
C++ Programming/Classes

Wikibooks.org

April 17, 2012

Contents

0.1 CLASSES . 1

1 AUTHORS 33

LIST OF FIGURES 35

0.1 Classes

Classes are used to create user defined types. An instance of a class is called an object and programs
can contain any number of classes. As with other types, object types are case-sensitive.

Classes provide encapsulation as defined in the Object Oriented Programming (OOP) paradigm. A
class can have both data members and functions members associated with it. Unlike the built-in
types, the class can contain several variables and functions, those are called members.

Classes also provide flexibility in the "DIVIDE AND CONQUER1" scheme in program writing. In
other words, one programmer can write a class and guarantee an interface. Another programmer
can write the main program with that expected interface. The two pieces are put together and
compiled for usage.

Note:
From a technical viewpoint, a struct and a class are practically the same thing. A struct can be
used anywhere a class can be and vice-versa, the only technical difference is that class mem-
bers default to private and struct members default to public. Structs can be made to behave
like classes simply by putting in the keyword private at the beginning of the struct. Other than
that it is mostly a difference in convention.
The C++ standard does not have a definition for method. When discussing with users of other
languages, the use of the word method to represent a member function can at times become
confusing or raise problems to interpretation, like referring to a static member function as a
static method. It is even common for some C++ programmers to use the term method to refer
specifically to a virtual member functions in an informal context.

0.1.1 Declaration

A class is defined by:

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIVIDE%20AND%20CONQUER

1

http://en.wikipedia.org/wiki/divide%20and%20conquer

Contents

class MyClass
{
/* public, protected and private
variables, constants, and functions */

};

An object of type MyClass (case-sensitive) is declared using:

MyClass object;

• by default, all class members are initially private.
• keywords public and protected allow access to class members.
• classes contain not only data members, but also functions to manipulate that data.
• a class is used as the basic building block of OOP (this is a distinction of convention, not of

language-enforced semantics).

A class can be created

• before main() is called.
• when a function is called in which the object is declared.
• when the "new" operator is used.

Class Names

• Name the class after what it is. If you can’t determine a name, then you have not designed the
system well enough.

• Compound names of over three words are a clue your design may be confusing various entities
in your system. Revisit your design. Try a CRC card session to see if your objects have more
responsibilities than they should.

• Avoid the temptation of naming a class something similar to the class it is derived from. A class
should stand on its own. Declaring an object with a class type doesn’t depend on where that class
is derived from.

• Suffixes or prefixes are sometimes helpful. For example, if your system uses agents then naming
something DownloadAgent conveys real information.

Data Abstraction

A fundamental concept of Object Oriented (OO) recommends an object should not expose any of
its implementation details. This way, you can change the implementation without changing the
code that uses the object. The class, by design, allows its programmer to hide (and also prevents
changes as to) how the class is implemented. This powerful tool allows the programmer to build
in a ’preventive’ measure. Variables within the class often have a very significant role in what the
class does, therefore variables can be secured within the private section of the class.

2

Classes

0.1.2 Access labels

The access labels Public, Protected and Private are used within classes to set access permissions
for the members in that section of the class. All class members are initially private by default. The
labels can be in any order. These labels can be used multiple times in a class declaration for cases
where it is logical to have multiple groups of these types. An access label will remain active until
another access label is used to change the permissions.

We have already mentioned that a class can have member functions "inside" it; we will see more
about them later. Those member functions can access and modify all the data and member function
that are inside the class. Therefore, permission labels are to restrict access to member function that
reside outside the class and for other classes.

For example, a class "Bottle" could have a private variable fill, indicating a liquid level 0-3 dl. fill
cannot be modified directly (compiler error), but instead Bottle provides the member function sip()
to reduce the liquid level by 1. Mywaterbottle could be an instance of that class, an object.

/* Bottle - Class and Object Example */
#include <iostream>
#include <iomanip>

using namespace std;

class Bottle
{
private: // variables are modified by member functions of class
int iFill; // dl of liquid

public:
Bottle() // Default Constructor
: iFill(3) // They start with 3 dl of liquid
{
// More constructor code would go here if needed.

}

bool sip() // return true if liquid was available
{

if (iFill > 0)
{
--iFill;
return true;

}
else
{
return false;

}

}

int level() const // return level of liquid dl
{

return iFill;
}

}; // Class declaration has a trailing semicolon

int main()
{
// terosbottle object is an instance of class Bottle
Bottle terosbottle;
cout << "In the beginning, mybottle has "

<< terosbottle.level()

3

Contents

<< " dl of liquid"
<< endl;

while (terosbottle.sip())
{

cout << "Mybottle has "
<< terosbottle.level()
<< " dl of liquid"
<< endl;

}

return 0;
}

These keywords, private, public, and protected, affect the permissions of the members -- whether
functions or variables.

public

This label indicates any members within the ’public’ section can accessed freely anywhere a de-
clared object is in scope.

Note:
Avoid declaring public data members, since doing so would contribute to create unforeseen
disasters.

private

Members defined as private are only accessible within the class defining them, or friend classes.
Usually the domain of member variables and helper functions. It’s often useful to begin putting
functions here and then moving them to the higher access levels as needed so to reduce complexity.

Note:
It’s often overlooked that different instances of the same class may access each others’ private
or protected variables. A common case for this is in copy constructors.

(This is an example where the default copy constructor will do the same thing.)

class Foo
{
public:
Foo(const Foo &f)
{
m_iValue = f.m_iValue; // perfectly legal

}

private:
int m_iValue;

};

4

Classes

protected

The protected label has a special meaning to inheritance, protected members are accessible in the
class that defines them and in classes that inherit from that base class, or friends of it. In the section
on inheritance we will see more about it.

Note:
Other instances of the same class can access a protected field - provided the two classes are of
the same type. However, an instance of a child class cannot access a protected field or method
of an instance of a parent class.

0.1.3 Inheritance (Derivation)

As we have seen early as we introduced PROGRAMMING PARADIGMS2, INHERITANCE3 is a prop-
erty that describes a relationship between two (or more) types, or classes, of objects in OOP and
C++ classes share this property. This in it self in not an abstraction but a characteristic of OOP.

Derivation is the action of creating a new class using the inheritance property of the C++ pro-
gramming language. It is possible to derive one class from another or even several (MULTIPLE
INHERITANCE4), like a tree we can call base class to the root and child class to any leaf; in any
other case the parent/child relation will exist for each class derived from another.

Base Class

A base class is a class that is created with the intention of deriving other classes from it.

Child Class

A child class is a class that was derived from another, that will now be the parent class to it.

Parent Class

A parent class is the closest class that we derived from to create the one we are referencing as the
child class.

As an example, suppose you are creating a game, something using different cars, and you need
specific type of car for the policemen and another type for the player(s). Both car types share
similar properties. The major difference (on this example case) would be that the policemen type
would have sirens on top of their cars and the players’ cars will not.

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%
20LANGUAGES%2FPARADIGMS

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%
20LANGUAGES%2FPARADIGMS%2FINHERITANCE

4 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCLASSES%2FINHERITANCE%
23MULTIPLE_INHERITANCE

5

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FParadigms
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FParadigms
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FParadigms%2FInheritance
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FParadigms%2FInheritance
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FClasses%2FInheritance%23Multiple_inheritance
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FClasses%2FInheritance%23Multiple_inheritance

Contents

One way of getting the cars for the policemen and the player ready is to create separate classes for
policemen’s car and for the player’s car like this:

class PlayerCar {
private:
int color;

public:
void driveAtFullSpeed(int mph){
// code for moving the car ahead

}

};

class PoliceCar {
private:
int color;
bool sirenOn; // identifies whether the siren is on or not
bool inAction; // identifies whether the police is in action (following the

player) or not

public:
bool isInAction(){
return this->inAction;

}

void driveAtFullSpeed(int mph){
// code for moving the car ahead

}

};

and then creating separate objects for the two cars like this:

PlayerCar player1;
PoliceCar policemen1;

So, except for one thing that you can easily notice: there are certain parts of code that are very
similar (if not exactly the same) in the above two classes. In essence, you have to type in the same
code at two different locations! And when you update your code to include methods (functions) for
handBrake() and pressHorn(), you’ll have to do that in both the classes above.

Therefore, to escape this frustrating (and confusing) task of writing the same code at multiple loca-
tions in a single project, you use Inheritance.

Now that you know what kind of problems Inheritance solves in C++, let’s examine how to im-
plement Inheritance in our programs. As its name suggests, Inheritance lets us create new classes
which automatically have all the code from existing classes. It means that if there is a class called
MyClass, a new class with the name MyNewClass can be created which will have all the code present
inside the MyClass class. The following code segment shows it all:

class MyClass {
protected:

int age;
public:

void sayAge(){
this->age = 20;
cout << age;

}
};

6

Classes

class MyNewClass : public MyClass {

};

int main() {

MyNewClass *a = new MyNewClass();
a->sayAge();

return 0;

}

As you can see, using the colon ’:’ we can inherit a new class out of an existing one. It’s that
simple! All the code inside the MyClass class is now available to the MyNewClass class. And if you
are intelligent enough, you can already see the advantages it provides. If you are like me (i.e. not
too intelligent), you can see the following code segment to know what I mean:

class Car {
protected:

int color;
int currentSpeed;
int maxSpeed;

public:
void applyHandBrake(){

this->currentSpeed = 0;
}
void pressHorn(){

cout << "Teeeeeeeeeeeeent"; // funny noise for a horn
}
void driveAtFullSpeed(int mph){

// code for moving the car ahead;
}

};

class PlayerCar : public Car {

};

class PoliceCar : public Car {
private:

bool sirenOn; // identifies whether the siren is on or not
bool inAction; // identifies whether the police is in action (following

the player) or not
public:

bool isInAction(){
return this->inAction;

}
};

In the code above, the two newly created classes PlayerCar and PoliceCar have been inherited from
the Car class. Therefore, all the methods and properties (variables) from the Car class are available
to the newly created classes for the player’s car and the policemen’s car. Technically speaking, in
C++, the Car class in this case is our "Base Class" since this is the class which the other two classes
are based on (or inherit from).

Just one more thing to note here is the keyword protected instead of the usual private keyword.
That’s no big deal: We use protected when we want to make sure that the variables we define in
our base class should be available in the classes that inherit from that base class. If you use private
in the class definition of the Car class, you will not be able to inherit those variables inside your
inherited classes.

7

Contents

There are three types of class inheritance: public, private and protected. We use the keyword public
to implement public inheritance. The classes who inherit with the keyword public from a base class,
inherit all the public members as public members, the protected data is inherited as protected data
and the private data is inherited but it cannot be accessed directly by the class.

The following example shows the class Circle that inherits "publicly" from the base class Form:

class Form {
private:
double area;

public:
int color;

double getArea(){
return this->area;

}

void setArea(double area){
this->area=area;

}

};

class Circle: public Form {
public:
double getRatio() {
double a;
a= getArea();
return sqrt(a/2*3.14);

}

void setRatio(double diameter) {
setArea(pow(diameter * 0.5, 2) * (3.14));

}

bool isDark() {
return color>10;

}

};

The new class Circle inherits the attribute area from the base class Form (the attribute area is implic-
itly an attribute of the class Circle), but it cannot access it directly. It does so through the functions
getArea and setArea (that are public in the base class and remain public in the derived class). The
color attribute, however, is inherited as a public attribute, and the class can access it directly.

The following table indicates how the attributes are inherited in the three different types of inheri-
tance:

private protected public
private inheritance The member is in-

accessible.
The member is pri-
vate.

The member is pri-
vate.

protected inheri-
tance

The member is in-
accessible.

The member is pro-
tected.

The member is pro-
tected.

public inheritance The member is in-
accessible.

The member is pro-
tected.

The member is
public.

8

Classes

As the table above shows, protected members are inherited as protected methods in public inheri-
tance. Therefore, we should use the protected label whenever we want to declare a method inacces-
sible outside the class and not to lose access to it in derived classes. However, losing accessibility
can be useful sometimes, because we are encapsulating details in the base class.

Let’s imagine that we have a class with a very complex method "m" that invokes many auxiliary
methods declared as private in the class. If we derive a class from it, we should not bother about
those methods because they are inaccessible in the derived class. If a different programmer is in
charge of the design of the derived class, allowing access to those methods could be the cause of
errors and confusion. So, it is a good idea to avoid the protected label whenever we can have a
design with the same result with the private label.

Multiple inheritance

MULTIPLE INHERITANCE5 allows the construction of classes that inherit from more than one
type or class. This contrasts with single inheritance, where a class will only inherit from one type
or class.

Multiple inheritance can cause some confusing situations, and is much more complex than single
inheritance, so there is some debate over whether or not its benefits outweigh its risks. Multi-
ple inheritance has been a touchy issue for many years, with opponents pointing to its increased
complexity and ambiguity in situations such as the "DIAMOND PROBLEM6". Most modern OOP
languages do not allow multiple inheritance.

The declared order of derivation is relevant for determining the order of default initialization by
constructors and destructors cleanup.

class One
{
// class internals

}

class Two
{
// class internals

}

class MultipleInheritance : public One, public Two
{
// class internals

}

Note:
Remember that when creating classes that will be derived from, the destructor may require
further considerations.

EXPANDTEMPLATES7

5 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%
20LANGUAGES%2FPARADIGMS%2FINHERITANCE%2FMULTIPLE%20INHERITANCE

6 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIAMOND%20PROBLEM
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

9

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FParadigms%2FInheritance%2FMultiple%20Inheritance
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FParadigms%2FInheritance%2FMultiple%20Inheritance
http://en.wikipedia.org/wiki/diamond%20problem
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Contents

0.1.4 Data members

Data members are declared in the same way as a global or function variable, but as part of the
class definition. Their purpose is to store information for that class and may include members of
any type, even other user-defined types. They are usually hidden from outside use, depending on
the coding style adopted, external use is normally done through SPECIAL MEMBER FUNCTIONS8.

Note:
Explicit initializers are not allowed inside the class definition, except if they are const
static int or enumeration types, these may have an explicit initializer.

To do:
Add more info

this pointer

The this keyword acts as a pointer to the class being referenced. The this pointer acts like any other
pointer, although you can’t change the pointer itself. Read the section concerning POINTERS AND

REFERENCES9 to understand more about general pointers.

The this pointer is only accessible within nonstatic member functions of a class, union or struct,
and is not available in static member functions. It is not necessary to write code for the this pointer
as the compiler does this implicitly. When using a debugger, you can see the this pointer in some
variable list when the program steps into nonstatic class functions.

In the following example, the compiler inserts an implicit parameter this in the nonstatic mem-
ber function int getData(). Additionally, the code initiating the call passes an implicit parameter
(provided by the compiler).

class Foo
{
private:

int iX;
public:

Foo(){ iX = 5; };

int getData()
{

return this->iX; // this is provided by the compiler at compile time
}

};

8 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCLASSES%23ACCESSORS_
AND_MODIFIERS_.28SETTER.2FGETTER.29

9 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%
20LANGUAGES%2FC%2B%2B%2FCODE%2FSTATEMENTS%2FVARIABLES%2FOPERATORS%
23POINTERS.2C%20.22.2A.22%20AND%20REFERENCES.2C%20.22.26.22

10

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FClasses%23Accessors_and_Modifiers_.28Setter.2FGetter.29
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FClasses%23Accessors_and_Modifiers_.28Setter.2FGetter.29
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FStatements%2FVariables%2FOperators%23Pointers.2C%20.22.2A.22%20and%20References.2C%20.22.26.22
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FStatements%2FVariables%2FOperators%23Pointers.2C%20.22.2A.22%20and%20References.2C%20.22.26.22
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FStatements%2FVariables%2FOperators%23Pointers.2C%20.22.2A.22%20and%20References.2C%20.22.26.22

Classes

int main()
{

Foo Example;
int iTemp;

iTemp = Example.getData(&Example); // compiler adds the &Example reference
at compile time

return 0;
}

There are certain times when a programmer should know about and use the this pointer. The this
pointer should be used when overloading the assignment operator to prevent a catastrophe. For
example, add in an assignment operator to the code above.

class Foo
{
private:

int iX;
public:

Foo() { iX = 5; };

int getData()
{

return iX;
}

Foo& operator=(const Foo &RHS);
};

Foo& Foo::operator=(const Foo &RHS)
{

if(this != &RHS)
{ // the if this test prevents an object from copying to itself (ie. RHS =

RHS;)
this->iX = RHS.iX; // this is suitable for this class, but can be

more complex when
// copying an object in a different much larger

class
}

return (*this); // returning an object allows chaining, like a = b
= c; statements
}

However little you may know about this, it is important in implementing any class.

EXPANDTEMPLATES10

static data member

The use of the static11 specifier in a data member, will cause that member to be shared by all
instances of the owner class and derived classes. To use static data members you must declare the
data member as static and initialize it outside of the class declaration, at file scope.

When used in a class data member, all instantiations of that class share one copy of the variable.

10 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ASPECIAL%3AEXPANDTEMPLATES
11 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%

20LANGUAGES%2FC%2B%2B%2FCODE%2FKEYWORDS%2FSTATIC

11

http://en.wikibooks.org/wiki/Category%3ASpecial%3AExpandTemplates
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fstatic
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fstatic

Contents

class Foo {
public:
Foo() {
++iNumFoos;
cout << "We have now created " << iNumFoos << " instances of the Foo

class\n";
}

private:
static int iNumFoos;

};

int Foo::iNumFoos = 0; // allocate memory for numFoos, and initialize it

int main() {
Foo f1;
Foo f2;
Foo f3;

}

In the example above, the static class variable numFoos is shared between all three instances of
the Foo class (f1, f2 and f3) and keeps a count of the number of times that the Foo class has been
instantiated.
12

0.1.5 Member Functions

Member functions can (and should) be used to interact with data contained within user defined
types. User defined types provide flexibility in the "DIVIDE AND CONQUER13" scheme in program
writing. In other words, one programmer can write a user defined type and guarantee an interface.
Another programmer can write the main program with that expected interface. The two pieces are
put together and compiled for usage. User defined types provide encapsulation defined in the Object
Oriented Programming (OOP) paradigm.

Within classes, to protect the data members, the programmer can define functions to perform the op-
erations on those data members. Member functions and functions are names used interchangeably
in reference to classes. Function prototypes are declared within the class definition. These proto-
types can take the form of non-class functions as well as class suitable prototypes. Functions can be
declared and defined within the class definition. However, most functions can have very large defi-
nitions and make the class very unreadable. Therefore it is possible to define the function outside of
the class definition using the scope resolution operator "::". This scope resolution operator allows
a programmer to define the functions somewhere else. This can allow the programmer to provide a
header file .h defining the class and a .obj file built from the compiled .cpp file which contains the
function definitions. This can hide the implementation and prevent tampering. The user would have
to define every function again to change the implementation. Functions within classes can access
and modify (unless the function is constant) data members without declaring them, because the data
members are already declared in the class.

Simple example:

file: Foo.h

12 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ASPECIAL%3AEXPANDTEMPLATES
13 HTTP://EN.WIKIPEDIA.ORG/WIKI/DIVIDE%20AND%20CONQUER

12

http://en.wikibooks.org/wiki/Category%3ASpecial%3AExpandTemplates
http://en.wikipedia.org/wiki/divide%20and%20conquer

Classes

// the header file named the same as the class helps locate classes within a
project
// one class per header file makes it easier to keep the
// header file readable (some classes can become large)
// each programmer should determine what style works for them or what programming
standards their
// teacher/professor/employer has

#ifndef FOO_H
#define FOO_H

class Foo{
public:
Foo(); // function called the default constructor
Foo(int a, int b); // function called the overloaded constructor
int Manipulate(int g, int h);

private:
int x;
int y;

};

#endif

file: Foo.cpp

#include "Foo.h"

/* these constructors should really show use of initialization lists
Foo::Foo() : x(5), y(10)
{
}
Foo:Foo(int a, int b) : x(a), y(b)
{
}

*/
Foo::Foo(){
x = 5;
y = 10;

}
Foo::Foo(int a, int b){
x = a;
y = b;

}

int Foo::Manipulate(int g, int h){
x = h + g*x;
y = g + h*y;

}

Overloading

Member functions can be overloaded. This means that multiple member functions can exist with the
same name on the same scope, but must have different signatures. A member function’s signature
is comprised of the member function’s name and the type and order of the member function’s
parameters.

Due to name hiding, if a member in the derived class shares the same name with members of the base
class, they will be hidden to the compiler. To make those members visible, one can use declarations
to introduce them from base class scopes.

13

Contents

Constructors and other class member functions, except the Destructor, can be overloaded.

Constructors

A constructor is a special member function which is called whenever a new instance of a class is
created. The compiler calls the constructor after the new object has been allocated in memory, and
converts that "raw" memory into a proper, typed object. The constructor is declared much like a
normal member function but it will share the name of the class and it has no return value.

Constructors are responsible for almost all of the run-time setup necessary for the class operation.
Its main purpose becomes in general defining the data members upon object instantiation (when an
object is declared), they can also have arguments, if the programmer so chooses. If a constructor
has arguments, then they should also be added to the declaration of any other object of that class
when using the new operator. Constructors can also be overloaded.

Foo myTest; // essentially what happens is: Foo myTest = Foo();
Foo myTest(3, 54); // accessing the overloaded constructor
Foo myTest = Foo(20, 45); // although a new object is created, there are some
extra function calls involved

// with more complex classes, an assignment operator
should

// be defined to ensure a proper copy (includes
’’deep copy’’)

// myTest would be constructed with the default
constructor, and then the

// assignment operator copies the unnamed Foo(20, 45
) object to myTest

using new with a constructor

Foo* myTest = new Foo(); // this defines a pointer to a dynamically
allocated object
Foo* myTest = new Foo(40, 34); // constructed with Foo(40, 34)
// be sure to use delete to avoid memory leaks

Note:
While there is no risk in using new to create an object, it is often best to avoid using memory
allocation functions within objects’ constructors. Specifically, using new to create an array
of objects, each of which also uses new to allocate memory during its construction, often re-
sults in runtime errors. If a class or structure contains members which must be pointed at dy-
namically created objects, it is best to sequentially initialize these arrays of the parent object,
rather than leaving the task to their constructors.
This is especially important when writing code with exceptions (in EXCEPTION HAN-
DLING14), if an exception is thrown before a constructor is completed, the associated destruc-
tor will not be called for that object.

A constructor can’t delegate to another. It is also considered desirable to reduce the use of default
arguments, if a maintainer has to write and maintain multiple constructors it can result in code

14 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FEXCEPTION%20HANDLING

14

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FException%20Handling

Classes

duplication, which reduces maintainability because of the potential for introducing inconsistencies
and even lead to code bloat.

Default Constructors

A default constructor is one which can be called with no arguments. Most commonly, a default con-
structor is declared without any parameters, but it is also possible for a constructor with parameters
to be a default constructor if all of those parameters are given default values.

In order to create an array of objects of a class type, the class must have an accessible default
constructor; C++ has no syntax to specify constructor arguments for array elements.

Overloaded Constructors
When an object of a class is instantiated, the class writer can provide various constructors each with
a different purpose. A large class would have many data members, some of which may or may not
be defined when an object is instantiated. Anyway, each project will vary, so a programmer should
investigate various possibilities when providing constructors.

These are all constructors for a class myFoo.

myFoo(); // default constructor, the user has no control over initial values
// overloaded constructors

myFoo(int a, int b=0); // allows construction with a certain ’a’ value, but
accepts ’b’ as 0

// or allows the user to provide both ’a’ and ’b’ values
// or

myFoo(int a, int b); // overloaded constructor, the user must specify both
values

class myFoo {
private:
int Useful1;
int Useful2;

public:
myFoo(){ // default constructor

Useful1 = 5;
Useful2 = 10;

};

myFoo(int a, int b = 0) { // two possible cases when invoked
Useful1 = a;
Useful2 = b;

};

};

myFoo Find; // default constructor, private member values Useful1 = 5,
Useful2 = 10
myFoo Find(8); // overloaded constructor case 1, private member values
Useful1 = 8, Useful2 = 0
myFoo Find(8, 256); // overloaded constructor case 2, private member values
Useful1 = 8, Useful2 = 256

15

Contents

Constructor initialization lists
Constructor initialization lists (or member initialization list) are the only way to initialize data

members and base classes with a non-default constructor. Constructors for the members are in-
cluded between the argument list and the body of the constructor (separated from the argument list
by a colon). Using the initialization lists is not only better in terms of efficiency but also the sim-
plest way to guarantee that all initialization of data members are done before entering the body of
constructors.

// Using the initialization list for _myComplexMember
MyClass::MyClass(int mySimpleMember, MyComplexClass myComplexMember)
: _myComplexMember(myComplexMember) // only 1 call, to the copy constructor
{
_mySimpleMember=mySimpleMember; // uses 2 calls, one for the constructor of the
mySimpleMember class

// and a second for the assignment operator of
the MyComplexClass class
}

This is more efficient than assigning value to the complex data member inside the body of the
constructor because in that case the variable is initialized with its corresponding constructor.

Note that the arguments provided to the constructors of the members do not need to be arguments
to the constructor of the class; they can also be constants. Therefore you can create a default
constructor for a class containing a member with no default constructor.

Example:

MyClass::MyClass() : _myComplexMember(0) { }

It is useful to initialize your members in the constructor using this initialization lists. This makes
it obvious for the reader that the constructor does not execute logic. The order the initialization is
done should be the same as you defined your base-classes and members. Otherwise you can get
warnings at compile-time. Once you start initializing your members make sure to keep all in the
constructor(s) to avoid confusion and possible 0xbaadfood.

It is safe to use constructor parameters that are named like members.

Example:

class MyClass : public MyBaseClassA, public MyBaseClassB {
private:
int c;
void *pointerMember;

public:
MyClass(int,int,int);

};
/*...*/
MyClass::MyClass(int a, int b, int c):
MyBaseClassA(a)
,MyBaseClassB(b)
,c(c)
,pointerMember(NULL)
,referenceMember()
{
//logic
}

Note that this technique was also possible for normal functions but it is now obsoleted and is clas-
sified as an error in such case.

16

Classes

Note:
It is a common misunderstanding that initialization of data members can be done within the
body of constructors. All such kind of so-called "initialization" are actually assignments. The
C++ standard defines that all initialization of data members are done before entering the body
of constructors. This is the reason why certain types (const types and references) cannot be
assigned to and must be initialized in the constructor initialization list.
One should also keep in mind that class members are initialized in the order they are declared,
not the order they appear in the initializer list. One way of avoiding CHICKEN AND EGG

PARADOXES15 is to always add the members to the initializer list in the same order they’re
declared.

Destructors

Destructors like the Constructors are declared as any normal member functions but will share the
same name as the Class, what distinguishes them is that the Destructor’s name is preceded with a
"˜", it can not have arguments and can’t be overloaded.

Destructors are called whenever an Object of the Class is destroyed. Destructors are crucial in
avoiding resource leaks (by deallocating memory), and in implementing the RAII idiom. Resources
which are allocated in a Constructor of a Class are usually released in the Destructor of that Class
as to return the system to some known or stable state after the Class ceases to exist.

The Destructor is invoked when Objects are destroyed, after the function they were declared in
returns, when the delete operator is used or when the program is over. If an object of a derived type
is destructed, first the Destructor of the most derived object is executed. Then member objects and
base class subjects are destructed recursively, in the reverse order their corresponding Constructors
completed. As with structs the compiler implicitly-declares a Destructor as a inline public member
of its class if the class doesn’t have a user-declared Destructor.

The DYNAMIC TYPE16 of the object will change from the most derived type as Destructors run,
symmetrically to how it changes as Constructors execute. This affects the functions called by vir-
tual calls during construction and destruction, and leads to the common (and reasonable) advice
to avoid calling virtual functions of an object either directly or indirectly from its Constructors or
Destructors.

inline17

Sharing most of the concepts we have seen before on the introduction to INLINE FUNCTIONS18,
when dealing with member function those concepts are extended, with a few additional considera-
tions.

15 HTTP://EN.WIKIPEDIA.ORG/WIKI/CHICKEN%20OR%20THE%20EGG
16 HTTP://EN.WIKIPEDIA.ORG/WIKI/DYNAMIC%20TYPE
17 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%

20LANGUAGES%2FC%2B%2B%2FCODE%2FKEYWORDS%2FINLINE
18 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCODE%2FSTATEMENTS%

2FFUNCTIONS%23INLINE

17

http://en.wikipedia.org/wiki/Chicken%20or%20the%20egg
http://en.wikipedia.org/wiki/dynamic%20type
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Finline
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Finline
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStatements%2FFunctions%23Inline
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStatements%2FFunctions%23Inline

Contents

If the member functions definition is included inside the declaration of the class, that function is by
default made implicitly inline. Compiler options may override this behavior.

Calls to virtual functions cannot be inlined if the object’s type is not known at compile-time, because
we don’t know which function to inline.

static19

The static keyword can be used in four different ways:

• TO CREATE PERMANENT STORAGE FOR LOCAL VARIABLES IN A FUNCTION20.
• TO SPECIFY INTERNAL LINKAGE21.
• TO DECLARE MEMBER FUNCTIONS THAT ACT LIKE NON-MEMBER FUNCTIONS22.
• TO CREATE A SINGLE COPY OF A DATA MEMBER23.

To do:
Alter the above links from subsection to
book locations after the structure is fixed.

static member function
Member functions or variables declared static are shared between all instances of an object type.

Meaning that only one copy of the member function or variable does exists for any object type.

member functions callable without an object

When used in a class function member, the function does not take an instantiation as an implicit
this24 parameter, instead behaving like a free function. This means that static class functions can
be called without creating instances of the class:

class Foo {
public:
Foo() {
++numFoos;
cout << "We have now created " << numFoos << " instances of the Foo class\n";

19 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%
20LANGUAGES%2FC%2B%2B%2FCODE%2FKEYWORDS%2FSTATIC

20 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%
20LANGUAGES%2FC%2B%2B%2FCODE%2FKEYWORDS%2FSTATIC%2FPERMANENT%20STORAGE

21 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%
20LANGUAGES%2FC%2B%2B%2FCODE%2FKEYWORDS%2FSTATIC%2FINTERNAL%20LINKAGE

22 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%
20LANGUAGES%2FC%2B%2B%2FCODE%2FKEYWORDS%2FSTATIC%2FMEMBER%20FUNCTION

23 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%
20LANGUAGES%2FC%2B%2B%2FCODE%2FKEYWORDS%2FSTATIC%2FDATA%20MEMBER

24 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%
20LANGUAGES%2FC%2B%2B%2FCODE%2FKEYWORDS%2FTHIS

18

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fstatic
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fstatic
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fstatic%2FPermanent%20Storage
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fstatic%2FPermanent%20Storage
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fstatic%2FInternal%20Linkage
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fstatic%2FInternal%20Linkage
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fstatic%2FMember%20Function
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fstatic%2FMember%20Function
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fstatic%2FData%20Member
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fstatic%2FData%20Member
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fthis
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fthis

Classes

}
static int getNumFoos() {
return numFoos;

}
private:
static int numFoos;

};

int Foo::numFoos = 0; // allocate memory for numFoos, and initialize it

int main() {
Foo f1;
Foo f2;
Foo f3;
cout << "So far, we’ve made " << Foo::getNumFoos() << " instances of the Foo
class\n";
}

Named constructors
Named constructors are a good example of using static member functions. Named constructors is

the name given to functions used to create an object of a class without (directly) using its construc-
tors. This might be used for the following:

1. To circumvent the restriction that constructors can be overloaded only if their signatures differ.
2. Making the class non-inheritable by making the constructors private.
3. Preventing stack allocation by making constructors private

Declare a static member function that uses a private constructor to create the object and return it. (It
could also return a pointer or a reference but this complication seems useless, and turns this into the
FACTORY PATTERN25 rather than a conventional named constructor.)

Here’s an example for a class that stores a temperature that can be specified in any of the different
temperature scales.

class Temperature
{

public:
static Temperature Fahrenheit (double f);
static Temperature Celsius (double c);
static Temperature Kelvin (double k);

private:
Temperature (double temp);
double _temp;

};

Temperature::Temperature (double temp):_temp (temp) {}

Temperature Temperature::Fahrenheit (double f)
{

return Temperature ((f + 459.67) / 1.8);
}

Temperature Temperature::Celsius (double c)
{

return Temperature (c + 273.15);
}

25 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCODE%2FDESIGN%
20PATTERNS

19

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FDesign%20Patterns
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FDesign%20Patterns

Contents

Temperature Temperature::Kelvin (double k)
{

return Temperature (k);
}

26

const

This type of member function cannot modify the member variables of a class. It’s a hint both to the
programmer and the compiler that a given member function doesn’t change the internal state of a
class; however, any variables declared as mutable can still be modified.

Take for example:

class Foo
{
public:
int value() const
{
return m_value;

}

void setValue(int i)
{
m_value = i;

}

private:
int m_value;

};

Here value() clearly does not change m_value and as such can and should be const. However
setValue() does modify m_value and as such cannot be const.

Another subtlety often missed is a const member function cannot call a non-const member function
(and the compiler will complain if you try). The const member function cannot change member
variables and a non-const member functions can change member variables. Since we assume non-
const member functions do change member variables, const member functions are assumed to
never change member variables and can’t call functions that do change member variables.

The following code example explains what const can do depending on where it is placed.

class Foo
{
public:

/*
* Modifies m_widget and the user

* may modify the returned widget.

*/
Widget *widget();

/*
* Does not modify m_widget but the

* user may modify the returned widget.

*/

26 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3ASPECIAL%3AEXPANDTEMPLATES

20

http://en.wikibooks.org/wiki/Category%3ASpecial%3AExpandTemplates

Classes

Widget *widget() const;

/*
* Modifies m_widget, but the user

* may not modify the returned widget.

*/
const Widget *cWidget();

/*
* Does not modify m_widget and the user

* may not modify the returned widget.

*/
const Widget *cWidget() const;

private:
Widget *m_widget;

};

Accessors and Modifiers (Setter/Getter)

What is an accessor?

An accessor is a member function that does not modify the state of an object. The accessor func-
tions should be declared as CONST27.

Getter is another common definition of an accessor due to the naming (GetSize()) of that type
of member functions.

What is a modifier?

A modifier, also called a modifying function, is a member function that changes the value of at
least one data member. In other words, an operation that modifies the state of an object. Modifiers
are also known as ‘mutators’.

Setter is another common definition of a modifier due to the naming (SetSize(int a_Size)
) of that type of member functions.

Note:
These are commonly used reference labels (not defined on the standard language).

Dynamic polymorphism (Overrides)

So far, we have learned that we can add new data and functions to a class through inheritance.
But what about if we want our derived class to inherit a method from the base class, but to have a
different implementation for it? That is when we are talking about polymorphism, a fundamental
concept in OOP programming.

27 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCLASSES%2FMEMBER%
20FUNCTIONS%23CONST

21

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FClasses%2FMember%20Functions%23const
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FClasses%2FMember%20Functions%23const

Contents

As seen previously in the PROGRAMMING PARADIGMS SECTION28, POLYMORPHISM29 is subdi-
vided in two concepts static polymorphism and dynamic polymorphism. This section concentrates
on dynamic polymorphism, which applies in C++ when a derived class overrides a function declared
in a base class.

We implement this concept redefining the method in the derived class. However, we need to have
some considerations when we do this, so now we must introduce the concepts of dynamic binding,
static binding and virtual methods.

Suppose that we have two classes, A and B. B derives from A and redefines the implementation of a
method c() that resides in class A. Now suppose that we have an object b of class B. How should
the instruction b.c() be interpreted?

If b is declared in the stack (not declared as a pointer or a reference) the compiler applies static
binding, this means it interprets (at compile time) that we refer to the implementation of c() that
resides in B.

However, if we declare b as a pointer or a reference of class A, the compiler could not know which
method to call at compile time, because b can be of type A or B. If this is resolved at run time, the
method that resides in B will be called. This is called dynamic binding. If this is resolved at compile
time, the method that resides in A will be called. This is again, static binding.

Virtual member functions
The virtual member functions is relatively simple, but often misunderstood. The concept is an

essential part of designing a class hierarchy in regards to sub-classing classes as it determines the
behavior of overridden methods in certain contexts.

Virtual member functions are class member functions, that can be overridden in any class derived
from the one where they were declared. The member function body is then replaced with a new set
of implementation in the derived class.

Note:
When overriding virtual functions you can alter the private, protected or public state access
state of the member function of the derived class.

By placing the keyword virtual before a method declaration we are indicating that when the
compiler has to decide between applying static binding or dynamic binding it will apply dynamic
binding. Otherwise, static binding will be applied.

Note:
While it is not required to use the virtual keyword in our subclass definitions (since if the base
class function is virtual all subclass overrides of it will also be virtual) it is good style to do so
when producing code for future reutilization (for use outside of the same project).

Again, this should be clearer with an example:

28 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%20PARADIGMS
29 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%

20LANGUAGES%2FPARADIGMS%2FPOLYMORPHISM

22

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Paradigms
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FParadigms%2FPolymorphism
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FParadigms%2FPolymorphism

Classes

class Foo
{
public:
void f()
{
std::cout << "Foo::f()" << std::endl;

}
virtual void g()
{
std::cout << "Foo::g()" << std::endl;

}
};

class Bar : public Foo
{
public:
void f()
{
std::cout << "Bar::f()" << std::endl;

}
virtual void g()
{
std::cout << "Bar::g()" << std::endl;

}
};

int main()
{
Foo foo;
Bar bar;

Foo *baz = &bar;
Bar *quux = &bar;

foo.f(); // "Foo::f()"
foo.g(); // "Foo::g()"

bar.f(); // "Bar::f()"
bar.g(); // "Bar::g()"

// So far everything we would expect...

baz->f(); // "Foo::f()"
baz->g(); // "Bar::g()"

quux->f(); // "Bar::f()"
quux->g(); // "Bar::g()"

return 0;
}

Our first calls to f() and g() on the two objects are straightforward. However things get interesting
with our baz pointer which is a pointer to the Foo type.

f() is not virtual and as such a call to f() will always invoke the implementation associated with
the pointer type -- in this case the implementation from Foo.

Note:
Remember that OVERLOADING30 and OVERRIDING31 are distinct concepts.

30 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCLASSES%2FMEMBER%
20FUNCTIONS%23OVERLOADING

31 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCLASSES%2FPOLYMORPHISM

23

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FClasses%2FMember%20Functions%23Overloading
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FClasses%2FMember%20Functions%23Overloading
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FClasses%2FPolymorphism

Contents

Virtual function calls are computationally more expensive than regular function calls. Virtual func-
tions use pointer indirection, invocation and will require a few extra instructions than normal mem-
ber functions. They also require that the constructor of any class/structure containing virtual func-
tions to initialize a table of pointers to its virtual member functions.

All this characteristics will signify a trade-off between performance and design. One should avoid
preemptively declaring functions virtual without an existing structural need. Keep in mind that
virtual functions that are only resolved at run-time cannot be inlined.

To do:
Example of issue of virtual and inline.

Note:
Some of the needs for using virtual functions can be addressed by using a class template. This
will be covered when we introduce TEMPLATES32.

Pure virtual member function
There is one additional interesting possibility. Sometimes we don’t want to provide an imple-

mentation of our function at all, but want to require people sub-classing our class to provide an
implementation on their own. This is the case for pure virtuals.

To indicate a pure virtual function instead of an implementation we simply add an "= 0" after the
function declaration.

Again -- an example:

class Widget
{
public:

virtual void paint() = 0;
};

class Button : public Widget
{
public:

void paint() // is virtual because it is an override
{

// do some stuff to draw a button
}

};

Because paint() is a pure virtual function in the Widget class we are required to provide an
implementation in all concrete subclasses. If we don’t the compiler will give us an error at build
time.

This is helpful for providing interfaces -- things that we expect from all of the objects based on a
certain hierarchy, but when we want to ignore the implementation details.

32 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FTEMPLATES

24

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FTemplates

Classes

So why is this useful?

Let’s take our example from above where we had a pure virtual for painting. There are a lot of
cases where we want to be able to do things with widgets without worrying about what kind of
widget it is. Painting is an easy example.

Imagine that we have something in our application that repaints widgets when they become active.
It would just work with pointers to widgets -- i.e. Widget *activeWidget() const might be a
possible function signature. So we might do something like:

Widget *w = window->activeWidget();
w->paint();

We want to actually call the appropriate paint member function for the "real" widget type -- not
Widget::paint() (which is a "pure" virtual and will cause the program to crash if called using
virtual dispatch). By using a virtual function we insure that the member function implementation
for our subclass -- Button::paint() in this case -- will be called.

To do:
Mention interface classes

Covariant return types
Covariant return types is the ability for a virtual function in a derived class to return a pointer or

reference to an instance of itself if the version of the method in the base class does so. e.g.

class base
{
public:
virtual base* create() const;

};

class derived : public base
{
public:
virtual derived* create() const;

};

This allows casting to be avoided.

Note:
Some older compilers do not have support for covariant return types. Workarounds exist for
such compilers.

virtual Constructors
There is a hierarchy of classes with base class Foo. Given an object bar belonging in the hierarchy,
it is desired to be able to do the following:

25

Contents

1. Create an object baz of the same class as bar (say, class Bar) initialized using the default
constructor of the class. The syntax normally used is:

Bar* baz = bar.create();
2. Create an object baz of the same class as bar which is a copy of bar. The syntax normally

used is:

Bar* baz = bar.clone();

In the class Foo, the methods Foo::create() and Foo::clone() are declared as follows:

class Foo
{

// ...

public:
// Virtual default constructor
virtual Foo* create() const;

// Virtual copy constructor
virtual Foo* clone() const;

};

If Foo is to be used as an abstract class, the functions may be made pure virtual:

class Foo
{

// ...

public:
virtual Foo* create() const = 0;
virtual Foo* clone() const = 0;

};

In order to support the creation of a default-initialized object, and the creation of a copy object, each
class Bar in the hierarchy must have public default and copy constructors. The virtual constructors
of Bar are defined as follows:

class Bar : ... // Bar is a descendant of Foo
{

// ...

public:
// Non-virtual default constructor
Bar ();
// Non-virtual copy constructor
Bar (const Bar&);

// Virtual default constructor, inline implementation
Bar* create() const { return new Foo (); }
// Virtual copy constructor, inline implementation
Bar* clone() const { return new Foo (*this); }

};

The above code uses COVARIANT RETURN TYPES33. If your compiler doesn’t support Bar*
Bar::create(), use Foo* Bar::create() instead, and similarly for clone().

33 Chapter 0.1.5 on page 25

26

Classes

While using these virtual constructors, you must manually deallocate the object created by calling
delete baz;. This hassle could be avoided if a smart pointer (e.g. std::auto_ptr<Foo>) is used
in the return type instead of the plain old Foo*.

Remember that whether or not Foo uses dynamically allocated memory, you must define the destruc-
tor virtual ˜Foo () and make it virtual to take care of deallocation of objects using pointers to
an ancestral type.

virtual Destructor
It is of special importance to remember to define a virtual destructor even if empty in any base

class, since failing to do so will create problems with the default compiler generated destructor that
will not be virtual.

A virtual destructor is not overridden when redefined in a derived class, the definitions to each
destructor are cumulative and they start from the last derivate class toward the first base class.

Pure virtual Destructor
Every abstract class should contain the declaration of a pure virtual destructor.

Pure virtual destructors are a special case of pure virtual functions (meant to be overridden in a
derived class). They must always be defined and that definition should always be empty.

class Interface {
public:
virtual ~Interface() = 0; //declaration of a pure virtual destructor

};

Interface::~Interface(){} //pure virtual destructor definition (should always be
empty)

EXPANDTEMPLATES34 EXPANDTEMPLATES35

Law of three

The "law of three" is not really a law, but rather a guideline: if a class needs an explicitly declared
copy constructor, copy assignment operator, or destructor, then it usually needs all three.

There are exceptions to this rule (or, to look at it another way, refinements). For example, sometimes
a destructor is explicitly declared just in order to make it virtual; in that case there’s not necessarily
a need to declare or implement the copy constructor and copy assignment operator.

Most classes should not declare any of the "big three" operations; classes that manage resources
generally need all three.

34 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING
35 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

27

http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Contents

0.1.6 Subsumption property

Subsumption is a property that all objects that reside in a class hierarchy must fulfill: an object
of the base class can be substituted by an object that derives from it (directly or indirectly). All
mammals are animals (they derive from them), and all cats are mammals. Therefore, because of
the subsumption property we can "treat" any mammal as an animal and any cat as a mammal. This
implies abstraction, because when we are "treating" a mammal as an animal, the only we should
know about it is that it lives, it grows, etc, but nothing related to mammals.

This property is applied in C++, whenever we are using pointers or references to objects that reside
in a class hierarchy. In other words, a pointer of class animal can point to an object of class animal,
mammal or cat.
Let’s continue with our example:

//needs to be corrected
enum AnimalType {

Herbivore,
Carnivore,
Omnivore,

};

class Animal {
public:

AnimalType Type;
bool bIsAlive;
int iNumberOfChildren;

};

class Mammal : public Animal{
public:

int iNumberOfTeats;
};

class Cat : public Mammal{
public:

bool bLikesFish; // probably true
};

int main() {
Animal* pA1 = new Animal;
Animal* pA2 = new Mammal;
Animal* pA3 = new Cat;
Mammal* pM = new Cat;

pA2->bIsAlive = True; // Correct
pA2->Type = Herbivore; // Correct
pM->iNumberOfTeats = 2; // Correct

pA2->iNumberOfTeats = 6; // Incorrect
pA3->bLikesFish = True; // Incorrect

Cat* pC = (Cat*)pA3; // Downcast, correct (but very poor practice, see
later)

pC->bLikesFish = False; // Correct (although it is a very awkward cat)
}

In the last lines of the example there is cast of a pointer to Animal, to a pointer to Cat. This is called
"Downcast". Downcasts are useful and should be used, but first we must ensure that the object we
are casting is really of the type we are casting to it. Downcasting a base class to an unrelated class is

28

Classes

an error. To resolve this issue, the casting operators dynamic_cast36, or static_cast37<> should
be used. These correctly cast an object from one class to another, and will throw an exception if the
class types are not related. eg. If you try:

Cat* pC = new Cat;

motorbike* pM = dynamic_cast<motorbike*>(pC);

Then, the app will throw an exception, as a cat is not a motorbike. Static_cast is very similar, only it
will perform the type checking at compile time. If you have an object where you are not sure of its
type then you should use dynamic_cast38, and be prepared to handle errors when casting. If you
are downcasting objects where you know the types, then you should use static_cast39. Do not
use old-style C casts as these will simply give you an access violation if the types cast are unrelated.

0.1.7 Local classes

A local class is any class that is defined inside a specific statement block, in a LOCAL SCOPE40,
for instance inside a function. This is done like defining any other class, but local classes can not
however access non-static local variables or be used to define STATIC DATA MEMBERS41. These
type of classes are useful especially in template functions, as we will see later.

void MyFunction()
{

class LocalClass
{
// ... members definitions ...
};

// ... any code that needs the class ...

}

0.1.8 User defined automatic type conversion

We already covered AUTOMATIC TYPE CONVERSIONS42 (implicit conversion) and mentioned that
some can be user-defined.

36 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%
20LANGUAGES%2FC%2B%2B%2FCODE%2FKEYWORDS%2FDYNAMIC_CAST

37 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%
20LANGUAGES%2FC%2B%2B%2FCODE%2FKEYWORDS%2FSTATIC_CAST

38 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%
20LANGUAGES%2FC%2B%2B%2FCODE%2FKEYWORDS%2FDYNAMIC_CAST

39 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%
20LANGUAGES%2FC%2B%2B%2FCODE%2FKEYWORDS%2FSTATIC_CAST

40 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%
20LANGUAGES%2FC%2B%2B%2FCODE%2FSTATEMENTS%2FSCOPE

41 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%
20LANGUAGES%2FC%2B%2B%2FCODE%2FKEYWORDS%2FSTATIC%2FDATA%20MEMBER

42 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FPROGRAMMING%
20LANGUAGES%2FC%2B%2B%2FCODE%2FSTATEMENTS%2FVARIABLES%2FTYPE%20CASTING%
23AUTOMATIC%20TYPE%20CONVERSION

29

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fdynamic_cast
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fdynamic_cast
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fstatic_cast
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fstatic_cast
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fdynamic_cast
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fdynamic_cast
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fstatic_cast
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fstatic_cast
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FStatements%2FScope
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FStatements%2FScope
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fstatic%2FData%20Member
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FKeywords%2Fstatic%2FData%20Member
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FStatements%2FVariables%2FType%20Casting%23Automatic%20type%20conversion
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FStatements%2FVariables%2FType%20Casting%23Automatic%20type%20conversion
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FProgramming%20Languages%2FC%2B%2B%2FCode%2FStatements%2FVariables%2FType%20Casting%23Automatic%20type%20conversion

Contents

A user-defined conversion from a class to another class can be done by providing a constructor in
the target class that takes the source class as an argument, Target(const Source& a_Class) or
by providing the target class with a conversion operator, as operator Source().

0.1.9 Ensuring objects of a class are never copied

This is required e.g. to prevent memory-related problems that would result in case the default copy-
constructor or the default assignment operator is unintentionally applied to a class C which uses
dynamically allocated memory, where a copy-constructor and an assignment operator are probably
an overkill as they won’t be used frequently.

Some style guidelines suggest making all classes non-copyable by default, and only enabling copy-
ing if it makes sense. Other (bad) guidelines say that you should always explicitly write the copy
constructor and copy assignment operators; that’s actually a bad idea, as it adds to the mainte-
nance effort, adds to the work to read a class, is more likely to introduce errors than using the
implicitly declared ones, and doesn’t make sense for most object types. A sensible guideline is
to think about whether copying makes sense for a type; if it does, then first prefer to arrange that
the compiler-generated copy operations will do the right thing (e.g., by holding all resources via
resource management classes rather than via raw pointers or handles), and if that’s not reasonable
then obey the LAW OF THREE43. If copying doesn’t make sense, you can disallow it in either of two
idiomatic ways as shown below.

Just declare the copy-constructor and assignment operator, and make them private. Do not define
them. As they are not protected or public, they are inaccessible outside the class. Using them
within the class would give a linker error since they are not defined.

class C
{
...

private:
// Not defined anywhere
C (const C&);
C& operator= (const C&);

};

Remember that if the class uses dynamically allocated memory for data members, you must define
the memory release procedures in destructor ˜C () to release the allocated memory.

A class which only declares these two functions can be used as a private base class, so that all
classes which privately inherits such a class will disallow copying.

Note:
A part of the BOOST44 library, the utility class boost:noncopyable performs a similar func-
tion, easier to use but with added costs due to the required derivation.

43 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCLASSES%2FMEMBER%
20FUNCTIONS%23LAW%20OF%20THREE

44 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FLIBRARIES%2FBOOST

30

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FClasses%2FMember%20Functions%23Law%20of%20three
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FClasses%2FMember%20Functions%23Law%20of%20three
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FLibraries%2FBoost

Classes

0.1.10 Container class

A class that is used to hold objects in memory or external storage is often called a container class.
A container class acts as a generic holder and has a predefined behavior and a well-known interface.
It is also a supporting class whose purpose is to hide the topology used for maintaining the list of
objects in memory. When it contains a group of mixed objects, the container is called a heteroge-
neous container; when the container is holding a group of objects that are all the same, the container
is called a homogeneous container.

0.1.11 Interface class

To do:
Complete

0.1.12 Singleton class

A SINGLETON45 class is a class that can only be instantiated once (similar to the use of static
variables or functions). It is one of the possible implementations of a CREATIONAL PATTERN46,
which is fully covered in the DESIGN PATTERNS SECTION47 of the book.

EXPANDTEMPLATES48

45 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCODE%2FDESIGN_PATTERNS%
23SINGLETON

46 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCODE%2FDESIGN_PATTERNS%
23CREATIONAL_PATTERNS

47 HTTP://EN.WIKIBOOKS.ORG/WIKI/C%2B%2B%20PROGRAMMING%2FCODE%2FDESIGN_PATTERNS
48 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AC%2B%2B%20PROGRAMMING

31

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FDesign_Patterns%23Singleton
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FDesign_Patterns%23Singleton
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FDesign_Patterns%23Creational_Patterns
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FDesign_Patterns%23Creational_Patterns
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FDesign_Patterns
http://en.wikibooks.org/wiki/Category%3AC%2B%2B%20Programming

Contents

32

1 Authors

Edits User
2 ADRIGNOLA1

4 DWARRIOR2

8 DARKLAMA3

1 DERBETH4

2 GRONAU5

1 GURUPATHI6

2 HAGINDAZ7

1 HERBYTHYME8

1 IXTLI9

1 JAMES BROWN10

1 JGUK11

1 JOHNOWENS12

14 LEANDROGOE13

5 MVHOKIES14

2 MERRHEIM15

1 MJCHAEL16

3 OMAIR.MAJID17

156 PANIC2K418

3 PHOSGRAM19

2 REMI0O20

1 RFROHARDT21

1 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADRIGNOLA
2 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DWARRIOR
3 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DARKLAMA
4 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DERBETH
5 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GRONAU
6 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GURUPATHI
7 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HAGINDAZ
8 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HERBYTHYME
9 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IXTLI
10 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAMES_BROWN
11 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JGUK
12 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOHNOWENS
13 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LEANDROGOE
14 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MVHOKIES
15 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MERRHEIM
16 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MJCHAEL
17 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OMAIR.MAJID
18 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PANIC2K4
19 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PHOSGRAM
20 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REMI0O
21 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RFROHARDT

33

http://en.wikibooks.org/w/index.php?title=User:Adrignola
http://en.wikibooks.org/w/index.php?title=User:DWarrior
http://en.wikibooks.org/w/index.php?title=User:Darklama
http://en.wikibooks.org/w/index.php?title=User:Derbeth
http://en.wikibooks.org/w/index.php?title=User:Gronau
http://en.wikibooks.org/w/index.php?title=User:Gurupathi
http://en.wikibooks.org/w/index.php?title=User:Hagindaz
http://en.wikibooks.org/w/index.php?title=User:Herbythyme
http://en.wikibooks.org/w/index.php?title=User:Ixtli
http://en.wikibooks.org/w/index.php?title=User:James_Brown
http://en.wikibooks.org/w/index.php?title=User:Jguk
http://en.wikibooks.org/w/index.php?title=User:JohnOwens
http://en.wikibooks.org/w/index.php?title=User:Leandrogoe
http://en.wikibooks.org/w/index.php?title=User:MVhokies
http://en.wikibooks.org/w/index.php?title=User:Merrheim
http://en.wikibooks.org/w/index.php?title=User:Mjchael
http://en.wikibooks.org/w/index.php?title=User:Omair.majid
http://en.wikibooks.org/w/index.php?title=User:Panic2k4
http://en.wikibooks.org/w/index.php?title=User:Phosgram
http://en.wikibooks.org/w/index.php?title=User:Remi0o
http://en.wikibooks.org/w/index.php?title=User:Rfrohardt

Authors

2 RONYCLAU22

1 SAE196223

3 SIGMA 724

22 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RONYCLAU
23 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SAE1962
24 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SIGMA_7

34

http://en.wikibooks.org/w/index.php?title=User:Ronyclau
http://en.wikibooks.org/w/index.php?title=User:Sae1962
http://en.wikibooks.org/w/index.php?title=User:Sigma_7

List of Figures

• GFDL: Gnu Free Documentation License. http://www.gnu.org/licenses/fdl.html

• cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License.
http://creativecommons.org/licenses/by-sa/3.0/

• cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License.
http://creativecommons.org/licenses/by-sa/2.5/

• cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License.
http://creativecommons.org/licenses/by-sa/2.0/

• cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License.
http://creativecommons.org/licenses/by-sa/1.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License.
http://creativecommons.org/licenses/by/2.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License.
http://creativecommons.org/licenses/by/2.0/deed.en

• cc-by-2.5: Creative Commons Attribution 2.5 License.
http://creativecommons.org/licenses/by/2.5/deed.en

• cc-by-3.0: Creative Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/deed.en

• GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt

• PD: This image is in the public domain.

• ATTR: The copyright holder of this file allows anyone to use it for any purpose, provided that
the copyright holder is properly attributed. Redistribution, derivative work, commercial use,
and all other use is permitted.

• EURO: This is the common (reverse) face of a euro coin. The copyright on the design of
the common face of the euro coins belongs to the European Commission. Authorised is
reproduction in a format without relief (drawings, paintings, films) provided they are not
detrimental to the image of the euro.

• LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de

• CFR: Copyright free use.

• EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-v10.php

35

List of Figures

1 TKGD200725 GPL
2 TKGD200726 GPL
3 TKGD200727 GPL
4 TKGD200728 GPL
5 TKGD200729 GPL

25 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATKGD2007
26 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATKGD2007
27 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATKGD2007
28 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATKGD2007
29 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3ATKGD2007

36

http://de.wikibooks.org/wiki/File:Clipboard.svg
http://de.wikibooks.org/wiki/File:Clipboard.svg
http://de.wikibooks.org/wiki/File:Clipboard.svg
http://de.wikibooks.org/wiki/File:Clipboard.svg
http://de.wikibooks.org/wiki/File:Clipboard.svg
http://en.wikibooks.org/wiki/User%3ATkgd2007
http://en.wikibooks.org/wiki/User%3ATkgd2007
http://en.wikibooks.org/wiki/User%3ATkgd2007
http://en.wikibooks.org/wiki/User%3ATkgd2007
http://en.wikibooks.org/wiki/User%3ATkgd2007

	0.1 Classes
	1 Authors
	List of Figures

