
8		PD
9		PD
10		PD
11		PD
12		PD
13		PD
14		PD
15		PD
16	Arthur Jan Fijałkowski	GFDL
17	Felipe Micaroni Lalli	cc-by-sa-
		3.0
18	Tfaub ⁵	PD
19		PD
20		PD
21		PD
22		PD
23		PD
24		PD
25		PD
26	Søren Wedel Nielsen	GFDL
27		PD
28	Søren Wedel Nielsen	GFDL

 1 HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ADRTORSTENHENNING 2 HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ADRTORSTENHENNING

 $^{^3}$ HTTP://de.wikibooks.org/wiki/User 3 ADrTorstenHenning

⁴HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ADRTORSTENHENNING

⁵HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ATFAUB

29	Søren Wedel Nielsen	GFDL
30		PD
31	NASA	PD
32	 ELECTRON_SHELL_011 SODIUM.SVG⁶: PUMBAA⁷ (original work by GREG ROBSON⁸) derivative work: MATT⁹ (TALK¹⁰) 	cc-by-sa- 2.0
33	• TECLUBRENNER.SVG ¹¹ : BENEDIKT.SEIDL ¹² • derivative work: MATT ¹³ (TALK ¹⁴)	cc-by-sa- 3.0
34	Original uploader was WÄCHTER ¹⁵ at DE.WIKIPEDIA ¹⁶	GFDL
35	DADADDY ¹⁷	GFDL

⁶http://de.wikibooks.org/wiki/%3aFile%3aElectron_ shell_011_Sodium.svg

⁷HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3APUMBAA80

 $^{^{8}}$ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER $^{\circ}$ 3aGregRobson

 $^{^9}$ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER\$3AMATTHIAS\$20M.

¹⁰ http://de.wikibooks.org/wiki/User%20talk%3aMatthias% 20M.

¹¹ http://de.wikibooks.org/wiki/%3aFile%3aTeclubrenner. svg

¹² HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ABENEDIKT.SEIDL

¹³ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3AMATTHIAS%20M.

¹⁴ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%20TALK%3AMATTHIAS% 20M.

¹⁵ http://de.wikibooks.org/wiki/%3ade%3aUser%3aW%c3% a4chter

¹⁶ HTTP://DE.WIKIPEDIA.ORG

¹⁷ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ADADADDY

GFDL

(CEST)) 37 TUBIFEX ²¹ 38 ERTUA ²² 39 siegert 40 TUBIFEX ²³ 41 FK1954 ²⁴ 42 USER: SIEGERT ² 43 Siegert 44 USER: SIEGERT ² 45 Siegert 46 Siegert 47 siegert 48 DR.T ²⁷ 49 Siegert	PD PD PD PD PD
38 ERTUA ²² 39 siegert 40 TUBIFEX ²³ 41 FK1954 ²⁴ 42 USER:SIEGERT ² 43 Siegert 44 USER:SIEGERT ² 45 Siegert 46 Siegert 47 siegert 48 DR.T ²⁷	GFDL PD GFDL PD PD 25 PD PD PD PD PD PD PD PD
39 siegert 40 TUBIFEX ²³ 41 FK1954 ²⁴ 42 USER:SIEGERT ² 43 Siegert 44 USER:SIEGERT ² 45 Siegert 46 Siegert 47 siegert 48 DR.T ²⁷	PD GFDL PD 25 PD PD PD PD PD PD PD PD PD
40 TUBIFEX ²³ 41 FK1954 ²⁴ 42 USER:SIEGERT ² 43 Siegert 44 USER:SIEGERT ² 45 Siegert 46 Siegert 47 siegert 48 DR.T ²⁷	GFDL PD PD PD PD PD PD PD PD
41 FK1954 ²⁴ 42 USER:SIEGERT ² 43 Siegert 44 USER:SIEGERT ² 45 Siegert 46 Siegert 47 siegert 48 DR.T ²⁷	PD PD PD PD PD PD PD
42 USER: SIEGERT ² 43 Siegert 44 USER: SIEGERT ² 45 Siegert 46 Siegert 47 siegert 48 DR.T ²⁷	225 PD PD PD PD PD PD PD
43 Siegert 44 USER:SIEGERT ² 45 Siegert 46 Siegert 47 siegert 48 DR.T ²⁷	PD PD PD PD PD
44 USER:SIEGERT ² 45 Siegert 46 Siegert 47 siegert 48 DR.T ²⁷	PD PD PD
45 Siegert 46 Siegert 47 siegert 48 DR.T ²⁷	PD PD
46 Siegert 47 siegert 48 DR.T ²⁷	PD
47 siegert 48 DR.T ²⁷	
48 DR.T ²⁷	pr.
	PD
49 Siegert	GFDL
	PD
50 USER: SIEGERT ²	28 PD
51 Tubifex ²⁹	GFDL
52 Tubifex ³⁰	GFDL
53 YIKRAZUUL ³¹	PD
<u>'</u>	

was

TALOS¹⁸

Original

uploader

¹⁸

²⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3ADE%3ABENUTZER%3ATALOS

²¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ATUBIFEX

²² HTTP://DE.WIKIBOOKS.ORG/WIKI/%3ADE%3ABENUTZER%3AERTUA

²³ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ATUBIFEX

²⁴HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3AFK1954

²⁵ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ASIEGERT

²⁶ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ASIEGERT

²⁷http://de.wikibooks.org/wiki/User%3aDr.T

²⁸ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ASIEGERT

²⁹ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ATUBIFEX

³⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ATUBIFEX

³¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3AYIKRAZUUL

22	1
USER:SIEGERT ³²	PD
Siegert	PD
	PD
	PD
DE.WIKIPEDIA ³⁵	
(Original text : <i>Richardcory</i>)	
Yikrazuul ³⁶	PD
Siegert	PD
	GFDL
User:Siegert ³⁸	PD
Siegert	PD
	PD
Tubifex ⁴⁰	GFDL
User:Siegert ⁴¹	PD
THE VIEWER ⁴² (David Mülheims)	GFDL
THE VIEWER ⁴³ (David Mülheims)	GFDL
Tubifex ⁴⁴	GFDL
Felipe Micaroni Lalli	cc-by-sa-
	3.0
Tubifex ⁴⁵	GFDL
	USER:SIEGERT ³³ Original uploader was RICHARDCORY ³⁴ at DE.WIKIPEDIA ³⁵ (Original text: <i>Richardcory</i>) YIKRAZUUL ³⁶ Siegert Arne Nordmann (NORRO ³⁷) USER:SIEGERT ³⁸ Siegert USER:SIEGERT ³⁹ TUBIFEX ⁴⁰ USER:SIEGERT ⁴¹ THE VIEWER ⁴² (David Mülheims) THE VIEWER ⁴³ (David Mülheims) TUBIFEX ⁴⁴ Felipe Micaroni Lalli

 $^{^{32}}$ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ASIEGERT

³³ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ASIEGERT

³⁴http://de.wikibooks.org/wiki/%3ade%3aUser% 3aRichardcory

³⁵ HTTP://DE.WIKIPEDIA.ORG

³⁶ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3AYIKRAZUUL

³⁷ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ANORRO

³⁸ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ASIEGERT

³⁹ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ASIEGERT

⁴⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ATUBIFEX

⁴¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ASIEGERT

mile.//DE.WIRIBOOKS.ORG/WIRI/OSEROJADIEGERI

⁴² HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ATHE%20VIEWER

 $^{^{43}}$ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER 83 ATHE 82 OVIEWER

⁴⁴ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ATUBIFEX

⁴⁵ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ATUBIFEX

71	Tubifex ⁴⁶	GFDL
72	Tubifex ⁴⁷	GFDL
73	Tubifex ⁴⁸	GFDL
74	Tubifex ⁴⁹	GFDL
75	Tubifex ⁵⁰	GFDL
76	Tubifex ⁵¹	GFDL
77	Tubifex ⁵²	GFDL
78		cc-by-sa-
	• Titrage.svg ⁵³ : User:Liquid 2003 ⁵⁴	2.0
	• derivative work: MATT ⁵⁵ (TALK ⁵⁶)	
79	MYSID ⁵⁷ (original by QUANTOCKGOB-LIN ⁵⁸)	PD
80	Jérôme ⁵⁹	GFDL

 46 HTTP://DE.WIKIBOOKS.ORG/WIKI/USER 8 3aTubifex

⁴⁷ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ATUBIFEX

⁴⁸ http://de.wikibooks.org/wiki/User%3aTubifex

⁴⁹ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ATUBIFEX

⁵⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ATUBIFEX

⁵¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER*3ATUBIFEX 52 HTTP://DE.WIKIBOOKS.ORG/WIKI/USER*3ATUBIFEX

⁵³ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AFILE%3ATITRAGE.SVG

⁵⁴ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3ALIQUID%202003

⁵⁵ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3AMATTHIAS%20M.

⁵⁶HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%20TALK%3AMATTHIAS% 20M.

⁵⁷ HTTP://DE.WIKIPEDIA.ORG/WIKI/USER%3AMYSID

⁵⁸ HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3AQUANTOCKGOBLIN

⁵⁹http://de.wikibooks.org/wiki/User%3aJborme

81	Original uploader was BEMOEIAL ⁶⁰	GFDL
	at NL.WIKIPEDIA ⁶¹ Later version(s)	
	were uploaded by ROB HOOFT ⁶² at	
	NL.WIKIPEDIA ⁶³ .	
82	H PADLECKAS ⁶⁴	cc-by-sa-
		2.5
83	USER:JLEEDEV ⁶⁵	GFDL
84	Uwe Schwöbel, Andreas 06 ⁶⁶ - Sprich	GFDL
	MIT MIR ⁶⁷ . Original uploader was AN-	
	dreas 06^{68} at de.wikipedia ⁶⁹	
85	Tobias R Metoc	cc-by-sa-
		2.5

 60 HTTP://de.wikibooks.org/wiki/%3anl%3aUser%3aBemoeial

 $^{^{61}{}}_{\mbox{\scriptsize HTTP://NL.WIKIPEDIA.ORG}}$

 $^{^{62}\}mathrm{HTTP://De.wikiBooks.org/wiki/\$3anl\$3aUser\$3aRob\$$ $20\mathrm{Hooft}$

 $^{^{63}{\}mbox{\scriptsize HTTP://NL.WIKIPEDIA.ORG}}$

⁶⁴HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3AH%20PADLECKAS

^{65&}lt;sub>HTTP</sub>://DE.WIKIBOOKS.ORG/WIKI/USER%3AJLEEDEV

⁶⁶HTTP://DE.WIKIBOOKS.ORG/WIKI/%3ADE%3ABENUTZER%3AANDREAS%2006

⁶⁷HTTP://DE.WIKIBOOKS.ORG/WIKI/%3ADE%3ABENUTZER_ DISKUSSION%3AANDREAS 06

⁶⁸ http://de.wikibooks.org/wiki/%3ade%3aUser%3aAndreas%

⁶⁹HTTP://DE.WIKIPEDIA.ORG

86		PD
	• Säuren und Laugen - Farb- spektrum verschieden- er Indikatoren.png ⁷⁰ : :de:Benutzer:MarkusZi ⁷¹	
	• derivative work: MARKUSZI ⁷² (TALK ⁷³)	
	{{created with CorelDRAW	

⁷⁰ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3AFILE%3AS%c3%A4UREN% 20UND%20LAUGEN%20-%20FARBSPEKTRUM%20VERSCHIEDENER% 20INDIKATOREN.PNG

⁷¹ HTTP://DE.WIKIBOOKS.ORG/WIKI/%3ADE%3ABENUTZER% 3AMARKUSZI

⁷²HTTP://DE.WIKIBOOKS.ORG/WIKI/USER%3AMARKUSZI

^{73&}lt;sub>HTTP</sub>://DE.WIKIBOOKS.ORG/WIKI/USER%20TALK%3AMARKUSZI