

AS/400 Advanced Series IBM

System/36 Environment Programming
Version 3

 SC41-4730-00

AS/400 Advanced Series IBM

System/36 Environment Programming
Version 3

 SC41-4730-00

 Take Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xi.

First Edition (September 1995)

This edition applies to the licensed program IBM Operating System/400, (Program 5716-SS1), Version 3 Release 6 Modification 0,
and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the proper
edition for the level of the product.

Order publications through your IBM representative or the IBM branch serving your locality. If you live in the United States, Puerto
Rico, or Guam, you can order publications through the IBM Software Manufacturing Solutions at 800+879-2755. Publications are not
stocked at the address given below.

A form for reader comments is provided at the back of this publication. If the form has been removed, you can mail your comments
to:

| Attn Department 542
| IDCLERK
| IBM Corporation
| 3605 Highway 52 N
| Rochester, MN 55901-9986 USA

or you can fax your comments to:

United States and Canada: 800+937-3430
Other countries: (+1)+507+253-5192

If you have access to Internet, you can send your comments electronically to IDCLERK@RCHVMW2.VNET.IBM.COM; IBMMAIL, to
IBMMAIL(USIB56RZ).

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you or restricting your use of it.

 Copyright International Business Machines Corporation 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xi
Trademarks And Service Marks xi

About System/36 Environment
Programming (SC41-4730) xiii

Who Should Use This Book xiii

Chapter 1. Introduction 1-1
System/36 Function in the System/36

Environment 1-1
Operating in the System/36 Environment 1-1
Configuration 1-1
Printed Output 1-1
File and Library Storage 1-2
Libraries 1-2
Files . 1-2
Folders . 1-2
Diskette and Magnetic Tape Storage . . . 1-2
Security . 1-2
Designing Records 1-2
Communications 1-3
Menus and Displays 1-3
Messages and Message Members 1-3
Programs and Procedures 1-3
Mixing System/36 Environment and

AS/400 Functions 1-3
Jobs and Job Processing 1-3
Error Prevention, Detection, and Recovery 1-4
National Language Support 1-4

Licensed Programs 1-4
Utilities and Application Development Tools 1-4
Query . 1-4
OfficeVision for OS/400 1-4
Client Access/400 1-5

Programming Languages 1-5

Chapter 2. Operating in the System/36
Environment 2-1

System/36 Environment User Profile Attribute 2-1
Commands to Access the System/36

Environment Functions 2-2
Accessing System/36 Environment Functions

from Batch Jobs 2-2
Subconsoles 2-3
System Request Menu 2-4
Attention Key 2-5
OS/400 CL Commands for the System/36

Environment 2-5

Chapter 3. Configuring the System/36
Environment 3-1

System Values Affecting the System/36
Environment 3-1

Starting Another AS/400 Subsystem . . . 3-2
System/36 Environment Configuration 3-2

Commands for Configuring the System/36
Environment 3-2

AS/400 Device Identification 3-3
AS/400 Device Configuration 3-3
Considerations for System/36 Environment

Installation or PTF Application 3-4
Security Attributes for Multiple Requester

Terminals (MRTs) 3-4
Configuration of the System/36 Environment 3-4

Change S/36 Environment Configuration
Display 3-5

Function keys 3-5
Change S/36 Environment Configuration

Display 3-5
Change S/36 Environment Attributes . . 3-12
Display S/36 Configuration Display . . . 3-13
Retrieve S/36 Environment Configuration

Attributes 3-13
Work with System/36 Environment

Configuration 3-13
Removing Display IDs 3-14

Chapter 4. Printed Output 4-1
Creating and Controlling Printed Output . . . 4-1

Printer Data Management Output 4-1
System List Output 4-3

Print Spooling 4-3
Using Output Queues 4-3
Changing the Output Queue for a Job . . 4-4
Controlling Print Spooling 4-4
Spool Writer Messages 4-4

Printer Control Guidelines 4-4
Changing the Session Printer 4-4
Changing the Print Key Printer 4-5
Changing the System List Device 4-5
Changing the System Printer 4-5
Changing the Printer Configuration

Information 4-5
Changing Printer Information in a

Procedure 4-5
Controlling or Displaying Print Spooling

Information 4-5
Copying and Displaying Output from an

Output Queue 4-6

 Copyright IBM Corp. 1995 iii

Printing Output by Forms Number 4-7
Combining Several Print Files in One Job 4-7
Assigning the Delayed Status to Printed

Output . 4-8
Assigning Priorities to Printed Output . . . 4-8

Programming Considerations 4-8
Use of Print Files by the System/36

Environment 4-9
Printed Output Attributes 4-9

Chapter 5. Library, File, and Folder
Overview 5-1

Comparison of System/36 and AS/400
Addressing Models 5-1

System/36 Addressing Model 5-1
AS/400 Addressing Model 5-2

System Information 5-3
Library QSSP 5-3
System Library (#LIBRARY) 5-4

User Information Stored on Disk 5-4
Output Queues 5-4
Job Queue 5-4
Journal Files 5-4
Licensed Program Libraries 5-4
User Files 5-4
User Libraries 5-4
User Folders 5-4
Naming Conventions for Files, Libraries,

and Folders 5-4
Dynamically Created Files 5-5

Programming Considerations 5-5
Listing the Disk Volume Table of Contents 5-5
Measuring Disk Activity 5-5

Chapter 6. Libraries 6-1
Libraries for the System/36 Environment . . 6-1

Library Names 6-1
Group Libraries 6-1
Library Members 6-2
Library Member Names 6-2

Using Libraries 6-2
Assigning Libraries 6-3
Sharing Libraries 6-3
Changing Libraries in a Job 6-4
Specifying Authority for Libraries 6-4
Making Backup Copies and Recovering

from Errors 6-4
Recovering from Damage to #LIBRARY . 6-4
Recovering from Damage to Library QSSP 6-5
Library Sector-Mode and Record-Mode

Files . 6-5
Programming Guidelines for Libraries 6-6

Creating Libraries 6-6
Creating Library Members 6-6

Listing Members and Library Information 6-6
Saving and Restoring Libraries 6-6
Copying Libraries and Library Members . 6-7
Securing Libraries 6-7
Listing Files 6-7
Renaming Libraries or Library Members . 6-7
Removing Libraries or Library Members . 6-7

Coexistence Considerations 6-7
Library Lists 6-7
Search Order 6-9

User Auxiliary Storage Pools for the
System/36 Environment 6-10

Moving from System/36 to the System/36
Environment 6-10

Chapter 7. Files 7-1
Using Files 7-1

Creating Files in the System/36
Environment 7-1

Naming a Physical File 7-1
Specifying a File in a Program 7-3
Placing Data in Files 7-3
Removing a File from Disk or Diskette . . 7-3
Securing Files 7-3
Copying Files 7-3
Printing or Displaying Files 7-4
Store Deleted Files in Cache 7-4

File Organization 7-5
Sequential File Organization 7-5
Direct File Organization 7-7
Indexed File Organization 7-8
Multiple Indexes for a File 7-9

Processing Files 7-12
Current Record Pointer 7-12
Nonkeyed and Keyed Processing 7-13
File Processing Methods 7-13

Choosing a File Organization 7-19
File Use 7-19
Activity of the File 7-20
Disk Space 7-21

File Attributes 7-21
Scratch Files 7-21
Job Files 7-21
Resident Files 7-21
Extendable Files 7-23
Delete-Capable Files 7-24

Blocking Records 7-25
Sharing Files 7-26

File Sharing Considerations 7-26
Levels of File Sharing 7-26
Waiting for Files to Become Available . 7-27
Record Protection 7-28
Releasing Locked Records 7-29
File Deadlock Conditions 7-29

iv OS/400 System/36 Environment Programming V3R6

File Change Errors 7-30
Using Multiple Names to Access a Single

File . 7-30
Programming Considerations 7-31

Using System/36 Environment Files
Library 7-31

Using the Library List Support for Files in
the System/36 Environment 7-31

Using System/36 Environment Files and
AS/400 Files 7-33

Using File Members and
Date-Differentiated Files 7-34

Using Override Database File CL
Command 7-35

Extending Files 7-35
Shared Files and System/36 Environment

Share Levels 7-36
Non-System/36 Environment Programs in

the System/36 Environment 7-37
Shared File Opens within the Same Job 7-37
Duplicate Keys and Key Sorting 7-38
Remote Files 7-38

Moving from System/36 to the System/36
Environment 7-38

Chapter 8. Folders and Data Dictionaries 8-1
Migration Considerations 8-1
Using Folders 8-1

Folders and Folder Members 8-1
Securing Folders 8-1
Creating a Folder 8-1
Accessing a Folder 8-1
Listing Folder Information 8-1
Deleting a Folder 8-1
Renaming a Folder 8-1
Reorganizing a Folder 8-2
Saving and Restoring Folders and Folder

Members 8-2
Using Data Dictionaries 8-2

Working with a Data Dictionary 8-2
Working with Data Dictionary Definitions . 8-2
Using Data Dictionary Definitions 8-2
Saving and Restoring a Data Dictionary . 8-2

Programming Considerations 8-2
Coexistence Considerations 8-3
Moving from System/36 to the System/36

Environment 8-3

Chapter 9. Diskette Storage 9-1
Diskette Types and Storage Capacities . . . 9-1
Diskette Exchange Formats 9-1

Basic Data Exchange Format 9-1
H-Data Exchange Format 9-2

I-Data Exchange Format 9-2
Storing Information on Diskette 9-2

Types of Diskette Files 9-2
Diskette Data Compression 9-3
Diskette File Expiration Dates 9-3

Programming Considerations 9-4
Preparing Diskettes 9-4
Copying, Saving, and Restoring

Information 9-4
Listing Information from Diskette 9-5
Removing Information from Diskette . . . 9-6
Allocating the Diskette Drive to a Job . . 9-6

Coexistence Considerations 9-6
Restoring the AS/400 System to

System/36 9-7
Restoring System/36 to the AS/400

System 9-7
Restoring the AS/400 System to the

System/36 Environment 9-7
Moving from System/36 to the System/36

Environment 9-8

Chapter 10. Magnetic Tape Storage . . 10-1
Tape Drives Supported 10-1
Tape Formats 10-1

IBM Standard Label 10-1
Nonlabeled 10-2

Tape Files 10-2
Exchanging Tape Files with Other

Systems 10-3
Tape File Expiration Dates 10-3

Tape Security 10-4
Securing Write Access to Tapes 10-4
Using Tapes Secured by Other Systems 10-4

Programming Considerations for Tape
Processing 10-4

Automatically Advancing to Next Tape
Drive . 10-4

Using REWIND, LEAVE, and UNLOAD
Tape Cartridge Processing 10-5

Preparing Tapes 10-5
Allocating the Tape Drive to a Job . . . 10-5
Copying, Saving, Restoring, and Listing

Information 10-6
Removing Information from Tape 10-7
Using Multiple Tape Drives 10-7
Creating a Sequential Set of Files on

Tape . 10-7
Coexistence Considerations 10-8

Restoring from an AS/400 System to
System/36 10-9

Restoring System/36 Files and Members
to the AS/400 System 10-9

 Contents v

Restoring Files and Members from an
AS/400 System to the System/36
Environment 10-9

Moving from System/36 to the System/36
Environment 10-10

Chapter 11. Security 11-1
System Security Levels 11-1

Sign-On Security 11-1
User Profiles and Special User Authority . 11-2

User Class 11-2
Special Authority 11-2
Initial Program Security 11-4
Menu Security 11-4
Limited Capability 11-4
Group Profile 11-4

Resource Security 11-4
Authority for a User to a Resource . . . 11-5
Public Authority 11-7
Library-Level Security 11-7
Authorization Lists 11-7
Authority Holders 11-7

Moving from System/36 to the System/36
Environment 11-8

System/36 User Identification File 11-8
System/36 Resource Security File . . . 11-8
Additional Security Considerations . . 11-11
Saving and Restoring Authorities . . . 11-12

Chapter 12. Designing Records 12-1
Identifying Required Fields 12-1
Naming Fields 12-1
Using Numeric Fields 12-1

Zoned Decimal Format 12-2
Packed Decimal Format 12-3
Binary Format 12-4
Floating-Point Format 12-5

Using Alphanumeric Fields 12-5
Using Keys 12-5
Allowing for Deletion of Records 12-6
Determining Field Size 12-6
Defining Record Length 12-6

Allowing for New Fields 12-6
Describing Record Layout 12-6

Chapter 13. Communications 13-1
Configuring the Communications

Environment 13-1
System/36 Background 13-1
Communications Procedures Examples 13-2
ENABLE and VRYCFG Hierarchy and

Examples 13-6
OS/400 Subsystem Considerations for

System/36 Users 13-7

Considerations for System/36
Environment Program Start Requests 13-8

Errors on Program Start Requests . . 13-11
Subsystem

Descriptions/Communications Entries 13-15
Subsystem Communications Device

Allocation 13-16
OS/400 Intersystem Communications

Function (ICF) 13-16
ICF Files 13-17
Tying the Application to Communications

Configurations 13-17
Communications Operations 13-20
Return Codes and Messages 13-28
Testing Communications Applications 13-28

File Transfer Subroutines 13-30
File Transfer Subroutine Parameters . 13-31
File Transfer Support Considerations . 13-33

Asynchronous Communications 13-34
Asynchronous Configuration

Considerations 13-34
Asynchronous Programming

Considerations 13-35
BSCEL . 13-36

BSCEL Terminology Considerations . 13-36
BSCEL Configuration Considerations . 13-37
BSCEL Programming Considerations 13-37

Finance Considerations 13-38
Configuration Considerations 13-38
Programming Considerations 13-38

Retail Considerations 13-39
Configuration Considerations 13-39
Programming Considerations 13-39

Intrasystem Communications 13-39
Programming Considerations 13-39

System/36 APPC to AS/400 APPC . . . 13-40
System/36 Peer to AS/400 Advanced

Program-to-Program Communications
(APPC) 13-41

System/36 BSC/CICS to AS/400 SNA
Upline Facility 13-41

Remote Host Support Considerations 13-41
SNUF Programming Considerations . 13-41

System/36 BSC/IMS to AS/400 SNA Upline
Facility 13-42

Remote Host Support Considerations 13-42
SNUF Programming Considerations . 13-42

Using CL Override Commands 13-44
General Programming Considerations . . 13-45
Migration Considerations 13-45

Automatic Dial and Telephone Number
List Support 13-45

X.21 . 13-46

vi OS/400 System/36 Environment Programming V3R6

System Network Architecture Distribution
Services (SNADS) 13-46

Object Distribution 13-47
Sending AS/400 Objects 13-47
Receiving Objects as AS/400 Objects 13-47
Sending AS/400 System/36 Environment

Objects 13-47
Receiving Objects in the AS/400

System/36 Environment 13-48

Chapter 14. Menus and Displays 14-1
Menus . 14-1

Function Key Differences 14-1
User Menus 14-2
Menu Option Logging 14-3
Menu Security 14-3
Menu Formats 14-3
Designing Menus 14-4
Creating and Changing Menus 14-7
Creating and Displaying Online Help

Information for Menus 14-7
Using Color or Highlighting on Menus . 14-9

Displays 14-10
Display Data Management 14-10
Data Types 14-11
Attributes 14-12
Display Data Management Operations 14-12
Designing Displays 14-13
Types of Displays 14-14
Creating Display Formats 14-17
Creating Online Help Information for

Your Displays 14-18
Using Display Formats with the

Programming Languages 14-19
Using Display Formats within a

Procedure 14-20
Using the Read-Under-Format

Technique 14-20
Using Data Description Specifications

(DDS) and Screen Format Generator
($SFGR) 14-21

Using $SFGR to Change SFGR to DDS 14-21
SFGR Printed Output 14-21
Creating, Adding, Changing, or Deleting

Display File Formats 14-21
Replacing a System/36 Load Member

with an AS/400 Display File 14-22
Maximum Number of Display Devices 14-23
Public Authority to Use SFGR Display

Files 14-23
FORMAT Procedure Parameters . . . 14-24
Differences between System/36 SFGR

and AS/400 DDS 14-24

Moving from System/36 to the System/36
Environment 14-25

System/36 Display File Enhancements . 14-25
Optimizing Performance of Display Files 14-26

Chapter 15. Messages and Message
Members 15-1

Types of Messages 15-1
Message Concepts 15-1

Message Member Concept 15-1
Message Files and the System/36

Environment 15-2
Inserting Variable Data into Displayed

Messages 15-3
Converting Message Text 15-4

Supplying Default Responses for Messages 15-5
Default Response Process 15-5
Severity Levels 15-5
Considerations for Default Responses to

Messages 15-7
Displaying Response Messages 15-7

Displaying Informational and Prompting
Messages 15-8

Formatting Messages with Control
Characters 15-9

System Operator Displays 15-9
User Authority to the System Operator

Message Queue 15-9
Sending System/36 Environment

Messages 15-9
Handling Defaults for System Operator

Messages 15-11
Sending Messages 15-11
Message Handling Considerations . . 15-11
Error Messages Not Displayed 15-12
Problems with the Operator Messages 15-12
Console (System) Operator Messages 15-13
Automatic Reply Handling When

QSYSOPR Is in Default Mode 15-13
Dual-Routed Messages 15-13
Enhancements and Restrictions 15-13

Programming Guidelines 15-14
Creating or Changing Message Source

Members 15-14
Assigning Default Responses and

Severity Levels 15-14
Specifying a Message Member to Be

Used within a Procedure 15-15
Message Member and Message File

Considerations 15-15
Displaying Messages from Procedures 15-16
Checking Entries for Required

Parameters 15-17
Using Messages with Programs 15-17

 Contents vii

Using Messages with Displays 15-17
Moving from System/36 to the System/36

Environment 15-17

Chapter 16. Programs and Procedures 16-1
Designing Programs and Procedures . . . 16-1
Programs 16-1

Batch and Interactive Programs 16-1
Program Characteristics 16-2
Program Types 16-2
Comparison of Program Types 16-4
Summary Table of Users and Requesters 16-4
Designing Applications 16-5
Programming Considerations 16-6

Procedures 16-21
Procedure Attributes 16-21
Parts of a Procedure 16-21
Using Procedures 16-22

Procedures with Menus 16-23
Calling a Procedure from Another

Procedure 16-23
Considerations for Multiple Requester

Terminal Procedures 16-23
Delaying MRT Termination 16-25
Internal Processing of MRT Jobs . . . 16-25

Designing Procedures 16-26
Naming a Procedure 16-26
Procedure Performance and Coding

Techniques 16-26
Programming Considerations for

Procedures 16-27
Moving from System/36 to the System/36

Environment 16-29

Chapter 17. Mixing System/36
Environment and AS/400 Functions . . 17-1

Using AS/400 Architectural Features in
System/36 Programs 17-1

Using AS/400 CL Commands in the
System/36 Environment 17-2

Entering AS/400 CL Commands
Interactively 17-2

Adding AS/400 CL Commands to
System/36 Procedures 17-3

Program Control in the System/36
Environment 17-5

// LOAD and // RUN OCL Statements . 17-5
High-Level Language CALL Statement . 17-8

File Processing in System/36 Environment 17-8
Database Files 17-8
Printer Files 17-11
Display and Communications Files . . 17-12
Other Device Files 17-14

Chapter 18. Jobs and Job Processing . 18-1
Using Jobs and Job Processing 18-1
Jobs and Job Steps 18-1
Starting and Ending Jobs 18-1

Starting Jobs 18-1
Running Jobs 18-2
Using the System/36 Environment

Command Processor 18-2
Using the Initiator Function 18-4
Processing OCL Statements and

Procedure Control Expressions 18-4
Ending Jobs 18-6

Managing and Scheduling Jobs 18-7
Job Priorities 18-7
Using Batch Job Immediate Support . . 18-8
Using the Job Queue 18-8

Evoking Other Jobs 18-11
Submitting Jobs to Run Later 18-11

Using Job Queue to Run Jobs Later . 18-11
WAIT OCL Statement 18-11

Submitting Jobs by Security Classification 18-12
Preventing Users from Ending Jobs . . . 18-13
Preventing Interrupted Jobs 18-13
Preventing Informational Messages from

Appearing 18-13
Running Jobs during Initial Program Load

(IPL) . 18-13
Running Jobs without Operators 18-14
End-of-Day Processing 18-14
Job Date and Date Format 18-14

Chapter 19. Error Prevention, Detection,
and Recovery 19-1

Types of Failures and Errors 19-1
System Failures 19-1
Disk Device Failures 19-1
Power Failures 19-1
Equipment Failures 19-1
Programming Errors 19-1
System Operator Errors 19-2
User Errors 19-2

Error Prevention 19-2
Using the Automatic Response Function 19-2
Preventing Unscheduled Ending of Jobs 19-2
Testing and Debugging Programs . . . 19-2
Using the WAIT and FILE OCL

Statements 19-3
Allocating the Diskette or Tape Drive to a

Job . 19-3
Error Detection 19-3
Error Detection Subroutines 19-3
Program Language Error Detection 19-3

System/36-Compatible COBOL Language 19-4
System/36-Compatible RPG II Language 19-4

viii OS/400 System/36 Environment Programming V3R6

User-Coded Error Detection Routines . . . 19-4
Checking Return Codes in Procedures . . 19-4
Referring to the Job Log 19-4
Backup and Recovery 19-4

Equipment Backup 19-4
Data Backup and Recovery 19-5
Backup and Recovery Methods 19-6
Service Aid Procedures 19-8

Error-Handling Considerations 19-8
Disk Storage Full 19-8
Display Station Device Error

Considerations 19-8
Display Station Device Error Recovery 19-10
Printer Device Error Considerations . 19-10
ICF Error Considerations 19-10
Database File Error Conditions 19-11

Chapter 20. System/36 Environment
National Language Support 20-1

System/36 Environment Multiple Language
Support . 20-1

Multiple Language Support for
IBM-Supplied Data 20-1

Multiple Language Support User-Supplied
Data . 20-1

Multilingual System Environment 20-2
System/36 Environment Double-Byte

Character Support 20-3
AS/400 Double-Byte Character Set

System Value 20-3
AS/400 Double-Byte Character Set Job

Attribute 20-3
System/36 Environment Double-Byte

Character Job Attribute 20-6
IGC Procedure 20-6
Setting the Library List for DBCS Session 20-7

System/36 Environment DBCS Printer
Support . 20-9

Writing Applications for Translating
Considerations 20-9

Appendix A. Access Algorithms for Direct
Files . A-1

Choosing an Access Algorithm A-1
Handling Synonym Records A-1
Examples of Access Algorithms A-2

Defining the Algorithm A-2

Handling Synonyms A-3
Indexed File with Keys A-4
Randomizing Techniques A-6

Appendix B. $SFGR Specification Forms B-1
Display Control (S) Specifications B-1
Help Definition (H) Specifications B-8
Field Definition (D) Specifications B-13

Appendix C. Merging Graphics and Text C-1
Printing a Graphics File Only C-1

Graphics File Printout Example C-1
Printing a Graphics File Along with Other

Output . C-2
Example of an Included Graphics File . . C-2
Programming Considerations C-3

Appendix D. Intelligent Printer Data
Stream (IPDS) Advanced Function
Support . D-1

Calling the Subroutines D-1
COBOL Subroutines D-1
RPG II Subroutines D-1
RPG II and COBOL Printer Parameters . D-1

Using the IPDS Advanced Function Support D-2
Setting Printer Options D-2
Printing Graphics Using Subroutines . . . D-7
Printing Forms and Graphs D-11
Printing Bar Codes D-12

Sample Form D-14

Appendix E. Security Considerations for
the System/36 Environment E-1

System/36 Procedures E-1
System/36 Operator Control Commands . E-20
System/36 OCL Statements E-22
System/36 Procedure Control Statements E-24
OS/400 System/36 Commands E-25

Bibliography H-1
General AS/400-Related Books H-1
Programming Language and Utility Books H-2
Communications Books H-2
Migration Books H-3

Index . X-1

 Contents ix

x OS/400 System/36 Environment Programming V3R6

 Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or service may be used.
Any functionally equivalent product, program, or service that does not infringe any of the intellectual prop-
erty rights of IBM may be used instead of the IBM product, program, or service. The evaluation and
verification of operation in conjunction with other products, except those expressly designated by IBM, are
the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The fur-
nishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY
10594, U.S.A.

| Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
| exchange of information between independently created programs and other programs (including this one)
| and (ii) the mutual use of the information which has been exchanged, should contact the software interop-
| erability coordinator. Such information may be available, subject to appropriate terms and conditions,
| including in some cases, payment of a fee.

| Address your questions to:

| IBM Corporation
| Software Interoperability Coordinator
| 3605 Highway 52 N
| Rochester, MN 55901-9986 USA

This publication could contain technical inaccuracies or typographical errors.

This publication may refer to products that are announced but not currently available in your country. This
publication may also refer to products that have not been announced in your country. IBM makes no
commitment to make available any unannounced products referred to herein. The final decision to
announce any product is based on IBM's business and technical judgment.

Changes or additions to the text are indicated by a vertical line (|) to the left of the change or addition.

This publication contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Trademarks And Service Marks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of the IBM Corporation
in the United States or other countries or both:

 Copyright IBM Corp. 1995 xi

Application System/400
APPN
AS/400
CICS
COBOL/400
DisplayWrite
IBM
IPDS
Intelligent Data Printer Stream
OfficeVision

Operating System/400
OS/2
OS/400
RPG/400
SAA
System/36
System/38
Systems Application Architecture
VTAM
400

xii OS/400 System/36 Environment Programming V3R6

About System/36 Environment Programming (SC41-4730)

This book contains information about System/36
environment utilities, programming languages, and
licensed programs. It also contains information
about System/36 functions available in the
System/36 environment.

| For information about other AS/400 publications,
| see either of the following:

| � The Publications Reference book, SC41-4003,
| in the AS/400 Softcopy Library.
| � The AS/400 Information Directory, a unique,
| multimedia interface to a searchable database
| containing descriptions of titles available from
| IBM or from selected other publishers. The
| AS/400 Information Directory is shipped with
| your system at no charge.

For a list of publications related to this book, see
the “Bibliography.”

Who Should Use This Book

This book supplies programmers with the informa-
tion needed to develop, maintain, and support
application programs and data to be used in the
System/36 environment. It gives an overview of
the system parts and how the system works.

Before you use this book, you should be familiar
with System/36, the AS/400 system, and your
workstation.

In this book, the term user refers to the application
user. The term operator refers to the system
operator.

 Copyright IBM Corp. 1995 xiii

xiv OS/400 System/36 Environment Programming V3R6

 Chapter 1. Introduction

This chapter introduces the IBM* System/36 envi-
ronment. The System/36 environment is a func-
tion of the Operating System/400* (OS/400*)
operating system that processes System/36 oper-
ation control language (OCL) statements and
other procedure statements to run System/36
applications. In addition, the System/36 environ-
ment also allows control language (CL) commands
to be processed. The System/36 environment
helps you develop, maintain, and support a
common set of programs, data, and other system
elements on the System/36 and the AS/400*
system.

System/36 Function in the
System/36 Environment

The System/36 environment supplies the proce-
dures, operation control language statements,
utility control statements, and control commands
that you use to:

� Create and maintain System/36 programs on
the AS/400 system

� Run System/36 programs and procedures on
the AS/400 system

� Create and maintain System/36 disk files on
the AS/400 system

� Sort System/36 files on the AS/400 system

� Create and maintain System/36 libraries on
the AS/400 system

� Create and maintain System/36 folders on the
AS/400 system

� Process System/36 information on diskettes
and tapes on the AS/400 system

� Create and maintain System/36 display
formats, menus, and message members on
the AS/400 system

� Create and maintain System/36 procedures on
the AS/400 system

The following sections supply an overview of the
System/36 environment.

Operating in the System/36
Environment

Operating in the System/36 environment consists
of using procedures and operator control com-
mands. A control command in the System/36
environment is a command used by an operator to
control the system or a work station. A control
command does not run a procedure and cannot
be used in a procedure. A work station is a
device used to transmit information to or receive
information from a computer; for example, a
display station or printer. The AS/400 control lan-
guage (CL) commands are used to start and end
operations in the System/36 environment. The
control language (CL) is the set of all commands
with which a user requests system functions.

See Chapter 2, “Operating in the System/36
Environment,” for more information.

 Configuration

The System/36 environment consists of the fol-
lowing:

� The AS/400 configuration
� System/36 environment configuration

See Chapter 3, “Configuring the System/36
Environment,” for more information.

 Printed Output

Printed output consists of reports and lists.

Printer data management allows your programs to
use printers. The system uses print spooling, a
system function that saves printer output on disk
for later printing of print requests.

Several printers are available for the system.
They have different speeds, character sets, and
other options. Printers can be attached directly or
remotely to the system.

See Chapter 4, “Printed Output,” for more infor-
mation.

 Copyright IBM Corp. 1995 1-1

File and Library Storage

Files and libraries are stored on disk. Blocks and
sectors are the units of measure for disk storage.
A block in the System/36 environment is a
2560-byte area of disk storage used when cre-
ating or referencing disk files. Files and libraries
stored in disk devices have the location of each
data record directly addressed to allow for direct
access.

See Chapter 5, “Library, File, and Folder
Overview,” for more information.

 Libraries

A library is a named area on disk that contains
other objects, such as programs and related infor-
mation. You can use libraries to find specific
objects on the system.

The system can contain the following types of
libraries:

� The System/36 environment libraries (QSSP
and #LIBRARY)

� The system library (QSYS)
� Licensed program libraries

 � Application libraries

See Chapter 6, “Libraries,” for more information.

 Files

A file is a set of related records treated as a unit.
There are several ways to organize and access
files. The following are examples of files:

 � Transaction
 � Master
 � Memo

See Chapter 7, “Files,” and Chapter 16, “Pro-
grams and Procedures,” for more information.

 Folders

A folder is a named area on disk that contains
members created and used by the word pro-
cessing function of OfficeVision for OS/400 and
Client Access for OS/400. A document , in the
System/36 environment is one or more lines of
text that can be named and stored in a folder.

You can group folders in several ways. Each
folder can contain multiple members of the same
type. Folders serve as directories to documents
and other folders.

See Chapter 8, “Folders and Data Dictionaries,”
for more information.

Diskette and Magnetic Tape
Storage

You use diskettes and tapes to make backup
copies of information and to store files and
libraries outside of the system.

The AS/400 system supports several types of
diskettes. You can use magnetic tape on reel or
cartridge. Tapes hold more information than
diskettes.

See Chapter 9, “Diskette Storage,” and
Chapter 10, “Magnetic Tape Storage,” for more
information.

 Security

Security is the protection of data, system opera-
tion, and system devices. The System/36 environ-
ment uses the AS/400 security functions. Security
levels on the AS/400 system include:

� Physical (level 10)
� Password (level 20)
� Password and Resource (level 30)
� Password, Resource, and operating system

integrity (level 40)
� Password, Resource, and enhanced operating

system integrity (level 50)

Note: Accessing objects using interfaces not
supported on the system causes programs to
fail.

See Chapter 11, “Security,” for more information.

 Designing Records

A record is a collection of fields. When you
design a record you must include all required input
and output fields. The way you design records
depends on the type and format of the records
needed, the type of fields and files used, and how
the records are used.

1-2 OS/400 System/36 Environment Programming V3R6

See Chapter 12, “Designing Records,” for more
information.

 Communications

The AS/400 system uses data communications to
send and receive information from different
devices and systems. The system acts as a host
system to remote work stations, acts as a sec-
ondary station to a remote host system, or com-
municates with another system as a peer.

See Chapter 13, “Communications,” for more
information.

Menus and Displays

A menu is a displayed list of options from which a
user makes a selection. You can use screen
design aid (SDA) or the Build Menu (BLDMENU)
procedure to create a menu. The screen design
aid (SDA) is a function of the Application Develop-
ment Tools licensed program that helps the user
design, create, and maintain displays and menus.

The user enters data on a display to communicate
with a program. The program uses a display to
show data to the user. You can use SDA or the
FORMAT procedure to create a display.

See Chapter 14, “Menus and Displays,” for more
information.

Messages and Message Members

The AS/400 system uses messages to communi-
cate with you. Your programs use messages to
communicate with users. Messages supply infor-
mation, prompt the user to enter data, or indicate
an error has occurred. A message member in
the System/36 environment is a library load
member that defines the text of each message
and its associated message identification code.
On the OS/400 operating system, a message
member is a message file (*MSGF) object.

The following are the types of messages available
on the AS/400 system:

 � Informational
 � Prompting

 � Error

See Chapter 15, “Messages and Message
Members,” for more information.

Programs and Procedures

A procedure is a collection of statements that can
cause one or more programs to run. The proce-
dure statements are in a library member called a
procedure member. On the OS/400 operating
system, procedure members are stored as
members of source physical file QS36PRC.

To run a procedure, you can enter a procedure
command, which is the name of the procedure
member in the library. Enter procedure com-
mands with information that tells the procedure
what to do.

See Chapter 16, “Programs and Procedures,” for
more information.

Mixing System/36 Environment
and AS/400 Functions

An application that is migrated from a System/36
to the System/36 environment is called a
System/36 application. Within the System/36
environment, you can change these migrated
applications to use AS/400 functions. These
changed applications are called mixed mode appli-
cations. You can eventually change the applica-
tion entirely to an AS/400 application.

However, when you start mixing System/36 envi-
ronment functions and AS/400 functions, you must
follow certain rules. See Chapter 17, “Mixing
System/36 Environment and AS/400 Functions” for
more information.

Jobs and Job Processing

On System/36, a job is a unit of work composed
of one or more programs. A job step is a unit of
work done by one program. Jobs can have one
or more job steps.

See Chapter 18, “Jobs and Job Processing,” for
more information.

 Chapter 1. Introduction 1-3

Error Prevention, Detection, and
Recovery

Create a backup and recovery plan for your
system, once you understand the errors that can
occur and how to prevent them and recover from
them.

See Chapter 19, “Error Prevention, Detection, and
Recovery,” for more information.

National Language Support

The System/36 environment allows you to work in
your own national language. This national lan-
guage can be a single- or double-byte character
language.

See Chapter 20, “System/36 Environment
National Language Support,” for more information.

 Licensed Programs

The following sections describe the licensed pro-
grams, supplied by IBM, that you can use in the
System/36 environment.

Utilities and Application
Development Tools

The application development tools offer the fol-
lowing functions for creating and maintaining parts
of applications:

� Data file utility (DFU) . Use DFU to create
and maintain simple data entry programs, file
update programs, file inquiry programs, and
report printing programs. You can use DFU to
interactively create and maintain programs
instead of coding in a programming language.

� Programming development manager
(PDM). Use PDM to create and maintain pro-
cedures and source programs.

� Screen design aid (SDA) . Use SDA to
create and maintain displays and menus.

� Source entry utility (SEU) . Use SEU to
create and maintain procedures and source
programs.

� Business graphics utility (BGU) . Use BGU
to design and produce business and scientific
charts.

� Character generator utility (CGU) . Use
CGU to define and maintain user-defined
double-byte characters and related sort infor-
mation.

 Query

Query allows you to request a variety of reports
based on information in your files. It uses a series
of displays to prompt you to specify:

� The information you want in your report
� Whether you want to print or display the report
� Whether you want to store the query data in a

disk file
� How you want the report to look

You can save a query in a library once it is
created. You can change your saved queries,
copy them, or delete them from the library.

The Query/400 Use book has more information
about Query/400.

OfficeVision for OS/400

The OfficeVision for OS/400 functions include
word processing and office tasks.

Word Processing: You can use the word
processing function to do the following:

� Create documents (such as letters, memos,
and reports).

� Create online help information for application
programs.

The Using OfficeVision/400 Word Processing book
has more information about the word processing
function.

Office Tasks: The office task function sup-
plies automatic ways to handle office tasks, such
as:

� Electronic mail handling
 � Calendar management
 � Directory support
 � Distribution lists
 � Message handling
 � Administrative support

1-4 OS/400 System/36 Environment Programming V3R6

The Using OfficeVision/400 book has more infor-
mation about the office task function of
OfficeVision for OS/400.

 Client Access/400

The Client Access/400 licensed program allows
you to use a personal computer as a work station
attached to your AS/400 system. The Client
Access/400 has the following features:

� PC files are stored in folders.

� Virtual printer support lets you use printers
attached to the AS/400 system as if they were
attached to your personal computer.

� Transfer function support lets you transfer
AS/400 source members, procedure
members, and files to the personal computer.
It also lets you transfer personal computer
files to the AS/400 system.

Refer to the Client Access/400 for DOS with
Extended Memory User Guide or Client
Access/400 for OS/2 User Guide, and the Client
Access/400 for DOS and OS/2 Technical Refer-
ence books for more information about Client
Access/400.

 Programming Languages

The AS/400 system supports several programming
languages, including RPG/400*, COBOL/400*, and
PL/I. The System/36 environment also supports
System/36-compatible RPG II and
System/36-compatible COBOL. When you use a
programming language, you control:

� How information appears on the users’ dis-
plays

� How information appears on printed reports
� What processing the program does

 Chapter 1. Introduction 1-5

1-6 OS/400 System/36 Environment Programming V3R6

Chapter 2. Operating in the System/36 Environment

This chapter discusses operating in the System/36
environment.

Operating in the System/36 environment consists
of using procedures and operator control com-
mands. AS/400 control language (CL) commands
are used to start and end operations in the
System/36 environment.

A user can choose one of two methods for
running in the System/36 environment:

� A user profile attribute that indicates a user
should always have access to the System/36
environment functions

� Commands to access the System/36 environ-
ment functions

System/36 Environment User
Profile Attribute

Use the special environment attribute in a user’s
profile (the special environment (SPCENV) param-
eter on the Create User Profile (CRTUSRPRF) CL
command and the Change User Profile
(CHGUSRPRF) CL command) to indicate that you
should have access to the System/36 environment
functions. Following are the values you can
specify for this attribute:

*NONE
If you specify *NONE for the special environ-
ment attribute in your user’s profile, you do
not automatically have access to the
System/36 environment functions when
signing on to the system. If you need to run
a System/36 environment procedure, operator
control command, and so on, you must use
the Start System/36 (STRS36) CL command
to access the System/36 environment func-
tions.

*S36
If you specify *S36 for the special environ-
ment attribute in your user’s profile, you auto-
matically access the System/36 environment
when you sign on to the system.

*SYSVAL
If you specify *SYSVAL for the special envi-
ronment in your user profile, system value
QSPCENV determines whether the system
automatically gives you access to System/36
environment functions when you sign on. The
QSPCENV value can be *S36 or *NONE.
Use the Display System Value (DSPSYSVAL)
and Change System Value (CHGSYSVAL) CL
commands to display and change the
QSPCENV value.

If most users want access to the System/36 envi-
ronment functions, set system value QSPCENV to
*S36 and specify *SYSVAL for the special envi-
ronment value when you create user profiles
(*SYSVAL is the default when creating user pro-
files). If you do not want an individual user to
automatically have access to System/36 environ-
ment functions, specify *NONE for the special
environment attribute in the user’s profile. The
special environment value *NONE, when in the
user’s profile, overrides the value in the system
value QSPCENV.

If most users do not want access to the
System/36 environment functions, set system
value QSPCENV to *NONE and specify *SYSVAL
as the special environment value when you create
user profiles. If you want an individual user to
automatically have access to System/36 environ-
ment functions, specify *S36 for the special envi-
ronment attribute in the user’s profile. The special
environment value *S36, when in the user’s
profile, overrides the value in the system value
QSPCENV.

Note: The subsystem routing entry used to start
the job must be QCMD to automatically access
the System/36 environment functions. QCMD is
the default for the IBM-supplied subsystems
QBASE, QINTER, QBATCH, and so on. A sub-
system is an operating environment, defined by a
subsystem description, in which the system coor-
dinates processing and resources. See the Work
Management book for more information on the
routing entries.

 Copyright IBM Corp. 1995 2-1

Commands to Access the
System/36 Environment
Functions

If you do not have automatic access to the
System/36 environment functions, you can use
commands to enter the System/36 environment.
Use the STRS36 command to run System/36
environment functions. Either use the End
System/36 Environment (ENDS36) command to
exit the System/36 environment, or use the sign
off (SIGNOFF) command to sign off the system
and exit the System/36 environment functions.
You can also exit the System/36 environment by
pressing F3 or F12 on the menu displayed by the
command if the FRCMNU (*YES) option was
specified on the STRS36 command.

If you need to run a single System/36 environment
procedure, use the Start System/36 Procedure
(STRS36PRC) command. STRS36PRC runs the
procedure in the System/36 environment and
automatically returns you to your previous environ-
ment.

When you use the STRS36 or STRS36PRC CL
commands, the System/36 environment saves the
name of the current library. A current library is
the library specified to be the first user library
searched for objects requested by a user. You
can specify the name for the current library on the
sign-on display or in a user profile. When you
specify an object name (such as the name of a file
or program) on a command but do not specify a
library name, the system searches the libraries in
the system part of the library list and then
searches the current library before searching the
user part of the library list. The current library is
also the library that the system uses when you
create a new object if you do not specify a library
name. When you leave the System/36 environ-
ment (using the ENDS36 CL command or at the
end of the procedure started with the
STRS36PRC CL command), the current library is
restored to the value it was when you entered the
System/36 environment.

You can enter System/36 environment procedures
and CL commands from the System/36 environ-
ment Command Entry display or on the command
line of any menu. To access the System/36 Envi-
ronment Command Entry display, type in an

asterisk on the command line of any menu in the
System/36 environment. To exit the System/36
Environment Command Entry display, press either
F3 (Exit) or F12 (Cancel).

Notes:

1. The STRS36 CL command blanks the local
data area when you enter the System/36 envi-
ronment.

2. The ENDS36 CL command blanks the local
data area when you leave the System/36 envi-
ronment.

3. The STRS36PRC CL command does not
blank the local data area.

4. You cannot leave the System/36 environment
with the Exit (F3) or Cancel (F12) keys unless
FRCMNU (*YES) is specified on the STRS36
command. Use the ENDS36 command to
return to the environment you left when you
entered the STRS36 CL command.

5. You cannot use the STRS36PRC command
when a System/36 environment procedure is
active. For example, a CL program called
from a System/36 environment procedure
cannot use STRS36PRC to call a System/36
environment procedure.

See Chapter 6, “Libraries,” for information on how
the library list is changed by the STRS36 and
STRS36PRC CL commands.

See the CL Reference book for information about
the STRS36, ENDS36, and STRS36PRC CL com-
mands.

 Accessing System/36
Environment Functions from
Batch Jobs

The following types of System/36 environment
jobs automatically access System/36 environment
functions:

� // EVOKE OCL statement

� JOBQ operator control command

� // JOBQ OCL statement

� F6 from the help prompt ($HELP) for the
System/36 environment procedure

� Multiple requester terminal (MRT) programs

2-2 OS/400 System/36 Environment Programming V3R6

� Nonrequester terminal (NRT) programs

� Intersystem communications function
(OS/400-ICF, hereafter referred to as ICF)
start requests for procedures

The intersystem communications function
(ICF) is a function of the operating system that
allows a program to communicate with another
system. An operating system is a collection of
system programs that control the overall operation
of a computer system. A system program in the
System/36 environment is an IBM-supplied
program that is installed on the system. The
System/36 environment utility program $MAINT is
an example.

Jobs created by the Submit Job (SBMJOB) CL
command use the special environment attribute of
the user profile for the batch job to determine
whether the job has automatic access to
System/36 environment functions.

When jobs of this type are submitted, all informa-
tion regarding the submitting work station is lost,
such as the work station printer’s identity. If this
information is necessary, use a System/36 envi-
ronment command or OCL statement to submit
the job. The operation control language (OCL)
in the System/36 environment is a language used
to identify a job and its processing requirements to
the System/36 environment. If you used the
SBMJOB command to submit the STRS36PRC
command, this information is also lost.

If you use a System/36 environment procedure,
command, or OCL statement to submit the batch
job (for example, JOBQ, EVOKE, and so on),
much information is copied from the submitting job
to the submitted job by the System/36 environ-
ment to set up the environment for the batch job.
Most of this information usually involves the
current session values, but also includes the work
station ID of the submitting job. A session in the
System/36 environment is the length of time that
starts when a user signs on to the System/36
environment and ends when the user signs off the
System/36 environment. A work station ID in the
System/36 environment is a 2-character identifier
assigned to each display station and printer on
your system.

If the special environment value for your user
profile is *S36 (or your user profile value is
*SYSVAL and the system value QSPCENV is

*S36), the batch job can access System/36 envi-
ronment functions. If the special environment
value for your user profile is *NONE (or the user
profile value is *SYSVAL and the system value
QSPCENV is *NONE), the job does not access
System/36 environment functions. Use the
STRS36PRC command in a job that does not
access System/36 environment functions to run a
System/36 environment procedure. You cannot
use the STRS36 and ENDS36 commands in batch
jobs.

Note: The subsystem routing entry you use to
start the job must be QCMD to gain automatic
access to System/36 environment functions. This
routing entry is the default for IBM-supplied sub-
systems, such as QBASE, QINTER, and
QBATCH. See the Work Management book for
information about routing entries.

 Subconsoles

The concept of a subconsole is not supported by
the System/36 environment. This section
describes the steps you can perform to map
System/36 subconsole support to the AS/400
message handling support:

� The system automatically creates a message
queue for each display station named by the
display station ID. The queue holds mes-
sages sent to the device. For example, a
message from the console to X1 is placed in
display station message queue X1. A
console is a display station from which an
operator can control and observe the system
operation.

� You must run the Change Device Printer
(CHGDEVPRT) or Create Device Printer
(CRTDEVPRT) commands for each printer
controlled by a subconsole. Specify the
display station message queue to receive
messages for a printer. For example, if X1 is
the subconsole for printers P1 and P2, you
must run the CHGDEVPRT command for
printers P1 and P2, and you must specify a
message queue of QSYS/X1.

� When you sign on to a display station, the
system puts the message queue for the
display station in notify mode. If a message is
on the message queue for the display at the
time you sign on, the message-waiting light
will be turned on. When a message is sent to

 Chapter 2. Operating in the System/36 Environment 2-3

the message queue the message-waiting light
is turned on if it is not already on.

To display the messages for your display station,
use the Display Message (DSPMSG) CL
command.

The Display Messages display appears as follows:

à@ ð
 Display Messages
 System : RCH3836ð
 Queue : QSYSOPR Program: \DSPMSG

Library . . . : QSYS Library . . .:
 Severity : 72 Delivery . . .: \HOLD

 Type reply (if required), press Enter.
Controller RCHASGT1 contacted on line LANLINE.
All sessions ended for device RCHASLAM.
An adapter has inserted or left the token-ring on line LANLINE.
An adapter has inserted or left the token-ring on line LANLINE.
All sessions ended for device RCHAS415ð1.
All sessions ended for device S1ð1ð1ð7.
An adapter has inserted or left the token-ring on line LANLINE.
An adapter has inserted or left the token-ring on line LANLINE.
An adapter has inserted or left the token-ring on line LANLINE.
An adapter has inserted or left the token-ring on line LANLINE.
SYS1631 Options (123)
Empty slot or picker failure during DELETE.
Reply . . . __

 Bottom

F3=Exit F11=Remove a message F12=Cancel
F13=Remove all F16=Remove all except unanswered F24=More keys

á ñ

Because the messages are saved in a message
queue, you can (with security authorization to the
message queue) display and respond to these
messages.

The format and options for the Display Message
display are the AS/400 message display format
and options.

You are not given special authority to spool com-
mands when your display station is defined to
receive the messages for a printer. Authorization
does not depend on the display station from which
you are operating.

System Request Menu

Use the System Request key to interrupt a job or
display console messages. The System Request
menu has a format similar to the following in the
System/36 environment:

à@ ð
 System Request
 System: RCH3836ð
 Select one of the following:

1. Display sign on for alternative job
2. Cancel job and close files; new data is saved
3. Display current job
4. Display messages
5. Send a message
6. Display system operator messages
7. Display work station user
1ð. Start system request at source system
11. Transfer to (source/target) system
2ð. Set inquiry condition for S/36 program

8ð. Disconnect job

9ð. Sign off

 Selection
 __

 F3=Exit F12=Cancel
(C) COPYRIGHT IBM CORP. 1988, 1992.

á ñ

Consider the following factors when using the
System Request menu:

� The wording of options is tailored to the envi-
ronment in which you are running.

� Options not allowed because of the ATTR
OCL statement are not shown on the display.

� The system suspends AS/400 and single
requester terminal (SRT) jobs.

� In a multiple requester terminal (MRT), only
the MRT’s use of the display station from
which the System Request key was pressed is
suspended. The MRT can continue to access
other display stations.

� You can restrict access to the system request
function by revoking access to the system
request panel group (*PNLGRP) named
QGMNSYSR in library QSYS.

� On System/36, if a utility uses the diskette
drive, and the system issues a message that
requires you to initialize a diskette, you can
request a command display with inquiry option
1. From the new session, you can then run
the INIT procedure and initialize a diskette. In
the System/36 environment, when the system
issues a message that requires you to ini-
tialize a diskette, use message option INZ to
initialize the diskette. The system does not
allow a secondary job running at the display
station to use the diskette when the system
allocates the diskette to the primary job.

� On System/36, CMD1 ended the secondary
session and returned to the previous session.
On the AS/400 system, the SIGNOFF
command is used for this function.

� In a MRT program, processing of the System
Request key is delayed until the MRT has an
input operation outstanding for the display

2-4 OS/400 System/36 Environment Programming V3R6

station from which the system request key
was used. A multiple requester terminal
(MRT) program in the System/36 environment
is a program that can process requests from
more than one display station or ICF session
at the same time using a single copy of the
program.

� System request is ignored for acquired display
stations.

 Attention Key

A user-written application can define a program to
be called when you press the Attention key. Use
the Set Attention Program (SETATNPGM)
command or the Attention key program attribute in
the user profile to define this program. However,
the Attention key does not work when the work
station is running a MRT program. For more infor-
mation about setting up the Attention key, see the
Work Management book.

Note: You should not access System/36 environ-
ment functions from the Attention key program.

OS/400 CL Commands for the
System/36 Environment

This section gives a brief description of commands
and procedures you can use in the System/36
environment. For a detailed description of these
and other CL commands, see the System/36 Envi-
ronment Reference and the CL Reference books.

Change System/36 Message List
(CHGS36MSGL)
Use the CHGS36MSGL command to specify
the action to be taken by the system when an
error occurs on a CL command in a proce-
dure.

Change System/36 (CHGS36)
Use the CHGS36 command to change the
System/36 environment. This command dis-
plays a series of screens with which you can
tailor the System/36 environment.

Change System/36 Environment Attributes
(CHGS36A)
Use the CHGS36A command to change
values in the System/36 environment config-
uration. You can use this command while
others are in the System/36 environment.

Change System/36 Procedure Attributes
(CHGS36PRCA)
Use the CHGS36PRCA command to change
the System/36 attributes of a procedure
member.

Change System/36 Program Attributes
(CHGS36PGMA)
Use the CHGS36PGMA command to change
the System/36 attributes of a program.

Change System/36 Source Attributes
(CHGS36SRCA)
Use the CHGS36SRCA command to change
the System/36 attributes of a source member.

Create System/36 COBOL Program
(CRTS36CBL)
Use the CRTS36CBL command to create a
System/36-compatible COBOL program.

Create System/36 Display File (CRTS36DSPF)
Use the CRTS36DSPF command to create a
display file from a screen format generator
(SFGR) source member. The screen format
generator (SFGR) in the System/36 environ-
ment is a utility on the AS/400 system that
creates AS/400 display files from System/36
SFGR source statements. This command is
equivalent to the System/36 FORMAT proce-
dure. You can use this command to convert
the System/36 SFGR source to the AS/400
DDS source.

Create System/36 Menu (CRTS36MNU)
Use the CRTS36MNU command to create a
menu from a source member in System/36
format. It creates a display file and message
file from a message text source member and
$SFGR source member or option text
message source member. This command is
equivalent to the System/36 BLDMENU proce-
dure.

Create System/36 Message File (CRTS36MSGF)
Use the CRTS36MSGF command to create a
message file from a message source member
in System/36 format. This command is equiv-
alent to the System/36 CREATE procedure.
Also, you can use it to convert the System/36
message source to the AS/400 CL source.

Create System/36 Message File Menu
(CRTMSGFMNU)
Use the CRTMSGFMNU command to create a
menu from source that is in System/36 format.

 Chapter 2. Operating in the System/36 Environment 2-5

This command creates a display file from an
option text message file or command text
message file.

Create System/36 RPG II Program
(CRTS36RPG)
Use the CRTS36RPG command to create a
System/36-compatible RPG II program.

Display System/36 Environment (DSPS36)
Use the DSPS36 command to display or print
the System/36 environment configuration.
This command displays a series of panels that
show the values specified with the CHGS36
command.

Edit System/36 Procedure Attributes
(EDTS36PRCA)
Use the EDTS36PRCA command to edit the
System/36 attributes of one or more proce-
dures.

Edit System/36 Program Attributes
(EDTS36PGMA)
Use the EDTS36PGMA command to edit the
System/36 attributes of one or more pro-
grams.

Edit System/36 Source Attributes
(EDTS36SRCA)
Use the EDTS36SRCA command to edit the
System/36 attributes of one or more source
members.

End System/36 (ENDS36)
Use the ENDS36 command to end a
System/36 environment session started with
the STRS36 command.

Restore System/36 File (RSTS36F)
Use the RSTS36F command to restore a file
or a group of files saved in the System/36
save and restore format using the SAVE pro-
cedure.

Restore System/36 Folder (RSTS36FLR)
Use the RSTS36FLR command to restore a
folder saved in the System/36 save and
restore format.

Restore System/36 Library Member
(RSTS36LIBM)
Use the RSTS36LIBM command to restore
library members (source and procedure)
saved in the System/36 save and restore
format using the FROMLIBR or SAVELIBR
procedures.

Retrieve System/36 Environment Attributes
(RTVS36A)
Use the RTVS36A command to retrieve
System/36 environment configuration values.

Save System/36 File (SAVS36F)
Use the SAVS36F command to save a single
file or multiple files in the System/36 save and
restore format.

Save System/36 Library Member (SAVS36LIBM)
Use the SAVS36LIBM command to save
library members (source and procedure) in the
System/36 save and restore member format.

Start System/36 Procedure (STRS36PRC)
Use the STRS36PRC command to run a
System/36 environment procedure and return
to the environment from which you entered
the System/36 environment.

Start System/36 (STRS36)
Use the STRS36 command to start a
System/36 environment session, and
optionally display a menu.

Work with System/36 Configuration (WRKS36)
Use the WRKS36 command to change,
display or print the System/36 environment
configuration. This command shows you the
name of the System/36 environment config-
uration object. By selecting option 2, you can
change your configuration. By selecting
option 5, you can display your configuration.
By selecting option 6, you can print your con-
figuration.

Work with System/36 Procedure Attributes
(WRKS36PRCA)
Use the WRKS36PRCA command to change
or display the System/36 attributes for your
procedures. The command shows you a list
of procedures and their descriptions. By
selecting option 2, you can change the attri-
butes. By selecting option 5, you can display
the attributes.

Work with System/36 Program Attributes
(WRKS36PGMA)
Use the WRKS36PGMA command to change
or display the System/36 attributes for your
programs. The command shows you a list of
programs and their descriptions. By selecting
option 2, you can change the attributes. By
selecting option 5, you can display the attri-
butes.

2-6 OS/400 System/36 Environment Programming V3R6

Work with System/36 Source Attributes
(WRKS36SRCA)
Use the WRKS36SRCA command to change
or display the System/36 attributes for your
source members. The command shows you a

list of source members and their descriptions.
By selecting option 2, you can change the
attributes. By selecting option 5, you can
display the attributes.

 Chapter 2. Operating in the System/36 Environment 2-7

2-8 OS/400 System/36 Environment Programming V3R6

Chapter 3. Configuring the System/36 Environment

Configuration consists of the following parts:

� AS/400 system processes for configuring the
system hardware and software

� Configuration of the System/36 environment

This chapter describes the process and character-
istics of configuring the System/36 environment. It
does not describe system configuration.

System Values Affecting the
System/36 Environment

The following system values affect how the
AS/400 system and the System/36 environment
work together:

QCONSOLE
The System/36 environment uses the display
device name specified to determine whether
the OCL IF CONSOLE test is evaluated as
true or false.

Display the system value using the following
command:

DSPSYSVAL QCONSOLE

QPRTDEV
The System/36 environment uses the printer
device name specified as the default printer or
system printer when you do not direct output
to a specific printer.

Change the system value using the following
command:

CHGSYSVAL QPRTDEV name

name is the AS/400 device name of a printer.

QSPCENV
If your user profiles have *SYSVAL for the
SPCENV parameter (the default), the
QSPCENV system value determines whether
you run in the System/36 environment.

To ensure that all users operate in the
System/36 environment at all times, each user
profile should have the SPCENV parameter
value *SYSVAL and the QSPCENV system
value *S36. To change the system value to
*S36, type CHGSYSVAL QSPCENV *S36.
When you configure your system with this

command, the AS/400 system you are on can
run System/36 applications. Use this same
command to configure the system if you have
migrated from a System/36.

You can change the QSPCENV value during
initial program load (IPL). If you select Y to
display additional options, the AS/400 system
presents an option to change the default
special environment. Set the option to *S36
to change the QSPCENV value. You can
tailor your system at IPL time.

QDEVNAMING
If this value is *S36, the AS/400 system
assigns a 2-character device name to all dis-
plays, printers, tapes, and diskettes automat-
ically configured by the AS/400 system. The
device names follow the System/36 naming
convention.

When the AS/400 configuration notifies the
System/36 environment configuration that a
new device has been added (and it has a
2-character name that follows the System/36
naming conventions), the System/36 environ-
ment tries to make the System/36 ID the
same as the AS/400 device name. That way,
error messages that the System/36 environ-
ment shows for displays, printers, tapes, and
diskettes, match the configured names.

Change the system value for QDEVNAMING
using the following command:

CHGSYSVAL QDEVNAMING \S36

You can change the QDEVNAMING value at
IPL time. If you select Y to display additional
options, the System/36 environment presents
an option to change the device configuration
names. Set the option to *S36 to change the
QDEVNAMING value.

If the AS/400 device name for the first display
that becomes active is set to DSP01, and you
change QDEVNAMING to *S36, you may
need to do an IPL to change the DSP01 name
to W1.

If automatic-configuration is on and has
already configured the displays, printers,
tapes, or diskettes with non-System/36
naming conventions, do the following to

 Copyright IBM Corp. 1995 3-1

rename your devices with System/36 naming
conventions:

1. Vary the device off by using either the
WRKCFGSTS or VRYCFG command.

2. Delete the device description by using the
DLTDEVD command.

3. Turn off the device.
4. Wait about 10 seconds and turn the

device back on.
5. Use the WRKCFGSTS command to

ensure that the device was automatically-
configured based on the System/36
naming conventions.

Do this for each device you want to have
renamed.

Note: If you use the automatic advance func-
tion (AUTO-YES) support for T1 and T2, the
tape drives assigned to these 2-character
device names must support the same tape
density. If tape reels are used, they must also
be the same density.

For more information on AS/400 device
names, see “AS/400 Device Configuration” on
page 3-3.

Starting Another AS/400
Subsystem

After loading the System/36 environment onto the
AS/400 system, starting the next AS/400 sub-
system causes the subsystem to:

� Find the current AS/400 device configurations
for displays, printers, tapes, and diskettes.

� Create #LIBRARY if it does not exist.

� Create the object QS36ENV of type *S36 in
#LIBRARY (if a System/36 environment con-
figuration does not exist in #LIBRARY).

� Create a default System/36 ID for each
10-character AS/400 device name. This data
is placed in the object QS36ENV of type *S36
in #LIBRARY.

If the AS/400 device name is a valid
System/36 device ID, it tries to create the
System/36 environment device ID to match
the AS/400 device name.

� Provide default values for 3270 device emu-
lation, general System/36 environment values,
and MRT security. The 3270 device emu-

lation is the operating system support that
allows an AS/400 system to appear as a 3274
Control Unit in a BSC multipoint network or
SNA/SDLC network.

 System/36 Environment
Configuration

The Local Device Configuration book explains how
to configure your AS/400 system. The information
in the following sections explains how to configure
the necessary data to run System/36 applications
on your AS/400 system.

You need a System/36 environment configuration
to specify values used to run jobs in the
System/36 environment.

Commands for Configuring the
System/36 Environment

The following commands process the System/36
environment configuration data:

Change System/36 (CHGS36)
Use the CHGS36 command to change values
in the System/36 environment configuration. If
you use this command, no one else is allowed
in the System/36 environment at the same
time.

Change System/36 Attributes (CHGS36A)
Use the CHGS36A command to change
values in the System/36 environment config-
uration while the System/36 environment is
active. This command can be used in a
noninteractive job.

Display System/36 (DSPS36)
Use the DSPS36 command to view or print
the System/36 environment configuration data.

Retrieve System/36 Attributes (RTVS36A)
Use the RTVS36A command to retrieve
System/36 configuration environment values.
This command can be used in a
noninteractive job.

Work with System/36 Configuration (WRKS36)
Use the WRKS36 command to change or
display the System/36 environment configura-
tion. This command shows you the name of
the System/36 environment configuration
object. By selecting option 2, you can change

3-2 OS/400 System/36 Environment Programming V3R6

your configuration. By selecting option 5, you
can display your configuration. By selecting
option 6, you can print your configuration.

AS/400 Device Identification

AS/400 device description names can be up to 10
characters. System/36 device IDs can be only 2
characters. Much of the information you specify
for the System/36 environment concerns mapping
between AS/400 device names and the System/36
environment device IDs. The following items
depend on a 2-character ID to run without change:

OCL Application programs
$SFGR displays Menus

The System/36 environment configuration maps
between the AS/400 device description names
and the System/36 IDs for the following devices:

Displays Printers
Tapes Diskette

Notes:

1. A maximum of 1128 devices can be supported
with the 2-character System/36 names. The
first character can be one of the letters A–Z,
$, #, or @. The second character can be one
of the letters A–Z, a number 0–9, $, #, or @.
The IDs F1, #D, and #P are not used; T1, T2,
TC, and I1 are reserved for tapes and
diskettes respectively.

Once the System/36 names have been used,
the System/36 environment configuration
ignores any new devices added to the system.

2. Communications devices are not mapped and
you must use the AS/400 device description
name.

3. Along with mapping between the AS/400
device names on the System/36 IDs, you can
also specify the System/36 environment
values for files libraries, default session
libraries, date-differentiated files, printer infor-
mation, 3270 device emulation, and MRT
security.

AS/400 Device Configuration

When a new display, printer, tape, or diskette is
configured on the AS/400 system, the AS/400
device configuration informs the System/36 envi-
ronment configuration that a new device has been
configured.

If the AS/400 device name follows the System/36
naming conventions (QDEVNAMING is set to
*S36), and the System/36 environment does not
have a System/36 device ID by that name, then
the System/36 environment configuration sets the
System/36 device ID to match the AS/400 device
name.

If the AS/400 device name follows the System/36
naming conventions, but the System/36 environ-
ment configuration is already using this ID, or if
the AS/400 device name follows AS/400 standards
(QDEVNAMING is set to *NORMAL), the
System/36 environment configuration creates a
System/36 device ID.

If the AS/400 device names for displays, printers,
tapes, or diskettes follow the System/36 naming
convention (QDEVNAMING is set to *S36), and
some of the AS/400 device names no longer have
matching System/36 device IDs, you can do the
following to help match them up:

1. Issue the CHGS36 command.
2. Select a 2 option to change all of the device

sections.
3. Erase or blank out the System/36 ID.
4. Press F5 to refresh the screen.
5. Press F10 to set the System/36 IDs.

If a 2-character AS/400 device name is found,
and it is a valid System/36 ID for this device
type, the System/36 2-character ID is set to
match the AS/400 2-character device name.
For any AS/400 device names that do not
meet the above requirement, a System/36 ID
is generated for the remaining AS/400 device
names.

6. Press the Enter key to save the changes.
7. After you have changed all of the device

sections and returned to the Change S/36
Environment Configuration display, press the
Enter key to save all of the changes.

 Chapter 3. Configuring the System/36 Environment 3-3

Considerations for System/36
Environment Installation or PTF
Application

You should not be in the System/36 environment
while you do any of the following:

� Install, delete, or save the System/36 environ-
ment licensed program.

� Apply or remove program temporary fixes
(PTFs) to or from the System/36 environment
licensed program. A program temporary fix
(PTF) is a temporary solution to, or bypass of,
a defect in a current release of a licensed
program.

You must do an IPL for the system after you do
any of the following:

� Install or delete the System/36 environment
licensed program.

� Apply or remove PTFs to or from the
System/36 environment licensed program.

To check if you are in the System/36 environment,
enter STATUS SESSION from the command line of a
menu. If the Display Session Status display
appears, you are in the System/36 environment.
If you are not in the System/36 environment, you
receive an error message, such as Command
STATUS in library \LIBL not found.

Another way to determine whether you are in the
System/36 environment is to specify the Display
Job (DSPJOB) CL command and select option 1
to display your job status attributes. If your job is
processing in the System/36 environment, the
special environment attribute for your job is *S36.

If you entered the System/36 environment with the
Start System/36 Environment (STRS36) CL
command, you can use the End System/36 Envi-
ronment (ENDS36) CL command to leave the
System/36 environment.

If you entered the System/36 environment
because the special environment value for your
user profile is *S36, or your user profile is
*SYSVAL and system value QSPCENV is *36,
you can do the following to leave the System/36
environment:

1. Change the special environment of your user
profile from *S36 to *NONE by using the

Change User Profile (CHGUSRPRF) CL
command.

2. Sign off the system by using the Sign Off
(SIGNOFF) CL command.

3. Sign back on the system.

After signing back on the system, you will not be
in the System/36 environment.

Security Attributes for Multiple
Requester Terminals (MRTs)

If the Security Attributes for Multiple Requester
Terminals (MRTs) option appears, your user
profile has a user class attribute of *SECOFR.
Use the MRT security option to specify security
and authority attributes for your MRT program.
You can specify that the MRT program has the
security and authority attributes of the initiator of
the MRT program, or of the owner of the MRT
program. An initiator in the System/36 environ-
ment is the part of the system that reads and pro-
cesses operation control language statements
from the system input device.

In addition, you can specify whether the system
checks the authority of all users of a MRT
program, or only the authorities of the initiator of
the MRT program against the files the MRT
program may use.

Depending on the security needed (and on some
performance considerations), you can determine
whether MRT security works as it does on
System/36, or if you should tailor it to work differ-
ently. For more information on security, see
Chapter 11, “Security.” For information on the
Change S/36 MRT Security and Performance
display, see page 3-11.

Configuration of the System/36
Environment

This section describes the System/36 environment
configuration displays and prompts that you see
when you use Change System/36 Environment
Configuration (CHGS36) command, or after typing
a 2 in the Option column, next to the configuration
description of the Change S/36 Environment Con-
figuration display.

3-4 OS/400 System/36 Environment Programming V3R6

Change S/36 Environment
Configuration Display

The Change S/36 Environment Configuration
display looks similar to the following:

à@ ð
Change S/36 Environment Configuration

S/36 environment : #LIBRARY

Type options, press Enter.
 2=Change

 Option Configuration Description
_ S/36 display IDs
_ S/36 printer IDs
_ S/36 tape IDs
_ S/36 diskette IDs
_ S/36 327ð device emulation values
_ S/36 environment values
_ S/36 MRT security and performance

 F3=Exit F12=Cancel

á ñ

 Function keys

The following function keys are valid for the
Change S/36 Environment Configuration display:

Enter
All entries are verified and, if correct, saved
when no options are on the display. If incor-
rect entries were made, you are returned to
the display with the entries. If no incorrect
entries were made, the configuration informa-
tion is sorted and saved.

If one or more options were selected on the
Change S/36 Environment Configuration
display, the configuration option is shown.

Page Up or Roll Down
Moves backward to show additional informa-
tion for this display.

Page Down or Roll Up
Moves forward to show additional information
for this display.

Print
Prints the information currently shown on your
display.

Help
Provides more information about using the
display.

F1=Help
Provides more information about using the
display.

F3=Exit
Shows a display that lets you specify if you
want to save the changes made on the config-
uration displays.

F12=Cancel
Shows a display that lets you specify if you
want to save the changes made on this
display.

To save the changes you make in this display, or
in any of the configuration menus for the
System/36 environment, press the Enter key.

Change S/36 Environment
Configuration Display

The following sections describe the displays you
may see when making changes to each of the
seven configuration descriptions of the Change
S/36 Environment Configuration display.

S/36 Display IDs: If you type a 2 in the
Option column, next to the S/36 display IDs Con-
figuration Description of the Change S/36 Environ-
ment Configuration display and press the Enter
key, your display might look as follows:

à@ ð
Change S/36 Display IDs

S/36 environment : #LIBRARY

Type new/changed values, press Enter.

 AS/4ðð S/36 S/36 Default
 Display Display ID Printer ID
 DSP11 WA P3
 DSP12 WB __
 DSP13 WC __
 DSP1ð Wð __
 DSPð1 W1 __
 DSPð2 W2 __
 DSPð3 W3 __
 DSPð4 W4 __
 DSPð7 W7 __
 DSPð8 W8 P3
 DSPð9 W9 __
 X5 X5 __

 More...
F3=Exit F5=Refresh F6=Sort S/36 display IDs
F1ð=Set S/36 display IDs F12=Cancel

á ñ

You can specify the printer that you want your
output to go to when you run in the System/36
environment from that display station.

The following function keys are valid for the
Change S/36 Display IDs display:

F3=Exit
Shows a display that lets you specify if you
want to save the changes made on the config-
uration displays.

 Chapter 3. Configuring the System/36 Environment 3-5

F5=Refresh
All AS/400 system display device names are
shown. To use a display device when running
in the System/36 environment, it must have a
System/36 display ID. To add an AS/400
system display device to the System/36 envi-
ronment, type a System/36 printer ID and
press the Enter key, or press F10 (Set S/36
displays).

F6=Sort S/36 display IDs
The information for AS/400 system display
device names that do not have corresponding
System/36 display station IDs is removed from
the list, and the list is sorted to remove blank
lines.

F10=Set S/36 display IDs
If an AS/400 system display device name
does not have a corresponding System/36
environment ID, one is assigned. The AS/400
system device name is used as the System/36
environment ID if:

� The AS/400 system display device name
is 2 characters in length.

� The characters are allowed for a
System/36 environment display ID.

� The characters are not already being used
as a System/36 environment ID.

Otherwise, a unique System/36 environment
ID is created for the AS/400 system device.

A System/36 environment ID is assigned for
each AS/400 system device name that does
not have a corresponding System/36 environ-
ment ID.

F12=Cancel
Shows a display that lets you specify if you
want to save the changes made on this
display.

S/36 Printer IDs: If you type a 2 in the
Option column, next to the S/36 printer IDs Con-
figuration Description of the Change S/36 Environ-
ment Configuration display and press the Enter
key, your display might look as follows:

à@ ð
Change S/36 Printer IDs

S/36 environment : #LIBRARY

Type new/changed values, press Enter.

 AS/4ðð S/36 Lines Characters
 Printer Printer ID Per Inch Per Inch Font

P1 P1 4 15 ð5
P3 P3 _ __ __

 Bottom
F3=Exit F5=Refresh F6=Sort S/36 printer IDs F1ð=Set S/36 printer IDs

 F12=Cancel

á ñ

You can specify the lines per inch, characters per
inch, and font for any printer. If the printer cannot
support the function, the specified value will be
ignored.

The following function keys are valid for the
Change S/36 Printer IDs display:

F3=Exit
Shows a display that lets you specify if you
want to save the changes made on the config-
uration displays.

F5=Refresh
All AS/400 system printer device names are
shown. To use a printer device when running
in the System/36 environment, it must have a
System/36 printer ID. To add an AS/400
system printer device to the System/36 envi-
ronment, type a System/36 Printer ID and
press the Enter key, or press F10 (Set S/36
printers).

F6=Sort S/36 printer IDs
The information for AS/400 system printer
device names that do not have corresponding
System/36 printer IDs are removed from the
list, and the list is sorted to remove blank
lines.

F10=Set S/36 printer IDs
If an AS/400 system printer device name does
not have a corresponding System/36 environ-
ment ID, a System/36 environment ID is
assigned. The AS/400 system device name is
used as the System/36 environment ID if:

� The AS/400 system printer device name is
2 characters in length.

� The 2 characters are allowed for a
System/36 environment printer ID.

3-6 OS/400 System/36 Environment Programming V3R6

� The 2 characters are not already being
used as a System/36 environment printer
ID.

Otherwise, a unique System/36 environment
ID is created for the AS/400 system device.

A System/36 environment ID is assigned for
each AS/400 system device name that does
not have a corresponding System/36 environ-
ment ID.

F12=Cancel
Shows a display that lets you specify if you
want to save the changes made on this
display.

S/36 Tape IDs: If you type a 2 in the Option
column, next to the S/36 tape IDs Configuration
Description of the Change S/36 Environment Con-
figuration display and press the Enter key, your
display might look as follows:

à@ ð
Change S/36 Tape IDs

S/36 environment : #LIBRARY

Type new/changed values, press Enter.

AS/4ðð S/36
Tape Tape ID
TAPð3 TC
TAPð2 T2
TAPð1 T1

 Bottom
F3=Exit F5=Refresh F6=Sort S/36 tape IDs F1ð=Set S/36 tape IDs
F12=Cancel

á ñ

Note: If you use the automatic advance feature
(AUTO-YES) supported for T1 and T2, the tape
drives assigned to these 2-character device
names must be of the same model.

The following function keys are valid for the
Change S/36 Tape IDs display:

F3=Exit
Shows a display that lets you specify if you
want to save the changes made on the config-
uration displays.

F5=Refresh
All AS/400 system tape device names are
shown. To use a tape device when running in

the System/36 environment, it must have a
System/36 tape ID. To add an AS/400
system tape device to the System/36 environ-
ment, type a System/36 tape ID and press
Enter, or press F10 (Set S/36 tapes).

F6=Sort S/36 tape IDs
The information for AS/400 system tape
device names that do not have corresponding
System/36 tape IDs are removed from the list,
and the list is sorted to remove blank lines.

F10=Set S/36 tape IDs
If an AS/400 system tape device name does
not have a corresponding System/36 environ-
ment ID, a System/36 environment ID is
assigned. The only System/36 environment
IDs allowed for a tape device are T1, T2, and
TC. The AS/400 system device name is used
as the System/36 environment ID if:

� The AS/400 system device tape name is 2
characters in length.

� The 2 characters are allowed for a
System/36 environment tape ID.

� The 2 characters are not already being
used as a System/36 environment tape
ID.

Otherwise, a unique System/36 environment
ID is created for the AS/400 system device.

An System/36 environment ID is assigned for
each AS/400 system device name that does
not have a corresponding System/36 environ-
ment ID.

Up to three tape IDs can be specified.

F12=Cancel
Shows a display that lets you specify if you
want to save the changes made on this
display.

S/36 Diskette IDs: If you type a 2 in the
Option column, next to the S/36 diskette IDs Con-
figuration Description of the Change S/36 Environ-
ment Configuration display and press the Enter
key, your display might look as follows:

 Chapter 3. Configuring the System/36 Environment 3-7

à@ ð
Change S/36 Diskette IDs

S/36 environment : #LIBRARY

Type new/changed values, press Enter.

 AS/4ðð S/36
 Diskette Diskette ID
 DKTð1 I1

 Bottom
F3=Exit F5=Refresh F1ð=Set S/36 diskette F12=Cancel

á ñ

The following function keys are valid for the
Change S/36 Diskette ID display:

F3=Exit
Shows a display that lets you specify if you
want to save the changes made on the config-
uration displays.

F5=Refresh
All AS/400 system diskette device names are
shown. To use a diskette device when
running in the System/36 environment, it must
have a System/36 diskette ID. To add an
AS/400 system diskette device to the
System/36 environment, type a System/36
diskette ID and press Enter, or press F10 (Set
S/36 diskette).

F10=Set S/36 diskette
If an AS/400 system diskette device name
does not have a corresponding System/36
environment ID, a System/36 environment ID
is assigned. The only System/36 environment
ID allowed for a diskette device is I1, and only
one diskette device can be assigned to I1.

F12=Cancel
Shows a display that lets you specify if you
want to save the changes made on this
display.

S/36 3270 Device Emulation Values: If
you type a 2 in the Option column, next to the
S/36 3270 device emulation values Configuration
Description of the Change S/36 Environment Con-
figuration display and press the Enter key, your
display might look as follows:

à@ ð
Change S/36 327ð Device Emulation Values

S/36 environment : #LIBRARY
 National language
 UK multinational

Type choice, press Enter.
Location name ENGLAND

Type option, press Enter.
2=Change national language for emulation

Option National Language for Remote Displays
 _ Austria/Germany
 _ Austria/Germany multinational
 _ Belgium
 _ Belgium multinational
 _ Canada
 _ Canada multinational
 _ Denmark
 _ Denmark multinational Bottom

 F3=Exit F12=Cancel

á ñ

Use the 3270 emulation option to specify trans-
lation on a remote display.

You can specify a location name and select one
national language to be used by 3270 device
emulation when running from a remote display.
The AS/400 system uses the location name speci-
fied in the System/36 environment configuration
when you do not specify a location name on the
ES3270 procedure.

Press the Page Down key to continue to the next
Change S/36 3270 Device Emulation Values
display. If you continue to press the Page Down
key, you will see a total of eight displays con-
taining the following choices of national languages
for remote displays:

 � Austria/Germany
 � Austria/Germany multinational
 � Belgium
 � Belgium multinational
 � Canada
 � Canada multinational
 � Denmark
 � Denmark multinational
 � Finland
 � Finland multinational
 � France (Azerty)
� France (Azerty) multinational

 � France (Qwerty)
� France (Qwerty) multinational

 � International
 � International multinational
 � Italy
 � Italy multinational
 � Norway
 � Norway multinational
 � Portugal
 � Portugal multinational
 � Spain

3-8 OS/400 System/36 Environment Programming V3R6

 � Spain multinational
� Latin American Spanish-Speaking
� Latin American Spanish-Speaking multina-

tional
 � Sweden
 � Sweden multinational
 � Switzerland/French
 � Switzerland/French multinational
 � Switzerland/German
 � Switzerland/German multinational
 � UK
 � UK multinational
 � United States/Canada
� United States multinational

 � Japan English
� Japan English multinational

 � Japan Katakana
 � Netherlands
 � Netherlands multinational
 � Iceland
 � Iceland multinational
 � ROECE-Latin
 � Turkey
 � Yugoslavia multinational
 � Cyrillic
 � Greece
 � Thailand
 � Cursive language–right-to-left
 � Noncursive language–right-to-left

The following function keys are valid for the
Change S/36 3270 Device Emulation Values
display:

F3=Exit
Shows a display that lets you specify if you
want to save the changes made on the config-
uration displays.

F12=Cancel
Shows a display that lets you specify if you
want to save the changes made on this
display.

S/36 Environment Values: If you type a 2
in the Option column, next to the S/36 environ-
ment values Configuration Description of the
Change S/36 Environment Configuration display
and press the Enter key, your display might look
as follows:

à@ ð
Change S/36 Environment Values

S/36 environment : #LIBRARY

Type choices, press Enter.

 S/36:
Default session library
Default files library QS36F
Use library list for files N Y=Yes, N=No
Date differentiated files N Y=Yes, N=No
Shared opens of files Y Y=Yes, N=No
Record blocking when sharing files . . N Y=Yes, N=No
Store deleted files in cache Y Y=Yes, N=No
Default lines per page ð66 1-112
Default forms \STD
Default message action \CONTINUE \CONTINUE, \IGNORE

 \HALT, \CANCEL
Halt options ð3

 More...

F3=Exit F5=Refresh F1ð=Set to default values F12=Cancel

á ñ

The following general System/36 environment
values can be changed on this display:

� The default session library. This library works
as it did on the System/36, except the library
name does not appear on the AS/400 sign-on
display.

� The default files library. This is the library
where you can find your System/36 environ-
ment files. On the AS/400 system, files must
reside in a library.

� Use library list for files. Specify N for this field
if you do not want the System/36 environment
to do an automatic search of the library list for
database files.

� Date differentiated files. Specify Y for this
field if any application uses date-differentiated
files.

� Shared opens of files. Specify N for this field
if you do not want the System/36 environment
to use automatic shared opens of files.

� Record blocking when sharing files. Specify Y
for this field if you want the System/36 envi-
ronment to use record blocking for all sequen-
tially accessed files, including those shared
with other jobs.

� Store deleted files in cache. Specify N if you
want to delete a database file through the
DELETE OCL statement. Otherwise, the
default value Y causes deleted files to be
placed in a cache. When you create a data-
base file, the System/36 environment
searches the cache for a file with the same
attributes and inserts the file into the library.

 � Print information

– The default lines per page. This option
works as it did on System/36.

 Chapter 3. Configuring the System/36 Environment 3-9

– The default forms value. This option
works as it did on System/36.

� Default message action. You can specify the
default action to be taken when an error
occurs on a CL command within a procedure.
Specify *HALT if you want the job to halt with
options when an error occurs. Specify *CON-
TINUE if you want the job to continue without
stopping when an error occurs. The substi-
tution expression ?MSGID? will be set to the
message ID of the escape message. Specify
*IGNORE if you want the job to continue
without stopping when an error occurs. The
substitution expression ?MSGID? will not be
set to the message ID of the escape
message. Specify *CANCEL if you want the
job to be canceled when an error occurs.

� Halt options. You can specify the halt options
that will be allowed when the job halts
because of an error on a CL command within
a procedure. Only shown if the Default
message action is *HALT.

To change additional System/36 environment
values, press the Page Down or Roll Up key.
After doing this, the next Change System/36 Envi-
ronment Values display appears. Your display
looks similar to the following:

à@ ð
Change S/36 Environment Values

S/36 environment : #LIBRARY

Type choices, press Enter.

EVOKE job initiation \IMMED \IMMED, \JOBQ
Storage pool \BASE___ \BASE, \CURRENT
Job priority 5ð________ 1-99, \SUBMITTER

Source file record length 132 52-132
Allow CHGS36 while active N Y=Yes, N=No
Add only S/36 environment users N Y=Yes, N=No
Substitute ICF procedure data Y Y=Yes, N=No
Description #LIBRARY

 Bottom
F3=Exit F5=Refresh F1ð=Set to default values F12=Cancel

á ñ

The following general System/36 environment
values can be changed on this display:

� EVOKE job initiation. You can specify the
method to be used to start EVOKE jobs and
job steps started with the // ATTR
RELEASE-YES OCL statement. *IMMED
specifies the job is started by circumventing
the JOBQ. This offers a performance
improvement over the *JOBQ processing, but
offers less flexibility than the *JOBQ support.

*JOBQ specifies the job is started on the
JOBQ.

� Storage pool. You can specify the storage
pool to be used for jobs started with the
*IMMED option. *BASE is the default and
specifies that the job is started in the *BASE
storage pool. *CURRENT specifies the job is
started in the same storage pool as the sub-
mitting job. This value is only shown if
*IMMED is specified for the EVOKE job initi-
ation value.

� Job priority. You can specify the priority at
which to start the job when the job is started
with the *IMMED option. The valid priority
values are 1–99 and *SUBMITTER. *SUB-
MITTER specifies to start the job at the same
priority as the submitting job. The default is
50.

� Source file record length. You can specify the
record length to be used whenever a new
source file is created to hold your procedure
statements (QS36PRC) or your source state-
ments (QS36SRC). These source files are
created when the BLDLIBR or TOLIBR proce-
dures are run. They are also created when
the Restore System/36 Library member
(RSTS36LIBM) command is run. The value
should be based on the maximum statement
length in your procedure and source members
plus 12 bytes required by the system. If your
statements are 80 characters or less in length,
you should choose 92 for the record length.
The valid record lengths are 52 to 132. The
default is 132.

� Allow CHGS36 while active. You can specify
Y if you want to allow the configuration object
to be updated with the CHGS36 command
while others are signed onto the System/36
environment.

� Add only S/36 environment users. You can
specify Y if you want to add workstation
devices to the configuration only when the
device signs on to the System/36 environ-
ment. Specify N if you want to add work-
station devices to the configuration when the
device is created.

� Substitute ICF procedure data. You can
specify Y if you want data received on an ICF
start request to be scanned for substitution
expressions (except for ICF start requests
from retail or finance devices). If the data

3-10 OS/400 System/36 Environment Programming V3R6

might contain questions marks that should not
be treated as substitution expressions, you
should specify N.

� Description. You can specify a description of
the System/36 environment. The description
can be up to 40 characters, and any charac-
ters may be used. If no description is speci-
fied, #LIBRARY is used.

The following function keys are valid for the
Change S/36 Environment Values display:

F3=Exit
Shows a display that lets you specify if you
want to save the changes made on the config-
uration displays.

F5=Refresh
Removes any changes you made and shows
the original values.

F10=Set to default values
Removes the values typed and shows the
default values.

F12=Cancel
Shows a display that lets you specify if you
want to save the changes made on this
display.

S/36 MRT Security and Performance:
If you type a 2 in the Option column, next to the
S/36 MRT security and performance Configuration
Description of the Change S/36 Environment Con-
figuration display and press the Enter key, your
display might look as follows:

à@ ð
Change S/36 MRT Security and Performance

S/36 environment : #LIBRARY

Type choices, press Enter.

User profile used by MRT program 1 1=First user of MRT
2=Owner of MRT

Check authority of user to files used
by MRT program 1 1=All users

 2=First user
Seconds to wait before ending a
non-NEP MRT ð ð-32767

MRT job initiation \IMMED \IMMED, \JOBQ
Storage pool \BASE \BASE, \CURRENT
Job priority 2ð 1-99, \SUBMITTER

F3=Exit F5=Refresh F1ð=Set to default values F12=Cancel

á ñ

The Change S/36 MRT Security and Performance
display shows the user profile used by the MRT
program. It also shows which user’s authority is

examined by the MRT program when the system
is running in the System/36 environment. It also
shows the number of seconds the system is to
wait before ending a MRT that is not a never-
ending program (NEP). To change the user
profile, user authority, and seconds to wait, type
over the value and press the Enter key.

� User profile used by MRT program. For secu-
rity checking, specify which user profile the
MRT program should run under. The options
are:

1=First user of MRT
The MRT program runs under the user
profile that starts this MRT program. This
is the default value.

2=Owner of MRT
The MRT program runs under the owner
profile of the MRT program. This owner
could be the programmer who created the
MRT or another user made the owner by
the Change Object Owner
(CHGOBJOWN) command.

The default value for the user profile used by
the MRT program option is 1.

� Check authority of user to files used by MRT
program. For security checking, specify which
user's access to the files the MRT program
uses. The options are:

1=All users
The system checks all users of the MRT
program to determine whether they have
the correct authority to the files the MRT
program uses. This is the default value.

2=First user
The system checks only the initiator of the
MRT program to determine whether he
has the correct authority to the files that
the MRT program uses.

� Seconds to wait before ending a non-NEP
MRT. When a MRT program is not a NEP,
and the MRT program releases the last ICF
session or last display station, the program is
given a return code instructing it to go to the
end of the program. The system waits the
number of seconds specified on this display
before going to the end of the program. The
value allowed is 0 through 32767. The default
value for the seconds to wait is set automat-
ically by the System/36 environment.

 Chapter 3. Configuring the System/36 Environment 3-11

� MRT job initiation. This option specifies the
method to be used to start MRT jobs.

The valid values are:

*IMMED
By specifying *IMMED for the MRT job ini-
tiation value, the job is started by circum-
venting the JOBQ. This offers a
performance improvement over the *JOBQ
processing but offers less flexibility than
the *JOBQ support. *IMMED is the
default for the system.

*JOBQ
By specifying *JOBQ for the MRT initiation
value, the job is started using the JOBQ.

� Storage pool. This option specifies the
storage pool to be used for the jobs started
with the *IMMED option.

The valid values are:

*BASE
By specifying *BASE, any job started with
the *IMMED option uses the *BASE
storage pool in the subsystem. *BASE is
the default for the system.

*CURRENT
By specifying *CURRENT, any job started
with the *IMMED option uses the same
storage pool as the submitting job.

� Job priority. This option specifies the priority
at which to start the job when the job is
started with the *IMMED option.

The valid values are:

1–99
By specifying a value from 1 to 99, the job
starts with an initial run priority of the
specified value.

The default is 20.

*SUBMITTER
By specifying *SUBMITTER, the job is
started with the same run priority as the
submitter at the time the job is submitted.

The following function keys are valid for the
Change S/36 MRT Security and Performance
display:

F3=Exit
Shows a display that lets you specify if you
want to save the changes made on the config-
uration displays.

F5=Refresh
Removes any changes you made and shows
the original values.

P10=Set to default values
Removes the values typed and shows the
default values.

F12=Cancel
Shows a display that lets you specify if you
want to save the changes made on this
display.

Change S/36 Environment
Attributes

If you use the prompt function (F4) for the Change
System/36 Environment Attributes (CHGS36A)
command, a display shows similar to the following:

à@ ð
Change S/36 Environment Attr (CHGS36A)

Type choices, press Enter.

Default session library \SAME___ Name, \SAME
Default files library QS36F_____ Name, \SAME
Use library list for file . . . \NO__ \YES, \NO, \SAME
Date differentiated files . . . \NO__ \YES, \NO, \SAME
S/36 shared opens of files . . . \YES_ \YES, \NO, \SAME
Shared file record blocking . . \NO__ \YES, \NO, \SAME
Store deleted files in cache . . \YES_ \YES, \NO, \SAME
Default lines per page 66__ 1-112, \SAME
Forms type \STD_ Character value, \STD, \SAME
Default message action \HALT____ \CONTINUE, \HALT, \IGNORE...
Halt options ð3___ \SAME, ð, 1, 2, 3, ð1, ð2...
Evoke job initiation \IMMED \IMMED, \JOBQ, \SAME
Evoke storage pool \BASE___ \BASE, \CURRENT, \SAME
Evoke job priority 5ð________ 1-99, \SUBMITTER, \SAME
Source file record length . . . 132___ 52-132, \SAME
Allow CHGS36 while active . . . \NO__ \YES, \NO, \SAME
 More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

á ñ

à@ ð
Change S/36 Environment Attr (CHGS36A)

Type choices, press Enter.

Add only S/36 users \NO___ \YES, \NO, \SAME
Substitute ICF procedure data . \YES__ \YES, \NO, \SAME
MRT user profile \FRSTUSR \OWNER, \FRSTUSR, \SAME
Check authority to files \ALLUSR_ \ALLUSR, \FRSTUSR, \SAME
MRT delay value ð_____ 1-32767, \SAME
MRT job initiation \IMMED \IMMED, \JOBQ, \SAME
MRT storage pool \BASE___ \BASE, \CURRENT, \SAME
MRT job priority 2ð________ 1-99, \SUBMITTER, \SAME

 Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

á ñ

3-12 OS/400 System/36 Environment Programming V3R6

For more information on the attributes that can be
changed and a description of the function keys,
see “S/36 Environment Values” on page 3-9.

Display S/36 Configuration
Display

If you use the Display System/36 Environment
Configuration (DSPS36) command, or select
option 5 on the Work with S/36 Environment Con-
figuration display, you can see the Display S/36
Environment Configuration display.

à@ ð
Display S/36 Environment Configuration

S/36 environment : #LIBRARY

Type options, press Enter.
 5=Display

 Option Configuration Description
 _ S/36 display IDs
 _ S/36 printer IDs
 _ S/36 tape IDs
 _ S/36 diskette ID
 _ S/36 327ð device emulation values
 _ S/36 environment values
 _ S/36 MRT security and performance

 F3=Exit F12=Cancel

á ñ

When you select option 5 for any of the configura-
tion descriptions on the Display S/36 Environment
Configuration display and press the Enter key, the
displays that show would be similar to those that
show when you use the CHGS36 command, or
type 2 in the Option column of the Change S/36
Environment Configuration display. The informa-
tion that appears after selecting option 5, could
have been changed with either the CHGS36 or
CHGS36A commands. You cannot change any
information using the DSPS36 command. If you
use the DSPS36 command with
OUTPUT(*PRINT), the configuration information is
printed in a spooled file, and you will not see any
panels.

Retrieve S/36 Environment
Configuration Attributes

If you use the prompt function (F4) for the
Retrieve S/36 Environment Configuration Attri-
butes (RTVS36A) command, the displays will be
similar to the following:

à@ ð
Retrieve S/36 Environment Attr (RTVS36A)

Type choices, press Enter.

Environment name #LIBRARY__ NAME
CL var for SLIB (8) ___________ Character value
CL var for FLIB (1ð) ___________ Character value
CL var for LIBL (4) ___________ Character value
CL var for DATDIFF (4) ___________ Character value
CL var for S36ESHARE (4) ___________ Character value
CL var for RCDBLK (4) ___________ Character value
CL var for CACHEDLTF (4) ___________ Character value
CL var for LPPAGE (3) ___________ Character value
CL var for FORMTYPE (4) ___________ Character value
CL var for DFTMSGACN (9) ___________ Character value
CL var for HALTOPT (4) ___________ Character value
CL var for EVKJOBINIT (6) ___________ Character value
CL var for EVKJOBPOL (8) ___________ Character value
CL var for EVKJOBPTY (1ð) ___________ Character value
CL var for SRCRCDLEN (3) ___________ Character value

 More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á ñ

à@ ð
Retrieve S/36 Environment Attr (RTVS36A)

Type choices, press Enter.

CL var for CHGACT (4) __________ Character Value
CL var for ADDS36ONLY (4) ___________ Character Value
CL var for ICFSUBST (4) ___________ Character Value
CL var for MRTUSRPRF (8) ___________ Character Value
CL var for MRTAUT (8) ___________ Character Value
CL var for MRTDLY (5) ___________ Character Value
CL var for MRTJOBINIT (6) ___________ Character Value
CL var for MRTJOBPOL (8) ___________ Character Value
CL var for MRTJOBPTY (1ð) ___________ Character Value

 Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

á ñ

For more information on the attributes that can be
retrieved and a description of the function keys,
see “S/36 Environment Values” on page 3-9.

Work with System/36
Environment Configuration

If you use the Work with System/36 Environment
Configuration (WRKS36) command, the Work with
S/36 Environment Configuration display should
look similar to the following:

à@ ð
Work with S/36 Environment Configuration

Type options, press Enter.
 2=Change 5=Display 6=Print

 Opt Object Type Library Text
 _ QS36ENV \S36 #LIBRARY

 Bottom
F3=Exit F5=Refresh F12=Cancel

á ñ

 Chapter 3. Configuring the System/36 Environment 3-13

If you select option 2 for the System/36 Environ-
ment Configuration object shown, you will see the
Change S/36 Environment Configuration display.
This display is the same as the one you see when
you use the CHGS36 command.

If you select option 5 for the System/36 Environ-
ment Configuration object shown, you will see the
Display S/36 Environment Configuration display.
This display is the same as the one you see when
you use the DSPS36 command.

If you select option 6 for the System/36 Environ-
ment Configuration object shown, the configuration
information is formatted and printed.

Removing Display IDs

You can use the CHGS36 command to remove
display IDs from the configuration table by
blanking out display ID values on the Change
S/36 Display IDs display.

An easier way to remove display IDs from the
configuration table is to use the QEXRMVDE API.
This program is described in detail in the
System/36 Environment Reference book.

3-14 OS/400 System/36 Environment Programming V3R6

 Chapter 4. Printed Output

This chapter describes how to produce and control
printed output for the System/36 environment. It
does not describe how to design printed output or
print text with graphics. For information on
designing printed output, see the Printer Device
Programming book. For information on printing
graphs, see Appendix C, “Merging Graphics and
Text.” For information on intelligent printer data
stream* (IPDS*) printer functions, see
Appendix D, “Intelligent Printer Data Stream
(IPDS) Advanced Function Support.”

Creating and Controlling Printed
Output

When deciding how to create printed output, con-
sider the following:

� The source of the output
� The output length
� Whether to print or display the output
� Whether to add control codes

Printed output on the system is processed either
by printer data management or a special system
program called system list . The system list
program processes the output created by some of
the System/36 environment utilities (for example,
the $MAINT utility program).

The following types of programs use printer data
management:

 � User-written programs
 � Print key
� OS/400 data communications programs

 � Sort
� Application Development Tools products:

– Data file utility (DFU)
– Programming development manager

(PDM)
– Screen design aid (SDA)
– Source entry utility (SEU)

� Business Graphics Utility (BGU)
� System/36-compatible RPG II compiler
� System/36-compatible COBOL compiler
� Word processing function of OfficeVision for

OS/400
 � Query/400

The following procedures and utility programs use
the system list program to list their printed output:

Procedure Utility
BLDMENU $BMENU
CREATE $MGBLD
FORMAT $SFGR
CATALOG $LABEL (local files, libraries, and

folders)
LISTLIBR $MAINT

The following table shows the procedure and utility
programs that use the system list program to
determine the system list device (CRT or printer).
If it is a printer, the printed output is produced by
an OS/400 command through a printer device file.

Notes:

1. $BMENU and $SFGR use printer data man-
agement, but are partially controlled by the
system list program.

2. User-written RPG II and COBOL programs
can use the system list program.

For more information about these procedures or
utilities, refer to the System/36 Environment Refer-
ence book.

Printer Data Management Output

Your output prints with the paging and spacing
that your program requested.

You can send the printed output from a program
to a specific printer by using a PRINTER operation
control language (OCL) statement. If you do not
specify a PRINTER OCL statement, the system

Procedure Utility
Printer Device
File

CATALOG $LABEL
(diskette)
$LABEL (tape)
$LABEL (remote
files)

QPDSPDKT
QPTAPDSP
QWRKDDM

LISTDATA $COPY QSYSPRT

LISTFILE $BICR
$COPY
$TCOPY
$MAINT

QSYSPRT
QSYSPRT
QSYSPRT
QPSRODSP

 Copyright IBM Corp. 1995 4-1

sends printed output to the session printer for the
display station. To use the session printer, set the
OUTQ and PRTDEV parameters in your user
profile to *WRKSTN. *WRKSTN is the default
value. You also need to set the display station
device description OUTQ and PRTDEV parame-
ters to the name of your desired session printer.
You can use the STATUS SESSION control
command to display the ID of your session printer.
You can use the PRINT procedure to change your
session printer. This procedure changes the
printer until you sign off the display station. The
session printer only affects System/36 environ-
ment output, not AS/400 output while in the envi-
ronment.

When you sign on, the session printer is deter-
mined by the value specified during System/36
environment configuration. The STATUS
SESSION control command shows the configured
session printer. Use the SET procedure to change
your configured session printer. This procedure
changes the printer until you run another SET pro-
cedure or change the system. The change
remains in effect the next time you sign on the
display station.

When the session printer is changed, the AS/400
job is also changed. This is done as though a
CHGJOB command was run with the PRTDEV
parameter specified. This ensures that the printed
output generated in the System/36 environment
defaults to the same printer. This change occurs
when the System/36 environment is started and
when the session printer changes. The job
remains changed for the AS/400 job.

Whenever a Change Job (CHGJOB) command is
issued to change the PRTDEV value of a current
job, the System/36 environment session printer
value is changed. Whenever the PRINT proce-
dure or // FORMS OCL statement is used to
change the session printer, the native PRTDEV
value is also changed.

To determine which printer and output queue is
used at job initiation time, the system looks at the
following objects:

� Job description (JOBD)
� User Profile (USRPRF)
� Workstation device description (DEVD)

The SET procedure and the Change System/36
Configuration (CHGS36) command change the
PRTDEV parameter of the workstation device
description instead of keeping the session printer
value in its own configuration object.

The following diagram shows the path taken when
the system determines the output queue and the
print device for a job. The defaults are shown.

JOBD

*WRKSTN

*USRPRF

*DEV

OUTQ

OUTQ

The result from the diagram above:

PRTDEV

PRTDEV

*DEV

QPRTDEV P1

*WRKSTN

*USRPRF

P1

*SYSVAL

USRPRF

DEVD

RV2W109-0

| In the following example, the user specified a
| printer device in the device description.

JOBD

*WRKSTN

*USRPRF

*DEV

OUTQ

OUTQ

The result from the diagram above:

PRTDEV

PRTDEV

*DEV

QPRTDEV P1

*SYSVAL

*USRPRF

P1

P9

USRPRF

DEVD

RV2W110-0

By setting the PRTDEV to *SYSVAL in the user
profile, the session printer value set in the work-
station device descriptions was never looked at.
The session printer value was not reset because it
was never used.

4-2 OS/400 System/36 Environment Programming V3R6

System List Output

The output from some of the System/36 environ-
ment utilities is handled by a special system
program called system list. System list allows
output to go to an output queue associated with a
printer or to a display station.

Note: The output queue for your job must be
*DEV. If you identify a specific output queue, all
output will go to that queue regardless of printer
DM or SYSLIST.

The following figure shows how the system pro-
cesses system list output:

Printed Output

System List

Data and Control
Codes for Display

Output to
Be Listed

or

Displayed Output

System/36
Environment
Utility Program

RSLW008-3

Data and Control
Codes for Printer

The system list program does the following:

1. Takes the computer printout requests from the
utility program

2. Determines whether the output is to be printed
or displayed

3. Sends that information to the output queue for
printers associated with the correct device

The printer or display station that receives the
system list output is called the system list
device .

When you sign on, the system list device is the
same as the session printer. To display the
current system list device, use the STATUS
SESSION control command. Use the SYSLIST
procedure to change the system list device. This
procedure changes the system list device until:

� You run another SYSLIST procedure
� You run a PRINT procedure or the FORMS

OCL statement
� You sign off the display station

The System/36 Environment Reference book has
more information about using the SYSLIST proce-
dure.

 Print Spooling

The system uses print spooling (the capability to
store printed output in an output queue for later
printing) for all printing requests. For more infor-
mation about print spooling, refer to the Printer
Device Programming book.

Using Output Queues

The System/36 environment uses output queues
as System/36 uses the spool file, except there is
one output queue for each printer configured on
the system. The output queue is created during
configuration.

If you want print spooling to be similar to
System/36, configure your printers with a two-
character device name such as P1 or P2. Use
the Change System Value (CHGSYSVAL)
command with the SYSVAL (QDEVNAMING)
VALUE (*S36) parameters. This command
causes 2-character device names to be created
when the system automatically configures your
devices. At configuration time, an output queue is
created with the same name as this 2-character
device name. For example, printer P1 is associ-
ated with output queue P1 in library QUSRSYS.

To have the System/36 environment run like
System/36, specify that the output created by a
job should be put in output queue *DEV. Speci-
fying the *DEV value indicates that output for a

 Chapter 4. Printed Output 4-3

printer should be placed in the output queue for
that printer. For example, output for printer P1 will
be placed in output queue P1, output for printer
P2 will be placed in output queue P2, and so on.
See “Changing the Output Queue for a Job” for
information on how to specify the output queue for
a job.

Changing the Output Queue for a
Job

Use any of the following methods to specify the
output queue that will contain the printed output
for a job:

� Specify the name of the output queue that is
to contain the output (or specify *DEV to place
the output in the output queue for the printer)
in the job description for the job. Use this
method when multiple users or jobs use the
same job description and want their output in
the same output queue.

� Specify that the user profile defines the output
queue (use the *USRPRF special value) in the
job description for the job. In each user’s
profile, specify the name of the output queue
that is to contain the output for the user. This
method should be used when multiple users
of jobs use the same job description and want
their output in different output queues.

� After the job has been started, use the
Change Job (CHGJOB) command to specify
the name of the output queue that is to
contain the output for the job. This method
should be used if you temporarily need to
change the output queue that is used by the
job. The CHGJOB command will change the
routing of the output for the duration of the job
or until another CHGJOB command is
entered.

Controlling Print Spooling

The operators control all output queues and print
entries in the output queue. The operator can, for
example, start or stop the printers and change the
number of copies to print.

Users have some control over the print entries
they create. For example, they can change the
number of copies to print for spool files they
created.

The commands used to control print spooling are
shown in “Controlling or Displaying Print Spooling
Information” on page 4-5.

Spool Writer Messages

Spool writer messages are sent to the message
queue specified during configuration. To send all
messages to the system operator queue, specify
the QSYSOPR message queue in library QSYS.

To display the status of all active printer spool
writers on the system, use the STATUS WRT
control command. You can select an option to
display the message queue associated with an
active writer. See the Printer Device Program-
ming book for complete information about how
print spooling works.

Printer Control Guidelines

The following sections describe several functions
you can use to manage or control printer output.

Changing the Session Printer

During System/36 environment configuration, you
specify a printer to receive output from each
display station. This printer is called the session
printer . The session printer is used for all printed
output created in the System/36 environment while
a user is signed on unless a // PRINTER OCL
statement has been processed for a particular
print file. Use the PRINT procedure to change the
following values:

� The printer ID used for printed output,
including system list

� The number of lines per page
� The vertical print density (lines per inch)
� The horizontal print density (characters per

inch)
� The forms number to be used

The PRINT procedure changes these values for
the session. The settings return to the defaults
when the session ends.

Note: Not all printers allow changing lines per
inch or characters per inch. The System/36 Envi-
ronment Reference book has more information
about the PRINT procedure.

4-4 OS/400 System/36 Environment Programming V3R6

Changing the Print Key Printer

On the System/36, you can direct your Print key
output to a unique printer. In the System/36 envi-
ronment on the AS/400 system, all Print key
output is sent to the printer assigned to the
session printer. When the session printer is
changed, the printer for Print key output is also
changed.

The PRINTKEY procedure, the WORKSTN OCL
statement, and the SETPK utility control statement
of the $SETCF utility program can be used to
change whether a heading or border is to be
printed with the Print key output. If a printer ID is
specified for the Print key printer, the value is
syntax-checked and ignored.

The SET procedure and the ID, BORDER, and
HEADER parameters on the SETCF utility control
statement of the $SETCP utility program do not
support changing the Print key printer, the Print
key border, or the Print key header information. If
any are specified, an error is issued.

Changing the System List Device

The system list device is the default printer speci-
fied during system configuration. Use the
SYSLIST procedure to change the system list
device to another printer, direct the output to the
display station, or to turn this function off (no
output is listed). The System/36 Environment Ref-
erence book has more information about the
SYSLIST procedure.

Changing the System Printer

If the session printer is not set, and you do not
specify a system list device, printed output uses
the default system printer. You can specify or
change the system printer by using the
CHGSYSVAL command with the
SYSVAL(QPRTDEV) parameter.

Changing the Printer
Configuration Information

Use the SET procedure to specify the following
printer-related items for the display station:

� Printer ID to use for session output
 � Forms number

� Number of lines per page

These values remain in effect after the system
operator signs off. However, when using the SET
procedure to specify a printer ID, the values
remain in effect after signing off only if you specify
PRTDEV(*WRKSTN) in the user profile. The
System/36 Environment Reference book has more
information about the SET procedure.

Changing Printer Information in a
Procedure

In a procedure, you can use the FORMS or
PRINTER OCL statements to control how output
prints. For example, you can change the following
values:

� The printer ID printed output uses
� Number of lines per page
� Vertical print density (lines per inch)
� Horizontal print density (characters per inch)

 � Forms number
� Number of copies to print
� Whether the paper needs to be aligned before

the output prints

Whenever a RUN OCL statement is processed, a
generic printer override is generated through an
AS/400 OVRPRTF FILE (*PRTF) command. The
information from the PRINT procedure (the
FORMS OCL statement) is used as parameters
on this command. Printing done by an application
or a utility uses the parameter from this command.

If a PRINTER OCL statement is specified, RUN
OCL statement processing generates a specific
printer override using information from the
PRINTER OCL statement. This override applies
to the utility or application printer file that uses the
same name as that used on the PRINTER OCL
statement. See the Data Management book for
more information on overrides.

The System/36 Environment Reference book has
more information about these OCL statements.

Controlling or Displaying Print
Spooling Information

The system operator controls print spooling with
control commands. To display information about
the status of the spooled files, use the STATUS or
STATUSF control command with the PRT param-

 Chapter 4. Printed Output 4-5

eter. To display information about the status of
the spool writer, use the STATUS control
command with the WRT parameter.

You can use the following commands to control
print spooling. Except where noted, use these
System/36 environment commands as on
System/36.

CANCEL PRT
The CANCEL PRT command cancels one or
more spooled file entries.

CHANGE COPIES
The CHANGE COPIES command changes
the number of copies of output to print.

CHANGE DEFER
The CHANGE DEFER command changes the
delayed attribute of an spooled file entry.
This attribute indicates whether an entry can
begin printing before all the data has been
produced by the program.

CHANGE PRTY
The CHANGE PRTY command changes the
priority of the spool writer for a printer. This
function is supported by the JOBPTY param-
eter on the CHGJOB command.

CHANGE SEP
The CHANGE SEP command changes the
number of separator pages used to separate
spooled file entries for a printer.

Note: You can use this command only when
the spool writer is active.

CHANGE PRT
The CHANGE PRT, spool ID command
moves a spooled file entry to the top of the
output queue. The CHANGE PRT, spool ID,
spool ID command is supported by the
Change option on the Work with Spool Files
(WRKSPLF) display. The OUTPTY param-
eter can be used on the Change Spool File
Attributes (CHGSPLFA) display.

CHANGE FORMS
The CHANGE FORMS command changes
the forms number of output to print.

CHANGE ID
The CHANGE ID command changes the
printer ID assigned to output to print.

HOLD PRT
The HOLD PRT command holds selected
spooled file entries to prevent them from
printing.

RELEASE PRT
The RELEASE PRT command releases
selected held spooled file entries to allow
them to print.

RESTART PRT
The RESTART PRT command restarts the
printing of a spooled file entry.

Note: You can use this command only when
the spooled file entry has a status of writer
(WTR).

START PRT
The START PRT command starts the spool
writer so entries can print.

STOP PRT
The STOP PRT command stops the spool
writer so entries cannot print.

For complete information on using these control
commands, and their possible parameters and
requirements, see the System/36 Environment
Reference book.

Copying and Displaying Output
from an Output Queue

Operators can copy output from an output queue
to a disk file and display printed output from the
disk file by using the COPYPRT procedure. You
can do the following using the COPYPRT proce-
dure:

� Copy reports from the output queue to a disk
file.

� Display printed reports from a disk file at a
display station before they are printed.

� Print reports copied to the disk file. You can
also print selected pages of a report.

This procedure allows users to look at reports and
decide which pages are to be printed.

Before operators use the COPYPRT procedure,
they should be sure that the specified report is
held on the output queue by using the HOLD PRT
control command or the PRIORITY-0 parameter of
the PRINTER OCL statement.

4-6 OS/400 System/36 Environment Programming V3R6

Note: The COPYPRT procedure does not copy
spool print records that were created using oper-
ations that allow user programs to send their own
data stream to the printer.

You can save the disk file used with the
COPYPRT procedure on diskette and print it later.
See the System/36 Environment Reference book
for more information about the COPYPRT proce-
dure.

Printing Output by Forms
Number

Output in an output queue is printed on a first-
in/first-out basis, with no regard to forms number.
If, for example, two or more jobs use different
forms numbers, the system operator controlling a
printer has to change the forms often. The
system allows operators to control the printing of
output using different forms numbers.

The system has two methods of printing by forms
number. Using the START PRT control
command, you can print by a specific form, or by
groups of forms. This method allows operators to
print all reports that use the same forms number
together. For example, you can print all jobs in
the output queue with special invoice forms
together.

To print by groups of forms (using the FORMS
parameter of the START PRT command), the
spool writer prints all entries in the output queue
using the forms on the printer. When the spool
writer finishes printing the entries, it prompts you
to change forms in the printer. This method
reduces the number of times you have to change
the paper in a printer.

To print by a specific forms number, the spool
writer prints only those entries that have the speci-
fied forms number. When there are no more

entries in the output queue with that forms
number, the spool writer stops printing.

For example, to print reports that require forms
number A112 on printer P2, a user types the fol-
lowing command string:

START PRT,P2,A112

The spool writer prints only reports that required
forms number A112 on printer P2. If there are no
entries in the output queue with forms number
A112 for that printer, the spool writer does not
print any entries.

The START PRT control command in the
System/36 Environment Reference book has more
information about printing by forms type. See the
Printer Device Programming book for information
about assigning forms numbers.

Combining Several Print Files in
One Job

The system allows you to combine printer output
from several programs into one print file. A print
file is a device file that determines which attri-
butes apply to the printed output. A particular
printer may or may not support all of the attributes
specified in a printer file. Users can create their
own printer files. The programs must:

� Run in the same job
� Specify the same printer for the output

The first program of the job creates the print file,
and the remaining programs in the job add output
to the same print file.

For example, you have three order-entry programs
within a job, and each program produces one
report. You can have one print file instead of
three separate print files to allow all reports
produced by the order-entry programs to be
printed at the same time. The following figure
shows how this process works.

 Chapter 4. Printed Output 4-7

Program 1

Program 2

Program 3

Report 1

Report 2

Report 3

Report 1
Report 2
Report 3

RV2W104-0

Job

Printed Output
(The three reports are
printed together.)

Use the CONTINUE parameter of the PRINTER
OCL statement to combine multiple reports into
one print file. See the System/36 Environment
Reference book for more information about the
PRINTER OCL statement.

Note: The size of the print file is determined by
the record length of the first program’s print file. If
any program's printed output has a different
length, the first program’s record length must be
equal to or greater than the longest record length
required in the job while the CONTINUE param-
eter is in effect. For more information, see
“CONTINUE-YES Processing” on page 17-11.

Assigning the Delayed Status to
Printed Output

Use the DEFER parameter of the PRINTER OCL
statement to specify the delayed status of a
spooled file. The delayed status indicates whether
a spooled file can begin printing before the file is
completed by the program. Normally, the output
is not printed until it is complete (when the job
ends or the program closes the spooled file).

Specify DEFER-NO to print the output when there
is data to print. For example, a 60-page report
can begin printing after the first page is complete.
When the program has created page 60, 20 pages
of the report may already have been printed.

Using DEFER-NO can slow your printers. No
spooled files can print until the spooled file using
the DEFER-NO parameter has been printed. If
you use the default value (DEFER-YES), other
spooled files can begin printing while yours is
being spooled.

Assigning Priorities to Printed
Output

Use the PRINTER OCL statement to assign a pri-
ority to printed output. You can assign printed
output a priority of 0 through 5. Output with a pri-
ority of 5 prints first. The system assigns output a
priority of 1, if you do not assign a priority. Output
with a priority of 0 means that the output is held
on the output queue until an operator releases the
output by typing the RELEASE control command.
The PRINTER OCL statement in the System/36
Environment Reference book has more informa-
tion about assigning priorities to printer output.

The following table shows how the System/36
environment printed output priorities are mapped
to the AS/400 printed output priorities:

 Programming Considerations

The following sections describe the programming
considerations for the use of print files in the
System/36 environment, and provides program-
ming considerations for printed output attributes.

System/36 Environment
Priority

AS/400 System
Priority

0 7 and HOLD (*YES)
1 7
2 6
3 5
4 4
5 3

4-8 OS/400 System/36 Environment Programming V3R6

Use of Print Files by the
System/36 Environment

For every printer defined in the System/36 envi-
ronment, a print file is created with the same
name as the System/36 environment printer. For
example, if P1 is a System/36 environment printer
ID, the library named #LIBRARY will contain a
print file named P1. When a System/36 environ-
ment application creates printed output, the
System/36 environment support uses these print
files to define some of the attributes of the
spooled file.

Some of these attributes, such as separator
pages, cannot be overridden using the PRINTER,
FORMS, or WORKSTATION OCL statements.
You can change the attributes of these print files
with the Change Print File (CHGPRTF) CL
command.

When you use the Create Printer Device
(CRTPRTDEV) command to create a printer
device, the printer file in #LIBRARY is created
asynchronously as another job. The
CRTPRTDEV command may complete before the
printer file has been created. If you create a
printer device, wait for the printer file to be created
before trying to change it.

Note: The CHGS36 command creates the
System/36 environment print files and changes
those that exist. For this reason, changes you
make to a System/36 environment print file may
be lost when you run CHGS36.

The Printer column of the STATUS PRT display
identifies the application program name for printed
output. For example, if the Printer OCL statement
looks like the following example, the Printer
column will contain REPORT for this printed
output.

// PRINTER NAME-REPORT,DEVICE-P1

If an application program creates multiple printed
output files, the information in the Printer column

can uniquely identify the printed output. The infor-
mation in the Printer column can also be used to
identify the print file that the System/36 environ-
ment used when creating the printed output. The
System/36 environment first looks for a print file
name that matches the application program name
for the printed output. If a print file is found (in the
current library, #LIBRARY, or the job’s library list)
that matches the application program name for the
printed output, the matching print file is used. If a
print file is not found, the System/36 environment
will use the print file for the device that the output
was created for. For example, if the Printer OCL
statement looks like the following example, the
System/36 environment will search for a print file
name REPORT.

// PRINTER NAME-REPORT,DEVICE-P1

If the REPORT print file is found, the attributes of
the REPORT print file will be used for the printed
output. If the REPORT print file is not found, the
attributes of the P1 print file will be used.

Printed Output Attributes

The attributes of printed output are determined by
merging the following information in the specified
order:

 1. Application-program-specified information
2. Printer OCL statement information
3. Printer information defined by the System/36

environment configuration in the CHGS36 CL
command

 4. Print file
5. Printer information defined by the LINES,

PRINT, SET procedures, or FORMS OCL
statement

For example, if you specify forms 0001 on the
printer OCL statement, forms 0002 for the PRINT
procedure, and forms 0003 for the print file, the
forms specified on the printer OCL statement
(forms 0001) are used.

 Chapter 4. Printed Output 4-9

4-10 OS/400 System/36 Environment Programming V3R6

Chapter 5. Library, File, and Folder Overview

This chapter discusses the placement of
System/36 libraries, files, and folders in the
System/36 environment.

A disk is a storage device made from a flat, cir-
cular sheet of metal with magnetic surfaces. Pro-
grams, files, libraries, and system work areas that
the AS/400 system uses to process programs are
stored on disk. A disk drive is the device that
reads and writes information on a disk.

Comparison of System/36 and
AS/400 Addressing Models

One of the basic differences between the
System/36 and the AS/400 system is how the
information on the computer is stored and
addressed.

System/36 Addressing Model

The System/36 has a disk volume-table-of-
contents (disk VTOC) located at a fixed address
on disk. The disk VTOC contains the addresses
of areas of disk reserved for three types or
classes of information, as follows:

 � Libraries
 � Files
 � Folders

Each library, file, and folder stored on the system
has a VTOC entry. Figure 5-1 shows System/36
addressing for libraries, files, and folders.

The disk area for a library or folder consists of a
directory area followed by the area which the
System/36 library management or folder manage-
ment programs can subdivide for library or folder
members. The directory area contains the relative
address of each active member, along with
member attributes. A document is an example of
a folder member. Procedures, display formats,
message members, and compiled programs are
examples of library members.

The disk area for a file contains a set of related
data records which can be accessed by an appli-
cation program. For an indexed file, the disk area
also contains an index which can be used to
access the records by key. For an alternative
index, the disk area contains only an index, with
the index entries addressing records in a sequen-
tial, direct, or indexed file.

RSLW105-0

Disk Volume-Table-of-Contents (or Disk VTOC)

Library
Disk Area

File
Disk Area

Folder
Disk Area

Figure 5-1. System/36 Addressing for Libraries, Files, and Folders

 Copyright IBM Corp. 1995 5-1

AS/400 Addressing Model

On the AS/400 system, the addresses of stored
units of information are not externalized to the
user. Units of information are called objects .
Objects are contained in libraries. Each object is
uniquely identified in the system by the object
name, the library which addresses the object, and
the type of information contained in the object
(also referred to as the object type).

An AS/400 library is different from its System/36
counterpart in that its disk area contains only a
directory to the objects that are addressed through
that library. The disk storage for an object that is
addressed through a library is physically a sepa-
rate area of disk space from the library in which
the object is located.

Figure 5-2 shows how the system library (QSYS)
is used to satisfy the addressing of library objects,
configuration objects (line descriptions, controller
descriptions, device descriptions), and authority
objects (user profiles and authorization lists). A
system library is the library shipped with the
system that contains objects, such as authori-
zation lists and device descriptions created by a
user; and the licensed programs, system com-
mands, and any other system objects shipped with
the system. The system identifier is QSYS. The
system libraries in the System/36 environment
includes a library for containing the System/36
environment (QSSP) and a library for non-IBM
objects (#LIBRARY). An authorization list is a list

of two or more user IDs and their authorities for
system resources. These objects are always
addressed through the system library. For that
reason, functions which create and delete these
types of objects do not require you to specify a
library name. Also, you cannot move any of these
objects to another library. The system library is
the closest AS/400 analogy to the System/36 disk
VTOC.

Figure 5-3 on page 5-3 shows how an AS/400
library addresses each object contained in that
library.

Note: A file object can only be addressed
through a library. The System/36 environment
normally addresses all data files and alternative
index files in the current files library. The
System/36 environment default files library name
can be displayed using the Display System/36
(DSPS36) command, and can be changed using
the Change System/36 (CHGS36) command or
the Change System/36 Environment Attributes
(CHGS36A) command. The session files library
for a System/36 environment session can be
changed using the FLIB procedure or the FILELIB
OCL statement. The current files library for a
System/36 environment job can be changed using
the FILELIB OCL statement. See the System/36
Environment Reference book for a complete
description of the FLIB procedure and FILELIB
OCL statement.

The data for a sequential, indexed, or direct file is
stored in a part of the file called a file member.

RSLW104-0

Library
Object

Configuration
Object

Authority
Object

System Library (or QSYS Library)

Figure 5-2. Objects Addressed through the AS/400 System Library (QSYS)

5-2 OS/400 System/36 Environment Programming V3R6

Program
Object
(*PGM)

File
Object
(*FILE)

Folder
Object
(*FLR)

XXXX
Object

Library Object (Object Type = *LIB)

RSLW103-0

Figure 5-3. Addressing Objects through an AS/400 Library

Folders are also objects that must be addressed
through a library. On the AS/400 system, a folder
is a document library object (DLO).

The following table shows the mapping of some of
the System/36 types of information to objects on
the AS/400 system.

 System Information

This section describes system information stored
on disk.

 Library QSSP

When you install the System/36 environment on
an AS/400 system, you restore library QSSP.
QSSP contains the programs, procedures, utilities,
files, and so forth, to allow System/36 applications
to run on an AS/400 system.

With a new IBM-released version of the
System/36 environment is installed, all objects in
library QSSP are deleted and new objects
restored. Because of this, do not place any user-
created objects in library QSSP. If you must

System/36 Object AS/400 Object

Load member Program
Display file
Message file

Network resource direc-
tory (NRD)

DDM files

Procedure member Member of source phys-
ical file QS36PRCSystem/36 Object AS/400 Object

Sequential file Physical fileAlternative index Logical file
Source member Member of source phys-

ical file QS36SRC
Compiled display formats Display file

Compiled message
member

Message file
Subroutine member Program

Compiled program Program

Data dictionary folder Data dictionary and set of
files

Date-differentiated files Multiple member physical
file

Direct file Physical file

Document Document library object
(DLO)

Document folder Folder document library
object (DLO)

Folder Folder document library
object (DLO)

Indexed file Physical file

Library Library

Library #LIBRARY Library #LIBRARY

 Chapter 5. Library, File, and Folder Overview 5-3

change an IBM-supplied object in library QSSP,
copy the object to library #LIBRARY and change
the copied version.

System Library (#LIBRARY)

#LIBRARY contains user-created procedures, pro-
grams, messages, and so forth. Because the
system searches #LIBRARY when locating
objects, use it to contain objects common to many
System/36 environment users.

User Information Stored on Disk

This section describes the contents of user infor-
mation stored on disk.

 Output Queues

Output Queues contain printed output stored on
disk for later printing. For more information about
output queues, see “Print Spooling” on page 4-3.

 Job Queue

The job queue contains information about jobs
waiting to be run. For information about the job
queue, see “Using the Job Queue” on page 18-8.

 Journal Files

Journal files are created when you are journaling
system events. For more information, see the
DB2 for OS/400 Database Programming book.

Licensed Program Libraries

The licensed program libraries contain the pro-
grams necessary to compile your programs or use
the utility programs. The system stores the
display formats, messages, procedures, and pro-
grams needed by the language compilers and the
utility programs in these libraries. Each program-
ming language or utility has its own library.

The following table shows a group of licensed
program libraries:

 User Files

User files contain the data your programs need.
For more information about files, see Chapter 7,
“Files.”

 User Libraries

User libraries contain the programming information
for your jobs. For more information about
libraries, see Chapter 6, “Libraries.”

 User Folders

Folders contain members created by OfficeVision
for OS/400. For more information about folders,
see Chapter 8, “Folders and Data Dictionaries.”

Naming Conventions for Files,
Libraries, and Folders

Use the following conventions when naming
objects for use in the System/36 environment:

� Use 8 characters or less for names.

� Do not put quotation marks around special
characters. System/36 environment internally
puts quotation marks on names that have
special characters. Specify names that have
special characters as you did on System/36.

� System/36 environment code uses an algo-
rithm to process object names. The algorithm
does the following:

– Checks that the name follows System/36
syntax rules. The first character must be
uppercase A through Z, #, @, or $. If the
name fails the check, the system sends
an error message.

– Determines whether to put names that
meet System/36 naming conventions in

Licensed Program Library Name

Data file utility (DFU) #DFULIB

RPG II #RPGLIB

Screen design aid (SDA) #SDALIB

Character generator utility (CGU) #CGULIB

Development support utilities
(DSU)

#DSULIB

Source entry utility (SEU) #SEULIB

Licensed Program Library Name

COBOL #COBLIB

5-4 OS/400 System/36 Environment Programming V3R6

quotation marks, using the following
guidelines:

- If the name is a simple name, it is not
internally marked with quotation
marks. Simple names are:

� First character (uppercase A
through Z, $, #, or @)

� Remaining characters (uppercase
A through Z, $, #, @, underline,
period, or digits 0 through 9)

- If the name is an extended name, it is
internally marked with quotation
marks.

Extended names can have any dis-
playable character (code point greater
than hex 3F) except an embedded
blank, asterisk (*), single quotation
mark ('), double quotation mark ("), or
question mark (?).

Note: Folder names cannot be
extended. Therefore, the information
on extended names does not apply to
folder names.

- If the name contains embedded
blanks, asterisk, single quotation
mark, double quotation mark, or ques-
tion mark, the System/36 environment
issues an error message.

Dynamically Created Files

The DISP-NEW keyword on the FILE statement
for disk files requests that the system create new
files as the applications use them. The System/36
environment creates files in the middle of open
processing when the FILE statement requests
DISP-NEW and the file does not already exist.

While processing FILE statements that have
requested DISP-NEW, the system uses a system-
wide index to prevent another System/36 environ-
ment job from attempting to create the same file.

 Programming Considerations

This section describes programming consider-
ations for managing disk storage.

Listing the Disk Volume Table of
Contents

Use the CATALOG procedure to list the table of
contents of the disk. The list shows the names of
the files in the System/36 environment files library,
libraries, folders, and data dictionaries. The
System/36 Environment Reference book describes
the CATALOG procedure.

Measuring Disk Activity

See the Performance Tools/400 book for informa-
tion about measuring disk activity.

 Chapter 5. Library, File, and Folder Overview 5-5

5-6 OS/400 System/36 Environment Programming V3R6

 Chapter 6. Libraries

This chapter describes the libraries for the
System/36 environment, and explains how you
can use libraries for your applications.

A library is an object that contains groups of other
objects, such as files, message queues, and pro-
grams. You use libraries to find specific objects
on the system.

Libraries for the System/36
Environment

The System/36 environment contains the following
types of libraries:

� The System/36 environment system library
(QSSP). The QSSP library contains the
IBM-supplied programs, procedures, files, and
so on for the System/36 environment.

� The System/36 environment user library
(#LIBRARY) . #LIBRARY contains user-
written applications. Since the system
searches #LIBRARY for objects, you can
place applications run by many users in
#LIBRARY.

� The system library (QSYS) . System library
QSYS contains the IBM-supplied programs,
files, messages, commands, and so on for the
AS/400 system.

� Other licensed program libraries . These
libraries contain the IBM-supplied program-
ming support for the programming languages
and utilities.

� Your application libraries . These are the
libraries you create to store your programming
information.

 Library Names

A library name in the System/36 environment can
be up to 8 characters long. The name must begin
with an alphabetic character (uppercase A through
Z, #, $, or @). The remaining characters can be
any combination of numeric, alphabetic, and
special characters. The following names are not
allowed:

#LIBRARY F1
READER DISK
PRINT ALL
TAPE

Avoid using the following characters for names
since they have special meanings in procedures:
commas (,), apostrophes ('), question marks (?),
slashes (/), greater than signs (>), equal signs (=),
plus signs (+), and hyphens (-). Avoid using
names that begin with a Q because the system
creates libraries beginning with a Q.

Do not place double quotation marks (") around
names containing special characters (extended
names). The System/36 environment internally
places quotation marks around extended names.
Extended names include any displayable char-
acter (code points greater than hex 3F) except
embedded blanks, asterisks (*), single quotation
marks ('), double quotation marks (”), or question
marks (?). If a name contains these characters, it
is invalid and you receive an error message.

You can create meaningful library names by
abbreviating the name of the application that uses
the library. For example:

Application Library name
Accounts receivable ACCTLIBR
Payroll PAYLIB
Miscellaneous programs PROGLIBR
Messages library MSGLIBR

 Group Libraries

Group libraries are a set of libraries collectively
identified by one name. When you create a group
library, specify a name for it. Each library in the
group is named as an extension of the group
name. The group library name and the library
name are separated by one or more periods.

For example, a group library name is M.TEST.
Libraries in the group are named M.TEST.1,
M.TEST.2, and M.TEST.3. The group library in
this example could also be considered part of a
group named M.

 Copyright IBM Corp. 1995 6-1

Group libraries allow you to secure all libraries in
the group. See Chapter 11, “Security,” for more
information about securing group libraries.

 Library Members

A library member in the System/36 environment
is a named collection of source statements or
data. A library contains the following types of
library members:

� Source members . A source member in the
System/36 environment is a member of
source file QS36SRC in the specified library.
Source members contain information that is
input to another process (such as a compila-
tion). High-level language source statements,
message source, and display format source
are source members.

On the AS/400 system, source members are
contained in a physical source file named
QS36SRC. A source file is a file created by
the specification of FILETYPE(*SRC) on the
Create Physical File (CRTPF) command or by
using the Create Source Physical File
(CRTSRCPF) command. A source file can
contain source statements for such items as
high-level language programs and data
description specifications. Use the Source
Entry Utility (SEU) procedure, the Develop-
ment Source Utility (DSU) procedure, the Start
Source Entry Utility (STRSEU), or the Start
Programming Development Manager
(STRPDM) CL commands to change source
members.

 � Procedure members . Procedure members
contain operation control language (OCL)
statements interpreted by the System/36
reader/interpreter. On the AS/400 system,
procedure members are contained in a phys-
ical source file named QS36PRC. Use the
SEU procedure, the DSU procedure, STRSEU
CL command, or the Start Programming
Development Manager (STRPDM) CL com-
mands to change procedure members.

� Load members . Load members are the
internal form of objects. Compiled programs,
display formats, and message members are
load members.

On the AS/400 system, load members consist
of three different object types. Programs are
objects of type *PGM, display files are objects

of type *FILE (subtype display file), and
message files are objects of type *MSGF.

Load members are not compatible with
System/36 load members and cannot be
migrated back to System/36.

 � Subroutine members . Subroutine members
are the output from a process such as com-
pilers, query, or data file utility (DFU). On
System/36, program subroutines are com-
bined to create load members.

On the AS/400 system, subroutine members
consist of only program objects. Program
subroutines are objects of type *PGM.

The record length to be used when the
System/36 environment functions create the
QS36PRC and QS36SRC source file can be
specified when configuring the System/36
environment. This is discussed in Chapter 3,
“Configuring the System/36 Environment.”

Library Member Names

A library member name can be up to 8 characters
long, and must begin with an alphabetic character
(uppercase A through Z, #, $, or @). The
remaining characters can be any combination of
numeric, alphabetic, and special characters. The
following special names are not allowed:

 � DIR
 � SYSTEM
 � NEW
 � ALL

Avoid using the following characters in member
names since they have special meanings in proce-
dures: commas (,), apostrophes ('), question
marks (?), slashes (/), greater than signs (>),
equal signs (=), plus signs (+), periods (.), and
hyphens (-). Avoid using names that begin with a
Q because the system creates library members
beginning with a Q.

 Using Libraries

You use a library as a directory to a group of
related objects.

There are several advantages to using libraries:

� You can group certain objects for individual
users. Doing so helps you to manage the

6-2 OS/400 System/36 Environment Programming V3R6

objects on your system. For example, place
all the procedures that user MARY can use in
library MARYLIB.

� You can group all objects used for an indi-
vidual application into a single library. For
example, place all your order-entry files and
programs into an order-entry library called
ORDLIB. In this way, you need to add only
one library (containing your order-entry files)
to the library list to ensure that all your order-
entry files and programs are in the list (see
“Library Lists” on page 6-7). Use this method
when you do not want to specify a library
name every time you use an order-entry file or
program.

� You can ensure security. You specify which
users have authority to use each library, and
what they can do with the library. For
example, you can specify that a user has read
authority only for a specific library
(see Chapter 11, “Security”).

� You can simplify save and restore operations.
You can group objects that are saved and
restored at the same time into one library.
You can then save all the objects with one
Save Library (SAVLIB) command, instead of
saving each object individually with Save
Object (SAVOBJ) commands.

� You can use different libraries for testing and
for production.

� You can use multiple production files. For
example, use one production library for source
files and for creating objects, one for applica-
tion programs and files, one for objects infre-
quently saved, and one for objects frequently
saved.

 Assigning Libraries

You can assign libraries to display stations, opera-
tors, or jobs in the following ways:

� Sign-on library . You can designate the
library to be used by a display station when
an operator signs on to that display station. If
a library name is not specified on the sign-on
screen, and the current library defined in the
user’s profile has the special value *CRTDFT
(indicating a user library is not defined), the
System/36 environment sets the current library
to the sign-on library specified by the SET

procedure. If the SET procedure was not run
at the display station, the current library is set
to the default System/36 environment sign-on
library defined by the Change System/36
(CHGS36) CL command or by the Change
System/36 Environment Attributes (CHGS36A)
CL command. If the CHGS36 or the
CHGS36A CL commands were not run to set
the System/36 environment default sign-on
library, the current library is set to #LIBRARY.

For more information on the SET procedure,
see the System/36 Environment Reference
book. For more information on the CHGS36
and CHGS36A CL commands, see Chapter 3,
“Configuring the System/36 Environment.”

� Current library . A current library is associ-
ated with each job running. The current
library is usually the sign-on library, but you
can specify a session library or a job library as
the current library.

– Session library . You can designate a
library for the session. The system
searches the session library first for any
members needed for a job. If the job
information is not found in the session
library, the system searches the
System/36 environment user library
(#LIBRARY). If the job information is not
found in #LIBRARY, the system searches
the library list (*LIBL). Use the SLIB pro-
cedure or the MENU control command to
change the session library.

– Job library . You can designate a library
for each job or job step by using the
LIBRARY OCL statement.

 Sharing Libraries

Two or more programs can read from the same
library at the same time. However, the following
library functions require that only one program at a
time uses the same library:

� Restoring a library using the Restore Library
(RESTLIBR) procedure

� Removing all library members or all library
members of one type using the REMOVE pro-
cedure

� Renaming a library using the RENAME proce-
dure

� Deleting a library using the DELETE proce-
dure

 Chapter 6. Libraries 6-3

Changing Libraries in a Job

When using multiple libraries, you may need to
change libraries in the middle of a job. Use the
LIBRARY OCL statement to specify the library to
be used for a job or a specific job step. The
System/36 Environment Reference book has infor-
mation about the LIBRARY OCL statement.

Specifying Authority for Libraries

You can specify authority both for user libraries
and the system library in the System/36 environ-
ment. You can also specify the authority of
objects created in a library. See Chapter 11,
“Security,” for information about authority for
libraries and objects within libraries.

Making Backup Copies and
Recovering from Errors

Use library backup and recovery to make sure
your data is correct, and to minimize recovery time
for each program. Consider the following points:

� Make a backup copy of a library whenever
you change the library or library members sig-
nificantly. Use the Save Library (SAVELIBR)
procedure to save the library on diskette or
tape. If a machine or program error occurs,
you do not have to enter the changes again.
Use the Restore Library (RESTLIBR) proce-
dure to restore the library from diskette or
tape.

� If an abnormal ending occurs when you are
copying a member to a library (for example,
using the TOLIBR procedure) the member
may not have been copied correctly. If you
are copying several members to a library,
some members may not have been copied.
Check each member to make sure it is
correct. If the member is not correct or has
not been copied, repeat the copy procedure.

� If a program ends abnormally when you are
creating or changing a member in a library,
the changes may or may not have been
added to the member. To help you recover
from abnormal endings, the source entry utility
(SEU) automatically creates a work file. A
work file in the System/36 environment is a
file used for temporary storage of data being
processed. See the ADTS/400: Source Entry

Utility book for more information about SEU
and using the work file to recover from errors.

� You must be able to reconstruct your libraries
if a failure occurs, to allow your applications to
continue to operate.

For more information about backup and recovery,
see Chapter 19, “Error Prevention, Detection, and
Recovery.”

Recovering from Damage to
#LIBRARY

If the System/36 environment user library
#LIBRARY is damaged, take the following steps to
restore #LIBRARY from diskette or tape:

1. Have all users sign off the system and end all
batch jobs.

2. Bring the system to a restricted state. For
information on the restricted state see the End
Subsystem (ENDSBS) command in the CL
Reference book.

3. Rename library #LIBRARY to library
#LIBRARY2.

4. Restore library #LIBRARY from diskette or
tape.

5. If you have changed objects in #LIBRARY
since you created the backup version you can
recover the changed versions even though
#LIBRARY has since become damaged. The
process to recover the objects may take a
very long time. Before recovering the objects,
see the description of the Reclaim Storage
(RCLSTG) CL command in the CL Reference
book for information on the time required to
recover objects that existed in #LIBRARY
before it was damaged. Take the following
steps to recover objects that existed in
#LIBRARY before it was damaged:

a. Run the RCLSTG CL command to recover
the objects that were in #LIBRARY when
it was damaged.

b. When the reclaim storage function ends,
library QRCL contains the system objects
that were not in a library. Move the
objects that existed in #LIBRARY before it
was damaged to #LIBRARY from QRCL.

Note: Not all of the objects in library
QRCL may have come from #LIBRARY.

6-4 OS/400 System/36 Environment Programming V3R6

You must determine which objects previ-
ously were in #LIBRARY when #LIBRARY
became damaged.

6. Run the CHGS36 CL command and specify
the following items:

a. From the Change S/36 Environment Con-
figuration display, type 2 in the S/36
display IDs field.

b. Press the Enter key to return to the
Change S/36 Environment Configuration
menu.

c. When the Change S/36 Environment Con-
figuration menu appears again, press the
Enter key to update the System/36 envi-
ronment configuration information.

7. Do an initial program load (IPL) for the system
from disk.

Recovering from Damage to QS36ENV
*S36 in #LIBRARY: If the System/36 envi-
ronment configuration object (QS36ENV *S36)
becomes damaged, take the following steps to
restore the object from diskette or tape:

1. Have all users sign off the system and end all
batch jobs.

2. Bring the system to a restricted state. For
information on the restricted state see the
description of the ENDSBS command in the
CL Reference book.

3. Rename #LIBRARY to #LIBRARY2.

4. Restore #LIBRARY from diskette or tape.

5. Move objects that were not saved on the
backup version of #LIBRARY from
#LIBRARY2 to #LIBRARY.

6. Run the CHGS36 CL command and specify
the following values:

a. From the Change S/36 Environment Con-
figuration menu, type 2 in the S/36 display
IDs field.

b. Press the Enter key from the Change S/36
Display IDs screen to return to the
Change S/36 Environment Configuration
menu.

c. When the Change S/36 Environment Con-
figuration menu appears again, press the
Enter key to update the System/36 envi-
ronment configuration information.

7. Do an IPL for the system from disk.

Recovering from Damage to
Library QSSP

If the System/36 environment system library
QSSP is damaged, take the following steps to
restore library QSSP from diskette or tape:

1. If system value QUSRLIBL or QSYSLIBL con-
tains library QSSP, note the current setting of
the system value and remove library QSSP
from the list of libraries for the system value.

2. Have all users sign off the system and end all
batch jobs.

3. Run an IPL for the system from disk, and
specify that only the console be started.

4. When the system IPL finishes, delete QSSP
from the disk. If the request fails because
another job has a lock on library QSSP, use
the Work Object Lock (WRKOBJLCK) CL
command to determine the job that has a lock
on library QSSP.

5. Follow the installation procedures for the
System/36 environment in the Software Instal-
lation book.

6. If you changed the system values QUSRLIBL
or QSYSLIBL, change them back to their ori-
ginal value.

7. Do an IPL for the system from disk and
specify that all devices should be started.

Library Sector-Mode and
Record-Mode Files

You can copy library members to disk, diskette, or
tape files in sector-mode or record-mode format.

 Sector-Mode Files: Sector-mode files
contain library members that are stored in the
internal format used by the AS/400 system.
These files are created only by the FROMLIBR
and SAVELIBR procedures or by the $MAINT
utility program. Using this format, you can migrate
files to the System/36 environment that were
created on the System/36.

You can use sector-mode files only with another
AS/400 system. The System/36 Environment Ref-

 Chapter 6. Libraries 6-5

erence book has more information about using
sector-mode files.

Record-Mode Files: Records in a record-
mode file have a special format. One statement
from the member is contained in each record. All
records have the same length, and the record can
be from 40 to 120 characters long. The AS/400
system fills the record with blanks or truncates the
statements in the library member to match the
specified record length.

The first record in the file is a COPY statement
that defines the library member. The last record
in the file must be a CEND statement. The
records in between contain the statements in the
library member.

If you use the FROMLIBR procedure or the
$MAINT utility program to create a record-mode
file from a source or procedure member, the
COPY and CEND statements are placed in the file
automatically. Otherwise, you must specify the
COPY and CEND statements (for example, if a
program you coded is to create a file that
becomes a library member).

You can use record-mode files on other systems if
the files are written as basic data exchange files.
The System/36 Environment Reference book has
more information about using record-mode files.

Programming Guidelines for
Libraries

The following sections describe the functions you
can do with libraries and library members in the
System/36 environment, and they indicate the pro-
cedures you use to do the functions. The
System/36 Environment Reference book has more
information about these procedures.

 Creating Libraries

Use the System/36 environment Build Library
(BLDLIBR) procedure to create libraries on disk.
BLDLIBR also creates the QS36SRC and
QS36PRC source files. The BLDLIBR procedure
always creates libraries in the system auxiliary
storage pool (ASP). The authority to use the
library defaults to the system value of QCRTAUT.
The authority of objects created into the library, if

not specified in a command, defaults to the create
authority of the library. See Chapter 11,
“Security,” for information about the authorities for
libraries and objects within libraries. To build
libraries in user ASPs, use the Create Library
(CRTLIB) CL command.

Creating Library Members

To create a library source or procedure member,
use SEU or PDM. If you do not have SEU or
PDM, use the $MAINT utility program.

To create and change source members for display
formats and menus, use the screen design aid
(SDA) utility, source entry utility (SEU), or pro-
gramming development manager (PDM).

To create load members, use compilers or utilities.

Listing Members and Library
Information

When your library is on disk, use the LISTLIBR
procedure to:

� List the library’s directory
� List members from the library

When you have a library saved on diskette or
tape, or you have one or more members in a
diskette or tape file, use the LISTFILE procedure
to list information about the members.

Saving and Restoring Libraries

Use the SAVELIBR procedure to save an entire
library on diskette or tape. Use the RESTLIBR
procedure to restore an entire library from diskette
or tape to disk.

The System/36 environment libraries (#LIBRARY,
QSSP, and QS36F) are saved when you save all
nonsystem libraries using the following CL
command:

 � SAVLIB LIB(*NONSYS)

They can be restored using the following CL
commands:

 RSTLIB SAVLIB(*NONSYS)

or

6-6 OS/400 System/36 Environment Programming V3R6

 RSTLIB SAVLIB(QSSP)
 RSTLIB SAVLIB(#LIBRARY)
 RSTLIB SAVLIB(QS36F)

#LIBRARY and QS36F are also saved when you
save all user libraries using the following CL
command:

 SAVLIB LIB(*ALLUSR)

They can be restored using the following CL
commands:

 RSTLIB SAVLIB(*ALLUSR)

or

 RSTLIB SAVLIB(#LIBRARY)
 RSTLIB SAVLIB(QS36F)

Copying Libraries and Library
Members

Use the LIBRLIBR procedure to copy library
members from one library to another. Use the
FROMLIBR procedure to copy library members
from a library to a disk, diskette, or tape file. Use
the TOLIBR procedure to copy library members
from a file (either disk, diskette, or tape) to a
library.

 Securing Libraries

See Chapter 11, “Security,” for information about
securing libraries.

 Listing Files

Use the CATALOG procedure to list information
about files. The System/36 Environment Refer-
ence book describes the CATALOG procedure.

Renaming Libraries or Library
Members

Use the RENAME procedure to rename a library,
file, or folder. Use the CHNGEMEM procedure to
rename a library member.

Removing Libraries or Library
Members

Use the DELETE procedure to remove an entire
library. Use the REMOVE procedure to remove
library members.

 Coexistence Considerations

The following are considerations for using libraries
in the System/36 environment.

 Library Lists

A library list is an ordered list of libraries. Each
job has a library list. When you use a library list,
each library in the list is searched in the order of
its occurrence until the system finds an object of
the specified name and type. If more than one
object of the same name and type exists in the
list, the system uses the object from the library
that appears first in the library list.

The library list illustrated in Figure 6-1 consists of
the following:

� System part. The system libraries, specified
by the QSYSLIBL system value, that contain
objects needed by the system. Library QSYS
is an AS/400 system library.

� Product libraries. Up to two product libraries
used to support languages and utilities for the
job.

� Current library. The current library for the job.
This can be a duplicate of a library in the user
part of the library list.

� User part. The objects referred to by the
system’s users and applications.

 Chapter 6. Libraries 6-7

QSYS
QUSRSYS
QHLPSYS

.

.

.

#RPGLIB

YOURLIB

#LIBRARY
QSSP
QS36F
QGPL

QTEMP
.
.
.

System
Portion

User
Portion

Product
Library

CURLIB

System Library

System Library for user objects

System Help Text

#LIBRARY

System/36 Environment

QS36F

General Purpose Library

RV2W105-0

Figure 6-1. Example of Library List Parts

When you use the STRS36 or STRS36PRC CL
commands, the System/36 environment saves the
name of the current library. When you leave the
System/36 environment (with the ENDS36 CL
command, or at the end of the procedure started
with the STRS36PRC command), the current
library is restored to the value it had when you
entered the System/36 environment. For
example, if your current library is LIB1 and you
enter STRS36PRC PRC(SLIB) CURLIB(#LIBRARY)
when the STRS36PRC command ends, your
current library is restored to LIB1.

Batch job specific information: When you start
a batch job, the library list for that job is copied
from the library list of the submitting job. This
includes the system portion, the current library,
and the user portion.

MRT job specific information: When you create
a job in the System/36 environment, the system
sets the current library from the Sign-On display,
the Start System/36 (STRS36) command, the
Start System/36 Procedure (STRS36PRC)
command, or the Submit Job (SBMJOB)
command. If no current library is specified, the
current library is set to #LIBRARY. System/36 did
not have library lists.

If #LIBRARY, QSSP, and the System/36 environ-
ment files library are not in the library list, they are
added to the user part of the library list after the
current library. If one of these libraries is already
in the library list, its position in the list does not
change. Library QSSP is shipped with a *USE
authority to allow the objects to be used but not
changed by users. #LIBRARY and the System/36

environment files library are created by the
system. The authority for these two libraries is
determined by the system value QCRTQUT.

Note: Never remove library QSSP from the
library list while in the System/36 environment.
This library contains objects necessary for per-
forming System/36 environment functions, and
results cannot be predicted if the library is
removed.

On System/36, the current library for the MRT
initiator’s SRT job was copied to the MRT job.

In the System/36 environment, the current library
for the MRT initiator’s SRT job is copied to the
MRT job (as was done on System/36). The rest
of the MRT initiator’s SRT library list is not copied
to the MRT.

When you start a MRT job in the System/36 envi-
ronment, the library list is set up as defined in the
QS36MRT job description in library QGPL. The
elements in the following list make up the default
setting for this job description:

� The system portion of the library list is set to
the libraries contained in system value
QSYSLIBL. Use the Display System Value
(DSPSYSVAL) CL command to display the
value of QSYSLIBL, and the Change System
Value (CHGSYSVAL) CL command to change
the value of QSYSLIBL for all users.

� The current library is set to the current library
of the job that started the MRT job.

� The user portion of the library list is set to the
libraries contained in system value
QUSRLIBL. Use the Display System Value
(DSPSYSVAL) CL command to display the
value of QUSRLIBL, and the Change System
Value (CHGSYSVAL) CL command to change
the value of QUSRLIBL for all users.

� Since this is a System/36 environment job, the
system also does the following when starting
a MRT job:

– Adds the System/36 environment files
library to the top of the user portion of the
MRT job’s library list, if not already in the
list. If the files library is already in the
library list, its position in the list does not
change.

– Adds QSSP to the top of the user portion
of the MRT job’s library list, if not already

6-8 OS/400 System/36 Environment Programming V3R6

in the list. If QSSP is already in the
library list, its position in the list does not
change.

– Adds #LIBRARY to the top of the user
portion of the MRT job’s library list, if not
already in the list. If #LIBRARY is already
in the library list, its position in the list
does not change.

– If #LIBRARY, QSSP, and the System/36
environment files library are not in the
library list, they are added to the user part
of the library list after the current library.
If one of these libraries is already in the
library list, its position in the list does not
change.

 Search Order

This section describes the search order in the
System/36 environment for:

 � Subroutines
 � Programs
 � Procedures
 � Migration commands
 � Display files
 � ICF files
 � Print files
� Source and load members (other than PROCs

and compiled code)
 � Database files

Note: Chapter 20, “System/36 Environment
National Language Support,” describes how the
System/36 environment searches for display files,
messages, menus, prompts, and so on.

The following objects are not discussed. The
search order for these objects is always to the
library specified or is managed by the product
defined.

� Alternate indexes (located in the System/36
environment files library)

� Folders (defined and managed by office
systems)

� Data dictionaries (defined and managed by
the interactive data definition utility (IDDU))

� Documents (defined and managed by office
systems)

� Mail logs (defined and managed by office
systems)

Searching for Subroutines (Compiled
Callable Code): The System/36 OLINK pro-
cedure (to link edit subroutines into the system) is
not supported for the System/36 environment.
Instead, the system searches the //LOAD library
when specified (or *CURLIB), followed by
#LIBRARY and *LIBL to locate the subroutines
when they are to be called.

Searching for Programs (Compiled
Callable Code): On System/36, for //LOAD,
the system searches the library (specified or
*CURLIB) and then #LIBRARY. For the
System/36 environment, the system searches the
specified library, #LIBRARY, and then the library
list (*LIBL).

The // IF LOAD- and // IF SUBR- procedure
control expressions do not search the library list.
This situation can cause application errors. For
example, you can use a special library to contain
tailored code. You use the // IF test to determine
if the requested tailored module is in that special
library, and if it is, to load the module. If the
module is not in the library, the system searches
the application library (which might be *CURLIB)
for the code.

Searching for Procedures: Procedures
are stored in the QS36PRC file in a library. The
search order is:

1. Specified library or *CURLIB
 2. #LIBRARY

3. Library list (*LIBL)

Searching for Source Members: The
System/36 environment follows the same search
order used on System/36. The search order for
source members depends on the procedure or
command being processed. The procedures
search only the library specified. If no library is
specified, the procedure searches #LIBRARY.

Searching for Migration Commands:
There are control language commands that allow
you to migrate objects restored from System/36
into the AS/400 objects. If the file name is speci-
fied (with an explicit name or *CURRENT), only
that library is searched. If *LIBL is allowed, the
job library list is searched to locate the object.

 Chapter 6. Libraries 6-9

Searching for Database Files: Database
files on the AS/400 system are put in libraries.
For programs and utilities that are run within the
System/36 environment, you can search for data-
base files using the following methods:

� You can search for all files in the current files
library.

The current files library, by default, is the
session files library. It is set whenever a new
job step is initiated. Within a job, the current
files library can be changed with the File
Library (FILELIB) OCL statement. See the
FILELIB OCL statement in the System/36
Environment Reference book.

The session files library is the default files
library in the System/36 environment config-
uration. It is set whenever a new session is
initiated. Within a session, the session files
library can be changed with the File Library
(FLIB) procedure or the FILELIB OCL state-
ment. See the FLIB procedure and the
FILELIB OCL statement in the System/36
Environment Reference book.

The default files library is set when the
System/36 environment is defined. It can be
changed using the Change System/36
(CHGS36) command or the Change
System/36 Environment Attributes (CHGS36A)
command. For more information, see
Chapter 3, “Configuring the System/36
Environment.”

� You can search for all files using the library
list.

The libraries referred to in the library list are
searched when the current library list search
indicator is set to YES. The current files
library is not searched when the current library
list search indicator is set to YES, unless the
current files library is in the library list.

The current library list search indicator is the
session library list search indicator by default.
It is set whenever a new job step is initiated.
Within a job step, the current library list search
indicator can be changed with the FILELIB
OCL statement. See the FILELIB OCL state-
ment in the System/36 Environment Refer-
ence book.

The session library list search indicator is the
default library list search indicator in the
System/36 environment configuration. It is set
whenever a new session is initiated. Within a
session, the session library list search indi-
cator can be changed using the FLIB proce-
dure or the FILELIB OCL statement. See the
FLIB procedure and the FILELIB OCL state-
ment in the System/36 Environment Refer-
ence book.

The default library list search indicator is set
when the System/36 environment is defined.
It can be changed using the CHGS36
command or the CHGS36A command. For
more information, see Chapter 3, “Configuring
the System/36 Environment.”

User Auxiliary Storage Pools for
the System/36 Environment

The System/36 environment supports the use of
auxiliary storage pools (ASP), but does not
support creating libraries in ASPs. To create a
library in an ASP, you can use the Create Library
(CRTLIB) command. The Build Library (BLDLIBR)
procedure always creates a library in the system
storage pool.

For more information on ASPs see the following
publications:

� Backup and Recovery – Advanced
 � CL Reference
� DB2 for OS/400 Database Programming

Moving from System/36 to the
System/36 Environment

You can migrate libraries created on System/36 to
the System/36 environment. You can use
SAVELIBR or FROMLIBR procedures on the
System/36 to save procedures or source members
to tape or diskette. To restore these procedures
or source members on an AS/400 system, use the
Restore System/36 Library Member
(RSTS36LIBM) command.

6-10 OS/400 System/36 Environment Programming V3R6

 Chapter 7. Files

This chapter describes related sets of records
called files. It describes how to use, process, and
organize files, and how to use file attributes, block
records, and share files.

 Using Files

This section describes how to do the following:

 � Create files
 � Name files
� Specify a file for a program
� Place data in files
� Remove files from disk

 � Copy files
� Print or display files

See the System/36 Environment Reference book
for more information about the commands and
procedures described in the following sections.

Creating Files in the System/36
Environment

When you create files in the System/36 environ-
ment, the system stores them in the current files
library of the System/36 environment. To change
the system default files library, use the Change
System/36 (CHGS36) command or the Change
System/36 Environment Attributes (CHGS36A)
command. The default library name is QS36F.
For information about the CHGS36 and CHGS36A
commands, see Chapter 3, “Configuring the
System/36 Environment.”

The default files library becomes the session files
library when you start the System/36 environment.
When you enter statements from the keyboard,
the session files library and current files library are
the same. When starting a procedure, the session
files library is made the current files library for the
procedure. Use the FILELIB OCL statement and
FLIB procedure to change the current and session
files library. For more information, see the
System/36 Environment Reference book.

You can create files on disk using:

� The BLDFILE procedure. For example, if you
want to create a sequential file named
NEWFILE, and you have enough space for

one hundred 256-byte records, enter the fol-
lowing statement:

BLDFILE NEWFILE,S,R,1ðð,256,,T

� The data file utility (DFU) to automatically
create sequential, direct, and indexed files.

� A program that does output operations. The
FILE OCL statement can have DISP-NEW or
no DISP parameter specified. For example, if
you want to have your program create an
output file named OUT1 with the label
OUTPUT and you have enough disk space for
10 blocks of data, enter the following FILE
OCL statement:

// FILE NAME-OUT1,UNIT-F1,LABEL-OUTPUT,BLOCKS-1ð,
// RETAIN-T,DISP-NEW

� The RESTORE, TRANSFER, or TAPECOPY
procedure to copy files from diskette or from
tape to disk.

� The COPYDATA procedure to copy files from
disk to disk.

� The Query data entry function.

� The interactive data definition utility (IDDU).

� From a remote location, using the File
Transfer procedure or distributed data man-
agement (DDM) procedure.

Select one of the following values when you
specify the size of files being created:

� The number of records the file will contain
� The number of blocks of disk space for the file

(1 block is 2560 bytes)

For example, you can create a sequential file with
enough room for five hundred 256-byte records, or
with 50 blocks of disk space allocated for it.

Naming a Physical File

The System/36 environment requires you to
uniquely identify each file through a file name and
a file label. The file name indicates how the
program refers to the file. The file label indicates
how the system refers to the file on disk. A file
name or file label can be up to 8 characters long
and must begin with an alphabetic character (A
through Z, #, $, or @). Characters (other than the

 Copyright IBM Corp. 1995 7-1

beginning character) can be any combination of
characters (numeric, alphabetic, and special).

Do not name files ALL. Apostrophes ('), question
marks (?), asterisks (*), and quotation marks (")
are not allowed. Do not use the following charac-
ters because they have special meanings in pro-
cedures: commas (,), slashes (/), greater than
signs (>), equal signs (=), plus signs (+), and
hyphens (-). If you use any of these characters,
the System/36 environment puts double quotation
marks around the file name and then uses this
expanded name as the actual name on disk. For
more information, see “Naming Conventions for
Files, Libraries, and Folders” on page 5-4.

Create meaningful file labels by abbreviating the
name of the application that uses the file. For
example:

File Label Application or Type of File
ACCTRECV Accounts receivable
CUSTMAST Master customer file
CUSTORDS Customer orders

NAME and LABEL are parameters on the FILE
OCL statement. Specify the LABEL parameter
only when the name of the file on disk is different
from the name used in the program. If you do not
specify the LABEL parameter, the program uses
the name specified as the NAME parameter. For
example, in the COBOL coding and the FILE OCL
statement shown below, the file name used by the
program is ITEMMAST, but the file label is
INVMAST (the actual name of the file on disk).

Following is the COBOL program segment:

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO DISK-ITEMMAST.

Following is the FILE OCL statement:

// FILE NAME-ITEMMAST,LABEL-INVMAST

Using File Dates: You can assign the same
file label to more than one file if each file has a
different creation date. The creation date is the
system date when an object is created. A system
date is the date assigned in the system values
when the system is started. During system config-
uration, you can specify that the system prevent a
new disk file with a different date from being
created if it has the same label as an existing file.
Date differentiated files are treated as separate
members in a single file on the AS/400 system.

See Chapter 3, “Configuring the System/36
Environment,” for more information.

When creating these date-differentiated files,
make sure the following attributes of the date-
differentiated file are the same:

 � Record length
 � Delete-capable/nondelete-capable
� Duplicate keys allowed/not allowed
� Keyed file/nonkeyed file
� Key position and length (if keyed file)

 � Initial allocation
� Form of initial allocation (blocks or records)

 � Extend value
 � File size
 � File type

If these attributes are not the same, an error
appears when you try to create a new file for input
or output.

Using Group Files: A group file is a set of
files identified by a file name with identifiers sepa-
rated by one or more periods. The characters
preceding a period identify the file group.

The limit of 8 characters for a file name applies to
names for group files. The period is one of the 8
characters. A group name should not be more
than 6 characters long plus a period (.). A
7-character group name plus a period (.) does not
allow more characters to differentiate between
files in a group.

The following figure shows examples of file names
that identify group files.

File Name File Group Name

INV.MAST
INV.TRAN INV
INV.WORK

M.TEST.1
M.TEST.2 M.TEST or M
M.TEST.3

RSLW068-0

You can save, restore, or delete all the files in a
group file in one step by using the SAVE,
RESTORE, or DELETE procedure. You can use
group files for all files used by an application or
portion of an application.

7-2 OS/400 System/36 Environment Programming V3R6

You can secure group files. See Chapter 11,
“Security,” for more information about securing
group files.

Renaming a File: Use the RENAME proce-
dure to rename files. Do not rename files used by
other programs, procedures, or utilities. If you
rename a file used by several procedures, all
those procedures would need to know the new
name to be able to refer to the file. See the
System/36 Environment Reference book for more
information.

Specifying a File in a Program

To use a file in a program, you must specify the
file name. You can also specify the file label in
the program. When the program is compiled, the
compiler takes file information from the file
description in the program. The system uses this
information to define the record formats to be pro-
cessed and to open the file.

The file description in the program contains a
description of the following:

� Record formats including field names, data
types (numeric, alphanumeric, or character),
and field lengths

 � Processing method
� File organization as specified in the high-level

language program

All records in a file are fixed length and can have
the same or different field descriptions. You can
subdivide a field or redefine the field for pro-
cessing in your high-level language program.
Records are described in Chapter 12, “Designing
Records.”

Your high-level language program must open a file
before issuing a request to read, write, change, or
delete records in a file. A request to open a file
allows the program to process the file. A request
to close a file prevents the program from pro-
cessing the file. In some high-level languages you
must code the request in your program. In other
languages, the open or close operation is per-
formed automatically.

Some high-level languages allow you to specify
file parameters in the program; others require a
FILE OCL statement to specify these parameters.
Before a file is opened, the system checks to see

if a FILE OCL statement has been entered to
override the file specified in the program. The file
description in the program is merged with the
parameters on the file-overriding FILE OCL state-
ment.

See the System/36 Environment Reference book
for more information.

Placing Data in Files

Place data in files using one of the following
methods:

� High-level language program. See the
System/36 Environment Reference book for
more information.

� DFU. The ADTS/400: Data File Utility has
more information.

� Query. Query/400 Use book has more infor-
mation.

� Diskette to disk. Use the TRANSFER or the
RESTORE procedure.

� Tape to disk. Use the TAPECOPY or
RESTORE procedure.

� COPYDATA procedure as described in
“Copying Files.”

Removing a File from Disk or
Diskette

Use the DELETE procedure to remove a file from
disk or diskette.

 Securing Files

Secure your files using the AS/400 commands.
You should decide who can do the following:

� Read data from the file.
� Create or delete the file.
� Change data in a file.

See Chapter 11, “Security,” for more information
about how to secure files.

 Copying Files

The COPYDATA procedure copies a file on disk
to another file on disk. During the copy operation,
the COPYDATA procedure can do the following:

� Remove deleted records
� Include or omit specific records

 Chapter 7. Files 7-3

� Create the copied data in the same or a dif-
ferent file organization

Printing or Displaying Files

You can use the following methods to print or
display files:

� High-level language program. See the appro-
priate language book.

� DFU. The &dfulist. has more information.

� Query/36. See the Query/400 Use book for
more information.

� LISTDATA procedure. Use the LISTDATA
procedure to selectively list data from a file,
no matter what its organization is. The data
can be printed or displayed.

Use the LISTDATA options to:

– Print or display the records in either char-
acter or hexadecimal representation.

– Specify the maximum number of records
to be printed.

– Make the record length either larger or
smaller than the original record length.

– Include or omit selected records.

� LISTFILE procedure. Use the LISTFILE pro-
cedure to list the contents of files or libraries
from disk, diskette, or tape.

Store Deleted Files in Cache

| System/36 environment has a configuration option
| to store files being deleted in a cache. When you
| create a database file, the System/36 environment
| searches the cache for a file with the same attri-
| butes, inserts the file into the library, and removes
| it from the cache. Using a file stored in the cache
| is a faster method of creating a file.

Note: When a file that is stored in the cache is
reused, its creation date and time and record
format name are not updated.

Database files meeting the following requirements
are stored in the cache:

� File only has one member
� File is not an alternate index file or a remote

file (DDM)

� File is not used by an alternate index or a
logical file

� File is not being journaled
� File is not linked to a data dictionary
� File was created by a System/36 environment

function (for example, the BLDFILE proce-
dure)

Files stored in the cache do use additional
storage. You can monitor this storage by dis-
playing the System/36 environment values
(DSPS36 command) and watching the number of
kilobytes of storage used by the cache. To
remove all files from the cache, have a user with
QSECOFR authority call the QEXCLNCI program.
The QEXCLNCI program submits a request for a
database server job to remove all the files from
the cache. The system also submits a request for
a database server job to remove all the files from
the cache when the system is started or when the
System/36 environment value for storing the
deleted file in cache is set to N (No) by the
Change System/36 (CHGS36) command or the
Change System/36 Environment Attributes
(CHGS36A) command.

| Every library has an Object Information Repository
| (OIR). The OIR is where information about the
| objects contained in the library is kept. When a
| file is deleted and stored in the cache, the OIR
| entry for that file is not removed. The OIR entry is
| replaced if the file is subsequently reused from the
| cache with the same name in the same library.
| Otherwise, the OIR entry persists. If enough of
| these unused OIR entries accumulate for a library,
| users may be prevented from adding new objects
| to the library.

| The QEXCLNCI program can be called by a user
| with QSECOFR authority to remove these unused
| OIR entries. The program must be called with a
| single parameter specified. When a library name
| is specified for the parameter, the program
| attempts to remove the unused entries from the
| OIR of that library. When *ALL is specified for the
| parameter, the program attempts to remove
| unused entries from the Object Information Repos-
| itories of every library on the system. To reduce
| conflicts with other system activity, this function of
| the QEXCLNCI program should be performed
| during times of low system use.

7-4 OS/400 System/36 Environment Programming V3R6

 File Organization

This section describes sequential, direct, and
indexed file organization.

File organization is the way records are placed in
a file. The system allows sequential, direct, and
indexed file organizations. Records in sequential
files are in the order in which they were entered
into the file. Records in direct files have a record
number that specifies the location of a record in
relation to the beginning of the file. Indexed files
have the key and position of each record recorded
in a separate portion of the file called an index.

Sequential File Organization

A sequential file is a file whose records are in the
sequence they were written.

The program that creates the file arranges records
in the same sequence they were placed in the file.
The program places the first record in the first
position in the file, the second record in the
second position, and so forth.

Figure 7-1 shows the creation of two sequential
files. The file loading program reads the records
on the left in the following sequence: 2, 4, 5, 7, 8.
Because the records are loaded onto a disk in this
same sequence, the disk file is a sequential file.
The file loading program reads the records on the
right in the sequence: 7, 2, 5, 8, 4. The records
are loaded onto a disk in the same sequence, so
this is a sequential file also.

The loading program can load records in an
ordered or unordered sequence. In an ordered
sequence, the file loading program arranges
records in ascending or descending sequence,
based on the value of a control field. The records
in Disk File A in Figure 7-1 are loaded in an
ordered sequence. The records in the Disk File B
in Figure 7-1 are loaded in an unordered
sequence. The way you write the file loading
program (not the sequence of the input source
records) determines whether the program loads a
file in an ordered or unordered sequence.

A sequential file takes less space than a direct file
or an indexed file. Direct files have gaps in the
file for missing records. Indexed files use extra
space for the index. See the DB2 for OS/400
Database Programming book for information on
determining how much space a sequential file
requires.

When a record is added to a sequential file, it is
placed at the end of the file, not between existing
records. In Figure 7-1, when the file loading
program adds record 6, it is placed after record 8,
not between records 5 and 7. If it is important
that record 6 appear between records 5 and 7,
you can run a sort program to arrange the records
into a new ordered sequence.

You can process sequential files consecutively,
randomly by relative record number, or by the
generalized processing method (both consec-
utively and randomly). See “File Processing
Methods” on page 7-13 for more information.

 Chapter 7. Files 7-5

2 4 5 7 8 7 2 5 8 4

8

7

5

4

2

4

8

5

2

7

Disk File A Disk File B

File-Loading
Program

File-Loading
Program

RSLW013-1

Figure 7-1. Organization of a Sequential File

7-6 OS/400 System/36 Environment Programming V3R6

Direct File Organization

In a direct file, records are loaded into assigned
places within the file. Normally, the file loading
program uses the value of a field from the input
record to point to the position in the disk file where
the record should be placed. The pointer (the
value of a field from the input record) is called the
relative record number . The relative record
number identifies the position of the record relative
to the beginning of the file. For example, if the
decimal value of a relative record is 8, that record
is placed in the eighth record position in the file.

Regardless of the sequence in which the file
loading program reads the records, it places the
records in the direct file at the proper location.
For example, Figure 7-2 shows two sequences of
input records.

The input records on the left in Figure 7-2 are in
the sequence: 2, 4, 5, 7, 8. The input records on
the right are in the sequence: 7, 2, 5, 8, 4.
However, in both cases, the file loading program
places the records into the same positions in the
direct file. Spaces are left for records 1, 3, and 6.
When records are added to a direct file, they are
placed in the spaces that were left for them. For

example, record 6 is added between records 5
and 7.

When the file loading program creates a direct file,
all record positions in the file are initialized to
blanks (hex 40s) if the file is not delete-capable. If
the file is delete-capable, unused record positions
are marked as deleted records.

All relative record numbers are decimal and start
with 1.

The relative record number is based on a value
stored in the record or is a calculated value calcu-
lated using the values of fields in the record.

Direct file organization can use a great deal of
disk storage space if the formula you choose for
calculating record positions leaves many unused
record positions in the file. For example, if your
calculations create relative record numbers from 1
to 1000, space is reserved in the file for 1000
records. If you use only 100 records, the space
for the other 900 records is not used.

Occasionally, when you use formulas to determine
relative positions, more than one record has the
same calculated position in the file. These
records are called synonym records .

2 4 5 7 8

8

7

5

4

2

4

8

5

2

7

Disk File

File-Loading
Program

File-Loading
Program

RSLW014-1

Figure 7-2. Organization of a Direct File

 Chapter 7. Files 7-7

2 4 5 7 8

Synonym
Records

Relative Record Number Locations

RSLW015-0

Figure 7-3. Synonym Records

Figure 7-3 shows an example of synonym
records.

Only one synonym record can be stored in a cal-
culated record position. Therefore, if you use for-
mulas to create direct files, you must plan how to
store and retrieve synonym records from various
locations within the file. See Appendix A, “Access
Algorithms for Direct Files” for more information.

You can access direct files consecutively, ran-
domly by relative record number, or by the gener-
alized processing method. See “File Processing
Methods” on page 7-13 for more information.

Indexed File Organization

In an indexed file, the file loading program
arranges records in the sequence they were
written. As the records are added, an index,
called the primary index , is built for the file.
Thus, an indexed file contains two parts: an index
and the sequentially organized records.

The index is a table containing an entry for each
record in the file. Each index entry identifies a
record by the value of its key and locates the

record by its address in the file. The key (also
called the key field or the record key) is the
portion of the record containing information that
identifies the record. For information about the
rules for forming keys, see “Using Index Keys” on
page 7-11.

With an index, a program processes required
records by referring to the key of the record. For
example, if you have an indexed file with order
records containing customer number, amount
ordered, and balance due, your program can use
the customer number as the key to find a record
for a particular customer without reading any other
records.

Figure 7-4 on page 7-9 shows how indexed files
are organized.

You can process indexed files consecutively,
sequentially by key, randomly by relative record
number, randomly by key, or by the generalized
processing method. See “File Processing
Methods” on page 7-13 for more information.

See the DB2 for OS/400 Database Programming
book for information on how to tell how much
space an indexed file requires.

7-8 OS/400 System/36 Environment Programming V3R6

8

7

5

4

2

2 4 5 7 8

Disk File

2 4 5 7 82 4 5 7 8

Disk File

4

8

5

2

7

7 2 5 8 4

Index

Index

File-Loading
Program

File-Loading
Program

RSLW016-1

Figure 7-4. Organization of an Indexed File

Multiple Indexes for a File

A physical file is a file that contains data records.
After you create a physical file, you can create
indexes (called alternative indexed files) for that
file without creating new data records (see
Figure 7-5).

You can create any number of alternative indexed
files. The files you create to define each of the
logical files are called alternative indexed files.
You can create alternative indexed files for any file
type: sequential, direct, or indexed. You can
create alternative indexed files with the
BLDINDEX procedure. The System/36 Environ-
ment Reference book has more information about
the BLDINDEX procedure. Names for alternative
indexed files must follow the same rules as phys-
ical files.

Figure 7-5 shows an example of multiple indexes
for an indexed file.

All the indexes point to the same data records in
the file, but each index can use a different portion
of the record as the key. The field(s) used as the
key in an index can overlap the field(s) used as
the key in other indexes. Therefore, you can
process records from the file in various
sequences, depending on which index you use.
For example, for a personnel file, you can use the
employee number as one key and the department
number as a second key. A high-level language
program treats a multiple-index file the same way
it treats a normal indexed file.

When changes are made to the physical file, all
indexes (primary and alternative) are changed as
required to reflect the change (if restrictions for
duplicate keys or changing keys are followed).
For example, if you use the employee number as
one key and the department number as a second
key, changes you make to the file (while using the
index based on the employee number) are auto-
matically made in the index based on the depart-
ment number. You must have a FILE OCL
statement for each index that the program uses.

 Chapter 7. Files 7-9

2 4 5 7 8 7 2 5 8 4

Primary
Index

Physical
File

A B C D

Alternative
Index

D B A E C

E

Data Records

Alternative
Index File

RSLW017-0

Figure 7-5. Multiple Indexes for an Indexed File

Note: System/36 would not allow the user to
update the primary index fields. The OS/400
program does not differentiate between indexes,
and all index fields can be modified.

Using Multiple-Index Files: When you
use multiple-index files, be aware of the following
factors:

� Unlike the System/36, date-differentiated alter-
native indexed files cannot be created.
However, an alternative indexed file can be
built for a physical file that is date-
differentiated.

� You cannot delete the physical file if alterna-
tive indexed files are specified for it. The
RETAIN-S parameter of the FILE OCL state-
ment is not allowed for the physical file or for
the alternative indexed files.

To delete a physical file, you must first delete
all alternative indexed files. Use the DELETE
procedure to delete the alternative indexed
files. You can delete a physical file and all
indexes by using the file group naming con-
vention and the DELETE procedure to delete
the entire group. See “Using Group Files” on
page 7-2 for more information about file
groups.

� You cannot rewrite (overlay using DISP-OLD
on the FILE OCL statement) an existing phys-
ical file if it has alternative indexed files.
Before you can overlay the data in the phys-
ical file, you must delete the alternative
indexed files.

You cannot rewrite an alternative indexed file.
You can only add to or change alternative
indexed files.

� You can specify a multiple-index file in a pro-
cedure substitution expression that retrieves

information about the file’s size (?F'S'? or
?F'A'?). If the specified file is an alternative
indexed file, the system can substitute the
number of blocks or records allocated for the
physical file.

� You can change key values on change oper-
ations. When you change an index, consider
the following:

– In a COBOL program, you can change a
key that has been used to retrieve the
record. Therefore, do not retrieve the
record by the field to be changed.

– In an RPG II program, between the record
retrieval (CHAIN, READ, READE, or
READP operation) and the record change,
do not make another retrieval operation to
the file (this ensures that you change the
correct record).

� When you change a record, and a key for any
index is changed or a record is added, dupli-
cate keys can occur. The duplicate key can
cause an error message to appear for an
index the program is not using. The error
message occurs only for indexed files that do
not allow duplicate keys. You indicate
whether an indexed file allows duplicate keys
when you create the file. For more informa-
tion about specifying duplicate keys, see
“Specifying Duplicate Keys” on page 7-11.

Saving Multiple-Index Files: When you
use the SAVE procedure to save an indexed file,
the system saves the data and a description of the
primary index.

When you save an alternative indexed file, the
system saves only a description of the index. It
does not save the index itself or the data in the
file. Saving the physical file does not save the

7-10 OS/400 System/36 Environment Programming V3R6

alternative indexed files. You can save a physical
file, and all indexes for that file, using the file
group naming convention and the SAVE proce-
dure to save the entire group. When you use the
SAVE procedure to save a file group, the system
saves the physical file, and then saves the alter-
native indexed files. See “Using Group Files” on
page 7-2 for more information about file groups.

The description of the SAVE procedure in the
System/36 Environment Reference book has more
information about saving multiple-index files.

Restoring Multiple-Index Files: When
you use the RESTORE procedure to restore an
indexed file, the system restores the data and
rebuilds the index from the description that was
saved.

When you restore an alternative indexed file, the
system rebuilds the alternative indexed file from
the description saved. The data used for this
rebuild is the data in the physical file that has the
same date as the alternative indexed file being
restored. Therefore, when you restore the
indexes individually, the physical file must be
restored before any alternative indexed files are
restored. If the physical file is not on disk, and
you are restoring an alternative indexed file for the
file, an error message appears.

When you use RESTORE ALL to restore a
multiple-index file, the system restores the phys-
ical file and then restores the alternative indexed
files. A physical file on tape or diskette cannot be
restored to an existing physical file on disk until
the alternative indexed files for that file are deleted
from disk.

Note: Because the system rebuilds alternative
indexed files when they are restored, restoring a
multiple-index file can be time-consuming. The
time depends on the number of records in the file,
the number of alternative indexed files defined for
the file, and the key length of the file being
restored.

The description of the RESTORE procedure in the
System/36 Environment Reference book has more
information about restoring multiple-index files.

Using Index Keys: The following rules apply
to keys in the System/36 environment:

� A key can be up to 120 bytes in length,
although in some cases the maximum length
is lower. For example, DFU and RPG II
restrict the maximum length of a key to 99
bytes.

� A key is treated as alphanumeric, even if the
data is numeric. If a key is numeric, it should
not contain a sign (+ or −).

� You can start a key anywhere within the
record.

� You can combine as many as three fields to
form a key.

� Key fields for an index file cannot overlap.

� Each field in a key must be defined to contain
a unique set of positions in the record.

� You can specify key fields in any order,
regardless of their place in the record.

� For a indexed physical file, the fields in a key
must be next to each other in the record. For
alternative indexed files, keys do not need to
be next to each other in the record.

For example, in Figure 7-6, you could use fields 1
and 2 together as the primary key, fields 5, 9, and
7 together as an alternative indexed file key, and
fields 1 and 3 as another alternative indexed file
key.

Using Duplicate Keys: The system allows
duplicate keys in indexed or alternative indexed
files. For example, if you want to process
employee records sequentially by department
number, you can build an indexed file that uses
the department number as the key. Because
there would be more than one employee record
for each department, the file must allow duplicate
keys.

Specifying Duplicate Keys: You can specify
whether a file allows duplicate keys when you
create the file. If you use the BLDFILE procedure
to create the file, you specify duplicate keys by
using the DUPKEY parameter. If a program
creates the file, you specify duplicate keys with
the DUPKEY parameter of the FILE OCL state-
ment. You can specify whether an alternative
indexed file will contain duplicate keys using the
DUPKEY parameter on the BLDINDEX procedure.

 Chapter 7. Files 7-11

RSLW063-0

1 2 3 4 5 6 7 8 9 10 11 12

Keys

Record

Primary Index:
Key = Fields 1 and 2

Alternative Index:
Key = Fields 5, 9, 7

Alternative Index:
Key = Fields 1 and 3

Fields in the Record

Figure 7-6. Key Fields

Checking for Duplicate Keys: If a file does not
allow duplicate keys, the system checks for dupli-
cate keys before an index entry is added to the
file (either during add operations or during change
operations that change a key field). If an opera-
tion would cause a duplicate key in an index that
does not allow duplicate keys, the operation is not
allowed.

Sequence of Duplicate Keys: If an indexed file
has duplicate keys, the sequence of the duplicate
keys is maintained by the relative record number
of the records in the file. That is, the first record
entered or added to the file is represented by the
first entry in the index. Change operations do not
change the position of records in the file. If a
change operation changes a key, the new key is
put in sequence by the relative record number of
the original record.

Processing a File with Duplicate Keys: When
you process a file with duplicate keys randomly by
key, only one of the records having duplicate keys
is available for processing. The available record
is the record with an index entry first in the set of
duplicate entries. Random processing by key is
discussed in “Random Processing by Key” on
page 7-17.

If you use the generalized processing method, you
can retrieve the other records with duplicate keys
by requesting operations that read the next record
in the file. The generalized processing method is
discussed in “Generalized Processing Method” on
page 7-17.

You can process records with duplicate keys
sequentially by key either for the entire file, or for
records within limits. Sequential processing by
key is discussed in “Sequential Processing by

Key” on page 7-15. When you specify limits for
keys with duplicates, the lower limit is set to the
first duplicate key in the index, and the upper limit
is set to the last duplicate key. The upper limit is
determined as records are read from the file. The
upper limit includes records added by other jobs.

Using Alternative Indexed Files: If you
change, delete, or add records to a multiple-index
file, the system must change all the indexes.
Therefore, the number of alternative indexed files
directly affects the performance of the program.

It is more efficient to build alternative indexed files
for a file only when needed. For example, if a
program requires a certain index to produce a
monthly report, that index could be built just
before running the job that produces the monthly
report.

 Processing Files

Processing files involves the following concepts:

� Current record pointer
 � Nonkeyed processing
 � Keyed processing
� File processing methods

Current Record Pointer

When you open a file, the system establishes a
current record pointer. The current record pointer
points to a particular record position within the file.
It positions a record for reading and maintains that
position for changing or deleting the record.

The System/36 environment changes the current
record pointer when it successfully completes an

7-12 OS/400 System/36 Environment Programming V3R6

input operation or when an end-of-file completion
code is returned.

The current record pointer is always at one of the
following positions:

� Beginning of file. In this position, the pointer
is before the first record in the file. If a
request to read the next record is made, the
system reads the first record in the file. After
the system opens a file, the pointer is set at
the beginning of the file.

� End of file. In this position, the pointer is
beyond the last record in the file. If the
system receives a request to read the pre-
vious record, it reads the last record in the file.

� Record position. In this position, the pointer
points to a record position in the file. The
record at that position may be an active
record or a deleted record.

Nonkeyed and Keyed Processing

You can process files without using a key (non-
keyed processing) or according to the value of the
key (keyed processing).

Nonkeyed Processing: In nonkeyed pro-
cessing, the records are processed in the
sequence in which they are stored in the file. The
system uses this sequence to process records
randomly or consecutively. The system bases the
current record position on the relative position of
the record in the file. When the system opens the
file, it sets the current record pointer at the begin-
ning of the file. The current record position
changes as read operations occur for the file. The
system performs change, delete, and release
operations on the record at the current record
position. Adding a record does not change the
position of the current record pointer.

Nonkeyed processing allows the following oper-
ations for sequential, direct, and indexed files:

� Read the first record in the file
� Read the last record in the file
� Read the next record in the file
� Read the previous record in the file
� Read the record at the current record position

+ N
� Read the record at the current record position

− N
� Read the record at the relative record number

� Add a record at the end of data
� Add a record at the relative record number
� Change the current record
� Delete the current record
� Release the current record

Note: Not all high-level languages allow every
operation in the preceding list. Refer to the appro-
priate language book for information about the
operations allowed in a particular language.

Keyed Processing: In keyed processing,
the records are in sequence by their key values.
This sequence allows the system to process
records randomly or sequentially by key. During
file processing, the system maintains a current
record pointer. When the system opens the file, it
sets the pointer at the beginning of the first key in
the index. The current record position changes as
read operations occur for the file. The system
changes, deletes, and releases the record whose
index entry is at the current record pointer. Add
operations do not change the position of the
current record pointer.

Keyed processing allows the following operations
for indexed files:

� Read the record that has a specific key value
� Read the first record in the file
� Read the last record in the file
� Read the next record in the file
� Read the previous record in the file
� Read the record that has an equal or greater

key value
� Read the record that has a greater key value
� Read the record if it has a key equal to a

specified value
� Add a record at the end of data
� Change the current record
� Delete the current record
� Release the current record

Note: Not all high-level languages allow every
operation in the preceding list. Refer to the appro-
priate language book for information about the
operations allowed by a particular language.

File Processing Methods

Before you create the file, you must select a pro-
cessing method. Processing method is the term
used to describe the way a program retrieves disk
records for processing. The processing method
defines a set of functions that the high-level lan-

 Chapter 7. Files 7-13

guage program uses to retrieve records from the
file. The processing methods are:

 � Consecutive
� Sequential by key
� Random by relative record number
� Random by key

 � Generalized processing

Consecutive processing allows you to process
records in the order in which they appear in the
file. Sequential processing by key allows you to
process indexed files by the sequence of the keys
in the index. Random processing by relative
record number allows you to process a record by
specifying the record’s relative record number.
Random processing by key allows you to process,
in an indexed file, a record by specifying the
record key. Generalized processing allows you to
process a file using a combination of the above
methods.

Do not confuse these processing methods with file
organizations. However, the file organization
plays a significant role in determining which pro-
cessing method you can use in a program. The
following table indicates which processing method
you can use for each file organization.

Consecutive Processing Method: The
consecutive processing method reads records in
the order in which they appear in the file, one after
another from first to last, as shown in Figure 7-7.

You can use the consecutive processing method
for all three file organizations.

Sequential Files: When the system processes a
sequential file consecutively, the space at the end
of the file reserved for new records is not read.
Therefore, record 4 is the last record read in the
sequential file in Figure 7-7.

Direct Files: When the system processes a
direct file consecutively, if it is not delete-capable,
the program reads the gaps that were left for new
records. Therefore, the program must test for a
blank record each time it reads a record. When a
program processes a direct file that is delete-
capable, the deleted records are bypassed. A
direct file in the System/36 environment is a disk
file in which records are referenced by the relative
record number. A direct file is created as an
OS/400 physical file.

Indexed Files: When the system processes an
indexed file consecutively, the program ignores
the index portion of the file as it reads the records.
However, if change operations change keys, or if
records are added or deleted, the system auto-
matically changes all indexes for the file. The
space at the end of the file that is reserved for
new records is not read. Therefore, record 4 is
the last record read in the indexed file in
Figure 7-7.

Processing
Method

Organization

Sequential Direct Indexed

Consecutive Yes Yes Yes

Sequential by key No No Yes

Random by rela-
tive record
number

Yes Yes Yes

Random by key No No Yes

Generalized pro-
cessing method
(nonkeyed pro-
cessing)

Yes Yes Yes

Generalized pro-
cessing method
(keyed pro-
cessing)

No No Yes

7-14 OS/400 System/36 Environment Programming V3R6

2 4 5 7 8 7 2 5 8 4

7 2 5 8 4

2 4 5 7 8

Begin Reading

Begin Reading

Begin Reading

Last Record
Read

Last Record
Read

RecordsIndex

Sequential File

Direct File

Indexed File

RSLW019-0

Figure 7-7. Consecutive Processing Method

Sequential Processing by Key: When
the system processes an indexed file sequentially
by key, the program processes the records
according to the sequence of the keys in the
index, as shown in Figure 7-8.

Although the system processes the keys consec-
utively, it processes the records randomly because
the index entries are sorted but the records are
not. The system processes records in ascending
order of key value.

If there are duplicate keys in the index, the system
processes records with duplicate keys in the order
of the relative record number. For more informa-
tion about duplicate keys, see “Using Duplicate
Keys” on page 7-11.

The system bypasses deleted records in a delete-
capable file.

Sequential Processing by Key within Limits:
The sequential-by-key processing method usually
processes all records in a file. However, you can

specify the upper and lower limits of the key
values of the records you process sequentially by
key in ascending order, as shown in Figure 7-9.

You can also specify the limit of the key values for
records you process sequentially by key in
descending order, as shown in the following
figure.

2 4 5 7 8 7 2 5 8 4

Index Records

Read
Records

Begin Processing
in Descending
Order

Limit

RSLW064-0

You can process an indexed file sequentially by
key within limits to process a specific group of
records in the file. You can process the file in
ascending order or descending order.

 Chapter 7. Files 7-15

2 4 5 7 8 7 2 5 8 4

Index Records

Read Index
Sequentially

Read Records

RSLW020-0

Figure 7-8. Sequential Processing by Key

2 4 5 7 8 7 2 5 8 4

Index Records

Low
Key

High
Key

End
Processing

Begin
Processing RSLW021-0

Figure 7-9. Sequential Processing by Key in Ascending Order within Limits

When you process files in ascending order:

� The lower limit is the key value at which pro-
cessing begins, and the upper limit is the key
value at which processing ends.

� If duplicate keys are in the index, the system
uses the first duplicate of the appropriate key
as the lower limit, and the last duplicate of the
appropriate key as the higher limit.

When you process files in descending order:

� Processing begins at the key value just below
the limit and continues in descending order to
the first record in the file.

� If duplicate keys are in the index, the first key
the system returns is the last key in the group
of duplicates.

The limits you specify for processing the file
remain in effect until:

� New limits are set
� A random read operation occurs
� The file is closed

Random Processing by Relative
Record Number: The system uses the
random processing method by relative record
number to read only the record the program
needs. It ignores all the other records in the file.
Therefore, you determine the order in which disk
records are processed. The relative record
numbers indicate the positions of the records in
the file relative to the beginning of the file. Rela-
tive record numbers are positive whole numbers
that the system converts into the disk addresses
of the records.

The relative record number processes all three file
organizations randomly. When a delete-capable
file is processed randomly by relative record
number, the program cannot read the deleted
records. However, the deleted records do take up
space in the file, so they affect the relative record
number of other records.

Sequential Files: You can processing sequential
files randomly by relative record number when you
process only a few of the records in the file and
you know the relative record numbers of the
records.

Direct Files: Figure 7-10 shows an example of a
direct file the system processed randomly by rela-
tive record number.

7-16 OS/400 System/36 Environment Programming V3R6

2 4 5 7 8

Processing
Program

Read Directly

Direct File

Request
Customer 4

RSLW022-1

Figure 7-10. Random Processing by Relative Record Number for a Direct File

Blank records are not a problem when retrieving
records from a direct file, because the program
reads only the desired records. In the example in
Figure 7-10, the direct file contains customer
records stored at record positions based on the
customer number. The program receives a
request to read the record for customer 4. The
system uses the customer number as the relative
record number. The program retrieves the
requested record (the fourth record relative to the
beginning of the file) without reading any other
record. The program must determine whether
there is information in the record.

Indexed Files: When the system processes an
indexed file randomly by relative record number, it
processes the records by their relative record
number values. If change operations change any
of the keys in the records, or adds or deletes any
records from the file, the system changes all
indexes for the file.

Random Processing by Key: The system
processes only indexed files randomly by key.
Figure 7-11 shows an example of random pro-
cessing by key for an indexed file. In the example
in Figure 7-11, the program receives a request to
read the record for customer 4. The system uses
the customer number as the key. It retrieves the
record for customer 4 in two steps:

1. The system searches the index for a value
that matches the requested key. The index
entry with the matching key value also con-
tains the relative record number of the record
for that key.

2. The system reads the record at that record
position from the data portion of the file.

Generalized Processing Method: Use
the generalized processing method to process a
disk file randomly, consecutively, or sequentially
while changing, deleting, or adding records.
When using the generalized processing method,
you can do nonkeyed or keyed processing.

For example, assume you have a file of employee
records containing employee number, department
number, and location code, and the file is an
indexed file with location code as the key. Using
the generalized processing method with keyed
processing, your program can process the records
for all the employees at a location.

As Figure 7-12 on page 7-18 shows, the program
can process the file randomly by key to find the
first record that has the location code.

As Figure 7-13 on page 7-18 shows, after the
program finds that record, it can process the file
sequentially by key to process the records for the
other employees at that location.

As Figure 7-14 on page 7-19 shows, while pro-
cessing the file, the program can add records to
the file.

Sequential or Direct Files: Use the nonkeyed
generalized processing method to process
sequential or direct files consecutively or randomly
by relative record number.

Indexed Files: Use the nonkeyed generalized
processing method to process indexed files by
using:

 � Consecutive processing
� Random processing by relative record number

 Chapter 7. Files 7-17

Use the keyed generalized processing method to
process indexed files using:

� Sequential processing by key
� Random processing by key

2 4 5 7 8 7 2 5 8 4

RecordsIndex

Processing
Program

Read Index First

Then Read Record

Request
Customer 4

RSLW023-1

Figure 7-11. Random Processing by Key for an Indexed File

LOC
A

LOC
A

LOC
B

LOC
C

LOC
C

EMP
001

DEP
33

LOC
B

EMP
002

DEP
15

LOC
C

EMP
003

DEP
12

LOC
A

EMP
004

DEP
24

LOC
A

EMP
005

DEP
32

LOC
C

RecordsIndex

Process

Read Index
Randomly by Key

Program

RSLW024-0

Figure 7-12. Generalized Processing Method Randomly by Key

LOC
A

LOC
A

LOC
B

LOC
C

LOC
C

EMP
001

DEP
33

LOC
B

EMP
002

DEP
15

LOC
C

EMP
003

DEP
12

LOC
A

EMP
004

DEP
24

LOC
A

EMP
005

DEP
32

LOC
C

RecordsIndex

Process

Read Index
Sequentially by Key

Program

RSLW025-0

Figure 7-13. Generalized Processing Method Sequentially by Key

7-18 OS/400 System/36 Environment Programming V3R6

EMP
001

DEP
33

LOC
B

EMP
002

DEP
15

LOC
C

EMP
003

DEP
12

LOC
A

EMP
004

DEP
24

LOC
A

Add

Existing Records

EMP
005

DEP
32

LOC
C

EMP
006

DEP
27

LOC
C

New Record

Program

RSLW026-0

Figure 7-14. Generalized Processing Method Adding Records

Specifying the Generalized Processing Method
in High-Level Languages: The following table
lists the ways in which various programming lan-
guages use the generalized processing method on
the system.

You can use logical files to process the same file
by different processing methods. Refer to “Using
Multiple Names to Access a Single File” on
page 7-30 for more information about multiple
logical files.

Choosing a File Organization

When you create a file, you have to decide which
file organization to use (sequential, direct, or
indexed). Choose the file organization that is
most efficient in the application. Consider the fol-
lowing factors:

 � File use
 � File volatility
 � File activity
 � Disk space

 � Processing speed

 File Use

Use is very important in selecting a file organiza-
tion. Consider the following when you design
files:

� The type of data stored in the file (permanent
or temporary)

� The processing method used to process the
data

� The type of application

Master File: A master file is permanent and is
often used in several jobs with several other files.
For information on master files, see the DB2 for
OS/400 Database Programming book.

Transaction File: A transaction file is a file
containing data that is usually used with a master
file. Transaction files are less permanent than
master files. Use them to change master files.

With control fields, you can chain the transactions
from each display station so each operator can
process the records entered from his display
station. Also, you can organize a direct trans-
action file so each display station has its own work
area, as in the following:

Programming
Language Generalized Processing Method

COBOL DYNAMIC processing mode

RPG II Full-procedural files

 Chapter 7. Files 7-19

Relative
Record
Number Contents
1 Next available relative record number

First relative record number
Last relative record number

2 Next available relative record number
First relative record number
Last relative record number

. .

. .

. .
10 W1 transaction 1
11 W1 transaction 2
12 W1 transaction 3
. .
. .
. .
110 W2 transaction 1
111 W2 transaction 2
. .
. .
. .

Note: The records entered from each display
station require a control record. This direct file
reduces the possibility that a display station oper-
ator tries to process a record within a sector
assigned to another program. However, the
number of records that can be entered from a
display station is limited, and gaps can exist
between the end of one section of the file and the
beginning of the next section.

For more information about transaction files, see
the DB2 for OS/400 Database Programming book.

Processing Method: You determine the file
organization when you create the file. If you
create a file for an existing application in which
you use a particular processing method, your
choice of file organization may depend on that
processing method.

If you use random processing, the program can
process specific records in a file (by relative
record number or by key) without processing the
entire file. For example, when display station
operators process telephone orders, they want to
process specific data in an indexed file using the
customer number as a key.

If you use consecutive processing, the program
processes all the records in the file. For example,
to produce invoices for all customers, the program
would process the file consecutively. In that case,
the file organization could be sequential.

Application: The type of application affects
your choice of file organization. For processing all
the records in a transaction file arranged in
customer-number sequence (and used as input for
a report), use sequential file organization. For
processing a master file of 10,000 records that
has few additions or deletions (and that is used for
high-speed inquiry), use direct organization. For
processing a master file of employee addresses to
print addresses on 15% of the payroll checks, use
indexed organization.

Batch Processing and Interactive Processing:
It is important to identify whether the application
uses batch processing or interactive processing.

In batch processing, the system accumulates and
processes groups of data at specific times, such
as daily, weekly, or monthly. Applications pro-
cessed once a week (for example, payroll) are
perfectly suited for batch processing.

In interactive processing, the system processes
individual records or transactions at the time the
transaction occurs. For example, in an interactive
order entry application, as soon as you make a
sale, the system subtracts the quantity of mer-
chandise sold from the quantity on hand in the
appropriate master file.

The type of processing can require a particular file
organization. Batch processing, which does not
require random processing to the data, might
require sequential files. Interactive processing
requires immediate access to the file, so direct or
indexed files are more appropriate.

Activity of the File

Activity means how often you process the file.
You measure activity as a fraction produced by
the number of transactions to the file divided by
the number of records in the file. This fraction is
usually expressed as a percentage.

You can randomly process a relatively inactive file
and have a direct or an indexed organization. As
activity increases, consecutive processing is better

7-20 OS/400 System/36 Environment Programming V3R6

because it becomes more likely that the record to
be processed is available in a buffer and that it
can be processed without reading from, or writing
to, the disk. Therefore, very active files could be
sequential (processed consecutively) or indexed
(processed sequentially by key).

You can reduce the total activity of an indexed
master file by sorting a transaction file (so that
only one retrieval of a master file record is needed
for a group of transactions with the same key).
Also, you can reduce activity by sorting the data in
the master file to match the sequence of the
index.

 Disk Space

A sequential or direct file takes less space than an
indexed file because an indexed file requires addi-
tional space for the index.

 File Attributes

File attributes include the following:

 � Scratch files
 � Job files
 � Resident files
 � Extendable files
 � Delete-capable files

File attributes indicate how long a file will be
retained, and whether you can extend or delete
records in a file.

The file retention attributes are scratch, resident,
and job. Resident files are permanent files.
Scratch files store temporary data for one
program. Job files store temporary data needed
only from one job step to the next. The system
can automatically extend an extendable file to
prevent a program from ending abnormally when
the file is not large enough to add more records.
Delete-capable files allow your programs to use
their delete statements or codes to delete records
from a file.

 Scratch Files

Scratch files are files that have RETAIN-S speci-
fied on the FILE OCL statement. Programs
cannot share scratch files. You normally use
scratch files as temporary work files for a single
job step. At the end of the job step in which the
scratch files are created, the scratch files release
the disk space they used. Thus, you can use a
scratch file in only one job step.

 Job Files

Job files have RETAIN-J specified on the FILE
OCL statement. Job files exist from the time you
create them until the job ends, or until you delete
them. The system releases the disk space used
by the job file when the last job step ends.

The system releases the disk space used by a job
file when you specify the RETAIN-S parameter of
the FILE OCL statement in a job step for the file.

Job files usually contain a limited number of
records from a particular file, and these records
are used by various programs within the same job.
For example, you can place portions of a master
file into a job file, and many programs can use this
job file within the same job. Programs in different
jobs cannot share a job file.

 Resident Files

Resident files have RETAIN-T specified on the
FILE OCL statement. Resident files are perma-
nent files. For example, a master file is a resident
file. With resident files you can share data among
various jobs. You can save and restore resident
files using diskette or tape. Resident files remain
on the disk until you do one of the following oper-
ations:

� Run the DELETE procedure.

� Change the file retention parameter on the
FILE OCL statement to S (scratch) in a partic-
ular job step and allocate the file by the job.

Note: The file cannot be shared with another
job while the file is being deleted or scratched.

 Chapter 7. Files 7-21

Using Resident Files from One Job
Step to Another: If you specify JOB-YES on
the FILE OCL statement for a resident file, the file
is kept allocated to this job for other job steps until
the end of the job. The other parameters on the
FILE statement remain in effect until the end of
the job, or until a FILE statement in another job
step that has the same NAME parameter over-
rides them. You cannot override the location and
size (RECORDS or BLOCKS) parameters after
the file is created. You can add new parameters
by a FILE statement in another job step that has
the same NAME parameter.

If you specify JOB-YES on a FILE statement in
another job step later in the job, the parameters
you specified on that FILE statement remain in
effect until the end of the job, or until you override
them in a later job step. The parameters you
specify with JOB-YES on the FILE statement in a
previous job step no longer apply.

You can specify the JOB-YES parameter only for
FILE statements that are outside the LOAD and
RUN statements. If you place a FILE statement
outside a LOAD and RUN pair, the system tries
immediately to acquire ownership of the specified
disk file for use by the job. If the FILE statement
is within the LOAD and RUN pair, the system
waits until it encounters the RUN statement before
it acquires ownership of the file.

If you specify JOB-NO on a FILE statement in a
job step, the program gives up ownership of the
file at the end of the job step.

The following example shows how the JOB-YES
parameter affects the FILE OCL statement for a
new file during each of three job steps:

\ Job step 1:
// FILE NAME-A,JOB-YES,RECORDS-1ð,EXTEND-5ð,DBLOCK-2ðð,
// DISP-NEW
// LOAD PROG1
// RUN

In job step 1, the JOB-YES parameter means the
FILE OCL statement parameters specified for file
A remain in effect until the end of the job, or until
you override them in a later job step. Following
are the parameters specified for file A:

� The size of the file is 10 records.
� The file is extended by 50 records whenever

additional space is needed.

� 200 records are moved between main storage
and disk for each input/output operation.

If the program does not use file A during job step
1, it does not create file A.

If job step 2 includes the FILE statement for file A:

\ Job step 2:
// LOAD PROG2
// FILE NAME-A,BLOCKS-2ð,EXTEND-6ð,DISP-NEW
// RUN

The program uses the BLOCKS parameter in job
step 2 instead of the RECORDS parameter in job
step 1. Therefore, if the program creates file A in
job step 2, its size is 20 blocks instead of 10
records.

Also, the EXTEND parameter in job step 2 over-
rides the EXTEND parameter in job step 1, but
only for a single job step (because JOB-YES is
not specified on the FILE statement for job step
2). Therefore, if the program creates file A in job
step 2, the file is extended by 60 blocks instead of
50 records whenever it requires additional space.

If the program does not create file A in job step 2,
it resets the EXTEND parameter to 50 at the end
of the job step. The DBLOCK parameter specified
in job step 1 remains in effect in job step 2
because the program does not override it.

RECORDS and BLOCKS parameters are the only
exceptions to the rule that parameters are reset to
the value specified on the FILE statement with
JOB-YES specified. If job step 3 contains no FILE
statement, and the program did not create file A in
job step 2, the BLOCKS parameter stays at 20.

Note: If you specify the RECORDS, BLOCKS, or
LOCATION parameters with JOB-YES on a FILE
statement for a file that already exists, the system
ignores the parameters.

In job step 2, the program resets the EXTEND
parameter to 50 because that is the value speci-
fied on the FILE statement with JOB-YES in job
step 1. The DBLOCK parameter specified in job
step 1 remains in effect into job step 3.

Resident files with the JOB-YES parameter can
cause a file lock when the file is shared. If one
program within a job acquires the file as a shared
file, another program in another job cannot acquire

7-22 OS/400 System/36 Environment Programming V3R6

the same file as a nonshared file until one of the
following occurs:

� The program that acquired the file as a shared
file goes to the end of the job.

� You specify JOB-NO for a particular job step
in the job that was sharing the file and that job
step ends.

Figure 7-15 is an example of OCL statements
used with two jobs sharing a file for which you
specified JOB-YES. In this example, program C
wants exclusive use of file A. Therefore, program
C must wait until program B in job Y ends.

Also, a file deadlock can occur if two or more jobs
are using two or more resident files with JOB-YES
specified. If the jobs try to use files that do not
permit sharing, and that have the JOB-YES
parameter specified, both jobs can have to wait.

If you are running a job that contains a MRT pro-
cedure, and you want the file to be used by the
other job steps, the MRT procedure must contain
the FILE OCL statement on which you specified
the JOB-YES parameter.

The System/36 Environment Reference book has
more information about using the FILE OCL state-
ment.

 Extendable Files

An extendable file is a disk file for which the
system automatically attempts to allocate more
space each time the file becomes full. Specifying
an extendable file prevents your program from
ending abnormally when there is no room in the
file for additional records.

Specifying an Extendable File: You can
specify a file as extendable using either of the fol-
lowing methods:

� The EXTEND parameter of the FILE OCL
statement specifies the number of blocks or
records to extend the file.

� BLDFILE procedure. The number of blocks or
records to extend the file is a parameter.

The extension value must be a numeric value that
indicates the amount of additional space needed

for the extension. If you specified the file size in
blocks when the file was created, the extension
value is in blocks. This value must be large
enough to contain at least one record.

If you specified the file size in records when the
file was created, the extension value is in records.
The amount of the file extension is the number of
records or blocks specified, rounded up to a block
boundary.

If you specify an extension value when the file is
created, or when a file is rewritten with new infor-
mation (DISP-OLD), the extension value becomes
an attribute of the file. The file is extended, if
required, by any program using the file.

Notes:

1. When you rewrite a file with new information,
the old extension value is not saved for the
file. You must specify the value again, as if
the file were a new file.

2. If you use EXTEND on a FILE OCL statement
that is not for a new file, the EXTEND value is
ignored and the system uses the value pro-
vided when the file was created. You can
change the EXTEND value for an existing file
using the Change Physical File (CHGPF)
command.

3. If no EXTEND value is specified when cre-
ating new files with the FILE OCL statement
or the BLDFILE procedure, a default extend
value of 32 767 divided by the record length
is used.

4. When accessing files by relative record
number, no extending of files is done regard-
less of the EXTEND value of the field.

The system automatically extends a file when
records are added using consecutive, sequential-
by-key, or random-by-key access.

You can extend a file any number of times, up to
8 000 000 records. A file is not extended if there
is not enough disk space, or if a disk input/output
error occurs. You cannot cancel a file extension.

If you have used the maximum number of exten-
sions, the system sends a message to the oper-
ator asking whether the file should be extended
again.

 Chapter 7. Files 7-23

 Job X Job Y

\ Job step 1 for job X
// FILE NAME-A,JOB-YES,DISP-SHR // FILE NAME-A,JOB-YES,DISP-SHR
// LOAD PROGA // LOAD PROGB
// RUN // RUN

\ Job step 2 for job X
// LOAD PROGC
// FILE NAME-A,DISP-OLD
// RUN

 Job Y

 // FILE NAME-A,JOB-YES,DISP-SHR
 // LOAD PROGB
 // RUN

Figure 7-15. OCL Statements Used with Two Jobs Sharing a File

 Delete-Capable Files

Programs can delete records in a delete-capable
file. Specify a file as delete-capable to allow your
programs to delete unwanted records when pro-
cessing the file. If you need the data that was in
a deleted record, do not use a delete-capable file.
Instead, have your program place a delete code in
the record. Then, when the file is processed, your
program can check for this code.

Creating a Delete-Capable File: To
create a delete-capable file, do either of the fol-
lowing:

� Specify the DFILE parameter on the BLDFILE
procedure.

� Specify DFILE-YES on the FILE OCL state-
ment.

When you create a delete-capable direct file, the
system initializes it to contain all deleted records.
The system initializes non-delete-capable direct
files with blank records.

Deleting Records from a Delete-
Capable File: When you delete records from
a delete-capable sequential or indexed file, the
records are not physically removed from the file
(unless you use the COPYDATA procedure to
remove them). They are marked as deleted
records. Therefore, the data that was in the

record before the system deleted it is no longer
available to the program.

When the system deletes a record from a multiple-
index file, it deletes the key for that record from all
indexes.

In RPG II, if you use an address output (addrout)
file to process records in a file, and you delete a
record, the record is deleted from the file you
process but not from the addrout file. To delete
the record from the addrout file, you must delete
the entry for the record in the addrout file or re-
create the addrout file.

The following table lists the statements various
programming languages use to delete records
from a delete-capable file.

Programming
Language

Statements Used to Delete
Records

COBOL DELETE statement

RPG II U in column 15 of file description
specifications

 DEL in columns 16–18 of output
specifications

7-24 OS/400 System/36 Environment Programming V3R6

Processing a File Containing Deleted
Records: When the system processes a file
containing deleted records consecutively or
sequentially by key, it bypasses each deleted
record and reads the next record in the file.

When the system processes a file containing
deleted records randomly by key or randomly by
relative record number, it returns a record-not-
found completion code to the program when it pro-
cesses a deleted record.

Adding Records to a Delete-Capable
File: You can add records to delete-capable
sequential, direct, and indexed files using relative
record numbers.

Using RPG II to Add Records to Delete-
Capable Files: For sequential and direct files,
you must first place the relative record number of
the record to be added to the file in the RECNO
field. The system defines the RECNO field on the
continuation line of the file description specifica-
tions. The relative record number must be the
record number of a deleted record. Then, to add
a record to the file, code output specifications that
contain ADD in columns 16 through 18. RPG II
uses the relative record number from the RECNO
field to locate where the record is to be added to
the file. If the relative record number is not the
number of a deleted record, a stop occurs and the
system displays a message that a duplicate record
exists in the file.

You add records to indexed files randomly by key
using chaining. Chaining compares the key field
of the record to be added with the key fields
already in the index. This ensures that the record
to be added is not a duplicate of a record already
in the file. With chaining you can design your
program to handle any duplicate key fields it finds,
without requiring the operator to respond to an
error message.

The System/36-Compatible RPG II User’s Guide
and Reference book has more information about
using chaining to add a record to an indexed file.

Using COBOL to Add Records to Delete-
Capable Files: If you specify relative organiza-
tion for the file, you can add records to
delete-capable files. When you specify ACCESS
IS RANDOM or ACCESS IS DYNAMIC, new

records are inserted into the file. The RELATIVE
KEY you specified for the file must contain the
desired relative record number for this record
before the system can perform a WRITE opera-
tion. When the system performs a WRITE opera-
tion, the record is placed at the specified
relative-record-number position in the file. If the
relative record number is not the number of a
deleted record, the system stops the program and
returns a file-status indicating that a duplicate
record exists.

Using DFU with Delete-Capable Files:
DFU changes, lists, or inquires into delete-capable
files. You cannot use DFU to create delete-
capable files, or to delete records from a delete-
capable file.

 Blocking Records

This section describes blocking of records and the
differences between physical and logical
input/output operations.

A record block is the number of records trans-
ferred as a unit of information between a disk file
and a buffer in main storage. Although only one
record at a time is available for processing by your
program, one or more records can be transferred
into the data buffer at a time. The block length
specifies the amount of main storage used for a
data buffer in your program.

You can change the buffer size using the
DBLOCK parameter of the FILE OCL statement.
You can specify a DBLOCK value up to 65 535,
but any value over 32 767 results in a blocking
value of 32 767. The block length does not affect
the way records are stored on the disk, but does
affect when they are stored.

The System/36 environment allows record
blocking to be used only when the following condi-
tions are true:

� The file is opened for input or output.
� Sequential processing is used.
� The file is not being shared with other jobs

(DISP-SHR on the FILE OCL statement is not
specified).

To use record blocking when sharing files, do one
of the following:

 Chapter 7. Files 7-25

� Use the CHGS36 command or the CHGS36A
command to change the System/36 environ-
ment value to always use record blocking
when sharing files. This affects the default for
all System/36 environment jobs on the
system. See “Commands for Configuring the
System/36 Environment” on page 3-2 for
more information.

� Use the System/36 environment-supplied
program QEXRCDBK to change your job to
always use record blocking when sharing files.
See the appendix on IBM-supplied programs
in the System/36 Environment Reference book
for more information about QEXRCDBK.

� To specify record blocking for an individual
file, specify SEQONLY(*YES) on an OVRDBF
command. See the CL Reference book for a
description of the OVRDBF command.

Note: If you use record blocking when sharing
files, functional differences from System/36 could
occur. When blocking on output, records are not
immediately written to disk and do not have imme-
diate access to another job. When blocking on
input, updates from another job may be missed.
Make sure your programs are not dependent on
the specific time the records are written to disk.

Considerations for Efficient Record
Blocking: Block length is a multiple of record
length. For example, if the record length is 64
characters, and the blocking factor is four, the
block length is 256 characters. In that case, four
records are transferred at one time.

Blocking is useful if you are likely to process mul-
tiple records in a data buffer. By specifying a
large blocking factor, you reduce the number of
times the system must read from and write to the
disk. For example, if your program reads a file
consecutively when records are blocked 100 per
data buffer, to read the first record, the system
must transfer 100 records from disk to the data
buffer. This takes a relatively long time.
However, the next 99 times the program reads a
record, the record is already in main storage, so
no time is required to read the disk file.

You can reduce the number of disk reads and
writes required by your program by increasing the
size of your data buffers. However, increasing the
size of your data buffers increases the amount of

main storage required to run your programs. This
affects your program and system performance.

If you do not specify a DBLOCK value in the FILE
OCL statement, the system uses default blocking.
Default blocking uses a buffer of 4096 bytes.

 Sharing Files

File sharing occurs when two or more programs
process the same file at the same time.
Figure 7-16 on page 7-27 shows an example of
file sharing.

File Sharing Considerations

If you want more than one program to share a file,
consider the following guidelines:

� Only resident files can be shared.

� Files you are creating cannot be shared.

� If you change a resident file to a scratch file
by specifying a RETAIN-S parameter on the
FILE OCL statement, you cannot share the
file.

� The system protects records read for change
by one program from being changed by
another program using the same file. For
more information, see “Record Protection” on
page 7-28.

� If programs share more than one file, all pro-
grams should process the files in the same
sequence to reduce the chances of a file
deadlock occurring. For more information,
see “File Deadlock Conditions” on page 7-29.

� If you share a file, record blocking is not used.
See “Blocking Records” on page 7-25 for
more information.

Levels of File Sharing

The system allows several levels of file sharing.
The Disposition (DISP) parameter of the FILE
OCL statement determines the level of file
sharing. The System/36 environment maps the
DISP parameter share levels into AS/400 lock
states. The System/36 environment does not
check to see if the application is using a file with a
valid share level.

7-26 OS/400 System/36 Environment Programming V3R6

Program A Program B Program C

File

RSLW027-1

Figure 7-16. File Sharing Diagram

When one or more programs are using a file, the
programs that own the file determine which other
programs can share the file. The share level tells
the system how the program uses the file and
what types of processing other programs can do
while sharing the file. For example, if you specify
DISP-SHRMR, the program changes the file while
sharing it with other programs that can only read
the file. Once the system lets the program use
the file, it does not allow other programs that want
to change the file to use the file.

The following table shows:

� The levels of file sharing you can specify
� The type of processing you can do when you

own the file
� The type of processing other programs can do

while your program owns the file

Note: Changing includes change, delete, and
add operations to a file.

Waiting for Files to Become
Available

If another program uses a file, and the file is at a
share level that does not permit your program to
use the file, the system waits for the file.

If the file is not available, the system automatically
waits for the file until the program using the file
goes to the end of the job step. If the waiting
program is requesting no share, it must wait until
the job that owns the file reaches a job step in
which the file is not used. While the program is
waiting, all other programs that request the file
also have to wait. When the file becomes avail-

Share Level

The Program
That Owns the
File Can:

Other Programs
Can:

SHRRR Read only Read only

OLD Read and
change

Not allowed to
process file

NEW Read and
change

Not allowed to
process file

Not speci-
fied

Read and
change

Not allowed to
process file

Share Level

The Program
That Owns the
File Can:

Other Programs
Can:

SHR Read and
change

Read and change

SHRMM Read and
change

Read and change

SHRMR Read and
change

Read only

SHRRM Read only Read and change

 Chapter 7. Files 7-27

able, the program gains ownership of the file and
begins running. If other programs are also waiting
to use the file, the system checks whether they
can use the file at their requesting share level.

Figure 7-17 shows whether another program can
share a file at a requested level when one
program owns the file.

For example, if your program requests to share a
file by using DISP-SHRMM on the FILE OCL
statement, the system would allow your program
to share the file only if the programs that own the
file specified either DISP-SHRRM, DISP-SHRMM,
or DISP-SHR on the FILE OCL statement.

When several programs are sharing a file, other
programs can share the file only when their
requesting share levels are compatible with all
other share levels.

Using the WAIT Parameter: Use the
WAIT parameter on a FILE OCL statement that is
not between LOAD and RUN statements to deter-
mine (within your jobs) whether a file is available.
You can specify WAIT-YES or WAIT-NO.

If you specify WAIT-NO, the system tries to
acquire the file for the program at the desired
shared level. If the file is unavailable to the
program, the system returns completion code
2031 to the procedure. By using the ?CD? sub-
stitution expression, and an IF conditional
expression within your procedure, you can choose
the processing steps done within a job if the file is
unavailable. For example, if a file you need as
input to the first program of a job is unavailable,
you can decide not to run the remaining parts of
the job.

If you specify WAIT-YES or no WAIT parameter,
the program waits until the file becomes available.
This wait condition lasts until the program can use
the file. For example, you may decide to submit a
program using a particular file and not have this
program use the file until all other programs using
the file are finished.

Note: The System/36 environment does not
issue an error message if it is waiting for a NEP or
MRT.

The following example uses the WAIT parameter
to determine whether a file is unavailable (busy)
for more than 30 minutes. If the file is unavailable
for more than 30 minutes, the system sends the
system operator a message to run the job later.

\ Parameters used:
\ Parameter 1 = Number of minutes between tries.
\ Range of 1 to 59 minutes.
\ Default 5 minutes.
\ Parameter 2 = Maximum number of tries.
\ Default is 6 tries.
\ Parameter 64 = Number of times the program
\ tried to get the file
\\\
// IFF ?1?=' ' EVALUATE P1='?1?ðð'
// EVALUATE ?64F'1'? P1,6=?1'ððð5ðð'?
// TAG LOOP
// FILE NAME-TEST,WAIT-NO
// IF ?CD?=ðððð GOTO GOTFILE
// IF ?64?>?2'6'? GOTO NOFILE
// EVALUATE P64=?64?+1
// WAIT INTERVAL-?1?
// GOTO LOOP
\
// TAG NOFILE
// \\ 'FILE "TEST" IS BEING USED; RUN JOB LATER'
// RETURN
\
// TAG GOTFILE
// LOAD PROG1
// RUN

Note: If you place the FILE statement before the
LOAD statement, the system attempts to acquire
the file for the job immediately. For example:

// FILE NAME-INPUT,UNIT-F1,LABEL-MASTER,RETAIN-T,
// DISP-OLD,WAIT-YES
// ATTR CANCEL-NO,MRTMAX-2ð,NEP-NO,PRIORITY-HIGH,
// RELEASE-YES
// LOAD ORDPRG,ORDERLIB
// PRINTER NAME-REPORT,ALIGN-YES,SPOOL-YES
// RUN

 Record Protection

Record protection prevents two or more programs
from changing a record in a shared file at the
same time. Record protection applies to programs
that process the file with SHR or SHRMM share
levels. A program that tries to change a record
already being changed by another program is
forced to wait until the first program releases the
record.

7-28 OS/400 System/36 Environment Programming V3R6

Figure 7-17. File Share Level Ownership

Share Level
Requested by
another
Program Share Level for the Program That Owns the File

Program SHRRM SHRMM 1 SHRMR SHRRR No Share 2

SHRRM Yes Yes Yes Yes No

SHRMM1 Yes Yes No No No

SHRMR Yes No No No No

SHRRR Yes No No Yes No

No Share2 No No No No No

1 DISP-SHRMM is the same as DISP-SHR.

2 No share is specified by the DISP-OLD, DISP-NEW, or no DISP parameter being specified.

Releasing Locked Records

The system releases a record when any of the fol-
lowing conditions occur:

� The program reads another record from the
file.

� The program does a data management opera-
tion that causes an error to occur.

� The program changes the record, and file
sharing is used (for example, DISP-SHR on
the FILE OCL statement).

� The program deletes the record from the file.

� The program does a release operation. How
your program releases records depends on
the high-level language you use. For
example, in RPG II you can release a locked
record by writing a record with no output
fields.

� The program closes the file.

� The program ends.

File Deadlock Conditions

The condition of programs waiting for each other
is called a FILE DEADLOCK. A file deadlock con-
dition can occur when programs share two or
more change files.

For example, program A and program B are
changing shared files 1 and 2. As the following
figure shows, program A reads record 3 for
changing from file 1, and program B reads record
2 for changing from file 2.

Record
1

Record
2

Record
3

Record
1

Record
2

Record
3

Record
4

Record
4

Record
5

File 1

File 2

Program A Owns

Program B Owns

RSLW032-0

The following figure shows a situation where
program A tries to read record 2 from file 2.
Program A must wait because program B is using
the record.

 Chapter 7. Files 7-29

Record
1

Record
2

Record
3

Record
1

Record
2

Record
3

Record
4

Record
4

Record
5

File 1

File 2

Program A Owns

Program B Owns
Program A Waiting

RSLW033-0

As the following figure shows, if program B tries to
read record 3 from file 1, program B must wait
because program A is using that record.

Record
1

Record
2

Record
3

Record
1

Record
2

Record
3

Record
4

Record
4

Record
5

File 1

File 2

Program B Owns
Program A Waiting

Program A Owns
Program B Waiting

RSLW034-0

To ensure that file deadlocks do not occur, you
should always release a record before reading a
record from another shared change file.

File Change Errors

A change performed by another program sharing
the file can be lost. For example, suppose
program A reads a record from file X and displays
it at display station 1. Then suppose program A
reads another record from file X and displays it at
display station 2. The second read operation from
file X causes the System/36 environment to free
the first record. Therefore, a second program-
sharing file X can change the first record. Then, if
display station 1 reads the record again, and
changes the record using the original field values,
the changes made by the second program might
be lost.

Note: This error can occur when the program is
an SRT with acquired work stations or a MRT,
and when the program supports more than one
work station at the same time.

You can avoid the preceding error by using one of
the following techniques:

� Before doing a change, the program should
read the record again and check that none of
the fields being changed have been changed
since the record was displayed for changing.
If any of the fields were changed, the program
should display the field again for changing or,
if possible, use the field values currently in the
record to do the change.

� Protect records being changed by establishing
a field in the record to be used as a busy indi-
cator that indicates the record is being
changed. For example, a busy indicator might
be the display station ID and the program
name. Subsequent attempts to process the
same record should test for the busy indicator
and, depending on the value of the indicator,
allow or not allow the record to be changed.
The busy indicator should be removed from
the record when the change is performed by
the requesting program or if no change is per-
formed. If records in a file can be changed at
the same time by two different programs, both
programs should test and use the same busy
indicator.

If the program ends abnormally, and you are
not going to start it again, you should run
another program that turns off the busy indica-
tors in records that were being changed by
the program when it ended. This allows pro-
grams that check the busy indicator to handle
the record properly.

Using Multiple Names to Access
a Single File

A program can use multiple names to access one
disk file. For example, a program can be written
to process two files called FILEA and FILEB,
which are the same physical file, by using the fol-
lowing OCL statements:

// FILE NAME-FILEA,LABEL-MASTER,DISP-SHRMM
// FILE NAME-FILEB,LABEL-MASTER,DISP-SHRMM

Defining a disk file by using two or more names
allows you to process one file by two separate

7-30 OS/400 System/36 Environment Programming V3R6

processing methods in one program. For
example, one part of the program can process a
master file randomly by key, and the other part of
the program can process the same file randomly
by relative record number.

Using the generalized processing method is
another way to process a file by two separate pro-
cessing methods (randomly and consecutively).
For information about the generalized processing
method, see “Generalized Processing Method” on
page 7-17.

A single physical file accessed by multiple names
can also be used in a program when more than
one index is used by the program to process the
file. For example, if FILEA has an alternative
indexed file labeled ALTINDXA, a program can
use both files by using the following OCL state-
ments:

// FILE NAME-FILEA,DISP-SHRMM
// FILE NAME-ALTINDXA,DISP-SHRMM

Records can be added to or changed in a file
accessed by multiple names.

Note: If two names are used to access the same
physical file for update from within the same
program, a deadlock can occur if the same record
is retrieved twice (by two different file names)
without first releasing the record.

 Programming Considerations

Files and file processing in the System/36 environ-
ment provide the user with a
System/36-compatible interface to the AS/400
database and data management functions. This
section describes some concepts of the AS/400
database and data management function, espe-
cially those used by the System/36 environment
for the user when System/36 environment applica-
tions are started.

Using System/36 Environment
Files Library

Unlike System/36 files, all files on the AS/400
system must be stored in a library. In the
System/36 environment, all resident (permanent)
files are placed in common libraries, called files
libraries . All job and scratch (nonpermanent) files

are placed in a temporary system-generated
library called QTEMP.

Note: Every job on an AS/400 system has its
own unique QTEMP library, which cannot be
shared with another AS/400 job and is deleted
when the job ends.

The FILELIB OCL statement creates an interface
for users of the System/36 environment to use
multiple file libraries. For more information on the
FILELIB OCL statement, see the System/36 Envi-
ronment Reference book.

When the library list is not being used for locating
files, all System/36 commands and procedures
use the current files library and the QTEMP library
when working with files. When a System/36 pro-
cedure issues an error message saying a file does
not exist, the message means that the file could
not be found in the files library that was the
current files library when the command was
entered. When a System/36 procedure issues an
error message saying a file already exists, the
message means that the file was found in the files
library that was the current files library when the
command was entered.

Note: If QTEMP is made the current files library
or the library list is specified to search for data-
base files and QTEMP is in the library list, the
System/36 environment cannot distinguish among
permanent files, scratch files, and job files when
they share the same file name.

The default name for the files library is QS36F.
However, the name of the library to be used as
the default files library can be changed using the
Change System/36 (CHGS36) CL command or
the Change System/36 Environment Attributes
(CHGS36A) CL command. For more information
on the CHGS36 or CHGS36A CL commands, see
Chapter 3, “Configuring the System/36
Environment,” and the System/36 Environment
Reference book.

Using the Library List Support for
Files in the System/36
Environment

Searching the library list for database files rather
than restricting the search to the current files
library can be accomplished by setting the current

 Chapter 7. Files 7-31

library list search indicator to YES. Do this using
one of the following methods:

� Set the default library list search indicator to
YES by using the Change System/36
(CHGS36) command or the Change
System/36 Environment Attributes (CHGS36A)
command.

� Set the session library list search indicator to
YES by using the File Library (FLIB) proce-
dure or the File Library (FILELIB) OCL state-
ment.

� Set the current library list search indicator to
YES by using the FILELIB OCL statement.

Note: For more information on setting the current
library list search indicator, see “Search Order” on
page 6-9.

When a batch job is started by either the EVOKE
OCL statement or the JOBQ OCL statement, the
library list search indicator is automatically passed
from the current job to the batch job.

When a MRT job is started, the library list search
indicator is automatically passed from the current
job to the MRT job.

Note: When routing to an existing MRT job, the
library list search indicator of your current job must
match the library list search indicator used when
the MRT job was started.

The following System/36 environment utilities
search the library list if the current library list
search indicator is set to YES:

DELETE ($DELET)
Uses the library list to locate the file to delete.

RENAME ($RENAM)
Uses the library list to locate the file to
rename.

IDDU (#DSIN)
Uses the library list to locate the file to link.

DFU (#DFMP)
Uses the library list to locate the file to use.

COPYPRT ($UASC)
Uses the library list to locate the file that con-
tains the copied spool files when used with
the NOCOPY option.

TOLIBR ($MAINT)
Uses the library list to locate the data file from
which to copy.

LISTFILE ($COPY, $MAINT, $BICR, $TCOPY)
Uses the library list to locate files.

The following System/36 environment utilities
search the library list in some cases if the library
list search indicator is set to YES:

COPYDATA ($COPY)
Uses the library list for all files except when
the output file is new. All new output files are
created in the current files library.

SORT (#GSORT)
Uses the library list for all files except when
the output file is new. All new output files are
created in the current files library.

CATALOG ($LABEL)
Uses the library list when a catalog of a single
file has been requested. If the default to list
all files is requested, all the files in the current
files library are listed.

FROMLIBR ($MAINT)
Uses the library list to locate the output file. If
the output file is new, the output file is created
in the current files library.

TRANSFER ($BICR)
Uses the library list to locate an existing file to
copy to diskette or from diskette. If a new file
is to be created from a file on diskette, the
new file is placed in the current files library.

RESTORE ($COPY)
Use to restore a single file or all files:

� Restore a single file.

Uses the library list to search for the files
to determine whether the file already
exists.

If the file is found and date-differentiated
files are not supported or DISP-OLD is
not specified, an error is issued.

If the file is found, date-differentiated files
are supported and the file does not have
the same creation date, the file is
restored to the library to which it was pre-
viously stored.

If the file is found and DISP-OLD is speci-
fied, the file is restored to the library to
which it was previously stored.

If the file is not found, the file is restored
to the current files library.

7-32 OS/400 System/36 Environment Programming V3R6

� Restore all files.

Only the current files library is searched
for files,and all files are restored to the
current files library.

SAVE ($COPY)
Use to save a single file or all files:

� Saving a single file.

Uses the library list to search for the file
to be saved.

� Saving all files.

All files in the current files library are
saved.

The following utilities always use the current files
library regardless of how the library list search
indicator is set:

BLDFILE/BLDINDEX ($FBLD)
All new files are created in the current files
library. When creating a logical file with
BLDINDEX, the first-level file must also exist
in the current files library.

COPYPRT ($UASF)
If the option to copy from a spool ID is speci-
fied, the data file created to store the file is
always placed in the current files library.

BLDGRAPH ($DPGR)
Uses the current files library to create the
output file of graphics orders.

The following procedure control expressions and
substitution expressions are affected when the
library list search indicator is set to YES.

IF DATAF1
Uses the library list to test for the existence of
a file or library on diskette.

File size substitution expressions
Uses the library list to locate the file and
returns the value of the size of the file.

?FLIB?
Returns the name of the current files library.
This expression does not change when the
library list is specified.

?SFLIB?
Returns the name of the session files library.
This expression does not change when the
library list is specified.

Using System/36 Environment
Files and AS/400 Files

Data files created in the System/36 environment
are AS/400 database physical files. Alternative
indexed files created by the System/36 environ-
ment are AS/400 database logical files. Both
types of files belong to a special class of database
files called program-described files . Program-
described files are database files created without
using Data Description Specifications (DDS).
Field-level information about the files must be pro-
vided by the programs that process the files. For
more information about physical files, logical files,
or program-described files, see the DB2 for
OS/400 Database Programming book.

AS/400 database files can be used by programs in
the System/36 environment. The only observable
differences when using non-System/36 environ-
ment files are as follows

� The size of the files will always be in records
and will not be rounded up to a block (2560
bytes) boundary.

� For indexed files, the system does not check
the key position and length specified in the
program to ensure that the key position and
length match the keys specified when the file
was created.

� For new files intended to be accessed by rela-
tive record number (direct files), the user must
make sure the file is initialized with a program
or with the Initialize Physical File Member
(INZPFM) command.

Using non-System/36 environment files can
expand user capabilities. For example, the user
can use the Create Physical File (CRTPF)
command to create a file with a record length
greater than 4096 or with more than 3 key fields.
See the CL Reference book for more information
on the Create Physical File (CRTPF) CL
command, the Create Logical File (CRTLF) CL
command, and the Initialize Physical File Member
(INZPFM) CL command.

A program can also use both program-described
and externally described files at the same time.
Use the CRTLF command to create an externally
described logical file over a file created using the
BLDFILE procedure. Use the BLDINDEX proce-
dure to create an alternative index over an

 Chapter 7. Files 7-33

externally described file created using the CRTPF
command.

The BLDINDEX procedure uses field substrings to
build its keys and, therefore, is subject to the
same restrictions as the CRTLF command when
using the SST keyword in DDS. See the DB2 for
OS/400 Database Programming book for informa-
tion on field substrings and the DDS Reference
book for more information on the SST keyword.

AS/400 database data files that do not have a
System/36 environment direct, indexed or sequen-
tial file organization, can also be used by other
System/36 environment utilities. When the
$COPY utility, and the procedures that run it, use
such non-System/36 environment files, the output
disk file that is created or the file that is saved
may be given file attributes which differ from those
that you requested or expected. The file attributes
that may differ are:

 � File organization
 � Record length
� Initial allocation size

 � Extend size
 � Delete capability
 � Key position
 � Key length
 � Duplicate keys

A message that allows you to continue is sent in
each of the following cases:

� The output disk file already exists and is
externally described, and you have specified
DISP-OLD to replace an existing member in it.

� The output disk file already exists and is
externally described and keyed, and you are
adding a new member to it.

� The output disk file already exists and you
have specified DISP-OLD to replace an
existing member in it. You have not specified
a file organization. The input file is either
externally described and keyed, or program
described and keyed, but not a System/36
environment indexed file.

� The output disk file already exists and you are
adding a new member to it. You have not
specified a file organization. The input file is
either externally described and keyed or
program described and keyed, but not a
System/36 environment indexed file.

� The output disk file does not already exist, or
you are saving a disk file. You have specified

one of the previously mentioned file attributes,
other than file organization. The input file is
either externally described or program
described, but not a System/36 environment
direct, indexed, or sequential file.

In the cases in which the output disk file
already exists, the $COPY utility adds or
replaces a member in the file without com-
paring or changing the indicated file attributes.
This is because at least one of the files is a
non-System/36 environment file. When only
the non-System/36 environment input file
exists or is being saved, the $COPY utility
creates a non-System/36 environment output
disk file or saved file with the same file attri-
butes. In these situations, the $COPY utility
acts like the AS/400 Copy File (CPYF)
command.

To determine whether a file is a
non-System/36 environment file, use the
CATALOG procedure or the $LABEL utility.
Physical, non-System/36 environment, data-
base data files have a file organization of
PHY. Externally described files are indicated
by a status value of 9. A key position and key
length are identified for keyed files.

Using File Members and
Date-Differentiated Files

AS/400 database files can have multiple
members . A user normally accesses only one
member of the file at a time, by identifying the
specific member name to be processed. All
members of the file must have the same attri-
butes.

On System/36, files did not have multiple
members, but multiple versions of the same file
existed with different creation dates (date-
differentiated files). Date-differentiated files were
referred to using the DATE keyword on the FILE
OCL statement. Date-differentiated files on
System/36 were not required to have the same
attributes.

The System/36 environment allows the creation
and use of date-differentiated files by making them
members within an AS/400 database file. The
member names assigned to new files in the
System/36 environment are formulated using the

7-34 OS/400 System/36 Environment Programming V3R6

creation date, according to the following arrange-
ment:

yymmdd
where yy is the last 2 digits of the year

mm is the month
dd is the day

When the DATE keyword is coded on a FILE OCL
statement in the System/36 environment, the date
is used to construct a member name in the previ-
ously described format and a member of that
name will be used. The actual creation date of
the file or member is not used. When the DATE
keyword is not coded on the FILE OCL statement,
the last (or only) member added to the file as
determined by the actual creation date of the
member, not the member name, is used.

Notes:

1. On System/36, when no DATE keyword was
coded on the FILE OCL statement and date-
differentiated files existed, the file with the
latest creation date was used.

2. Database file processing outside of the
System/36 environment normally uses the first
(or oldest) member in a database file when
more than one member exists.

Using Override Database File CL
Command

The AS/400 Override Database File (OVRDBF)
CL command can be used in conjunction with the
FILE OCL statement to extend the System/36
environment file processing capabilities. The FILE
OCL statement is itself treated like an OVRDBF
command by the system. If a file named FILEB
exists in the System/36 environment files library
(QS36F) with one member named M880601, then
the following statement:

// FILE NAME-FILEA,LABEL-FILEB

will function the same as the following statement:

OVRDBF FILE(FILEA) TOFILE(QS36F/FILEB) MBR(M88ð6ð1)

Adding the DBLOCK keyword with a value of 100
to the FILE OCL statement produces the following
statement:

OVRDBF FILE(FILEA) TOFILE(QS36F/FILEB) MBR(M88ð6ð1) +
 SEQONLY(\YES 1ðð)

Note: If a FILE OCL statement has a name
matching a work station or printer file being
opened by a program, the system will try to open

a printer or work station file with the name found
in the LABEL keyword on the FILE OCL state-
ment. (This occurs because the AS/400 system
overrides are independent of file type.) Do not
code FILE OCL statements for printer or work
station files.

User programs and procedures in the System/36
environment can use the OVRDBF CL command
to get to files in libraries other than the Files
Library or to use members of files with names
other than those having the date format. For
example, the following statements tell the system
to use a file named MYFILE in a library named
MYLIB, and with a member named MYMEMBER,
when PGM1 opens a file named FILEA:

 // LOAD PGM1
OVRDBF FILE(FILEB) TOFILE(MYLIB/MYFILE) MBR(MYMEMBER)

 // FILE NAME-FILEA,LABEL-FILEB
 // RUN

The OVRDBF command must precede the FILE
OCL statement it is overriding or an error will be
issued. The FILE keyword of the OVRDBF
command should match the LABEL keyword of
the FILE OCL statement. All keywords on the
FILE OCL statement remain valid, except the fol-
lowing:

� The LABEL keyword may be overridden by
the TOFILE keyword on the OVRDBF
command.

� The DBLOCK keyword may be overridden by
the SEQONLY keyword on the OVRDBF
command.

See the Data Management book for more informa-
tion on file overrides and override processing.
See the CL Reference book for more information
on the OVRDBF CL command.

 Extending Files

The system does not automatically extend files
during an access by relative record number. If
your application needs to extend files during an
access by relative record number, you can do so
in your application, using two different access
methods on the file at the same time, as follows:

1. Open the file once for sequential output and
once for update by relative record number.

2. Add blank or deleted records to the end of
your file, using the sequential access when

 Chapter 7. Files 7-35

your program detects that an end of file has
occurred during relative record number pro-
cessing.

3. Return to normal relative record number pro-
cessing for the file.

Note: Refer to the appropriate language refer-
ence book for information on checking the return
codes for file operations.

The following example shows how extending files
might be done.

H PGMEXT
F\
F\ Sample program to extend a file while accessing by
F\ relative record number.
F\
F\ The OCL to execute this program would look like:
F\ // LOAD PGMEXT
F\ // FILE NAME-DFILE,LABEL-MYFILE
F\ // FILE NAME-SFILE,LABEL-MYFILE
F\ // RUN
F\
FDFILE UC F 8ðR DISK
FSFILE O F 8ð DISK A
IDFILE NS
I 1 7ðRECNO
C DO 1ðð
C ADD 1 CTR 7ð
C CTR CHAINDFILE 98
C 98 EXSR ADDREC
C 98 CTR CHAINDFILE 98
C EXCPTUPDATE
C END
C SETON LR

C\
C\ ADD RECORDS AT END OF SEQUENTIAL FILE
C\
C ADDREC BEGSR
C DO 64
C EXCPTRECADD
C END
C ENDSR
ODFILE E UPDATE
O CTR 7
OSFILE EADD RECADD
O 1 ' '

The capability to extend a file when it is full is an
attribute of the file itself and cannot be overridden
on a job basis. When the EXTEND keyword is
coded on a FILE OCL statement referencing an
existing file, the EXTEND value is ignored.

Note: If DISP-OLD is coded on the FILE OCL
statement to rewrite an existing file, EXTEND is
not ignored and the attribute of the file is changed
according to the value of the EXTEND keyword on
the FILE OCL statement.

If the user needs to be able to extend a file that
was not created as an extendable file, the CHGPF
CL command can be used to change the extend
attribute of the file. See the CL Reference book
for more information on the CHGPF CL command.

Shared Files and System/36
Environment Share Levels

System/36 environment share levels are mapped
into AS/400 lock states as defined by the Allocate
Object (ALCOBJ) CL command. The following
table shows how the mapping is done:

The Display Job (DSPJOB) command or the Work
with Object Lock (WRKOBJLCK) CL command
can be used to determine the lock state a job has
on a file. See the CL Reference book for more
information on these commands.

The never-ending program (NEP) attribute does
not apply when files are shared in the System/36
environment. For example, when a job in the
System/36 environment is forced to wait for a file
because another job already has the file allocated
with an incompatible share level, no matter what
job is holding the file, the results are always the
same, as follows:

� If WAIT-NO is coded on the FILE OCL state-
ment, the return code passed back through
the OCL expression ?CD? is always 2031.

� If WAIT-YES or no WAIT keyword was speci-
fied on the FILE OCL statement, the waiting
job will keep waiting until the file is available.

When DISP-NEW is used on a FILE OCL state-
ment in the System/36 environment, no file actu-
ally exists at the start of the job. Only the file
name is reserved. Only System/36 environment
commands and procedures use this reserve of the
file name. The reserve of the file name by an

System/36 Environment
Share Levels

AS/400
Lock States

SHR *SHRUPD
SHRMM *SHRUPD
SHRMR *EXCLRD
SHRRM *SHRRD
SHRRR *SHRNUP
NEW *EXCL
OLD *EXCL
No DISP keyword *EXCL

7-36 OS/400 System/36 Environment Programming V3R6

System/36 environment procedure does not
prevent an AS/400 command, such as CRTPF,
from creating the file. The reserve of the file
name will result in the job that reserved the file
name being ended later with an error indicating
that the file already exists.

Note: The System/36 environment does not
check to see whether the application uses a file
with a valid share level.

 Non-System/36 Environment
Programs in the System/36
Environment

You can use non-System/36 environment pro-
grams, such as RPG/400, in the System/36 envi-
ronment and in System/36 environment OCL
statements. When you do so, FILE OCL state-
ments can be used, but are not required for files
used by the program. If you use FILE OCL state-
ments, you will notice the following differences:

� If the FILE OCL statement is for a new file, no
new file is created. If the program attempts to
open the file, the program receives a message
that the file is not found.

� If the FILE OCL statement uses DISP-OLD
and the program attempts to write the file
again (open for output), the attributes of the
file (such as record length) are not changed to
match the attributes specified by the program.
The attributes are assumed to match. If the
attributes do not match, errors could occur
when the program runs.

Shared File Opens within the
Same Job

On the AS/400 system, a file can be opened more
than once within the same job and designated to
share the same open data path (ODP). Use of
this shared open can improve performance of the
overall job in many instances. See the DB2 for
OS/400 Database Programming book and the
Data Management book for more specific informa-
tion about shared opens.

When running procedures in the System/36 envi-
ronment, shared file open is done automatically for
the user whenever possible. When a file is used
by a job step in a procedure, the file is kept open

by the system until the next job step starts. If the
file is opened by this subsequent job step in a way
consistent with the first job step, the program
doing the open can be connected with the already
existing open data path. If the file is not used by
this subsequent job step, the file is closed by the
system before beginning this job step. If the same
file is opened more than once in the same job
step (by coding the same LABEL keyword on
more than one FILE OCL statement), the first
open of the file is the only one that can be shared
by a subsequent job step.

Note: Although the user is normally not aware
that this situation is happening, it can be notice-
able under certain circumstances. When the
system keeps the file open between steps, the
system prevents another job from taking the file
away from the first job while the system makes
the transition to the next job step. The second job
requesting the file may have to wait until the
current job owning the file reaches a job step that
does not use the file or until the job ends. The
use of shared file opens can also lead to a file
deadlock situation if two jobs, which were sharing
a file during concurrent job steps, each attempt to
use the file exclusively in their next respective job
steps.

The automatic shared open of files is a
configurable option that can be turned off using
the CHGS36 CL command or the CHGS36A CL
command. If turned off, the files do not remain
open between job steps. See the “Commands for
Configuring the System/36 Environment” on
page 3-2 for more information.

If a CL command, issued during a procedure,
requires a file that it is processing to be closed,
the System/36 environment closes the automatic
shared open for the file. If the file (or member) is
deleted, renamed, moved, or restored by the CL
command, the System/36 environment removes
any FILE OCL statements for the file (or member).
Any locks that were held through these FILE OCL
statements are released. If a job file is renamed,
moved, or restored by a CL command, the
System/36 environment will not release the disk
space occupied by the job file when the job ends.
The System/36 environment will not close an auto-
matic shared open of an alternative indexed or
logical file which is based on the file being pro-
cessed by the CL command.

 Chapter 7. Files 7-37

If you want to prevent the automatic shared open
from occurring for a particular file in a job step,
specify BYPASS-PRF on the FILE OCL statement
for the file in that job step.

If you want to prevent the automatic shared open
from occurring on a job or session basis, use the
IBM-supplied program QEXSHRO. See the
appendix on IBM-supplied programs in the
System/36 Environment Reference book for more
information about QEXSHRO.

You should not use the RCLRSC command with
LVL(*CALLER) specified to close files with shared
opens. This command bypasses the System/36
environment file processing and causes the job to
end abnormally when the System/36 environment
attempts to use the files closed by the RCLRSC
command.

Duplicate Keys and Key Sorting

On System/36, users could bypass duplicate key
checking for indexed files designated not to allow
duplicate keys, to improve performance. This
bypass was done using the BYPASS keyword on
the FILE OCL statement. A significant difference
in performance quality existed between files where
duplicate checking was performed and files where
duplicate checking was not performed, primarily
because keys within the index where duplicate
checking was not performed were not maintained
in order. The KEYSORT procedure had to be
used periodically to order the keys in the index.

On the AS/400 system, and in the System/36
environment, keys in indexed files are always
maintained in order. To maintain database integ-
rity, no duplicate keys are ever allowed to be
inserted in a file designated as not allowing dupli-
cate keys. This approach causes the following dif-
ferences from the System/36:

� The KEYSORT procedure, although provided
for System/36 compatibility, does not do any
function in the System/36 environment.

� The BYPASS keyword on the FILE OCL state-
ment is ignored, to maintain database integ-
rity. Not doing the duplicate key checking

does not significantly improve performance. If
you have an application that is dependent on
being able to insert duplicate keys, create the
file to allow duplicate keys.

 Remote Files

Remote files can be used in the System/36 envi-
ronment by using the AS/400 distributed data
management (DDM) support. See the Distributed
Data Management book for additional information
about DDM.

Note: To use DDM files in the System/36 envi-
ronment, no changes are required to programs or
procedures. DDM files, however, must also reside
in the System/36 environment files library to be
used by System/36 environment commands and
procedures.

Moving from System/36 to the
System/36 Environment

The default EXTEND value for the BLDFILE pro-
cedure and the FILE OCL statement has been
changed from 0 to a default value of 32 767
divided by the record length of the file. Files
cannot be automatically extended during an
access by relative record number. See “Extending
Files” on page 7-35 for more information.

Date-differentiated alternate index files are not
supported. See “Multiple Indexes for a File” on
page 7-9.

If you have a file named QTEMP, it must be
renamed.

All other files migrate. BASIC files that contain
1-byte, 2-byte, 3-byte, and 4-byte centesimal
floating-point data need to have the centesimal
floating-point data converted to IEEE floating-point
data.

No error is given when a System/36 environment
program uses an alternative index file and the key
length specified in the program does not match
the total key length of the alternative index file.

7-38 OS/400 System/36 Environment Programming V3R6

Chapter 8. Folders and Data Dictionaries

This chapter describes:

� What a folder is
� Folders in the System/36 environment

 � Folder procedures
� What a data dictionary is
� Data dictionaries in the System/36 environ-

ment
� Data dictionary procedures

A folder is a named object that is used to manage
other objects. Folders are document library
objects (DLO) that are directories to documents
and other folders. A folder is similar to a library in
that it is a directory.

 Migration Considerations

Use the System/36 Save Folder (SAVEFLDR) pro-
cedure on System/36 to save document folders
and interactive data definition utility (IDDU) dic-
tionary folders on diskette or tape. A data defi-
nition in IDDU is information that describes the
contents and characteristics of a field, record
format, or file. A data definition can include such
things as field names, lengths, and data types.
Use the Restore System/36 Folder (RSTS36FLR)
command on the AS/400 system to restore the
folder. Migrated document folders will exist in
folders on the AS/400 system, while migrated
IDDU dictionary folders will exist on libraries con-
taining a data dictionary.

Note: You cannot migrate folders from the
AS/400 system to System/36.

 Using Folders

This section describes characteristics of and activ-
ities associated with folders.

Folders and Folder Members

There are several types of folders on System/36:

 � Document
 � Data dictionary
 � Mail
 � Mail log

The AS/400 system has only one type of folder,
the document type. The document folder is used
to store documents created by office and Client
Access/400 products.

See the System/36 Migration Planning book for
more information about the storage of System/36
data dictionary folders on the AS/400 system.

The information stored in mail folders and mail log
folders on System/36 is managed by the
OfficeVision for OS/400 product. See the Using
OfficeVision/400 book for more information.

 Securing Folders

Refer to the Security – Reference book for more
information on securing folders.

Creating a Folder

Use the TEXTFLDR procedure to create a folder.

Accessing a Folder

Use the TEXTDOC procedure to access folders.

Listing Folder Information

Use the CATALOG procedure to list information
about a folder that is on disk, diskette, or tape.
You must be in the System Distribution Directory
to obtain information on folders.

Deleting a Folder

Use the DELETE procedure to remove a folder.
You must be in the System Distribution Directory
to do this. You can use the Work with Directory
(WRKDIR) CL command to change the System
Distribution Directory.

Renaming a Folder

Use the RENAME procedure to rename a folder.
You must be in the System Distribution Directory
to do this.

 Copyright IBM Corp. 1995 8-1

Reorganizing a Folder

Use the AS/400 Reorganize Document Library
Object (RGZDLO) command to reduce documents
and folders to a minimum size. When a document
is reorganized, unused storage may be removed.

Saving and Restoring Folders
and Folder Members

The following describes how System/36 saves and
restores functions are supported in the System/36
environment:

� System/36 SAVEFLDR procedure (for folders)
and ARCHIVE procedure (for folder members)
are supported by the AS/400 Save Document
Library Object (SAVDLO) command.

� System/36 RESTFLDR procedure (for folders)
and RETRIEVE procedure (for folder
members) are supported by the AS/400
Restore Document Library Object (RSTDLO)
command.

Using Data Dictionaries

On the AS/400 system, a data dictionary is
located in a library as a data dictionary object and
a set of associated database files. A library con-
tains a maximum of one data dictionary, whose
name matches the name of the library. As on
System/36, the data dictionary contains definitions
that describe data fields, record formats, and files.
The operations that can be performed on the data
dictionary and the definitions the data dictionary
contain are described in the following sections.

Working with a Data Dictionary

Use the IDDUDCT procedure to do the following
operations:

� Create a data dictionary
� Secure a data dictionary
� Delete a data dictionary
� Print a data dictionary

Working with Data Dictionary
Definitions

Use the IDDUDFN procedure to do the following
operations:

� Create a definition
� Change a definition
� Copy a definition
� Rename a definition
� Delete a definition
� Print a definition
� View cross-reference information for a defi-

nition

Using Data Dictionary Definitions

Use the IDDUDISK procedure to do the following
operations:

� Create a database file from a file definition
stored in the data dictionary

� Edit the records in a database file that has
been created from a file definition

Use the IDDULINK procedure to associate existing
program-described database files with a data dic-
tionary file definition that describes the file. Once
linked, the file can be queried and the file’s
records can be edited as though the file had been
originally created from a file definition.

Use the IDDUPRT procedure to print definitions in
a data dictionary.

Saving and Restoring a Data
Dictionary

Since the AS/400 system data dictionary is no
longer a folder, you cannot use the SAVEFLDR
and RESTFLDR procedures to save and restore a
data dictionary. Instead, use the SAVLIB and
RSTLIB procedures.

 Programming Considerations

See the System/36 Environment Reference book
for additional information on the commands for
accessing and maintaining IDDU data dictionaries
and folders.

8-2 OS/400 System/36 Environment Programming V3R6

 Coexistence Considerations

You can migrate IDDU data dictionaries and docu-
ment folders from System/36 to the AS/400
systems. You cannot migrate IDDU data diction-
aries and folders from the AS/400 system to the
System/36, since dictionaries are not in folders in
the AS/400 system.

Moving from System/36 to the
System/36 Environment

Use the SAVEFLDR procedure on System/36 to
save DisplayWrite/36* document folders and inter-
active data definition utility (IDDU) data dictionary
folders on diskette or tape. Use the Restore
System/36 Folder (RSTS36FLR) command to
restore the folder on an AS/400 system.

 Chapter 8. Folders and Data Dictionaries 8-3

8-4 OS/400 System/36 Environment Programming V3R6

 Chapter 9. Diskette Storage

This chapter contains the following information
about the System/36 environment:

� How to use diskette storage
� Diskettes to use with the system
� Formats to store data on diskette
� Programming tips and techniques in pro-

cessing diskettes

Use diskettes to create backup copies of informa-
tion. You can also use diskettes for off-line
storage of files and libraries, or to transfer infor-
mation to other systems or devices.

Diskette Types and Storage
Capacities

The AS/400 system supports several types of
diskettes:

� Diskette 1 is an 8-inch single-sided, single-
density diskette.

� Diskette 2D is an 8-inch double-sided, double-
density diskette. Double-density means that
one side of a diskette 2D can store twice as
much information as a diskette 1.

� Diskette 2HC is a 5-1/4 inch double-sided,
high-capacity diskette. Diskette 2HC is also
referred to as a 96 tpi (tracks per inch)
diskette, 2QD (quad-density) diskette, and
2HD (high-density) diskette.

Your needs and your system determine the
diskette you use. Depending on the size of your
files and libraries, you can place several files on
one diskette or a large file on several diskettes.

The system must prepare the diskettes before you
can use them. Use the Initialization (INIT) proce-
dure to prepare the diskettes. With the INIT pro-
cedure you can specify storage capacity for the
diskettes using the FORMAT and FORMAT2
parameters. The INIT procedure is discussed
further in “Programming Considerations” on
page 9-4.

The following table lists the storage capacities and
formats of the different diskettes you can use:

Diskette Exchange Formats

An exchange format is a set of rules for the
content of the header record and the physical
organization of the diskette. Exchange formats
are supplied so you can exchange data between
systems. The system with which you exchange
data determines the diskette format to use. The
system supports the following types of exchange
formats:

� Basic data exchange (1)
� H-data exchange (2D and 2HC)
� I-data exchange (1, 2D, and 2HC)

For more detailed information about diskette
formats, see the Tape and Diskette Device Pro-
gramming book.

For information about the exchange format
required to exchange data with another system,
see the correct book for that system.

Basic Data Exchange Format

Basic data exchange format files ensure that you
can exchange diskettes between systems capable
of reading from and writing to diskette 1 diskettes.

Basic data exchange has the following character-
istics:

� The diskette sector is 128 bytes (diskette 1).

� All records in the file must be the same
length. The maximum record length of the file
you can put on diskette is 128 bytes (diskette
1).

Diskette
Type

INIT
Procedure
Parameter

Number of
Bytes
per Sector

Number
of
Sectors

Total
Bytes

1 FORMAT 128 1924 246 272

1 FORMAT2 512 592 303 104

2D FORMAT 256 3848 985 088

2D FORMAT2 1024 1184 1 212 416

2HC FORMAT 256 3848 985 088

2HC FORMAT2 1024 1184 1 212 416

 Copyright IBM Corp. 1995 9-1

� Records are not blocked and cannot span
diskette sectors.

� The file name must be 8 characters or less.

Use the TRANSFER procedure to read from and
write to diskettes in the basic data exchange
format. Use the $MAINT utility program to read
and write library members in basic data exchange
format (using record-mode). The System/36 Envi-
ronment Reference book has more information
about the TRANSFER procedure and the $MAINT
utility program.

H-Data Exchange Format

H-data exchange format files allow diskettes to be
exchanged between systems capable of reading
from and writing to diskette 2D and 2HC diskettes.

Note: H-data exchange is also called basic data
exchange on System/36.

H-data exchange has the following characteristics:

� The diskette sector is 256 bytes (diskette 2D
or 2HC).

� All records in the file must be the same
length. The maximum record length of the file
you can put on diskette is 256 bytes (diskette
2D or 2HC).

� Records are not blocked and cannot span
diskette sectors.

� The file name must be 8 characters or less.

You can use the TRANSFER procedure to read
from and write to diskettes in this format.

I-Data Exchange Format

I-data exchange format files have requirements
assuring that diskettes may be exchanged
between systems capable of reading from and
writing to diskette 1, and 2D and 2HC diskettes.

I-data exchange has the following characteristics:

� The diskette sector is 128 bytes or 512 bytes
(diskette 1), or 256 bytes or 1024 bytes
(diskettes 2D, and 2HC).

� All records in the file must be the same
length. The maximum record length of the file
you can put on diskette is 4096 bytes.

� Records are blocked and can span diskette
sectors. That is, several records and parts of
records can be placed in a diskette sector, or
a record can extend from one sector to
another. However, records cannot span
diskette volumes.

� The file name must be 8 characters or less.

You can use the TRANSFER procedure to read
from and write to diskettes in this format.

Storing Information on Diskette

When you save a file or library on diskette, the
system creates a file that contains the file or
library you saved. The diskette volume table-of-
contents (VTOC) includes the following information
about the diskette file:

� Name of the file
� Type of file created
� Date the file was created
� Size of the file
� Record length of the file
� File expiration date
� Sequence number of the diskette (if the file is

contained on more than one diskette)

Types of Diskette Files

The following list shows common types of diskette
files you can create with the system:

COPYFILE
Created when you use the Save System/36
File (SAVS36F) command to save a disk file.
The format of the diskette file is the same as
if the SAVE procedure or the $COPY utility
program had created it on System/36. These
files can be exchanged with System/36
(RESTORE procedure) or an AS/400 system
using the Restore System/36 File (RSTS36F)
command or the RESTORE procedure in the
System/36 environment.

EXCHANGE
Created when you use the TRANSFER proce-
dure (or the $BICR utility program) to copy a
disk file in basic data exchange or H-data
exchange format.

9-2 OS/400 System/36 Environment Programming V3R6

IFORMAT
Created when you use the TRANSFER proce-
dure (or the $BICR utility program) to copy a
disk file in I-exchange format.

LIBRFILE
Created when you use the Save System/36
Library Member (SAVS36LIBM) command to
save procedure and source members from a
source file, or the FROMLIBR procedure to
create a record-mode file. The format of the
diskette file is the same as if the FROMLIBR
procedure or the $MAINT utility program had
created it on System/36. These files can be
exchanged with System/36 using the TOLIBR
procedure or with the AS/400 system using
the TOLIBR procedure or the Restore
System/36 Library Member (RSTS36LIBM)
command.

SAVELIBR
This file cannot be created on the AS/400
system, but can be restored with the
RSTS36LIBM command.

SAVEFLDR
This file cannot be created on the AS/400
system, but can be restored with the Restore
System/36 Folder (RSTS36FLR) command.

SAVE/RESTORE
The system creates these files when you use
the SAVE, SAVELIBR, or FROMLIBR (sector-
mode) procedures in the System/36 environ-
ment. The format of the diskette file is the
same as if you used the Save Object
(SAVOBJ) or Save Library (SAVLIB) com-
mands. The files can be exchanged only with
another AS/400 system using the System/36
environment RESTORE, RESTLIBR, or
TOLIBR procedures, or the Restore Object
(RSTOBJ) or Restore Library (RSTLIB) com-
mands.

Diskette Data Compression

Diskette data compression enhances the perfor-
mance of the SAVE or RESTORE procedure by
compressing the duplicate character strings in
your data files. To compress in the System/36
environment is to replace repetitive characters in a
file with control characters so that the file takes up
less space when saved to diskette.

If you have files with many duplicate characters,
diskette data compression can reduce the number

of diskettes you need and the amount of time
needed to process your data.

To run diskette data compression for data files,
specify the COMPRESS parameter in the SAVE
procedure. The system automatically decom-
presses data when you restore the compressed
files.

You can compress data only on 2D and 2HC
diskettes that have been initialized to FORMAT2.

Use the RSTS36F command or the RESTORE
procedure in the System/36 environment to accept
compressed COPYFILE diskettes in the
System/36 format. You can also use the
SAVS36F command to create COPYFILE
diskettes in the System/36 compression format.
This reduces the number of diskettes necessary
when files are saved from the AS/400 system to
be restored on a System/36. If you elect to com-
press your files, use 2D or 2HC diskettes with
1024 bytes per sector.

Diskette File Expiration Dates

When you copy a file or library to diskette, one of
the parameters you can specify is the number of
retention days. This parameter specifies how long
the system protects the diskette file. The system
uses the value specified for retention days to cal-
culate the expiration date.

The calculation is:

expiration date = program date + retention days

If you specify 999 for the retention days param-
eter, the file is considered permanent and never
automatically expires. The program date in the
System/36 environment is the date associated
with a program (job step).

The system examines the expiration date each
time you create a file on diskette. If the date has
passed, the system writes over the file. For
example, a diskette file named FILE1 has an expi-
ration date of 14 July 1988. If you copy another
file to that diskette before 14 July 1988, FILE1
remains on the diskette. However, if you copy a
third file to that diskette on or after 14 July 1988,
FILE1 is no longer stored on the diskette. The
system automatically deletes FILE1 because its
retention period has ended.

 Chapter 9. Diskette Storage 9-3

The FILE OCL statement for diskette files in the
System/36 Environment Reference book has more
information about retaining diskette files.

 Programming Considerations

This section describes procedures and techniques
you can use to process diskettes.

There is no System/36 environment high-level lan-
guage support for diskette. For your programs to
use information on diskette, you must:

1. Copy the diskette information to a disk file
2. Run your program to use the disk file
3. Copy the disk file back to diskette

 Preparing Diskettes

You prepare a diskette for use by the system
using the INIT procedure. The INIT procedure
determines the format of the diskette (the number
of bytes that can be stored on each sector). It
also deletes information on the diskette.

You may or may not have to prepare your
diskettes. If you do not know the format of your
diskettes, use the CATALOG procedure to check
the diskettes. See the System/36 Environment
Reference book for information about the
CATALOG procedure.

When you use the INIT procedure, the system
allows you to specify identifying information to be
placed on the diskette. This identifying informa-
tion is:

� A 6-character name called the volume ID .
You specify the volume ID on system proce-
dures to make sure you use the proper
diskette. Valid characters for the ID are A
through Z and 0 through 9.

� A 14-character name called the owner ID .
Use the owner ID to determine the owner of a
diskette. This ID is not checked by the
system procedures, but is displayed by the
CATALOG procedure. Valid characters for
the ID are A through Z and 0 through 9.

If you specify values for the STARTING
LOCATION and ENDING LOCATION parameters,
the values are checked for syntax errors.
However, the values are ignored when you use

the procedure since the system has only a single-
slot diskette drive.

The diskette unit can be secured on the AS/400
system. You must have authority to the device
before using the INIT procedure.

The INIT procedure can be used to change the
volume ID or the owner ID without affecting the
data on the diskette, and to remove all files
without changing the volume ID, owner ID, or
format.

Note: The AS/400 diskette-related save/restore
procedures require double-density diskettes, for-
matted with FORMAT2 (1024 bytes per sector).

The INIT procedure in the System/36 Environment
Reference book has more information about pre-
paring diskettes.

Copying, Saving, and Restoring
Information

The System/36 environment supplies the following
procedures to let you copy, save, or restore infor-
mation using diskettes. The System/36 Environ-
ment Reference book has more information about
these procedures.

Copying Information: Use the following
procedures to copy information to or from
diskettes:

COPYI1
Copies an entire diskette to one or several
diskettes.

FROMLIBR
Copies one or more library members to
diskette. If the diskette file created is a
sector-mode file, it can only be copied back to
the System/36 environment using the TOLIBR
procedure. If the file is a record-mode file, it
can be exchanged with System/36 using the
TOLIBR procedure, or with the AS/400
system using the TOLIBR procedure or the
Restore System/36 Library Member
(RSTS36LIBM) command.

JOBSTR
Copies a diskette file (that contains one or
more procedure members and source
members) to a specified library. The diskette

9-4 OS/400 System/36 Environment Programming V3R6

must have been created in the System/36
environment with the FROMLIBR procedure.

TOLIBR
The System/36 environment TOLIBR proce-
dure copies library members from a diskette
file to a library. The diskette must have been
created with the FROMLIBR procedure on
System/36 or in the System/36 environment,
or with the Save System/36 Library Member
(SAVS36LIBM) command on the AS/400
system.

TRANSFER
Copies disk files to or from diskettes in either
basic data exchange or I-data exchange
format.

The diskette unit can be secured on the AS/400
system. You must have authority to the device
before using the COPYI1, FROMLIBR, JOBSTR,
TOLIBR, or TRANSFER procedures.

Saving Information: Use the following pro-
cedures to save information to diskettes:

SAVE
Saves disk files on a diskette. The files can
be restored only to the AS/400 system.

SAVELIBR
Saves an entire library to a diskette. The
library can be restored only to the AS/400
system.

SAVS36F
System command. Saves one or more files
on a diskette that can be restored to a
System/36. You can compress the files into a
System/36-compatible format to reduce the
number of diskettes required. You can
restore the file or files the AS/400 system by
using the Restore System/36 File (RSTS36F)
command or the RESTORE procedure in the
System/36 environment.

SAVS36LIBM
System command. Saves source or proce-
dure members on a diskette that can be
restored to a System/36. The library
members can also be restored to the AS/400
system by using the Restore System/36
Library Member (RSTS36LIBM) command.

The diskette unit can be secured on the AS/400
system. You must have authority to the device

before using the SAVE or SAVELIBR procedure or
the Save System/36 File (SAVS36F) or Save
System/36 Library Member (SAVS36LIBM) com-
mands.

Restoring Information: Use the following
procedures to restore information from diskettes:

RESTLIBR
Restores an entire library from a diskette file
to disk. You must have created the diskette
file with the SAVELIBR procedure on the
AS/400 system.

RESTORE
Restores disk files from a diskette to disk.
You must have created the diskette files with
the SAVE procedure in the System/36 envi-
ronment or on System/36.

RSTS36F
System command. Restores a file or a group
of files saved to diskette on System/36 using
the SAVE procedure, or restores a file saved
on the AS/400 system using the SAVS36F
system command.

RSTS36LIBM
System command. Restores source or proce-
dure members from diskette that were saved
on System/36 using the FROMLIBR proce-
dure or the SAVELIBR procedure or that were
saved on the AS/400 system using the
FROMLIBR (record-mode) procedure or the
SAVS36LIBM command.

The diskette unit can be secured on the AS/400
system. You must have authority for the device
before using the RESTLIBR or RESTORE proce-
dures or the RSTS36F or RSTS36LIBM com-
mands.

Listing Information from Diskette

The System/36 environment supplies the following
procedure to let you list information from a
diskette. The System/36 Environment Reference
book has more information about these proce-
dures.

Use the following procedures to list information
from a diskette:

CATALOG
Lists the names of files, saved libraries, and
saved folders on a diskette.

 Chapter 9. Diskette Storage 9-5

LISTDATA
Lists the contents of a saved file from a
diskette. You must have created the diskette
file with the SAVE procedure in the
System/36 environment or on System/36.

LISTFILE
Lists the contents of a basic data exchange
file, I-data exchange file, saved file, saved
library member, or saved library located on
diskette. For saved files, you must have
created the diskette files with the SAVE pro-
cedure in the System/36 environment or on
System/36. For saved library members, you
must have created the diskette file with the
FROMLIBR procedure in the System/36 envi-
ronment. For saved libraries, you must have
created the diskette file with the SAVELIBR
procedure in the System/36 environment.

The diskette unit can be secured on the AS/400
system. You must have authority to the device
before using the CATALOG, LISTDATA, or
LISTFILE procedures.

Removing Information from
Diskette

Use the following procedures to remove informa-
tion from diskettes:

DELETE
Removes a single file or all files from a
diskette.

INIT
Checks for active files before removing all
files from a diskette. (See “Preparing
Diskettes” on page 9-4.)

Allocating the Diskette Drive to a
Job

Use the ALLOCATE OCL statement to dedicate
the diskette drive to a job. For example, you have
a procedure that saves three files (the diskette
has a volume ID of VOL001):

SAVE FILE1,,,VOLðð1
SAVE FILE2,,,VOLðð1
SAVE FILE3,,,VOLðð1

You may lose control of the diskette drive between
SAVE procedures. For example, after FILE1 is
saved but before FILE2 is saved, another job on
the system could gain control of the diskette drive.
If this happens, your job will have to wait until the
other job has finished using the diskette drive
before your job can save FILE2.

Use the ALLOCATE OCL statement to keep
control of the diskette drive throughout the three
SAVE procedures:

// ALLOCATE UNIT-I1
SAVE FILE1,,,VOLðð1
SAVE FILE2,,,VOLðð1
SAVE FILE3,,,VOLðð1

To avoid allocating the diskette drive longer than
necessary, use the DEALLOC OCL statement to
deallocate the diskette drive. For example, your
job might save three files and then run another job
step that did not use the diskette drive. You
would use the DEALLOC OCL statement to allow
other jobs to use the diskette drive, as follows:

// ALLOCATE UNIT-I1
SAVE FILE1,,,VOLðð1
SAVE FILE2,,,VOLðð1
SAVE FILE3,,,VOLðð1
// DEALLOC UNIT-I1
\
// LOAD PROG1
// RUN

In this example, if you do not specify the
DEALLOC OCL statement, your job holds the
diskette drive until it ends. While PROG1 is
running, other jobs are needlessly prevented from
using the diskette drive. See the System/36 Envi-
ronment Reference book for more information
about the ALLOCATE and DEALLOC OCL state-
ments.

 Coexistence Considerations

This section contains the following coexistence
considerations:

� Restoring the AS/400 system to System/36
� Restoring System/36 to the AS/400 system
� Restoring the AS/400 system to the

System/36 environment

9-6 OS/400 System/36 Environment Programming V3R6

Restoring the AS/400 System to
System/36

You can move both data files and source and pro-
cedure library members from an AS/400 system to
System/36.

There are two ways to use diskettes to move data
files from an AS/400 system to System/36:

� Copy the data to a basic or I-data exchange
format diskette using the System/36 environ-
ment TRANSFER procedure or the Copy to
Diskette (CPYTODKT) command. On
System/36, use the TRANSFER procedure to
copy the data back to a disk file.

� Save the data files to diskette using the
SAVS36F command. On System/36, use the
RESTORE procedure to restore the data files.

There are two ways to use diskettes to move
source and procedure members from an AS/400
system to System/36:

� Copy the members to a record-mode diskette
file using the FROMLIBR procedure in the
System/36 environment. On System/36, use
the TOLIBR procedure to copy the members
from diskette back to a library.

� Save the source and procedure members to a
diskette using the SAVS36LIBM command.
On System/36, use the TOLIBR procedure to
copy the members from diskette back to a
library.

Restoring System/36 to the
AS/400 System

You can move data files, and source and proce-
dure library members, from System/36 to an
AS/400 system.

There are two ways to use diskettes to move data
files from System/36 to an AS/400 system:

� Copy the data to a basic or I-exchange format
diskette on System/36 using the TRANSFER
procedure. On the AS/400 system use the
System/36 environment TRANSFER proce-
dure or the Copy from Diskette
(CPYFRMDKT) command to copy the data
back to a disk file.

� Save the data file to diskette on System/36
using the SAVE procedure. On the AS/400
system, use the System/36 environment
RESTORE procedure or the RSTS36F
command to restore the data back to a disk
file.

There are two ways to use diskettes to move
source and procedure members from System/36
to an AS/400 system:

� Save the library that contains the source and
procedure members to a diskette on
System/36 using the SAVELIBR procedure.
On the AS/400 system, use the RSTS36LIBM
command to copy the members back to a
library.

� Save the source and procedure members to a
diskette on System/36 using the FROMLIBR
procedure. On the AS/400 system, use the
TOLIBR procedure or the RSTS36LIBM
command to copy the members from diskette
back to a library.

Restoring the AS/400 System to
the System/36 Environment

You can move data files, and source and proce-
dure library members, from an AS/400 system to
another AS/400 system within the System/36 envi-
ronment.

There are two ways to use diskettes to move data
files from an AS/400 system to another AS/400
system:

� Copy the data to a basic or I-exchange format
diskette using the TRANSFER procedure. On
the other AS/400 system, use the TRANSFER
procedure to copy the data to a disk file.

� Save the data file to diskette using the SAVE
procedure. On the other AS/400 system, use
the RESTORE procedure to restore the data
back to a disk file.

There are two ways to use diskettes to move
source and procedure members from an AS/400
system to another AS/400 system:

� Save the library that contains the source and
procedure members to a diskette using the
SAVELIBR procedure. On the other AS/400
system, use the RESTLIBR procedure to
restore the library onto the system.

 Chapter 9. Diskette Storage 9-7

� Save the source and procedure members to a
diskette using the FROMLIBR procedure. On
the other AS/400 system, use the TOLIBR
procedure to copy the members from diskette
back to a library.

Moving from System/36 to the
System/36 Environment

You can use diskettes as a migration medium and
copy or restore files on diskette to the System/36
environment, depending on the file type. See
“Types of Diskette Files” on page 9-2 for more
information.

9-8 OS/400 System/36 Environment Programming V3R6

Chapter 10. Magnetic Tape Storage

This chapter describes how to use magnetic tape
in the System/36 environment.

You use tapes to create backup copies of informa-
tion. You can also use tapes to:

� Store files and libraries offline
� Transfer information to other systems

Tapes must be prepared before they can be used.
You can use the TAPEINIT procedure to do this.
See “Preparing Tapes” on page 10-5.

Tape Drives Supported

For a complete description of the tape drives sup-
ported on the AS/400 system, see the Backup and
Recovery – Advanced book.

 Tape Formats

The tape format describes how information is
stored on the tape. The format of a tape reel is
set when the tape is initialized. The two formats
supported are IBM standard label and nonlabeled
format.

The system initializes tapes differently depending
on your system unit and tape drive.

IBM Standard Label

All supported tape drives use the IBM standard
label format. Using IBM standard label tapes
allows you to easily determine the names of files
stored on tape, and other information. All save
and restore operations require IBM standard label
tape.

When data is stored in a file on an IBM standard
label tape, the record is created in the format
shown in Figure 10-1.

The parts in Figure 10-1 are defined as follows:

Tape Volume Label
Written on tape when the tape is initialized. It
contains information about the tape volume
(reel).

Tape Marks (TM)
Used to separate the various parts of a file.
There are two tape marks at the end of the
tape.

Tape Header Labels
Written on the tape when the file is created.
There are two types of header labels:

� System header labels are created by the
system and contain information about the
tape file. They are required.

� User header labels are created by the
application and contain user-defined infor-
mation about the file, library, or member
in the tape file. They are optional and are
created by the FROMLIBR procedure
when creating a record-mode file on the
AS/400 system, and the Save System/36
File (SAVS36F) or Save System/36
Library Member (SAVS36LIBM) com-
mands.

Data
Data for the file can be blocked or unblocked.

Tape Trailer Labels
Written on the tape when the file is created.
There are two types of trailer labels:

� System trailer labels are created by the
system and contain information about the
tape file. They are required.

� User trailer labels are created by the
application and contain user-defined infor-
mation about the file, library, or member
in the tape file. They are optional and are
created by the FROMLIBR procedure
when creating a record-mode file on the
AS/400 system, and by the SAVS36F or
SAVS36LIBM commands.

 Copyright IBM Corp. 1995 10-1

RSLW070-1

FILEA
Tape Header
Label

FILEA
Tape Trailer
Label

FILEB
Tape Header
Label

FILEB
Tape Trailer
Label

FILEA
(data)

FILEB
(data)

Tape
Volume
Label

T
M

T
M

T
M

T
M

T
M

T
M

T
M

T
M

Figure 10-1. Layout of Two Files on a Standard Label Tape

System header and trailer labels can include the
following information about the tape file:

� Name of the file
� Date the file was created
� Expiration date of the file
� Sequence number (SEQNUM) of the file,

either from the beginning of the tape or the
beginning of a sequence of tapes

� Volume sequence number of the tape, if the
file is on more than one tape (a multivolume
file)

� Record length of tape file
� Record format of tape file
� Block length of tape file (system trailer header

only)

The user header and trailer labels can contain
information about the:

� Type of file created
� Size of file created

 Nonlabeled

Use nonlabeled tapes when exchanging data with
systems that do not support the IBM standard
label tapes.

When you copy a file to a nonlabeled tape, the
system does not create volume, header, or trailer
labels. You must keep track of the tape informa-
tion normally stored in these labels. The following
figure shows the file format of a nonlabeled tape.

RSLW071-2

FILEA
(data)

FILEB
(data)

FILEC
(data)

SEQNUM 1 SEQNUM 2 SEQNUM 3

T
M

T
M

T
M

T
M

Each file is assigned a sequence number
(SEQNUM) and a tape mark (TM).

Note: Some nonlabeled tapes have a leading
tape mark. In order to get the first data file,
SEQNUM 2 must be specified to read FILEA data.

 Tape Files

The types of tape files you can create in the
System/36 environment are shown in the following
list. Except where noted, the formats of these
tape files are unique to this system. The informa-
tion can be exchanged only with another AS/400
system in the System/36 environment.

COPYFILE
The COPYFILE file type is created when you
use the SAVS36F command to save a disk
file. The format of the tape file is the same
as if the SAVE procedure or the $COPY utility
program had created it on the System/36.
The files can be exchanged with another
AS/400 system using the RSTS36F command
or the RESTORE procedure in the System/36
environment, or exchanged with a System/36
using the RESTORE procedure.

EXCHANGE
The EXCHANGE file type is created when
you use the System/36 environment
TAPECOPY procedure. The format is the
same as created by TAPECOPY procedure
on System/36. This type allows information to
be exchanged with another system, not nec-
essarily System/36.

LIBRFILE
The LIBRFILE is created when you use the
Save System/36 Library Member
(SAVS36LIBM) command to save procedure
and source members from a source file or the
FROMLIBR procedure to create a record-
mode file. The format of the tape file is the
same as if the FROMLIBR procedure or the
$MAINT utility program had created it on
System/36. The files can be exchanged with
another System/36 using the TOLIBR proce-
dure or with the AS/400 system using the

10-2 OS/400 System/36 Environment Programming V3R6

TOLIBR procedure or the Restore System/36
Library Member (RSTS36LIBM) command.

SAVELIBR
The SAVELIBR file type cannot be created in
the System/36 environment, but can be
restored using the System/36 environment
RSTS36LIBM command.

SAVEFLDR
The SAVEFLDR file type cannot be created in
the System/36 environment, but can be
restored using the System/36 environment
RSTS36FLR command.

Save/Restore
The system creates these files when you use
the SAVE, FROMLIBR, or SAVELIBR (sector-
mode) procedure in the System/36 environ-
ment. The format of the tape file is the same
as if you used the Save Object (SAVOBJ) or
Save Library (SAVLIB) commands. The files
can only be exchanged with another AS/400
system using the System/36 environment
RESTORE, RESTLIBR, or TOLIBR proce-
dures, or the Restore Object (RSTOBJ) or
Restore Library (RSTLIB) commands.

Exchanging Tape Files with Other
Systems

To exchange tape files with other IBM systems,
you should use IBM standard labeled tapes.

If you exchange tape files with another system, it
is possible the tape has been written with
volume/file security. For more information, see
“Tape Security” on page 10-4.

You can specify any of the following processing
methods to be used when the system reads tapes.
These methods are specified in the TAPECOPY
procedure. See the System/36 Environment Ref-
erence book for more information about
TAPECOPY.

� IBM standard label processing. Specifies
that the header labels are to be used to read
the tape.

Note: Files that have only a header 1 label
can be processed if the record processing
information is supplied.

� Nonlabeled tape processing. Specifies that
the tapes have no labels and that marks on
the tape indicate where the files are stored.

� Nonstandard label processing. Specifies
that the tapes have labels, but the labels are
not IBM standard labels. The system can
read only one file from a nonstandard labeled
tape.

The system ignores nonstandard labels and
reads the tape starting from the first mark on
the tape to the second mark on the tape.
Thus, only the first file is read.

� Bypass label processing. Specifies that the
tape has IBM standard labels but that label
information is to be ignored. Instead,
sequence numbers on the tape are to be used
to process the file.

You can use this method when you do not
know the volume ID of the tape, or the name
of the tape file.

Tape File Expiration Dates

When you copy a file or library to tape, one of the
parameters you can specify is the number of
retention days. This parameter specifies how long
the system should protect the tape file. The
system uses the value specified for retention days
to calculate the expiration date.

The calculation is:

Expiration date = Program date + Retention days

If you specify 999 for the retention days param-
eter, the file is considered permanent and does
not automatically expire.

When you prepare a tape and you specify date
checking, the system examines the expiration date
of the first file on an IBM standard labeled tape
before initializing the tape. If the file has expired,
the system clears the expired file, and any other
files that may be on the tape. When the system
continues writing a file from one tape to another
and files exist on the continued reel, it checks the
expiration date of the first file on the continued
reel. If the first file has expired, all the files can
be written over, even if subsequent files have not
expired.

See the FILE OCL statement for tape files in the
System/36 Environment Reference book for more
information about tape file retention.

 Chapter 10. Magnetic Tape Storage 10-3

 Tape Security

You can secure access to an entire tape or to
specified files using the methods described in the
following sections.

Securing Write Access to Tapes

On the reel-to-reel tape drives, you control write
access by using the write-enable rings. Write-
enable rings are plastic rings fit into the center of
the tape reel. To allow information to be written on
the tape, insert the write-enable ring. To prevent
information from being added to or changed on
the tape, remove the write-enable ring from a tape
reel. The information on the tape can then only
be read. This is the only way to ensure no active
tape files are written over.

On the cartridge tape drives, you control write
access by using the write-protect device on the
cartridge. Set the device to write-enable to allow
information to be written onto the tape. Set the
device to write-disable to prevent any information
from being added to or changed.

Using Tapes Secured by Other
Systems

If tapes created on systems other than the AS/400
system were secured using the following methods,
they will remain secure in the System/36 environ-
ment.

Securing Access to Tapes: Security
access on IBM standard label tapes is controlled
by a code of X'00', X'40', or X'F0' in the tape
volume label (VOL1). If one of these codes is not
found, only a security officer can continue using
the tape. The system checks volume security
when processing standard label or bypass label
tapes only.

Securing Read/Write Access to Files:
Security access to files on IBM standard label
tapes is controlled by a 0, 1, or 3 in the header
label (HDR1) for each file:

0 No security access to the file.
1 You must be a security officer to read or write

to the file.

3 You can read the file but you must be a secu-
rity officer to add to the file.

File security will be checked when processing
standard label, or bypass labeled tapes only.

Programming Considerations for
Tape Processing
Only IBM-supplied procedures and programs, or
procedures you have written that contain a
System/36 procedure, can use the tape drive.
Because there is no System/36 environment high-
level language support for information on tape,
you must:

1. Copy the tape information to a disk file.
2. Run your program to use the disk file.
3. Copy the disk file back to tape.

Automatically Advancing to Next
Tape Drive

The AUTO parameter on procedures and on the
tape FILE statement determine whether or not
processing should automatically advance to the
next tape drive when processing is complete on
the first drive. When using these procedures or
the tape FILE statement, the following should be
considered:

� The default for the AUTO parameter is to
always automatically advance to the next tape
drive if the unit is T1 or T2. The AUTO
parameter is ignored if the unit is TC.

� If the next tape drive is either not available or
not configured and AUTO or AUTO-YES was
specified or is the default, the values are
ignored and only the first tape drive is allo-
cated. If the next tape drive is available, it is
allocated when the first tape drive is allocated.

� If AUTO or AUTO-YES is specified or is the
default, the next tape drive must support the
same density as the first tape drive. The tape
mounted on the next drive must be initialized
to the same density as the first tape. If the
density of the next tape is not the same as the
first tape, an error message is issued.

� When configuring your System/36 environ-
ment, you should use caution when assigning
unit IDs of T1 or T2 to a cartridge tape drive.
Cartridge tape drives and reel-to-reel tape
drives do not have the same density. If T1 is

10-4 OS/400 System/36 Environment Programming V3R6

a reel-to-reel tape drive and T2 is a cartridge
tape drive, AUTO or AUTO-YES should never
be specified or be the default. If this happens,
an error message is always issued. The
message indicates that the two tape drives
are not the same density.

Using REWIND, LEAVE, and
UNLOAD Tape Cartridge
Processing

Each time a new tape cartridge is inserted into a
cartridge tape drive or the latch door is opened
and closed, the tape cartridge must be prepared
before processing can begin. To prepare the
tape, the system must make sure that it is posi-
tioned at the load point by winding the tape to the
end of the cartridge and then back to the begin-
ning. Consider the following factors before pre-
paring your tapes:

� When you specify REWIND, the tape is
rewound to the load point. If the tape car-
tridge is removed or the batch door is opened,
the tape must be completely wound to the end
and back to the load point.

� When you specify LEAVE, the tape is left in
the position of the last access. If the tape car-
tridge is removed or the batch door is opened,
the tape must be wound to the end and back
to the load point. This method may take less
time than if you specified REWIND.

� When you specify UNLOAD, the tape is
wound to the end. If the tape cartridge is
removed or the batch door is opened, the tape
must be rewound to the load point. This
method may take less time than if you speci-
fied REWIND or LEAVE.

 Preparing Tapes

You may have to prepare your tapes. If you are
unsure about the format of your tapes, use the
Catalog (CATALOG) procedure to check the
tapes.

To prepare a tape reel for use by the system, use
the Tape Initializing (TAPEINIT) procedure, which
is described in the System/36 Environment Refer-
ence book.

When you prepare the tape, you have the option
to delete all information on the tape. With the

TAPEINIT procedure, the system allows you to
specify identifying information to be placed on the
tape. This identifying information includes:

� A 6-character (A – Z, 0 – 9, #, @, or $) name
called the volume ID. You specify the volume
ID on system procedures to ensure that you
are using the proper tape. It is a good prac-
tice to assign unique volume IDs to each tape
reel.

� A 14-character (A – Z, 0 – 9, #, @, or $)
name called the owner ID. You can use this
name to determine the owner of a tape. The
owner ID is not checked by the system proce-
dures, but is displayed by the CATALOG pro-
cedure.

To use the TAPEINIT procedure, you must be
authorized to the tape device you are accessing.

Allocating the Tape Drive to a
Job

Use the ALLOCATE OCL statement to dedicate
the tape drive to a job.

For example, you have a procedure that saves
three files (the tape has a volume ID of VOL001):

SAVE FILE1,,,VOLðð1,T1
SAVE FILE2,,,VOLðð1,T1
SAVE FILE3,,,VOLðð1,T1

You do not usually keep control of the tape drive
between the SAVE procedures. Another proce-
dure on the system could use the tape drive after
FILE1 is saved but before FILE2 is saved. This
makes your SAVE FILE2 procedure wait until the
other procedure ends.

You can use the ALLOCATE OCL statement to
keep control of the tape drive throughout the three
SAVE procedures:

// ALLOCATE UNIT-T1
SAVE FILE1,,,VOLðð1,T1
SAVE FILE2,,,VOLðð1,T1
SAVE FILE3,,,VOLðð1,T1

To avoid allocating the tape drive longer than nec-
essary, use the DEALLOC OCL statement to deal-
locate the tape drive. For example, if your
procedure saves three files and then runs another
type of job that does not use the tape drive, use
the DEALLOC OCL statement to allow other jobs
to use the tape drive:

 Chapter 10. Magnetic Tape Storage 10-5

// ALLOCATE UNIT-T1
SAVE FILE1,,,VOLðð1,T1
SAVE FILE2,,,VOLðð1,T1
SAVE FILE3,,,VOLðð1,T1
// DEALLOC UNIT-T1
\
// LOAD PROG1
// RUN

In this example, if you do not specify the
DEALLOC OCL statement, the job holds the tape
drive until the job ends. While PROG1 is running,
other jobs are needlessly prevented from using
the tape drive.

Note: To fully benefit from the use of the ALLO-
CATE OCL statement and the LEAVE parameter
with the cartridge tape drive, the same tape must
be in the drive and the drive door must not have
been opened. See the System/36 Environment
Reference book for more information on the
ALLOCATE and DEALLOC OCL statements.

Copying, Saving, Restoring, and
Listing Information

The following procedures are supplied with the
System/36 environment to allow you to copy,
save, restore, and list information on tape.

Listed alphabetically, each procedure is described
according to any differences between the
System/36 environment and System/36. Except
where noted, these procedures require IBM
standard label tapes. The System/36 Environment
Reference book has complete information about
these procedures.

Before doing any of these procedures, make sure
you are authorized to the tape devices. The
AS/400 tape device may be secured.

Copying Information from Tape: Use
the following procedures to copy information using
tapes:

FROMLIBR
The FROMLIBR procedure copies one or
more library members to a tape file. If the
tape file created is a sector-mode file, it can
only be copied back to the System/36 envi-
ronment using the TOLIBR procedure. If the
file is a record-mode file, it can be exchanged
with a System/36 using the TOLIBR proce-
dure, or with the AS/400 system using the

TOLIBR procedure or the Restore System/36
Library Member (RSTS36LIBM) command.

JOBSTR
The JOBSTR procedure copies one or more
procedures or source members from a tape
file to a library. The tape file must have been
created in the System/36 environment with
the FROMLIBR procedure.

TOLIBR
The TOLIBR procedure copies library
members from a tape to a library. The tape
file must have been created with the
FROMLIBR procedure on either the
System/36 or System/36 environment or with
the Save System/36 Library Member
(SAVS36LIBM) command.

TAPECOPY
The TAPECOPY procedure copies disk files
to tape and tape files to disk in exchange
format. This procedure allows you to use
both standard label tapes and nonlabeled
tapes. You can use standard label pro-
cessing or nonlabeled tape processing while
reading or writing tape files. Nonstandard
label processing or bypass label processing
can also be used while reading tape files.

Saving Information on Tape: Use the fol-
lowing procedures to save information using
tapes:

SAVE
The SAVE procedure saves disk files on a
tape. The files can only be restored back to
an AS/400 system.

SAVELIBR
The SAVELIBR procedure saves an entire
library to tape. The library can only be
restored back to an AS/400 system.

SAVS36F
This system command saves a single disk file
or multiple disk files to a tape that can be
restored to a System/36. The file or files can
also be restored to the AS/400 system using
the Restore System/36 File (RSTS36F)
command or the RESTORE procedure in the
System/36 environment.

SAVS36LIBM
This system command saves source or proce-
dure members to a tape that can be restored
to a System/36. It can also be restored to the

10-6 OS/400 System/36 Environment Programming V3R6

AS/400 system using the Restore System/36
Library Member (RSTS36LIBM) command or
the TOLIBR procedure in the System/36 envi-
ronment (for record mode).

Restoring Information from Tape: Use
the following procedures to restore information
using tapes:

RESTLIBR
The Restore Library procedure restores an
entire library from a tape to disk. The tape
must have been created with the SAVELIBR
procedure in the System/36 environment.

RESTORE
The RESTORE procedure restores disk files
from tape to disk. The tape files must have
been created with the SAVE procedure in the
System/36 environment or on System/36.

RSTS36F
This system command restores a file or a
group of files saved to tape on System/36
using the SAVE procedure, or restores a file
saved on the AS/400 system using the Save
System/36 File (SAVS36F) command.

RSTS36LIBM
This system command restores source or pro-
cedure members from tape that were saved
using the System/36 FROMLIBR procedure,
the System/36 SAVELIBR procedure, or the
System/36 environment FROMLIBR proce-
dure (record mode only).

Listing Information from Tape: Use the
following procedures to list information from tapes:

CATALOG
The CATALOG procedure lists the names of
files, saved libraries, and saved folders on
tape.

LISTDATA
The LISTDATA procedure lists the contents of
a saved file from tape. The tape file must
have been created with the SAVE procedure
in the System/36 environment or on
System/36.

LISTFILE
The LISTFILE procedure lists the contents of
an exchange file, saved file, saved library
member or saved library from tape files. For

saved files, you must have created the tape
file with the SAVE procedure in the
System/36 environment or on System/36. For
saved library members, you must have
created the tape file with the FROMLIBR pro-
cedure in the System/36 environment. For
saved libraries, you must have created the
tape file with the SAVELIBR procedure in the
System/36 environment.

Removing Information from Tape

To remove information from a tape, use the
TAPEINIT procedure. See “Preparing Tapes” on
page 10-5 for information on TAPEINIT.

Note: You cannot remove a specific file from
tape.

Using Multiple Tape Drives

If your system has more than one tape drive, each
tape drive can be allocated to a different job. For
this allocation to work, each job must have the
NOAUTO parameter specified in the procedures
that use tape and AUTO–NO in the file statement
of tape files.

Creating a Sequential Set of Files
on Tape

Use the ALLOCATE OCL statement and the
LEAVE parameter in a procedure to read or write
a sequential set of files on tape.

Note: To fully benefit from the use of the ALLO-
CATE OCL statement and the LEAVE parameter
with the cartridge tape drive, the same tape must
be in the drive and the drive door must not have
been opened. See the System/36 Environment
Reference book for more information on the
ALLOCATE OCL procedure.

When you save or restore files and libraries from
a set of tapes, the system starts with the location
you specify in the procedure. In the following
example, the files and libraries are saved on tape,
but after each save, the tape is rewound to its
beginning. This means that when the next job
step starts, the tape has to be positioned to the
end of the last file before the next file can be
saved.

 Chapter 10. Magnetic Tape Storage 10-7

\ Procedure to save 2 files, and 2 libraries
SAVE FILE1,,,VOLðð1,T1
SAVE FILE2,,,VOLðð1,T1
SAVELIBR LIBR1,,VOLðð1,,,T1
SAVELIBR LIBR2,,VOLðð1,,,T1

Use the LEAVE parameter to instruct the system
to leave the tape positioned after the end of the
file just processed. The next job step using tape
may take advantage of the LEAVE state, and the
tape is not rewound. In the following example, the
system begins with the first file and automatically
continues with the other files and libraries.

\ Procedure to create a sequential set of files
\ on tape
// ALLOCATE UNIT-'T1/T2'
SAVE FILE1,,,VOLðð1,T1,AUTO,,LEAVE
SAVE FILE2,,,VOLðð1,T1,AUTO,,LEAVE
SAVE ALL,,GRPB,,VOLðð1,GRPB,T1,,AUTO,LEAVE
SAVELIBR LIBR1,,VOLðð1,,AUTO,T1,,LEAVE
SAVELIBR LIBR2,,VOLðð1,,AUTO,T1,,UNLOAD
// DEALLOC UNIT-'T1/T2'

The tape continues processing from the previous
job step’s ending location. If the tape has auto-
advanced to the next tape unit and the LEAVE
parameter is used, the system keeps track of the
previous job step’s ending unit and tape position.
Processing continues from there. The last job
step causes the system to unload the tape so it
can be removed from the drive. On the cartridge
tape drive, the tape is wound to the end of the
cartridge.

When you are using the LEAVE parameter to read
files from IBM standard label tapes, the tape’s
volume ID, the file name, and (if specified) the
file’s creation date are examined to ensure that
the proper file is being read.

If you are using the LEAVE parameters to write to
a standard labeled tape, the system will check to
make sure the tape is positioned at the end of the
tape before writing to the tape.

If a sequence number is specified, the tape is
searched from the current position toward the
specified sequence number, checking that the
sequence number can be written to the tape. If a
tape file exists at that sequence number, it is
written over with the new tape file, and all files
after the specified sequence numbers are no
longer accessible.

Notes:

1. The system issues a diagnostic message if
you try to write over files on the ¼-inch tape
cartridge.

2. For the ¼-inch tape cartridge, if the sequence
number request is less than the current posi-
tion, the tape rewinds and searches from the
beginning of the tape. If the sequence
number requested is greater than the current
position, the tape searches forward from the
current position.

If the next job step is reading a standard labeled
tape file in bypass label processing, the tape is
searched from its current position to the specified
sequence number.

If the next job step is reading or writing to a nonla-
beled tape file and no sequence number is speci-
fied, the tape is read or written to without any
checking. If a sequence number is specified, the
tape is rewound and then the sequence number
located.

If the next job step is reading a nonstandard
labeled tape file, the tape is rewound and the first
file’s data is read.

The procedure control expressions VOLID and
DATAT cause the tape to rewind and then search
from the beginning of the tape.

You should also allocate the tape drive to your job
when you are using the LEAVE parameter. This
step ensures that your use of the tape drive is not
interrupted by another job, thus preserving your
tape’s position. See “Allocating the Tape Drive to
a Job” on page 10-5 for information about allo-
cating the tape drive to a job. LEAVE information
is maintained by the system from job step to job
step, but is not passed from job to job.

 Coexistence Considerations

This section describes the following coexistence
considerations for restoring data files and source
and procedure members:

� Restoring the AS/400 system to System/36
� Restoring System/36 to the AS/400 system
� Restoring the AS/400 system to System/36

within the System/36 environment

10-8 OS/400 System/36 Environment Programming V3R6

Restoring from an AS/400 System
to System/36

There are two ways to move data files from the
AS/400 system to System/36 using tape:

� Copy the data to an exchange tape on the
AS/400 system using the TAPECOPY proce-
dure (System/36 environment) or the Copy to
Tape (CPYTOTAP) command. On
System/36, use the TAPECOPY procedure to
copy the data back to a disk file.

� Save the data files to tape on the AS/400
system using the Save System/36 File
(SAVS36F) command. On System/36, use
the RESTORE procedure to restore the data
files.

There are two ways to move source and proce-
dure members from an AS/400 system to
System/36:

� Copy the members to a record-mode tape file
using the System/36 environment FROMLIBR
procedure or the CPYTOTAP command. On
System/36, use the TOLIBR procedure to
copy the members from the tape file back to a
library.

� Save the source and procedure members to a
tape on the AS/400 system using the Save
System/36 Library Member (SAVS36LIBM)
command. On System/36, use the TOLIBR
procedure to copy the members from tape
back to a library.

Restoring System/36 Files and
Members to the AS/400 System

There are two ways to move data files from
System/36 to the AS/400 system using tape:

� Copy the data to an exchange tape file on
System/36 using the TAPECOPY procedure.
On the AS/400 system use the TAPECOPY
procedure (System/36 environment) or the
Copy from Tape (CPYFRMTAP) command to
copy the data back to a disk file.

� Save the data file to tape on the System/36
using the SAVE procedure. In the System/36
environment on the AS/400 system, use the
Restore System/36 File (RSTS36F) command

or the System/36 environment RESTORE pro-
cedure to restore the data to a disk file.

There are two ways to use a tape to move source
and procedure members from System/36 to the
AS/400 system:

� Save the library that contains the source and
procedure members to a tape on the
System/36 using the SAVELIBR procedure.
On the AS/400 system, use the Restore
System/36 Library Member (RSTS36LIBM)
command to copy the members back to a
library.

� Copy the source and procedure members to a
tape on System/36 using the FROMLIBR pro-
cedure. On the AS/400 system, use the
RSTS36LIBM command or TOLIBR procedure
to copy the members from the tape back to a
library.

Restoring Files and Members
from an AS/400 System to the
System/36 Environment

There are two ways to move data files from one
AS/400 system to another AS/400 system using
tape:

� Copy the data to an exchange tape on the
AS/400 system using the TAPECOPY proce-
dure from the System/36 environment. On the
other AS/400 system, use the TAPECOPY
procedure to copy the data back to a disk file.

� Save the data file to tape on the AS/400
system using the SAVE procedure. On the
other AS/400 system, use the RESTORE pro-
cedure to restore the data to a disk file.

There are two ways to use a tape to move source
and procedure members from an AS/400 system
to another AS/400 system:

� Save the library that contains the source and
procedure members to a tape using the
SAVELIBR procedure. On the other AS/400
system, use the RESTLIBR procedure to
restore the library onto the system.

� Copy the source and procedure members to a
tape using the FROMLIBR procedure. On the
other AS/400 system, use the TOLIBR proce-
dure to copy the members from the tape back
to a library.

 Chapter 10. Magnetic Tape Storage 10-9

Moving from System/36 to the
System/36 Environment

When migrating from System/36 to the System/36
environment, you can use tapes as a migration
medium. You can copy or restore some files on
tape to the System/36 environment, depending on

the file type. See “Tape Files” on page 10-2 for
more information.

10-10 OS/400 System/36 Environment Programming V3R6

 Chapter 11. Security

This chapter introduces security concepts and how
to use security in the System/36 environment.
The System/36 environment uses the AS/400
security functions. For detailed information about
AS/400 system security, see the Security – Refer-
ence book.

AS/400-provided security helps limit who can use
the system by:

� Setting the security level of the system to limit
access to system resources

� Identifying users to the system by creating
user profiles

� Identifying users to resources by giving the
user authority to use those resources

The following figure summarizes system security:

RSLW102-0

User

System
Security
Level

User Profile
Special
Authorities

Resource
Security

Access to
Resources

System Security Levels

You can select the level of AS/400 system secu-
rity for your system by changing the system value
QSECURITY and starting the system. Security
levels on the AS/400 system include:

Level 10 Allows anyone to sign on and access
any resource.

Level 20 Password security is active. Resource
security is not active.

Level 30 Password and resource security are
both active.

Level 40 Password and resource security are
both active. Programs that try to
access objects through unsupported
interfaces will fail.

Level 50 Password and resource security are
both active. Programs that try to
access objects through unsupported
interfaces will fail. Security and integ-
rity of the QTEMP library and user
domain (*USRxxx) objects are
enforced. Programs that try to pass
unsupported parameter values to sup-
ported interfaces will fail.

For complete information about security levels,
see the Security – Reference book.

 Sign-On Security

Sign-on security is active when your system secu-
rity level is 20, 30, 40, or 50. A user must type a
password and a user name on the Sign On
display to sign on the system (a user profile by
that name must exist).

Note: Your system is shipped with physical secu-
rity active, and user passwords are not required.
Anyone can sign on the system by typing any user
name from 1 to 10 characters. If a user profile by
that name does not exist, the system creates one
and the user is given authority for a minimal-
security system.

A Sign On display for security levels 20, 30, 40,
and 50 follows:

 Copyright IBM Corp. 1995 11-1

à@ ð
 Sign On

System : SYSTEMð1
Subsystem : QBASE
Display : W2

User __________
Password
Program/procedure __________
Menu __________
Current library __________

(C) COPYRIGHT IBM CORP. 198ð, 1988.

á ñ

Notes:

1. Passwords do not appear when you type them
on this display.

2. The Password field does not appear on a
level 10 system.

User Profiles and Special User
Authority

User profiles identify users on the system. They
tell the system who can sign on and what func-
tions can be performed after signing on. Create
user profiles with the Create User Profile
(CRTUSRPRF) CL command. See the CL Refer-
ence book for more information.

Throughout this chapter the term user also means
remote users starting communications jobs.
Therefore, user profiles must be created for
remote users to sign on and allow access to
system resources.

User profiles tailor the way a user operates on the
system by controlling or assigning:

 � User class
 � Special authority

� Initial program security
 � Menu security
 � Limited capability
 � Group profile

 User Class

The classification you specify in a user profile
determines what system control operations and
menu options the user can use. The user classes
are:

 � *SECOFR: Security Officer
 � *SECADM: Security Administrator
 � *PGMR: Programmer
 � *SYSOPR: System Operator
 � *USER: General User

Each user class has a set of special authorities
associated with it depending on the system secu-
rity level you use. See the Security – Reference
book for information about the special authorities
associated with each user class.

See “System/36 User Identification File” on
page 11-8 for information about how these user
classes compare to System/36 user profile secu-
rity classifications.

 Special Authority

Special authority allows a user to perform system
control operations such as saving the system,
controlling other users' jobs, using the system
service tools, controlling spooled files, and cre-
ating user profiles. You assign special authority in
the user profile by specifying the class of user
(that has the appropriate special authorities asso-
ciated with it) or by tailoring the special authorities
for a specific user environment. Use the Create
User Profile (CRTUSRPRF) or the Change User
Profile (CHGUSRPRF) CL command to assign
special authority.

11-2 OS/400 System/36 Environment Programming V3R6

The following figure summarizes special authori-
ties a user can have:

┌──────────────────┐
│ Special │
│ Authority │
└─────────┬────────┘
 │ ┌────────────────────┐
 ├──────┤ \ALLOBJ │
 │ └────────────────────┘
 │ ┌────────────────────┐
 ├──────┤ \SECADM │
 │ └────────────────────┘
 │ ┌────────────────────┐
 ├──────┤ \SAVSYS │
 │ └────────────────────┘
 │ ┌────────────────────┐
 ├──────┤ \JOBCTL │
 │ └────────────────────┘
 │ ┌────────────────────┐
 ├──────┤ \SERVICE │
 │ └────────────────────┘
 │ ┌────────────────────┐
 ├──────┤ \SPLCTL │
 │ └────────────────────┘
 │ ┌────────────────────┐
 ├──────┤ \AUDIT │
 │ └────────────────────┘
 │ ┌────────────────────┐
 └──────┤ \IOSYSCFG │
 └────────────────────┘

Special authorities are defined as follows:

� All Object (*ALLOBJ) special authority allows
a user access to all system resources even if
the user has no authority to the resource.

Throughout this chapter, the term security
officer also means or someone with all-object
special authority.

Note: Before you give a user all-object
special authority, you should consider whether
the user really needs this authority. Giving a
user this authority may be a security risk
because it allows the user to use or delete
any user object.

� Security Administrator (*SECADM) special
authority allows a user to:

– Add users to the system distribution direc-
tory (this includes the right to create and
change user profiles for OfficeVision for
OS/400 users) using the Work with Direc-
tories (WRKDIR) CL command.

You must have security administrator
authority to use the CRTUSRPRF and
CHGUSRPRF CL commands. This

authority is not required for the Change
Profile (CHGPRF) CL command.

– Change or display authority for documents
or folders.

– Add and remove access codes on the
system.

– Give and remove a user’s access code
authority.

– Give and remove permission for users to
work on another user’s behalf.

– Delete documents and folders.

– Delete document lists.

– Change distribution lists created by other
users.

Only a user with *SECADM and *ALLOBJ
special authority can give another user
*SECADM special authority.

� Save System (*SAVSYS) special authority
allows a user to:

– Do save and restore operations for all
resources on the system.

– Free storage for all objects on the system.

� Job Control (*JOBCTL) special authority
allows a user to:

– Change, delete, hold, and release all files
on output queues if output or job queue is
operator controlled (OPRCTL(*YES)).

– Hold, release, and clear job and output
queues if output or job queue is operator
controlled (OPRCTL(*YES)).

– Hold, release, change, and cancel other
user’s jobs.

– Start writers to output queues if output or
job queue is operator controlled
(OPRCTL(*YES)).

– Change the running attributes of a job,
such as the printer for a job.

 – End subsystems.
– Initial program load (IPL) the system.

� Service (*SERVICE) special authority allows a
user to perform the alter service function. The
display and dump functions can be performed
without this authority.

Note: Before you give a user service special
authority, you should consider if the user
really needs this authority. Giving a user this

 Chapter 11. Security 11-3

authority may be a security risk because it
allows the user to access sensitive data.

� Spool Control (*SPLCTL) special authority
allows a user to control spool functions, such
as cancel, delete, display, hold, and release
other user’s spooled files. This authority
allows access to job and output queues that
are specified as OPRCTL(*NO).

� Audit (*AUDIT) special authority allows a user
to perform auditing functions. These include
turning auditing on or off for the system and
controlling the level of auditing on an object or
a user.

� Input/output (I/O) system configuration
(*IOSYSCFG) special authority allows a user
to change system I/O configurations.

Initial Program Security

Initial program security allows you to specify a
program/procedure to run when the user signs on
the system. For example, if you have a user
whose only responsibility is to run an audit
program once a month, you can prevent this user
from running any other program by specifying the
program that is required when the user signs on,
and then having the system sign the user off after
the program completes.

 Menu Security

When all the options listed in a menu match what
the user should be allowed to do, use menu secu-
rity. Menu security is a function of the operating
system that controls which system resources are
available to users. Menu security restricts a user
to a single menu or a sequence of menus defined
in the user profile. When the user signs on, the
specified menu appears, and all other menus
remain unavailable. The default value in the user
profile for the initial menu is the system Main
Menu.

For information about menu security consider-
ations, see the Security – Reference book.

 Limited Capability

You can impose special limits on a user’s capa-
bility within those specified in the user profile.
Limiting a user’s capability is similar to specifying
a mandatory menu, program/procedure, or current
library on System/36.

Limiting a user’s capability is done in the user
profile with the Limited Capability (LMTCPB)
value. For more information about the limited
capability values, see the Security – Reference
book.

 Group Profile

For information about user profiles and how to use
the group profile to simplify security, see the
Security – Reference book.

 Resource Security

Resource security allows you to control how a
user is able to use a resource by specifying
authority for:

� A user to a resource
� The public (all users not specifically secured)

to a resource
� A user to the library containing the resource
� A list of users on an authorization list to a

resource
� A user to an authority holder for a file

Notes:

1. When resource security is not active (level 10
or 20), anyone who signs on to the system
can use any file, library, or device on the
system.

2. When resource security is active, anyone with
*ALLOBJ special authority in their user profile
can use any file, library, or device on the
system.

3. A program can be written to ADOPT the
authority of another user profile while running
and thus have more authority than the user
who actually is running the program.

For more information on these items, see the
Security – Reference book.

11-4 OS/400 System/36 Environment Programming V3R6

Authority for a User to a
Resource

When you specify authority for a user to a
resource, you control the user’s object authority
and data authority. Object authority is the capa-
bility to perform specific operations on an object,
such as move or rename the object, and to control
the object’s existence. Data authority is the capa-
bility to perform operations on the data contained
in the object. Use the Grant Object Authority
(GRTOBJAUT) or Edit Object Authority
(EDTOBJAUT) CL commands.

You can define authority by combining one or
more object authorities with one or more data
authorities (user-defined), or by specifying one of
the following system-defined authorities that is a
preset combination of object authorities and data
authorities:

 � *ALL
 � *CHANGE
 � *USE
 � *EXCLUDE

Note: Use the system-defined authorities when-
ever possible.

You can use the Display Object Authority
(DSPOBJAUT) or EDTOBJAUT CL commands to
see what authorities have been assigned to a par-
ticular resource. On these displays, user-defined
authority is shown as USER DEF.

The following figure summarizes authorities that
can be specified for a user:

┌──────────────────┐
│ Resource │
│ Security │
└─────────┬────────┘
 │ ┌────────────────────┐
 ├──────┤ \EXCLUDE │
 │ └────────────────────┘
 │ ┌────────────────────┐
 ├──────┤ \USE │
 │ └────────────────────┘
 │ ┌────────────────────┐
 ├──────┤ \CHANGE │
 │ └────────────────────┘
 │ ┌────────────────────┐
 ├──────┤ \ALL │
 │ └────────────────────┘
 │ ┌────────────────────┐
 └──────┤ User Def │
 └────────────────────┘

Object Authority: The object authorities
listed here give a user the following capabilities:

Object Operational (*OBJOPR)
Look at the description of an object and use
the object as determined by the data authori-
ties that the user has to the object. This
authority is normally used in combination with
one or more data authorities.

Object Management (*OBJMGT)
Specify the security for the object, move or
rename the object, and add members to data-
base files.

Object Existence (*OBJEXIST)
Control the object’s existence and ownership.
This authority is necessary for users who
want to delete the object, free storage of the
object, perform save and restore operations
for the object, or transfer ownership of an
object. (If a user has save system
(*SAVSYS) special authority, he does not
need object existence authority to perform
save and restore operations.)

Object Alter (*OBJALTER)
Alter the attributes of an object. A user with
object alter authority can add and remove trig-
gers and referential constraints, and change
the attributes of database files and SQL pack-
ages.

Object Reference (*OBJREF)
Reference an object from another object such
that operations on the object can be restricted
by the other object. A user with object refer-
ence authority on a physical file can add a
referential constraint in which the physical file
is the parent. This authority is used only for
database files.

Authorization List Management (*AUTLMGT)
Add and change users and their authorities
on an authorization list. A user with authori-
zation list management authority can add,
change, or remove authority only if the user
has the authorities being added, changed, or
removed.

Data Authority: The data authorities listed
below give a user the following capabilities:

Read (*READ)
Display the contents of an object.

 Chapter 11. Security 11-5

Add (*ADD)
Add entries to an object. (For example,
adding job entries to a job queue or adding
records to a file.)

Update (*UPD)
Change the entries in an object.

Delete (*DLT)
Remove entries from an object. (For
example, removing messages from a
message queue or records from a file.)

Execute (*EXECUTE)
Run a program or locate an object in a library
or directory.

The following figure lists authorities that can be
user-defined.

 ┌──────────────────┐
│ User-defined │

 │ Authority │
 └────────┬─────────┘
 ┌───────────────┴───────────────┐
┌────────┴────────┐ ┌────────┴────────┐
│ Object │ │ Data │
│ Authority │ │ Authority │
└────────┬────────┘ └────────┬────────┘
 │ ┌───────────┐ │ ┌───────────┐
 ├──┤ \OBJOPR │ ├──┤ \READ │
 │ └───────────┘ │ └───────────┘
 │ ┌───────────┐ │ ┌───────────┐
 ├──┤ \OBJMGT │ ├──┤ \ADD │
 │ └───────────┘ │ └───────────┘
 │ ┌───────────┐ │ ┌───────────┐

├──┤ \OBJEXIST │ ├──┤ \UPD │
 │ └───────────┘ │ └───────────┘
 │ ┌───────────┐ │ ┌───────────┐

├──┤ \OBJALTER │ ├──┤ \DLT │
 │ └───────────┘ │ └───────────┘
 │ ┌───────────┐ │ ┌───────────┐
 ├──┤ \OBJREF │ └──┤ \EXECUTE │
 │ └───────────┘ └───────────┘
 │ ┌───────────┐
 └──┤ \AUTLMGT │
 └───────────┘

 System-Defined Authority: When you
assign a system-defined authority, you select a
subset of object authorities and data authorities for
an object.

The following table shows the subsets of object
authorities associated with each of the system-
defined authorities:

The following table shows the subsets of data
authorities associated with each of the system-
defined authorities:

The system-defined authorities listed here give a
user the following capabilities:

All (*ALL)
The user can control the object’s existence,
specify the security for the object, change the
object, and perform basic operations on the
object such as run a program or display the
object’s description and contents. All
authority provides all object and data authori-
ties.

Change (*CHANGE)
The user can add, change, and delete entries
in an object, or read the contents of an entry
in the object. Change authority provides
object operational authority and all the data
authorities.

Use (*USE)
Perform basic operations on the object, such
as run a program or display the object’s
description or contents. The user is pre-
vented from changing the object. Use
authority provides object operational authority
and both read and execute authority.

Exclude (*EXCLUDE)
Restrict access to an object. If this authority
is specified, you have neither private nor
public authority.

Authorization list management authority can be
specified for an authorization list and other author-
ities. The only exception is exclude authority. If
*EXCLUDE authority is specified, you have neither
private nor public authority.

See “Moving from System/36 to the System/36
Environment” on page 11-8 for a description of
how these system-defined authorities map to
System/36 access levels.

For more information on resource security, see the
Security – Reference book.

Authority READ ADD UPD DLT EXECUTE

*ALL X X X X X

*CHANGE X X X X X

*USE X X

*EXCLUDE No Authority

Authority OPR MGT EXIST ALTER REF

*ALL X X X X X

*CHANGE X

*USE X

*EXCLUDE No Authority

11-6 OS/400 System/36 Environment Programming V3R6

 Public Authority

A user name called *PUBLIC has been defined by
the system. The authorities you grant to this user
become the default authority (authorities used for
any user who does not have any other type of
security granted for the resource).

 Library-Level Security

Using library security, you can place all sensitive
objects in a library and then secure the library to
limit use of those objects. For example, if a
payroll application is placed in a single library, you
can control security to this application by control-
ling authority to the library. You can limit which
users are able to use, add, or delete the library
objects. To set library-level security, use the
GRTOBJAUT or EDTOBJAUT CL commands and
specify the library as the object to be secured.

Using library-level security in the System/36 envi-
ronment is similar to securing a library on
System/36. Authority to the library extends to
include the objects within the library, unless spe-
cifically changed. When you use any of the CL
create commands, use the default *LIBCRTAUT
specification on the AUT keyword. The newly
created objects assume the security level of the
library.

Note: If the CRTAUT value of a library changes,
the new value does not affect any existing objects.
Objects created after the CRTAUT value changes
assume the new authority value.

Just as on the System/36, objects within the
library can have different authorities than the
library itself. By setting the system value
QCRTAUT to *ALL, you can keep each object in a
library at level 30 authority. This way, the
System/36 environment more closely emulates the
security procedure on System/36. You can
increase the security level for objects that contain
sensitive information and grant authority to those
objects using authorization lists.

 Authorization Lists

An authorization list is a list of users and their
authorities. Authorization lists are created with the
Create Authority List (CRTAUTL) CL command
and are maintained using the Add Authority List
Entry (ADDAUTLE), Remove Authority List Entry

(RMVAUTLE), Change Authority List Entry
(CHGAUTLE), and Edit Authority List (EDTAUTL)
CL commands. You can then use an authori-
zation list to authorize a list of users to an object
in a single operation. When you secure an object
or a set of objects using the GRTOBJAUT or
EDTOBJAUT CL commands, you can specify an
authorization list name instead of specifying
authority for each user. Only one authorization list
can be specified for an object. When an authori-
zation list has been used to secure an object, indi-
vidual authorities given to the object for a specific
user take precedence over the authorization list.
Public authority given to the object also takes pre-
cedence over the public authority in the authori-
zation list. If you want the public authority for an
object to come from the authorization list, specify
a value of *AUTL for the public authority of the
object.

 Authority Holders

Authority holders allow a user to secure a file by
name before the file is actually created, or to hold
the authorizations for a file as it is deleted and re-
created. When an authority holder is created for
an existing file, all authorities for the file are trans-
ferred to the authority holder. Once the authority
holder is created, all authority given to the object
is actually given to the authority holder. This
approach allows the system to keep authorities for
System/36 environment applications that often
delete files and then re-create them. If the file is
deleted, the authority information is kept with the
authority holder to be used again when the file is
re-created or restored. Authority holders are
created using the Create Authority Holder
(CRTAUTHLR) CL command.

Note: Authority holders are valid only for
program-described database files. Files created
by System/36 environment procedures and com-
mands are normally program-described files. See
Chapter 7, “Files” for more information on
program-described files.

For more information about authority holders, see
the Security – Reference book.

 Chapter 11. Security 11-7

Moving from System/36 to the
System/36 Environment

During migration from your System/36 to the
System/36 environment, security levels and classi-
fications are migrated following the procedures
described in this section.

System/36 User Identification File

Each user profile defined in the System/36 user
identification file is replaced on the AS/400 system
with an AS/400 user profile. The following table
shows how the System/36 user profile security
classifications are mapped to AS/400 user profile
user classes:

If you are familiar with System/36 security classi-
fications, use this mapping as a guideline when
you are assigning user class to new users.

System/36 Resource Security File

On System/36, the resource security information is
contained in the resource security file and applies
to files, libraries, folders, subdirectories, folder
members, and special resource types such as
alternate index files, the system library, and
groups of files, libraries, and folders. On the
AS/400 system, authority to objects are associated
with the object itself, not in a separate file. Also,
authority to objects is checked by the System/36
environment whenever an object is referred to, not
just when it is used. For example, the FILE OCL
statement and the ?F'S,NAME'? procedure sub-
stitution expression both require a minimum
authority of *USE to the file to be run. On
System/36, the FILE OCL statement and
?F'S,NAME' substitution expression could be run
without any authority to the file. The following

sections show how information from the resource
security file is moved to or done on an AS/400
system.

Access Levels: When the System/36
resource security file is migrated to the System/36
environment, the System/36 access levels are
mapped to system-defined authorities on the
AS/400 system, as shown in the following figure:

Resource Ownership: On System/36, a
resource can have multiple owners or no owner.
On the AS/400 system, a resource must have one
and only one owner. When resources are
migrated from System/36 to the AS/400 system,
ownership is established using the following rules:

� Resources with no owner on System/36 are
owned by a system-supplied default owner
user profile called QDFTOWN.

� Resources with more than one owner are
owned by the first owner found in the resource
security file. All other System/36 owners are
given all (*ALL) authority to the resource but
are not owners.

� Library members, which could not have an
owner on System/36, are given the same
owner as the library that contained them.

Libraries: When a secured library is migrated
from System/36 to the AS/400 system, an authori-
zation list is created with the same name as the
library. This authorization list is used to secure
the library and all the objects migrated into the
library.

Each user record in the resource security file for
the library is added to the authorization list with a
comparable access level. The public authority for
the authorization list comes from the default
access level specified for the library in the

Figure 11-1. Access Levels and AS/400 System-
Defined Authorities

System/36
Access Level

AS/400
System-Defined Authority

Owner *ALL
Change *CHANGE + *OBJEXIST
Update *CHANGE
Read *USE

System/36 Security Classi-
fication

AS/400 System User Class Run *USE
None *EXCLUDE

M — Master Security Officer Security Officer —
*SECOFR

S — Security Officer Security Administrator —
 *SECADM

O — System Operator System Operator —
*SYSOPR

C — Subconsole Operator System Operator —
*SYSOPR

D — Display Station User User — *USER

11-8 OS/400 System/36 Environment Programming V3R6

resource security file. No public or private
authority is given to the library itself.

If the library was not secured on System/36, the
library and all the objects in the library are placed
on the AS/400 system with the authority specified
by the system value of QCRTAUT.

Objects migrated from System/36 libraries to the
AS/400 system consist of:

Procedures
A procedure member in a System/36 library is
migrated to a member of a file in a library on
the AS/400 system. The library name on the
AS/400 system is the same as the library
name on the System/36. The file name on
the AS/400 system is always QS36PRC. The
member name in file QS36PRC is the same
as the procedure name on the System/36.

If the library was not secured on the
System/36, QS36PRC is created with the
create authority of the library (CRTAUT).

Source members
A source member in a System/36 library is
migrated to a member of a file in a library on
the AS/400 system. The library name on the
AS/400 system is the same as the library
name on the System/36. The file name on
the AS/400 system is always QS36SRC. The
member name in file QS36SRC is the same
as the procedure name on the System/36.

If the library was not secured on the
System/36, QS36SRC is created with the
create authority of the library (CRTAUT).

Programs
Each program is secured by the create
authority for the AS/400 library of the same
name as the System/36 library where the
program object module is found. This may or
may not be the same library as the program
source.

If the library is not secured, the program is
migrated with the authority specified by the
system value of QCRTAUT.

Libraries after Migration: You can add users to
or remove users from an authorization list using
the ADDAUTLE, RMVAUTLE, CHGAUTLE, and
EDTAUTL commands. These changes to the
authorization list apply to all objects secured by
the authorization list.

If you create a new library and wish to secure it,
you can create an authorization list using the
CRTAUTL CL command, and then add a private
authority to the list for each user you wish to use
the library. Use this authorization list to secure
the library and all the objects in the library.

Notes:

1. Objects created in a library acquire the
authority specified in the creation command.
If an authority is not specified in a command,
the object gets the create authority of the
library by default. Exceptions to this are save
files (object type *SAVF), which are created
with *EXCLUDE authority.

Objects moved or restored into a library retain
their authorities.

When adding new objects to the library (pro-
grams, display files), you can secure the
objects by the authorization list. New objects
placed in the library are not automatically
secured by the authorization list.

2. A library may also be included as a part of a
GROUP or referred to as a parent or child in
the System/36 resource security file. See
“Group Names” on page 11-10 for a
description of groups and parent/child, and for
more information on how libraries are secured
in these cases.

3. Migrating UPDATE authority to *CHANGE
takes away the ability to add, delete, or
change procedures and source members and
to delete programs and display files. Adding
and changing members in QS36PRC or
QS36SRC requires object management
(*OBJMGT) authority. Deleting members in
QS36PRC or QS36SRC and deleting pro-
grams and display files requires object exist-
ence (*OBJEXIST) authority.

4. Migrating CHANGE to *CHANGE plus
*OBJEXIST authority takes away the ability to
add or change procedure and source
members. Adding and changing members in
QS36PRC or QS36SRC requires *OBJMGT
authority.

5. MRT programs receive no special treatment
during migration, but do get special treatment
when they are run. This special treatment is
discussed in “Multiple Requester Terminal
(MRT) Programs” on page 11-12.

 Chapter 11. Security 11-9

6. REPLACE (*YES) on compiles preserves
authority to the program.

Files: When an entry exists in the System/36
resource security file for a file that does not exist,
an authority holder is created on the AS/400
system with the same name as the file. The
public authority for the file is assigned to the
authority holder using the default access level
from the entry in the resource security file. To
determine how this authority is mapped to the
system-defined authority, see Figure 11-1 on
page 11-8. The user authorities for the file are
set from each user record specified in the
resource security file by applying the same
mapping as shown in Figure 11-1 on page 11-8.

Authority holders are created for files that do not
exist on System/36 at migration. If the file exists,
it must be migrated. If it is not migrated, an
authority holder is not created.

Files after Migration: To change the authority
for the file, use the GRTOBJAUT, RVKOBJAUT,
or EDTOBJAUT CL commands.

To secure a new file, create an authority holder
using the CRTAUTHLR command, and specify the
default authority needed as the public authority.
For each user, grant a private authority using the
GRTOBJAUT or EDTOBJAUT CL commands.
The authority holder may be created before or
after the actual file is created.

Notes:

1. Files can be secured without the use of an
authority holder, just like other objects.
However, if the file is deleted and recreated,
all the authorities previously granted to the file
are lost unless an authority holder is defined.

2. DISP-OLD processing of files requires *ALL
authority to the file. On the System/36 it
required CHANGE authority. When
DISP-OLD processing occurs for existing files,
the required authority to the file’s library may
require *CHANGE if it is necessary to change
the attributes of the existing file.

3. When a new file is created, and the file
already exists with a different date (date-
differentiated files), *ALL authority is required
to the existing file.

4. System/36 environment files are collected in a
files library and therefore additional authori-
zation is required to the files library.
*CHANGE to the library is required when cre-
ating new files and *USE to the library is
required when using existing files.

Folders, Subdirectories, and Folder
Members: The security information for word
processing is not migrated with the associated
user ID. For more information about folder secu-
rity, see the Using OfficeVision/400 Word Pro-
cessing book.

Group Names: During migration of the
System/36 resource security file, if a GROUP
entry is encountered, an authorization list is
created with the same name as the group name.
Creation of the authorization list may add new
functions. All files and libraries containing this
group name as part of their name are secured by
the authorization list. Each user record for the
group in the resource security file is added to the
authorization list with the appropriate access level
mapped to a system-defined, specific authority.
When a library is part of the group, the library and
all the objects contained within the library are
secured by the GROUP authorization list, not by
the library’s authorization list.

Group Names after Migration: If you want to
add new users to the GROUP, use the
ADDAUTLE CL command to add them to the
authorization list.

If you want to add your own new GROUP entry,
create an authorization list (CRTAUTL command)
with the group name as its name and add
authority (ADDAUTLE CL command) for each user
you want to use the group. Use this authorization
list to secure all the objects in the group by specif-
ically granting the authorization list authority for
the objects.

When new files are created in the System/36 envi-
ronment with the GROUP name as part of their
name, they are automatically secured with this
authorization list. Other objects such as libraries
and programs are not.

Note: Automatically adding files to group authori-
zation lists only occurs when files are created
using System/36 environment procedures (for
example, the BLDFILE or COPYDATA proce-

11-10 OS/400 System/36 Environment Programming V3R6

dures), and does not occur when creating files
using AS/400 CL commands (CRTPF, CPYF, and
so on).

 Parent-Child Concept: The System/36
parent-child concept is a way of defining a
relationship between a particular file or library and
another file or library contained in the same
resource security file. The parent contains the
resource security information for all of its children.
The parent-child concept reduces the number of
records needed in the resource security file, when
several resources all have the same list of author-
ized users. Only the parent resource needs user
records, since they also apply to each of the chil-
dren resources.

During migration, an authorization list is created
with the name of the parent. User records for the
parent result in an authorization list entry being
added to the authorization list for the user. The
parent resource, and each file or library listed as a
child, is secured by the authorization list.

If the parent is a library, the authorization list
created for the library is used to secure each
child. If the child is a library, the authorization list
of the parent is used to secure the library and
each of the objects in the library. Authorization
lists created for parent-child relationships will be
used for files and libraries instead of any GROUP
authorization lists that may have been defined.

Parent-Child after Migration: To continue using
the parent-child concept to secure resources in
the System/36 environment, create an authori-
zation list (CRTAUTL command) and add authority
for each user to use the parent (ADDAUTLE
command). When creating new children objects,
use this authorization list to secure them. If the
child is a library, each of the objects within the
library must have a specific grant to the authori-
zation list.

Note: Library objects that are deleted and recre-
ated without specifying an authority are created
with the create authority (CRTAUT) of the library
they are created into. Libraries that are deleted
and recreated without a specified authority default
to the create authority of library QSYS.

System Library: Objects in the system
library that have not changed since they were
shipped with System/36 are not migrated. They
are replaced with the support shipped with the
System/36 environment.

Objects that have been changed since they were
shipped on System/36 are placed in a library
named #LIBRARY on the AS/400 system. They
are migrated using the same rules as objects in
other libraries. #LIBRARY is created during
migration if it did not exist before migration.
#LIBRARY is owned by the QSYS user profile and
is given a default public authority that is the create
authority of library QSYS.

 Additional Security
Considerations

Beyond the general security concepts, the fol-
lowing circumstances require special consider-
ation.

Entering the System/36 Environment:
When an AS/400 job becomes a System/36 envi-
ronment job by entering the Start System/36
(STRS36) CL command or Start System/36 Proce-
dure (STRS36PRC) CL command, or because the
special environment value (SPCENV(*S36)) is
specified in the user profile, the user must have
*USE authority to the following libraries:

� The #LIBRARY library
� The QSSP library
� The System/36 environment files library
� The current (*CURLIB) library

If no current library exists when the System/36
environment is entered, #LIBRARY is made
the current library.

Command Security: On the AS/400
system, CL commands themselves can be
secured, just as resources are. For example, the
CL command CRTPF could be secured so that
only the system security officer is allowed to
create files. This can be done by using the
GRTOBJAUT CL command to change the public
authority of the file to *EXCLUDE. When this type
of security is used on your system, System/36
environment commands and procedures are also
affected. For more information about securing
commands, see the Security – Reference book.

 Chapter 11. Security 11-11

For a summary of command authorities required
by System/36 environment commands, proce-
dures, and operation control language (OCL)
statements, see Appendix E, “Security Consider-
ations for the System/36 Environment.”

Multiple Requester Terminal (MRT)
Programs: MRT programs are migrated from
System/36 like other programs, and can be
secured like any program. However, when you
run MRT programs in the System/36 environment
on the AS/400 system, you must consider some
additional factors.

Selecting the proper user profile under which to
run the MRT program becomes very important.
On the AS/400 system every job, including MRT
programs, must designate one user profile under
which the job is to run. This user profile must
have the proper authority to all objects referred to
by the job, or the job will get an authorization error
preventing the MRT from running. Select the user
profile under which the MRT programs are to run
through a configuration setting that can be
changed using the Change System/36 (CHGS36)
CL command. This same command controls a
configuration setting that determines how files are
handled. An example configuration display
follows:

à@ ð
Change S/36 MRT Security and Performance

S/36 environment : #LIBRARY

Type choices, press Enter.

User profile used by MRT program . . . 1 1=First user of MRT
2=Owner of MRT

Check authority of user to files used
by MRT program 1 1=All users

 2=First user

Seconds to wait before ending a
non-NEP MRT 6ð ð-32767

 Bottom

F3=Exit F5=Refresh F1ð=Set to default values F12=Cancel

á ñ

Only users with a user class of *SECOFR in the
user profile are allowed to change MRT security
using the CHGS36 command.

Using the CHGS36 command, a user can control:

� Whether all MRT programs should run using
the owner of the program’s user profile, or

whether they should run using the user profile
of the person who started the MRT program
(the default).

� Whether all users of the MRT program should
have their authorization to files checked (the
default), or whether authorization is checked
for the first user only.

Designating User Profile for MRT Programs:
Selecting the correct user profile is important
because authorization to all resources, except
files, is checked against this user. If you decide to
use the first user’s profile (the default), a different
user profile could be used each time the MRT
program is run. Make sure none of the users
have too little or too much authority. If you
change MRT security, and use the MRT program
owner’s user profile, make sure the program
owner does not have too little or too much
authority.

Defining Files Authorization Checking: Author-
ization to files is handled differently than other
resources. By default, each user who attempts to
use an MRT program will be checked to ensure
that they have authority to all of the files currently
in use by the MRT program. If having authority to
the MRT program itself is sufficient security, you
can indicate in your configuration for the
System/36 environment to only check authority to
files as they are opened by the MRT program, and
not to check authority for each new user of the
MRT program. Doing so will improve performance
of your MRT program.

Note: When a MRT program opens a file, the
user profile under which the MRT program is
running must always have authorization to that
file, or the open request will fail.

Saving and Restoring Authorities

Save authorities using the Save System
(SAVSYS) command. Restore authorities using
the Restore Authority (RSTAUT) command.

See the CL Reference book and the Security –
Reference book for information about saving and
restoring authorities.

11-12 OS/400 System/36 Environment Programming V3R6

 Chapter 12. Designing Records

This chapter describes how to design records in
the System/36 environment. A record is a col-
lection of fields treated as a unit. The way you
design records depends on the type and format of
the records needed, the type of fields and files
they are used with, and how they are used.

Identifying Required Fields

Records must contain all the required input and
output fields.

Depending on the application you are using, any
of the following fields can be required:

� Keys or relative record numbers
� A status byte to allow for deletions
� A record code to identify the record
� Fields for exception reports (for example,

credit limit or minimum stock)
� Fields to help in analysis (for example,

number of accesses to this record, date of last
update, number of returns, or pending order)

� Fields reserved for expansion

 Naming Fields

Assign meaningful and standard field names to
make your program and the related application
clear and easy to use.

Establish a list of standard abbreviations to use for
field names because most high-level languages
(such as RPG II or COBOL) limit the number of
characters you can use for field names. For
example, you can abbreviate the word MASTER
as MST, MAST, or MSTR. Choose one abbrevi-
ation and use it consistently.

When you use files containing fields that have the
same name, assign a prefix to the field name to
avoid confusion. For example, use MST as the
prefix to all field names in your master file, or
TRAN for transaction file, PAY for payroll file, and
INV for inventory file.

Standardize the field description entries for your
files. Write a field description for each of your

files and store these definitions in separate source
members in your libraries. Use $AUTO / COPY,
programming development manager (PDM) or
source entry utility (SEU) to copy these field defi-
nitions into your program.

This approach has several advantages:

� Data definitions are standardized. Your pro-
grammers use identical file definitions with the
same field names and descriptions.

� You save time. The field description for each
file needs to be written, entered, and
debugged only once. All programmers can
use these descriptions.

� Maintenance is easier. Programmers are
familiar with field definitions in other programs.
You change only one source member to
change a field definition. The system copies
this member into each program that used the
old source member.

� You can use the source member for each file
to describe the contents of the file. When you
build the field description for each file, include
comments that describe what each field is
used for, what the valid range of values is,
and other additional information.

The high-level language you use to write your
program determines the maximum length you can
specify for your field names. See the correct lan-
guage book for information about the maximum
length allowed for field names in the programming
language you use.

Using Numeric Fields

System/36 is a zoned decimal system. The
AS/400 system is a packed decimal system. If
you have numeric fields, determine whether the
field is to be in zoned decimal format, packed
decimal format, or binary format. Packed and
binary formats reduce the amount of space
needed to store numeric information.

Allow the maximum length for amount fields to
prevent a high-order position from being lost.

 Copyright IBM Corp. 1995 12-1

Zoned Decimal Format

A zoned decimal format is a format for repre-
senting numbers in which the digit is contained in
bits 4 through 7 and the sign is contained in bits 0
through 3 of the farthest right byte; bits 0 through
3 of all other bytes contain 1s (hex F). For
example, in zoned decimal format, the decimal
value of +123 is represented as 1111 0001 1111
0010 1111 0011. For data in zoned decimal
format, each byte of storage represents a single
character. Each byte of storage is divided into a
4-bit zone portion and a 4-bit digit portion.
Figure 12-1 shows zoned decimal format.

In Figure 12-1, the zone portion of the farthest
right byte represents a positive sign by
hexadecimal F (1111) or C (1100), and a negative
sign by hexadecimal D (1101).

Figure 12-2 shows the number 7462 stored in
zoned decimal format.

You can specify whether a field in your program is
signed or unsigned. A signed field stores the sign
with the data. An unsigned field does not store
the sign with the data. Define the field as signed
to process fields with a negative value. If you do
not specify that a field is signed, the system
assumes that the data in the field is positive. This
can cause unexpected results. For example, if
you code your program to do an operation only
when the sign of a field is negative, the operation
cannot be done if the field is unsigned.

When the zone portion of the farthest right byte is
changed to represent the sign, the farthest right
byte becomes a character that cannot be printed
or displayed.

RSLW047-1

DigitDigitDigitDigit DigitZone Zone SignZone Zone

Bits

Byte Bits

1101
1111

or
1100

= Negative

= Positive

0 70 70 7 0 70 7

Figure 12-1. Format of Data in Zoned Decimal Format

RSLW048-0

1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0

7 4 6 2

Sign (indicates that
the field is positive)

Figure 12-2. Example of the Number 7462 Stored in Zoned Decimal Format

12-2 OS/400 System/36 Environment Programming V3R6

The following table shows how changing the sign
affects how the farthest right byte is printed or dis-
played.

For example, if you place a value of +1234 in a
signed zoned decimal field, it is stored as:

F1 F2 F3 F4

If you print this field, it appears as:

1 2 3 4

If you place a value of −1234 in a signed zoned
decimal field, it is stored as:

F1 F2 F3 D4

If you print this field, it appears as follows because
hex D4 is the EBCDIC value of the letter M:

1 2 3 M

Your program must convert the data in the field to
properly print the value.

Packed Decimal Format

A packed decimal format is a representation of a
decimal value in which each byte within a field
represents two numeric digits except the farthest
right byte, which contains one digit in bits 0
through 3 and the sign in bits 4 through 7. For all
other bytes, bits 0 through 3 represent one digit;
bits 4 through 7 represent one digit. For example,
the decimal value +123 is represented as 0001
0010 0011 1111. Each byte of storage represents
2 decimal digits for data in packed decimal format.
You can store almost twice as much data in the
same amount of storage by using packed decimal
format instead of zoned decimal format.

In packed decimal format, each byte of storage
except the farthest right byte is divided into two
4-bit digit portions. The following figure shows
packed decimal format:

RSLW049-0

0 70 7

Byte

DigitDigit SignDigit

The farthest right 4 bits of the farthest right byte
are reserved for the sign. If you are storing a field
with an odd number of digits, the field completely
fills the bytes of storage reserved for it, as shown
in the figure above. If you are storing a field with
an even number of digits, the field is right-adjusted
within the bytes of storage reserved for it. The
farthest left digit portion of the farthest left byte
contains only zeros.

Figure 12-3 shows the number 7462 stored in
packed decimal format.

Sign Portion of
the Farthest
Right Byte

Value of the
Farthest Right
Byte

How the
Farthest Right
Byte Is Printed
or Displayed

Hex F (positive) 0 through 9 0 through 9

Hex C (positive) 0 Unprintable1

Hex C (positive) 1 through 9 A through I

Hex D
(negative)

0 Unprintable1

Hex D
(negative)

1 through 9 J through R

1 These characters can be printed if your printer has a
printer belt that includes additional special charac-
ters.

RSLW050-0

0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 1 1

7 4 6 2

Sign (indicates that
the field is positive)

0

Figure 12-3. Example of the Number 7462 Stored in Packed Decimal Format

 Chapter 12. Designing Records 12-3

In packed decimal format, hex F represents a pos-
itive sign and hex D represents a negative sign.

If you define a numeric field with a value of +1234
as an unsigned packed decimal field, it is stored
as:

ð1 23 4F

If you define a numeric field with a value of −1234
as an unsigned packed decimal field, it is also
stored as:

ð1 23 4F

However, if you define a numeric field with a value
of −1234 as a signed packed decimal field, it is
stored as:

ð1 23 4D

To print or display a packed decimal field, you
must translate it into its zoned decimal equiv-
alents.

The maximum length of a packed decimal field is
15 digits (8 bytes of storage). The following list
shows the number of bytes of storage required to
store zoned decimal and packed decimal fields:

Digits Zoned Packed
in Decimal Decimal
Number Format Format

1 1 1
2 2 2
3 3 2
4 4 3
5 5 3

6 6 4
7 7 4
8 8 5
9 9 5
10 10 6

11 11 6
12 12 7
13 13 7
14 14 8
15 15 8

Note: System/36 allows a program to include
nonnumeric data in a numeric field. For example,
the number 12 preceded by two blanks would be
stored as:

4ð 4ð F1 F2

The two blanks are not valid numbers and, in a
non-System/36 environment, such programs
cause a decimal data error. RPG II and
System/36 environment COBOL will accept invalid
data in zoned numeric fields and convert the
invalid data to a valid number.

System/36 would allow the program to store and
manipulate a packed decimal format field that had
invalid numeric digits, such as the B and C in the
following packed decimal format string:

ð4 B1 2C 4F

Internally, RPG II works in zoned arithmetic and
converts fields from packed to zoned when the
data is read from a file. In the conversion
process, the invalid digits are changed to zero for
packed fields. RPG II in turn converts the field
from zoned format back to packed format before
writing it to the file. COBOL applications are able
to define and manipulate fields in packed decimal
format without converting them to zoned. The
AS/400 system (including System/36 Environment
programs) does not support operations with
packed decimal format fields that contain invalid
digits. If the program detects a decimal data
error, an error message will appear. The user
should end the application, correct the data in
error, and change the program(s) that introduced
the invalid digits.

 Binary Format

Data in binary format is represented in storage in
binary digits (as a number to the base 2). A binary
field occupies less storage than a zoned decimal
field and sometimes occupies less storage than a
packed decimal field. The following list shows
how many bytes of storage are occupied by binary
fields of various lengths:

Number of Bytes Required Bytes of
Digits to Represent Storage
in Field the Number Occupied

1 to 2 1 2
3 to 4 2 2
5 to 6 3 4
7 to 9 4 4
10 to 11 5 8

12 to 14 6 8
15 to 18 7 8

12-4 OS/400 System/36 Environment Programming V3R6

A binary field normally reserves the farthest left bit
in storage as the sign position. If the sign position
contains 0, the number is positive. If the sign
position contains 1, the number is negative.

For example, if a binary field has a value of −1234
and you define the field as unsigned, it is repre-
sented in storage as hex 04D2, as shown in the
following figure:

RSLW051-0

Sign
Position

0 4 D 2

0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0

If you define a binary field as signed, it is stored
as a negative number. Negative binary fields are
stored in twos complement. To find the twos com-
plement of a binary field, follow these steps:

1. Change the setting of each bit in the binary
representation:

� Change each 0 to 1.
� Change each 1 to 0.

2. Add 1 to the new binary representation.

For example, in the following figure, the value
−1234 is stored as hex FB2E:

RSLW052-0

Sign
Position

F B 2 E

1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 0

Note: To print or display a binary field, you must
translate it into its zoned decimal equivalent.

 Floating-Point Format

When data is expressed in floating-point format,
each character or digit occupies one byte of
storage and consists of a decimal number fol-
lowed by an exponent. The decimal number is
called the mantissa . A mantissa in the
System/36 environment is the decimal number
portion of data expressed in floating-point format.
The exponent specifies a power of 10 used as a

multiplier to indicate the placement of the decimal
point.

The value of a floating-point number is the
mantissa multiplied by the power of 10 expressed
by the exponent. For example, 3E02 is the
floating-point representation of 3 times 10 to the 2
power, or 300; while 3E-2 equals 0.03.

Data in floating-point format has the following
form:

[±]mantissaE[±]exponent

+ or − signs
A plus (+) or minus (−) sign is optional before
the mantissa and before the exponent. If no
sign is specified, the system assumes a posi-
tive mantissa or exponent. A plus (+) sign
indicates positive values and a minus (−) sign
represents negative values.

mantissa
The mantissa can contain from 1 to 16 digits.
The mantissa must contain one actual or
assumed decimal point as a leading,
embedded, or trailing symbol.

E The letter E immediately follows the mantissa
and indicates the exponent.

exponent
The exponent immediately follows the second
optional sign character. It can contain from 1
to 3 digits.

Using Alphanumeric Fields

Alphanumeric data can contain letters, numbers,
and special characters. Special characters are
those characters that are not alphabetic or
numeric characters.

See the correct language book for information
about the lengths allowed for alphanumeric fields.

 Using Keys

A key is one or more characters used to identify
the record and establish the record’s order within
an indexed file. The maximum key length is 120
bytes, although in some cases the limit is lower
(for example, DFU, RPG II, and Query/3X restrict
the key length to 99 bytes).

 Chapter 12. Designing Records 12-5

A multiple-index file uses a separate key for each
index. The key for the indexed physical file must
consist of fields that are next to each other in the
record. The keys for indexed logical files (for all
file types) do not have to be built from fields that
are next to each other in the record.

You can use up to three fields that are not
touching as the key for an indexed logical file. For
example, fields 1, 2, and 3 can be the key for the
indexed physical file. Fields 1, 3, and 10 of a
record can be the key for an indexed logical file.

Chapter 7, “Files,” describes files and indexes.

Allowing for Deletion of Records

When a record is deleted from a delete-capable
file, the record remains in the file, but the data is
not available. If you may need the data in a
deleted record, do not use a delete-capable file.
Have your program place a delete code in the
record. When the file is processed, your program
can check for this code. For example, if a cus-
tomer record becomes inactive, place a delete
code in the record and have the program check
for this delete code. When the program finds this
delete code, it can bypass the record instead of
processing it. Remove the delete code to make
the customer record active.

The system does not treat records with a user-
specified delete code as deleted records.

To remove deleted records from a file, use the
COPYDATA or SAVE procedure. The System/36
Environment Reference book has information
about these procedures.

Determining Field Size

Field size depends on the data in the field. Each
field should be long enough to contain the largest
number of characters for that field in any record.
For example, the length of each customer’s name
varies, and while 20 positions is usually long

enough to contain a customer’s name, a customer
could need more than 25 characters.

Defining Record Length

The lengths of different fields in a record vary, but
a field should have the same length in every
record, and all records in one file must have the
same length. Record length is the sum of the field
lengths, plus any extra space reserved for new
fields. The maximum record length for a disk file
is 4096 positions.

Allowing for New Fields

Make your record length longer than required so
that you can add new fields (although this requires
extra space and can decrease performance). For
example, if a file contains 1000 records, and if 20
positions are set aside in each record for future
additions, the file requires an additional 20 000
bytes.

To add new fields as they are needed, you can
use a program that reads the file, adds the new
fields, and writes the larger file back to disk.

Describing Record Layout

Record layout includes the order of the fields in
the record, the length of each field, and the name
of each field. Programs are easier to write when
you describe your record layouts. Figure 12-4
shows the layout of a master customer record.
The field names all begin with the letter C to indi-
cate that the record is from the customer master
file.

Figure 12-5 shows one method of describing
record layout using a standard form.

Figure 12-6 on page 12-8 is a full-sized sample of
a record layout description form. You can make
copies of this form to use in describing your
record layouts.

12-6 OS/400 System/36 Environment Programming V3R6

1 2 3 4 5 9 10 34 35 59 60 81 82 83 84 88 89 90 91 128

CUSNO CNAME CADDR CCITY CZIPCD

CRECCD CDELETE CSTATE CSLSNO Not Used

RSLW035-0

Figure 12-4. Sample Record Layout of a Customer Record

Decimal
PositionValues Field Description

Field
Name Length Format

Location
From To

INPUT/OUTPUT Record Description

RSLW061-1

Key Length

Updated by

File No.

Page

Date

System

Key

Used by

of

Prepared bySequence

Record Name

File Name

File Organization

Record Length

Created by

Figure 12-5. Sample Record Layout Description Form

 Chapter 12. Designing Records 12-7

RSLW062-0

Decimal
PositionValues Field Description

Field
Name Length Format

Location
From To

Record Name

File Name

File Organization

Record Length

Created by

Key Length

Updated by

File No.

Page

Date

System

Key

Used by

INPUT/OUTPUT Record Description

of

Prepared bySequence

Figure 12-6. Full-Size Sample Record Layout Description Form

12-8 OS/400 System/36 Environment Programming V3R6

 Chapter 13. Communications

The AS/400 system uses data communications to
send and receive information from different
devices and systems. The system acts as a host
system to remote work stations, as a secondary
station to a remote host system, or it communi-
cates with another system as a peer. This
chapter contains information about:

� Communications configuration on the AS/400
system

� OS/400 subsystem considerations
� Writing communications programs
� Running communications applications in the

System/36 environment
 � Migration considerations

For additional information about communications
on the AS/400 system, see the Communications
Management book.

Configuring the Communications
Environment

You must configure both your local and remote
system before communications can be estab-
lished. This section describes the relationships of
the essential elements of System/36 Interactive
Communications Feature (SSP-ICF) and their
counterparts on the AS/400 system, the OS/400
Intersystem Communications Function
(OS/400-ICF), hereafter referred to as ICF.

 System/36 Background

On System/36, a primary SSP-ICF relationship
exists between the remote location requested by
an application and the command used to activate
that remote location:

� Remote location name . The remote location
name is a keyword parameter (LOCATION) on
the SESSION OCL statement, or a positional
parameter on the MSRJE, PASSTHRU,
EM3270, or ES3270 procedure command. A
positional parameter is a parameter that
must appear in a specified location relative to
other parameters. It is the name of the spe-

cific information within a library member
(called a subsystem member) that defines the
communications facilities used by that applica-
tion. A subsystem member has one or more
remote location definitions that must be acti-
vated (using the ENABLE procedure) when
those remote locations are requested by an
application.

Note: The concept of a System/36 SSP-ICF
subsystem does not exist on the AS/400
system. See “OS/400 Subsystem Consider-
ations for System/36 Users” on page 13-7
and the Work Management book for informa-
tion on OS/400 subsystems.

The important parameters on the ENABLE
command are the subsystem member name
(first parameter) and the line number (third
parameter). The subsystem member name
specifies which subsystem member contains
the remote locations being enabled. The spe-
cific remote location name (fifth parameter)
might be present, but it is often omitted. If the
remote location name is omitted, remote
locations in the subsystem member defined
with ACTIVATE LOCATION AT ENABLE = Y
are enabled.

� Locating the correct subsystem member .
Unless the ENABLE procedure command
includes the remote location parameter, no
obvious link exists between a remote location
name and the subsystem member that con-
tains it. If you do not know which subsystem
member contains the remote location you
need, examine the procedures used to run
your SSP-ICF applications.

If the procedures containing SSP-ICF applica-
tions also contain an ENABLE statement, the
first parameter of the ENABLE statement
should be the name of the subsystem member
that contains the remote location definition.
Otherwise, you must determine which subsys-
tems are active when the SSP-ICF applica-
tions are running and review each (using the
CNFIGICF procedure) to determine which has
the remote location referred to by the applica-
tions.

 Copyright IBM Corp. 1995 13-1

 Communications Procedures
Examples

The examples in this section show the mapping
between System/36 configuration concepts and
AS/400 configuration concepts. They show mul-
tiple single statements entered separately. The
multiple calls can be replaced by a call to a CL
program containing these statements. See the CL
Reference book for information about writing CL
programs. See the Communications Configuration
book for information about AS/400 communica-
tions configuration.

The System/36 environment on the AS/400
system supports the SESSION OCL statement
with some exceptions. Figure 13-1 shows the
relationships between a System/36 ENABLE state-
ment and the SESSION OCL statement, and the
corresponding AS/400 Vary Configuration
(VRYCFG) command and SESSION OCL state-
ment.

On System/36, the SESSION statement refers to
a remote location name. There is an ENABLE
procedure command that precedes the use of the
SESSION statement, and that activates the neces-
sary SSP-ICF support. The System/36 subsystem
definition activated by the ENABLE statement
must contain the remote location definition

referred to by the SESSION statement. The
ENABLE statement might refer to the specific
remote location name, but in many cases it refers
only to the SSP-ICF subsystem member that con-
tains the specific remote location. The ENABLE
statement also includes the line number and name
of the library containing the System/36 subsystem
member. The System/36 subsystem member con-
tains remote location definitions.

Figure 13-2 on page 13-4 through Figure 13-7 on
page 13-10 show the relationship between the
remote location name on a SESSION statement,
the corresponding ENABLE procedure command,
the system information used to define the commu-
nications environment, and their AS/400 counter-
parts.

As Figure 13-2 on page 13-4 shows, the AS/400
counterpart for each remote location definition is a
device description . In some cases, such as for
System Network Architecture (SNA) 3270 emu-
lation or SNA upline facility (SNUF), each logical
unit supported by a remote location becomes an
individual device description. Systems Network
Architecture (SNA) in IBM networks is the
description of the logical structure, formats, proto-
cols, and operational sequences for transmitting
information units through and controlling the con-
figuration and operation of networks.

13-2 OS/400 System/36 Environment Programming V3R6

Remember, while remote location
name is required on the SESSION
statement, it is not required on
the ENABLE statement. If RMTLOC2 had
been defined with ’Activate location
at ENABLE = Y’ then it may be
omitted from the ENABLE statement.

ENABLE MEMBX,LIBRX,2,,RMTLOC2

// LOAD PRGMX
// SESSION SYMID-xx,LOCATION-RMTLOC2,etc.
// RUN

-or-

ENABLE MEMBX,LIBRX,2,,RMTLOC2

MSRJE RMTLOC2,...etc.

In many cases, multiple VRYCFG statements
are required. For example, the line and
controller must be varied on before the
device.

VRYCFG CFGOBJ(RMTLOC2) CFGTYPE(*DEV) STATUS(*ON)

// LOAD PRGMX
// SESSION SYMID-xx,LOCATION-RMTLOC2,etc.
// RUN

VRYCFG CFGOBJ(RMTLOC2) CFGTYPE(*DEV) STATUS(*ON)

MSRJE RMTLOC2,...etc.

RSLW096-3

System/36 Example AS/400 Example

Figure 13-1. System/36 ENABLE Statement and AS/400 VRYCFG Command Example

 Chapter 13. Communications 13-3

Library QSYS

(a)

RMTLOC1

RMTLOC2

RMTLOC301

RMTLOC3

RMTLOC3

(a)(a)

ENABLE MEMBS,LIBRX,2,,RMTLOC2
// SESSION SYMID-xx,LOCATION-RMTLOC2,etc.

LIBRX

RMTLOC1
Remote loc. info

RMTLOC2
Remote loc. info

RMTLOC3
Remote loc. info

etc.

Created using CNFIGICF

RMTLOC1

RMTLOC2

RMTLOC3

(a)
(SSP-ICF subsystem member)

Note 3

Note 3

RMTLOC303

RMTLOC302

Note 3

Note 1

Note 2

Created using either
CRTDEVAPPC, CRTDEVASC,
CRTDEVBSC, CRTDEVFNC,
CRTDEVHOST, CRTDEVINTR,
CRTDEVRTL, or CRTDEVSNUF

System/36 Structure AS/400 Structure

RSLW089-5

Figure 13-2. A Remote Location Resulting in Multiple Device Descriptions

A logical unit (LU) is one of three types of
network addressable units that serve as a port
through which a user accesses the communica-
tions network. Because System/36 subsystem
members alone contain little pertinent information
(they are containers for remote locations), they
have no counterpart on the AS/400 system.

Notes:

1. The name shown above each box is the
device description name.

2. The name shown within each box is the
remote location name (RMTLOCNAME)
defined in each device description.

3. Some communications types require a
one-to-one relationship between device
description and remote location name.
Figure 13-2 is an example of one remote
location resulting in multiple device
descriptions. This occurs if the remote

location defines three 3270 device emulation
displays. However, a reference to the original
remote location name is within each device
description. See the Remote Work Station
Support book for more information about
remote location names.

Figure 13-2 does not show the relationship
between System/36 APPC session groups and the
AS/400 system counterparts for session groups
(mode descriptions). Advanced program-to-
program communications (APPC) is a data
communications support that allows programs on
an AS/400 system to communicate with programs
on other systems having compatible communica-
tions support. APPC is the AS/400 method of
using the SNA LU session type 6.2 protocol.
Advanced peer-to-peer networking (APPN*) is a
data communications support that routes data in a
network between two or more APPC systems that
are not directly attached. See the APPC Pro-
gramming and the APPN Support books for infor-

13-4 OS/400 System/36 Environment Programming V3R6

mation about mode descriptions and APPC and
APPN configurations.

On System/36, each remote location refers to a
line member (the line member is always in the
same library as the subsystem member) and a
(with some exceptions) remote system definition
within that line member. The line member con-
tains general line information as well as remote
system definitions. Multiple remote locations,
even those in different subsystem members, can
refer to a single line member and remote system
definition. Referring to a single line member and
remote system definition allows multiple subsys-
tems to communicate with a single remote system
at one time, as Figure 13-3 on page 13-6 shows.

On the AS/400 system, the remote location name
for APPC is a character string up to 8 characters
long, of which the first character is uppercase A to
Z, $, #, or @. The remaining characters are
uppercase A to Z, $, #, @, or 0 to 9. This con-
vention is enforced by AS/400 system configura-
tion (that is, you cannot enter any other
characters) for the remote location name of all
communications types.

The System/36 convention for the remote location
name is more lenient for communications types
other than APPC. Therefore, remote location
names cannot be migrated from System/36 for
those cases where the names do not follow
AS/400 convention.

The AS/400 counterpart for each remote system
definition is called a controller description . The
AS/400 counterpart for the general line information
in a line member is called a line description .

In the System/36 SSP-ICF line member, each
remote system accessed by a switched line or
X.25 switched virtual circuit can refer to a phone-
or connection-list member in the same library.
(X.25 defines the interface to an X.25, packet-
switching network.) It contains telephone or con-
nection numbers that automatically connect to the
remote system.

As Figure 13-4 on page 13-7 shows, there is no
AS/400 counterpart for the phone/connection list.

However, the controller description allows for
specification of one phone number or connection
number (see “Automatic Dial and Telephone
Number List Support” on page 13-45).

For users of System/36 BSCEL, it is possible to
specify that an application connects to one of
many stations. If you choose this option, you can
create and maintain a remote ID list . The list
contains all the valid remote ID’s with which
BSCEL applications can connect. The list is con-
tained in a file named #IBSRID.

The information in the System/36 BSCEL remote
ID list is specified in the controller description on
the AS/400 system.

In Figure 13-5 on page 13-8, if the line described
by the System/36 line member is an X.25 line, the
general information part of the line definition refers
to an X.25 virtual circuit configuration member
(located in the same library) that supplies specific
virtual circuit information for each remote system
in the line member. A virtual circuit is a logical,
rather than a physical, connection that is estab-
lished and controlled by a managing network in a
packet-switching communications environment.
On the AS/400 system, the specific virtual circuit
information associated with a remote system is
defined in the controller description that corre-
sponds to the remote system information.

On System/36, as Figure 13-6 on page 13-9
shows, the X.25 virtual circuit member refers to an
X.25 member (always in library #X25LIB) that con-
tains X.25 network (PSDN) default values and
subsystem information.

On System/36, as Figure 13-7 on page 13-10
shows, for the line number specified on the
ENABLE statement, two sets of system configura-
tion information exist for each line:

� A system-wide set of information
� A set of information associated with each work

station

The set associated with each work station allows
a job started at one work station to change the
line characteristics without affecting the character-
istics used by jobs started at other work stations.

 Chapter 13. Communications 13-5

Library QSYS

(a)

(b)

(c)

RMTLOC1

RMTLOC2

RMTLOC301

RMTLOC302

RMTSYS1

RMTSYS2

RMTSYS3

RMTSYS4

MEMBN

Others

RMTLOC1

RMTLOC2

RMTLOC3

RMTLOC3

RMTLOC3

(a)

ENABLE MEMBS,LIBRX,2,,RMTLOC2
// SESSION SYMID-xx,LOCATION-RMTLOC2,etc.

LIBRX

RMTLOC1
Remote loc. info

RMTLOC2
Remote loc. info

RMTLOC3
Remote loc. info

etc.

Line information
RMTSYS1

(Rmt sys info)
RMTSYS2

(Rmt sys info)
RMTSYS3

(Rmt sys info)
RMTSYS4

(Rmt sys info)
etc.

Created using CNFIGICF

(a)
(SSP-ICF subsystem member)

RMTLOC303

(a)
(SSP-ICF line member)

(a)

(b)

(c)

Created using either
CRTDEVAPPC, CRTDEVASC,
CRTDEVBSC, CRTDEVFNC,
CRTDEVHOST, CRTDEVINTR,
CRTDEVRTL, or CRTDEVSNUF
Created using either
CRTCTLAPPC, CRTCTLASC,
CRTCTLBSC, CRTCTLFNC,
CRTCTLHOST, or CRTCTLRTL
Created using either
CRTLINASC, CRTLINBSC
CRTLINSDLC, CRTLINTRN,
or CRTLINX25

System/36 Structure AS/400 Structure

RSLW090-6

Figure 13-3. Multiple Subsystems Can Communicate with a Single Remote System

ENABLE and VRYCFG Hierarchy
and Examples

On System/36, when a remote location is acti-
vated, both the specific remote system and the
line are activated.

Note: The physical line used by the application is
not specified until the ENABLE procedure is
started. Therefore, one subsystem member and
one line member can be used on lines with the
same characteristics.

On the AS/400 system, the System/36 hierarchy is
reversed. When the system activates a line
description, network elements that depend on the
description can be activated. However, you
cannot activate a device description until you acti-
vate a controller and line description.

Note: Also, a resource name associates the line
description with the hardware. Therefore, if a line,
controller, and device are to be used on a different
line, you must change the resource name in the
line description (using a Change Line Description
[CHGLINxxx] command) before activating it.

13-6 OS/400 System/36 Environment Programming V3R6

Library QSYS

(a)

(b)

(c)

RMTLOC1

RMTLOC2

RMTLOC301

RMTLOC302

RMTSYS1

RMTSYS2

RMTSYS3

RMTSYS4

MEMBN

Others

RMTLOC1

RMTLOC2

RMTLOC3

RMTLOC3

RMTLOC3

LIBRX

RMTLOC1
Remote loc. info

RMTLOC2
Remote loc. info

RMTLOC3
Remote loc. info

etc.

Line information
RMTSYS1

(Rmt sys info)
RMTSYS2

(Rmt sys info)
RMTSYS3

(Rmt sys info)
RMTSYS4

(Rmt sys info)
etc.

(b)
MEMBX

(c)
#IBSRID (BSCEL remote id list)

Created using CNFIGICF
Created using DEFINEPN, or
DEFINX21, or DEFINX25
Created using DEFINEID

ENABLE MEMBS,LIBRX,2,,RMTLOC2
// SESSION SYMID-xx,LOCATION-RMTLOC2,etc.

Phone list
-or-

X.21 connection list
-or-

X.25 connection list

(a)
(SSP-ICF subsystem member)

(a)
(SSP-ICF line member)

RMTLOC303

Created using either
CRTDEVAPPC, CRTDEVASC,
CRTDEVBSC, CRTDEVHOST,
or CRTDEVSNUF
Created using either
CRTCTLAPPC, CRTCTLASC,
CRTCTLBSC, or CRTCTLHOST
Created using either
CRTLINASC, CRTLINBSC
CRTLINSDLC, CRTLINTRN,
or CRTLINX25

(a)

(b)

(c)

(a)
(b)

(c)

System/36 Structure AS/400 Structure

RSLW091-5

Figure 13-4. System/36 Remote ID List Mapped to the AS/400 Controller Description

Figure 13-8 on page 13-11 shows an example of
the hierarchy on each system.

Note: The VRYCFG command can be replaced
by a call to a CL program. See the CL Program-
ming book for more information.

 OS/400 Subsystem
Considerations for System/36
Users

This section provides information on running
OS/400 subsystems on the AS/400 system.

Note: The concept of System/36 SSP-ICF sub-
systems does not exist on the AS/400 system.

 Chapter 13. Communications 13-7

ENABLE MEMBS,LIBRX,2,,RMTLOC2
// SESSION SYMID-xx,LOCATION-RMTLOC2,etc.

Library QSYS

(a)

(b)

(c)

RMTLOC1

RMTLOC2

RMTLOC301

RMTLOC302

RMTSYS1

RMTSYS2

RMTSYS3

RMTSYS4

MEMBN

Others

RMTLOC1

RMTLOC2

RMTLOC3

RMTLOC3

RMTLOC3

(a)
(b)

LIBRX

RMTLOC1
Remote loc. info

RMTLOC2
Remote loc. info

RMTLOC3
Remote loc. info

etc.

Line information
RMTSYS1

(Rmt sys info)
RMTSYS2

(Rmt sys info)
RMTSYS3

(Rmt sys info)
RMTSYS4

(Rmt sys info)
etc.

Virtual circuit
configuration info

For RMTSYS1
For RMTSYS2
For RMTSYS3
etc.

(b)
MEMBX

(a)
(SSP-ICF subsystem member)

(a)
(SSP-ICF line member)

RMTLOC303

Created using CNFIGICF
Created using CNFIGX25

(a)

(b)

(c)

Created using either
CRTDEVAPPC, CRTDEVASC,
CRTDEVHOST, or CRTDEVSNUF
Created using either
CRTCTLAPPC, CRTCTLASC,
or CRTCTLHOST
Created using either
CRTLINASC, CRTLINSDLC,
CRTLINTRN, or CRTLINX25

System/36 Structure AS/400 Structure

RSLW092-5

Figure 13-5. X.25 Virtual Circuit Configuration

See the Work Management book for information
about OS/400 subsystems.

Considerations for System/36
Environment Program Start
Requests

When an OS/400 subsystem (such as QBASE)
receives a program start request, it attempts to
determine whether the job should run in the
System/36 environment by checking the following:

� A search is made for a prestart job entry
matching the program name passed on the
program start request. If a match is found,
the program start request is attached to a pre-
start job.

Note: A procedure name cannot be specified
on the prestart job entry.

� A search is made within file QS36PRC for a
procedure that matches the procedure or
program name passed on the program start
request. The OS/400 subsystem searches:

13-8 OS/400 System/36 Environment Programming V3R6

ENABLE MEMBS,LIBRX,2,,RMTLOC2
// SESSION SYMID-xx,LOCATION-RMTLOC2,etc.

Created using CNFIGICF
Created using CNFIGX25

Library QSYS

(a)

(b)

(c)

RMTLOC1

RMTLOC2

RMTLOC301

RMTLOC302

RMTSYS1

RMTSYS2

RMTSYS3

RMTSYS4

MEMBN

Others

RMTLOC1

RMTLOC2

RMTLOC3

RMTLOC3

RMTLOC3

(a)
(b)

LIBRX

#X25LIB

RMTLOC1
Remote loc. info

RMTLOC2
Remote loc. info

RMTLOC3
Remote loc. info

etc.

Line information
RMTSYS1

(Rmt sys info)
RMTSYS2

(Rmt sys info)
RMTSYS3

(Rmt sys info)
RMTSYS4

(Rmt sys info)
etc.

Virtual circuit
configuration info

For RMTSYS1
For RMTSYS2
For RMTSYS3
etc.

Network configuration
information
Virtual Circuit #1
Virtual Circuit #2
Virtual Circuit #3
etc.

(b)
MEMBX

(b)
(Network configuration)

(a)
(SSP-ICF subsystem member)

RMTLOC303

(a)
(SSP-ICF line member)

(a)

(b)

(c)

Created using either
CRTDEVAPPC, CRTDEVASC,
CRTDEVHOST, or CRTDEVSNUF
Created using either
CRTCTLAPPC, CRTCTLASC,
or CRTCTLHOST
Created using either
CRTLINASC, CRTLINSDLC,
CRTLINTRN, or CRTLINX25

System/36 Structure AS/400 Structure

RSLW093-5

Figure 13-6. X.25 Subsystem Information Defined in the AS/400 Line Description

– The library specified on the program start
request (which becomes the current library
for the job)

 – Library #LIBRARY

– The System/36 environment library
(QSSP)

If the subsystem finds a procedure, the job
runs in the System/36 environment. A proce-
dure is found if the name follows System/36

 Chapter 13. Communications 13-9

defined naming conventions. See “Library
Member Names” on page 6-2 for information
about library member naming conventions.

If the AS/400 subsystem does not find a proce-
dure, it does the following:

� Determines that the job should not run in the
System/36 environment.

� Tries to start the job as an OS/400 job.
� Searches the library specified on the program

start request for a program that matches the
procedure or program name passed on the
program start request. If it finds the program,
the job starts in the subsystem as an OS/400
job. If the program is not found, the program
start request fails.

(a)

(c)

Library QSYS

(c)

MEMBN

Others

ENABLE MEMBS,LIBRX,2,,RMTLOC2
// SESSION SYMID-xx,LOCATION-RMTLOC2,etc.

LIBRX

N/A for this example

Created by system and
changed using SETCOMM procedure
Created by system and
changed using ALTERCOM procedure

System communications
configuration information

(a)

(b)

(b)

Work station communication
configuration information

Created using either CRTLINASC,
CRTLINBSC, CRTLINSDLC,
CRTLINTRN, or CRTLINX25

System/36 Structure AS/400 Structure

RSLW094-4

Figure 13-7. Line Configuration Information Defined in the AS/400 Line Description

13-10 OS/400 System/36 Environment Programming V3R6

Subsystem Member Information
(MEMBS)

Line 1
Info

Line 2
Info

Line 3
Info

Device Descriptions

etc.

Associated with a
line (resource) at
CRTLINxxx time

System/Work Station
Configuration
Information

Association with a
line is done at
ENABLE time

Line Member Information

Remote System
Information

Line Description

Controller
Descriptions

The highlighted portion of the network is activated using

ENABLE MEMBS,LIBRX,,2,RMTLOC2

If all three remote locations are to be activated, and are all
defined in MEMBS, they are activated by using

ENABLE MEMBS, LIBRX,,2

If all three remote locations are to be activated, and are all
contained in different members, they are activated by using

ENABLE MEMBS1,LIBRX,,2,RMTLOC1
ENABLE MEMBS2,LIBRX,,2,RMTLOC2
ENABLE MEMBS3,LIBRX,,2,RMTLOC3

The highlighted portion of the network is activated using

VRYCFG CFGOBJ(MEMBN) CFGTYPE (*LIN) STATUS(*ON) RANGE(*OBJ)
VRYCFG CFGOBJ(RMTSYS3) CFGTYPE(*CTL) STATUS(*ON) RANGE(*OBJ)
VRYCFG CFGOBJ(RMTLOC2) CFGTYPE(*DEV) STATUS(*ON) RANGE(*OBJ)

If all three remote locations are to be activated, use:

VRYCFG CFGOBJ(MEMBN) CFGTYPE(*LIN) STATUS(*ON) RANGE(*OBJ)
VRYCFG CFGOBJ(RMTSYS3) CFGTYPE(*CTL) STATUS(*ON) RANGE(*NET)

System/36 Heirarchy AS/400 Heirarchy

RSLW095-4

MEMBN

RMTSYS1 RMTSYS2 RMTSYS3 RMTSYS4

RMTLOC1 RMTLOC2 RMTLOC3 RMTLOC1 RMTLOC2 RMTLOC3

RMTSYS4RMTSYS3RMTSYS2RMTSYS1

MEMBN

Figure 13-8. ENABLE and VRYCFG Hierarchy and Examples

Errors on Program Start
Requests

If an AS/400 system detects an error when it
receives a program start request, the following
occurs:

� A notification of the error is sent to the remote
system that sent the program start request.
See the ICF Programming book for informa-
tion about what happens on the source
system when the target system detects an
error.

� If the application that initiated the program
start request is an OS/400 program, a return
code indicating the error is given to the appli-
cation. Return codes for System/36 environ-
ment ICF procedure start failures are the
same as the System/36 return codes for
SSP-ICF procedure start failures. Some
System/36 SSP-ICF subsystems support
giving application system messages when the
procedure start fails. If the source program
issues an input operation to retrieve the
message identifying the failure, it receives an

OS/400 message rather than a System/36
message.

� Error message CPF1269 is sent to the
QSYSOPR message queue (on the system on
which the target program is located). The
CPF1269 message has two reason codes. If
one of the reason codes in the message is
zero and the other is not zero, the nonzero
reason code indicates why the procedure start
request was rejected.

If both reason codes are nonzero, the OS/400
subsystem cannot determine whether the
request was to start a System/36 environment
procedure or an OS/400 environment
program. One of the reason codes indicates
why the program start request was rejected in
the System/36 environment. The other reason
code indicates why the program start request
was rejected by the OS/400 environment.
When you receive two reason codes, deter-
mine which environment the job was to run in
and correct the problem for that environment.

The following table describes the reason codes:

 Chapter 13. Communications 13-11

Figure 13-9 (Page 1 of 4). Reason Codes for
Rejected Program Start

Figure 13-9 (Page 1 of 4). Reason Codes for
Rejected Program Start

Reason
Code

Reason Description

Communications
Types

Reason
Code

Reason Description

Communications
Types

401 Program start request
received to a device
that is not allocated to
an active subsystem.

All 505 Job description or job
description library is
damaged.

All

506 Library on the library
list is destroyed.

All
402 Requested device is

currently being held
by a Hold Commu-
nications Device
(HLDCMNDEV)
command.

All except APPC

507 Duplicate libraries
were found on library
list.

All

508 Storage-pool defined
size is zero.

All

403 User profile is not
accessible.

All
602 Transaction program-

name value is
reserved but not sup-
ported.

All

404 Job description is not
accessible.

All

405 Output queue is not
accessible.

All 604 Matching routing entry
was not found.

All

406 Maximum number of
jobs defined by sub-
system description are
already active.

All 605 Program was not
found.

All

704 Password is not valid. All except retail

705 User is not authorized
to device.

All407 Maximum number of
jobs defined by com-
munications entry are
already active.

All

706 User is not authorized
to subsystem
description.

All

408 Maximum number of
jobs defined by
routing entry are
already active.

All

707 User is not authorized
to job description.

All

708 User is not authorized
to output queue.

All
409 Library on the library

list is exclusively in
use by another job.

All

709 User is not authorized
to program.

All

410 Group profile cannot
be accessed.

All
710 User is not authorized

to class.
All

411 Insufficient storage in
machine pool to start
job.

All
711 User is not authorized

to the library on the
library list.

All

412 System job values are
not accessible.

All
712 User is not authorized

to group profile.
All

501 Job description was
not found.

All
713 User ID is not valid. All except retail

714 Default user profile is
not valid.

All except finance502 Output queue was not
found.

All

715 Neither password nor
user ID was provided,
and no default user
profile was specified
in the communications
entry.

All503 Class was not found. All

504 Library on initial
library list was not
found.

All

13-12 OS/400 System/36 Environment Programming V3R6

Figure 13-9 (Page 2 of 4). Reason Codes for
Rejected Program Start

Figure 13-9 (Page 2 of 4). Reason Codes for
Rejected Program Start

Reason
Code

Reason Description

Communications
Types

Reason
Code

Reason Description

Communications
Types

718 No user ID. All except retail 1001 System logic error.
Function check or
unexpected return
code encountered.

All

722 A user ID was pro-
vided, but no pass-
word was sent.

All except retail

1002 System logic error.
Function check or
unexpected return
code encountered
while receiving
program initialization
parameters.

All723 No password was
associated with the
user ID.

All

725 User ID does not
follow naming conven-
tion.

All except retail

726 User profile has been
disabled.

All 1501 Character in proce-
dure name is not
valid.

All

801 Program initialization
parameters are
present but not
allowed.

All except retail
1502 Procedure not found. All

1503 S/36 environment
library not found.

All

802 Program initialization
parameter exceeds
2000 bytes for a pre-
start job.

All except retail
1504 Library QSSP not

found.
All

1505 File QS36PRC not
found in library QSSP.

All

803 Subsystem is ending. All
1506 Procedure or library

name is longer than 8
characters.

All804 Prestart job is inactive
or is ending.

All

805 WAIT(*NO) was spec-
ified on the prestart
job entry, and no pre-
start job was avail-
able.

All
1507 Current library not

found.
All

1508 Not authorized to
current library.

All

806 Maximum number of
prestart jobs that can
be active on a prestart
job entry was
exceeded.

All 1509 Not authorized to
QS36PRC in current
library.

All

1510 Not authorized to pro-
cedure in current
library.

All

807 Prestart job ended
when a program start
request was being
received.

All

1511 Not authorized to S/36
environment library.

All

1512 Not authorized to file
QS36PRC in S/36
environment library.

All
901 Program initialization

parameters are not
valid.

All except retail

1513 Not authorized to pro-
cedure in S/36 envi-
ronment library.

All
902 Number of parameters

for program is not
valid.

All

1514 Not authorized to
library QSSP.

All
903 Program initialization

parameters required
but not present.

All

1515 Not authorized to file
QS36PRC in QSSP.

All

 Chapter 13. Communications 13-13

Figure 13-9 (Page 3 of 4). Reason Codes for
Rejected Program Start

Figure 13-9 (Page 3 of 4). Reason Codes for
Rejected Program Start

Reason
Code

Reason Description

Communications
Types

Reason
Code

Reason Description

Communications
Types

1516 Not authorized to pro-
cedure QS36PRC in
QSSP.

All 1913 BLOCK(*NOSEP) and
TRUNC(*YES) con-
flict.

BSCEL

1517 Unexpected return
code from S/36 envi-
ronment support.

All 1914 Program name is not
valid.

BSCEL

1915 Program start request
record was too long.

BSCEL
1518 Problem phase

program not found in
QSSP.

All

2001 FMH5 field length is
not correct.

APPC

1519 Not authorized to
problem phase
program in QSSP.

All 2002 Concatenation code is
not valid.

APPC

2003 Function-
management-header
type is not 5.

APPC
1520 Maximum number of

target programs
started (100 per S/36
environment).

All

2004 Command code field
in function manage-
ment header is not
valid.

APPC

1901 Record or block size
exceeds maximum
size.

BSCEL

2005 Length for fixed-length
fields is not valid.

APPC
1902 ASCII and transpar-

ency are mutually
exclusive.

BSCEL

2006 Conversation type is
not supported.

APPC

1903 Transparent mode
and blank com-
pression conflict.

BSCEL
2007 Synchronization level

is not supported.
APPC

2008 Reconnection is not
supported.

APPC1904 Block length is
required with data
format.

BSCEL

2009 Transaction program
name field length is
not valid.

APPC
1905 Blank truncation and

ITB mode conflict.
BSCEL

2010 Access code subfield
length is not valid.

APPC1906 Blank compression
and ITB mode conflict.

BSCEL

2011 UOW-ID subfield
length is not valid.

APPC1907 3740 multiple files and
ITB mode conflict.

BSCEL

2012 UOW-ID contents are
not valid.

APPC1908 Record separator
mode and transparent
modes conflict.

BSCEL

2013 Requested device is
currently being held
by a Hold Commu-
nications Device
(HLDCMNDEV)
command.

APPC
1909 Record separator and

ITB mode conflict.
BSCEL

1910 Record length
exceeds block length.

BSCEL

1911 Record separator
character is not valid.

BSCEL 2014 Transaction program
name value is
reserved but not sup-
ported.

APPC

1912 BLOCK(*USER) and
RMTBSCEL(*YES)
conflict.

BSCEL

13-14 OS/400 System/36 Environment Programming V3R6

 Subsystem
Descriptions/Communications
Entries

Before an AS/400 system accepts a program start
request, a subsystem that supports communica-
tions must be started. Two IBM-supplied subsys-
tems accept program start requests for all
communications types:

 � QBASE
 � QCMN

If you use the IBM-supplied subsystems QBASE
or QCTL, QINTER, QBATCH, and QCMN, your
AS/400 system automatically accepts program
start requests.

If you want to create your own subsystem
descriptions for handling communications:

� See the Work Management book for a
description of what a subsystem is and how it
works.

� See the Work Management and the CL Refer-
ence books for a description of the following
commands used to create a communications
subsystem:

Figure 13-9 (Page 4 of 4). Reason Codes for
Rejected Program Start

Figure 13-9 (Page 4 of 4). Reason Codes for
Rejected Program Start

Reason
Code

Reason Description

Communications
Types

Reason
Code

Reason Description

Communications
Types

2015 LU service request
received but the LU
service job is not
active.

APPC 2503 No subsystem
accepting program
start requests for this
device.

Intrasystem

2016 Pre-verified user ID
received, but device
description specifies
SECURELU(*NO).

APPC 2601 Program name
missing and device is
not configured for
display station pass-
through.

Retail

2017 No user ID was pro-
vided, but a password
was received.

APPC
2651 *EXEC not specified. Finance

2652 Blank missing after
*EXEC.

Finance
2018 No user ID was pro-

vided, but a user
profile was received.

APPC

2653 Program name
missing.

Finance

2019 Remote system indi-
cated it sent a pre-
verified user ID, but
no user ID was
received.

APPC 2654 Program name longer
than 10 characters.

Finance

2655 Library name longer
than 10 characters.

Finance

2020 Remote system sent a
pre-verified user ID,
but also sent a pass-
word.

APPC

2021 Remote system sent a
user ID (which it had
not verified) and failed
to send a password.

APPC

2022 Password received,
but this is a nonse-
cure system.

APPC

2111 Program name
missing or not valid.

SNUF

2118 Function management
header not valid.

SNUF

2123 End bracket or end
chain missing.

SNUF

2501 System logic error.
Function check or
unexpected return
code encountered
while processing a
program start request.

Intrasystem

2502 Temporarily unable to
allocate needed
resources for a
program start request.

Intrasystem

 Chapter 13. Communications 13-15

– Use the Create Subsystem Description
(CRTSBSD) command to create a sub-
system description.

– Use the Add Communications Entry
(ADDCMNE) command to define the types
of communications your subsystem sup-
ports.

– Use the Add Routing Entry (ADDRTGE)
command to define the program jobs
started as a result of a program start
request.

Note: See the special communications
considerations for the ADDRTGE
command in the Work Management book.

 Subsystem Communications
Device Allocation

If you use the IBM-supplied communications sub-
systems, communications devices are allocated
automatically to subsystems.

Note: Do not have subsystems QBASE and
QCMN active at the same time.

If you want to create subsystem descriptions, see
the Work Management book for information about
communications device allocation for subsystems.

 OS/400 Intersystem
Communications Function (ICF)

With the ICF and its underlying support, you can
write application programs that use communica-
tions lines to communicate with (send data to and
receive data from) programs on other systems.
You can use the System/36-compatible COBOL
and RPG II programming languages in the
System/36 environment to write application pro-
grams. On System/36, you can also write com-
munications applications in assembler and BASIC.
OS/400 BASIC does not support communications,
and assembler is not supported on the AS/400
system. Therefore, System/36 communications
applications written in either of these two lan-
guages must be rewritten.

Communications between application programs
use ICF and the underlying support provided by
various communications types. ICF provides
several communications types so the AS/400
system can communicate with various remote

systems with different communications methods,
such as:

� Binary synchronous communications (BSC)
� Systems Network Architecture (SNA)

 � Asynchronous communications

The following communications types are supported
by ICF:

� Advanced program-to-program communica-
tions (APPC)

� Systems Network Architecture upline facility
(SNUF)

� Binary synchronous communications equiv-
alence link (BSCEL)

 � Asynchronous communications
 � Retail communications
 � Finance communications
 � Intrasystem communications

The AS/400 system supports the following types
of communications lines (all the lines do not have
to be the same type):

� Switched point-to-point (manual or automatic
answer, manual or automatic call)

 � Nonswitched point-to-point
 � Nonswitched multipoint
� IBM Token-Ring Network

 � X.25 network
 � Ethernet

Each communications type, with the exception of
intrasystem communications, requires at least one
communications line to communicate with a
remote system.

See the ICF Programming and the Remote Work
Station Support books for general information
about the remote systems and devices supported
by each communications type. For detailed infor-
mation on the support provided, refer to the fol-
lowing books:

 � APPC Programming
 � APPN Support
� Asynchronous Communications Programming
� BSC Equivalence Link Programming
� Finance Communications Programming
� Intrasystem Communications Programming
� Retail Communications Programming
� SNA Upline Facility Programming

The AS/400 communications types are equivalent
to System/36 System Support

13-16 OS/400 System/36 Environment Programming V3R6

Program—Interactive Communications Feature
(SSP-ICF) subsystems. System/36 applications
written to a System/36 SSP-ICF subsystem not
supported must be rewritten to one of the sup-
ported AS/400 system communications types.

 ICF Files

On System/36, SSP-ICF application programs use
specially defined SSP-ICF operations (such as
$$EVOK) or interactive data definition utility
(IDDU) data dictionary definitions. Programs that
use SSP-ICF operations do not have an external
file (for example, display files that contain $SFGR
formats). Applications that refer to IDDU data dic-
tionaries use externally described communications
file definitions stored in the data dictionary.

On the AS/400 system, device I/O is done through
a device file. For communications, an ICF device
file is used to send and receive data between two
application programs, and describe how to present
the data.

The ICF file is comparable in concept and use to
a IDDU data dictionary’s communications file defi-
nition on System/36. The ICF file contains record
formats used by the application in I/O applications.
Each record format describes the data layout and
contains processing keywords that provide func-
tions similar to the SSP-ICF operations and IDDU
format definition communications functions. This
information is described external to the application
through data description specifications (DDS).

 QICDMF File: Communications applications
running in the System/36 environment that use the
specially defined SSP-ICF operations (such as
$$EVOK) automatically use a system-supplied ICF
file called QICDMF in library QSYS. This file is
established with characteristics that affect your
application. For example:

� The maximum record length of the system-
supplied QICDMF file is 4096 bytes. If you
modify your System/36 environment applica-
tions to use a greater record length, the
maximum record length of the file must be
increased. If all your applications use a
record length less than 4096 bytes, you can
also decrease the maximum record length of

the file to avoid the unnecessary use of
system resources.

� The maximum number of sessions allowed in
a System/36 environment application (using
the system-supplied QICDMF) is five. If your
applications use more than five sessions (in
one application), you must increase the
maximum program device value of the
QICDMF file.

Note: For more information on ICF files, see the
ICF Programming book. See the descriptions of
the MAXRCDLEN and MAXPGMDEV parameters
of the Change Intersystem Communications Func-
tion File (CHGICFF) command in the CL Refer-
ence book for information about changing these
characteristics.

Tying the Application to
Communications Configurations

Each program that establishes a session includes
at least one SESSION statement in the procedure
that loads your program. Place the SESSION
statement between the LOAD and RUN OCL
statements for the program. Use the SESSION
statement to specify three things:

� The LOCATION parameter of the SESSION
statement identifies the communications con-
figuration with which the program communi-
cates. The LOCATION parameter identifies
the remote location (specified as part of the
device description) associated with the
session.

� On the SYMID parameter, the SESSION
statement identifies the symbolic identifier of
the session. Your program uses this identifier
when it establishes the session and when it
issues an operation to the session. The iden-
tifier must be 2 characters. The first character
must be numeric (0 through 9). The second
character must be alphabetic (A to Z, $, #, or
@).

� The SESSION can also specify one or more
parameters that change the attributes of the
configuration for that session only.

In other words, the SESSION statement identifies
the session and remote location with which your
program communicates, and indirectly identifies
the communications type the application uses.

 Chapter 13. Communications 13-17

The application program uses the session identi-
fier (SYMID) on all operations to identify the
session in which to direct the I/O.

Following is an example of the use of the
SESSION OCL statement in the System/36 envi-
ronment and its relationship to an application
program:

YOURPROC
// LOAD YOURPGM
// SESSION LOCATION-CHICAGO,SYMID-1S

RPGPGM
 '1S' ACQ WSFILE

CBLPGM
77 ICF-SESSION-1S PIC XX VALUE '1S'.

ACQUIRE ICF-SESSION-1S FOR TRANSACTION-FILE.

Mapping SESSION OCL Statement to
the OVRICFDEVE Command: The
System/36 SESSION OCL is supported through
use of the OS/400 Override Intersystem Commu-
nications Function Device Entry (OVRICFDEVE)
command. The OVRICFDEVE command defines
the session identifier to any ICF file the application
uses.

System/36 applications use file QICDMF or the
migrated ICF file. The table in Figure 13-10 on
page 13-19 summarizes the mapping of the
SESSION OCL statement to the appropriate
OVRICFDEVE command parameters.

13-18 OS/400 System/36 Environment Programming V3R6

Figure 13-10. SESSION to OVRICFDEVE Mapping

Session OVRICFDEVE Finance Retail
Intra-

system APPC SNUF BSCEL Asynchronous

LOCATION RMTLOCNAME X X X X X X X

SYMID PGMDEV X X X X X X X

GROUP MODE X

APPCNET (ignored) X

LWSID DEV X X X

APPLID APPID X X

HOSTNAME HOST X

RECL RCDLEN X X

FMHI HDRPROC X

MSGPROT MSGPTC X

BATCH BATCH X X X

PARTNER RMTBSCEL X

SWTYP INLCNN X

PHONE (ignored) X

REFRESH (ignored) X

RESTORE (ignored) X

BLKL BLKLEN X

RECSEP BLOCK X

ITB BLOCK X

BLANK DTACPR,TRUNC X

TRANSP TRNSPY X

LIBRARY (ignored)

MAXMSG (ignored) X

Notes:

1. RPG II support for telecommunications uses BSCEL support.

2. The APPCNET parameter is syntax checked but ignored. The system always assumes the equivalent of
APPCNET-YES.

3. The PHONE, REFRESH, RESTORE, MAXMSG, and LIBRARY parameters are syntax checked, but ignored. The
AS/400 system automatic dial does not support a telephone list. However, a single number can be used by
specifying *YES on the AUTODIAL parameter of the Create Line Binary Synchronous Communications
(CRTLINBSC) command and the requested telephone number on the CNNNBR parameter of the Create Con-
troller Binary Synchronous Communications (CRTCTLBSC) command.

4. The LWSID parameter maps to the DEV parameter of the OVRICFDEVE command by converting the LWSID
value to its hexadecimal equivalent and concatenating this hexadecimal equivalent with the value specified for the
location parameter. For example, a location of CHICAGO with a LWSID of 12 would map to a DEV parameter of
CHICAGO0C on the OVRICFDEVE command. For retail and finance communications, this parameter is not
required.

5. For finance and retail communications on the AS/400 system, the remote location name must be unique. You
may need to develop a naming scheme to ensure your remote location names are unique. You may then need to
edit your SESSION OCL statements to conform to the new naming scheme.

 Chapter 13. Communications 13-19

If the OVRICFDEVE command is run directly from
a System/36 procedure, or from the System/36
Command Entry display, it takes precedence over
SESSION OCL statements in that job step, as well
as succeeding job steps in the same System/36
job, until a Remove Intersystem Communications
Function Device Entry (RMVICFDEVE) command
is encountered. If an OVRICFDEVE command is
run from a CL program, it applies only while the
CL program runs.

See the ICF Programming book for more informa-
tion about the OVRICFDEVE command. See the
System/36 Environment Reference book for more
information on the SESSION OCL statement.

 Communications Operations

An application program uses high-level language
operations and communications functions to com-
municate with a remote system through ICF. The
high-level language operations you need for com-
munications are introduced in this chapter. See
the appropriate language book for details about
each operation (its function, syntax, programming
considerations, and coding example).

The operations you use in communications are
similar to work station operations. You can use
noncommunications operations for processing
data between your program and the remote
program.

System/36 also supports using data definitions in
data dictionaries to describe data records and
communications functions. The data definitions
were defined through the System/36 interactive
data definition utility (IDDU). Communications file
definitions in IDDU data dictionaries migrate to
ICF files. See “IDDU Data Dictionaries” on
page 13-27 for more information.

Figure 13-11 on page 13-21 shows how your
AS/400 System/36 environment application
program starts a session with the remote system.
The following list explains the steps:

.1/ You must start the application program
(source program) that communicates with the
program at the remote system.

.2/ The application program must open an ICF
file. The QICDMF file is automatically used
for applications using the specially defined
ICF operations. In an RPG II program, the
file is opened implicitly.

.3/ The AS/400 program must start a session
with the remote system before communica-
tions can begin. Your program starts a
session when it runs an acquire operation.

When your program starts (acquires) the
session, a SESSION OCL statement (associ-
ated with your program) specifies the session
ID and the remote location name associated
with the session.

.4/ Within each session, you can start (evoke)
transactions so your program can communi-
cate with target programs. A transaction
starts when your program uses the EVOKE
function to start a target program. If the
remote system is System/36, a procedure
starts as a result of the start (evoke).

.5/ Within each transaction, data can be sent
and received between the source and target
programs.

.6/ Either program can end the transaction when
all data has been sent or received. Your
program uses the detach function to end the
transaction. When the remote system ends
the transaction, your program receives a
return code indicating that the transaction
has ended.

.7/ When all transactions have ended, your
program should end the session. Your
program ends the session using the
RELEASE operation or the end-of-session
function.

.8/ Your program must close the ICF file. In an
RPG II program, the file is closed implicitly.

13-20 OS/400 System/36 Environment Programming V3R6

RSLW087-1

Send/Receive

Detach

(start a session)

(either program can end
the transaction)

Acquire

Evoke

(ends the session with
the remote system)

(end the transaction)

Send/Receive

Detach

Remote System

Release

AS/400 System

The target program
can end or continue
local processing.

Start the target program
(transaction)

Source Program

Target Program

Data Link

(send or receive data)

The source program can
end, start another
session, or continue
local processing.

OS/400 ICF

Open ICF File

Close ICF File

Figure 13-11. Source Program

 Chapter 13. Communications 13-21

RSLW088-1

Send/Receive

(end the transaction)

Send/Receive

AS/400 System Remote System

Start Request

This program can
end or continue
local processing.

The source program
can end or continue
local processing.

Data Link

Target Program

Remote Program

Source Program

Session and transaction
are started when the
remote program start
request is received.

Detach Detach

Either program can end
the transaction. When the
transaction ends, the
session also ends for the
AS/400 application
program.

(send or receive data)

Open ICF File

Close ICF File

(start a program/procedure)

OS/400 ICF

Procedure
.
.
.

Figure 13-12. Program Started by Remote Program Start Request

Figure 13-12 shows how the remote system starts
the session by running a remote program start
request. The following list explains the steps.

.1/ A procedure or program starts when your
system receives the program start request
from the remote system. If it is a procedure,
the job started is a System/36 environment
job (see “Considerations for System/36 Envi-
ronment Program Start Requests” on
page 13-8 for more information). This pro-
cedure starts the application program that
communicates with the remote system. The
session and transaction also start when the
program start request is received.

Because the remote system started the
session and transaction, the application

program does not issue an ACQUIRE or
EVOKE. However, your program can
acquire other sessions with the remote
system once your program is running.

.2/ The program must open the ICF file. The
QICDMF file is automatically used for appli-
cations using the specially defined ICF oper-
ations. In an RPG II program, the file is
opened implicitly.

.3/ You can send two types of information with
the program start request:

� Parameters for the procedure
� Data for your program

Note: When you are creating a procedure
that has parameters sent to it with the

13-22 OS/400 System/36 Environment Programming V3R6

program start request, specify PDATA-NO on
the COPY control statement of $MAINT. If
you want data sent to a program, specify
PDATA-YES on the COPY control statement.

After the procedure is created, you can
change the PDATA value associated with a
procedure using the Change System/36 Pro-
cedure Attribute (CHGS36PRCA) or Edit
System/36 Procedure Attribute
(EDTS36PRCA) command.

If data is sent, your program must issue an
input operation to receive the data. The first
operation should be an input operation.
However, if you do not expect data, your
program can issue an input or output opera-
tion, depending on the communications type
you are using and the procedures previously
set up with the remote system.

.4/ Either program can end the transaction when
all data has been sent or received. Also, the
session for your program ends when the
transaction ends.

.5/ Your program must close the ICF file. In an
RPG II program, the file is closed implicitly.

RPG II: Programs written in RPG II use a
WORKSTN file to perform communications oper-
ations. RPG II WORKSTN file programs require
file description, input, and output specifications.
Operations for communications are similar to work
station operations. That is, the same input oper-
ations are used for communications and work
stations, and the output operations are performed
with user-defined formats in an ICF file (migrated
from an IDDU dictionary) or system-supplied
formats (compatible with System/36 SSP-ICF
operations).

The file description specifications for a WORKSTN
file identify the following:

� The file name assigned to the WORKSTN file
� The maximum length of the data that is read

from or written to a remote program

The specifications should contain the same infor-
mation you would code for a WORKSTN file.
Most important, if your System/36 application used
IDDU, the file specification identifies the name of
the ICF file that contains the record formats used
by the RPG II program. The library for the ICF file

is identified by the ICFLIB parameter of the Create
System/36 RPG (CRTS36RPG) command or the
data dictionary parameter of the RPG procedure.

If you do not specify the ICFLIB parameter or the
data dictionary parameter, the system uses the
job’s current library. If the system does not find
the ICF file in the library used (whether from the
ICFLIB parameter, data dictionary parameter, or
current library), the system searches #LIBRARY
and then the job’s library list.

The system automatically uses the QICDMF file
for communications applications that do not
specify an ICF file.

The following WORKSTN operations and RPG
cycle input are used with communications:

ACQ
The acquire (ACQ) operation acquires the
session specified by the 2-character session
identifier. You must specify the 2-character
session identifier as a SYMID parameter on
the SESSION OCL statement.

REL
The release (REL) operation releases the
specified session.

EXCPT
The except (EXCPT) operation does many of
the communications operations between two
programs once a session starts. The format
used determines the type of operation. The
value you specify can be any one of the
specially-defined ICF functions (system-
supplied formats) or the name of a record
format in an ICF file that externally describes
the operation done.

NEXT
The next operation forces the next input to the
program to come from the specified session.

READ
The read operation requests input from an
invited session or from a specific session used
with the NEXT operation.

Following each operation, a return code that indi-
cates the result of the operation is returned to the
application. The System/36-Compatible RPG II
User’s Guide and Reference book contains addi-
tional information about operations you can use in
a communications program.

 Chapter 13. Communications 13-23

With the exception/error processing subroutine
(INFSR) and error indicators for the WORKSTN
operation codes (REL, ACQ, NEXT, and READ),
you can control the program logic if errors occur
during WORKSTN file processing. The
WORKSTN file information data structure (INFDS)
contains status information your program checks
to determine what type of exception or error
occurred. The INFDS also contains status infor-
mation for normal conditions. The information is
updated after each operation. Using the informa-
tion in the INFDS, your program can determine
which conditions to handle in the INFSR subrou-
tine.

If you specify neither the INFSR subroutine nor
the error indicators, the RPG II error handling
routine handles an error. When an error is
handled, your program halts.

The following table shows the *STATUS values
returned in the RPG II INFDS for each major and
minor return code. Use the table to determine the
ICF major and minor return code or group of
codes that correspond to the *STATUS value.

COBOL Statements Used for Commu-
nications: Programs written in
System/36-compatible COBOL use a TRANS-
ACTION file for communications operations. Use
the SELECT statement in the FILE-CONTROL
paragraph to define the TRANSACTION file. The
ASSIGN clause associates the TRANSACTION

file with the ICF file used. The ICFLIB parameter
of the Create System/36 COBOL (CRTS36CBL)
command, or the data dictionary parameter on the
COBOLC procedure, identifies the library for the
ICF file.

If you do not specify the ICFLIB or data dictionary
parameter, the job’s current library is used. If the
system does not find the ICF file in the library
used (whether from the ICFLIB or data dictionary
parameter, or current library), the system searches
#LIBRARY and then the job’s library list.

The system automatically uses the QICDMF file
for communications applications that do not
specify an ICF file.

You must also open the TRANSACTION file for
I/O in the procedure division.

In COBOL, the communications operations are
done by the statements shown in the following list.
See the System/36-Compatible COBOL User’s
Guide and Reference for additional information
about statements used in a communications
program.

ACQUIRE
Use the ACQUIRE statement to specify the
session you are acquiring for the specified
TRANSACTION file. You must also specify
the 2-character session identifier as a SYMID
parameter on the SESSION OCL statement.

ACCEPT
Use the ACCEPT statement to get the attri-
butes of a session. You can issue the opera-
tion at any time during a session to determine
the session’s status. The following table
shows the fields contained in the status infor-
mation received by the ACCEPT statement.

Major Code Minor Code
RPG II *STATUS
Value

00, 01, 02 All (except 10) 00000
00, 02 10 01321
03 00 01311
03 01, 02, 03 01299
03 08 01275
03 10 01331
03 14 01311
03 15 01299
03 1C 01275
04 02, 11, 12 01299
08 00 01285
11 00 00011
28 00 00000
34 01 01201

Position Value Meaning34 31 01201
80, 81, 83 All 01251 1 A Session not yet

acquired by the
program.

82 All 01281

 C Session initiated by
source program.

 R Session initiated by
remote program.

2 N Input not invited.
 I Input invited but not

available.
 O Input invited and

available.

13-24 OS/400 System/36 Environment Programming V3R6

Note: Only the first 10 bytes of data are
given to the application unless a 128-byte
data buffer is used.

READ
Use the READ statement to receive data from
a remote program. The READ statement
requests input from an invited session or a
specific session when you specify the TER-
MINAL option.

WRITE
Use the WRITE statement to perform many of
the communications operations between two
programs once a session starts. The value
you specify for the FORMAT parameter deter-
mines the type of operation. The value speci-
fied is one of the specially defined ICF
functions (system-supplied formats) or the
name of a record format in an ICF file that
externally describes the operation performed.

DROP
Use the DROP statement to release the spec-
ified session.

Following each operation, a return code consisting
of a major and minor code is given to your
program in the IBM-extended FILE STATUS area.
In addition, a COBOL return code is given in the
FILE STATUS field identifying the status of the
operation. The following table shows the COBOL
return code returned in the appropriate FILE
STATUS data field and the corresponding ICF
return code(s).

 System-Supplied Formats: Special com-
munications functions are defined to support com-
munications between applications. Functions such
as the following are supported:

� Starting a process on the remote system
 � Sending data
� Requesting a change in direction

These operations are supported in both
System/36-compatible COBOL and RPG II. They
are supported as system-supplied formats used on
output operations.

Figure 13-13 on page 13-26 defines the system-
supplied formats supported for ICF and shows the
communications types that support the formats.

Position Value Meaning

3 thru 10 name Remote location
name (specified
during configuration
and on the SESSION
OCL statement).

11 A APPC communica-
tions type used.

12 0 Synchronization level
is NONE.

 1 Synchronization level
is CONFIRM.

13 M Mapped conversation.
 B Basic conversation.
14 thru 16 blanks Reserved.

OS/400 ICF Return Code COBOL Return Code17 thru 33 name Owner fully qualified
LU name. 00xx, 03xx, 0800 00

34 thru 41 name Partner LU name. 01xx 01
42 thru 58 name Partner fully qualified

LU name.
02xx 9A
04xx 9I

59 thru 66 name Mode. 1100 10
67 thru 74 name User ID. 2800 9E
75 thru 128 blanks Reserved. 3401 9G

80xx 30
81xx 92
82xx 9C
83xx 9N or 9K

 Chapter 13. Communications 13-25

Figure 13-13. System-Supplied Format Support

Operation Retail Finance
Intra-

system APPC SNUF BSCEL Asynchronous

$$CANL
Cancel with invite X X X

$$CANLNI
 Cancel X X X

$$CNLINV1

 Cancel invite X X X X X

$$EOS
End of session X X X X X X X

$$EVOK
Evoke then invite X X X X X

$$EVOKET
Evoke with detach X X X X X

$$EVOKNI
 Evoke X X X X X

$$FAIL2

 Fail X X X X X

$$NRSP
 Negative response
 with invite X X X

$$NRSPNI
 Negative response X X X

$$RCD
Request to write

 with invite X X X X

$$SEND
Put then invite

 or invite X X X X X X X

$$SENDE
Put with end of

 group X X X X X

$$SENDET
Put with detach

 or detach X X X X

$$SENDFM
Put FMH with invite X X X X

$$SENDNF
 Put FMH X X X X X

$$SENDNI
 Put X X X X X X X

$$TIMER
 Timer X X X X X X X

Notes:

1. $$CNLINV was not supported to a finance device on System/36, but it is supported in the System/36 environment.

2. $$FAIL is not supported by SNUF and BSCEL on System/36, but it is supported in the System/36 environment.

13-26 OS/400 System/36 Environment Programming V3R6

See the ICF Programming book for detailed infor-
mation about these operations and how they work.

IDDU Data Dictionaries: System/36 IDDU
data dictionaries are restored on the AS/400
system using the Restore System/36 Folder
(RSTS36FLR) command or System/36 to AS/400
migration aid. A new library is created, the name
of which matches the System/36 IDDU data dic-
tionary (unless the name is overridden on the
RSTS36FLR command). The library contains an
AS/400 data dictionary with definitions similar to
those in a System/36 data dictionary except that
DDS source is generated for each IDDU commu-
nications file definition. The DDS is stored as a
member of source file QIDDSSPICF and used to
create a corresponding ICF file. Each commu-
nications file definition from the System/36 IDDU
data dictionary is migrated to an ICF file.

Therefore, when communications file definitions
exist in the System/36 data dictionary, the library
created to contain the restored dictionary also
holds QIDDSSPICF (with one or more members)
and one or more ICF files. The names and
number of QIDDSSPICF members and ICF files
match the names and number of IDDU commu-
nications file definitions that exist in the System/36
data dictionary.

You cannot use IDDU on the AS/400 system to
change ICF files. Modify the DDS source with a
standard source editor (such as SEU) and create
the ICF file again.

Consider the following about System/36 environ-
ment applications that refer to ICF files:

� The number of System/36 environment appli-
cations is determined by the System/36 to
AS/400 migration aid, which determines the
maximum number of sessions allowed by ICF
files created from migrating IDDU communica-
tions file definitions. Alternatively, the
maximum number of sessions is set at 6 when
the data dictionary is restored using the
RSTS36FLR command.

When your application attempts to acquire
more sessions than the ICF file allows, the
application receives an 82A8 return code. If
your application receives this code, increase
the maximum program device value for the file

using the MAXPGMDEV parameter of the
Change Intersystem Communications Function
File (CHGICFF) command.

� Because System/36 environment applications
maintain separate areas for indicators and
data, you must specify the file-level attribute
INDARA in the DDS for ICF files used by
System/36 environment applications. The
System/36 to AS/400 migration aid gives this
attribute to ICF files created from IDDU com-
munications file definitions.

� The first record format contained in an ICF file
definition determines the input capacity of the
file. The record must be large enough to
contain data from another record format used
by the file. When the record format is not
large enough, the application receives a 3401
or 3431 return code while attempting to read
the larger format.

Because the largest record length supported
on System/36 is 4096, ICF files created from
migrating IDDU communications file definitions
contain a first record format named
DFTRCDFMT which has a length of 4096
records.

The following table shows the relationship
between System/36 IDDU format definition com-
munications functions and the corresponding
AS/400 DDS keyword.

S/36 IDDU Function
AS/400 ICF
Function

Send Fail (FAIL) function
Sends a fail indication to the

remote system.

FAIL

Send Request to Write (RQSWRT)
function
Specifies that the program is

requesting permission to write.

RQSWRT

Invite (INVITE) function
Specifies that the program is

inviting input from the remote
program.

INVITE

Evoke Process (EVOKE) function
Starts a program on the remote

system.

EVOKE,
SECURITY,
and SYNLVL

Confirm (CONFIRM) function
Requests that the remote program

confirms receiving data.

CONFIRM

 Chapter 13. Communications 13-27

DDS keyword support for ICF files is a superset of
System/36 IDDU support. See the DDS Refer-
ence book for more information about the DDS
keywords. See the ICF Programming book for
information about the use of DDS keywords with
communications applications, and for more infor-
mation about ICF files.

For more information on OS/400 support of IDDU,
see the IDDU Use book.

Return Codes and Messages

When an error occurs that affects an AS/400
application program, the system sends a message
to the program message queue of the program.
The messages are logged in the job log and you
can use them to determine problems. On
System/36, comparable messages were given to
the work station or system operator with several
options, including options 2 and 3. Answering the
messages with option 2 or 3 canceled the
program regardless of the error handling logic of
the program. Because the AS/400 messages
given in the job log do not affect the processing of
the application, an application that does not
handle error recovery properly can loop on error
conditions.

Errors are communicated to the program through
the language status codes, and a major and minor
return code. ICF return codes include System/36
SSP-ICF return codes. New return codes were
added. For example:

3441 The record format specified on the input
operation does not match the record
format specified on the read.

80EF User not authorized to file.

82F5 RMTFMT format selection not supported.

These return codes do not affect System/36 appli-
cations migrated to the System/36 environment

unless the application’s function is broader in the
System/36 environment.

See the ICF Programming book for a summary of
the return codes supported by each communica-
tions type. Each communications programming
book provides detailed information about return
code communications types supported and the
necessary recovery actions.

System/36 Environment Return Code
Considerations: The following System/36
return codes are unique to System/36 applications
running in the System/36 environment of the
AS/400 system. They are not documented in the
ICF Programming book.

2800 Return code 2800 indicates a program
that previously released its requester
session is trying to use the released
session.

01xx A major return code of 01 indicates this is
a new requester. This return code is
used primarily by multiple requester ter-
minal (MRT) applications. The same
minor return codes supported with a 00
major return code are supported with the
01 major return code.

A major return code of 02 on System/36 indicates
that a STOP SYSTEM or STOP SESSION has
been entered, or that communications is ending.
A major return code of 02 on the AS/400 system
indicates that the job or subsystem is ending. For
more information concerning error handling, see
“Error-Handling Considerations” on page 19-8.

 Testing Communications
Applications

The following information will help you when
testing your communications applications.

Testing Considerations: Consider the fol-
lowing when testing communications applications:

� Error messages . The system issues mes-
sages when errors are encountered while a
program is running. These messages can be
found in the job log, the QSYSOPR message
queue, or the history log.

– Job log . A job log is a record of each
message the system sent because of a

S/36 IDDU Function
AS/400 ICF
Function

Put End of Transaction (DETACH)
function
Informs the remote program that

the sending program is ending the
conversation.

DETACH

13-28 OS/400 System/36 Environment Programming V3R6

job. Job log messages include the fol-
lowing:

- Commands you entered from the key-
board.

- Responses to your request.
- Messages about programs the system

ran as a result of your request. They
are not displayed at your work station.

Look in the job log for messages that note
a problem. Serious problems usually
produce a function check and escape
messages. However, these messages are
usually preceded by other messages that
describe the problem in detail.

– QSYSOPR message queue . The
QSYSOPR message queue contains the
most recent information on system activity,
including the following:

- Record of device activation (VRYCFG)
 - Device failures

- Program start request failures

The information available on the
QSYSOPR message queue is a subset of
the information available in the history log.

– History log . A history log is a complete
record of system activity including:

- A record of each job started and fin-
ished

- A record of each device problem
- A note about each damaged system

object
- Copies of each message sent to the

system operator message queue

See the CL Programming book for information
about displaying messages in the job log, the
QSYSOPR message queue, and the history
log.

� Trace ICF . On the AS/400 system, use the
Trace Intersystem Communications Function
(TRCICF) command to save information at the
job level about the language operations and
communications functions directed to an ICF
file in the current job or in the job being ser-
viced as a result of the Start Service Job
(STRSRVJOB) command. See the ICF Pro-
gramming book for information about
accessing the Trace ICF environment.

� Debug mode . On the AS/400 system, use
the Start Debug (STRDBG) CL command to

enter the debug mode. If you are servicing a
job as a result of the STRSRVJOB CL
command, then all debug commands affect
the job being serviced. This allows you to
make use of the associated commands and
their functions to get more information about
your program status and its variable contents.
See the CL Reference book for information
about accessing the debug mode environ-
ment.

The following commands are allowed only in
the debug mode:

– With the Add Trace (ADDTRC) command
you can record the sequence in which
statements in your program are executed
and indicate the data to trace.

– With the Display Trace Data
(DSPTRCDTA) command you can display
the data traced (as a result of the
ADDTRC CL command) when you used
the ADDTRC command.

– With the Add Breakpoint (ADDBKP)
command you can stop a program when
you want to look at the status of a vari-
able. Enter the program statement
number and the variable you are inter-
ested in with the ADDBKP command.
When the program reaches this statement,
it stops before executing the statement.
When the program stops, the variable
name you entered with the command
appears.

– With the Display Program Variable
(DSPPGMVAR) command you can display
a variable not included in your ADDBKP
command. DSPPGMVAR allows you to
look at the variable content at the point
where you stopped the program. There
are cases when you want to look at the
contents of your return code to verify that
your operation completed normally.
Looking at the contents of the return code
allows you to track the progress of your
communications transaction.

See the CL Reference book for information on
how to use these commands in debug mode.

� Job trace . Use the Trace Job (TRCJOB)
command to trace a job while it is running.
You can use the TRCJOB command interac-
tively where it is entered on the command

 Chapter 13. Communications 13-29

entry screen or where it is defined in the OCL
procedure as another statement. With it you
can track the sequence of called programs.
Use the TRCJOB command when you are
having trouble isolating the program causing
the problem. Output is placed on the spooled
file. If you specify an output queue (using the
CHGJOB OUTQ(xxx) command), use the
Work with Output Queue (WRKOUTQ)
command. If you do not specify an output
queue, use the Work with Job (WRKJOB)
command (with option 4), or the Work with
Spooled Files (WRKSPLF) CL commands to
display the spool files for your job.

See the CL Reference book for more informa-
tion on the Trace Job (TRCJOB) command.

Debugging the Source Program: When
you are debugging your source program, the com-
mands described in “Testing Considerations” on
page 13-28 can assist you in isolating the source
of the problem.

Debugging the Target Program: You
can debug your target program by coding the
commands described in “Testing Considerations”
on page 13-28 in your remote procedure or by
setting up a work station for your remote program
that you can use interactively.

Normally, trace and debug mode commands are
used interactively on your work station where you
are running your program. However, when you
are isolating a problem in a remote program you
started with the EVOKE function in your local
program, you must use trace and debug mode
commands differently. Therefore, define the trace
and debug commands in your remote procedure
using the source entry utility (SEU). Your
System/36 procedures have the file type OCL36.
To prompt on AS/400 commands (ADDBKP,
TRCJOB, and so on), change the file type of your
procedure to CL. You can change the file type
back to OCL36 if you want to. Like a batch
program, the remote program does not have a
work station associated with it.

You can declare an Add Breakpoint (ADDBKP)
command in your remote procedure. The break-
point information is passed to the breakpoint
program. The breakpoint (CL) program is one of
the following:

� Associated with another work station (to which
it displays its information and from which it
receives replies)

� Contains the commands you would have
entered interactively

For example, the program can change and display
variables, or add and remove breakpoints. When
the breakpoint program ends, the program being
debugged continues to run.

 Additional Considerations: When a
program start request received from the remote
system fails, error messages that explain the
cause of the problem are logged on the
QSYSOPR message queue.

In addition to the messages, a reason code that
points to a more specific cause of the trouble is
provided. The reason code appears with the
system message on the message queue for the
job. See Figure 13-9 on page 13-11 for reason
codes of errors on program start requests.

A return code indicates a problem with your
source program or the target program. It is asso-
ciated with an error message sent to your
message queue, job log, or history log. Refer to
the book that describes the communication type
you are using for information about the return
code you received.

When the source program receives a negative
response code from the target program, a system
message is sent to the job log. The online help
information contains a code that identifies the spe-
cific problem. This can be a 2-, 4-, or 8-character
SNA negative response code.

File Transfer Subroutines

The file transfer subroutines allow a user applica-
tion program to retrieve System/36 data files or
System/36 library members from a System/36 and
send and retrieve database file members with
System/36 data file or System/36 library member
attributes to an AS/400 system or another
System/36.

System/36 data files and System/36 library
members reside on the AS/400 system as
members in a database file. When a data file is

13-30 OS/400 System/36 Environment Programming V3R6

retrieved from System/36, the data file is stored on
the AS/400 system as follows:

� Data files are stored in the System/36 environ-
ment files library (the default value is QS36F).

� The file name is the name of the file on
System/36. The application program can also
specify it.

� The member name is the System/36 creation
date preceded by M. The application program
can also specify it.

When you are sending a data file to System/36 or
an AS/400 system with the System/36 environ-
ment support, the system uses the following rules
to determine the source AS/400 database file and
member:

� The library searched is QS36F.
� The file name specified in the application

program determines the file name.
� The member name is the file date specified by

the application program, preceded by M.

A library member retrieved from System/36 is
stored on the AS/400 system as follows:

� Library members are stored in the library the
application program specifies.

� The type of library member received deter-
mines the file name:

– Procedures (PROC) are stored in
QS36PRC.

– Subroutines (SUBR) are stored in
QS36SBR.

– Source members (SOURCE) are stored in
QS36SRC.

– Load members (LOAD) are stored in
QS36LOD.

� The member name is the System/36 library
member name. (The application program can
also specify it.)

When you are sending a library member to
System/36 or an AS/400 system with System/36
environment support, the system uses the fol-
lowing rules to determine the AS/400 database file
and member:

� The library searched is the library name speci-
fied by the program.

� The type of library member sent determines
the file name:

– QS36PRC is used if a procedure is being
sent.

– QS36SBR is used if a subroutine is being
sent.

– QS36SRC is used if a source member is
being sent.

– QS36LOD is used if a load member is
being sent.

� The member name is the library member
specified in the program.

The file transfer subroutines allow communications
using APPC, BSCEL, and asynchronous commu-
nications support. Asynchronous transmission
in data communication is a method of trans-
mission in which sending and receiving of data is
controlled by control characters instead of by a
timing sequence.

Two file transfer subroutines exist in the
System/36 environment:

� SUBRF1 for System/36-compatible COBOL
programs

� SUBRF2 for RPG II programs

These two subroutines are compatible with the file
transfer support subroutines supported on
System/36. SUBRF1 and SUBRF2 are available
in the System/36 environment.

File transfer support is also available to programs
running in the OS/400 environment. For informa-
tion about using file transfer in the OS/400 envi-
ronment, see the ICF Programming book.

File Transfer Subroutine
Parameters

The following parameters are passed to the sub-
routine:

FCODE
This 1-character field contains the file transfer
function to be performed. This field is
required. Following are valid values:

S Send a data file or library member to
the remote system.

R Retrieve a data file or library member
from the remote system.

QUAL1 through QUAL6
These six fields tell the system whether you
want to transfer a data file or a library
member. They also allow you to give the data
file or library member a different name on the
target system.

 Chapter 13. Communications 13-31

The following table shows the meanings of the
qualifiers for data files.

The following table shows the meanings of the
qualifiers for library members:

Qualifier Value Description

QUAL5 Target
file date

The creation date (6 decimal
digits long) of the file at the
target system. This field is
optional. The format of the file
date must be the same as your
system date format. If you use
this field, make sure the
system date format on the
remote system is the same as
the format on your system.

� If you are replacing a file
(REPL=Y), this is the cre-
ation date of the file to be
replaced at the target
system.

� If you are adding a new
file, this is the date to be
assigned to the new file.

� If you do not specify a
target file date, the file
date from QUAL2 is
assumed.

Qualifier Value Description

QUAL1 File
name

The name of the data file (1 to
8 characters long). This field
is required. Do not specify a
group file name.

QUAL2 File
date

The 6-digit decimal field repre-
senting the creation date of the
file. This field is optional. If
you do not specify a file date
and more than one file exists
with the specified name, the
most recent file is used. The
format of the file date must be
the same as your system date
format. If you use this field,
make sure the system date
format on the remote system is
the same as the format on
your system.

QUAL3 Blank This field must be left blank.

QUAL4 Target
file
name

The name of the data file (1 to
8 characters long) at the target
system. This field is optional.

� If you are replacing a file
(REPL=Y), this is the
name of the file to be
replaced at the target
system.

� If you are adding a new
file, this is the name to be
assigned to the new file.

� If you do not specify a
target file name, the file
name from QUAL1 is
assumed.

QUAL6 Blank This field must be left blank.

Qualifier Value Description

QUAL1 Library
name

The name (1 to 8 characters
long) of the library in which
the member can be found.
This field is required.

QUAL2 Library
member
type

Valid values are SOURCE,
PROC (procedure), SUBR
(subroutine) and LOAD
(load). This field is required.

QUAL3 Library
member
name

The name of the library
member (1 to 8 characters).
This field is required.

QUAL4 Target
library
name

The name (1 to 8 characters
long) of the library in which
the member is to be stored.
This field is optional. If you
do not specify a target library
name, the value from
QUAL1 is assumed.

QUAL5 Blank This field must be left blank.

13-32 OS/400 System/36 Environment Programming V3R6

REPL
This 1-character field tells whether or not you
want to replace the data file or library member
on the target system. Valid values are as
follows:

Y Replace an existing data file or library
member on the target system.

N Do not replace an existing data file or
library member; indicate an error con-
dition to the user if the file or member
already exists.

The default is N.

LOCNAM
This 8-character name contains the name of
the remote location with which you are com-
municating. This should be the same as the
remote location name specified in your config-
uration (on the RMTLOCNAME parameter of
the Create Device xxx [CRTDEVxxx]
command).

PWORD
This 4-character field contains the password
for signing on the remote system. This field is
required only if the remote system has pass-
word security active.

RCODE
This 1-character field contains the return code.
The subroutine returns this value to the appli-
cation program to indicate the result of the file
transfer. Valid values are as follows:

0 Normal completion.
1 An error was detected at the local

system.
2 An error was detected at the remote

system.

For return codes 1 and 2, the specific error is
logged to the job log file of the program
message queue, and the message identifier
code is returned to the user in the ERRMIC
field. Message identification is a field in the
display or printout of a message that directs
the user to the description of the message in
a message guide or a reference book. This
field consists of up to four alphabetic charac-
ters followed by a hyphen, followed by the
message identification code.

ERRMIC
If the value returned in the RCODE field is 1
or 2 (indicating an error), this 8-character field
contains the MIC for the specific error.

Although file transfer subroutine message
numbers returned to the application are similar
to System/36 message numbers, AS/400
system numbers are different. See the ICF
Programming book for information about file
transfer messages.

APPN
This 1-character field is used on System/36 to
indicate whether APPN can be used. The
AS/400 system assumes the equivalent of
APPCNET-YES.

File Transfer Support
Considerations

Consider the following points when using file
transfer support:

� The AS/400 system requires that all members
within a file have the same record length.
Files retrieved from System/36 can be stored
in any file as long as the record lengths are
the same. If the file name only is specified,
the defaults of a send from System/36 apply.

� If System/36 sends a data file or library
member to an AS/400 system, it can be
retrieved from a System/36. If an AS/400
system retrieves a System/36 data file or
library member, and the file name on the
AS/400 system is not defaulted (QS36F,

Qualifier Value Description

QUAL6 Target
library
member
name

The name (1 to 8 characters
long) of the library member
at the target system. This
field is optional.

� If you are replacing a
library member
(REPL=Y), this is the
name of the member to
be replaced at the target
system.

� If you are adding a new
library member, this is
the name to be assigned
to it.

� If you do not specify a
target library member
name, the value from
QUAL3 is assumed.

 Chapter 13. Communications 13-33

QS36PRC, QS36SBR, or QS36SRC),
System/36 cannot retrieve the file from the
AS/400 system.

� If you try to transfer a null library member to
System/36, the library member appears to
transfer successfully. However, because
System/36 does not support null library
members, the library member does not exist
on System/36.

� The mode specified in your APPC device
description used with file transfer must equal
the default mode in your network attributes or
a mode of *NETATR.

� If your system is connected to a network by a
packet assembler/disassembler (PAD), and
you use FTS on an X.25 packet-switching
data network (PSDN), you must set network-
specific and X.3 parameters to the following
values to allow data transparency:

– No PAD recall using a character
– No selection of data forwarding characters
– Only forward on full packets or idle timer
– PAD must allow 8-bit transparency
– PAD must allow EBCDIC data

 – No echo
– No use of XON/XOFF
– On break signal from start-stop mode of

DTE, PAD must send interrupt

Data terminal equipment (DTE) is that
part of a data link that sends data,
receives data, and provides the data com-
munications control function according to
protocols.

Notes:

1. If you use FTS with AS/400 system inte-
grated PAD, X.3 parameters are ignored
to achieve data transparency.

2. The network PAD must not perform oper-
ations on the file transfer data stream.

See the Asynchronous Communications Pro-
gramming book for more information about
X.3 parameters.

 Asynchronous Communications

This section summarizes the differences in asyn-
chronous communications support between
System/36 and the System/36 environment:

� Modem initialization support . The modem
initialization command is not supported. You
must provide an application program to
perform any modem initialization required.

� Generic location support . On System/36,
you configure generics to accept incoming
calls from remote systems whose location
names are in the DEFINLOC file. When a
remote system calls in, its name is assigned
to the generic. At the end of the session, the
System/36 program sends a disable command
to disable the location assigned to the generic.
The generic then goes back to generic status
and waits for another incoming call. It does
not have to be enabled again before it can be
used again. Generic locations cannot be
enabled and disabled while they are in generic
status.

On the AS/400 system, generic
controllers/devices must be enabled before
incoming calls can be accepted. If an applica-
tion disables (varies off) a generic
controller/device, it must vary it on before it
can be used to accept incoming calls.
However, the generic controller/device need
not be disabled to break the connection.
There is a switched disconnect (SWTDSC)
parameter on the controller description. The
switched disconnect parameter indicates
whether the asynchronous communications
support should disconnect the connection at
the end of the session. To have generic
controllers/devices available for incoming calls
after each session, configure SWTDSC(*YES)
on the controller description. This configura-
tion causes the connection to be dropped and
the generic is again available for incoming
calls.

 Asynchronous Configuration
Considerations

Consider the following points when configuring
asynchronous communications:

� Bits per character plus parity . System/36
builds a data byte consisting of 8 bits. The

13-34 OS/400 System/36 Environment Programming V3R6

byte consists of 7 data bits plus a parity bit, or
8 data bits with no parity. The 9404 System
Unit supports this 8-bit byte.

On a 9406 System Unit, you can set 7 or 8
data bits as well as even, odd, or no parity.
Parity causes the system to add a parity bit to
the number of data bits.

 � Intercharacter timeout . Intercharacter
timeout causes the I/O adapter to pass input
data to the asynchronous communications
support if no additional data has been
received before the configured timeout value.
AS/400 system support allows you to con-
figure the intercharacter timeout value.

� Remote location names . On the AS/400
system, you can specify the remote location
name *NONE on an asynchronous commu-
nications device description. You must
specify remote location name
(RMTLOCNAME(*NONE)) on the device
description and connection number
(CNNNBR(*ANY)) on the controller description
to configure the generic location. However,
you can specify *NONE if you want only pro-
grams started from a remote system and not
acquired by a local program to use the device.

 Asynchronous Programming
Considerations

Consider the following when programming asyn-
chronous communications:

� Packet assembler/disassembler (PAD)
operation . The following modifications have
been made to built-in PAD emulation support:

– Prompt and service signals . The text
for the prompt and service signals
returned by PAD have changed. See the
Asynchronous Communications Program-
ming book for a list of the messages.

– Priority of PAD data . An application
program receives data echoed by the PAD
prior to receiving data from the remote
system. PAD returns service signals to
the application prior to data.

 – X.3 parameters . AS/400 asynchronous
communications does not support some
X.3 parameters. See the Asynchronous
Communications Programming book for a

list of the X.3 parameters the AS/400
system supports.

– Ordered X.28 command responses .
Responses to X.28 commands resulting in
a list of X.3 parameters and their corre-
sponding values are sorted by parameter
(in ascending order) and contain no dupli-
cate parameters.

� Data buffering and the use of XOFF . When
data arrives faster than a user application
receives and processes it, the AS/400 system
buffers the data until the application can
accept it. Before sending an XOFF character
to the remote system, 12K (K equals 1024
bytes) are buffered. The AS/400 system con-
tinues to send an XOFF character in response
to each buffer received until the amount of
data received by the application program
reduces the amount of buffered data to less
than 4K. When the amount of buffered data is
less than 4K, the system sends an XON char-
acter. The AS/400 system buffers a total of
24K before it drops the connection with the
remote system.

� New return code 0042 . When the adapter
has detected a data loss situation due to a
buffer overrun, the loss is reported to the
application (with data received prior to the
overrun) as return code 0042.

� Protocol identifier . The first byte of the call-
user data in an X.25 call packet is the protocol
identifier. The System/36 set this byte to hex
00. The AS/400 system sets this byte to hex
C0. X.25 support accepts both protocol identi-
fiers as non-System Network Architecture
(SNA).

The protocol identifier is set to hex 01 when
you configure PAD emulation and initiate the
call through the PAD.

� Use of the more data flag . Data transmitted
over an X.25 line utilizes the more data flag if
your record size exceeds the network packet
size. Data received in packets with more data
flagged are combined and treated as one
record.

� ITF procedure . When using the ITF proce-
dure, consider the following:

– Member send . The Remove sequence
number and date field is new. If you type
Y in this field, the first 12 bytes are

 Chapter 13. Communications 13-35

removed from each record. If you type N
in this field, the first 12 bytes from each
record are not removed from each record.

– Member receive . The Convert to source
field is new. If you type Y in this field,
data that is received starts in the thir-
teenth position. Positions 1 through 12
are used for sequence number and date
field information. If you type Y in this
field, be sure the receive record size you
specified is sufficient to hold the data
received. If the receive record size is not
large enough, the end of each record will
be truncated. If you type N in this field,
the data received will start in the first posi-
tion.

– Record size on Member Receive if the
member does not exist . On the
System/36, the record size was 80, 96, or
120 bytes. On the AS/400 system, the
record length is 80, 92, 96, 108, 120, or
132 bytes. The additional values are each
12 bytes more than the System/36 values
due to the Convert to source field.

– Deciding if the member exists on
Member Receive . First the member is
checked to determine whether it is a
source member. If the member is not a
source member, it is checked to determine
whether it is a procedure member. The
System/36 checked to see if it was a
source member and did not determine
whether it was a procedure member.

� SUBRA1 subroutine . The SUBRA1 subrou-
tine allows System/36-compatible COBOL and
RPG II programs to retrieve the data length
for an ICF file from the last input operation.
The call to SUBRA1 must immediately follow
the input operation. Following are the
SUBRA1 parameters:

WSNAME
The character field that contains the name
of the file assigned to the work station. It
is required only for COBOL programs.

SYMID
The 2-character field for the session iden-
tifier.

DATAL
The 4-character field name that contains
the length of data received from the last
input operation.

RCODE
The 2-character code that contains the
return code. SUBRA1 returns this value
to the application program. Following are
the valid values:

40 Normal completion
41 The specified session identifier not

found or not associated with the last
I/O operation to a work station file

42 Not an RPG II or
System/36-compatible COBOL
program

 BSCEL

This section summarizes the differences in BSCEL
between the System/36 and the System/36 envi-
ronment on the AS/400 system. For additional
information on AS/400 BSCEL, see the BSC
Equivalence Link Programming book.

 BSCEL Terminology
Considerations

The following list describes System/36 BSCEL
terms that are used differently on the AS/400
system:

� On System/36, the PARTNER parameter
specifies the type of session you want with the
remote system. NORM and ATTR are the
possible choices for this parameter. On the
AS/400 system, the RMTBSCEL parameter
specifies the type of session you want with the
remote system. The corresponding choices
are *YES and *NO. (RMTBSCEL is a param-
eter on the ADDICFDEVE, OVRICFDEVE,
CHGICFDEVE, CRTDEVBSC, and
CHGDEVBSC commands.)

� Many System/36 communications operations
are referred to as functions on the AS/400
system.

� System/36 uses end-of-transaction as an
operation modifier. The AS/400 system uses
detach function to mean the same thing.

13-36 OS/400 System/36 Environment Programming V3R6

 BSCEL Configuration
Considerations

The following list describes some configuration
considerations for BSCEL on the AS/400 system
in the System/36 environment:

� On System/36, the default record separator is
hexadecimal 00. If you use this default value
and you specify blank compression or blank
truncation, the system uses hexadecimal 1E
as the record separator.

On the AS/400 system, the default record sep-
arator is hexadecimal 1E on the CRTDEVBSC
command. If your AS/400 system is commu-
nicating with a System/36 that is using its
default record separator, and you are using
blank compression or blank truncation, you
must use hexadecimal 1E as your record sep-
arator.

If the default record separators are not used,
you must ensure that the record separator
used on the AS/400 system matches the
record separator on the System/36.

� On System/36, you were required to enter a
local station address in the CNFIGICF line
member when you configured multipoint
tributary support. On the AS/400 system, you
must enter a local station address in the line
description and a local location address in the
device description when you configure multi-
point tributary support. A host system must
use a 4-character POLL/SELECT address to
communicate with BSCEL on the AS/400
system when using a multipoint line, instead
of the 2-character POLL/SELECT address that
was used to communicate with BSCEL on the
System/36.

� On System/36, you were allowed to specify
multiple remote IDs in the CNFIGICF sub-
system member if you specified switched line
support. The maximum number of remote IDs
you could specify was 55 per System/36. On
the AS/400 system, you can specify multiple
remote IDs in the controller description if you
specify switched line support. The maximum
number of remote IDs you can specify is 64
per controller description on the AS/400
system.

� On System/36, you were allowed to specify
ITB record blocking and transparency on

receive. This combination is not allowed on
the AS/400 system.

� On System/36, you could override the switch
type value specified in the line configuration
member by specifying the SWTYP parameter
on the SESSION OCL statement as either
MC, AA, or MA (manual call, auto answer, or
manual answer). On the AS/400 system, the
SWTYP parameters (MC, AA, MA) are also
supported on the SESSION OCL statement,
but the BSC line description must also be
created or changed with nonconflicting param-
eters (such as AUTODIAL = *NO if
SWTYP = MC). Refer to the SESSION OCL
statement in the System/36 Environment Ref-
erence book for more information.

 BSCEL Programming
Considerations

The following list describes the programming con-
siderations for BSCEL on the AS/400 system in
the System/36 environment:

� AS/400 BSCEL sends the end-of-transaction
(*EOX) command when a detach function is
used. This only applies when
PARTNER-NORM is specified (on the
SESSION OCL statement), or the session was
started by an *EXEC program start request.
On System/36, if you send data with the write
operation and you are not using data blocking,
BSCEL places the *EOX command at the
beginning of the data record before the record
is sent. The return code given to the
receiving program is 0008. On the AS/400
system, if you send data with the write opera-
tion and you are not using data blocking,
BSCEL sends the *EOX command in a sepa-
rate record, after the data record is sent. The
return code given to the receiving program for
the data record is 0001. The receiving
program has to use another input operation in
order to detect the end-of-transaction indi-
cation. The return code given for this input
operation will be 0308.

� The AS/400 system can send positive
acknowledgements for received data before
the data is checked for BSCEL commands.
This can cause a release operation in an
acquired session (a session started using an
acquire operation with an OPEN statement) to
time-out and fail if the target program has not

 Chapter 13. Communications 13-37

ended its session after the communications
transaction has ended. (BSCEL sends a
*REL command to the remote system when a
release operation is processed and
PARTNER-NORM is specified on the
SESSION OCL statement.)

� On System/36, BSCEL sends online mes-
sages with the prefix SYS-. On the AS/400
system, BSCEL sends online messages with a
prefix of either BSCL or CPI. BSCEL sends an
online message (with reason codes) with the
prefix BSCL in response to a program start
request. BSCEL sends an online message
with the prefix CPI to indicate that a session
error has occurred, or for any other error
requiring a message. If your System/36 appli-
cation which communicates with an AS/400
BSCEL application is dependent on the format
of SYS- messages, you must change your
System/36 application to recognize the new
formats.

 Finance Considerations

This section summarizes the configuration and
programming considerations for finance commu-
nications. See the Finance Communications Pro-
gramming book for a complete description of the
AS/400 system finance support.

Note: The System/36 LOAD3601 diskette image
transfer is not supported on the System/36 envi-
ronment. However, the AS/400 system supports a
similar function when the Send Finance Diskette
Image (SNDFNCIMG) command is used.

 Configuration Considerations

Consider the following when configuring the
AS/400 Finance support:

� The System/36 user has to configure an
SSP-ICF line member for each line used by
System/36 Finance support. The System/36
user also has to configure an SSP-ICF sub-
system member, specifying each control unit
(remote locations) and characteristics of each
control unit, including the number of terminals.
The AS/400 system requires the definition of
each line, all control units, and all devices
connected to each control unit. These defi-
nitions are the line descriptions, controller
descriptions, and device descriptions.

� There are three levels of activation required
by both System/36 and the AS/400 system.
The System/36 ENABLE procedure attempts
to establish communications on all three
levels. The AS/400 user must vary on (using
the VFYCFG command) each line, controller,
and device to establish the same state of acti-
vation. Once this has completed, a session
with a particular device may be initiated.

� The AS/400 system requires that the remote
location name (configured in the device
description) be unique for finance communica-
tions. If you use multiple logical work station
IDs for the same location, or multiple sub-
system configurations with the same remote
location name, you must develop a naming
scheme to ensure that your finance remote
location names are unique. Once you have
developed a naming scheme, you also must
edit your finance procedures to ensure the
SESSION OCL statements conform to the
new naming scheme.

 Programming Considerations

Consider the following when programming for
AS/400 Finance support:

� System/36 applications communicate with
System/36 Finance support through the
SSP-ICF.

� On System/36, a $$SEND with data while the
session is invited, results in an error return
code. In the System/36 environment, this is
no longer true. The data is sent, and the
session remains invited.

� On System/36, an input operation results in an
8322 return code if a chain was started to the
controller ($$SEND) on a system monitor
session and never closed ($$SENDE). In the
System/36 environment, the input operation
results in finance support closing the chain.

� System/36 supports a maximum received data
length of 512 bytes. The System/36 environ-
ment supports a maximum of 4096 bytes.

� Major return codes 80 and 81 may have dif-
ferent minor return codes in the System/36
environment.

� The AS/400 system buffers data being sent or
received by your program for finance devices.

13-38 OS/400 System/36 Environment Programming V3R6

 Retail Considerations

This section summarizes the configuration and
programming considerations for retail communica-
tions. Retail communications is the data com-
munications support that allows programs on an
AS/400 system to communicate with programs on
point-of-sale systems using SNA LU session type
0 protocol. See the Retail Communications Pro-
gramming book for a complete description of
AS/400 system retail support.

 Configuration Considerations

Consider the following when configuring AS/400
Retail support:

� The System/36 user configures an SSP-ICF
line member for each line used by System/36
Retail support. The System/36 user also con-
figures an SSP-ICF subsystem member, spec-
ifying each control unit (remote locations) and
characteristics of each control unit, including
the number of terminals. The AS/400 system
requires the definition of each line, all control
units, and all devices connected to each
control unit. These definitions are the line
descriptions, controller descriptions, and
device descriptions.

� The MAXMSG parameter is ignored in the
System/36 environment. To specify the
pacing value on a retail controller, you must
configure the PACING keyword on the
CRTDEVRTL command.

� There are three levels of activation required
by System/36 and the AS/400 system. The
System/36 ENABLE procedure establishes
communications on all three levels. The
AS/400 user must vary on (using the VFYCFG
command) each line, controller, and device to
establish the same state of activation. Once
this is completed, a session with a particular
device may be started.

� The AS/400 system requires that the remote
location name (configured in the device
description) be unique for retail communica-
tions. If you use multiple logical work station
IDs for the same location, or multiple sub-
system configurations with the same remote
location name, you must develop a naming
scheme to ensure that your retail remote

location names are unique. Once you have
developed a naming scheme, you also must
edit your retail procedures to ensure the
SESSION OCL statements conform to the
new naming scheme.

 Programming Considerations

Consider the following when programming for the
AS/400 Retail support:

� On System/36, a $$SEND with data while the
session is invited results in an error return
code. In the System/36 environment, this is
no longer true. The data is sent, and the
session remains invited.

� System/36 supports a maximum write opera-
tion ($$SEND or $$SENDE) of 256 bytes.
The System/36 environment supports a
maximum write operation of 4096 bytes.

� Major return codes 80 and 81 may have dif-
ferent minor return codes in the System/36
environment.

� The AS/400 system buffers data being sent or
received by your program for retail devices.

 Intrasystem Communications

This section summarizes the differences in
support between the System/36 Intra subsystem
and the AS/400 intrasystem communications type.

 Programming Considerations

Consider the following when programming for the
AS/400 intrasystem communications support:

� On the System/36, a $$SEND with data while
the session is invited results in an error return
code. In the System/36 environment, this is
no longer true. The data is sent, and the
session remains invited.

� System/36 supports a maximum write opera-
tion ($$SEND or $$SENDE) of 256 bytes.
The System/36 environment supports a
maximum write operation of 4096 bytes.

� The System/36 Intra sent system messages
between programs indicating the state of the
other programs. This is not supported on the
AS/400 intrasystem communications.

 Chapter 13. Communications 13-39

� On the AS/400 intrasystem communications,
the 831C return code is given following a
0412 return code if a second output operation
is done. The 8323 return code never follows
a 0412 return code. This may differ slightly
from the System/36 Intra handling of output
failure.

� On the System/36 Intra, Request Write
(RQSWRT) is not allowed if BATCH(NO) is
specified. On the AS/400 intrasystem,
RQSWRT is allowed for both batch and non-
batch modes, as are all other communications
types.

� On the AS/400 intrasystem communications,
CONFIRM is not ignored in the BATCH(YES)
mode. If a detach/confirm function is speci-
fied, the system waits for a response to the
confirm functions. This differs from the
System/36 Intra.

� On the System/36 Intra, return codes may
have been one or more operations behind the
actual operation for which they were issued,
since Intra buffers writes while sending. On
the AS/400 system, only one write can be out-
standing at a time, so the return codes are
never more than one operation behind the
actual operation.

� On System/36 Intra, an 0412 or 8323 return
code may have been issued on an output con-
dition if the other side canceled an invite and
sent data first. On the AS/400 intrasystem
communications, a 0412 is always used to
indicate an output exception when data is in
the buffer.

For information on mixing System/36 and AS/400
programs in the same application, see “Program
Control in the System/36 Environment” on
page 17-5.

System/36 APPC to AS/400 APPC

APPC support for the AS/400 system differs from
System/36 APPC support in the way it handles
sessions that send or receive a detach function.

The difference between these systems is the way
sessions are released. On the System/36, APPC
support holds the session until the user releases it
by using the Release (REL) ICF operation. On
the AS/400 system, APPC support allows the

session to be available for immediate use after the
detach function is sent or received.

Because of this difference, an error can occur
when an application program migrates from a
System/36 with APPC support to an AS/400
system using APPC support. Most often this error
occurs when the application program starts
another evoke function, and the session to be
acquired is being used by another job.

Both the AS/400 system and the System/36 allow
another evoke function to run after the conversa-
tion ends. However, on the AS/400 system, the
evoke function can fail if the switch line is discon-
nected or another job has acquired the session.
The chances of the evoke function failing depends
on the system usage at that time.

To prevent the AS/400 system evoke function
from failing, consider the following:

� Use the Change Mode Description
(CHGMODD) command to increase the
number of sessions available. This only
applies to multiple session devices with the
single session (SNGSSN(*NO)) parameter
specified on the APPC device description.

� Change the APPC device from a single
session device to a multiple session device to
increase the number of available sessions.
To do this, specify the SNGSSN(*NO) param-
eter on the APPC device description if the
device specifies APPN(*NO). For an
APPN(*YES) device, use the Change Config-
uration List (CHGCFGL) command to a
specify single session (*NO) in the Single
session field, and then delete the device
description using the Delete Device
Description (DLTDEVD) command.

Note: You must change the source and
target system configurations in order to
change from a single session device to a mul-
tiple session device.

� Use the Release (REL) ICF operation to
release the session after you send or receive
a detach function.

Before you try to use the evoke function
again, you must acquire a new session. This
causes the switch line to be dialed if discon-
nected. Therefore, if a session is not avail-
able, you receive the same return code on an
AS/400 system as you get on a System/36.

13-40 OS/400 System/36 Environment Programming V3R6

� Use the WAITFILE parameter on the Create
ICF File (CRTICFF) command to allow more
time for a session to become available.

� Use the CHGDEVAPPC or the CHGCFGL
command to set the Number of conversations
value to 1 when the SNGSSN(*YES) param-
eter is specified. This prevents another job
from acquiring the session.

System/36 Peer to AS/400
Advanced Program-to-Program
Communications (APPC)

You can change a System/36 program that uses
the System/36 Peer subsystem so it can use the
AS/400 ICF APPC support.

AS/400 APPC does not support the system-
supplied send-end-of-chain ($$SENDE) format or
the return code indicating reception of an end of
chain.

An AS/400 APPC application can receive a return
code indicating an end of transaction was received
with the data record. When you are using the
System/36 Peer subsystem, an end-of-transaction
indication is not returned to the application with
the data record.

On AS/400 APPC, you are not notified of an
EVOKE failure until a subsequent operation. An
evoke operation in the Peer subsystem does not
complete until it receives acknowledgement from
the remote Peer subsystem. In AS/400 APPC, a
CONFIRM function can be included with the
EVOKE function to verify completion of the
EVOKE function.

Some minor codes returned by the System/36
Peer subsystem are different than those returned
by AS/400 APPC. If the program checks minor
return codes, changes are required to handle the
AS/400 APPC minor return codes. For example,
System/36 Peer subsystem return codes for failure
errors (remote program issues a FAIL) are dif-
ferent than AS/400 APPC return codes for failure
errors. See the APPC Programming book for a
list of AS/400 APPC return codes.

See the APPC Programming book for information
on security considerations.

System/36 BSC/CICS to AS/400
SNA Upline Facility

You can change a System/36 program that uses
the System/36 BSC/CICS* subsystem so it can
use the AS/400 SNUF support. Generally, only
minimal changes are needed in the application
program. Changes are also needed in the config-
uration and external interfaces (for example, lines
and the remote host support).

Remote Host Support
Considerations

To support a change to AS/400 SNUF, change the
VTAM/NCP* generation to include an AS/400
system as an SNA device. Also change the CICS
terminal definitions from BSC to SNA. Consult
with your remote host system programmer for
additional considerations.

 SNUF Programming
Considerations

The SNA upline facility (SNUF) is the commu-
nications support that allows the AS/400 system to
communicate with Customer Information Control
System for Virtual Storage (CICS/VS) application
programs on a host system. You can run
System/36 programs that use the BSC/CICS sub-
system, with little change, on the AS/400 SNUF
support if no minor return codes are checked.
The minor return codes issued by System/36
BSC/CICS and AS/400 SNUF differ somewhat,
especially in the way an end of a transaction is
indicated. Therefore, coding changes are required
if minor return codes are checked. There are also
some differences in the generation of major return
codes that indicate a permanent error (80 and 81).
However, in general, these should not affect your
application.

Data buffering on the AS/400 system is different
than data buffering on System/36. This can affect
when an application program is notified (by a
major/minor return code) of an error condition.
Some examples of this are:

� The timing of when an application receives
notification of an SNA error varies from
System/36 to the AS/400 system, based on
various factors, such as frame sizes.

 Chapter 13. Communications 13-41

� On System/36, when an application issued a
put operation, SSP-ICF data management
sent the data to the SSP-ICF subsystem and
then returned control to the application without
waiting for the operation to complete. There-
fore, if the subsystem determined that the
operation was not valid based on the state of
the session, the application was not notified
until the next operation. On the AS/400
system, the application is notified as soon as
possible of the state error that occurred.

Another difference between System/36 BSC/CICS
and AS/400 SNUF is that BSC/CICS allows only
the *EXEX program start request by CICS,
whereas SNUF allows either *EXEX or *EXEC.
This does not cause any changes unless it is
decided to use the additional facility.

On the AS/400 system, uninvited data is data
received in a session that has no active AS/400
program associated with it and the data does not
begin with *EXEC or *EXEX. (Data records that
begin with *EXEC or *EXEX are program start
requests, and are not considered uninvited data.)
An AS/400 program must be specified for
program-start-capable devices (during configura-
tion with the DFTPGM parameter of the
CRTDEVSNUF command) so that the program
begins running when uninvited data is received.
When data is given to the program, the program
can process the data, save it in a file, or discard it.
If the program is using the AS/400 SNUF support,
the program must receive 256-byte records and
should be prepared to handle function manage-
ment headers.

The System/36 BSC/CICS subsystem was always
one record ahead of the user. A read for change
direction or EOT was done in background pro-
cessing so the line was free, in case the user did
not get back to read the EOT. Some application
programs may have taken advantage of this
action, and issued an output operation, instead of
a read, when the user knew that the data was
complete. This function is supported for SNUF in
the System/36 environment. However, if you
choose to migrate your application to the AS/400
environment, this support is not available. The
user program must continue to read until change
direction is indicated.

System/36 BSC/IMS to AS/400
SNA Upline Facility

You can change a System/36 program that uses
the System/36 BSC/IMS subsystem so it can use
the AS/400 SNUF support. Changes are needed
in the application program, in configuration, and
external interfaces (for example, lines and remote
host support).

Remote Host Support
Considerations

To support a change to AS/400 SNUF, change the
VTAM/NCP generation to include an AS/400
system as an SNA device. Also change the IMS
terminal definitions from BSC to SNA. Consult
with your remote host system programmer for
additional considerations.

 SNUF Programming
Considerations

Consider the following items when writing interac-
tive communications programs that communicate
with IMS/VS:

 � Uninvited data
� Detach (end of transaction) functions
� BATCH parameter on the SESSION statement
� Return code processing
� Change direction/EOT processing

You must consider these items whether you use
AS/400 SNUF or the System/36 BSC/IMS sub-
system. The following sections compare the
AS/400 SNUF and the System/36 BSC/IMS
subsystem’s implementations with respect to these
items.

Uninvited Data: On the AS/400 system and
System/36, uninvited data is data (or messages)
received in a session that has no active AS/400
program associated with it and the data does not
begin with *EXEC or *EXEX. (Data records that
begin with *EXEC or *EXEX are program start
requests and are not considered uninvited data.)
An AS/400 program must be specified for
program-start-capable devices (during configura-
tion with the DFTPGM parameter of the
CRTDEVSNUF command), so that the program
begins running when uninvited data is received.

13-42 OS/400 System/36 Environment Programming V3R6

When data is given to the program, the program
can process the data, save it in a file, or discard it.

Uninvited data on an AS/400 system or System/36
can be received for any of the following reasons:

� A message switch or broadcast message is
received.

� An IMS/VS application sends data (any data
not beginning with *EXEC or *EXEX) to an
output queue associated with a program-start-
capable device.

� An AS/400 or System/36 program abnormally
ends before all data has been sent by IMS.

� An IMS/VS status message is sent to a
session.

Because IMS/VS cannot accept input from the
same session used to start a remotely-started
(target) program, the AS/400 or System/36
program that receives the uninvited data cannot
perform any output operations in the session. If
the program is using the AS/400 SNUF support,
the program must receive 256-byte records and
should be prepared to handle function manage-
ment headers.

Detach (End of Transaction)
Functions: Detach functions (for example,
write with detach or evoke with detach) are treated
differently by the System/36 BSC/IMS subsystem
than they are by AS/400 SNUF.

When an application issues a detach function, the
System/36 BSC/IMS subsystem indicates to the
host that the message has ended.

When a detach function is issued by an AS/400
SNUF application, SNUF sends an end bracket (if
the secondary is allowed to send end brackets), or
a change direction indication. If a change direc-
tion indication is sent, SNUF expects to receive a
null record from IMS/VS that terminates the trans-
action. If anything other than a null record is
received, the session is terminated abnormally,
and an error return code is sent to the application
program. Something other than a null record can
be received in any of the following cases:

� The IMS/VS remote program generates output
to be sent to this session.

� An output message is placed on the IMS/VS
output queue by an IMS/VS program other
than the one evoked by the AS/400 program.

� A message switch or broadcast message is
placed on the IMS/VS output queue for this
session.

A detach function used with AS/400 SNUF fails
when output remains on the IMS/VS output queue
and the secondary is not allowed to send an end
bracket for this session. (The detach works if the
secondary can send an end bracket.) The detach
will not fail when using the System/36 BSC/IMS
subsystem.

Because of these situations, detach functions are
not recommended for AS/400 SNUF sessions that
communicate with IMS/VS unless a logmode entry
that allows the secondary to send end brackets is
used.

BATCH Parameter on the SESSION
Statement: You must consider the differences
in BATCH processing when converting the
System/36 BSC/IMS SESSION OCL to the
AS/400 SNUF SESSION OCL supported in the
System/36 environment. The BATCH parameter
on the SESSION statement determines how the
input and output operations are handled. The fol-
lowing guidelines should be used in determining
the appropriate BATCH parameter to use if your
application is operating in forced terminal
response mode:

� If more than one output operation is per-
formed consecutively, the BATCH-YES
parameter must be specified on the SESSION
statement.

� If an input operation is used (one that is not
combined with an evoke or output operation),
the BATCH-YES parameter must be specified
on the SESSION statement.

System/36 BSC/IMS: When BATCH-NO is spec-
ified on the SESSION statement, the System/36
BSC/IMS subsystem accumulates records as they
are received from the System/36 program. The
records are then sent as one message when the
program indicates the message is complete (the
program issues either an end-of-transaction opera-
tion or an input operation). The total length of all
the records submitted within a message cannot be
greater than the specified maximum record length.

When BATCH-YES is specified on the SESSION
statement, the System/36 BSC/IMS subsystem
sends each record as it is received from the

 Chapter 13. Communications 13-43

System/36 program. The subsystem sends each
record as a segment of a message until it receives
an end-of-transaction operation or an input opera-
tion from the program. A session specified as
BATCH-YES cannot be acquired while another
session is active because of the delays in line
turnaround that may occur. BATCH-YES should
be specified when large amounts of data must be
sent without intervening responses from the host
system.

AS/400 SNUF: When BATCH-NO is specified on
the SESSION statement, SNUF handles each
record from the application program as a complete
chain. If you expect to receive data from an
IMS/VS application, and you are operating in
forced terminal response mode, IMS/VS requires
that a change direction indication must also be
sent when a chain ends. This means that the
application program cannot issue multiple output
operations consecutively. To assure that the
change direction indication is sent, each output or
evoke function must be accompanied by an invite
or input operation (such as a write with invite). A
modifier of detach also causes a change direction
if the secondary is not allowed to send an end-
bracket indicator. Note that a standard evoke
function followed by either an invite or input opera-
tion is not acceptable, because the change direc-
tion indication will not accompany the evoke, and
for that reason IMS/VS will reject it.

When BATCH-YES is specified on the SESSION
statement, and you are operating in forced ter-
minal response mode, SNUF sends each record
from the application program as an element of a
chain. Sending records in this manner allows the
program to perform consecutive output operations.
However, if you expect to receive data from an
IMS/VS application, and you are operating in the
forced terminal response mode, a change of direc-
tion must still be indicated at the end of each
chain. Therefore, do not terminate a chain with an
end-of-group function. The last output operation
should include an invite, input, or detach modifier,
or the output operation should be followed by an
invite or input operation.

Return Codes: Return codes for permanent
errors (major return code 80, 81, or 82 or
*STATUS values greater than 99) returned by
AS/400 SNUF differ from those returned by the
System/36 BSC/IMS subsystem. Data buffering
on the AS/400 system is different than data buf-
fering on System/36. This can affect when an
application program is notified (by a major/minor
return code) of an error condition. Some exam-
ples of this are:

� The timing of when an application will get
notification of an SNA error will vary from
System/36 to the AS/400 system, based on
various factors, such as frame sizes.

� On the System/36 when an application issued
a put operation, SSP-ICF data management
sent the data to the SSP-ICF subsystem and
then returned control to the application without
waiting for the operation to complete. There-
fore, if the subsystem determined that the
operation was not valid based on the state of
the session, the application was not notified
until the next operation. On the AS/400
system, the application is notified as soon as
possible of the state error that occurred.

Change Direction/EOT Processing: The
System/36 BSC/IMS subsystem was always one
record ahead of the user. A read for change
direction or EOT was done in background pro-
cessing so the line was free, in case the user did
not get back to read the EOT. Some application
programs may have taken advantage of this
action, and issued an output operation, instead of
a read, when the user knew that the data was
complete. However, if you choose to migrate your
application to the AS/400 environment, this
support is not available. the user program must
continue to read until change direction or EOT is
indicated.

Using CL Override Commands

The Override Intersystem Communications Func-
tion File (OVRICFF) command may be used to
override the name or attributes of the file specified
in a System/36 application program. If you specify
OVRICFF in a System/36 procedure or from the
System/36 Command Entry display in a
System/36 environment job, it affects that job step
and succeeding job steps in that System/36 job

13-44 OS/400 System/36 Environment Programming V3R6

until you specify a Delete Override (DLTOVR)
command. If you specify OVRICFF from a CL
program called by a System/36 procedure, it
affects only the CL program running.

See “Mapping SESSION OCL Statement to the
OVRICFDEVE Command” on page 13-18 for a
description of the OVRICFDEVE command. See
the ICF Programming book for more information
about the OVRICFF and OVRICFDEVE com-
mands.

 General Programming
Considerations

Consider the following points for all communica-
tions applications running in the AS/400
System/36 environment:

� System/36 allows a maximum of 360 active
sessions at a time. The same restriction
applies for the System/36 environment on the
AS/400 system.

� An end-of-session (EOS) operation always
completes successfully (with a ‘0000’ return
code) for applications running in the
System/36 environment. An EOS is suc-
cessful for a job running in the AS/400 envi-
ronment if a session exists, but it fails (with an
‘830B’ return code) if the session does not
exist.

� Data buffering on the AS/400 system is dif-
ferent than data buffering on System/36. This
can affect when an application program is
notified (by a major/minor return code) of an
error condition.

� A maximum of 4075 bytes (4096 for APPC
and intrasystem communications) is supported
on an input or output operation on System/36.
The maximum has increased for each AS/400
communications type. You can send a larger
value if you change the maximum record
length on the system-supplied QICDMF file
using the MAXRCDLEN parameter on the
Change Intersystem Communications Function
File (CHGICFF) command. However, the
maximum value specified must not exceed the
maximum supported by the other system. If
the remote program is an AS/400 program
running in a System/36 environment, the
maximum record length also must be changed
on the QICDMF file on that system.

� Although shared opens are a commonly used
technique for performance improvements of
databases in the System/36 environment, this
technique is not recommended for perfor-
mance improvements of communications in
the System/36 environment. This is because
when a System/36 application closes an ICF
file, all acquired sessions are released regard-
less of whether the file is shared.

� On the AS/400 system, the $$TIMER value
accepts only valid zoned decimal digits.

 Migration Considerations

Consider the following information when migrating
from System/36 to the AS/400 system.

Automatic Dial and Telephone
Number List Support

Unlike autodial on System/36, the AS/400 system
does not support a telephone list. Instead, the
telephone number is stored in the controller
description and the AS/400 automatically dials the
telephone number when the first I/O operation is
issued from an application using the configuration.
See the Communications Configuration book for
information about configuring the line and con-
troller descriptions for autodial. See the ICF Pro-
gramming book for information about associating
the application with the configuration.

To automatically dial more than one location or
telephone number on the AS/400 system, change
the connection number (CNNNBR) in the con-
troller description in one of the following ways:

� Do the following for each telephone number to
be dialed:

– Use the CHGCTLxxx (such as
CHGCTLASC, CHGCTLAPPC) command
to change the telephone number
(CNNNBR) of the controller description
your communications session uses.

– Run your communications program.
� Write a program to process a list of telephone

numbers from a database file. For each
phone number:

1. Call a CL program that uses the
CHGCTLxxx command to change the
CNNNBR of the controller description.

 Chapter 13. Communications 13-45

2. Call the associated communications appli-
cation that uses the controller description.

Note: The foregoing example is best used for
asynchronous (ASYNC) and BSCEL communica-
tions. The AS/400 system has the same
restriction the System/36 telephone list support
has for SNA communications (APPC, SNUF,
Retail, and Finance). That restriction is that you
should not change the telephone number in the
controller description because you cannot change
the XID field to get you to a different remote con-
troller. Therefore, for AS/400 SNA applications
doing automatic dial to more than one remote con-
troller, create a separate description for each
remote controller and write the application to
process the separate configurations.

If automatic dial is unsuccessful because the
remote system’s telephone is busy or not
answered, a CPA5712 inquiry message is sent to
the system message queue, QSYSOPR.

Note: For X.21 lines, inquiry messages
CPA57B1, CPA57B8, or CPA57B9 may be sent.
Use the Display Message Description
(DSPMSGD) CL command to display more infor-
mation about these messages. You can respond
to the message manually through the console, or
you can specify automatic response to the
message. There are two methods of specifying
an automatic response:

� Because C is the default response to the
CPA5712 message, you can place the entire
QSYSOPR queue in default (*DFT) mode
(CHGMS6Q MSGQ(QSYSOPR)
DLVRY(*DFT)).

� You can use the selected message reply func-
tion, which is the better way to handle the
message. This does not require that the
entire message queue be placed in the default
mode, and also allows you to respond auto-
matically to messages based on the controller
description name. Use the Add Reply List
Entry (ADDRPYLE) command to add an entry
to the reply list and specify the following:

 Controller Description
Comparison Data Name
Message data start 16
Reply C
Dump *NO

On the open or acquire operation of your
program, check the feedback area for an 82
major code returned for the autodial failure.

 X.21

The AS/400 system does not support binary syn-
chronous communications (BSC) on an X.21
facility or the dynamic facility registration function
REQUESTX. The AS/400 system supports the
short-hold mode of operation with the following
enhancements:

 � APPC
� Multiple port sharing
� Finance controller communications

System/36 environment applications running over
an X.21 network may take advantage of these
enhancements by configuring appropriately.

System Network Architecture
Distribution Services (SNADS)

System/36 SNADS is most familiar to users of the
Personal Services/36 product and ODF/36 PRPQ.
Programming Request for Price Quotation
(PRPQ) is a customer request for a price quota-
tion for a licensed program to be designed espe-
cially for a particular group of customers or an
application. Documentation for the program is
provided only to those customers who order the
PRPQ. For the AS/400 system, SNADS is pack-
aged as part of the base operating system and
supports the System/36 environment. See the
SNA Distribution Services book for information
about the AS/400 SNADS function and configura-
tion.

The following table lists the Personal Services/36
procedures often used by System/36 SNADS
users with their equivalents for the System/36
environment.

Personal Services/36 System/36 Environment

OFCCANCL procedure Use ENDSBS QSNADS.

OFCCOMM procedure Use CFGDSTSRV for
OFCCOMM QUEUES
and OFCCOMM
ROUTES equivalents.

OFCDIR procedure Use WRKDIR command.

13-46 OS/400 System/36 Environment Programming V3R6

Note: For AS/400 SNADS, System/36 commu-
nications queues are called distribution queues.

 Object Distribution

The following table lists the equivalent System/36
environment commands for the frequently used
Object Distribution Facility/36 procedures.

Sending AS/400 Objects

To send AS/400 objects, follow these steps:

1. Use the Save Object (SAVOBJ) or Save
Library (SAVLIB) commands to save the
objects to be sent in a save file.

2. Use the Send Network File (SNDNETF)
command to send the save file to the remote
system.

For example, to send folder FOLDER1 in library
LIBRARY1 to USER2 SYSTEM2, first enter the
following to save the objects to be sent in a save
file:

SAVOBJ OBJ(FOLDER1) LIB(LIBRARY1) DEV(\SAVF)
 SAVF(LIBRARY1/SAVEFILE1) DTACPR(\YES)

Note: The name of the save file to contain the
folder is not significant. The save file must
already exist.

To send the save file to the remote system, enter
the following:

SNDNETF FILE(LIBRARY1/SAVEFILE1) TOUSRID((USER2 SYSTEM2))

Receiving Objects as AS/400
Objects

To receive objects as AS/400 objects, follow these
steps:

1. Use the Work with Network File (WRKNETF)
or Receive Network File (RCVNETF) com-
mands to receive the save file on the remote
system.

2. Use the Restore Object (RSTOBJ) or Restore
Library (RSTLIB) commands to restore the
objects on the remote system.

For example, to receive FOLDER1 on the remote
system, enter the following:

RCVNETF FROMFILE(SAVEFILE1) TOFILE(LIBRARY2/SAVEFILE2)

Note: The name of the save file to receive is not
significant. The save file must already exist.

To restore the objects on the remote system,
enter the following:

RSTOBJ OBJ(FOLDER1) SAVLIB(LIBRARY1) DEV(\SAVF)
 SAVF(LIBRARY2/SAVEFILE2)

Sending AS/400 System/36
Environment Objects

To send AS/400 System/36 environment objects,
follow these steps:

1. Use the Save System/36 File (SAVS36F) or
Save System/36 Library Member
(SAVS36LIBM) commands to save the AS/400
System/36 environment objects in an AS/400
physical file.

Personal Services/36 System/36 Environment

OFCMAINT procedure Use CFGDSTSRV for
OFCMAINT QUEUES
and OFCMAINT
ROUTES.

OFCQ procedure Use WRKDSTQ for
OFCQ COMM.

OFSTART procedure Use STRSBS QSNADS.

Object Distribution
Facility/36 Procedures

Equivalent System/36
Environment Commands

LISTOBJ WRKNETF
LISTRSCS WRKDSTQ
ODF GO CMDNETF
ODFCANCL ENDSBS QSNADS
ODFDFLT GO CMDNET
ODFPROF GO CMDNET
ODFSTART STRSBS QSNADS
RECVFILE RCVNETF1

RECVFLDR RCVNETF1

RECVLIBR RCVNETF1

RECVPRT RCVNETF1

SENDFILE SNDNETF1

SENDFLDR SNDNETF1

SENDJOB SBMNETJOB
SENDLIBR SNDNETF1

SENDPRT SNDNETSPLF
1 Some send and receive operations require that the

objects be saved or restored as a step in the send or
receive process. The following sections provide
more information.

 Chapter 13. Communications 13-47

2. Use the Send Network File (SNDNETF)
command to send the physical file to the
remote system.

For example, to send System/36 environment file
S36FILE1 to USER2 SYSTEM2, first enter the fol-
lowing to save the AS/400 System/36 environment
objects in an AS/400 physical file:

SAVS36F FROMFILE(S36FILE1) FROMLIB(QS36F) DEV(\PHYFILE)
 PHYFILE(LIBRARY1/PHYFILE1)

Note: The name of the physical file to contain
the System/36 environment file is not significant.
The record length of the physical file must be 256
bytes. If the physical file does not exist, it is
created.

To send the physical file to the remote system,
enter the following:

SNDNETF FILE(LIBRARY1/PHYFILE1) TOUSRID(USER2 SYSTEM2)

Note: If you try to transfer a null library member
to a System/36, the library member appears to
transfer successfully. However, because
System/36 does not support null library members,
the library member will not exist on the System/36.

Receiving Objects in the AS/400
System/36 Environment

To receive objects in the AS/400 System/36 envi-
ronment, follow these steps:

1. Use the Work with Network File (WRKNETF)
or the Receive Network File (RCVNETF) com-

mands to receive the network file in a physical
file.

2. Use the Restore System/36 File (RSTS36F),
Restore System/36 Library Member
(RSTS36LIBM), or Restore System/36 Folder
(RSTS36FLR) commands to restore the
objects in the AS/400 System/36 environment.

For example, to receive file FILE1 in the AS/400
System/36 environment, first enter the following to
receive the network file in a physical file:

RCVNETF FROMFILE(LIBRARY1) FROMMBR(PHYFILE1)
 TOFILE(LIBRARY2/PHYFILE2)

Note: The name of the physical file to receive is
not significant. The record length of the physical
file must be 256 bytes. The physical file must
already exist.

To restore the objects in the AS/400 System/36
environment, enter the following:

RSTS36F TOFILE(S36FILE1) TOLIB(QS36F) DEV(\PHYFILE)
 PHYFILE(LIBRARY2/PHYFILE2)

See the SNA Distribution Services book for infor-
mation on the AS/400 System/36 environment
commands. See the Using the Object Distribution
Facility/36 PRPQ book for information on
exchanging objects between the AS/400 system
and System/36.

13-48 OS/400 System/36 Environment Programming V3R6

Chapter 14. Menus and Displays

This chapter describes:

� How to design and create menus and displays
� The differences between System/36 user-

defined menus and displays and those you
use in the System/36 environment

 Menus

A menu is a displayed list of options. Each option
has a number and a brief description of a task.
When the user types the number for a menu
option, the system runs the task associated with
that option number.

The following screen is an example of the menu
INVINF. A warehouse manager uses it to see
information in the files used by the inventory man-
agement application.

à@ ð
 COMMAND MENU: INVINF W1

Inventory Management: File Information Menu

Select one of the following:

1. Display item master
2. Display item balance detail (warehouse)
3. Display item balance detail (manufacturing)
4. Display open orders
5. Display item availability
6. Display item balance history

Help key - Display help information for this menu and its options
F12 - Cancel

Home key - Display sign-on menu

á ñ

The menu shows:

� The name of the menu
� A descriptive title of the menu
� The option numbers
� A brief description of what each option does
� Prompts describing other functions that can be

done using this menu

Menus simplify the work of an application user
and reduce errors. The user does not need to
know operation control language (OCL) state-
ments, procedures, or control commands needed
to run a job.

You can use menus to group jobs by application.
For example, all accounts receivable jobs are

listed on one menu to allow users to run several
related jobs consecutively.

Notes:

1. See the ADTS/400: Screen Design Aid for the
System/36 Environment for more information
about using menus.

2. Normally, the Exit (F3) and Cancel (F12) keys
return you to the previous application. If you
accessed the current application by running
the Start System/36 (STRS36) CL command,
you must use the End System/36 (ENDS36)
CL command to return to the previous applica-
tion.

Function Key Differences

Some of the function keys you use to work from
menus in the System/36 environment are different
than on System/36.

System/36 Environment Function Key
Processing for Menus: The following table
compares various System/36 function keys to their
corresponding actions in a System/36 environ-
ment.

Action
System/36 Environment
Result on AS/400 System

HELP <Procedure
or Menu Name>

� If you specify a System/36
environment procedure
name, the $HELP prompt
for the procedure appears.

� If you specify a System/36
system menu name, the
equivalent AS/400 menu
appears.

// HELP <Proce-
dure or Menu
Name>

� If you specify a System/36
environment procedure
name, the $HELP prompt
for the procedure appears.

� If you specify a System/36
environment system menu
name, the equivalent
AS/400 menu appears
when the outermost proce-
dure ends.

<CL command>
<Help-key>

Displays information about the
specified system CL command.

 Copyright IBM Corp. 1995 14-1

Note: The HELP procedure supports the
System/36 tutorials PCE (list of procedure control
expressions) and OCL (list of OCL statements and
parameters).

Differences from System/36: Following
are the key processing differences in the
System/36 environment:

� Online help information for System/36 environ-
ment operator control commands is not sup-
ported. Refer to the System/36 Environment
Reference book for information on these com-
mands.

� The Cmd 1 function to resume an interrupted
job is not supported. Use the SIGNOFF CL
command or the OFF operator control
command.

� The Cmd 3 function to display the previous
menu is now F12.

� The Cmd 5 function to display the system
menu is now F16.

� The Cmd 6 function to display the user begin-
ning help menu is not supported. Use the

MENU operator control command to see a
specific menu.

� The Cmd 7 function to end the displaying of
system menus is not supported. Use F12 to
see the previous menu.

� The Cmd 11 function to display menu actions
is not supported. This function is not
replaced.

� The Cmd 12 function to display user support
and education information is now F13.

� The Cmd 23 function to change the user
menu name in the user profile is supported. A
single name replaces the user and help menu
names.

� The Cmd 24 function to change the system
menu name is now F23. A single name
replaces the user and help menu names.

� Use Cmd 9, instead of the DUP key, to
display the last command you ran from the
command line, and any parameters you
selected. If you press this key once, you see
the last command you ran. If you press this
key twice, you see the next-to-last command
you ran, and so on.

 User Menus

The user can display a menu by:

� Typing the name of a menu in the menu field
on the Sign-On display

� Leaving the menu field blank during sign-on to
display the first menu defined in the user
profile

� Requesting a menu from the main system
menu

� Selecting a menu from another menu
� Running a procedure that displays a menu
� Using the MENU control command

The user can respond to a menu by:

� Typing an option number
� Typing a control command, a procedure, or

OCL statement
� Pressing the Help key to request online help

information for the menu or its options
� Pressing the Home key to return to the menu

named during sign-on or to return to the
default menu

� Pressing F12 to return to the previous menu
� Pressing F13 to display the system help menu

Action
System/36 Environment
Result on AS/400 System

<Option-number>
<Help-key>

Displays menu help for the
specified option number if sup-
plied in the menu definition.
See “Creating and Displaying
Online Help Information for
Menus” on page 14-7.

<Procedure or CL
command> Cmd 4

� If you specify a System/36
environment procedure
name, the $HELP prompt
for the procedure appears.

� If you specify an AS/400 CL
command, the prompt for
the CL command appears.

Cmd 3 Exit.

Cmd 9 Retrieve previous requests.

Cmd 12 Cancel.

Cmd 13 Display user support menu.

Cmd 16 Display system main menu.

Cmd 23 Change menu name in user
profile.

Home key Display Home menu.

Dup key Retrieve previous requests.

14-2 OS/400 System/36 Environment Programming V3R6

The command lines on the AS/400 system appear
as the bottom three lines of user menus.

User Menu Differences: Following are the
differences between displaying user menus in the
System/36 environment and on System/36:

� The system-defined command line covers the
user command line.

� IBM-supplied menus do not supply the display
station ID in the upper right corner.

� The 0 option to display the command display
is not supported. Request the System/36
environment command entry display by typing
an asterisk (*). Request the AS/400
command entry display by typing CALL
QCMD.

� System/36 supports user and system menus.
The AS/400 system does not distinguish
between user menus and IBM-supplied
system menus. User profiles support a single
menu value only.

� You can use the MENU operator control
command to display AS/400 menus. The
MENU command accepts a 10-character
menu name.

Help Menu Differences: The support for
displaying system menus in the System/36 envi-
ronment maps a System/36 help menu to an
AS/400 menu.

Type the following to use the HELP procedure to
display a menu:

HELP menu-name

Note: The System/36 help menu MANDMENU
for mandatory menu users is not supported.

Menu Option Logging

When the System/36 environment is not active,
statements that result from selecting a menu
option are not logged to the job log. When the
System/36 environment is active, statements that
result from selecting a menu option are logged to
the job log, except in the following cases:

1. Option from system menus that are handled
by the menu driver directly are not logged.
For example, an option to go to another menu
would not be logged.

2. If a menu is displayed from within a
System/36 environment job (for example, by
using a GO command in a procedure), menu
options from that menu are not logged.
Because the System/36 environment is
already active, it is not called again to process
statements from that menu, so the menu
options are not logged. Menu options will be
logged again when the procedure ends.

 Menu Security

Use the system-supplied menu security to limit the
jobs a user can run. You can assign the user’s
default menu as mandatory. A mandatory default
menu restricts the user to making selections from
that menu or from a menu displayed by an option
on the default menu, and to using a few control
commands. The user is limited to doing those
jobs controlled by the mandatory menu.

For more information about menu security, default
menus, and mandatory menus, see the Security –
Reference book.

 Menu Formats

You can create two types of menus:

 � Fixed-form
 � Free-form

You must display menus in 24 x 80 format only
(24 lines of 80 characters). If you specify 27 x
132 for a menu format (for a 3180 or Monochrome
3197 Display), the menu may not display correctly.

Fixed-Form Menus: A fixed-form menu con-
tains two columns of menu option numbers, 1
through 24, with 12 options in each column.
When you create a fixed-form menu, you do the
following:

1. Tell the system the name of the menu and
which option numbers to use.

2. Give the descriptive text for each option.
3. Supply the procedure to be run for each

option.

In the following screen, the programmer supplied
the name of the menu, and the text and proce-
dures for option numbers 1 through 9 only.

 Chapter 14. Menus and Displays 14-3

à@ ð
 COMMAND MENU: INVFIX W1

 Select one of the following:

1. Print stock status 13.
2. Print open order status 14.
3. Print financial stock analysis 15.
4. Print stock movement analysis 16.
5. Print reorder report 17.
6. Print control totals 18.
7. Print item price list 19.
8. Print item balance list 2ð.
9. Print item master list 21.

 1ð. 22.
 11. 23.
 12. 24.

 Ready for option number or command

á ñ

Although all 24 option numbers appear on a fixed-
form menu, the user can select only the option
numbers that have procedures or commands
defined for them.

Free-Form Menus: A free-form menu is a
menu for which the programmer defines the
format of lines 3 through 20. A free-form menu
contains only the option numbers you want to use.
You determine how the menu appears. A large
portion of the display is available to supply
descriptive text.

When you create a free-form menu you can:

� Define up to 24 option numbers and
descriptions.

� Define the procedure, control commands or
OCL statements associated with each option
number.

� Decide the placement of the option numbers
and their descriptions, and all other text.

The following screen is an example of a free-form
menu. The options on this menu are the same as
the options on the fixed-form menu shown in the
last screen, but the programmer provides the
numbers and their descriptions and supplies a
descriptive title and information about online help
information and function keys.

à@ ð
 COMMAND MENU: INVFRE W1

Inventory Management: Reports Menu

Select one of the following:

1. Print stock status
2. Print open order status
3. Print financial stock analysis
4. Print stock movement analysis
5. Print reorder report
6. Print control tables
7. Print item price list
8. Print item balance list
9. Print item master list

Help key - Display additional information about this menu and its options
Home key - Display Home

F12 - Cancel

 Ready for option number or command

á ñ

 Designing Menus

A well-organized and descriptive menu increases
user productivity. Consider the following when
you design menus:

� The menu’s use
� The types of jobs you want the menu to

control
� The level of experience or responsibility of the

user

Use the following guidelines when you design your
menus:

� Use free-form menus as much as possible.
Free-form menus do not have unused option
numbers.

� Avoid mixing free-form and fixed-form menus
within the same application.

� Results cannot be predicted if you do the fol-
lowing:

– Specify the 27 x 132 character attribute
for menus.

– Put any fields with user-supplied data on a
menu.

– Move the input field on a menu.

� Write your menus in uppercase and lowercase
letters. Text written only in uppercase letters
is difficult to read.

� Number your options beginning with 1.

� Place frequently selected options near the top
of the menu, place the options in the
sequence they are to be selected, or arrange
the options alphabetically.

� Make the menu title and option descriptions
meaningful and descriptive. For example,
Release orders is a more meaningful option

14-4 OS/400 System/36 Environment Programming V3R6

description than Reload, which might be the
name of the program that releases orders.

� Use a word that suggests action, such as list
or print, for the first word in the option
description.

� If the same task (sign-off, for example) is
done on several menus, use the same option
number for that task on each of the menus.

� Avoid using abbreviations.

� Supply online help information for menus.

Sample menu ORDENT, shown in Figure 14-1 on
page 14-5, is the main menu for an order entry
and invoicing application. It shows good design
techniques.

Menu chaining helps organize a user’s work by
guiding the user to the displays needed to do a
particular job. Menu chaining uses a main menu
that lists other menus from which a user can
select a job. For example, menu ORDENT,
shown in Figure 14-1 on page 14-5, is the main
menu for an order entry and invoicing application.

Figure 14-2 on page 14-6 shows the options on
ORDENT and the menus chained to ORDENT.

When a user selects option 1 from the main
menu, the MENU control command is run and the
Orders Menu appears. When the user selects an
option from the Orders Menu, either another menu
appears, if there are additional order processing
categories to select, or a display appears, on
which the user can begin a job.

The MENU OCL statement and the MENU control
command are useful when you build a menu
chain. The System/36 Environment Reference
book has more information about the MENU OCL
statement and the MENU command.

When you chain menus, you can allow the user to
display the main menu again by:

� Using an option on the menu that displays
after the main menu

� Reminding the user F12 causes the previous
menu to display

For example, on the Orders Menu, the user can
return to the main order entry and invoicing menu
(ORDENT) by pressing F12. You can allow expe-
rienced users to bypass the menu chains and
directly begin their jobs by, for example, typing a
procedure from the menu.

RSLW069-3

Prompts in Uppercase
and Lowercase

Descriptive Title

Description of Allowed
Command and Function Keys

Online Help
Information Supplied

Figure 14-1. Menu Design Techniques

 Chapter 14. Menus and Displays 14-5

RSLW076-0

1. Process Orders

2. Inquire into File Information

3. Maintain Files

4. Print Reports

5. List Files

Figure 14-2. Menu Chaining

14-6 OS/400 System/36 Environment Programming V3R6

Creating and Changing Menus

A menu contains two library members:

� Menu display file . The menu display file tells
the user what each option number does. It
includes any descriptive text associated with
an option number, the placement of the option
numbers, and the name and title of the menu.

� Command text message file . The command
text message file tells the system what to do
for a selected option number. The command
text message file describes what procedures,
commands, or statements are used to run a
job when the user selects an option number.

You can create and change your menus using the
following:

� Screen design aid (SDA)
� Build Menu (BLDMENU) procedure

Using SDA to Create a Menu: The
screen design aid (SDA), which is part of the
AS/400 Application Development Tools (Appl Dev
Tools) product, leads you through the steps to
create and change a menu. Consider the fol-
lowing benefits of using SDA to create a menu:

� You can design your menu at the display
station and see immediately how your menu
looks.

� SDA automatically creates the source member
and files required to display a menu. You
supply only the menu text and the command
text for the menu.

� You can use SDA to create and change online
help information for each menu option or for
the entire menu. For more information about
online help information for menus, see “Cre-
ating and Displaying Online Help Information
for Menus.”

The ADTS/400: Screen Design Aid for the
System/36 Environment book describes how to
use SDA to create and update menus and online
help information for menus.

Using the BLDMENU Procedure to
Create a Menu: The BLDMENU procedure,
which runs the $BMENU utility program, is part of
the System/36 environment. If you use the
BLDMENU procedure instead of SDA, you must
do the following:

� Determine the design of your menu on paper
or on a preprinted form. Use the program-
ming development manager (PDM), the
source entry utility (SEU), or the $MAINT
utility program to enter and create the menu
text and command text source members.

� Run the BLDMENU procedure to convert the
source members into the load members used
by the system.

Running the BLDMENU procedure compiles faster
than SDA. For minor changes to your menu
source members, use Source Entry Utility (SEU).

The ADTS/400: Screen Design Aid for the
System/36 Environment book describes how to
use the BLDMENU procedure to create and
update menus.

Creating and Displaying Online
Help Information for Menus

Although each menu option has a description of
the job that runs when the user chooses a partic-
ular menu option, a simple job description may not
be enough. For example, you may want to supply
the following information for a menu used to run
an application:

� A summary of the application, such as an
explanation of when to select a particular
menu option or job

� A description of the input forms necessary to
do the job

� The work the user is expected to do while the
job is running

� An estimate of how long a job takes to run
� A description of the output produced by the

job, and an explanation of what to do with that
output

You can supply this kind of additional information
through online help information.

 Chapter 14. Menus and Displays 14-7

Creating Online Help Information for
Menus: SDA allows you to create online help
information for menus. After you create your
menu, you can add online help information for the
entire menu, for a single option on that menu, or
for a range of menu options. For example, if a
menu has six menu options, you can create a
display of summary online help information for the
entire menu and a display of online help informa-
tion describing the menu options in more detail.
After you specify the range of option numbers for
which you want to create online help information
for menus, SDA shows you a display on which
you can design the online help information.

After you create the online help information for
your menu, you can change it just as you would
the menu it describes. Specify the range of option
numbers the online help information addresses,
and SDA shows you the online help information.
You can change the online help information.

Two types of online help information exist for
display files:

� Cursor-sensitive online help information (using
H-specifications)

� Menu option online help information (not using
SFGR H-specifications)

Cursor-Sensitive Online Help Information:
When you use cursor-sensitive online help infor-
mation, the user defines the help formats. Help
(H) specifications that specify what cursor posi-
tions are supplied with online help information and
what help formats appear for those positions refer
to the help formats. You can define a general
help menu that supplies online help information for
all the parts of the display that have specific online
help information. Cursor-sensitive online help
information does not have to reside in the same
display file as the display format.

The help format that appears depends on the
current cursor position and the positions handled
by the SFGR H-specifications. Work station data
management handles the Help key and shows the
proper help format.

The system-supplied menu processor does not
support cursor-sensitive online help information.

You can use it only on menus shown by user-
supplied applications.

Menu Option Online Help Information: When
you use menu option online help information, the
names of the help formats are predetermined by
the system-supplied menu processor. The help
formats must be in the same display file as the
menu format. The names of the help formats are
as follows:

� #H0000: General menu help.
� #HXXYY: xx is the starting option number and

yy is the ending number for the menu online
help information. For example, format
#H0309 is used to display online help informa-
tion for menu options 3 through 9.

The help format that appears depends on what
option number the user selects. If the user does
not select an option number, the general help
menu appears. The system-supplied menu
processor handles the Help key and shows the
proper help format. The system calls the menu
processor when you use the MENU OCL state-
ment or Operator Control command.

The ADTS/400: Screen Design Aid for the
System/36 Environment book has more informa-
tion about creating and updating online help infor-
mation for menus.

Displaying Online Help Information for
Menus: The user can display online help infor-
mation for menus by doing one of the following:

� Pressing the Help key when the menu
appears

� Typing an option number on that menu and
pressing the Help key

General menu text (#H0000) appears if the user
presses the Help key without typing an option
number. To see the other help formats the user
can use the Page Up and Page Down keys. For
example, the user can press the Help key from
the menu for jobs (that displays information about
the files used by the inventory management appli-
cation), to view the online help information for
menus summarizing the jobs run by the menu, as
shown in the following screen.

14-8 OS/400 System/36 Environment Programming V3R6

à@ ð
 COMMAND ONLINE HELP INFORMATION FOR MENU OPTIONS: ðð - 24 W1

Help information for the menu INVINF, which is used to display information
about the files used by the inventory management application.

Option 1 displays information about the item master file.

Option 2 displays item balance detail for goods located at the warehouse.

Option 3 displays item balance detail for goods located on the
 manufacturing floor.

Option 4 displays status information about open orders.

Option 5 displays information about the availability of your inventory.

Option 6 displays history about the balance of your inventory.

Roll keys - Display additional information Cmd3 or Enter key - Display INVINF

á ñ

If the user types an option number and press the
Help key, more detailed menu online help informa-
tion about the menu option appears. For
example, if the user selects option 1 on the inven-
tory management application menu and presses
the Help key, the information in the following
screen appears:

à@ ð
 COMMAND ONLINE HELP INFORMATION FOR MENU OPTIONS: ð1 - ð1 W1

 If you select option 1 of INVINF, you should know the following information
 before you begin:

 REQUIRED FIELDS: Item number

 OPTIONAL FIELDS: None.

 COMMAND/FUNCTION KEYS: Cmd7 ends the program. The data you type on the
display is ignored, and INVINF reappears.

 NOTES: When you press the Enter key to continue, the Item Master File
Record display appears, showing information about the file number

 you entered.

 POSSIBLE MESSAGES: ð1ð1 XXXXXX - File record is missing
452ð Item master record not found
4675 Severe error - end program and rerun

á ñ

Once the online help information appears, the
user must return to the menu to select an option.
Once online help information for menus appears,
the user cannot use the Help key to obtain more
online help information. However, if the user
views a portion of the online help information sup-
plied for a menu, the user can view the remaining
online help information by pressing the Page
Down or Page Up key. The user can return to the
original menu by pressing F12.

Using Color or Highlighting on
Menus

Color, used properly, is more pleasing to the eye
than monochrome data. Use color to draw atten-
tion to fields that need user attention, such as a
request for user input or a response to an error
condition.

You can use a menu or display designed for a
monochrome display station for a color display
station.

Some display stations, depending on the model,
show the following colors:

Green Turquoise
Red Pink
White Yellow
Blue

When you design a menu or display that uses
color, consider the following:

� You must use the Design Display Format
option in SDA to add highlighting or color to a
menu. You cannot use the Menu option to
add highlighting or color to a menu. Do not
add, move, or delete fields on the menu.
Once you have used the display format option
to add color or highlighting, you can use only
this option to update the menu.

� Use each color for a particular purpose. Use
a color in the same way on every display. For
example, use white to highlight important
output fields or error messages throughout the
displays that you design.

� Use a limited number of colors. The fewer
colors used, the more effective each color.
Too many colors on a display confuse the
user.

� Group colors. If colors are grouped in a
recognizable and consistent manner, the user
can easily organize and follow information.

The ADTS/400: Screen Design Aid book has more
information on using color effectively.

Even if you do not have color display stations, you
can use SDA to highlight fields on your menus
and displays. You can display a particular field in
reverse image, in high intensity, or with column
separators, blink or underline the field, or display

 Chapter 14. Menus and Displays 14-9

the field with a combination of these field attri-
butes. Highlighting on a noncolor display makes
the menu more interesting and easier to use.

 Displays

You use a display station to communicate with the
system and to run application programs.

The information shown on the display station is
called a display . You define that information in a
display format . Using the display defined in a
display format, a program can prompt the user to
type information or show requested information to
the user.

The following screen is a sample display.

à@ ð
DISPLAY ITEM MASTER FILE

To display information in the item master file,
type an item number and press the Enter key.

 Item number: 5ðð1123ð
Item description: Storage Cabinet with Doors

Item type: E Cost per unit: 25ð.ðð
Item class: 5ð Selling price per unit: 325.ðð

 Warehouse location: H1
 Unit weight: 115

Date record last maintained: 12/15/88

Press the Enter key to see the next record in the file
Cmd1 to change the information in the record that is displayed
Cmd7 to end this program and return to the previous menu

á ñ

The preceding display contains 24 lines of 80
characters each. For a 3180 Display Station or a
Monochrome 3197 Display Station, the display
can contain 27 lines of 132 characters each.

Displays are useful for the following reasons:

� They make it easier for the user to type and
get data.

� They improve productivity.
� They are defined separately from the program

or procedure that uses them, therefore:

– One set of display formats can be used by
different procedures or programs.

– You can usually change display formats
without recompiling your programs.

– You can have multiple language versions
of one program.

Note: The ADTS/400: Screen Design Aid for the
System/36 Environment book has more informa-
tion about displays.

The following sections describe how your pro-
grams, and the system, use displays and display
formats.

Display Data Management

Programs that communicate with display stations
are called interactive programs. Interactive pro-
grams use a system function called display data
management to write data to and read data from
a display station. Display data management com-
municates with the interactive programs by using
display formats to write data to and get data from
the display.

A program must be able to do the following to use
display formats:

� The program must specify the display file or
files containing the display formats to use.
You must define and open the display file and
identify and describe it by a specification,
statement, or subroutine.

� The program must be able to select the spe-
cific display formats to use and must be able
to send data to the display. That data is the
output needed by the user running the
program. The sending of data to the display
is often called an output or write operation.

� The program must be able to accept data
typed on the display. That data is the input
needed by the program. The accepting of
data typed by the user is often called an input
read, invite, or read operation.

In addition to the operations listed above, the
program must be able to control other functions
such as indicators and the command and function
keys.

Figure 14-3 on page 14-11 shows examples of
output, input, and input/output fields as described
in the following sections.

14-10 OS/400 System/36 Environment Programming V3R6

à@ ð
DISPLAY ITEM MASTER FILE

To display information in the item master file,
type an item number and press the Enter key.

 Item number: 5ðð1123ð
Item description: Storage Cabinet with Doors

Item type: E Cost per unit: 25ð.ðð
Item class: 5ð Selling price per unit: 325.ðð

 Warehouse location: H1
 Unit weight: 115

Date record last maintained: 12/15/88

Press the Enter key to see the next record in the file
Cmd1 to change the information in the record that is displayed
Cmd7 to end this program and return to the previous menu

á ñ

Figure 14-3. Sample Output, Input, and Input/Output
Fields

An example of an input field on Figure 14-3, is the
field in which the user typed the item number
5ðð1123ð.

 Input/Output Fields: Input/output fields
allow the user to type data, and allow data to
appear to the user. The user can type new data
in a blank input/output field, or change existing
data in an input/output field. Data displayed to the
user can be supplied by the program or specified
by the display format. Data contained in an
input/output field returns to the program when the
user presses the Enter key.

For example, when the user typed the item
number 5ðð1123ð on Figure 14-3 and pressed the
Enter key, the item description appeared. Item
description is an input/output field because the
user can type over the description.

 Data Types

If you define a particular field as an input or
input/output field, you must also define the type of
data the user can type. For example, you can
specify that an input field is to accept numeric
data only (0 through 9, commas, decimal points,
plus signs (+), and minus signs (−)). This defi-
nition is useful if a field requires information such
as inventory amounts or account balances.

You can specify that a field is to accept alphanu-
meric data only (characters A through Z, special
characters, and any numeric data). This definition
is useful for a field that requires alphabetic charac-
ters and numeric digits, such as a customer’s
address.

Other data type definitions include:

� Alphabetic data . Only the letters A through
Z, and certain special characters, are allowed.

� Digits . Only the numbers 0 through 9 are
allowed.

� Signed numeric . Only the numbers 0
through 9 are allowed. The sign is deter-
mined by the key pressed, Field+ or Field−,
after entry of the numbers.

� Right-to-left field . If the correct national lan-
guage PRPQs are installed, the cursor moves
from right to left within this field as the user
types in data.

Output Operations and Output Fields:
For output operations, display data management
prepares a data stream to transmit to the display
station by merging data supplied by the program
with the display format.

Output fields contain information that the user
cannot change on the display. The contents of
output fields are not returned to the program.
Output fields can contain data supplied by the
program, or they can be prompts or constants ,
defined by the display format. A prompt is a
request for information or action from the user. A
prompt can tell the user what type of information
to type, the form in which to type that information,
and the options or values allowed as input for that
data field.

Figure 14-3 shows examples of output fields. In
this figure, all the output fields are prompts
defined by the display format. An example of an
output field on the display is the prompt Item
number.

Input Operations and Input Fields:
Input fields are fields in which the user can type
data on the display. When a program shows a
display, input fields are blank or contain a default
value. The user can type data into the input field.
The contents of the input field are sent to the
program when the user presses the Enter key.
This data is used by the program to do an opera-
tion, such as a calculation or a file update.

 Chapter 14. Menus and Displays 14-11

� Katakana data . This field can contain
Katakana characters.

� Double-byte character set (DBCS) data .
For the DBCS version of the System/36 envi-
ronment, you can type and display DBCS
characters.

� Numeric shift fields . On data entry key-
boards, the keyboard automatically shifts to
numeric shift when the cursor is in this field.
On keyboards that are not data entry key-
boards, the field defaults to an alphanumeric
field.

 Attributes

In addition to defining the field and the data type,
you define the physical characteristics, or attri-
butes , of a field. The attributes that you can
specify include:

� High intensity. Data shown in high intensity
is brighter than data shown in normal inten-
sity. Your data looks as if it is displayed in
bold faced characters. Use high intensity to
draw attention to important information, such
as display titles or column headings.

� Blink field . Data displayed in a blink field
blinks. A blinking field is easy to see and
draws attention to important information (but
blink fields can be difficult to read if you use
them too often).

� Nondisplay . If data is typed or sent to a non-
display field, it does not appear on the display.
A nondisplay field is useful for information
needed by the program but not by the user,
such as a display or record ID, or for confi-
dential information, such as a password or
security code.

� Reverse image . Data on the display normally
appears as light characters on a dark back-
ground. If a field has the reverse image attri-
bute, the data in that field appears as dark
characters on a light background. Use
reverse image to show the user the location of
a field or to draw attention to an error
message or to fields in which the user has
typed incorrect data.

� Underline . Use underlined fields to empha-
size information or to show the length of an
input field. Showing the user the length of an
input field is important because a keyboard

error message results if the user tries to type
data outside the input field.

� Column separators . Column separators are
useful for showing the number of positions in
an input field. Column separators appear as
dots or vertical lines (depending on the type of
display station) on either side of each char-
acter position within the field. Column separa-
tors do not require character positions of their
own. An input field with 5 character positions,
for example, looks like this:

 .i.n.p.u.t.

You can use combinations of field attributes. For
example, you can specify that:

� A field appears in high intensity and reverse
image.

� A field attribute is always used.
� A field attribute is controlled by the program.

The program can use a switch called an indicator
to turn an attribute on or off.

Display Data Management
Operations

When you define a display format, you can specify
the following special operations:

� Erase input fields
 � Override fields
 � Suppress input

These special operations improve the performance
of your display stations, display formats, and pro-
grams. You can perform these operations each
time you use a display format, or as needed by
setting on an indicator.

Erase Input Fields Operation: For an
erase input fields operation, display station data
management blanks out the contents of unpro-
tected input and input/output fields on the display
and invites input from the display. This operation
sends the display format from the disk and sends
the control characters required to remove the con-
tents of the input field.

Request the erase input fields operation when an
application using remote display stations requires
a user to type information in the same fields time
after time. Specify an indicator to control the
erase input fields operation. The first time the

14-12 OS/400 System/36 Environment Programming V3R6

program shows the display format, that indicator
must be off. The program should turn the indi-
cator on for the next and following times it shows
the display. Each time the display is issued with
the indicator on, the input fields are blanked out,
and the user can again type data in them.

This operation is important when a program com-
municates with a remote display station because
the amount of information transmitted to a remote
display station directly affects the performance of
the jobs using the communications line.

See “Designing Displays for Remote Display
Stations” on page 14-15 for remote display station
considerations.

Override Fields Operation: For an over-
ride fields operation, display station data manage-
ment:

� Transmits the contents of conditional output
fields (output fields for which an indicator is
specified for the output data attribute) if an
output indicator is on.

� Retransmits the attribute for all field attributes
controlled by indicators.

This operation is valuable when a program com-
municates with a remote display station, because
it reduces the amount of information transmitted
over the communications line.

See “Designing Displays for Remote Display
Stations” on page 14-15 for remote display station
considerations.

Suppress Input Operation: For a sup-
press input operation, display station data man-
agement does not invite input from the display
station after transmitting the format to the display
station. The user can type information into input
fields on the display if the keyboard is not locked.
However, the system does not send the typed
information to the program until the program
requests work station data management to read
input from the display station.

This operation is usually used with display formats
that contain only output fields. Use the suppress
input operation if multiple display formats appear
before input returns to the program. When mul-

tiple formats are sent, specify the suppress input
operation on all but the last format displayed.

When an input format is to be processed by a
MRT or as part of Read-under format (RUF) pro-
cessing, input must be invited. You can suppress
input for a menu that is not used by a MRT or as
part of RUF processing.

See “Designing Displays for Remote Display
Stations” on page 14-15 for remote display station
considerations.

 Designing Displays

Design input displays for ease of data entry.
Design output displays for ease of reading.
Design displays that show output and allow input
for ease of data entry and ease of reading.

Displays must be clear, complete, and under-
standable. A well-organized and descriptive
display improves user productivity. When you
design a display, consider the following factors:

� How the display is used
� What kind of information you want the display

to process
� The source documents used as input for the

display
� The level of experience or responsibility of the

user
� The size of the display (24 lines of 80 charac-

ters, or 27 lines of 132 characters for the 3180
or Monochrome 3197 Display Station)

When you design your display, you should:

� Make the user feel productive.
� Identify the displays and supply meaningful

headings.
� Design easy-to-read displays.
� Show a small amount of information at one

time, or supply one idea for each display.
� Be consistent among displays.
� Keep user responses short.
� Respond to user input.
� Make error correction easy.
� Supply online help information.
� Describe your displays.

The ADTS/400: Screen Design Aid for the
System/36 Environment book has more detailed
information about these design guidelines.

 Chapter 14. Menus and Displays 14-13

Types of Displays

The following are general types of displays:

 � Fixed-form
 � Adjacent form
 � Free-form
 � Menu form
 � Code-link form

Choose the correct form for your application.

Fixed-Form Displays: Using a fixed-form
display, the user supplies input in response to
prompts on the display. You design a fixed-form
display to resemble the source documents that
contain the data to enter into the system. Arrange
prompts and input fields on a fixed-form display as
fields are arranged on the source document.

The following screen is an example of a fixed-form
display.

à@ ð
COMPANY CAR REGISTRATION INFORMATION

 Motor ser. no.: 3TXð123 Purchase price: 75ðð Dealer: Bob's Pontiac

Mfg.: PON Year: 8ð Model: FIREB Style: ESP Gross wt.: 35ðð

 Ins.: Aetna

 Name: Frank Fredora
 Address: 15ðð Rampart St.
City: Raleigh State: NC Zip: 276ð9 County: Wake

 Fees
 Document: 1.ðð
 Title: 5.ðð
 Registration: 13.ðð
 Total: 19.ðð

 Tag no.: LAG535

Enter key - Display next record
Cmd1 - Change this record
Cmd7 - End program

á ñ

Adjacent-Form Displays: In an adjacent-
form display, data is arranged and typed in
columns. The first column contains prompts for
the kind of information to type or display. The
second column contains the fields that receive the
input data or show the output data. You can use
a third column to allow the user to change infor-
mation displayed in the second column.

The following screen is an example of an
adjacent-form display.

à@ ð
COMPANY CAR REGISTRATION INFORMATION

Motor ser. no.: 3T7Xð123
 Purchase price: 75ðð
 Dealer: Bob's Pontiac
 Mfg.: PON
 Year: 198ð
 Model: FIREB
 Body style: ESP
 Gross wt.: 35ðð
 Ins. co. Aetna
 Name: Frank Fredora
Address: 15ðð Rampart St.

 City: Raleigh
 State: NC
 Zip: 276ð9
 County Wake
 Fees
 Document: 1.ðð
 Title: 5.ðð
 Registration: 13.ðð
 Total: 19.ðð
 Tag no.: LAG535

á ñ

Free-Form Displays: On a free-form
display, you type data into long unprotected fields.
The user types data in a string of characters.
Individual fields or records are separated by a
special predetermined character. For example,
you can type a customer’s name and address as
follows, with the separating character being a
semicolon (;):

last name;first name;initial;address;city;state;zip code

Free-form displays are useful for more experi-
enced users and all rapid data entry. One line of
constant header information is usually all that is
needed to help the user in remembering the posi-
tion of individual fields or records.

Your program must be able to interpret the format
of that data. Special input array processing can
be required.

Menu-Form Displays: One of the first dis-
plays a user sees within an application is a menu
used to select a particular job. Menu formats can
be applied to the displays that your programs use.
Many applications have several predefined trans-
actions for which the same kind of data or actions
are used repeatedly. To end unnecessary typing
of data, you can use a menu-form display on
which the user types in a selection from a dis-
played list of options. Data is displayed or pro-
cessed based on that selection.

The following screen shows a menu-form display.

14-14 OS/400 System/36 Environment Programming V3R6

à@ ð
 COMMAND MENU: INVINF W1

Inventory Management: File Information Menu

Select one of the following:

 1. Display item master
 2. Display item balance detail (warehouse)
 3. Display item balance detail (manufacturing)
 4. Display open orders
 5. Display item availability
 6. Display item balance history

Ready for option number or command

á ñ

Code-Link Form Displays: The code-link
form display is an extension of both the free-form
and menu-form displays. In a code-link form
display, the user selects a code number from the
menu and types a value associated with that
selection in free form. Based on the selected
code number, the program must interpret and
process the typed data (input array processing
can be required).

The following screen shows a sample code-link
form display.

à@ ð
 Stock number: 1234
 Inventory: 1 on hand 2 on order
 Sales:

 3 Jan. 4 Feb. 5 Mar. 6 Apr.
 7 May 8 Jun. 9 Jul. 1ð Aug.
 11 Sep. 12 Oct. 13 Nov. 14 Dec.

Type the inventory code and the sales code and press Enter.

 Inventory code:
 Sales code:

Press Cmd7 to end program.

á ñ

Using Color or Highlighting on Dis-
plays: “Using Color or Highlighting on Menus”
on page 14-9 describes how to use color to high-
light data.

If you use SDA to create and update displays, you
can select colors for each field from the Color
Attributes for Field display. The ADTS/400:
Screen Design Aid and the ADTS/400: Screen
Design Aid for the System/36 Environment books
have more information about highlighting data with
color on your display.

Designing Multiple Formats: Information
from several display formats can appear on the
display at one time. This is useful if some infor-
mation on the display is not to change and other
information is to be replaced. If you use multiple
formats, the following are true:

� Response time is improved because no
unnecessary information is sent to the display
station.

� Less coding is required because the specifica-
tions for each format are generally simpler.

� Because fewer specifications are required for
each format, less disk space is needed and
data is not duplicated.

When using multiple formats, be careful not to
clear or replace any information that should
remain on the display.

When multiple formats appear before information
is read from the display, the system reads only the
input fields from the last format displayed that had
input fields. When all or a portion of a display
format is replaced by a display format with input
fields, the input fields from the previous display
cannot be read if the input fields on the new
display format are at different locations on the
display.

If the display formats do not define any input
fields, specify the suppress input operation for all
but the last display format. The last format must
define at least one input field if all of the following
are true:

� A value other than 24, 27, or blanks is speci-
fied as the number of lines to clear.

� The format replaces or clears a line that con-
tains an input field created by a previous
format displayed with input fields defined.

� Suppress input is not specified (the user can
enter data on the display).

Designing Displays for Remote Display
Stations: Remote display stations communi-
cate with the system at a slower rate than do local
display stations and can decrease overall system
activity. Use one of the following techniques to
improve performance when using remote display
stations:

 Chapter 14. Menus and Displays 14-15

� Reduce the amount of data transmitted over
the communications line.

� Increase the line speed.

Reducing the amount of data transmitted is
directly controlled by programming techniques.
You can reduce the amount of data transmitted by
following these suggestions when coding your
display formats:

� Send only the data that the user needs to effi-
ciently use the application. Consider creating
help display formats for the user to request
additional information.

� Do not show the same data and prompts
again.

� Specify N (no) for the return input operation
as described in “Input Operations and Input
Fields” on page 14-11. This reduces the
amount of data transmitted over the commu-
nications line and also reduces the response
time.

If you have an identification field on a display
format that a program is reading, specify Y
(yes) for return input operation.

� Use an erase input fields operation, as
described in “Erase Input Fields Operation” on
page 14-12, to remove the contents of an
input field rather than displaying the entire
format again.

� If there is no need to display a format to get
input from the user, then do not use the read-
under format technique described in “Using
the Read-Under-Format Technique” on
page 14-20 just to pass information from one
job step to another. Use the local data area
to pass the information from one job step to
another.

� Use an override fields operation, as described
in “Override Fields Operation” on page 14-13,
to display error messages. Display the error
message and the fields in error only to avoid
transmitting unnecessary data when errors
occur.

� In the display format specifications, define the
fields in the same left-to-right, top-to-bottom
order that they appear on the display. Addi-
tional control characters must be transmitted
for any out-of-sequence fields, thus increasing
the response time.

� If you do use multiple formats, specify the
suppress input operation, as described in
“Suppress Input Operation” on page 14-13, on
all but the last format. Specifying suppress
input reduces the turnaround time before each
new format displays. If input is not sup-
pressed data is transmitted and received
several times after each format displays.

When designing and coding display formats for
remote display stations, use the proper coding
techniques.

You can improve response by reducing data trans-
mission. For example, in an application with five
display formats in which input data is read and
output data is displayed, the total characters trans-
mitted over the communications line can number
2700. By properly using the return input, erase
input, override fields, and suppress input oper-
ations, you can reduce the total number of charac-
ters transmitted over the line to 2100 or fewer.

Using Message Members with Your
Display Formats: Display formats allow you
to use message members to display constant
information. Message members are especially
useful for fields that show error messages or con-
ditional instructions. For example, if a program
detects an input error, the program can select the
correct error message from a message member
and display that message. The program only has
to specify the message identification code (MIC), a
four-digit number that identifies a record in a
message member, for the particular message to
display. Use the following codes to indicate in
which message file the message is located:

 � M1 (##MSG1: first-level text)
 � M2 (##MSG4: second-level text)
� U1 (User message file: first-level text)
� U2 (User help message file: second-level

text)
� P1 (Program message file: first level-text)
� P2 (Program help message file: second-level

text)

U1 corresponds to USER1, U2 corresponds to
USER2, P1 corresponds to PROGRAM1, and P2
corresponds to PROGRAM2 in the // MEMBER
OCL statement. See the // MEMBER OCL state-
ment for more information.

14-16 OS/400 System/36 Environment Programming V3R6

The program or the display format does not have
to define the text of the error message. There-
fore, you can define one message member for
your application and have all the programs within
the application use the same messages in that
member. This definition makes the application
consistent and frees you from coding message
text within your programs or display formats.

The message to display can be identified by the
display format or specified by the program using
the display format. If you specify a MIC number
and a message member identifier for an output
field in your display format, the corresponding
message displays in the output field. If you do not
specify a MIC number and a message member
identifier for the output field, the program supplies
that information in the output record area. When
a write operation is sent to the display format, the
message corresponding to the supplied MIC
number and message member identifier displays
in the output field.

For more information about creating and using
message members, see Chapter 15, “Messages
and Message Members.” Also, the ADTS/400:
Screen Design Aid for the System/36 Environment
book has more information about the specific
entries made in the display format for displaying
messages from a message member.

Using Self-Check Digits: Self-checking
digits give some protection against data entry
errors and fraud. Self-checking supplies a method
of verifying the contents of an input field at the
same time it is entered. This method is especially
useful if an application requires the entry of
numeric data such as account numbers.

Note: You must have the extended function
feature installed on remote 5251 or 5294 display
stations to use self-check digits. If this feature is
not installed, a program error results when you
specify self-check and the operator tries to leave
the field.

The system offers two methods of self-checking:

 � Modulus 10
 � Modulus 11

If you specify a self-checking method for an input
field:

� The system determines a self-check digit for
the field’s contents using the specified self-
check method.

� That self-check digit is compared to the far-
thest right position of the input field.

� If the self-check digit matches the farthest
right position of the input field, the contents of
the input field are allowed, and the user can
continue.

If those numbers do not match, the contents
of the input field are not allowed, and a key-
board error displays. The user must type an
allowed number before continuing.

The ADTS/400: Screen Design Aid for the
System/36 Environment book gives more detailed
information about how the system checks the con-
tents of an input field according to the correct self-
check method.

Creating Display Formats

After you design your display, you must create the
library member the system uses to show the
display. Every display is defined by a display
format stored in a display file .

The display file can contain up to 255 display
formats. Each display format is made up of spec-
ifications . See Appendix B, “$SFGR Specifica-
tion Forms” for more information about
specifications. These specifications define infor-
mation about:

� The entire display format. This information is
defined in the S-specification.

� Individual fields in the display format. This
information is defined in the field definition (D)
specifications.

� Optionally, online help information available
for the display. This information is defined in
the H-specifications.

The system provides two ways for you to create
display formats:

� Screen design aid (SDA) utility
 � FORMAT procedure

 Chapter 14. Menus and Displays 14-17

Using SDA to Create a Display
Format: SDA leads you through the steps
used to create a display format. SDA has several
advantages over using the FORMAT procedure for
creating display formats:

� You can design display formats at the display
station and see immediately how the display
looks.

� You can use SDA to test your displays. By
controlling which indicators are on or off and
by specifying the order in which a series of
displays is shown, you can see how your dis-
plays work when the application is run.

� SDA does most of the work. You need only
supply certain control information for the
display, and the location and characteristics of
the fields to display.

� SDA has some additional options to help you
create your displays and code and describe
your application programs. Using SDA, you
can call the SEU full-screen editor to create or
update source and procedure members. You
can also use SDA to create RPG II program
specifications for your display formats.

The ADTS/400: Screen Design Aid for the
System/36 Environment book describes how to
use SDA to create display formats.

Using the FORMAT Procedure to
Create a Display Format: If you use the
FORMAT procedure, which runs the $SFGR utility
program, instead of SDA, you should:

1. Design your display on paper, or on a pre-
printed form.

2. Use SEU or the $MAINT utility program to
enter and create the display format source
member.

3. Run the FORMAT procedure to create a load
member defined by the specifications in the
source member.

After the FORMAT procedure creates the load
member, the system prints information about the
display format you defined. Use this information

to describe your displays and correct problems
with your display formats and programs.

Using SEU to make minor changes to your display
format source members and running the FORMAT
procedure to compile them is faster than using
SDA to make changes.

The ADTS/400: Screen Design Aid book describes
how to use the FORMAT procedure to create
display formats.

Creating Online Help Information
for Your Displays

Use SDA, the FORMAT procedure, or the word
processing function of OfficeVision for OS/400 to
define online help information for your displays.
You can use online help information to explain all
or a portion of a display shown by the application
program. To supply online help information to
your application users, you define help areas on
the display used by your application program.
Each help area is defined by a specification called
the help definition specification, or H-specification.

The word processing function of OfficeVision for
OS/400 lets you define online help information and
store it as a document in a folder. The Getting
Started with OfficeVision/400 book has information
about defining online help information using the
word processing function of OfficeVision for
OS/400.

For SDA or the FORMAT procedure, the help area
and its H-specification correspond to online help
information on a type of display format called a
help format . To use help formats, you should
disable the Help key. The system detects whether
the Help key is pressed, rather than allowing the
program to detect it. If the cursor is within a help
area when the user presses the Help key, the cor-
responding help format appears. Using the Page
Down and Page Up keys, the user can page
through other help formats you have defined for
the display. Once the user has viewed the help
formats, the user can return to the original display
by pressing the Enter key or a function key.

Note: H-specifications are ignored by the
system-supplied menu processor.

14-18 OS/400 System/36 Environment Programming V3R6

Using SDA Application Help Support to
Create Online Help Information: Appli-
cation help is a part of SDA that allows you to
define and delete H-specifications within your
$SFGR format members. Application help simpli-
fies creating online help information for your appli-
cations. You can use SDA to do the following
with your H-specifications:

Add Display all
Change Delete
Display View

Help areas and help formats supply user
instructions on the system, separate from the
application they describe. You can add online
help information to an application by making a few
changes to the existing display formats and by
creating the help format or formats that contain
the online help information. Generally, you do not
have to rewrite or recompile your programs to
support the new online help information.

The ADTS/400: Screen Design Aid for the
System/36 Environment book has more detailed
information about how help areas and help
formats are designed and created.

Using Display Formats with the
Programming Languages

Each of the programming languages can use
display formats. In addition, a procedure can use
a PROMPT OCL statement to show a display.
The display formats you create allow a program or
procedure to use the display station as an input or
output device.

The following sections describe how programming
languages use display formats and how the
display format display file is identified and
described.

Using Display Formats with RPG II:
Programs written in RPG II use a work station
(WORKSTN) file to use display formats. RPG II
WORKSTN file programs require file description,
input, and output specifications. To code these
specifications correctly, you must use the informa-
tion printed by the $SFGR utility program after it
has created the display format display file.

Display formats that an RPG II program uses must
be designed, coded, and created before you write
the RPG II program.

The file description specifications for a WORKSTN
file identify:

� The file name assigned to the WORKSTN file.

� An indication that the WORKSTN file is a
combined file. A combined file is capable of
being both an input and an output file.

� The maximum length of the data that is read
from or written to the display format.

The file description specifications identify the
display format display file that contains the formats
used by the RPG II program.

Because a WORKSTN file is a combined file, the
data read from the display format must be
described on the input specifications.

The request for a particular display format and the
data to display are identified in the output specifi-
cations. The output record contains the program-
supplied data to be sent to the display format.

The System/36-Compatible RPG II User’s Guide
and Reference book has more information about
the use of RPG II WORKSTN files.

Using Display Formats with COBOL:
Programs written in COBOL use a TRANS-
ACTION file to read from and write to display
stations. The TRANSACTION file associated with
the display station must be identified by the
FILE-CONTROL paragraph of the CONFIGURA-
TION section of the ENVIRONMENT division.
The ASSIGN clause of the FILE-CONTROL para-
graph associates the TRANSACTION file with a
display format display file to be used by the
COBOL program.

A WRITE statement, used in the PROCEDURE
division of the COBOL program, identifies the spe-
cific format that displays. In addition, the WRITE
statement sends program-supplied data to the
display.

A READ statement, also used in the PROCE-
DURE division of the COBOL program, accepts
data typed on the display format.

 Chapter 14. Menus and Displays 14-19

The System/36-Compatible COBOL User’s Guide
and Reference has more information about using
COBOL TRANSACTION files.

Using Display Formats within a
Procedure

If you want a procedure to show a display that
prompts for input data, use the PROMPT OCL
statement. The PROMPT OCL statement allows
you to:

� Prompt for up to 64 procedure parameters (or
a total of 1024 characters) by using one or
more display formats.

� Define each parameter for the user.
� Assign default parameters.
� Control various display format functions.
� Show the display format to be read on the first

read operation in a program (the read-under
format technique described in “Using the
Read-Under-Format Technique”).

When you show a display using the PROMPT
OCL statement, any parameters that have a value
cause the corresponding display format indicator
to be set on. For example, if parameters 1
through 5 and 7 have values, display format indi-
cators 01 through 05 and 07 are set on.

The PROMPT OCL statement in the System/36
Environment Reference book has information
about showing display formats and using parame-
ters to set indicators on or off.

You can use this feature to:

� Display defaults for the parameters.
� Highlight a specific field. You can highlight a

field when a parameter is typed wrong, to
allow the user to identify the field in error.

� Position the cursor to a specific field. You can
position the cursor to a field when a param-
eter is typed wrong, to allow the user to type
the parameter again.

Using the Read-Under-Format
Technique

The read-under-format (RUF) technique allows
you to type information on a display while the
program that uses the display is being loaded.
When you use the RUF technique, a program or
procedure displays a format and invites input, and

the next program called reads it. This format is
first displayed by a PROMPT OCL statement with
PDATA-YES specified, or by a program. While
the next program starts, the user can type infor-
mation on the display. When the user types the
data, the information is sent to the next program
that sends an input operation to the display
station. If an output operation is issued before the
next input operation, the RUF data is not pro-
cessed.

This means that RUF can occur between:

� Two programs running with the same single
request terminal (SRT) job.

� A PROMPT OCL statement and a program
running in the same SRT job.

� A SRT program and a MRT program. RUF
can occur in either direction, for example:

– A MRT program can read in data from a
format displayed by a SRT program that
ran before the SRT called the MRT proce-
dure.

– After a SRT regains control from a MRT, a
SRT program can read data from a format
displayed by the MRT program before it
released the device.

� A PROMPT OCL statement in a SRT proce-
dure and a MRT program.

� A PROMPT OCL statement in a MRT proce-
dure and the MRT program run from the MRT
procedure.

Note: Program data from an OCL PROMPT
statement takes priority over RUF being used by
an application program when the PROMPT state-
ment was interpreted.

The RUF from an application program and
program data from the OCL PROMPT statement
take priority over program data specified when a
procedure is called.

You can use the RUF technique with all types of
applications. The RUF technique can decrease
the size of a program because it requires fewer
read and write operations. Although the RUF
technique increases response time because of the
extra work the system does while starting and
ending a program, overall performance is
improved because two tasks are done at once.
For example, while the second program starts, the
user is already typing data for the first input opera-
tion in that program.

14-20 OS/400 System/36 Environment Programming V3R6

Using Data Description
Specifications (DDS) and Screen
Format Generator ($SFGR)

The following sections describe:

� How screen format generator ($SFGR) utility
changes System/36 SFGR to AS/400 data
description specifications (DDS)

� Considerations for using $SFGR and DDS
� Differences between System/36 SFGR and

AS/400 DDS

Using $SFGR to Change SFGR to
DDS

$SFGR creates AS/400 display files from
System/36 SFGR source containing S (display
control), D (field definition), and H (help definition)
specifications. For more information on com-
pleting the specification forms, see Appendix B,
“$SFGR Specification Forms.”

You usually use $SFGR from System/36 through
the FORMAT and BLDMENU procedures. When
using a System/36 interface, the SFGR source
member must be in the AS/400 source file
QS36SRC. The CRTS36DSPF command is
installed in QSYS when library QSSP is installed.
The CRTS36DSPF command can also be used
when you are not in the System/36 environment.
The System/36 migration product can use
CRTS36DSPF to compile the display format
source into an AS/400 display file. The
CRTS36DSPF command can check SFGR syntax,
generate AS/400 DDS from the System/36 SFGR
source, and save the DDS in the user’s source
file. See the CL Reference book for more infor-
mation.

SFGR Printed Output

$SFGR produces a compile printout called
QPUTSFGR. The DDS compiler produces a
printout with the same name as the display file
being created. The DDS compile printout contains
the data description and error information. The
flag parameter specifies the minimum severity of
DDS error messages that are printed.

$SFGR calls SFGR syntax-checking modules to
syntax check the SFGR source and produce an
SFGR compile printout. This printout includes

warning or error messages from the syntax
checking. If warning messages are printed but
there are no errors, a System/36 message is
issued and the compile continues. $SFGR uses
default values that change the results. You
should change the original SFGR source so the
SFGR source is correct. $SFGR calls conversion
modules to create AS/400 DDS source. The con-
version modules assume that the SFGR source
contains no terminal errors. You cannot predict
the results if the SFGR source contains terminal
errors. If the SFGR conversion is successful,
$SFGR runs the AS/400 Create Display File
(CRTDSPF) command to compile the DDS.

When you use the FORMAT or any other proce-
dure running within the System/36 environment,
you can control the SFGR compile printout
through the System List (SYSLIST) procedure or
OCL statement. The SYSLIST options you choose
can cause the printout to be:

� Shown at the requester’s display
 � Canceled
� Directed to a specific printer device

$SFGR produces the output list using an AS/400
print file. When run from within the System/36
environment, the SYSLIST CRT function is simu-
lated by using the AS/400 display spooled file
(DSPSPLF) command. The SYSLIST options do
not apply to the DDS compile listing produced by
the CRTDSPF command.

The $SFGR print options are mapped to the fol-
lowing OPTION keyword values and the FLAG
parameters on the AS/400 CRTDSPF command:

PRINT-YES ==> OPTION(\SRC \LIST) FLAG (ðð)
PRINT-PARTIAL ==> OPTION(\NOSRC \NOLIST) FLAG (2ð)
PRINT-NO ==> OPTION(\NOSRC \NOLIST) FLAG (2ð)

Note: For the $SFGR print options (print-partial
and print-no), the DDS compile printout contains
only error messages that are equal to or greater
than 20.

Creating, Adding, Changing, or
Deleting Display File Formats

You can add new formats to the display file,
delete whole formats from the display file, or
update a format in the display file. When you
create a display file, $SFGR saves the DDS
source in DDS source file QS36DDSSRC, in the
same library as the display file. If there is no

 Chapter 14. Menus and Displays 14-21

QS36DDSSRC source file, $SFGR creates one
with a record length of 92. The first user who
creates a display file in a library owns
QS36DDSSRC. All other users have the create
authority defined for the library. If the DDS source
file QS36DDSSRC already exists, the $SFGR
utility does not change the authorities to the file.
This DDS source should only be changed by
$SFGR. The DDS source member always has
the same name as the display file. When you
create additional displays in this library, $SFGR
adds corresponding DDS source members to the
source file.

The following System/36 SFGR functions affect
the DDS source member in QS36DDSSRC as
follows:

Create
Creates DDS from the System/36 SFGR
source and copies the DDS source into the
DDS source member. The source member is
replaced if it already exists. $SFGR copies
file-level DDS only when you use the create
function.

Delete
Deletes the DDS format records from the
QS36DDSSRC source member.

Add
Creates new DDS from the System/36 SFGR
source. Appends the new DDS source to the
QS36DDSSRC source member.

Update
Creates new DDS from the System/36 SFGR
source. Deletes the old DDS format records
from the QS36DDSSRC member. Appends
the new DDS source to the QS36DDSSRC
source member.

You can specify up to 32 requests (32 creates, or
a combination of adds, deletes, and updates) at
once with the System/36 $SFGR utility, but the
System/36 FORMAT procedure allows only one
request at a time. You must write your own pro-
cedure to specify more than one request at a time.
Processing several source members at a time is
more efficient than updating one after the other.
Performance improves more when all of the SFGR
source is in a single source member.

Creating New Files Using DDS Instead
of $SFGR: You must use certain DDS
keywords when you want to create new files in the
System/36 environment using DDS instead of
SFGR:

� Separate indicator areas . On System/36,
the formats and programs are created with
separate indicator areas. DDS allows users to
specify the indicator area (INDARA) keyword
in a display file to get a separate indicator
area.

The System/36 environment supports only
display files and ICF files with separate indi-
cator areas. You can satisfy the System/36
requirement by specifying the INDARA
keyword in the DDS to get a separate indi-
cator area. The System/36 environment imi-
tates the System/36 method of using indicator
areas while using RUF between display files
or using RUF between ICF files when the files
use different indicator conventions.

Requiring a file to have a separate indicator
area allows the application to migrate between
the AS/400 system and System/36. If the
System/36 environment application uses an
indicator convention other than the separate
indicator area, the application has to be
changed before returning to a System/36.

� INVITE keyword . You must add the INVITE
keyword for the following reasons:

– The display must be invited after a write
operation to use RUF. If the display was
not left invited while waiting for RUF to
complete, the system issues an exception
instead of waiting for the RUF to com-
plete.

– You must specify the INVITE keyword to
read from a file with multiple devices.

The System/36 environment RUF supports only
display files and ICF files with INVITE keywords.

Replacing a System/36 Load
Member with an AS/400 Display
File

When you use the REPLACE-YES option to
create a display file, $SFGR copies the original
DDS source to library QTEMP and uses this copy
for any add, delete, or update requests. If the

14-22 OS/400 System/36 Environment Programming V3R6

compile is successful, $SFGR copies the new
DDS source back to the DDS source member in
QS36DDSSRC, replacing the original DDS. The
original display file is deleted, and the new display
file is moved from QTEMP to the target library.
When replacing a display file, $SFGR does not
allow others to use the file during the compile. If
the display file is already being used, the compile
fails and an error message appears. If an SFGR
compile fails, the original display file and its DDS
source file remain unchanged in their original
library. However, if the target library is QTEMP,
the original display file may no longer exist after
an SFGR compile fails.

Display files, programs, and message files (*FILE,
*PGM, and *MSGF) are separate object types on
the AS/400 system. On System/36, programs,
message files, and display files are called load
members. If you create a display file specifying
REPLACE-YES, you can also replace any
program or message load members with the same
name.

The following file types exist on the AS/400
system:

 � Database file
 � Source file
 � Printer file
� Bisynchronous communication (BSC) file
� Systems Network Architecture (SNA) commu-

nications file

Only one type of file can be in a library at a time
with the same name.

Consider the following system actions to avoid
accidentally deleting files:

� $SFGR replaces only a *FILE of subtype
DSP. It does not replace any other type of
AS/400 *FILE object.

� The System/36 environment puts all database
files in one library (usually called QS36F).
The only source members that you can refer
to directly through the System/36 environment
OCL are in source files named QS36SRC or
QS36PRC. Do not place display files in
library QS36F and do not use names such as
QS36SRC or QS36PRC for System/36 load
members.

� Do not create display files in library QTEMP
because temporary (RETAIN-S or RETAIN-J)

database files are there. $SFGR always
creates a display file in QTEMP before moving
it to the target library.

Maximum Number of Display
Devices

When you use MRT programs or programs that
acquire multiple devices for the same display file,
you must use the Maximum Device (MAXDEV)
attribute within the display file to define the
maximum number of devices you can use with the
display file. On System/36, you determine and set
the maximum number of devices that a display file
can handle at a time at program start. When you
use $SFGR on the AS/400 system, you must
know how many devices a display file can handle
at a time during SFGR compilation. You can set
the MAXDEV attribute on the SFGR source
member to tell $SFGR how many devices to
allow. If you do not set the MAXDEV source attri-
bute, the system uses a default value of 5. When
a display file has already been created, use the
AS/400 Change Display File (CHGDSPF)
command to increase or decrease this value. If
you set the MAXDEV value too high, it requires
more storage and causes slower performance.
Use the Change System/36 Source Attributes
(CHGS36SRCA) or Edit System/36 Source Attri-
butes (EDTS36SRCA) command to set the
MAXDEV attribute in each SFGR source member,
so you do not have to change this value each time
the display file is changed or re-created. See the
CL Reference book for more information.

Public Authority to Use SFGR
Display Files

The system creates all objects with the create
authority (CRTAUT) of the library they are created
into, unless another authority is specified. The
$SFGR and other System/36 environment utilities
provide an SSP keyword which allows you to
create a library member with *USE authority. If
SSP-YES is specified, the library member can be
deleted only by a user with security officer
authority, and users without security officer
authority are not allowed to change the display
formats. If SSP-NO is specified, the library
member is created with the create authority
(CRTAUT) of the library the member is created
into.

 Chapter 14. Menus and Displays 14-23

FORMAT Procedure Parameters

The following sections describe using the
FORMAT procedure HALT and NUMBER parame-
ters with $SFGR.

The HALT Parameter: The AS/400 system
uses the NOHALT parameter on the FORMAT
procedure to prevent $SFGR error messages from
being sent to your display. For NOHALT, $SFGR
sets the System/36 environment return code and
the AS/400 CL return code. $SFGR initializes the
return codes to zero, and sets them to 1008 if it
detects an error.

The NUMBER Parameter: System/36 uses
the NUMBER parameter value to calculate the
size of a work space that it must allocate. The
$SFGR on an AS/400 system does not use a
work space and therefore does not need this
number. The AS/400 system accepts a valid
NUMBER parameter and passes it to $SFGR.
$SFGR checks it for proper syntax and valid
range of values. An error message appears if the
value is invalid.

Differences between System/36
SFGR and AS/400 DDS

The following sections describe differences
between System/36 SFGR and AS/400 DDS.

Format Names: On System/36, the SFGR
for each format (S-specification columns 7 through
14) assigns the names of the format being
defined. The first character of the display format
name must be alphabetic: characters A through
Z, or the characters #, $, or @. The other charac-
ters can be any combination of characters except
commas (,), single quotation marks ('), and blanks.
There must be 8 or fewer characters in the display
format name, and it must be left-justified in the
field.

Names for DDS formats on the AS/400 system
must begin with an alphabetic character (A
through Z, @, $, and #). All other characters can
be alphanumeric (A through Z, 0 through 9, @, $,
#, and _). Embedded blanks are not allowed.

$SFGR substitutes a valid DDS format name in
place of an SFGR format name that does not

meet DDS restrictions. It uses the invalid SFGR
format name as a DDS alternate name (DDS
ALTNAME keyword), which is less restrictive. An
application can refer to the same format with
either name. AS/400 programs can refer to the
format using the DDS format name, and
System/36 programs can continue to use the alter-
nate System/36 format name.

A HLPSEQ (help sequence) keyword is generated
for all format names greater than seven characters
in length that conform to the AS/400 HELP format
naming convention. This convention is described
in “Help Definition (H) Specifications” on
page B-8.

When a HELP format name contains unsupported
characters, use of either name applies to
System/36 HELP format names used by
System/36 as well. If the format name referred to
in the H-specification (columns 7 through 14) is
defined in the display file being created (columns
16 through 23 of the H-specification are blank),
the corresponding DDS that is built refers to the
valid DDS format name created by $SFGR.

If the HELP format name referred to contains
characters not allowed by DDS, and columns 16
through 23 of the H-specification are not blank
(indicating the HELP format is in some other
display file), the valid DDS format name created in
the other display file is not known to $SFGR, so
that H-specification is ignored. To use this
H-specification, you must change the HELP format
name in that H-specification and the corre-
sponding format name in the other display file, to
a valid DDS format name.

Right-to-Left Cursor between Input
Fields: On System/36, column 40 of the SFGR
for each format (S-specification) defines whether
the cursor moves from one input field to another in
a right-to-left direction. On the AS/400 system,
the Check Right-to-Left (CHECK(RLTB)) keyword
is a file-level keyword that applies to all formats in
the display file. There can be only one such
keyword.

$SFGR takes the right-to-left definition from the
first format (S-specification) encountered during
the create function and uses that definition as the
default for all other formats in the display file for
the AS/400 system.

14-24 OS/400 System/36 Environment Programming V3R6

If System/36 SFGR specifies right-to-left differently
depending on which format is being displayed, the
results on the AS/400 system differ from the
results on System/36. Place the right-to-left defi-
nition you prefer in the first S-specification. You
must create separate display files if you want
some to be left-to-right and some to be right-to-
left.

You cannot change the right-to-left definition with
the add, update, or delete functions, even if that
request changes the first S-specification. Only a
create function assigns the proper right-to-left
function.

Data Types for Input/Output Fields: On
System/36, data types E, F, O, and X
(D-specification column 27) are related to
DBCS-capable fields. DDS supports
DBCS-capable fields only when you use a DBCS
version of the OS/400 program. If you are com-
piling SFGR specifications without a DBCS
version of the operating system installed, these
data types are mapped to the System/36 Data
Type B that allows alphanumeric data (data type A
in DDS). If you use the DBCS version of the
OS/400 program later, recompile the display file
with the original SFGR specifications to obtain full
DBCS support for these input/output fields.

Moving from System/36 to the
System/36 Environment

Consider the following when you migrate help
specifications created with the $SFGR utility:

� The system always assumes null fill.
� Help displays on System/36 have input fields.

The AS/400 system ignores or discards input
entered on a System/36 environment help
display.

� The RESTORE parameter of the
H-specification is ignored when data is
returned and a function key is passed.

System/36 Display File
Enhancements

This section describes enhancements in display
file handling since Release 1.0.

Using the Print Key: On System/36, the
SFGR for each format (S-specification) defines
whether the Print key is handled by the system or
by the application program.

In Release 1.0, the PRINT keyword in the DDS
was a file-level keyword that applied to all formats
in the display file, and $SFGR used the Print key
definition from the first format (S-specification) as
the default for the entire file.

In Release 2.0, the Print key definition is handled
at the format level as it was on System/36, but the
display file created and the DDS are not compat-
ible with Release 1.0. To obtain the full format-
level print function, the SFGR source for Release
1.0 display files can be compiled again.

To create a display file that will be used on an
AS/400 system operating with a previous release,
compile the SFGR source using the
CRTS36DSPF command and specify
TGTRLS(*PRV).

Displaying Messages: In your SFGR
source, you can define a field whose displayed
value comes from a message. The message is
specified either by the SFGR source or by the
application program, and can be selected by an
output indicator. In Release 2.0, improvements
have been made, but the created display file and
the DDS are not compatible with Release 1.0. To
obtain the full System/36 message display func-
tion, the SFGR source for Release 1.0 display
files can be compiled again.

If a display file is to be used on an AS/400 system
operating with a previous release, use the
CRTS36DSPF command and specify
TGTRLS(*PRV) to compile the SFGR source.

Return Input = No: Return Input = No
(SFGR S-spec column 22 = N) is fully supported.

Position Cursor: On the AS/400 system,
Position Cursor (SFGR D-specification, columns
32 and 33, where an indicator is specified) is fully
supported. Display files from Release 1.0 may
optionally be compiled again to take advantage of
the added function.

 Chapter 14. Menus and Displays 14-25

*DDS in SFGR Source Comments:
User-supplied DDS statements can be supplied in
the SFGR source for insertion into the created
DDS. This is recommended only for inserting the
FRCDTA keyword after a format definition
(S-specification) to override DFRWRT(*YES) for
that format. Defer write (DFRWRT) is an attribute
used, when creating a System/36 display file, to
control sending formats to the display. See
Appendix B, “$SFGR Specification Forms,” for
more information about *DDS in SFGR comments,
and “DFRWRT Attribute” for more information
about DFRWRT.

Optimizing Performance of
Display Files

You can use several coding techniques to improve
an application’s performance when doing
input/output (I/O) with a display file. Some of the
coding techniques are dependent on the
application’s use of one or more of the following
display data management operations:

� Erase input fields
 � Override fields
 � Suppress input
� Use multiple formats

These display data management operations are
selected when the application sets an indicator on
for corresponding operations in the SFGR specifi-
cations of the display file.

For further information on these topics, see
“Display Data Management Operations” on
page 14-12, “Designing Multiple Formats” on
page 14-15, and “Designing Displays for Remote
Display Stations” on page 14-15.

Other techniques are not dependent on the appli-
cation program, but depend only on the options
used when creating the display file, as discussed
in the following sections.

MAXDEV Attribute: If a display file is
created to handle a large number of devices, more
storage is required, and it takes longer for the
system to load the display file into main memory.
A MAXDEV value greater than 1 is needed only
when an application that uses the display file is a
MRT application or an application that acquires

additional work stations. The sum of the
MRTMAX and the number of acquired devices
should equal the MAXDEV value. A MAXDEV
value larger than this sum degrades the
application’s performance slightly. You can adjust
the MAXDEV value for a given display file after
the display file is created by using the CHGDSPF
command. The default MAXDEV value, used
when the display file is created, can be changed
by using the CHGS36SRCA or EDTS36SRCA
command to set the MAXDEV attribute for the
source member containing the SFGR specifica-
tions that define the display file.

Multiple Display Format Sizes: Avoid
mixing 132-column and non-132-column formats in
the same display file. Column 39 in the SFGR
S-specification specifies the size (80 column or
132 column) of the format. When a display file
contains some formats for 132-column devices
and other formats for 80-column devices, the
system may have to rebuild the data stream at run
time to handle the I/O request. Rebuilding the
data stream requires extra time and causes slower
performance of your application.

DFRWRT Attribute: You can specify the
DFRWRT attribute on the CRTS36DSPF
command when creating your System/36 display
file. The attribute in the source member con-
taining the SFGR source that defines the display
file can also be set using the CHGS36SRCA or
EDTS36SRCA commands. If this source attribute
has not been set, DFRWRT(*YES) is the default.

The DFRWRT attribute allows you to specify how
the system is to handle write operations. If you
specify DFRWRT (*NO), the write operation is
sent to the display and control is returned to the
application when the write operation is displayed
on the display station.

If you specify DFRWRT(*YES), the write operation
is placed in a buffer (not sent to the display
station) and control is immediately returned to the
application. If an application is issuing multiple
write operations, specifying DFRWRT (*YES)
results in significantly improved performance. The
deferred data is sent to the display when:

� The application issues a read request to the
display station.

� The application releases the display station.
� The application closes the display file.

14-26 OS/400 System/36 Environment Programming V3R6

� The buffer used to hold the deferred data is
full.

� A write operation is done to a format that has
specified the DDS FRCDTA keyword.

For example, a format uses a variable starting line
and defines fields for a single line on the display.
The application builds the final display image by
writing the format once for each line on the
display, while increasing the starting line number.
If DFRWRT (*NO) is specified, the application
waits for each line to be displayed on the display
station. If there are 24 lines that are displayed,
the application must wait 24 times. If DFRWRT
(*YES) is specified, the application only waits
when the system buffer (containing all the lines of
output data) is displayed instead of waiting for
each line.

If an application writes information that must be
displayed immediately and does not require any
user input, the application should specify the
FRCDTA keyword in the format or specify
DFRWRT (*NO) for the display file. If the data is
allowed to be buffered by the system, the data is
not immediately displayed by the system.
Common examples of these applications are:

� Continuously update a time-of-day display
� Send status messages, such as:

 Running application
 Please wait

Starting final pass

Some display files can contain a mixture of
DFRWRT(*YES) and DFRWRT(*NO) formats.
You can use each format when appropriate in

applications, without making any programming
changes. To do this identify those formats in the
DFRWRT(*NO) category, and locate their
S-specifications. Immediately after the
S-specification for each of those formats insert a
*DDS comment similar to the following:

1234 SFMTð1
\DDS S\ FRCDTA
1234 S\..1....+....2....+....3....+....4....+....5....+....6

The third line is a comment to show the column
numbers for the previous lines. In the preceding
example, format FMT01 requires DFRWRT(*NO),
so a *DDS comment was inserted after its
S-specifications. A *DDS comment contains the
characters \DDS in columns 1 through 5, and an
asterisk (*) in column 7. The remainder of the line
after column 7 must contain a valid DDS keyword
in the proper DDS column.

The FRCDTA keyword temporarily overrides the
DFRWRT(*YES) attribute whenever this format is
written. The FRCDTA keyword starts in column
45. Since a *DDS comment is an SFGR
comment, the SFGR source can still be installed
and compiled on System/36. See Appendix B,
“$SFGR Specification Forms,” for more informa-
tion about *DDS comments.

Recompile the display file specifying
DFRWRT(*YES). Specify DFRWRT(*YES) on the
CRTS36DSPF command or in the source attribute
in the member containing the SFGR source. The
resulting display file provides improved perfor-
mance for those formats without the FRCDTA
keyword, while those formats with the FRCDTA
keyword are displayed when required by the appli-
cation.

 Chapter 14. Menus and Displays 14-27

14-28 OS/400 System/36 Environment Programming V3R6

Chapter 15. Messages and Message Members

This chapter describes:

 � Message types
 � Message concepts
� How to create and change messages
� How to use and display messages

Types of Messages

The types of messages that appear in the
System/36 environment are as follows:

� Error messages . These messages indicate
an error has occurred and the system is
waiting for a response.

Some IBM-supplied error messages have
automatic responses (default responses on
the AS/400 system) and severity levels. The
system uses the severity level of the
message, and the severity level at which the
application program runs, to determine when
to respond to the error message automatically
rather than having the operator enter the
response.

 � Informational messages . These messages
provide a descriptive statement about a
current or completed system action. They do
not require a response. For example:

LISTLIBR procedure is running

or

Payroll program running

� Prompting messages . These messages ask
a user to enter information. For example:
Enter the library member name.

Messages can be displayed or printed.

Displayed messages also allow a user to commu-
nicate with other display stations and users.

IBM-supplied printed messages are used to show
errors or information about source members, such
as programs, display formats, menus, or message
load members you have compiled. For example,
use printed messages for report headings.

 Message Concepts

The messages that appear in the System/36 envi-
ronment are created by and structured according
to the System/36 message load member concept
or the AS/400 system message file concept. For
some uses you may decide to use message
members, but for others you may want to use the
message file concept.

Message Member Concept

System/36 messages consist of a message iden-
tification code (MIC) and a first-level message or a
second-level message. A first-level message is
a message that is issued immediately when an
error occurs. A second-level message is a
message that supplies additional information about
an error condition when the Help key is pressed
for a first-level message. A message source
member is a source member in a QS36SRC
source file (source type is MSGF36) that defines
the parts of the message (MIC and text).

System/36 message members allow messages
from 1 to 75 characters of first-level text. All pro-
gramming languages and procedure control
expressions use messages. On System/36,
message help can contain from 1 to 225 charac-
ters of second-level text.

Uses of Message Members: You can use
message members to define messages for pro-
grams, display formats, and procedures. For
example:

� Titles of displays or computer printouts. For
example: Stock Status Report

� Operator information shown on displays. For
example: Press the Enter key to continue

� Printed or displayed application error mes-
sages. For example: Customer number must
be entered

� Procedure substitution using the ?Mmic?
expression. See the System/36 Environment
Reference book for information on the ?Mmic?
substitution expression.

Using message members allows you to store your
messages in one place and refer to them by MIC

 Copyright IBM Corp. 1995 15-1

number instead of coding the text each time you
want to display or print them. Using message
members also avoids having the same text
worded several ways.

You can create messages that allow data to be
inserted when a procedure is running. See
“Inserting Variable Data into Displayed Messages”
on page 15-3 for more information.

For the double-byte character set (DBCS) lan-
guages, the system allows you to create message
members with the message in two languages.
The System/36 Environment Reference book has
more information about creating these types of
message members. Chapter 20, “System/36
Environment National Language Support,”
describes DBCS characters.

For your programs and procedures to use these
messages on the AS/400 system, you must use
the AS/400 Create System/36 Message File
(CRTS36MSGF) command or the System/36 envi-
ronment CREATE procedure to create an AS/400
message file. See the System/36 Environment
Reference or the CL Reference for more informa-
tion.

Message Members and Application
Design: When you design your applications,
you can:

� Create a single message member (AS/400
message file) in which to put all application
messages.

� Create several message members and group
messages by:

– Program type. For example, place the
order-entry messages into a member
named ORDERMSG.

– How they are used. For example, place
the displayed messages into a member
named MSGDISP, and the printed mes-
sages into a member named MSGPRINT.

Example Message Source Member:
The following is an example of a message source
member:

MSGSAMPL,1
ððð1 Enter your name
ððð2 Enter yesterday's date
ððð3 ACCOUNTS PAYABLE APPLICATION

The example indicates:

� The name assigned to the message member
(AS/400 message file) is MSGSAMPL. The 1
following MSGSAMPL indicates that the
member contains first-level messages.

� The numbers (0001, 0002, and 0003) are
MICs. These numbers identify the message.
For example, to display or print the message

Enter your name

use MIC 0001.

Some messages to which you can respond allow
the following responses: 0, 1, 2, 3, D (dump), F
(formatted dump), and H (help).

Message Files and the System/36
Environment

To run on the AS/400 system, messages are
always stored in AS/400 message files. Each
message becomes a message description in the
message file. Once messages are in message
files, they can be altered using AS/400 com-
mands. See the Change Message Description
(CHGMSGD) and the Add Message Description
(ADDMSGD) commands in the CL Reference
book for more information.

Creating Messages from Message
Source Member: When a message is
created from a source member you need to under-
stand the following changes:

� The MIC is changed to a 7-character message
identifier.

� The last 4 characters of the message identifier
are the MIC. The first 3 characters of your
user messages are set to USR except for
DBCS messages.

� For DBCS messages (messages defined fol-
lowing MIC A000 in the System/36 message
source member), the first 3 characters of the
message are changed to USZ to distinguish it
from the USR version. A USZ message may
exist without a corresponding USR version.

15-2 OS/400 System/36 Environment Programming V3R6

Rules for Changing Message Prefix:
You can change the first 3 characters of the
message identifier using the following rules:

� Message prefixes must be the same for the
entire message file (with the exception of a file
containing DBCS and non-DBCS messages).

� When a user message is sent, the system
gets the first message from the message file
and uses the first 3 characters of the message
ID as the first 3 characters of the message
identifier (the 7-character AS/400 number) for
the message you are requesting.

For example, when you display message 2345
and the first message in the message file is
PAY0002, the system looks for message iden-
tifier (the 7-character AS/400 number)
PAY2345.

The third prefix character in the message
identifier (the 7-character AS/400 number) for
your DBCS messages is always a Z. In this
example, the system looks for message
PAZ2345 when a DBCS version of the
message is found.

Note: If you are converting the first 3 charac-
ters of the message to a different prefix, do
not use any numbers as the third character,
because those values are used for keeping
automatic response information.

� The prefix for all IBM product message files is
predetermined and cannot be changed. If you
alter the message prefixes for IBM product
files, the system may not be able to find the
messages.

Inserting Variable Data into
Displayed Messages

You can insert variable data into a message using
the ERR procedure:

1. Code the message with a # sign for each
character you want to insert.

2. Use the ERR procedure and enter the data to
be inserted in the appropriate parameter.

For example, if MIC 0003 in message file
DISPMSG is:

Procedure ######## on the job queue

and the following statements are in a procedure:

// MEMBER USER1-DISPMSG,LIBRARY-INVLIB
ERR ððð3,ð,INVJOB

the following message appears:

USRððð3 Options (ð)
Procedure INVJOB is on the job queue

Because one character from the ERR procedure is
substituted for each # sign, your messages can
have more than one field of insert data. For
example, if MIC 0005 in message file DISPMSG
is:

Job ######## changed file ########

and the following statements are in a procedure:

// MEMBER USER1-DISPMSG,LIBRARY-INVLIB
ERR ððð5,ð,'INVJOB CUSTMST'

the following message appears:

USRððð5 Options (ð)
Job INVJOB changed file CUSTMST

Notes:

1. The variable fields in the message must be
long enough to handle the data to insert.

2. You must insert blanks if the data is shorter
than the variable field in the message.

You can insert the entire message from the ERR
procedure by creating one message that contains
75 # signs. For example, if MIC 0004 in message
file DISPMSG is:

################## ... #####
75 # signs.

and the following statements are in a procedure:

// MEMBER USER1-DISPMSG,LIBRARY-INVLIB
ERR ððð4,13,'A REQUIRED FILE CANNOT BE ACCESSED.'

the following message appears:

USRððð4 Options (1 3)
A REQUIRED FILE CANNOT BE ACCESSED.

See the System/36 Environment Reference book
for complete information about the ERR proce-
dure.

 Chapter 15. Messages and Message Members 15-3

Converting Message Text

When message text is converted from System/36
message member source to AS/400 message
files, variable data fields follow the AS/400
message description format. This means con-
verting the strings of consecutive # signs to &n
substitution text descriptors (n is a number). The
format parameters for the subsequent text descrip-
tors are defined to be of type *CHAR, and the
same length as the consecutive number of #
signs. The substitution text descriptors are in
sequential order for compatibility. For example, if
MIC 0005 in message member DISPMSG is:

Job ######## changed file ########

following conversion the message text will appear
as follows:

 Job &1 changed file &2

where the format of &1 is type *CHAR of length 8
and the format of &2 is type *CHAR of length 8.
$MGBLD converts System/36 message source to
AS/400 message CL source and maps System/36
insertion text fields (# strings) to AS/400 insertion
text fields (&n). The insertion text field conversion
is done selectively so that normal text containing a
character (such as ##MSG1 or #LIBRARY) is
not confused with true insertion text fields. The
selection requires a delimiter on both sides of the
string to qualify the # string for conversion to an
AS/400 insertion text field. The delimiter that pre-
cedes the # string can differ from the delimiter that
follows the # string.

The following table shows a list of valid message
source delimiters:

If the # string occurs at the beginning or end of
the message text, the beginning or end condition
is treated as if it were a delimiter.

Occasionally, you may find it necessary to force a
blank or hyphen symbol to be treated as if it were
not a delimiter. If you must do this, you can use
(depending on your language and type of work
station) the required blank special character (HEX
41) in place of a blank or the syllabic minus sign
special character (HEX CA) in place of a hyphen
on either side of a # string to prevent the # string
from being treated as a substitution field, without
changing the visual representation of the message
text. To substitute these characters in your
System/36 message source, and for information
on how to enter characters in hexadecimal form,
see the reference book for your display station.

In some languages, the # symbol (HEX 7B) is
treated as an alphabetic character used in text. If
no messages allow insertion text fields, you can
use the CRTS36MSGF command specifying
SUBST(*NO) rather than the CREATE procedure
to prevent replacement of # characters with substi-
tution fields. Also, you can use the AS/400
Change Message Description (CHGMSGD) CL,
Delete Message Description (DLTMSGD), or Add
Message Description (ADDMSGD) command to
change or replace the message description.

For more information on AS/400 substitution data
and format parameters, see the CL Reference
book.

If there are no coexistence requirements (same
messages used on both the System/36 and the
AS/400 system), you may wish to take advantage
of the flexibility of AS/400 message definitions,
such as:

� Length of second-level text is no longer limited
to 225 bytes.

� Insertion of data into messages is no longer
restricted to character format or the order in
which the data is passed.

Hex EBCDIC Description

7A : Colon
7D ' Apostrophe (quote)
7E = Equal
7F " Double quote

Hex EBCDIC Description

40 Blank (space)
41 Special blank
4B . Period
4C < Less than
4D (Left parenthesis
4E + Plus
50 & Ampersand
5C * Asterisk
5D) Right parenthesis
5E ; Semicolon
60 - Hyphen
61 / Slash
6B , Comma
6E > Greater than
6F ? Question mark

15-4 OS/400 System/36 Environment Programming V3R6

Note: The pointer type format is not sup-
ported and may lead to unexpected results if
used.

Supplying Default Responses for
Messages

You can have the system automatically respond to
displayed system and application messages using
the RESPONSE procedure or the CHGMSGD
command in conjunction with the NOHALT proce-
dure. When the NOHALT severity is such that the
severity of the message being sent is smaller, and
a valid response exists in the message
description, the system responds automatically to
the message, rather than having the operator
enter a response.

Note: For a message to have a default response,
it must be in a message file. See “Unattended
System Operation” on page 18-12 for more con-
siderations when using default responses.

Some IBM-supplied displayed messages have
default responses and severity levels assigned.
You can use either the RESPONSE procedure or
the CHGMSGD command to change these values.
For your application’s displayed messages, assign
your own default responses and severity levels.

The RESPONSE procedure (also called automatic
response function) allows the N option so you can
set the current response back to its initial value.
This option can be used for either IBM-supplied
messages, or your messages, but you should be
aware that on System/36, N is ignored for your
application messages.

When you use the RESPONSE procedure to
define or change a default response for a
message, you specify:

� The MIC of the message to be responded
to. If the message is one of your own appli-
cation messages, you must specify the
message member (message file) containing
the messages. If the message is an
IBM-supplied message, the system automat-
ically determines the message file.

� The response to use. The default response
you choose is valid only if the message allows
that response when it is sent. For example, a
message is sent allowing options 2 and 3. A

default response of 1 is not valid and results
in requiring the operator to respond. You
cannot specify the H (Help) option as a default
response.

� The severity level for the response. See
“Severity Levels.”

Default Response Process

When you create or change the default response
for a message, the following actions take place:

� Initial default responses. The message is
checked to determine if it already has an initial
response value. If not, the value you set will
become the initial default response. Later, if
this value is changed, you can set it back to
this initial response value by specifying a
response of N.

� Default responses and subsequent
changes to default response. For AS/400
message files, a special message description
is created when an initial response is first
changed. The description retains the initial
default response. The message identifier is
the same identifier as the message except
that the third character of the identifier is
replaced by a 0. For example, if the message
is USR5412, the initial default response is
stored in message US05412. You can display
or change this initial default response
message using the CHGMSGD CL command.
When you delete a message containing the
initial default response (such as US05412),
the current response (in USR5412) becomes
the initial default response. When you use the
response procedure and the message file con-
tains DBCS and non-DBCS messages, the
initial response value saved in the special
description is the response value of the
non-DBCS message. Changing the response
value updates both message descriptions.

 Severity Levels

When you assign a default response to your mes-
sages, you must also specify a severity level. The
system uses these severity levels to determine if
messages are to be automatically responded to.
For example, you can allow a default response for
messages with a severity of 3 or lower, but require
a manual response for messages with severity of
4 and 5.

 Chapter 15. Messages and Message Members 15-5

On System/36 and in the System/36 environment,
severities range from 0 to 5. The following list
suggests severity levels for different categories of
messages. IBM uses these severity levels for
system messages.

When assigning default response for System/36
messages, use the following information as a
guideline:

Severity
Level Explanation
0 No severity level.
1 Informational messages that require a

response (option 0 only).
2 Messages with one option, such as a

warning message. Messages with two
or more options in which one of the
options is to try the function again.

3 Program error messages. These mes-
sages usually have more than one
option for the operator to choose.

4 Messages for severe errors, such as
device errors or permanent input/output
errors.

5 No default response can be defined for
the message (requires operator inter-
vention).

How to Assign Severity Levels: When
you use the AS/400 Create System/36 Message
File (CRTS36MSGF) command to create a
message file, the severity level default is 0. For
System/36 messages, use the following operation
control language (OCL) statements to assign
severity level:

// NOHALT 2,JOB
// MEMBER USER1-MSGDISP,LIBRARY-INVLIB
// LOAD INVPROG,INVLIB
// RUN

The NOHALT OCL statement specifies a severity
level of 2 for the job. The MEMBER OCL state-
ment specifies the message member to use
(MSGDISP) and the library containing the member
(INVLIB). If the program (INVPROG) displays a
message with a default response that matches
one of the displayed options, and if the severity
level of that message is 1 or 2, the system auto-
matically responds to the message.

Note: In this example, any system message with
a severity level of 1 or 2 also receives the default
response.

See the System/36 Environment Reference book
for complete information about using the
RESPONSE procedure to assign default
responses and severity levels, and about using
the NOHALT procedure or (OCL) statements to
specify a severity level for a job, a session, or the
system.

Mapping Severity Codes from the
System/36 Environment to the AS/400
System: The severity code is a number that
indicates how important a message is. The higher
the number, the more serious the condition.
When severities are mapped from the System/36
environment to the AS/400 system, they are
changed from 0 through 5 to 00 through 99. The
severity field in the message description is used to
keep the severity level. Severity 99 identifies
messages as requiring operator intervention. The
following table shows how System/36 environment
severity levels are mapped to AS/400 severity
levels:

Mapping Default Responses and
Severity Levels from the AS/400
System to the System/36
Environment: If a message has a default
reply that is not allowed by the System/36 environ-
ment (valid replies are 0, 1, 2, or 3), and this
message is issued through the System/36 environ-
ment, the System/36 environment will not auto-
matically respond to the message. Instead, the
System/36 environment displays the message and
waits for the user’s response to the message.

The OS/400 system supports 100 message
severity levels (0 through 99), and the System/36
environment supports six severity levels (0
through 5). The following table shows how
OS/400 message severity levels are mapped to
System/36 environment severity levels:

System/36 Environment AS/400 System

0 00
1 10
2 20
3 30
4 40
5 99

15-6 OS/400 System/36 Environment Programming V3R6

Considerations for Default
Responses to Messages

Consider the following factors when using default
responses:

� The message and the default response of the
system are written to the job log. The
message is not displayed at the display
station.

� Do not create a default response to system
messages indicating that the system is trying
an operation again. For example, if invalid
data is found on a diskette, a user can select
an option to try reading the diskette again. If
you specify the retry option as a default
response, the system repeatedly tries to read
the diskette, without giving the user a chance
to stop.

� Use caution when creating a default response
to error messages that are informational (such
as a PAUSE message). If you want an oper-
ator to see the message, the message should
require a response.

� Do not create a default response to messages
that require the user to do something before
responding to the message. For example, if
you specify a default response to the
message that indicates that the forms are to
be aligned, the user does not have an oppor-
tunity to align the forms.

� Do not create a default response to messages
that indicate serious problems with the
system, such as device errors and messages
indicating that a service representative should
be called.

The System/36 Environment Reference book lists
additional considerations for using the
RESPONSE procedure to set up default
responses.

Displaying Response Messages

Work stations display System/36 environment
messages on the System/36 Program Messages
display. The following shows the format of the
System/36 Program Messages display, with three
information messages followed by an error
response:

à@ ð
S/36 Program Messages

 HELP CATALOG
 CATALOG ALL,F2,,,NAME

CATALOG procedure is running

 SYS169ð Options (3H)
Unit parameter must be F1, I1, T1, T2, TC or null.

 _

á ñ

You can respond on this display, or request addi-
tional message information by pressing the Enter
key or the Help key.

AS/400 Message Help: The AS/400 system
handles response messages much like System/36.
The AS/400 system supplies help information
message text (second-level text) for OS/400 and
System/36 environment messages. The message
help displayed in the System/36 environment, is
formatted similarly to the System/36 message
help. The following display is an example of a
System/36 environment Message Help display:

à@ ð
Additional Message Information

 SYS169ð Options (3H)
 Unit parameter must be F1, I1, T1, T2, TC or null.

 Cause : An incorrect unit parameter was specified in the
CATALOG procedure statement. Enter option 3 and give the programmer the

 message ID(SYS--169ð).
 Possible choices for replying to message :

3 -- The job is canceled. Data created by previous steps in this job
is saved, but data created by this step is lost.

D -- This option is available whenever option 3 appears on the display;
however, option D never appears on the display. When you enter option
D, a Job Process Dump will be taken. The system actions described for
option 3 occur.

H -- This option is available whenever option 3 appears on the display
and you are entering information from a Help prompt. When you enter

 More...

 The allowed options are listed in parentheses.
 Option : _

 F1ð=Display Job Log

á ñ

On the first Additional Message Information
display, the error message is repeated on lines 3

AS/400 System System/36 Environment

00 to 09 0
10 to 19 1
20 to 29 2
30 to 39 3
40 to 98 4
99 5

 Chapter 15. Messages and Message Members 15-7

and 4. Lines 6 through 18 contain the beginning
of message help text.

You can use F10 from the System/36 environment
Message Help display to view the job log for your
job. The job log is a list of procedures and com-
mands you have run along with any messages
issued by these procedures or commands. From
the Job Log display you can do the following:

� Press F10 to display low-level messages.
Low-level messages are normally used to
qualify other error messages.

� Position the cursor on a message and press
the Help key to display AS/400 message help
text.

� Press the Enter key to return to the System/36
environment Message Help display.

You can press the Page Down key from the
System/36 environment Additional Message Infor-
mation display to see the next page of message
help:

à@ ð
Additional Message Information

 SYS169ð Options (3H)

displayed again and the cursor is positioned at the field where the
error occurred. You can then correct the error and continue

 your job.

 Bottom
 The allowed options are listed in parentheses.
 Option : _

 F1ð=Display job Log

á ñ

To return to the first page of message help, press
the Page Up key.

After you respond to the message, the System/36
Program Messages display may appear again, but
the error message does not appear.

à@ ð
S/36 Program Messages

 HELP CATALOG
 CATALOG ALL,F2,,,NAME

CATALOG procedure is running

á ñ

Displaying Informational and
Prompting Messages

The following display shows an example of two
informational messages followed by a prompting
message, generated by a procedure named
TESTMSG:

à@ ð
S/36 Program Messages

TESTMSG
This is the first informational message
This is the second informational message
Enter required parameter to continue
-

á ñ

If the user enters ABCD in response to Enter
required parameter to continue, the system con-
tinues to run the procedure, and displays an addi-
tional informational message, as shown in the
following display:

à@ ð
S/36 Program Messages

TESTMSG
This is the first informational message
This is the second informational message
Enter required parameter to continue
 ABCD
This is the third informational message

á ñ

15-8 OS/400 System/36 Environment Programming V3R6

Note: When you respond to a prompting
message, the message and response are rolled
up the display along with the informational mes-
sages. Informational and response messages roll
off the top of the display. Error messages disap-
pear after a valid response has been entered.

Formatting Messages with
Control Characters

System and user messages are formatted through
control characters in the message description.
Use the ADDMSGD or CHGMSGD commands to
enter the format control characters in the help
information message text. See the CL Reference
book for information about these commands.

The format control characters are as follows:

&N &N, followed by one space, forces the text to
a new line. If the text is longer than one line,
the next lines are indented two characters
until the system finds another format char-
acter or the text ends.

&P &P, followed by one space, forces the text to
a new line indented by four characters. If the
text is longer than one line, the next lines are
only indented two characters until the system
finds another format character or the text
ends.

&B &B, followed by one space, forces the text to
a new line and indents it by two characters. If
the text is longer than one line, the next lines
are indented by two more characters until the
system finds another format character or the
text ends.

System Operator Displays

Operator intervention messages and messages
from noninteractive jobs in the System/36 environ-
ment are sent to the system operator message
queue (QSYSOPR).

User Authority to the System
Operator Message Queue

The system operator message queue (QSYSOPR)
is created on your system with public (*PUBLIC)
authority defined as *OPR, *READ, and *ADD.
Consider the following when changing the public
authority for the system operator message queue:

� Users must have at least *OPR and *ADD
authority to the message queue for their inter-
active and batch jobs to send messages to it.
Do not change *PUBLIC authority to anything
less than this.

� Users must have at least *OPR, *READ, and
*ADD authority to the message queue to read
and respond to messages on it.

See “Resource Security” on page 11-4 for more
information about securing resources.

Sending System/36 Environment
Messages

System/36 environment messages may be sent to
the system operator message queue (QSYSOPR).
See the CL Programming book for more informa-
tion on the system operator message queue.

Following are examples of displays with a
System/36 error message (message SYS1631) that
has been sent to the system operator and is
waiting for the operator to respond. The Work
with Messages display initially appears when the
Basic Assistance level is being used:

à@ ð
Work with Messages

 System: RCHSX33
 Messages in: QSYSOPR

Type options below, then press Enter.
4=Remove 5=Display details and reply

 Opt Message
Messages needing a reply

- SYS1631 Options (123)
Empty slot or picker failure during DELETE.

- Controller CTLð2 contact not successful. Probable remote station
problem. (C R)

Messages not needing a reply
- Subsystem QSNADS ended.
- Subsystem QSNADS ending in progress.
- Device DSP25 no longer communicating.
- Device DSP12 no longer communicating.
- Controller CTLð2 failed. Automatic recovery started.

 More...
F1=Help F3=Exit F5=Refresh F16=Remove messages not needing a reply
F17=Top F18=Bottom F24=More keys

á ñ

To view the Additional Message Information
display and reply to the message shown on the
Work with Messages display, type a 5 in the Opt
column and press the Enter key. The following

 Chapter 15. Messages and Message Members 15-9

display appears when the Basic Assistance level
is being used:

à@ ð
Additional Message Information

Message ID : SSPð337
Date sent : 11/14/91 Time sent : 14:29:14

Message : SYS1631 Options (123)
Empty slot or picker failure during DELETE.

Cause : You were running the DELETE procedure or the $DELET
utility to delete information from a diskette when one of the following

 conditions occurred:
-- The diskette drive was empty.
-- The diskette was not properly inserted into the diskette drive.
-- A hardware problem exists.

Recovery . . . : Do one of the following:
-- Enter option ð, and continue the operation with the next diskette slot

through the specified end location.
 More...
Type reply below, then press Enter.
Reply __

F1=Help F3=Exit F6=Print F9=Display message details F12=Cancel
F21=Select assistance level

á ñ

The Display Messages display initially appears
when the Intermediate Assistance level is being
used:

à@ ð
 Display Messages
 System: RCHSX33
Queue : QSYSOPR Program : \DSPMSG
Library . . . : QSYS Library . . . :

 Severity . . . : 9ð Delivery . . . : \HOLD

Type reply (if required), press Enter.
Writer ð55228/QSPLJOB/PRTð1 started.
Device PRTð2 no longer communicating.
Controller CTLð2 no longer communicating. Automatic recovery started.
Device DSP12 no longer communicating.
Device DSP25 no longer communicating.
Subsystem QSNADS ending in progress.
Subsystem QSNADS ended.
Controller CTLð2 contact not successful. Probable remote station
problem. (C R)
Reply . . . ___

SYS1631 Options (123)
Empty slot or picker failure during DELETE.
Reply . . . ___

 Bottom
F3=Exit F11=Remove a message F12=Cancel
F13=Remove all F16=Remove all except unanswered F24=More keys

á ñ

To view the Additional Message Information
display for this display, position the cursor at a
message and press the Help key. The following
display appears when the Intermediate Assistance
level is being used:

à@ ð
Additional Message Information

Message ID : SSPð337 Severity : 99
Message type : Inquiry
Date sent : 11/14/91 Time sent : 14:29:14

Message : SYS1631 Options (123)
Empty slot or picker failure during DELETE.

Cause : You were running the DELETE procedure or the $DELET
utility to delete information from a diskette when one of the following

 conditions occurred:
-- The diskette drive was empty.
-- The diskette was not properly inserted into the diskette drive.
-- A hardware problem exists.

 Recovery . . . : Do one of the following:
-- Enter option ð, and continue the operation with the next diskette slot

through the specified end location.
 More...
Type reply below, then press Enter.

 Reply __

F3=Exit F6=Print F9=Display message details F12=Cancel
F21=Select assistance level

á ñ

When you press F9 on either of the Additional
Message Information displays, the following
display appears, providing more information:

à@ ð
Display Message Details

Message ID : SSPð337 Severity : 99
Date sent : 11/14/91 Time sent : 14:29:14
Message type : Inquiry

 CCSID : 65535

From job : DSPð4
User : USER7
Number : ð1ð118

From program : QEXCLSG

To message queue : QSYSOPR
Library : QSYS

 Bottom
Press Enter to continue.

F1=Help F3=Exit F12=Cancel

á ñ

When you press F16 on either the Work with Mes-
sages display or the Display Messages display, all
messages on the message queue are removed
except unanswered inquiry messages. The dis-
plays appear again with the unanswered inquiry
messages.

When no unanswered messages are on the
message queue and you press F16, all messages
are removed and the displays appear with the
phrase No messages available.

When you press F13 (Remove all) on the Display
Messages display, the Display Messages display
appears again with the phrase No messages
available.

Embedding Messages: In the preceding
example, the message actually sent to the
QSYSOPR message queue is SSP0335 not the
SYS1631 message. This is because messages
sent to the system operator from the System/36
environment are sent as replacement text in other
messages in the QSSPMSG file. This concept is
called message embedding , and the messages
used are:

� SSP0303 and SSP0305 for informational mes-
sages

� SSP0311 through SSP0313 for prompting
messages

� SSP0335 through SSP0357 for error mes-
sages

Embedding of messages is done for special
response handling and verification. Reply list
entries for System/36 environment messages must

15-10 OS/400 System/36 Environment Programming V3R6

specify these special message identifiers as the
message being sent and use the System/36 envi-
ronment error message identifier (the first 7 bytes
of the message text) as the comparison data. For
example, if you want to automatically respond to
the message shown in the previous example with
a 3 response, enter following command to set up
the reply list:

ADDRPYLE SEQNBR(5ð) MSGID(SSPð335) CMPDTA(SYS1631 1) RPY(3)

The message sent to the system operator is
SSP0335, but the System/36 environment
message identifier is SYS1631. In this case
SEQNBR is set to 50. This is the relative position
of the entry in the reply list.

Notes:

1. The System/36 environment message identi-
fier is provided as the first 7 characters for
SSP0335-SSP0349. The text displayed on
the screen for SSP0311-SSP0313 starts in the
first character text position of the message
and can be used to define comparison values
for reply list entries for the prompting mes-
sages. If you send messages that are both
DBCS and non-DBCS from the same
message file, you may see both message
identifiers. For example, the double-byte
version of USR1234 is USZ1234.

2. IBM DBCS and non-DBCS messages are not
stored in the same message file, so the
message identifiers for IBM DBCS and
non-DBCS messages are both SYS1631.

3. Auto response for System/36 environment
messages is also valid for messages sent to
QSYSOPR. When the RESPONSE procedure
is used to set up auto response values, use
the original message identifier (for example,
SYS1631).

When System/36 environment messages are
embedded in other messages, the actual text of
the message is retrieved from the message file
before the message is sent. When the operator
displays the message, the System/36 environment
messages are displayed in the language of the
sender of the message and not the language of
the person requesting to display the messages.
Other AS/400 messages stored in message files
appear in the language of the user displaying the
system operator message queue.

See “System/36 Environment Double-Byte Char-
acter Support” on page 20-3 for more information
on DBCS messages.

Handling Defaults for System
Operator Messages

Defaults for messages SSP0335-SSP0349 are
preset to the highest possible response (to avoid
repeating retry requests). You may change this
setting as you feel appropriate, but they are reset
each time you install a new release. If you set the
value to an invalid response and the system oper-
ator message queue is in default mode, the
system still responds to the message, with the
highest response value.

 Sending Messages

The System/36 environment supports the MSG
operator control command, which allows you to
send a message to the operator, another user, a
work station, a personal computer location, or
through Systems Network Architecture Distribution
Services (SNADS) to a user or group of users in a
network. Also, if you specify the command with
no parameters, any waiting messages for you or
your work station appear. The system places
messages sent with this command in AS/400
message queues.

All AS/400 work stations and personal computer
locations have a message queue. All users have
a message queue defined in their user profile.
The System/36 environment sends user-directed
messages to the message queue associated with
the user’s profile. If the queue does not exist, the
system tells the sender why the message is not
delivered. For example, Message queue not
found.

When you ask to see waiting messages, the
System/36 environment uses AS/400 support to
display the user and work station message
queues.

 Message Handling
Considerations

If the message handler encounters an unexpected
error, it signals exceptions to its caller so that
messages may not be displayed. If it encounters
an input/output error, it makes two attempts to

 Chapter 15. Messages and Message Members 15-11

display the message. If the message still cannot
be displayed, the message handler closes the
System/36 environment system display files and
places an SSP0309 message in the job log. It
then goes to the end of the job. If the job con-
tinues and messages can again be displayed, any
prior informational messages and prompting mes-
sages that were on the display no longer appear.
For more information about the message handler,
see the CL Programming book.

Error Messages Not Displayed

In some situations, when you attempt to display
an error message, the message cannot be dis-
played. One of the following conditions occurs:

� Original message not found. If a requested
message cannot be found, the message iden-
tifier, name of the message file, and message
file library name are displayed. The message
not found implies that the library was not
found, the message file in the library was not
found, or the message ID was not found in the
message file. It is possible to request the
display of a user or product message before
specifying the user or message file on a
member statement. When this happens, the
message file name and message file library
name output is *N/*N.

� Not authorized to the message file. If you
do not have sufficient authority to read the
message from the message file, a message
appears that gives the message identifier and
the name of the message file that you are not
authorized to. A security officer or an author-
ized user must grant you the authority to
display the message. After you have been
authorized to the message file, you can use
the DSPMSGD CL command to display the
message.

� Message is not accessible. If an unex-
pected error occurs while attempting to obtain
the message, a message appears, stating that
the system encountered a problem while
attempting to display the message. This
message identifies the message file and the
message identifier. You can attempt to
display the message using AS/400 com-
mands.

To determine what the original error was:

– Request additional message text by
pressing the Enter key.

– Request to see the job log by pressing
F10.

– From the Display Job Log display, page
until you see the message that appeared
on your display.

The messages immediately preceding this
message identify the original cause of the
access error.

� The message text does not appear (only
the identifier and message file name
appear on display). If an error occurs and
the IBM supplied message for the error condi-
tion cannot be found, or there is an authori-
zation or access problem, you will see only
the message identifier and message file name
and library name on the screen for the
message text. The message line that
normally identifies the options will not display
the word Options or the parentheses. The
option values and the message identifier are
displayed.

Problems with the Operator
Messages

When a message is sent to the System Operator
message queue (QSYSOPR), it is possible that
the System/36 environment message cannot be
located or accessed. When this condition occurs,
an AS/400 message is sent to the System Oper-
ator message queue, which explains that the
message could not be used to display the
message. The embedded System/36 environment
message does not appear.

To see the System/36 environment message and
your reply options, you must first determine the
identity of the job that sent the message. If you
are using the Basic Assistance level, type a 5 in
the Opt column for the message on the Work with
Messages display and press the Enter key. The
Additional Message Information display appears.
If you are using the Intermediate Assistance level,
position the cursor on the message located on the
Display Messages display and press the Help key.
The Additional Message Information display
appears. Press F11 to display message details
and copy the job, user, and number from the
Display Message Details display.

15-12 OS/400 System/36 Environment Programming V3R6

Use the job, user, and number with the
DSPJOBLOG CL command to display the job log
of the job which sent the message to the System
Operator message queue. The error message
you are looking for should be near the end of this
job log. It will have an Options line followed by
the text of the message, but it will not show a
response. Immediately following this error
message will be the AS/400 message that
appeared in the System Operator message queue.

Console (System) Operator
Messages

System/36 messages are sent to the console, a
subconsole, or a work station. In the System/36
environment, the concept of a console has been
replaced with the QSYSOPR message queue.
There is no direct support for subconsoles. The
System/36 environment uses message queues
associated with each printer instead of subcon-
soles.

See Chapter 2, “Operating in the System/36
Environment,” for more information.

Automatic Reply Handling When
QSYSOPR Is in Default Mode

On the AS/400 system, you can place the oper-
ator queue in default mode (*DFT). In default
mode, all messages sent to the operator receive
an automatic response, even if no valid response
exists for the message. When no valid response
exists, the AS/400 system returns *N to the
requesting program. For System/36, the special
set of operator messages (SSP0335-SSP0349)
used for sending error messages has the highest
response allowed as the default reply values for
that message. Even if the response is deleted
from these messages, the System/36 environment
handles *N as though these replies were still
defined in the message. If the deletion of the
response is not acceptable, use one of the fol-
lowing options:

� Do not set the operator queue in default mode
(this is the safest option).

� Change the replies on these messages.
� Ensure that default responses are defined for

any critical message.
� Use the AS/400 message reply list function.

 Dual-Routed Messages

The System/36 environment uses AS/400 support
for dual routing of messages. When an inquiry
message is sent to a message queue from an
interactive or multiple requester terminal (MRT)
job, a notification message is sent to the requester
(and all MRT displays for MRT jobs). This notifi-
cation tells you that your job is waiting on a
message and tells you the queue to which the
inquiry message has been sent.

The messages display may be automatically pre-
sented, or the waiting light and audible alarm may
be activated to prompt you to display your device
message queue. By placing the cursor on the
notification message and pressing the Help key,
the Additional Message Information display
appears. This display contains the actual text of
the inquiry message.

You may also choose to respond to the inquiry
message. By displaying the notification message,
you can determine which queue the inquiry
message was sent. Press the System Request
key and enter a 4 followed by a space and the
queue name. The requested message queue is
displayed and you can respond to the message.

Enhancements and Restrictions

The following sections describe some enhance-
ments and restrictions regarding message han-
dling.

User, Device and Operator Message Enhance-
ments: On System/36, user and device mes-
sages sent to the message file and operator were
limited to no more than 25 messages. This
restriction no longer applies. In the System/36
environment you also have the option of holding
messages (this is the default). Paging a message
off the screen no longer automatically deletes it.

Because the System/36 environment uses AS/400
message queues, you can also use AS/400
message commands to send messages to a user
or device queue.

You do not have to wait until the end of a job to
see messages that have been sent, or interrupt
the job to display messages that have been sent.
Use the AS/400 CHGMSGQ CL command to
place the message queue in break mode. When

 Chapter 15. Messages and Message Members 15-13

a message of correct severity is sent, the
message is automatically displayed.

User, Device, and Operator Message
Restrictions: This section discusses the
restrictions on user, device, and operator mes-
sages.

Message Notification
If you sign on the system twice, the user
queue is placed in notify mode for the first
sign-on only. A queue can be in notify mode
in only one job at a time.

Although a message queue is in notify mode,
you may not always be notified when a
message arrives on the queue because the
queue has a severity threshold. You are noti-
fied only for messages that exceed the
threshold. AS/400 commands control the
threshold values. See the description of the
CHGMSGD and CHGMSGQ CL commands in
the CL Reference book for more information.

External Message Queue
If you are in the System/36 environment, you
may see a new display: the AS/400 Display
Program Message display. Every job has an
external message queue. When it is used to
output a message it interrupts any other
display. Messages may or may not require a
response. For example, run-time messages
sent from RPG III appear on this display.
Corresponding RPG II messages are pre-
sented on the System/36 Program Messages
display, so recompiling an RPG II module to
RPG III can change the display used to
display messages.

 Programming Guidelines

This section describes how you can create,
change, and use message members (AS/400
message files).

Creating or Changing Message
Source Members

Use the programming development manager
(PDM) or source entry utility (SEU) to create the
new source members.

If you want to change or add messages:

1. Use PDM to change the message source
member.

2. Use the CREATE procedure or the Create
System/36 Message File (CRTS36MSGF) CL
command to create or replace a message file.

Note: To update a message file, use either the
Create Message File (CRTMSGF), Add Message
Description (ADDMSGD), or Change Message
Description (CHGMSGD) CL commands. See the
CL Reference book for more information on these
commands.

Assigning Default Responses
and Severity Levels

To assign default responses to messages in a
message file, use the System/36 environment
RESPONSE procedure (use PDM to create
response source member).

Figure 15-1 shows a message member and
Figure 15-2 shows its corresponding response
source member for a sample application. The
library INVLIB contains the message member
MSGDISP. The response source member speci-
fies default responses for two messages, MIC
0001 and MIC 0002, and it specifies that the MICs
are in message member MSGDISP in library
INVLIB.

MSGDISP,1
0001 Parameter 3 must be SALES or CREDIT
0002 File INVMST is not on the disk

RSLW072-0

Figure 15-1. Message Member MSGDISP

USER,MSGDISP,INVLIB
0001 3,3 Parameter 3 error
0002 3,3 File not found error

MIC

Response
Value

Severity Level

RSLW067-2

Comment

Figure 15-2. Response Source Member for MSGDISP

After the response source member is created, use
the RESPONSE procedure to assign the default
responses and severity levels to the message
member. You must run the NOHALT procedure
or OCL before the RESPONSE procedure is effec-
tive.

15-14 OS/400 System/36 Environment Programming V3R6

If you want to change a response or severity level:

� Use PDM or SEU to change the response
source member.

� Use the RESPONSE procedure to assign the
new values.

Notes:

1. If you recompile the message source member
(by using the CREATE procedure or
CRTS36MSG CL command), the default
responses no longer apply. You must run the
RESPONSE procedure again to set the
default responses and severity levels.

2. You can also use the Change Message
Description (CHGMSGD) CL command to
assign default responses for messages. See
the CL Reference book for more information
on the CHGMSGD CL command.

Specifying a Message Member to
Be Used within a Procedure

The MEMBER OCL statement assigns message
members to a job. The messages in the assigned
member can be used in the procedure, by pro-
grams run by the procedure, and by display
formats. For example, to assign message
member DISPMSG from library INVLIB to the
program PROG1, enter:

// MEMBER USER1-DISPMSG,LIBRARY-INVLIB
// LOAD PROG1
// RUN

Message Member and Message
File Considerations

Consider the following points when using message
members and files in the System/36 environment:

� The text for a message will be retrieved from
a message file (message member). The
message file can be specified in several ways
depending on how the message is to be dis-
played or retrieved:

– If the message is to be retrieved by a
program, it will always be retrieved from
the USER1 message member. The
message file name must be specified on a
MEMBER OCL statement on the USER1
parameter.

– If the message is to be displayed using a
display file and the display file was
created using SFGR specifications, the
message member is specified when the
display file is defined or passed to the
display file by a program or a PROMPT
OCL statement. The values that can be
specified or passed are:

U1 User-1 message member

U2 User-2 message member

P1 Program-1 message member

P2 Program-2 message member

M1 SSP level-1 message member
(##MSG1)

M2 SSP level-2 message member
(##MSG1)

– If the message is to be displayed using a
display file and the display file was
created using Data Definition Specifica-
tions (DDS), the message member is
specified when the display file is defined
or passed to the display file by a program
or a PROMPT OCL statement. The
values that can be specified or passed
are:

U1 User-1 message member

U2 User-2 message member

P1 Program-1 message member

P2 Program-2 message member

M1 SSP level-1 message member
(##MSG1)

M2 SSP level-2 message member
(##MSG1)

*USR1 User-1 message member

*USR2 User-2 message member

*PGM1 Program-1 message member

*PGM2 Program-2 message member

*SYS1 SSP level-1 message member
(##MSG1)

*SYS2 SSP level-2 message member
(##MSG1)

– If a PROMPT OCL statement is used to
display the display file, the message file
name must be specified in a MEMBER
OCL statement on one of the following

 Chapter 15. Messages and Message Members 15-15

parameters: USER1, USER2,
PROGRAM1, or PROGRAM2.

– If a program is used to display the display
file, and the program was given control
with the // LOAD OCL statement, the
message file name must be specified on a
MEMBER OCL statement on one of the
following parameters: USER1, USER2,
PROGRAM1, or PROGRAM2.

– If a program is used to display the display
file, and the program was given control
with a CALL CL command, the message
file name and library must be specified on
an Override Message File (OVRMSGF)
command. The message file being over-
ridden must be: USR1, USR2, PGM1,
PGM2, SYS1, or SYS2.

� IBM system message and second-level text
message members are contained in a single
AS/400 message file.

� You can define first and second level text for
your messages as separate AS/400 message
files. If you decide to merge the members
into a single message file, update the
MEMBER OCL statement accordingly.

� IBM system message members containing
DBCS messages have been split into DBCS
and non-DBCS versions of the message file
(placed in different libraries).

� You can split message members (containing
DBCS messages) into DBCS and non-DBCS
versions of the message file (placed in dif-
ferent libraries), or have DBCS and non-DBCS
messages in the same files.

� When you use the CREATE procedure to add
a message to an AS/400 message file (a
System/36 message member), the AS/400
message ID prefix uses the USR default
value. For example, a MIC of 0123 becomes
message ID USR0123.

Note: You can successfully specify a dif-
ferent set of 3 characters for the message ID
prefix if all messages in the message file have
the same prefix.

� If you add DBCS messages to an AS/400
message file, the third character of the AS/400
message ID must be changed to a Z. For
example, a MIC of 0123 becomes the AS/400
message ID USZ0123.

� When you are using a DBCS-capable display
station and a user MIC of 0123 is being dis-
played during a DBCS session, the system
uses the message ID USZ0123 to try to
retrieve the text. If it does not find this
message ID, the system tries again using
message ID USR0123.

� When the device is neither DBCS-capable nor
a DBCS session, and a user MIC of 0123 is
being displayed, the system does not alter the
message ID prefix when retrieving the
message text (USR0123 is the only message
for which the system searches).

� See Chapter 20, “System/36 Environment
National Language Support,” for information
on national language support for messages.

Displaying Messages from
Procedures

You can use procedure control expressions and
procedures to display messages from procedures.

// * (Informational Message) Statement: The
informational message statement displays a
message from a procedure to the operator running
the procedure. For example, the following state-
ment:

// \ 'Enter today''s date:'

displays the message:

Enter today's date:

// ** (Console Message) Statement: The
console message statement sends a message
from a procedure to the QSYSOPR message
queue. For example, the following statement:

// \\ 'Procedure PROC1 is running'

displays the message:

Procedure PROC1 is running

Displaying Your Messages in the Same
Format as System Messages: The ERR
procedure displays your error messages in the
same format as system-displayed messages. For
example, if message 0001 in message member
DISPMSG in library INVLIB is Parameter 3 is
invalid, and the following statements are issued:

15-16 OS/400 System/36 Environment Programming V3R6

// MEMBER USER1-DISPMSG,LIBRARY-INVLIB
ERR ððð1,ð123

the ERR procedure displays the following
message:

USRððð1 (ð123)
Parameter 3 is invalid

For options 0, 1, and 2, the system sets a return
code that you can test using the ?CD? substitution
expression. For option 3, the job is immediately
canceled. The System/36 Environment Reference
book describes the ?CD? substitution expressions.

Checking Entries for Required
Parameters

The ?nR'mic'? substitution expression displays a
message when the nth parameter does not have a
value. Use this expression when you are
checking the parameters of a procedure to make
sure that the operator has entered a required
parameter. In the following example, the EVAL-
UATE statement processes the substitution
expression:

// MEMBER USER1-DISPMSG,LIBRARY-INVLIB
// EVALUATE ?1R'ððð4'?
...

If the first parameter was not entered when the
operator started the procedure, message 0004
from message member DISPMSG would appear.

The operator receives a prompt to enter the
parameter.

Using Messages with Programs

User-written programs can issue System/36 envi-
ronment messages. The text for the message can
be defined in the program or in a message
member. See the correct language manual for
more information.

Using Messages with Displays

User display formats can display System/36 envi-
ronment error messages. The text for the
message can be defined in a program, procedure,
or message member. See “Displays” on
page 14-10 for more information.

Moving from System/36 to the
System/36 Environment

If you have only a System/36 message load
member, you can use the MSG2SRC migration
tool to create message source files on System/36.
The MSG2SRC tool converts message load
members in a library back to a source members.
The source member can then be migrated to the
System/36 environment on the AS/400 system.
For more information, see the System/36
Migration Assistant book.

 Chapter 15. Messages and Message Members 15-17

15-18 OS/400 System/36 Environment Programming V3R6

Chapter 16. Programs and Procedures

This chapter describes the types of programs and
procedures you can design in the System/36 envi-
ronment.

Designing Programs and
Procedures

The types of programs and procedures you design
depend on the following factors:

� Structure of the application
� Use of the program
� Number of users
� Numbers and types of displays required
� Backup and recovery methods
� Type of job to run

In the System/36 environment, there are special
considerations that affect how you apply these
factors and design programs and procedures.

 Programs

This section describes the types of programs you
can design, the reasons for choosing each type,
and suggestions for designing applications.

Batch and Interactive Programs

A batch program processes records without oper-
ator interaction. A batch program processes a
group of related transactions that have accumu-
lated over a given period of time. For example, a
batch program is one that prints invoices at the
end of the day, rather than when the order is
entered.

An interactive program is one that receives
requests from one or more display stations or ICF
sessions and may respond to each request as it is
received. The program processes individual
records or transactions at the time the request is
received, rather than processing requests that
accumulate over a period of time. An example of

an interactive program is one that processes
orders and prints an invoice at the time each order
is entered.

Interactive programs use a display file to commu-
nicate with a user or an ICF file to communicate
with a remote system. A display station file or ICF
file is called different names in each programming
language. For example:

For more information on using a display file or ICF
file with a particular programming language, refer
to an appropriate language reference or user
guide. For more information on ICF, refer to
Chapter 13, “Communications.”

Most applications include both interactive and
batch programs. The following list shows typical
uses of interactive and batch programs for order
entry, accounts receivable, and inventory control
applications:

Order Entry
Applications Program Type
Order entry Interactive
Open order inquiry Interactive
Inventory allocation Interactive or batch
Print invoices Interactive or batch

Accounts Receivable
Applications Program Type
Cash receipts Interactive
Account status inquiry Interactive
Open items Interactive or batch
Monthly statements Batch

Inventory Control
Applications Program Type
Receipts/adjustments Interactive
Status inquiry Interactive
Vendor code changes Interactive or batch
Parts requisition Batch

Programming Language Display File or ICF File

COBOL 74 TRANSACTION file

System/36-Compatible
RPG II

WORKSTN file

 Copyright IBM Corp. 1995 16-1

 Program Characteristics

When you use interactive programs, the size of
the program, the number of non-requesting users
that can communicate with the program (acquired
display stations or ICF session), and the number
of users that can request the program (requesters)
affect your program and application design.

Number of Users: Programs can communi-
cate with any number of display station users,
requesters, acquired display stations or ICF ses-
sions. An acquired display station or ICF session
cannot call the program.

In System/36-Compatible RPG II, you can limit the
number of users to one by specifying a value of 1
for the NUM continuation-line option on the
WORKSTN file description specification. In other
programming languages, you cannot limit the
number of users.

The system supports the following types of pro-
grams that restrict the number of users:

 � One-user programs
 � Multiple-user programs
 � No-user programs

One-User Programs: A one-user program is an
interactive program that communicates with only
one user at a time. A one-user program has a
display file that is limited to one display station or
an ICF file for a single ICF session.

When a one-user program is a SRT program, the
requester is the only display station or ICF session
with which the program can communicate.

Multiple-User Programs: A multiple-user
program is an interactive program that can com-
municate with more than one user at a time. A
multiple-user program, like a one-user program,
may have a display station file or an ICF file or
both. However, the display station file and ICF file
for a multiple-user program allow two or more
users. Those users can be requesting display
stations, ICF sessions, acquired display stations,
or acquired ICF sessions.

No-User Programs: A no-user program is a
batch program because it does not have a display
file or ICF file. An example of a no-user program
is a program that prints a disk file.

You also can specify the number of devices
attached to display files.

MAXDEV Value: The MAXDEV value for display
files specifies the maximum number of devices
that can be attached to a particular display file.
MAXDEV applies only to display files. ICF files
have a corresponding MAXPGMDEV parameter.

Use the Change Display File (CHGDSPF) CL
command to change the MAXDEV value of a
display file. Use the Change ICF (CHGICFF) CL
command to change the value for an ICF file.

 Program Types

Program type is determined by the number of
users who can request a program. Users who call
the program are called requesters . Users who
are acquired by the program are called acquired
display stations or acquired ICF sessions .

The number of requesters affects the application
design because it affects the operation control lan-
guage (OCL) statements and procedures you use
to call the programs in the application. If a
program has more than one requester, you must
use a MRT procedure to call that program. The
system supports the following types of programs:

 � SRT programs
 � MRT programs
� Nonrequester terminal (NRT) programs

Single Requester Terminal Programs:
A single requester terminal (SRT) program is a
program that can process requests from only one
display station or ICF session from each copy of
the program. A SRT program can interact with
only one requesting user. If multiple users
request the same SRT program, the system uses
the same copy of the program for all users but
creates a separate area for variables used by the
program for each user.

Specifying a SRT Program: A program not
called as a NRT program, or specified as a MRT
program, is a SRT program. No coding is
required to specify that a program is a SRT.

Difference between a SRT Program and a One-
User Program: In a SRT program, the user is
always a requester. In a one-user program, the

16-2 OS/400 System/36 Environment Programming V3R6

user can be a requester, an acquired display
station, or an acquired ICF session. A one-user
program is usually a SRT program, but it could be
a NRT program with one acquired display station
or ICF session.

Multiple Requester Terminal
Programs: A MRT program is an interactive
program that processes requests from more than
one user at the same time. Similar to SRT pro-
grams, in a MRT program all users share the
same copy of the MRT program. The MRT
program is assigned an area of storage to hold
variables for each of the display stations the MRT
program communicates with. A MRT program
uses a display station file or an ICF file.

Difference between MRT and Multiple-User
Programs: The difference between a MRT
program and a multiple-user program lies in
whether the users are requesters or are acquired.

A MRT program can have as many users as per-
mitted by the display station file definition, the ICF
file definition, the MRTMAX value for the program,
and the NUM continuation-line option in RPG II
WORKSTN file definitions.

A multiple-user program that is not a MRT can
also have any number of users. However, no
more than one of those users can be a requester.
The other users must be acquired.

Specifying a MRT Program: Both the program
and the procedure that calls the program must be
specified as MRTs. You specify the program as a
MRT by assigning a MRTMAX value when the
program is compiled. You specify the procedure
as a MRT using the Edit System/36 Procedure
Attributes (EDTS36PRCA) or Change System/36
Procedure Attribute (CHGS36PRCA) control lan-
guage (CL) commands, or the MRT parameter of
the $MAINT utility program. For information about
MRT procedures, refer to “Procedures” on
page 16-21.

MRTMAX Value: Use the MRTMAX value to
specify the maximum number of requesters that
can be active at once for a MRT program. When
the number of requesters equals the MRTMAX
value, a subsequent requester must wait until a
current requester is finished using the program.

You can decrease the MRTMAX value when you
run the program using the following:

� The Change System/36 Program Attributes
(CHGS36PGMA) command

� The Edit System/36 Program Attributes
(EDTS36PGMA) command

� The Work with System/36 Program Attributes
(WRKS36PGMA) command

� The ATTR OCL statement

Recompile the program to increase the MRTMAX
value.

A program must be able to handle any number of
requesters, up to the MRTMAX value specified by
the programmer.

Notes:

1. The MAXDEV attribute of a display file used
by a MRT program must be set to the
maximum number of display stations that are
used by the MRT program. See the Create
System/36 Display File (CRTS36DSPF),
Change System/36 Source Attributes
(CHGS36SRCA), and Change Display File
(CHGDSPF) CL commands for additional
information.

2. The MAXPGMDEV attribute of an ICF file
used by a MRT program must be set to the
maximum number of ICF sessions used by
the MRT program. See the Create ICF File
(CRTICFF) and Change ICF File (CHGICFF)
CL commands in the CL Reference book for
additional information.

NUM Value: The NUM value specifies the sum
of the MRTMAX value plus the number of
acquired display stations that can communicate
with an RPG program. A System/36-Compatible
RPG II programmer can control the number of
users and requesters. For example, if a NUM
value of 3 is specified, and the program has two
requesters, no more than one display station can
be acquired.

The NUM value is defined on the continuation line
for the WORKSTN file on an RPG file description
specification. In other programming languages,
you must code the logic in your source program if
you want to check the number of users.

 Chapter 16. Programs and Procedures 16-3

Nonrequester Terminal Programs: A
nonrequesting terminal (NRT) program in the
System/36 environment, is a program that is not
associated with a requesting display station. A
NRT program has no requesters. A program
becomes an NRT program when the requester
purposely separates the program from the display
station using a command or OCL statement. For
example, if an EVOKE OCL statement calls a
program, the system immediately separates the
program from the requester. The user is free to
do other work, and the program has no
requesters.

A NRT program can also be a program that speci-
fied // ATTR RELEASE-YES before a // LOAD-//RUN
pair. This job step is now a NRT and is released
from a procedure.

Comparison of Program Types

The following table compares the characteristics of
six types of programs:

Summary Table of Users and
Requesters

The following table lists the program types you
would use based on the combinations of
requesters, acquired display stations, and
acquired ICF sessions:

Number
of Users

Number of
Requesters

Type of
Program Description

1 1 SRT Most common situ-
ation.

1 1 MRT MRTMAX = 1. No
acquired display
stations or ICF ses-
sions.

1 0 NRT Can acquire one
display station or ICF
session.

More
than
1

1 SRT In
System/36-Compatible
RPG II, can acquire
up to NUM − 1 display
station or ICF session.
In other languages,
can acquire any
number of display
stations or ICF ses-
sions.

Type of Program Characteristics

One-user program Designed to use only one display
station or ICF session, which can be a
requester or acquired. Can be a SRT,
NRT, or MRT (MRTMAX = 1).

More
than
1

More
than
1

MRT In
System/36-Compatible
RPG II, requesters +
acquired display
stations or ICF ses-
sions ≤ NUM. In
other languages, the
total can be any
number. Common
MRT situation.

Single requester
terminal program

When you do not specify program
type, a program is a SRT. Can be a
one-user program, a no-user program,
or a multiple-user program.

Multiple user
program

Users can be any combination of
requesters, acquired display stations,
or acquired ICF sessions. Can be a
NRT, SRT, or MRT.

More
than
1

0 NRT In
System/36-Compatible
RPG II, can acquire
up to NUM display
stations or ICF ses-
sions. In other lan-
guages, can acquire
any number.

Multiple requester
terminal program

Typically designed to communicate
with more than one user at the same
time (MRTMAX = 2 or more), but can
be restricted to one user (MRTMAX =
1).

No-user program Has no users and cannot acquire any.
Can have a requester but cannot com-
municate with it. Can be a NRT or a
SRT.

0 0 SRT Common situation for
batch programs.
Cannot communicate
with users.

Nonrequester ter-
minal program

Has no requesters but can acquire any
number of users. Can be a one-user,
multiple-user, or no-user program. 0 0 MRT Meaningless combina-

tion.

0 0 NRT Cannot communicate
with users.

16-4 OS/400 System/36 Environment Programming V3R6

 Designing Applications

The following sections present information to help
you select the correct program types.

Differences between Batch and Interac-
tive Programs: With interactive programs
you can produce immediate results, but it is diffi-
cult to determine whether the last transaction
update actually occurred for each user. For
example, you may want to update your inventory
file as orders are entered. However, this interac-
tive updating makes it difficult to recover an inven-
tory master file if the system ends prematurely. If
you used a batch program to update your files,
recovery is easier. A batch program does not
normally share files, so you know whether the last
update was made.

Application Structure: On the AS/400
system, when a program is running, one copy of
the program is kept in main storage. Each call of
the program is allocated a separate area, which
contains variables used by the program. The
program and variables are divided into storage
units called pages . When references are made to
the pages of a program, the pages used by the
program are copied from disk to main storage.
When the pages in main storage are needed for
another function, the pages of variables are
copied from main storage to disk. The pages of a
program are not copied from main storage to disk
because the copy of the program on disk is the
same as the copy of the program in main storage,
and the pages containing the variables are kept
separate from the program instructions.

When deciding if you should write a single large
program or many small programs, consider the fol-
lowing factors:

� A small program is easier to design and main-
tain than a large program.

� A small program compiles faster than a large
program.

� A significant amount of system overhead is
used to end one program and load a different
program using the / / LOAD and / / RUN OCL
statements. The more programs called, the
larger the system overhead to start and end
the programs.

When deciding if you should write a program that
processes one display or processes many display
stations, consider the following:

� If a program processes many display stations
or ICF sessions, the program can only
process requests from one display station at a
time. If a request is made from a display
station when the program is already pro-
cessing a request, the first request must be
completed by the program before the second
request can be started. This requirement may
affect the response time of the requests. The
response time will tend to increase as the
number of display stations or ICF sessions
processed by the program increases.

� If a program processes only one display
station or ICF session and the program is
running from multiple jobs, delays may occur if
both programs need to allocate the same
resources and the program cannot share the
resources. For example, if the program
requires exclusive use of a file, the second
call of the program must wait until the first call
is done with the file.

Differences between SRT and MRT
Programs: SRT programs are easier to write
and maintain than MRT programs. If multiple SRT
programs result in a considerable contention for
resources, the application should be written as a
single MRT program.

If you can write your MRT program as a never-
ending program (NEP), there is much less
system overhead when a display station or ICF
session is attached to an already-running MRT
program than when a new program is started. A
MRT program that is a NEP program will usually
perform better than multiple SRT programs or a
MRT program that is not a NEP program.

Differences between Requesters and
Acquired Display Stations: If you decide
that more than one user should be able to interact
with the program, you must also decide how many
users can request the program. Normally, all
users are requesters. However, acquiring display
stations is sometimes an advantage because
acquiring them allows the application to control
where its users are.

 Chapter 16. Programs and Procedures 16-5

Program Attributes: A program can have
the following user-assigned attributes:

 � Never-ending
 � Inquiry
 � MRTMAX

Never-Ending Programs (NEP): When a MRT
program is a NEP, it is called a MRT-NEP. A
MRT-NEP is not instructed to go to the end of the
program when the last device is released. The
NEP is expected to run for a long time and does
not know when it temporarily has no requesters.

Because the NEP attribute keeps a MRT program
from ending, the MRT starts and ends only once,
rather than each time someone requests the MRT
program. If your MRT application does not have a
requirement preventing it from being a NEP
program, specify NEP to reduce the demands on
the system. You can use the ATTR OCL state-
ment to override the NEP attribute of a program.

When a MRT program is not a NEP and releases
its last attached device, the system checks the
MRTDLY attribute of the MRT procedure to deter-
mine whether the MRT should end immediately or
delay ending for a short period of time in case a
new requester attaches to the MRT.

To end a NEP program you can use the End Job
(ENDJOB) or the End Subsystem (ENDSBS) CL
commands.

If the MRTDLY attribute indicates that the MRT
should delay ending, the MRT waits for the
number of seconds specified for the System/36
environment before issuing a return code
instructing the program to go to the end of the
program.

If the MRTDLY attribute indicates that the MRT
should not delay ending, the program immediately
receives a return code instructing it to go to the
end of the program. When the program ends, the
MRT is no longer an active MRT. If another
device requests the MRT, a new MRT is started.

You can change the attributes of the MRT proce-
dure by using the Change System/36 Procedure
Attributes (CHGS36PRCA) command, the Edit
System/36 Procedure Attributes (EDTS36PRCA)
command, or the Work with System/36 Procedure

Attributes (WRKS36PRCA) command. The attri-
butes of the MRT procedure can be displayed with
the EDTS36PRCA or WRKS36PRCA commands.
You can display the number of seconds that the
MRT waits before ending by using the Display
System/36 (DSPS36) command, and change it by
using the Change System/36 (CHGS36)
command. You can also use the Work with
System/36 Environment Configuration (WRKS36)
command to display and change the number of
seconds the MRI waits before ending.

Inquiry: The inquiry attribute allows you to
specify whether the program can be interrupted so
another program can be run from the same
display station. The inquiry attribute specifies
whether System Request menu option 1, which
creates a new session, is permitted.

You can use the ATTR OCL statement to specify
the inquiry attribute. See “Preventing Users from
Ending Jobs” on page 18-13 and “Preventing
Interrupted Jobs” on page 18-13 for more informa-
tion. In System/36-Compatible RPG II, the inquiry
attribute can also be specified in column 37 of the
control specification. The inquiry attribute cannot
be specified in the other high-level languages.

MRTMAX: See “MRTMAX Value” on page 16-3
for information about the MRTMAX value.

 Programming Considerations

This section contains considerations to help you
code more efficient programs.

Programming Considerations for All
Programs: The following sections contain
information applicable to all programs.

Acquiring a Display Station or ICF Session: A
display station must be active (powered on and
varied on) and signed off to be acquired. A
program can acquire a display station by:

� Using the WORKSTN OCL statement with
REQD-YES and a display station identification
specified

� Using the programming language statement
that acquires a display station

The following table lists the appropriate statement
for each programming language:

16-6 OS/400 System/36 Environment Programming V3R6

For more information, refer to the appropriate lan-
guage manual.

Releasing a Display Station or ICF Session:
Display stations should be released from a
program when the program is no longer using
them. A SRT program can release its requesting
program device for the remainder of the job step,
but it is acquired again automatically when the
next job step opens a display file or ICF file. A
MRT program can release requesters, acquired
display stations, and acquired ICF sessions. The
following table lists the statement for releasing a
display station or ICF session in each program-
ming language:

For more information, refer to the appropriate lan-
guage manual.

File Sharing: When a file is shared, you must
prevent two problems:

� Loss of data . You can lose data when two or
more users update the same record of a file
shared within a single copy of a program.
When the program writes the second updated
record back to the file, it writes that record
over the first updated record, losing the first
update.

� File deadlock . Files deadlock when two or
more programs try to update records in two or
more files at the same time. Take the fol-
lowing steps to prevent file deadlock:

– Do not own more than one record at a
time. Each time you read a record from a
file shared for update, write the record
back to the file before you read a record
from another file shared for update.

However, this technique significantly
affects how you design your application
because you may have to divide the appli-
cation into several small programs.

– Design your application so each shared
file is processed by only one program.
This technique also requires you to write
an updated record back to the file before
you read another record.

This technique prevents loss of data
because one update cannot be partially
completed while another update of the
same record occurs. For example, if two
display station operators enter orders for
the same inventory item at the same time,
the second update may replace the first
update.

To prevent loss of data and file deadlock, treat
each display station input as a separate trans-
action. Do not assume that values valid at the
previous display station input are still valid for
the current display station input.

For more information about file deadlock, see
“File Deadlock Conditions” on page 7-29.

Transaction File Design: A transaction file con-
tains data (such as customer orders) used to
update a master file.

Note: This transaction file is not the same as a
COBOL TRANSACTION file, which is an
input/output file used to communicate with display
stations and ICF sessions.

You can design your transaction file by:

� Using a single file for all transactions
� Using a separate file for each device

If you use a single file for all your transactions,
you can put all the transactions in the file in the
order in which the transactions arrive, or you can
put the transactions for each device in a separate
part of the file. For example, you allocate 3000
records for the file, partitioned as follows:

Record 1 Control record for W1
(display station 1)

Records 2-1000 Data records for W1

Record 1001 Control record for W2
(display station 2)

Records 1002-2000 Data records for W2

Programming
Language

Statement for Acquiring
Display Station
or ICF Session

COBOL 74 ACQUIRE statement

System/36-Compatible
RPG II

ACQ operation code

Programming
Language

Statement for Releasing Display
Station or ICF Session

COBOL 74 DROP statement

RPG II REL operation code in calculation
specifications, or R in column 16 of
output specifications

 Chapter 16. Programs and Procedures 16-7

Record 2001 Control record for W3
(display station 3)

Records 2002-3000 Data records for W3

You can assign a separate file to each device.
For the preceding example, you can assign a sep-
arate file, each containing 1000 records, to each
device. Because the FILE OCL statement is read
only for the first requester of a MRT program, this
approach requires a separate FILE statement for
each user.

The method you choose depends on how the
transaction file will be used and how you plan to
recover from errors. For information about error
recovery, see Chapter 19, “Error Prevention,
Detection, and Recovery.” For more information
about transaction files, see “Transaction File” on
page 7-19.

Memo Updating: Memo updating is a technique
that allows interactive updates to your master files
and provides batch processing to check that the
updates have been applied correctly.

An advantage of an interactive environment is that
operators always have access to up-to-date infor-
mation in the master files. For example, an oper-
ator enters a transaction that reduces the quantity
of an item on hand in an inventory master file.
When another operator inquires for the quantity of
that item on hand, the value shown reflects pre-
vious changes made to it.

Note: Do interactive updates to files carefully
because recovery from a system or program
failure is difficult if you do not know which updates
are reflected in the file and which updates need
repeating.

Master file records must allow duplicate fields for
those fields that can be updated interactively. For
example, in Figure 16-1 the field named MBAL
(memo balance) could reflect interactive updates,
and the field named BAL (balance) could be used
for batch processing.

At the beginning of the day, these two fields
shown in Figure 16-1 should be equal. The trans-
actions made during the day are applied only to
the memo balance field.

The RPG input and output specifications in
Figure 16-2 on page 16-9 are used for the master
file by interactive data entry and inquiry programs.

Note: These specifications ignore the balance
field. The memo balance field should always
reflect the current balance.

At the end of the day, a batch edit program pro-
cesses the transaction file. The transactions are
posted to the balance fields in the master file by a
batch update program, as the segment of the
program in Figure 16-3 on page 16-10 shows.

You must save the transaction files periodically,
usually each day. You can save the master files
frequently if the files are constantly being updated.
You can recover by reloading the master files and
processing all subsequent transactions. (For infor-
mation about file recovery, see Chapter 19, “Error
Prevention, Detection, and Recovery.”) To bring
the memo balance field to its current value, run a
program that updates the memo balance field with
the transactions. After the memo balance field
has been updated, all current activity has been
accounted for and normal operations can con-
tinue.

CONTRL DESCR BAL MBAL

Description DateKey

1 10 30 40 50

Balance

Duplicates

Memo Balance

RSLW038-0

Figure 16-1. Fields Used in Memo Balancing

16-8 OS/400 System/36 Environment Programming V3R6

71

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24A N D

S
tk

r
#

/F
e

tc
h

 (
F

)

B
ef

or
e

A
ft

e
r

T
yp

e
 (

H
/D

/T
/E

)

B
ef

or
e

A
ft

e
r

N
ot

N
ot

N
ot

E
di

t C
od

es

P
/B

/L
/R

F
or

m
 T

yp
e

Line

Filename
or

Record Name

Space Skip Output Indicators

And And

AUTO
*

End
Position
in
Output
Record

Yes

Yes

No

No

Yes

No

Yes

No

1

2

3

4

A

B

C

D

J

K

L

M

5 - 9 =
User
Defined

Commas
Zero Balances

to Print No Sign CR _

Constant or Edit WordO R

A D D

D E L

R

O

0 1

0 2

0 3

0 4

Field Name
or

EXCPT Name

x = Remove
Plus Sign

Y = Date
Field Edit

Z = Zero
Suppress

B
/A

/C
/1

-9
/R

Data
Structure

Name

Filename
or

Record Name

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2720 21 22 23 24 25 26 30 31 32 33 34 35 36 3728 29 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 72 73 7471

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2720 21 22 23 24 25 26 30 31 32 33 34 35 36 3728 29 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 72 73 7471

F
or

m
 T

yp
e Se

qu
en

ce

N
um

be
r

(1
/N

),
 E

R
ec

or
d

Id
en

tif
yi

ng
 In

di
ca

to
r,

**
 o

r
D

S

O
p

tio
n

 (
O

)
U

.S
.

N
o

t
(N

)

N
o

t
(N

)

N
o

t
(N

)

C
/Z

/D

C
/Z

/D

C
/Z

/D

C
h

a
ra

ct
e

r

C
h

a
ra

ct
e

r

C
h

a
ra

ct
e

r

P
/B

/L
/R

S
ta

ck
e

r

D
e

ci
m

a
l P

o
si

tio
n

s

C
o

n
tr

o
l L

e
ve

l (
L

1
 L

9
)

M
a

tc
h

in
g

 F
ie

ld
s

o
r

C
h

a
n

g
in

g
 F

ie
ld

s

F
ie

ld
 R

e
co

rd
 R

e
la

tio
n

External Field Name

Record Identification Codes

Position PositionPosition
Occurs
n Times

Data Structure

From To

Field Location

Zero
or

Blank

RPG
Field Name

Plus Minus

Field
Indicators

0 1

Length
A N D

O R

1 2 3

I

0 2

0 3

0 4

0 5

0 6

RSLW077-0

O

O

O

O

I

I

I

I

I

I

Figure 16-2. Master File Entries for Memo Balance

A variation of the memo updating technique is to
set the memo balance field to 0 at the start of the
day, rather than to the value of the balance field.
Interactive updates are made only to the memo
balance field.

The memo balance field reflects the day’s activity
for that item. If no transactions for the item
occurred, the memo balance remains 0. To deter-
mine the current balance, an inquiry program
would have to add or subtract the memo balance
from the balance in the master file.

 Chapter 16. Programs and Procedures 16-9

71

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24A N D

S
tk

r
#

/F
e

tc
h

 (
F

)

B
ef

or
e

A
ft

e
r

T
yp

e
 (

H
/D

/T
/E

)

B
ef

or
e

A
ft

e
r

N
ot

N
ot

N
ot

E
di

t C
od

es

P
/B

/L
/R

F
or

m
 T

yp
e

Line

Filename
or

Record Name

Space Skip Output Indicators

And And

AUTO
*

End
Position
in
Output
Record

Yes

Yes

No

No

Yes

No

Yes

No

1

2

3

4

A

B

C

D

J

K

L

M

5 - 9 =
User
Defined

Commas
Zero Balances

to Print No Sign CR _

Constant or Edit WordO R

A D D

D E L

R

O

0 1

0 2

0 3

0 4

Field Name
or

EXCPT Name

x = Remove
Plus Sign

Y = Date
Field Edit

Z = Zero
Suppress

B
/A

/C
/1

-9
/R

Data
Structure

Name

Filename
or

Record Name

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2720 21 22 23 24 25 26 30 31 32 33 34 35 36 3728 29 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 72 73 7471

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2720 21 22 23 24 25 26 30 31 32 33 34 35 36 3728 29 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 72 73 7471

F
or

m
 T

yp
e Se

qu
en

ce

N
um

be
r

(1
/N

),
 E

R
ec

or
d

Id
en

tif
yi

ng
 In

di
ca

to
r,

**
 o

r
D

S

O
p

tio
n

 (
O

)
U

.S
.

N
o

t
(N

)

N
o

t
(N

)

N
o

t
(N

)

C
/Z

/D

C
/Z

/D

C
/Z

/D

C
h

a
ra

ct
e

r

C
h

a
ra

ct
e

r

C
h

a
ra

ct
e

r

P
/B

/L
/R

S
ta

ck
e

r

D
e

ci
m

a
l P

o
si

tio
n

s

C
o

n
tr

o
l L

e
ve

l (
L

1
 L

9
)

M
a

tc
h

in
g

 F
ie

ld
s

o
r

C
h

a
n

g
in

g
 F

ie
ld

s

F
ie

ld
 R

e
co

rd
 R

e
la

tio
n

External Field Name

Record Identification Codes

Position PositionPosition

Occurs
n Times

Data Structure

From To

Field Location

Zero
or

Blank

RPG
Field Name

Plus Minus

Field
Indicators

0 1

Length
A N D

O R

1 2 3

I

0 2

0 3

0 4

0 5

0 6

RSLW078-0

O

O

O

O

I

I

I

I

I

I

F
or

m
 T

yp
e

C
on

tr
ol

 L
ev

el
 (

L0
-L

9,
LR

, O
R

, A
N

/O
R

)

Line
Name Length

Factor 1 Operation Factor 2 Comments

N
ot

N
ot

N
ot

D
e

ci
m

a
l P

o
si

tio
n

s

H
a

lf
A

d
ju

st
 (

H
)

Arithmetic

Plus Minus Zero

Compare

1 > 2 1 < 2 1 = 2

Lockup(Factor 2)is

High Low Equal

C

C

C

C

0 1

0 2

0 3

Indicators Resulting
Indicators

Result Field

And And

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2720 21 22 23 24 25 26 30 31 32 33 34 35 36 3728 29 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 72 73 7471

Note that these
balances are set
equal to one
another.

Figure 16-3. Transaction File Processed by Batch Edit Program

16-10 OS/400 System/36 Environment Programming V3R6

Printed Output: If the application does not have
exclusive use of the printer, you must decide
whether the output can wait until the application is
complete or should be printed as soon as it is
available.

If you want the printed output as soon as possible,
without having exclusive use of the printer, you
must decide whether to use the PRINTER OCL
statement to delay printing. For example, if you
are printing invoices, and you specify DEFER-NO
on the PRINTER OCL statement, you can make
the printer unavailable to anyone else. If you
specify DEFER-YES, you cannot print until your
job is complete.

To have invoices printed as soon as they are
available and have the printer available for other
jobs, design the application so the print program
runs as required. Use the EVOKE OCL statement
to call the print step, which is therefore a NRT
program.

The advantage of this technique is that it runs only
when the output is ready to print. Also, the oper-
ator can continue processing because, as soon as
the NRT starts, the application continues with the
next step. If the print step is not a NRT, the oper-
ator has to wait until the program start, allocation,
and end, as well as the printing, are complete.

The disadvantage of making the print program a
NRT program is that the system can become
overloaded with numerous small entries.

System Request Menu Options: When you
press the System Request key, the System
Request menu appears. Some options from that
menu differ, depending on whether your program
is a SRT or a MRT as described below:

For a SRT program:

� Option 2 ends the job and closes files.
� Option 20 is used by high-level languages to

do special processing functions. See the
correct language manual for more information.

For a MRT program:

� Option 2 releases the requester from the MRT
program and sends the requester to the next
step in the input stream. If RUF is in
progress, the data from it will not be pro-
cessed. You can use ?CD?=3721 on a proce-

dure control expression to test whether the
MRT job step was ended by option 2.

� Option 20 is not allowed.

In a MRT program, processing of the system
request key is delayed until the MRT has an input
operation outstanding for the display station from
which the system request key was used.

Disabling System Request Menu Options: A
SRT program can disable System Request menu
option 1 (Display sign-on for alternative interactive
job) using any of the following methods:

� Include an ATTR OCL statement specifying
INQUIRY - NO in a SRT procedure.

� Enter an ATTR OCL statement specifying
INQUIRY - NO from the terminal before
running a SRT procedure.

� Use the RPG II noninquirable program attri-
bute.

A MRT program can disable System Request
menu option 1 using any of the following methods:

� Include an ATTR OCL statement specifying
INQUIRY - NO in a SRT procedure that calls
a MRT procedure.

� Enter an ATTR OCL statement specifying
INQUIRY - NO from the terminal before
running a MRT procedure.

� Enter an ATTR OCL statement specifying
INQUIRY - NO from the terminal before
running a SRT procedure that calls a MRT
procedure.

� Include an ATTR OCL statement specifying
INQUIRY - NO in a MRT procedure.

� Use the RPG II noninquirable program attri-
bute.

A SRT program can disable System Request
menu option 2 using any of the following methods:

� Include an ATTR OCL statement specifying
CANCEL - NO in a SRT procedure.

� Enter an ATTR OCL statement specifying
CANCEL - NO from the terminal before
running a SRT procedure.

A MRT program can disable System Request
menu option 2 (Release display station from MRT)
using any of the following methods:

 Chapter 16. Programs and Procedures 16-11

� Include an ATTR OCL statement specifying
CANCEL - NO in a SRT procedure that calls a
MRT procedure.

� Enter an ATTR OCL statement specifying
CANCEL - NO from the terminal before
running a MRT procedure.

� Enter an ATTR OCL statement specifying
CANCEL - NO from the terminal before
running an SRT procedure that calls a MRT
procedure.

� Include an ATTR OCL statement specifying
CANCEL - NO in a MRT procedure.

Calling the Program: An operator can call a
program in several ways:

� Enter the OCL statements at the display
station.

� Enter the procedure name at the display
station.

� Select a menu option at the display station.

A MRT procedure can call a MRT program. The
system checks the procedure name to see
whether the MRT is already active.

When you create a procedure, you can specify
that the data following a procedure name is data
for the program or parameters for substitution in
the OCL statements. For MRT procedures, the
procedure can be called only with data, not with
parameters for substitution. Anything following the
MRT procedure name is saved until the MRT
program does its first input operation. See the
appropriate language manual for information about
calling the procedure with data. Use the Edit
System/36 Procedure Attributes (EDTS36PRCA),
the Change System/36 Procedure Attributes
(CHGS36PRCA), or the Work With System/36
Procedure Attributes (WRKS36PRCA) CL com-
mands to change the PGMDTA attribute. The
PGMDTA attribute is described in “Procedure
Attributes” on page 16-21.

Read-Under Format: The RUF technique allows
an operator to enter information on a display while
the program that uses the display is starting.
When you use RUF, a program or procedure dis-
plays the format, and the program called next in
the procedure reads it. The format is displayed
by a program or a PROMPT OCL statement with
PDATA-YES specified. While the next program is
being started, the operator enters information for

the display. When the operator presses the Enter
key, the input from the display is sent to the
second program.

For more information about RUF, see “Using the
Read-Under-Format Technique” on page 14-20.

External Switches: Eight external indicators
(switches) are available for each requester. You
can set or change these switches using the
SWITCH OCL statement or the SWITCH proce-
dure. The UPSI-YES parameter of the PROMPT
OCL statement allows the current value of the
eight external switches to be mapped to indicators
91 through 98. You can affect how the system
processes your job by setting these switches. For
example, if a certain error condition occurs, you
can set a switch on and bypass those job steps
that are in error.

The following table shows how to access these
switches in various high-level languages:

The following example uses the SWITCH OCL
statement to affect how the system processes an
input stream. An input stream is a group of
records submitted as a batch job that contains CL
commands for one or more jobs and data from
one or more inline data files. In the example, the
SWITCH1 statement sets switch 1 to 1 (on).
Switch 1 determines whether the program is a
daily or weekly run. In the procedure, a FILE OCL
statement for the daily run differs from the FILE
statement for the weekly run.

// IF SWITCH1-1 FILE NAME-A
// ELSE FILE NAME-A,LABEL-B

When switch 1 is on, file A is used. When it is off,
file B is used.

For a MRT program, a separate copy of the switch
settings is kept for each requester’s input stream,
and control is passed to the next job step when
the requester is released. Also, the switch set-
tings are normally the first requester’s settings.
Some high-level languages allow you to access a
specific requester’s switch settings.

Programming Language
How to Access External
Switches

COBOL 74 IF and SET statements

RPG II U1-U8 or SUBR 20

16-12 OS/400 System/36 Environment Programming V3R6

The System/36 Environment Reference book has
more information about using the external
switches.

Local Data Areas: A local data area (LDA) con-
sists of 512 bytes that you can use to receive data
from previous job steps or to pass data to later job
steps. You can use the LOCAL OCL statement to
change the LDA. Local data can be substituted in
OCL statements and procedure control
expressions. A separate LDA is automatically
created for each job.

For a MRT program, a separate copy of the LDA
is kept for each requester’s input stream, and
control is passed to the next job step when the
requester is released. Also, the LDA for the MRT
is a copy of the first requester’s LDA.

Whenever a program is placed on the job queue,
called by the EVOKE OCL statement, released by
the ATTR OCL statement, or called during inquiry,
the external switches and the LDA have the value
that was in effect at the time.

Each high-level language has a separate way of
accessing the LDA. The following table shows
how to access the LDA in COBOL 74 and RPG II:

Note: Unlike System/36, acquired display
stations do not have LDAs.

Programming Considerations for
Multiple-User Programs: The following
sections describe programming considerations for
multiple-user programs.

Creating a Table of Separate Variables:
Because a multiple-user program can handle more
than one transaction at a time, you may require
separate variables and work areas for each active
display station. For example, you may need sepa-
rate copies of:

� Indicators, flags, or switches
� Current record identification for each disk file
� Current display format

Design a multiple-user program so an entire trans-
action is completed between two successive
display station input operations.

� Indicators, Flags, or Switches

Because a multiple-user program can process
transactions that require several display
station input operations, it may be necessary
for the program to switch from one display
station to another before completing a trans-
action. Therefore, the program may have to
store the status of each display station when-
ever the program returns to the input opera-
tion for the display station file. Usually, you
can code an array or table in which each
element consists of the display station identifi-
cation and the appropriate status fields.

� Current Record Identification for Each File .
The status fields in the table elements can
include the key or record number for the last
record processed in each disk file. When the
program is reading duplicate keys sequentially
and not all of the keys have been processed,
the first of the series may have to be saved.

When the program reads from a display
station file, it searches the table for an
element that matches the display station iden-
tification. If it finds a match, it uses the
element for that identification. If it does not
find a match, it should allocate a new element.
The program re-starts the identification field
again when it releases the display station.

Another method for maintaining multiple
current record IDs (one for each display
station) is to define multiple logical files. One
logical file could be defined for each display
station using the file. For information about
how to define multiple logical files, see “Using
Multiple Names to Access a Single File” on
page 7-30.

When a disk file is shared, the table of vari-
ables should not include current record iden-
tification because the only valid file information
is that which you read after the most recent
display station input. For more information,
see “Sharing Files” on page 7-26.

� Current Display Format . Your program can
store the last operation for each display
station. The operation includes the display
format name.

Programming
Language How to Access LDA

COBOL 74 ACCEPT and DISPLAY statements

RPG II SUBR 21 or special data structure

 Chapter 16. Programs and Procedures 16-13

This table element could also include fields for
such variables as local data area, external
switches, and separate totals.

Note: Keeping track of these variables is
complicated, because completion of a trans-
action can require several input operations
from a display station, and those input oper-
ations may not be consecutive. Therefore, if
possible, you should try to avoid relying on
tables of variables between display station
input operations. To avoid using tables, try to
obtain all the necessary variables from the
preceding display format.

For example, a part number or customer
number is on the preceding display format.
To use these fields, you have to change them
from output-only to input/output fields. You
have to write as protected or nondisplayed
fields information that otherwise would be
stored in the table of variables. This method
also requires you to read the master file again
for each display station input operation.

Sequential Processing of Multiple Records
with Duplicate Keys: When you use the gener-
alized processing method to process multiple
records with duplicate keys in one file shared
among users of the same program, you may need
to keep track of which record you last processed
for each user so that you can continue processing
from that point. Each time you process the file for
a given key, you process the first record with that
key value. If other records have the same key,
continue reading the file sequentially until you find
the record you want. If you must interrupt the
sequence of read operations to read from the
display station file, you might not be able to find
the last record you processed unless you create a
table to store the last record processed for each
file by each display station. For information about
the generalized processing method, see “General-
ized Processing Method” on page 7-17. For infor-
mation about duplicate keys, see “Using Duplicate
Keys” on page 7-11.

Changing a One-User Program to a Multiple-
User Program: To change a one-user program
to a multiple-user program, you may have to
change the program logic. In a one-user program,
there is no need to keep separate copies of vari-
ables and work areas for each device. A table or
array is usually necessary in a multiple-user
program.

If you always complete a transaction before
receiving input for the next transaction (such as a
read-only inquiry program) it probably requires no
more logic as a multiple-user program than as a
one-user program, except to release the
requesters.

If you are changing a one-user program to a
multiple-user program, then usually you are con-
verting a SRT to a MRT, and the logic is changed
to account for multiple transactions at the same
time. To convert a SRT to a MRT, you must
specify a nonzero value for the maximum number
of requesters when the program is compiled.
Also, use the CHGDSPF or CHGICFF command
to change the maximum number of devices
(MAXDEV value for display files, MAXPGMDEV
for ICF files) allowed by the display file or ICF file.

The general steps to change a one-user program
to a multiple-user program are:

1. Create a data structure to save unique infor-
mation required by individual display stations
from one cycle to another if necessary. The
data structure search argument should be the
display station identification.

2. Always reread the disk record to be updated if
a display station input operation occurred after
the previous disk read.

3. Make sure that the program logic can handle
the maximum number of users.

Response Time: If a multiple-user program has
considerable input/output or processing, the
average response times for the display station
operators increase if there are many users at the
same time. For this reason, a technique often
used to ensure reasonable response time is to
group the display stations. This multiple-user
program is usually a MRT program, so each group
has a separate copy of the MRT program. This
technique reduces the number of display stations
trying to use the program.

You can group the display stations using a MRT
program by using the NEWNAME parameter on
the LIBRLIBR utility. This will create a new copy
of the MRT procedure within the same library.
You can decrease run-time response time for a
MRT by using the MRTMAX parameter when
compiling the MRT program to limit the number of
display stations using each copy.

16-14 OS/400 System/36 Environment Programming V3R6

Programming Considerations for MRT
Programs: The following sections describe
programming considerations for MRT programs.

Security Verification: To run a SRT program or
route into a MRT program, you must be author-
ized to the program and the library in which the
program resides.

Resources used by a program require the correct
authorization. During System/36 environment con-
figuration, you can specify one of the following
methods:

� Check the MRT initiator and all subsequent
requesters of the program for the correct
authorization to the files the MRT is using.

� Check only the MRT initiator for the correct
authorization to the files.

An advantage of checking only the starting
MRT is that overall system response time is
shorter because less authorization checking is
performed. Specifically, response time is
quicker for the second and subsequent
requester of a MRT NEP. Checking only the
MRT initiator also allows you to enroll new
users more easily because there are fewer
authorizations to set up for them. MRT secu-
rity considerations are described in more
detail in Chapter 11, “Security.”

Input Stream: The following figure illustrates a
normal program flow:

End program,
close files, and
free resources

Read input

Process

Output

Yes

No

Initialize
program,
open files,
and allocate
resources

Beginning
of Program

RV2W106-0

End of
program

 Chapter 16. Programs and Procedures 16-15

RSLW059-0

Read input

Process

Output

Yes

No

Reinitialize
for next step

Release
session

End of
program

Beginning of Program
for All Subsequent
Requesters

End program,
close files, and
free resources

End of
session

Yes

No

End of Program
for One Requester

Initialize
program,
open files,
and allocate
resources

Beginning of Program
for First Requester

Figure 16-4. Input Stream Flow of a MRT Program

As shown in Figure 16-4, a MRT program has the
same flow, except:

� All requesters start by reading input.
� All requesters end by being released from the

application program.

SRTs can interact with more than one display
station or ICF session , but only one can be the
requester. There is a separate input stream for
each display station attached to a MRT (see

Figure 16-5 on page 16-17). The input stream
consists of a series of steps, each step including
LOAD and RUN OCL statements, typically FILE
statements, and possibly other OCL statements.
When a step is a MRT, the MRT is normally
already active, so the system attaches to the MRT
program rather than going through the program
start-up required for a non-MRT. When the step
is complete for that input stream, the MRT
releases the requester rather than going through a
time-consuming program end.

16-16 OS/400 System/36 Environment Programming V3R6

// LOAD
// RUN

// LOAD
// RUN

Step 1// LOAD
// RUN

// LOAD
// RUN

Step 1

// LOAD
// RUN

Step 2// LOAD
// RUN

Step 2

Step 4Step 4

MRT
Program

AttachAttach

Release Release

Step 3

Display Station W1 Display Station W2

RSLW039-0

Figure 16-5. Input Stream for a MRT Program that
Interacts with Multiple Display Stations

For additional information about jobs and job pro-
cessing, see Chapter 18, “Jobs and Job
Processing.” For additional information about pro-
cedures, see “Procedures” on page 16-21.

Modular Applications: If you divide a large
application into a set of small, simple programs,
the performance decreases if the programs are
SRTs because of the time for start and end. The
performance is probably better if the programs are
NEP-MRTs.

In Figure 16-6 on page 16-18, an order-entry
application is divided into four steps:

1. Read the customer master file (CUSTNO
program).

2. Enter the order (DETAIL program).
3. Update the inventory file (INVENTRY

program).
4. Print the invoice and packing slip (ORDPRINT

program).

This modular design is easier to maintain than one
large, complex program. Because the devices

attach to and release from already-active pro-
grams, the MRT programs have acceptable
response times.

You can code the procedure for this example as
follows:

// TAG TAGB Start of procedure.
// PROMPT format name First order entry format.
CUSTNO Procedure to read customer file.
DETAIL Procedure to enter order.
INVENTRY Procedure to update inventory file.
// IF ?L'1,4'?/ð GOTO TAGA Test for successfully completed
\ order. First 4 bytes of LDA are
\ set to nonzero value when order
\ is canceled.
// GOTO TAGB Start next order.
// TAG TAGA Normal processing continues here.
// ATTR RELEASE-YES Create NRT program to print invoice
// LOAD ORDPRINT and packing slip while beginning
// RUN to process next order.
// GOTO TAGB Process next order.

In this example, the print job step is shown as a
NRT program to ensure the best performance for
the procedure and maximum availability of the
printer.

Testing MRTMAX: A MRT can be a one-user or
multiple-user program. You specify the MRTMAX
value when you compile your program. The value
can be decreased on the ATTR OCL statement or
with the Change System/36 Program Attributes
(CHGS36PGMA), the Edit System/36 Program
Attributes (EDTS36PGMA), or the Work With
System/36 Program Attributes (WRKS36PRC) CL
commands.

If a MRT is a one-user program, it must have a
MRTMAX value of 1. A MRTMAX value of 1 can
ensure that only one requester is attached to the
MRT a given time. This technique is sometimes
used to control resource sharing.

If your program has the maximum number of
requesters, and another display station or commu-
nications program start request attempts to attach
to it, the new requester must wait until a previous
requester is released. An application can avoid
unnecessary waiting for a MRT that has the
maximum number of requesters either by testing if
at MRTMAX or by using the MRTWAIT-NO
parameter on the ATTR OCL statement.

Using IF MRTMAX: Use the IF MRTMAX proce-
dure control expression to test whether the
MRTMAX value has been reached. Use the IF
MRTMAX procedure control expression to issue a
prompting message. This allows the IF test to be

 Chapter 16. Programs and Procedures 16-17

RSLW040-2

Step 4
ORDPRINT
Program (NRT)

Display Prompt for
CUSTNO Program

// ATTR RELEASE-YES

LDA indicates
there is an
order to print

No

Yes

Release

Step 1

Multiple-User File

Release

Release

Step 2

Multiple-User File

DETAIL Program
(MRT, 2 requesters)

Step 3

Multiple-User File

CUSTNO Program
(MRT, 0 requesters)

INVENTRY Program
(MRT, 1 requester)

W1

W2

W3

Figure 16-6. Modular Application Using MRT Programs

16-18 OS/400 System/36 Environment Programming V3R6

tried again before calling the MRT. If the problem
persists, raise the MRTMAX value or use separate
copies of the program. The System/36 Environ-
ment Reference book has information about pro-
cedure control expressions.

Using MRTWAIT-NO: Use the MRTWAIT
parameter on the ATTR OCL statement to test if
the MRT is at MRTMAX.

If you specify MRTWAIT-YES, you wait until a
requester is released from the MRT before you
attach.

If you specify MRTWAIT-NO, and the MRT is at
MRTMAX, you regain control and return code
2045 is set. This return code can be tested using
the ?CD? substitution expression. You cannot
enter the MRTWAIT-NO parameter from the key-
board.

The //ATTR statement with MRTWAIT-NO is
required before each start of the MRT procedure
to use this function.

The following is an example of MRTWAIT-NO
specified in a procedure.

// ATTR MRTWAIT-NO
MRTPROC
// IF ?CD?=2ð45 GOTO PROC2 /\TRY PROC2\/
// RETURN
// TAG PROC2
// ATTR MRTWAIT-NO
// PROC2
// IF ?CD?=2ð45 GOTO PROC3 /\TRY PROC3\/
// RETURN
// TAG PROC3
 .
 .
 .

Limiting the Number of Users: Usually, the
number of users of a MRT program means the
number of requesters. To limit the number of
requesters, use the MRTMAX value at compile
time. At run time, you can use the ATTR OCL
statement to reduce the MRTMAX value.

Program users can also include acquired display
stations or ICF sessions, which can be acquired
using statements in the high-level language
program. Display sessions can also be acquired
using the WORKSTN OCL statement. Except in

System/36-Compatible RPG II, you cannot control
the number of display stations or ICF sessions
acquired at run time. In RPG II, you can use the
NUM keyword to limit the total number of
requesters plus acquired display stations or ICF
sessions.

In addition to the MRTMAX value, the number of
requesters and acquired workstations is limited by
the MAXDEV value in the display file. The
number of requesters and acquired ICF sessions
is limited by the MAXPGMDEV value in the ICF
file. If a new requester attempts to attach to a
MRT program, but the number of active work-
stations or ICF sessions are already attached to
the MRT program, the new requester will wait until
a device is released by the MRT program, unless
MRTWAIT-NO was specified on an ATTR OCL
statement before the MRT program was
requested. The IF MRTMAX procedure control
expression does not detect the situation where a
device cannot attach to a MRT program because
the MAXDEV or MAXPGMDEV values are less
than the MRTMAX value. For further information,
see “MAXDEV Value” on page 16-2.

Other Limitations: The same display station
cannot have more than one active session in the
same MRT. If you use the system request key to
suspend processing in a MRT, your display station
may route to a different MRT.

It is possible to code a MRT program that causes
all other requesters to wait indefinitely. To avoid
having all other requesters wait indefinitely, do
one of the following:

� When a MRT program writes more than once
to a display station before allowing input for
each output (except the last), you should
specify suppress input in columns 35 and 36
of the S specification for the $SFGR utility.

� When the displays are created with DDS, for
each output, except the last, you should not
specify the INVITE keyword on the DDS).

Note: If you do not specify suppress input on
the SFGR (or have the INVITE keyword on
the DDS), the program and all other devices
requesting it may wait indefinitely if the oper-
ator presses the System Request key
between the output operations to the same
display station.

 Chapter 16. Programs and Procedures 16-19

First-Requester Considerations: The following
considerations apply only to the first requester of a
program:

� The MRT procedure is interpreted only for the
MRT initiator. Other requesters are attached
directly to the MRT program.

� Many run-time variables of the MRT program
(such as the parameters on the FILE OCL
statement) are specified by the first requester.
You may not know if you are the first
requester or a subsequent requester. If you
are a subsequent requester and you specify a
file name, it will be ignored.

� Although a MRT is logically a separate job,
you can use it as a step in any other job.
Whenever possible, variables that start the job
status come from the System/36 environment
configuration (use the Change System/36
Environment (CHGS36) or the Work with
System/36 Environment Configuration
(WRKS36) CL command to change these) or
from the process of loading the system.
These variables include date, date format,
forms number, and lines per page. Other vari-
ables must come from the first requester.
These variables include priority, NEP,
MRTMAX, log, external switches, current
library, procedure library, and local data area.

Summary of MRT Program Considerations:
Unlike a SRT program, a MRT program cannot
write to a requesting display station before reading
from the display station. You can call a MRT
program from a MRT procedure.

The system checks by procedure name whether
the MRT is already active. Because it takes more
time, the system does not check by program
name or by procedure name qualified by library
name. Therefore, you should have only one copy
of a MRT procedure in the system.

When a MRT program that is not a NEP releases
its last attached device, the system checks the
MRTDLY attribute of the MRT procedure to deter-
mine if the MRT should end immediately or delay
termination for a short time, in case a new
requester would like to attach to the MRT.

If the MRTDLY attribute indicates that the MRT
should delay termination, the MRT will wait for the
number of seconds specified for the System/36

environment before giving the program a return
code instructing it to go to the end of the program.

If the MRTDLY attribute indicates that the MRT
should not delay termination, the program will
immediately be given a return code instructing it to
go to the end of the program. When the program
ends, the MRT is no longer an active MRT. If
another device requests the MRT, a new MRT is
started.

The attributes of the MRT procedure can be
changed using the Change System/36 Procedure
Attributes (CHGS36PRCA) command, the Edit
System/36 Procedure Attributes (EDTS36PRCA)
command, or the Work with System/36 Procedure
Attributes (WRKS36PRCA) command. The attri-
butes of the MRT procedure can be displayed
using the EDTS36PRCA or WRKS36PRCA com-
mands. You can display the number of seconds
that the MRT will wait before ending by using the
Display System/36 (DSPS36) command and you
can change it by using the Change System/36
(CHGS36) command. You can also use the Work
with System/36 Environment Configuration
(WRKS36) command to display and change the
number of seconds that the MRT will wait before
ending.

When starting non-MRT procedures, you can
specify that the data following a procedure name
is data for the program or parameters for substi-
tution in the OCL statements. When starting MRT
programs, you can call the procedure only with
data, not with parameters for substitution. Any-
thing following the MRT procedure name is saved
until the MRT program does its first input opera-
tion.

If a MRT program reads from a specific display
station (rather than reading from any display
station that has input ready), all other users wait
until the specified display station input operation is
complete. For example, an RPG II program pro-
cesses a NEXT operation for display station W2.
No other display station input is processed until
the operator at display station W2 presses the
Enter key to input the data.

When you specify RELEASE-YES with an ATTR
OCL statement for a NEP MRT program, the MRT
program becomes a MRT program with zero
requesters, not a NRT program.

16-20 OS/400 System/36 Environment Programming V3R6

You cannot use an EVOKE OCL statement to
start a MRT procedure, but you can use an
OS/400 ICF EVOKE operation code to start a
MRT procedure. See “ICF Files” on page 13-17
for more information about evoked ICF commu-
nications jobs.

For a SRT ICF program, system messages go to
the job, job log and/or system operator message
queue. When a SRT display program runs,
system messages go to the job, job log, and/or
the requesting display station. When a MRT or
NRT program runs, all system messages go the
job, job log and/or system operator message
queue.

 Procedures

A procedure is a collection of statements that
causes one or more programs to run. Use proce-
dures to start jobs. With System/36 environment
procedures you can create and copy data files,
and create libraries. The procedures supplied with
the languages (such as RPGC and COBOLC)
allow you to compile and run the programs you
code. These procedures are described in the
System/36 Environment Reference book, and the
programming language manuals.

You can also create your own procedures.

 Procedure Attributes

Procedure attributes are indicators that determine
the procedure’s characteristics. They are set by
the migration utility for procedures migrated from
System/36. You use the Edit System/36 Proce-
dure Attributes (EDTS36PRCA), the Work with
System/36 Procedure Attributes (WRKS36PRCA)
command, or Change System/36 Procedure Attri-
butes (CHGS36PRCA) CL commands to change
the following procedure attributes:

MRT
Specifies if the procedure is a MRT proce-
dure.

LOG
Specifies if OCL statements are logged to the
job log. See the System/36 Environment Ref-
erence book for information on how to prevent
the procedure’s OCL statements from being
logged to the job log when the procedure

runs. The procedure command that started a
procedure is always logged to the job log.
Normally, the procedure command and the
OCL statements for your procedures are all
logged to the job log. This is done to help
you debug your procedures.

PGMDTA
Specifies whether data passed to the proce-
dure should be handled as parameters or as
program data. For information on using the
PGMDTA, see “Calling Procedures” on
page 16-22. This is the same as the PDATA
attribute on System/36.

RCDLEN
Specifies the logical record length of the
statements in the procedure member (used by
Save System/36 Library Member
(SAVS36LIBM) command).

REFNBR
Specifies the reference number assigned to
the procedure member.

MRTDLY
Specifies if the termination of the MRT should
delay a configured number of seconds after
the last attached device is released from the
MRT. This attribute is only used by the
system if this procedure is used to start a
MRT that is not a NEP. The delay value can
be displayed using the Display System/36
(DSPS36) command, or changed using the
Change System/36 (CHGS36) command.
You can use the Work with System/36 Envi-
ronment Configuration (WRKS36) command
to display and change the delay value.

Parts of a Procedure

Procedures can contain the following types of
statements:

OCL statements
Used to load and run programs. OCL state-
ments indicate how the System/36 environ-
ment runs the program and uses input and
output devices. Examples of OCL statements
are LOAD, FILE, and RUN.

Procedure control expressions
Control how the procedure is processed.

Procedure commands
Cause other procedures to be run. Examples
of these procedure commands are

 Chapter 16. Programs and Procedures 16-21

COPYDATA and SAVE. You can use proce-
dure commands to run your own procedures.

Utility control statements
Used with System/36 environment utility pro-
grams, to pass information to other utility pro-
grams.

AS/400 CL commands
In the System/36 environment, you can use
AS/400 CL commands. CL commands can
be used in procedures to request AS/400
functions.

Procedures cannot contain operator control com-
mands.

See the System/36 Environment Reference book
for complete information on these statements,
including a list of those System/36 statements
restricted or not supported in the System/36 envi-
ronment.

 Using Procedures

Use procedures to avoid entering several state-
ments each time a job is run. For example, OCL
statements can be included in a procedure. The
collection of statements is stored in a library
member called a procedure member . A proce-
dure member is a member of source physical file
QS36PRC. See Chapter 6, “Libraries,” for infor-
mation about accessing procedure members.

Functions of Procedures: When you use
procedures to run jobs, you can:

� Run several job steps by entering one proce-
dure command. This method eliminates the
repeated entering of OCL statements each
time a job runs.

� Start your jobs from the menu by entering an
option number when you code the procedure
command in a menu.

� Prompt for and pass variables (parameters) to
your jobs.

� Check that the proper values were entered for
the parameters, or make decisions based on
the values entered.

� Code a procedure so it passes data to a
program called by the procedure.

� Change the user-programmable status indi-
cator (UPSI) switches and the local data area
(LDA).

A user program status indicator (UPSI) switch
in the System/36 environment is one of a set of
eight switches that can be set by and passed
between application programs and procedures.

Calling Procedures: Use one of the fol-
lowing methods to call a procedure and specify
data:

 � Procedure-name,library-name data
� // procedure-name,library-name data
� // INCLUDE procedure-name,library-name

data
� A procedure start request sent over a commu-

nications line

Depending on the PGMDTA and MRT attributes of
the procedure, the data specified on the request:

� Is sent as parameters to the procedure. This
method is used when the procedure is a SRT
procedure with a PGMDTA-NO attribute.

If the procedure is a MRT procedure, only
program data (not parameters) is sent, regard-
less of the PGMDTA value.

� Returns as program data on the first input
operation to the requesting display station that
is issued from the next program run by the
procedure. The data is used as program data
whenever the procedure is a SRT procedure
with a PGMDTA-YES attribute, or whenever
the procedure is a MRT procedure.

Procedure Parameters: You can define
parameters in your procedures. Parameters allow
information and variables to be passed to the pro-
cedure. A procedure can have up to 64 parame-
ters, and each parameter can have up to 128
characters.

Parameters passed to procedures are called posi-
tional parameters . Parameters are separated by
commas (,). When a parameter appears in a pro-
cedure command, it must appear in the same
position in relation to other parameters in the pro-
cedure command. That is, each parameter is
assigned a place, such as the first parameter or
the second parameter. If a parameter is omitted,
a comma must still be used to indicate the posi-

16-22 OS/400 System/36 Environment Programming V3R6

tion of the omitted parameter. In the following
example, the second parameter is omitted:

PROCA PARM1,,PARM3

The first and third parameters are separated by
two commas, which indicates that the second
parameter is omitted.

Use substitution expressions to define parameters
in your own procedures. The System/36 Environ-
ment Reference book has more information about
using parameters with procedures.

The following example shows how two parameters
are entered and substituted in a procedure. Pro-
cedure PROCA contains the following statements:

// LOAD PROGRAM1
// FILE NAME-INPUT,LABEL-?1?
// FILE NAME-OUTPUT,LABEL-?2?
// RUN

When you enter the procedure command PROCA
FILE1,FILE2 to start PROCA, the first parameter
(FILE1) and the second parameter (FILE2) are
substituted for the expressions ?1? and ?2? as
shown in the following example:

// LOAD PROGRAM1
// FILE NAME-INPUT,LABEL-FILE1
// FILE NAME-OUTPUT,LABEL-FILE2
// RUN

The substitution is done when the initiator function
processes the procedure. The initiator function is
described in Chapter 18, “Jobs and Job
Processing.”

Procedures with Menus

Application users generally do not need to know
the procedure’s name or parameters because you
supply menus for them. The user selects an
option from a menu and the system runs the pro-
cedure you assigned to the option. The procedure
then loads and runs the program to do the task
that the application user specified.

Calling a Procedure from Another
Procedure

One procedure can call another procedure. A pro-
cedure called by another procedure is a nested
procedure . Use nesting when the same proce-
dure is called several times in a job. The proce-
dure can be entered and stored only once, and
then called as often as necessary.

Deleting a file your program creates is a good
example of using a procedure to call another pro-
cedure. Your procedure can include the DELETE
procedure command. For example:

\ Delete work file FILE1, if it exists
// IF DATAF1-FILE1 DELETE FILE1,F1
\ Run program
// LOAD PROGRAM1
// FILE NAME-FILE1,RECORDS-25ð
// RUN

Considerations for Multiple
Requester Terminal Procedures

You can attach to a MRT program with MRT pro-
cedures. A MRT program allows several
requesting display stations or requesting ICF ses-
sions to attach to one copy of a program at a
time.

You specify a MRT procedure using the Change
System/36 Procedure Attributes (CHGS36PRCA),
the Edit System/36 Procedure Attributes
(EDTS36PRCA), or the Work with System/36 Pro-
cedure Attributes (WRKS36PRCA) CL commands,
or by specifying the MRT parameter of the
$MAINT utility.

If you enter a MRT procedure and the MRT is not
already active, the system processes the OCL
statements in the MRT procedure, including the
LOAD and RUN of the MRT program, as part of
starting the MRT. If you enter a MRT procedure
with the MRT already active, and the number of
requesters using the program is less than the
maximum number of devices that can be attached
to the MRT (MRTMAX), the requester is attached
directly to the MRT program. If the MRT is active
and has reached the maximum number of
requesters, the requester waits for the MRT to
release one of the other requesters.

 Chapter 16. Programs and Procedures 16-23

Consider the following factors when using MRT
procedures:

� Only one LOAD and RUN OCL statement pair
is allowed in a MRT procedure. Also, any
statements that follow the RUN OCL state-
ment are ignored. However, there may be
several MRT job steps in the same job.

� A MRT procedure can be contained in another
procedure, but a MRT procedure cannot
contain another procedure.

� The MRT procedure is interpreted only for the
first requester of the MRT. Once the MRT
program is running, other display stations or
ICF sessions that request to use the MRT
program are attached directly to the MRT
program. Therefore, the OCL statements in a
MRT procedure are not processed for other
requesters.

� The INCLUDE OCL statement, the procedure
command, or the communications procedure
start request that starts a MRT procedure, can
pass data to the MRT program. Also, the pro-
cedure name can be followed by a comma
and the library name. The data to be passed
to the program starts with the first nonblank
character following the blank after the proce-
dure name and ends with the last nonblank
character in the statement. The system
passes the data to the program on the first
input operation for the first requester.

� DATE, FORMS, or MEMBER OCL statements
used in a previous job step do not affect a job
step that runs a MRT program. Instead, the
MRT program uses values specified during
system configuration, at IPL, or in the MRT
procedure.

� Any PRINTER or SYSLIST OCL statement
used in a previous job step has no effect on a
job step that runs a MRT program. Instead,
the MRT program uses the configured system
printer for both program and system list
output.

You may experience problems with RUF started
by a MRT program when break messages appear
on your display before you press the Enter key. A
break message appears when:

� You change a message queue’s delivery
mode to *BREAK using the CHGMSGQ
command.

� The SNDBRKMSG command is used by
another user.

� The work station is attached to a SRT job. If
a break message arrives while the work
station is attached to a MRT program, the
message does not appear until the work
station is released by the MRT program.

When you return from the break message display,
a blank display appears instead of the RUF
display. You are unable to continue. If a MRT is
attempting to read from the display, cancel either
the MRT or the user’s job. If a SRT is attempting
to read from the display, either press the System
Request key and select option 2, or cancel the
user’s job.

To prevent break messages from appearing on
your work station, use the CHGJOB command, as
follows:

CHGJOB BRKMSG(\HOLD)

Break messages that arrive are then saved until
you enter CHGJOB BRKMSG(\NORMAL).

After you enter this command, all saved break
messages appear. Any new break messages are
handled in the usual manner.

For example, the following procedure performs
RUF from a MRT to a SRT:

\ The following MRT writes to and releases
\ the display
// MRTPROC
\ The following program reads from the display
// LOAD SRTPROG
// RUN

To stop the system from displaying break mes-
sages, add the following commands:

\ Break messages will be saved
CHGJOB BRKMSG(\HOLD)
\ The following MRT writes to and releases
\ the display
// MRTPROC
\ The following program reads from the display
// LOAD SRTPROG
// RUN
\ Break messages will be shown
CHGJOB BRKMSG(\NORMAL)

Note: The System/36 environment MSG
command does not cause your session to be
interrupted unless you change your work station

16-24 OS/400 System/36 Environment Programming V3R6

message queue’s delivery mode to *BREAK using
the CHGMSGQ command.

Delaying MRT Termination

When a MRT program that is not a NEP releases
its last attached device, the system checks the
MRTDLY attribute of the MRT procedure to deter-
mine if the MRT should end immediately or delay
termination for a short time, in case a new
requester would like to attach to the MRT.

If the MRTDLY attribute indicates that the MRT
should delay termination, the MRT will wait for the
number of seconds specified for the System/36
environment before giving the program a return
code instructing the program to go to the end of
the program.

If the MRTDLY attribute indicates that the MRT
should not delay termination, the program will
immediately be given a return code instructing it to
go to the end of the program. When the program
ends, the MRT is no longer an active MRT. If
another device requests the MRT, a new MRT is
started.

Initiating and terminating MRTs uses much more
of the system resources than attaching to a MRT
that is already active. Therefore, you may wish to
delay the termination of your often-used MRTs. A
new requester that requests the MRT during the
delay period will attach to the active MRT instead
of starting a new MRT.

A non-NEP MRT with a MRTDLY procedure attri-
bute indicating that the MRT should wait for a new
requester before terminating will stay active longer
than a non-NEP MRT with a MRTDLY procedure
attribute indicating that the MRT should terminate
immediately after releasing its last device.

MRT jobs continue to own system resources, such
as files, during the MRT delay period, which
affects other applications waiting for those
resources.

If you do not want a certain non-NEP MRT to
delay termination after releasing its last device,
use the Change System/36 Procedure Attributes
(CHGS36PRCA) command, the Work with
System/36 Procedure Attributes (WRKS36PRCA)
command, or the Edit System/36 Procedure Attri-

butes (EDTS36PRCA) command to change the
MRTDLY attribute for the MRT procedure. If you
do not want any of your non-NEP MRTs to delay
ending, use the Change System/36 (CHGS36)
command or the Work with System/36 Environ-
ment Configuration (WRKS36) command to
change the System/36 environment MRT delay
value to zero seconds.

Changing the configured MRT Delay value will
affect the termination of all your non-NEP MRTs.
Therefore, you must have security officer authori-
zation to change this value.

Internal Processing of MRT Jobs

When the System/36 environment starts a MRT
job for the first requester of a MRT procedure, the
System/36 environment submits a batch job to job
queue QS36MRT in library QGPL using the job
description QS36MRT in library QGPL. Once the
batch job gets started, the allocation of the
requesting display station or ICF session is moved
from the job that requested to run the MRT proce-
dure to the MRT job. This allows the MRT job to
issue I/O operations to the display station or ICF
session.

If the MRT job is already running when a request
to run the MRT procedure is received, the
System/36 environment only needs to move the
allocation of the display station or ICF session
from the job that requested to run the MRT proce-
dure to the MRT job.

You can use the Work with Active Jobs
(WRKACTJOB) CL command to determine what
MRT jobs are currently running on the system.
MRT jobs are identified by the value MRT in the
Type field of the WRKACTJOB display. For MRT
jobs, the following conditions apply:

� The Subsystem/Job field contains the name of
the MRT procedure.

� The Function field identifies the MRT as a
NEP MRT program or non-NEP MRT. If the
Function field contains NEP, the MRT is a
NEP MRT. If the Function field does not
contain NEP, the MRT is not a NEP MRT.

The Function field also displays the maximum
number of requesters (MRTMAX) and the
current number of requesters. For example, if
the Function field is MRT-2/ 5, this indicates

 Chapter 16. Programs and Procedures 16-25

there are currently 2 requesters of the MRT,
and the MRTMAX value is 5.

The WRKACTJOB CL command also identifies
the jobs (either interactive or ICF) that have been
attached to a MRT. These jobs are identified by
MRT-procedure name in the Function field of the
WRKACTJOB display. For example, if the Func-
tion field is MRT-PAYMRT, the job has moved the
allocation of the display station or ICF session to
the MRT procedure PAYMRT. For jobs that have
been attached to a MRT, the following conditions
apply:

� If the Type field is INT, the Subsystem/Job
field contains the display station name of the
display station that is running a MRT proce-
dure.

� If the Type field is EVK, the Subsystem/Job
field contains the ICF communication device
name of the device that is running a MRT pro-
cedure.

When a MRT job is started the AS/400 Work Man-
agement function sets up the attributes of the job
based on the information in the QS36MRT job
description in library QGPL. Information such as
output priority, output queue, printer device, and
message logging levels are initialized for the MRT
job, based on the information in the QS36MRT job
description. You can change the QS36MRT job
description with the Change Job Description
(CHGJOBD) CL command to change the attri-
butes of all MRT jobs. You can use the Change
Job (CHGJOB) CL command in a MRT procedure
to change the attributes of a single MRT job. For
example, you can specify LOG(4 0 *SECLVL) for
the keyword on the CHGJOBD or CHGJOB
command to create a job log for a MRT job.
However, the following values are not taken from
the QS36MRT job description:

Job queue
Job queue QS36MRT in library QGPL will
always be used for MRT jobs.

Routing data
Routing data of QS36MRT will always be
specified for MRT jobs.

 Designing Procedures

The following sections introduce several topics
you should consider when you are creating proce-
dures.

Naming a Procedure

Assign meaningful names to your procedures to
make them easier to remember and use. For
example, if your accounting procedures begin with
ACC or ACCT, use ACCTPAY for your accounts
payable application and ACCTREC for your accounts
receivable application.

Naming Conventions: A procedure name can
be up to 8 characters long, and must begin with
an alphabetic character (uppercase A through Z,
#, $, or @). The remaining characters can be any
combination of alphanumeric and special charac-
ters, except DIR, SYSTEM, NEW, or ALL.

Avoid using the following characters in member
names since they have special meanings in proce-
dures: comma (,), apostrophe ('), question mark
(?), slash (/), greater than sign (>), equals sign
(=), plus sign (+), period (.), and hyphen (-). Do
not use names that begin with Q because the
system creates procedures with these names.

Procedure Performance and
Coding Techniques

This section describes techniques you can use to
help improve the performance of your procedures.
The System/36 Environment Reference book has
more information.

� Use GOTO and TAG statements rather than
several IF expressions. IF expressions in the
System/36 environment are expressions within
a procedure that are used to test for a condi-
tion. Use one IF expression and a GOTO
expression to reduce the time needed to eval-
uate several IF expressions. The statements
skipped by the GOTO and TAG expressions
are not processed.

� Use ELSE statements if you have more than
one IF expression and only one of the
expressions can be true. All ELSE statements
are skipped after a true IF or a false IFF
expression.

16-26 OS/400 System/36 Environment Programming V3R6

� Combine IF expressions when possible. The
remainder of a statement is not processed
after a false condition.

� Do not use the informational message (// *)
statement to display prompting messages
(such as ENTER MEMBER NAME or ENTER LIBRARY
NAME). Use the PROMPT OCL statement and
a display format instead. More information
can be displayed, thus requiring fewer I/O
operations.

� After you have tested your procedures, stop
the logging of OCL statements to the job log.
You may need to have the OCL statements
only logged when you are creating and testing
your procedure.

� If you have many comments in your proce-
dure, you should put a RETURN statement at
the end of the procedure and put your com-
ments after the RETURN. That way the
system processes the RETURN statement
and your comments are not processed (thus
saving the amount of time the system would
otherwise use to read the comments).

� Use your own libraries for your applications.
Run procedures and programs from a library
other than the system library (#LIBRARY).

The OS/400 program always searches the
current library first, and if the member is not
found, it then searches #LIBRARY.

� Use IF conditional expressions to avoid having
the system operator respond to an informa-
tional message when a procedure is sent to
the job queue when the procedure is started
by the EVOKE OCL statement, or an
OS/400-ICF procedure start request.

Programming Considerations for
Procedures

The following sections describe the procedures
that create, change, list, control, and debug proce-
dures.

Creating or Changing Procedures:
When you create procedure library members, the
source physical file containing the procedure must
be QS36PRC.

Enter procedures into a library using the program-
ming development manager (PDM) or source

entry utility (SEU). PDM is described in the
ADTS/400: Programming Development Manager
book. SEU is described in the ADTS/400: Source
Entry Utility book.

Also, use the $MAINT utility to create and copy
procedures into a library. The $MAINT utility is
described in the System/36 Environment Refer-
ence book.

PDM and SEU allow you to change lines in a pro-
cedure and store those changes. The $MAINT
utility allows you to create procedure members
only. If you want to change a line in the proce-
dure, you must enter the entire procedure again.

The $MAINT utility, the Change System/36 Proce-
dure Attributes (CHGS36PRCA) CL command, the
Work with System/36 Procedure Attributes
(WRKS36PRCA) CL command, or the Edit
System/36 Procedure Attributes (EDTS36PRCA)
CL commands allow you to specify the procedure
attributes, described in “Procedure Attributes” on
page 16-21.

Listing Procedures: Use the LISTLIBR pro-
cedure, PDM, or SEU to list a procedure. The
LISTLIBR procedure is described in the System/36
Environment Reference book.

Controlling How a Procedure Runs:
You control how a procedure runs by using proce-
dure control expressions . These expressions
allow you to do the following:

� Create variables in procedures using substi-
tution expressions including the following:

– Value entered for a parameter
– A return code set by system programs

called by your procedure
– Current or session library
– Date and time
– Information in the local data area

 – Session printer
– System list device
– Requesting display station’s ID

� Test a value and process a statement using
the IF statement. For example, you can test
the following:

– The value of a parameter for equal to or
greater than

– Whether a procedure is currently running

 Chapter 16. Programs and Procedures 16-27

– Whether a file or library is on disk
– Whether a file is on diskette
– Whether a job is being run from the job

queue or is evoked
– Whether the maximum number of display

stations is using a MRT program
– Whether a library member exists in a

library
– The security classification of an operator
– The volume ID of a diskette

� Display messages to the application users
using the // * (informational message) state-
ment or to the system operator using the // **
(console message) statement.

� End an entire procedure using the CANCEL
statement, or end a procedure level using the
RETURN statement.

� Use the EVALUATE statement to do the fol-
lowing:

– Assign values to parameters.
– Add, subtract, multiply, and divide

numbers.
– Determine the value of substitution

expressions.
– Set the job return code.

� Branch to statements in a procedure using the
GOTO and TAG statements.

� Temporarily stop the running of a procedure
and display a message using the PAUSE
statement.

� Start another procedure, or start the same
procedure again using the RESET statement.

The procedure control expressions are described
in the System/36 Environment Reference book.

Debugging Procedures: The following par-
agraphs describe OCL statements and CL com-
mands that can help you debug your procedures:

DEBUG OCL Statement: With the DEBUG OCL
statement, you can trace the logic flow of your
procedures. It shows each level of substitution
expression evaluation. The output is listed on the
system list device and logged to the job log. Also,
you can temporarily stop the running of a proce-
dure between job steps.

LOG OCL Statement: With the LOG OCL state-
ment, you can have the statements that are pro-
cessed in your procedures logged to the job log.

You can then display or print the job log to deter-
mine the statements that were run.

DSPJOBLOG CL Command: The Display Job
Log (DSPJOBLOG) CL command displays the
contents of the job log.

Job Log and Procedure Processing:
The system automatically logs each statement
processed in a procedure to the job log unless:

� You specified that statements were not to be
logged with the Change System/36 Procedure
Attributes (CHGS36PRCA), Work with
System/36 Procedure Attributes
(WRKS36PRCA), or the Edit System/36 Pro-
cedure attributes (EDTS36PRCA) CL com-
mands.

� You use the LOG OCL statement to turn off
statement logging. The LOG OCL statement
controls whether the statements in a proce-
dure are logged to the job log. The LOG OCL
statement overrides the logging indicator
specified in the procedure member.

The LOG statement affects only the logging of
OCL statements to the job log. Other items,
such as messages and job information are not
affected by using the LOG OCL statement.

� The procedure is IBM-supplied.

Note: All IBM procedures have a default of
NOLOG. You can log IBM-supplied procedures to
the job log the way user procedures are logged.

Logging requires that system-processed OCL
statements are written to the job log. This tech-
nique can increase the number of disk write oper-
ations and affect performance. You should log
OCL to job log only when you first create your
procedure members and are testing them to see if
they are working correctly.

In addition to the LOG OCL statement and the
procedure attributes, there is a setting for the
entire job or session which controls how much
information is written to the job log and whether
the job log is produced when the job or session
ends. This setting is taken from the LOG value of
the job description that is used for the job. It is
changed with the LOG parameter of the CHGJOB
CL command for a job that is currently running.

16-28 OS/400 System/36 Environment Programming V3R6

Calling Multiple Requester Terminal
Procedures: When a non-MRT procedure
calls a MRT procedure, you can have the
non-MRT procedure check whether the maximum
number of requesters is already attached to a
MRT program. For example, the following
non-MRT procedure uses the IF procedure control
expression and the MRTMAX conditional
expression:

\ Test for the maximum number
// IF MRTMAX-ORDENT GOTO TOOMANY
\
\ Number of requesters is less than the maximum,
\ call ORDENT (which is a MRT procedure)
ORDENT
// RETURN (End this procedure)
\
// TAG TOOMANY (Maximum requesters already using ORDENT)
// \ 'Too many people are running order entry.'
// \ 'Canceling the procedure, try again later.'
// PAUSE
// RETURN (End this procedure)

The following figure shows how the procedure
ORDENT is called:

RSLW045-0

Next OCL
Statement

MRT
Program

End of MRT Program

Call MRT
Procedure

Non-MRT Procedure ORDENT
MRT Procedure

Moving from System/36 to the
System/36 Environment

The migration utility creates display and ICF files
with a default value for the maximum number of
devices that can use the files. The value for the
maximum number of devices must be the largest
number of devices used by any program that uses
this file. This maximum number of devices should
include requester and acquired devices. You may
need to change this value for your display and ICF
files based on the number of display stations and
ICF sessions that use the files.

When you create a display file with the FORMAT
procedure or Create System/36 Display File
(CRTS36DSPF) CL command, the system uses

the MAXDEV attribute of the source member.
When multiple source members are used to create
a display file, the system uses the MAXDEV attri-
bute of the first source member. If the MAXDEV
attribute is not set, or if a SFGR source member is
not used, the system assumes a value of five.
For more information about the MAXDEV param-
eter, see “MAXDEV Value” on page 16-2.

After migration, you can use the Change Display
File (CHGDSPF) command to change the
MAXDEV value of the display file. Use the
Change System/36 Source Attributes
(CHGS36SRCA) command, Work with System/36
Source Attributes (WRKS36SRCA) command, or
the Edit System/36 Source Attributes
(EDTS36SRCA) command to set the MAXDEV
value in the source member containing the SFGR
source used to create a display file. You can then
create or recreate the display file, using the speci-
fied MAXDEV attribute saved in the source
member, and do not have to use the CHGDSPF
command whenever the file is created from the
SFGR source, when the SFGR source member
has the correct MAXDEV value for its source attri-
butes. For ICF files, you can use the Change ICF
File (CHGICFF) command to change the
MAXPGMDEV value.

Notes:

1. Do not set MAXDEV to a number larger than
necessary because this adversely affects
storage and performance.

2. On System/36, MRT and SRT programs could
access the local data area (LDA) of almost
any device on the system. In the System/36
environment, MRT and SRT programs can
only access the LDA of devices attached to
the program.

Be aware of the following differences between
System/36 and the AS/400 system when using the
Dup key:

 � On System/36:

– Pressing the Dup key in an alphanumeric
field returns a X'1C' to the application
program.

– Pressing the Dup key in a numeric field
returns a X'FC' to the application
program.

� On the AS/400 system:

 Chapter 16. Programs and Procedures 16-29

– Pressing the Dup key in an alphanumeric
field returns a X'1C' to the application
program (as is done on System/36).

– Pressing the Dup key in a numeric field
returns a X'F0' to the application
program (this is different from System/36).

� If an application needs to process a Dup key
in a numeric field, the application program
needs to be changed to:

– Define a character field over the numeric
field.

– Check the character view of the field for
X'1C'.

16-30 OS/400 System/36 Environment Programming V3R6

Chapter 17. Mixing System/36 Environment and AS/400
Functions

An application that is migrated from a System/36
to the System/36 environment of the AS/400
system is called a System/36 application .
System/36 applications use some of the following
System/36 functions:

� Procedures that are made up of operation
control language (OCL) statements and proce-
dure control expressions (PCE)

� References to the System/36 utilities, such as
$COPY, $DELETE, and so on

� High-level language programs

� References to System/36 utility programs such
as SORT, DFU, and so on

� Message load members

� Screen Format Generator (SFGR) display
formats

 � Program-defined files

You can change these migrated applications to
use AS/400 functions called mixed mode appli-
cations . The following is partial list of AS/400
functions:

� Control language (CL) commands
 � CL programs
� AS/400 high-level language programs
� AS/400 licensed programs such as Query/400

and DFU
 � Message files
� Data description specifications (DDS) display

files
� Externally described files
� Database functions such as data recovery,

transaction recovery, and access path
recovery

You may change System/36 applications to use
AS/400 functions for one or more of the following
reasons:

� To support System/36 assembler subroutines
that must be rewritten in an AS/400 high-level
language. For more information on rewriting
System/36 assembler subroutines, refer to the
System/36 Assembler Conversion Newsletter.

� To add new functions that are available only
as AS/400 functions.

� To enhance the application itself.

� To improve maintainability.

� To convert a System/36 application to an
AS/400 application.

You can gradually change a System/36 application
to a mixed mode application, and eventually to an
AS/400 application. The changed application can
contain a mixture of System/36 environment func-
tions and AS/400 functions all running within the
System/36 environment of the AS/400 system. An
application that has been changed to use AS/400
functions can no longer run on a System/36.

When you start mixing System/36 environment
functions and AS/400 functions within the same
application, there is a set of rules you must follow.
These rules, including using AS/400 CL com-
mands, program control, and file processing in the
System/36 environment, are discussed in the fol-
lowing sections.

Using AS/400 Architectural
Features in System/36 Programs

System/36 applications have access to many of
the architectural features of the AS/400 system
that do not exist on System/36. For example:

� A program written in one language can call
and pass parameters to a program written in
the same language or a different language on
the AS/400 system. There is no practical limit
to the number of such programs that may be
called.

� AS/400 CL commands may be intermixed
among OCL statements in System/36 proce-
dures.

In general, System/36 environment users have
access to the best of both architectures.
However, some of the architectural restrictions of
System/36 remain. For example, System/36 does
not allow recursive System/36 jobs, and this
restriction has been retained within the System/36
environment of the AS/400 system. Two exam-

 Copyright IBM Corp. 1995 17-1

ples of the effect of this restriction are the fol-
lowing:

� On System/36 the system does not display a
command line to the user once a procedure is
running. Because of this, users cannot be
running a procedure, request a command line,
and run a second procedure. On the AS/400
system, the System/36 environment allows
command lines to be presented to the user
while a procedure is running. The System/36
environment allows AS/400 functions to be
requested from this command line but does
not allow System/36 environment functions
(for example, procedures, OCL statements,
operator control commands, and so on) to be
entered.

� The AS/400 system provides support for a CL
command (STRS36PRC) that starts a
System/36 procedure. The System/36 envi-
ronment provides support for running AS/400
CL commands from a System/36 procedure,
either directly or from a CL program that may
be called either by a CL CALL command or
by a LOAD or RUN OCL statement.
However, the STRS36PRC command may not
be run from within a procedure, because this
would attempt to start a System/36 job from
within a System/36 job.

Using AS/400 CL Commands in
the System/36 Environment

AS/400 CL commands can be processed in the
System/36 environment. You can enter CL com-
mands on the command line of a menu, from the
System/36 Command Entry display, or from a pro-
cedure. A CL command can be used in the
System/36 environment if the command is valid in
the environment in which it is running (batch or
interactive). Commands that are allowed only in a
CL program (DCL, MONMSG, or RTVJOBA) and
commands that are valid only in a batch job
stream (BCHJOB, DATA, or ENDBCHJOB) cannot
be processed in the System/36 environment.

The System/36 environment first checks a state-
ment to determine whether it is a valid System/36
OCL statement or command. If not, the statement
is processed as a CL command. If you want to
process a CL command that has the same name
as a System/36 procedure or command, you must

enter a command label or a library qualifier on the
command line to prevent the command from being
processed as a System/36 statement.

The following examples show how a statement
that uses the name CMD1 is processed when you
have a System/36 procedure and a CL command
that are named CMD1:

CMD1 [parameters]
Process the System/36 procedure.

CMD1,USERLIB [parameters]
Process the System/36 procedure from library
USERLIB.

A:CMD1 [parameters]
Process the CL command.

?CMD1 [parameters]
Process the CL command with prompting.

*LIBL/CMD1 [parameters]
Process the CL command.

USERLIB/CMD1 [parameters]
Process the CL command from library
USERLIB.

Note: If you type the *LIBL/CMD1 CL command,
make sure the asterisk is not in column 1. An
asterisk in column 1 is interpreted as a comment
by the System/36 environment. Therefore, the
statement is ignored.

Entering AS/400 CL Commands
Interactively

You can type a CL command on the command
line of a menu or on the System/36 Command
Entry display. To prompt for the command, press
PF4 or type a question mark in front of the
command name. When you are in the System/36
environment, statements typed interactively are in
uppercase. If you type lowercase characters on
the prompt display and enclose the characters in
quotation marks, they are processed as lowercase
characters.

You can type CL commands either before or
mixed with the OCL statements for a job step. CL
commands cannot be entered when source or
utility control statements are expected. For
example, if you type the following OCL state-
ments:

// LOAD $MAINT
// RUN

17-2 OS/400 System/36 Environment Programming V3R6

you can type only utility control statements that
are valid for the $MAINT utility program until the
job step is either canceled or ended with a // END
statement.

Handling Errors on CL Commands: If a
CL command entered interactively in the
System/36 environment ends with an exception, it
is handled differently depending on whether a
System/36 job step is active. A System/36 job
step becomes active when you start entering OCL
statements and remains active until the job step is
canceled or the program specified on the // LOAD
statements ends.

If you enter a CL command when a System/36 job
step is not active, the job ends in an error, an
error message is displayed at the bottom of the
display, and the command remains on the
command line.

If you enter a CL command when a System/36 job
step is active, and the job ends in an error, a
System/36 halt is issued. You can select option 0
to ignore the error and continue entering state-
ments for the job step, or option 3 to cancel the
job step.

Adding AS/400 CL Commands to
System/36 Procedures

You can use CL commands in procedures, and
generally wherever an OCL statement is valid.
AS/400 commands are not allowed where a utility
control statement or source statement is required
(after a // RUN and before a // END or /*).

Note: If a CL command, issued during a proce-
dure, requires a file it is processing to be closed,
the System/36 environment closes the automatic
shared open for the file. If the file (or member) is
deleted, renamed, moved or restored by the CL
command, the System/36 environment removes
any // FILE statements for the file (or member).
Any locks that were held through these // FILE
statements are released. If a job file is renamed,
moved, or restored by a CL command, the
System/36 environment will not release the disk
space occupied by the job file when the job ends.
The System/36 environment will not close an auto-
matic shared open of an alternative indexed or
logical file which is based on the file being pro-
cessed by the CL command. See “Shared File

Opens within the Same Job” on page 7-37 for
more information.

Syntax of CL Commands in Proce-
dures: CL commands in a procedure must
have a valid syntax after any procedure control
expressions or substitution expressions are pro-
cessed. CL command syntax is described in the
CL Reference book.

You can enter a question mark on a CL command
to cause the command to be prompted, but only in
an interactive job. An error occurs if prompting is
requested for a command running in a batch job.

If a CL command requires more than one line in
the procedure, it can be continued with a plus sign
(+). The minus sign (−) is not valid as a continua-
tion character for commands entered in a proce-
dure.

Unlike OCL statements, it is not possible to condi-
tion parts of a CL command by placing each part
on a separate line with a comma continuation
character. If you want to condition part of a CL
command, you can do so by setting a procedure
parameter to either a null value or to the value to
be included on the command.

The System/36 environment allows a number of
special characters in names. The AS/400 system
requires that names that contain special charac-
ters be enclosed in quotation marks ("). When
you specify a name that contains special charac-
ters on a System/36 statement, you do not specify
the quotation marks. When you specify a name
that contains special characters on a CL
command, you must specify the quotation marks.
You may also specify quotation marks for a name
that does not contain special characters; in this
case, the quotation marks are ignored. The
AS/400 naming rules are described in the CL Ref-
erence book.

This is shown in the examples below. The fol-
lowing two statements set the current library to be
a library named "AB%CD". The quotation marks
are not specified on the // LIBRARY OCL state-
ment, but are added by the System/36 environ-
ment to create a correct AS/400 name.

// LIBRARY NAME-AB%CD
CHGCURLIB CURLIB("AB%CD")

 Chapter 17. Mixing System/36 Environment and AS/400 Functions 17-3

The following three statements all delete a file
named ABC. Because ABC is a valid name, the
quotation marks are ignored in the third statement.

DELETE ABC,F1
DLTF FILE(ABC)
DLTF FILE("ABC")

If your installation uses special characters in
names, it is recommended that you put quotation
marks around a substitution expression used as a
name on a CL command. This ensures that the
name is valid if the substitution expression con-
tains special characters. Quotation marks are not
included in the value of a substitution expression
that returns the name of an object. For example,
if the current library is named "AB%CD", the
?CLIB? substitution expression returns the value
AB%CD.

In the following example, an error occurs if either
the files library name or parameter number 1 con-
tains special characters:

CLRPFM FILE(?FLIB?/F?1?) MBR(\LAST)

The next example shows how this statement can
be changed to work correctly if either value con-
tains special characters.

CLRPFM FILE("?FLIB?"/"F?1?") MBR(\LAST)

Quotation marks are not removed from substi-
tution expressions that return the value of a posi-
tional parameter or retrieve a value from a
message member or the local data area. In the
following example, positional parameter 1 is set to
a value with quotation marks. This value is then
used on a CL command to set the current library
name.

// EVALUATE P1="AB%CD"
CHGCURLIB CURLIB(?1?) Sets current library to "AB%CD"
SLIB ?1? Error because quoted name not

allowed on System/36 statement.

Substitution Expressions on CL Com-
mands: To facilitate mixing OCL statements
and CL commands in a procedure, you can use
System/36 substitution expressions on any part of
a CL command, including the command name and
keyword names. In addition, new substitution
expressions have been added to the System/36
environment to assist the programmer who wants
to add CL commands to a procedure. The substi-
tution expressions allow a programmer to:

� Determine the name of the System/36 envi-
ronment files library (?FLIB? substitution
expression).

� Determine whether a message was issued by
a CL command (?MSGID? substitution
expression).

� Determine the AS/400 10-character device
name of a System/36 environment 2-character
device name (?DEV'unit'? substitution
expression).

Use the following statement in a System/36
environment procedure to store the AS/400
10-character device name used for the
System/36 environment 2-character device
name for printer P1 in the local data area:

// LOCAL OFFSET-1,DATA-'?DEV'P1'?',AREA-USER

For more information on the ?DEV'unit'? substi-
tution statement, see the System/36 Environment
Reference book. This book also has information
on using substitution expressions and CL com-
mands in procedures.

All substitution expressions on a CL command are
processed before the command is processed.
This means that it is not possible to use a CL
command to modify the value of a positional
parameter. For example, the following statement
can be used to call a program and pass the value
of positional parameter 1 to the program.
However, if the program changes the value of the
parameter passed to it, the change is not reflected
in the value of the positional parameter.

CALL PGM(PGM1) PARM('?1?')

Use the IBM-supplied program QEXCVTDV to
convert device names, as described in the
System/36 Environment Reference book.

Handling Errors on CL Commands in
Procedures: Handling errors on CL com-
mands in a procedure is controlled by the default
message action set in the System/36 environment
configuration and by the CHGS36MSGL
command. The initial setting of the default
message action is to issue a halt message with
options 0 and 3 allowed. You can use the
CHGS36MSGL command to change the default
message action for that job. The System/36 Envi-
ronment Reference book has more information on
using the CHGS36MSGL command.

17-4 OS/400 System/36 Environment Programming V3R6

When you use a CL command in a procedure, you
should determine which action should be per-
formed for any escape message sent by the
command and ensure that errors are not ignored
when they should be handled. You can use the
CHGS36MSGL command to control processing for
errors, or test the ?MSGID? substitution
expression to determine whether an error occurred
on a command.

Program Control in the
System/36 Environment

This section discusses giving control to both
System/36 programs and AS/400 programs that
are to run in the System/36 environment.

In general, each System/36 and AS/400 program
follows the rules defined for the language in which
it is written.

For example, the default data types are not
always the same. The default for numeric data in
RPG II is zoned decimal, but in RPG III the
default is packed decimal. When a System/36
program and an AS/400 program are passing
parameters to each other or accessing the same
data, you must ensure that the programs process
the data correctly according to their respective
rules.

// LOAD and // RUN OCL
Statements

As on System/36, a job step in the System/36
environment begins when the // LOAD OCL state-
ment is run and ends when the program specified
on the // LOAD OCL statement completes. The
program that is running, as well as any other pro-
grams called either directly or indirectly from that
program, are all considered to be running under
the control of a // RUN OCL statement. All
System/36 and AS/400 programs that run under
the control of a // RUN OCL statement are consid-
ered part of a System/36 application. Any pro-
grams given control in the System/36 environment
that do not run under the control of a // RUN OCL
statement are considered part of an AS/400 appli-
cation running in a System/36 environment.

For specific information on a particular language,
refer to the manual for that language.

If you plan to mix System/36 programs and
AS/400 programs within the same application, you
need to understand how the programs run and
interact with each other, as well as how they
interact with System/36 environment and AS/400
system functions, in terms of using System/36
rules and AS/400 rules. These rules are dis-
cussed throughout this chapter.

The initial program of a System/36 environment
job step, which may be either a System/36
program or an AS/400 program, should be called
by a // LOAD and // RUN pair of OCL statements.
The // LOAD and // RUN pair allows the
System/36 environment to recognize the program
as running in a System/36 job step. The
System/36 environment allows System/36-like pro-
cessing to occur for functions other than the
program itself, such as OCL statements that take
effect when either the // LOAD or // RUN is pro-
cessed. The program itself runs according to the
rules of the language in which it is written. For
example, a System/36 program may begin with an
input operation to the display station from which
the user signed on, whereas an AS/400 program
cannot issue an input operation until either the
same program or another program sharing the
same file has issued an output operation to the
device. If the top-level program is not called by a
// LOAD and // RUN pair, then it is considered to
be an AS/400 application running in a System/36
environment job, and none of the special pro-
cessing takes place.

Other programs needed in the System/36 environ-
ment application job step should be given control
through the use of the high-level languages’
external call instructions.

// LOAD Time Processing: When a
// LOAD OCL statement is processed by the
System/36 environment, the following actions
occur:

1. A search is done for the program that is
referred to on the // LOAD OCL statement.

The libraries that are searched are controlled
by the following:

� If a library was specified on the // LOAD
statement, that library is searched first,
then #LIBRARY, and finally the libraries in

 Chapter 17. Mixing System/36 Environment and AS/400 Functions 17-5

the user portion of the library list are
searched.

� If a library was not specified on the
// LOAD statement, the current library is
searched first, then #LIBRARY, and finally
the libraries in the user portion of the
library list are searched.

If the program is not found, processing is
ended and a message is issued stating the
program on the // LOAD statement was not
found.

If the program is found, the address of the
program is saved and processing continues.

2. The program attributes are read and saved.
These attributes indicate to the System/36
environment how this program should be run.
Some of these attributes are:

� Whether the program is a multiple
requester terminal (MRT) program

� Whether the program is a never-ending
program (NEP)

� Whether the program handles inline data

If a program is given control by another program
that is running under the control of the // RUN
statement (a call statement), the program attri-
butes are searched for and read as if this program
was on a // LOAD statement.

The program specified on the // LOAD statement,
or the program that is given control by a program
specified on a // LOAD statement, can be a
System/36 program or an AS/400 program.

Note: A CALL CL command should never be
used to give control to a System/36 program,

because none of the extra System/36 processing
is performed when the // LOAD statement is run.
A CALL CL command can be used to give control
to an AS/400 program, but this should be avoided
when running in the System/36 environment. The
program that is called is considered part of an
AS/400 application, and none of the special
System/36 processing is done.

// RUN Time Processing: When a // RUN
OCL statement is processed by the System/36
environment, the following actions occur:

1. Existing database files referred to by // FILE
OCL statements within the job step are allo-
cated (locked).

2. The work station referred to by // WORKSTN
OCL statements within the job step is allo-
cated (locked).

3. Performs override function.

Information gathered from OCL statements
previously processed within the job step is
used to build the override commands. The
override commands insure that information
provided on the OCL statements is used by
the system when the file or device is opened.
The following tables list OCL statements and
parameters, and the corresponding override
commands and parameters:

OCL
Statement Override CL Command

// FILE for disk Override Database File
(OVRDBF) command

 NAME– FILE()

 LABEL– TOFILE() MBR()

17-6 OS/400 System/36 Environment Programming V3R6

OCL
Statement Override CL Command

OCL
Statement Override CL Command

// SESSION Override Intersystem Commu-
nications Function Device
Entry (OVRICFDEVE)
command

// PRINTER Override Printer File
(OVRPRTF) command

 NAME– FILE()

 DEVICE– DEV()
 LOCATION– RMTLOCNAME()

 LINES– PAGESIZE(length *N)
 SYMID– PGMDEV()

 LPI– LPI()
 LWSID– DEV()

 CPI– CPI()
 GROUP– MODE()

 FORMS– FORMTYPE()
 APPLID– APPID()

 ALIGN–YES ALIGN(*YES)
 BATCH– BATCH()

 ALIGN–NO ALIGN(*NO)
 HOSTNAME– HOST()

 SPOOL–YES SPOOL(*YES)
 FMHI–YES HDRPROC(*USER)

 SPOOL–NO SPOOL(*NO)
DFRWRT(*NO) FMHI–NO HDRPROC(*SYS)

 MSGPROT– MSGPTC() COPIES– COPIES()
 RECSEP– BLOCK() CONTINUE– SHARE()
 BLKL– BLKLEN() PRIORITY–0 HOLD(*YES) OUTPTY(7)
 RECL– RCDLEN() DEFER–YES SCHEDULE(*FILEEND)
 TRANSP– TRNSPY() HOLD–YES SAVE(*YES)
 PARTNER–NORM RMTBSCEL(*YES) HOLD–NO SAVE(*NO)
 PARTNER–ATTR RMTBSCEL(*NO) IGCCPI–5 IGCCPI(5)
 BLANK–C DTACPR(*YES) IGCCPI–6.7 IGCCPI(*CONDENSED)
 BLANK–T TRUNC(*YES) SOSI–NORMAL IGCSOSI(*YES)
 SWTYP–AC INLCNN(*DIAL) SOSI–SHIFT IGCSOSI(*RIGHT)
 SWTYP–MC INLCNN(*DIAL) SOSI–DROP IGCSOSI(*NO)
 SWTYP–AA INLCNN(*ANS) TYPE–IGC IGCDTA(*YES)
 SWTYP–MA INLCNN(*ANS) EXTN–OFF IGCEXNCHR(*NO)

 JUSTIFY– JUSTIFY()

 FONT– (HEX) FONT((DECIMAL) *NONE)

 DRAWER– DRAWER()

 DRAWER–3 DRAWER(*E1)

 ROTATE– PAGRTT()

 TEXT–YES PRTQLTY(*NLQ)

 TEXT–NO PRTQLTY(*DRAFT)

 EOFMSG–YES FORMFEED(*CONT)

 EOFMSG–NO FORMFEED(*CUT)

 Chapter 17. Mixing System/36 Environment and AS/400 Functions 17-7

Note: The override of a printer file is always
run regardless of whether a // PRINTER OCL
statement is specified for the job step. If a
// PRINTER OCL statement is not specified,
the information for the session printer is used
for the override.

4. The program specified on the // LOAD state-
ments is called to begin running.

5. After the program specified on the // LOAD
statement has completed, cleanup for this job
step is done. This may consist of deleting
files with RETAIN-S specified in a // FILE
OCL statement or deallocating (unlocking)
files that were allocated earlier.

Note: If a program running in the System/36
environment was given control with a CALL CL
command rather than a // LOAD and // RUN pair
of OCL statements, none of the special System/36
processing is done.

High-Level Language CALL
Statement

The CALL statement in high-level languages is
used to transfer control from one program to an
other program. The program that transfers control
is a calling program . The program that receives
control from the calling program is a called
program .

A program written in one language can call and
pass parameters to a program written in the same
language or in a different language. The pro-
grams can be System/36 programs, AS/400 pro-

grams, or a combination of both types of
programs. Each program follows the rules of the
language in which it is written. For language-
specific information, refer to the specific language
manual.

If the called program is going to do any
input/output (I/O) operations, and that called
program is a System/36 program, the file must be
referred to on a // FILE OCL statement when the
initial program in the job step is loaded.

If the called program doing the I/O is an AS/400
program and the name of the file in the program
and on the disk are the same, a // FILE OCL
statement is not necessary to process the file. If
the name in the program and on the disk are not
the same, a // FILE OCL statement is required
when the initial program in the job step is loaded.

The search order for a called program in the
System/36 environment is the same as the
program that was initially loaded.

� If a library was specified on the // LOAD
statement, that library is searched first, then
#LIBRARY, and finally the libraries in the user
portion of the library list are searched.

� If a library was not specified on the // LOAD
statement, the current library is searched first,
then #LIBRARY, and finally the libraries in the
user portion of the library list are searched.

File Processing in System/36
Environment

This section discusses how the various files used
in an application are processed when that applica-
tion is running in the System/36 environment.
Database files, printer files, display files, commu-
nication files, and other device files are covered.

 Database Files

System/36 programs (for example, RPG II) must
have a // FILE statement for each database file
used within the program, and the entire // FILE
statement is used to provide database support for
the program. For AS/400 programs within the
application (for example, RPG III), the // FILE
statement is optional. If a // FILE statement is
specified, all of the parameters are used, except

OCL
Statement Override CL Command

// SYSLIST for
printer

Override Printer File
(OVRPRTF) command

 PRINTER/printer id DEV()

 NOEXTN IGCEXNCHR(*NO)

OCL
Statement Override CL Command

// WORKSTN Override Display File
(OVRDSPF) command

 UNIT– DEV()

 EXTN–ON IGCEXNCHR(*YES)

 EXTN–OFF IGCEXNCHR(*NO)

17-8 OS/400 System/36 Environment Programming V3R6

for dynamic file creation (DISP-NEW) and
load-to-old (DISP-OLD).

For more information about using System/36 envi-
ronment and AS/400 files, see Chapter 7, “Files.”

 File Processing

Database support in a System/36 program fol-
lowed by an AS/400 program: For database
support, the following conditions apply.

Note: Throughout this section, unless specifically
noted otherwise, the term open options refers to
the open options of input, output, and update, as
well as the attributes of key feedback, arrival
sequence, file-dependent I/O, and sequential-only
processing.

� A // FILE statement is needed for each data-
base file referred to by the System/36
program.

� The database files opened in the System/36
program are always shared when opened,
except for files with DISP-OLD and all data-
base files opened in a MRT program, for
which the determination as to whether they
are opened shared is based on AS/400 rules.
See the DB2 for OS/400 Database Program-
ming book for more information on sharing
database files in the same job. If there are
two separate job steps, these files are kept
open until the System/36 environment deter-
mines whether there is a // FILE statement
that refers to them for the next job step.

� A // FILE statement is optional for each data-
base file referred to by the AS/400 program.
If there are two separate job steps, any data-
base file that does not have a // FILE state-
ment applicable for the AS/400 job step is
closed.

If there are two separate job steps using a
database file from the System/36 program that
is kept open for the AS/400 job step:

– If the AS/400 program opens the shared
file and all of the open options are the
same, the AS/400 program starts pro-
cessing at the beginning of the file.

– If the AS/400 program opens a file that is
not shared, or is shared but with different
options, then the AS/400 program gets a
new open of the file, and if the open

options are in conflict with each other, the
file left open from the System/36 program
is closed.

In the example with the System/36 program
calling the AS/400 program, and both pro-
grams opening the same database file:

– If the AS/400 program opens the shared
file, the AS/400 program starts processing
the file at the point the files share (for
example, the two programs share the
cursor), regardless of whether the open
options are the same.

Note: If the System/36 program is a
MRT program or opens the database file
as DISP-OLD, then the System/36
program does not necessarily do a shared
open, because the determination as to
whether the open is shared is based on
the AS/400 rules. If the file in the
System/36 program is opened shared,
then the information above applies. If the
file in the System/36 program is not
opened shared, then the AS/400 program
processes the file according to AS/400
rules.

– If the AS/400 program opens a file that is
not shared, then the AS/400 program
receives a new open of the file, and that
file is not kept open for succeeding job
steps.

Database support in an AS/400 program fol-
lowed by a System/36 program: For database
support, the following conditions apply:

� A // FILE statement is optional for each data-
base file referred to by the AS/400 program.

� Database files opened in the AS/400 program
are not kept open across job steps. There-
fore, if there are two separate job steps, data-
base files opened in the AS/400 program are
not open when the System/36 program is
called.

� A // FILE statement is required for each data-
base file referred to by the System/36
program. Each database file opened by the
System/36 program is shared when opened,
except for those with DISP-OLD and all data-
base files in a MRT program, for which the
determination as to whether they are opened
shared is based on AS/400 rules.

 Chapter 17. Mixing System/36 Environment and AS/400 Functions 17-9

� When the AS/400 program calls the
System/36 program, the System/36 program
starts processing the file at the point where
the AS/400 program left off (as if AS/400
operations had occurred in the System/36
program) if a database file in the System/36
program is the same as a database file that
was opened shared in the AS/400 program,
and both programs opened the file with the
same options.

Database support in a System/36 program fol-
lowed by a System/36 program: Both
System/36 programs open all shared database
files, and the effect is the same as if both
System/36 programs are part of a single
System/36 program. The only exception to this is
for database files opened DISP-OLD and for all
database files opened in a MRT program, which
uses AS/400 rules to determine whether the file is
opened shared.

Database support for an AS/400 application in
a System/36 environment job: All database
files are opened according to AS/400 rules, and
any // FILE statements are ignored by the AS/400
programs.

Any database files opened in the System/36
program are opened shared and are kept open
until the System/36 environment determines that
they are not needed in the next System/36 job
step. Since the CALL CL statement is not recog-
nized by the System/36 environment as a job
step, all database files opened in the System/36
program are still open when the AS/400 program
is called. Consider the following:

� If the AS/400 program opens the file that was
kept open from the System/36 program, and it
is opened shared with the same options, the
AS/400 program starts processing the file at
the same point in the file that the System/36
was at when it ended.

� If the AS/400 program opens the file that was
kept open from the System/36 program, and it
is opened shared with different options, then
any conflicting options are ignored, a corre-
sponding diagnostic message is issued, and
errors may occur.

� If the AS/400 program opens the file that was
kept open from the System/36 program, but it
is not opened shared, then the AS/400
program receives a new open of the file.

Note: If a CL command, issued during a proce-
dure, requires a file it is processing to be closed,
the System/36 environment closes the automatic
shared open for the file. If the file (or member) is
deleted, renamed, moved or restored by the CL
command, the System/36 environment removes
any // FILE statements for the file (or member).
Any locks that were held through these // FILE
statements are released. If a job file is renamed,
moved, or restored by a CL command, the
System/36 environment will not release the disk
space occupied by the job file when the job ends.
The System/36 environment will not close an auto-
matic shared open of an alternative indexed or
logical file which is based on the file being pro-
cessed by the CL command. See “Shared File
Opens within the Same Job” on page 7-37 for
more information.

 Externally-Described Files: Some file
types have a detailed description of the file stored
in the file itself. These detailed descriptions are
called field-level descriptions, and these files are
called externally-described files . That is, the
description of the data related to the file is not
represented by variable declarations you have
coded in the program, but the description of the
data is external to the program.

When a System/36 program processes an
externally-described file there is no level checking
done to see if the file description has changed
since the program was created.

For more information on externally-described files
and on level checking, see the Data Management
book.

Program-Described Files: Some file types
do not allow a detailed description to be used
because field-level descriptions are not supported.
These files are referred to as program-described
files. That is, the description of the data related to
the file is represented by variable declarations you
have coded in the program. These are the types
of files created by all System/36 environment func-
tions, such as BLDFILE procedure and the
#GSORT utility, or a file created by an RPG II
program.

AS/400 programs can process these program-
described files, which are created by System/36
environment functions. This is done by declaring

17-10 OS/400 System/36 Environment Programming V3R6

in the AS/400 program the variables that make up
the records in the file.

For a more information on program-described
files, see the Data Management book.

Naming Conventions: All database files
follow the AS/400 object naming convention, even
if those files were created in the System/36 envi-
ronment. For more information on file naming
conventions, see “Naming a Physical File” on
page 7-1 and “Using File Members and Date-
Differentiated Files” on page 7-34.

 Printer Files

In the System/36 environment, printer file support
is implemented in three parts:

1. Printer file attributes processing
 2. CONTINUE-YES processing

3. Printer file open processing

Together, these parts produce printed output con-
sistent with that produced on the System/36.

Attribute Processing: When a System/36
program opens a printer file, the attributes of that
printer file are derived in this order:

1. File definition in the program
2. Any printer file overrides
3. The printer file opened

Two types of special printer overrides are gener-
ated whenever the // RUN OCL statement is pro-
cessed:

1. Session printer (*PRTF) override

� Parameters are specified on the
// FORMS OCL statement or PRINT pro-
cedure.

� Parameters are specified with a
// PRINTER statement outside of a
// LOAD // RUN, and CONTINUE-YES is
specified.

2. File name specific override

� Parameters are specified on any
// PRINTER statement on which a NAME
parameter is specified.

These overrides stay in effect until the program
running under the // RUN OCL statement ends.

 CONTINUE-YES Processing:
CONTINUE-YES processing is the one function
that is unique to System/36 environment printer
support. CONTINUE-YES processing combines
the printed output from different job steps within
one job into a single spooled file. It is enabled
when a // PRINTER statement is specified with
the CONTINUE-YES parameter. This function is
very similar to SHARE(*YES) printer file pro-
cessing using the OS/400 operating system in the
AS/400 environment, but includes the ability to
change the page size, overflow, and record length
between job steps.

AS/400 programs and CONTINUE-YES: AS/400
programs may share the file if they open the file
with SHARE(*YES) specified.

Attribute changing rules:

� Attributes are changed only between
System/36 environment job steps.

� Attributes are changed only by System/36 pro-
grams.

Open Time Processing: When a
System/36 program opens a printer file, special
processing occurs, including:

� Printer file resolution
� Program-specific attribute processing

 – Page size
 – Overflow
 – Record length

� Special CONTINUE-YES processing

Printer file resolution
The OS/400 operating system requires the
existence of a printer file to generate printed
output. The System/36 does not. In order to
allow System/36 applications to run in the
System/36 environment, printer files named
the same as the System/36 environment
printer names are created in #LIBRARY.

At open time, a search is made for a printer
file using the name specified in the program
or in the override that may have changed the
name. If the search cannot find the printer
file, the printer file with the same name as the
System/36 environment printer name is used
instead.

 Chapter 17. Mixing System/36 Environment and AS/400 Functions 17-11

Program-specific attribute processing
On the System/36, the program attributes
take precedence over any overrides. On the
AS/400 system, the overrides take preced-
ence over the program. For attributes to be
processed as they would be on the
System/36, special processing at the printer
file open must occur.

These attributes are the record length speci-
fied in the program as well as the page length
and overflow, if specified.

During the open, the program’s file description
is analyzed and a special override is created
reflecting the program’s attributes. To ensure
that the program attributes are honored, this
special override cannot be overridden.

CONTINUE-YES processing
When the first printer file is opened while
CONTINUE-YES is active, the file description
is copied from the System/36 program into
the System/36 environment work area. This
description is then opened SHARE(*YES) and
held open by the System/36 environment until
a CONTINUE-NO parameter is specified on
the // PRINTER OCL statement or until the
outermost procedure in the job ends.

To accurately reflect all overrides, the
changeable attributes from the initial program
are not used when the file is opened with
CONTINUE-YES active. This ensures that
any file overrides are used as the default.
(Not all programs may have page size or
overflow specified.)

 Naming Conventions: Within the
System/36 environment configuration, AS/400
printer device names are mapped to System/36
printer device names. For example, PRT01 in the
AS/400 system is mapped to P1 in the System/36
environment. AS/400 names must be used when
using AS/400 functions. System/36 environment
names must be used when using System/36 envi-
ronment functions.

The System/36 environment provides an applica-
tion interface program, called QEXCVTDV, in
library QSSP that can convert AS/400 names to
System/36 environment names or System/36 envi-

ronment names to AS/400 names. See the
System/36 Environment Reference book for
further details on QEXCVTDV.

Display and Communications
Files

Many of the same rules apply to both display and
intersystem communication function (ICF) files
opened in the System/36 environment.

When a file is opened, the following actions occur:

� The job’s requester device is automatically
acquired by the file. For display devices, the
program device name is the same as the
System/36 environment work station ID for the
device. This can be changed by using a
WORKSTN OCL statement and specifying the
SYMID parameter. For ICF devices, the
program device name ranges from 01 to 99
and is automatically generated when the job
begins. The device name is unique among all
the jobs currently running on the system.

� If the file is a display file and the user has
coded one or more WORKSTN OCL state-
ments with the REQD-YES keyword, the spec-
ified work stations are automatically acquired.

 Read-Under-Format Processing: Read-
under format (RUF) is the System/36 program-
ming technique by which a program issues an
output operation and a subsequent program
issues the corresponding input operation.

The System/36 environment supports RUF oper-
ations by maintaining files that share their ODP
with the most recently opened display or ICF file.
This allows a program to close its file without
ending an outstanding I/O operation.

Read-Under Format Considerations
with External Calls: The ability of one
program to call another program on the AS/400
system allows the user to perform RUF operations
that are not possible on the System/36. For
example, consider the case where one RPG II
program calls another RPG II program, as in the
following figure.

17-12 OS/400 System/36 Environment Programming V3R6

RPG II

RPG II
call

RV2W101-0

//LOAD
//RUN

In this scenario, the first program can issue a write
operation to the requester, and the second
program can issue the read.

Consider the following items when coding applica-
tions in which only System/36 programs are used:

� A RUF operation may be started using the
most recently opened file.

In the example above, when control returns to
the first program, RUF may not be initiated
unless the considerations outlined in “Read-
Under Format Considerations with AS/400
Programs” are followed.

� A blank record or program data is returned
only if the first I/O operation issued in a job
step is a read and RUF is not in progress.
This is done only once per job step.

� If a device is released by single requester ter-
minal (SRT) program, it is not available until
another display file or ICF file is opened.

Read-Under Format Considerations
with AS/400 Programs: AS/400 programs
may perform RUF-type operations through the use
of shared opens. For example, consider the case
where one AS/400 program calls another AS/400
program, as shown in the following figure:

//LOAD
//RUN

RPG III

RPG III
call

RV2W102-0

In this scenario, the first program can issue a write
operation to the requester, and the second
program can issue the read, but only if both pro-
grams use the same file and specify a shared
open.

This technique can also be used to perform
RUF-type operations between System/36 and
AS/400 programs. However, both programs must
use the same file, as shown in the following figure:

//LOAD
//RUN

RPG II

RPG III
call

RV2W103-0

In the preceding figure, the RPG III program writes
to the requester and the RPG II program reads
from the requester.

AS/400 programs can also make use of the
shared open performed by the System/36 environ-
ment. For example:

//LOAD
//RUN

RPG III

RPG II
call

RV2W107-0

If both programs use the same file, and the RPG
III program performs a shared open, then the RPG
III program can complete a RUF operation started
by the RPG II program.

Special Considerations: The following list
contains other guidelines for display and ICF files:

� If a device is passed to or from a MRT job, no
I/O should be performed with that device until
a file is opened for that device by a System/36
program.

 Chapter 17. Mixing System/36 Environment and AS/400 Functions 17-13

� If a device is released by a System/36
program, no I/O should be performed with that
device until a file is opened for that device by
another System/36 program.

� If a file is opened by both an AS/400 system
and a System/36 program, the AS/400
program should not release the device.

Other Device Files

System/36 applications cannot use diskettes or
tapes as I/O devices. These devices can be used
only by the System/36 utilities (such as $COPY
and $MAINT) as save and restore devices or to
process exchange files. AS/400 applications, as
well as CL commands, can use diskettes and
tapes as I/O devices. The proper device naming
convention must be considered when a diskette or
tape device is to be used by a System/36 utility,
an AS/400 application, or a CL command.

Naming Conventions: The following are
the 2-character System/36 unit IDs for diskette
and tape:

� I1 for diskette device
� T1 for tape drive 1
� T2 for tape drive 2
� TC for tape cartridge

During System/36 environment configuration,
these 2-character System/36 unit IDs are mapped
to AS/400 system device names for the diskette
and tape devices supported on the system.

To indicate which device should be used by a
System/36 utility, the appropriate 2-character
System/36 unit ID must be specified on the FILE
OCL statement, the procedure command, or the
utility control statement.

To indicate which device should be used by an
AS/400 application or CL command, the appro-
priate AS/400 system device name must be speci-
fied in the application or command. Mapping
2-character System/36 unit IDs to AS/400 system
device names does not affect any AS/400 applica-
tions or CL commands that use the diskette or
tape devices.

17-14 OS/400 System/36 Environment Programming V3R6

Chapter 18. Jobs and Job Processing

This chapter describes jobs and job processing on
System/36 and on the AS/400 system in the
System/36 environment.

Using Jobs and Job Processing

In the System/36 environment, a job is a unit of
work done by the system. It is composed of one
or more programs. A job step is a unit of work
done by one program. A job that runs two pro-
grams has two job steps.

The concept of an interactive job is different from
the System/36 concept of an interactive job. On
System/36, when you sign on to the system, you
are not running a job. When you start a proce-
dure, you are running a job. On the AS/400
system, as soon as you sign on to the system,
you are running a job. Because of this difference,
commands that end jobs, hold jobs, and so on
affect the interactive session. For example, if you
end an interactive job, the user is signed off the
system. For more information about the AS/400
system, see the Work Management book.

Note: In this chapter, the term job refers to the
System/36 concept of a job and not the AS/400
concept of a job.

You start a job from your display station. The
system names and processes a job. You can
manage how your jobs use system storage, and
you can schedule the order in which they run.

Jobs and Job Steps

A job is a unit of work done by the system. For
example, an order-entry job runs one program to
process orders and another program to print
reports about the orders.

A job step usually begins with a LOAD OCL state-
ment and ends with a RUN OCL statement. The
following procedure contains one job step because
only one program is loaded and run:

// LOAD PROG1
// RUN

The following example has two job steps because
two programs are loaded and run:

// LOAD PROG1
// RUN
// LOAD PROG2
// RUN

The statements in a procedure control the files,
display stations, printers, and other resources
used by a program. For example:

// LOAD PROG3
// FILE NAME-CUSTOMER
// RUN

The statements in the preceding example have
the following meaning:

LOAD The program run is named PROG3.

FILE PROG3 uses a disk file named CUS-
TOMER.

RUN The program is run. This statement
also indicates the end of the operation
control language (OCL) statements for
this job step.

Starting and Ending Jobs

This section describes how jobs are started and
ended.

 Starting Jobs

You can start a job by doing any of the following:

� Entering OCL at a display station.

� Entering procedures at a display station.

� Entering menu options that run procedures.

� Using the JOBQ control command, or OCL
statement, to place a procedure on the job
queue. The job queue is a list of jobs waiting
for the system to process them. The user can
place batch jobs, which require no interaction
with a user, on the job queue.

� Using the EVOKE OCL statement to start a
procedure.

� Using the SBMJOB CL command.

 Copyright IBM Corp. 1995 18-1

Note: There may be subtle differences from
jobs submitted by EVOKE or JOBQ.

� Using the intersystem communications func-
tion (ICF) to have a remote program start a
job.

An AS/400 job is active from the time you sign on
until you sign off. A System/36 environment job is
active from the time an OCL statement is recog-
nized until you are returned to the menu where
the OCL statement was entered.

 Running Jobs

Start a job by selecting an item from a menu, or
by typing an OCL statement or a procedure
command. A remote program can also request
that a job be run. As the following figure shows,
when you request a job, a function called the
System/36 environment command processor
processes the request. The command
processor in the System/36 environment is the
part of the system that processes control com-
mands and that passes procedure commands and
operation control language statements to the initi-
ator.

RSLW041-3

or

System/36
Environment
Command
Processor

Procedure from
Remote Program
through ICF

Job Request
from Operator

The System/36 environment command processor
does one of the following:

� Passes control to the appropriate System/36
environment program for operator control
commands

� Passes control to the System/36 environment
initiator function

The System/36 environment command processor
processes control commands.

As Figure 18-1 on page 18-3 shows, the
System/36 environment initiator function reads and
processes:

� Procedures (including multiple requester ter-
minal (MRT) procedures that start MRT pro-
grams)

 � OCL statements

When the initiator function processes a RUN OCL
statement, the initiator function loads and passes
control to the program, which begins running, as
Figure 18-2 on page 18-3 shows.

When the program ends, the System/36 environ-
ment ending function ends the job step by freeing
system resources the program uses. If more job
steps follow, the OS/400 program returns control
to the System/36 environment initiator function.

Figure 18-3 on page 18-4 shows that if no other
job steps follow in the job, the OS/400 program
ends the job and does one of the following:

� Returns control to the System/36 environment
command processor for local jobs

� Ends the ICF session for remote jobs

The following information describes jobs and job
processing in detail.

Using the System/36
Environment Command
Processor

The System/36 environment command processor
is the function that first processes information you
enter. When you enter a command or select a
menu item, or when a remote program sends a
program start request using ICF, the System/36
environment command processor checks the
command, or the command associated with the
menu item, to determine whether it should start a
job.

If the entry or menu item is a control command,
the System/36 environment command processor
does not start a new job. Instead, the command
processor passes control to a System/36 environ-
ment routine that immediately processes the
control command.

18-2 OS/400 System/36 Environment Programming V3R6

If the entry or menu item is a procedure, the
System/36 environment command processor
passes the procedure to the System/36 environ-
ment initiator function.

If the entry or menu item is an OCL statement, the
System/36 environment command processor
passes the statement to the System/36 environ-
ment initiator function.

OCL Statement
or
Procedure

or

Operator
Control
Command

Procedure from
Remote Program
through ICF

Job Request
from Operator

System/36
Environment
Command
Processor

System/36
Environment
Operator Control
Command Processor

System/36
Environment
Initiator Function

RSLW042-4

Figure 18-1. System/36 Environment Command Processor and Starting Function

System/36
Environment
Command
Processor

User Program

Active
MRT Program

or

System/36
Environment OCL
Command
Processor

System/36
Environment
Initiator Function

Procedure from
Remote Program
through ICF

RSLW043-4

Job Request
from Operator

Figure 18-2. System/36 Environment Command Processor and User Program

 Chapter 18. Jobs and Job Processing 18-3

User Program

or

or

Active
MRT Program

Command
Processor OCL

Job Request
from Operator

Procedure from
Remote Program
through ICF

Program Releases
Display Station
or Remote
ICF Session

End-of-Job Steps
But Not
End of Job

End
of
Job

RSLW044-4

System/36
Environment
Command
Processor

System/36
Environment
Ending Function

System/36
Environment
Initiator Function

Figure 18-3. Command Processor and Ending Function

Using the Initiator Function

The System/36 environment initiator function finds
and loads the programs, and passes control to the
programs in a job. In addition, the System/36
environment initiator function:

� Processes procedure control expressions
(substitution expressions and conditional tests)

� Processes OCL statements

� Ensures that required load members exist

� Ensures that the files the program needs are
at the specified share level

� Acquires display stations for which you have
specified REQD-YES on the WORKSTN OCL
statement

� Releases requesting display stations if you
specify RELEASE-YES on the ATTR OCL
statement

Processing OCL Statements and
Procedure Control Expressions

A System/36 environment function called system
input processes statements entered from a display
station or from a procedure member. After
reading the statement, system input processes all
the substitutions and the functions specified by the
statements.

The procedure control expressions control system
input processing. The System/36 Environment
Reference book has more information about these
expressions.

After processing a statement, system input returns
the processed statement to the calling function.
During job starting, the calling function is the
System/36 environment initiator function. There-
fore, the system returns to the System/36 environ-
ment initiator function all statements up to and
including the RUN OCL statement. After a job

18-4 OS/400 System/36 Environment Programming V3R6

starts, the system returns the statements to the
program that requested system input processing.
$COPY is an example of a system utility program
that requires system input to process utility control
statements.

Following are the fundamental rules of system
input processing:

� System input processes a statement one field
at a time, from left to right. Fields are delim-
ited by blanks.

� Each time the system evaluates a substitution
expression, system input goes back to the
beginning of the field and begins processing
again (allowing for nested substitution
expressions).

� After the system does the substitutions, the
length of the created statement must not
exceed 512 characters (including spaces).
The actual length of the statement before sub-
stitution can be up to 512 characters
(including spaces).

System Input Processing Example:
The example in this section shows how system
input works. In this example, system input pro-
cesses the following statement:

// IF DATAF1-?1’?2?’?FILE SWITCH X1XX00XX

Field 1 Field 2 Field 3 Field 4 Field 5

RSLW073-0

When the system reads the statement, parameter
1 does not have a value and parameter 2 has a
value of AR. A file named ARFILE exists on disk.

The system input function does the following:

1. Identifies the first field as //.

2. Identifies the second field as IF, a valid proce-
dure control expression.

3. Examines the third field and determines that
the field contains a nested substitution
expression. The innermost substitution is
evaluated first. Therefore, system input sub-
stitutes the value of parameter 2, AR, in the

field. After the substitution, the statement
looks like the following:

// IF DATAF1-?1’AR’?FILE SWITCH X1XX00XX

Field 1 Field 2 Field 3 Field 4 Field 5

RSLW074-0

Because the system made a substitution,
system input goes back to the beginning of
field 3 and starts processing it again.

4. Examines the third field and determines that
the field contains a substitution expression.
System input does the substitution. In this
case, parameter 1 does not have a value, and
the value AR is substituted. The statement
now looks like the following:

// IF DATAF1-ARFILE SWITCH X1XX00XX

Field 1 Field 2 Field 3 Field 4 Field 5

RSLW075-0

Because the system made another substi-
tution, system input goes back to the begin-
ning of field 3 and starts processing it again.

5. Examines the third field and determines that
the field is an existence test for a file.

6. Evaluates the conditional expression formed
by fields 2 and 3. The file ARFILE exists on
disk, so the test is true. Because the test is
true, system input discards the IF test (fields 2
and 3). Now the statement looks like the fol-
lowing:

RSLW066-0

// SWITCH X1XX00XX

Field 1 Field 2 Field 3

After checking each field and determining that the
statement requires no further substitution or
system input processing, the system passes the
statement back to the requester.

If the file ARFILE does not exist on disk (that is,
the conditional expression in the original third field
is false), system input discards the remainder of
the statement and processes the next statement.

 Chapter 18. Jobs and Job Processing 18-5

 Ending Jobs

A job ends when:

� The last step in a job ends.

� A MRT program that is not a NEP releases its
last attached device and the MRTDLY proce-
dure attribute of the MRT procedure indicates
that the MRT should end immediately.

� A MRT program that is not a NEP, with a
MRTDLY procedure attribute indicating that
the termination of the MRT should delay, waits
the configured period of time but does not
receive any new requesters before the delay
period expires.

� A user selects option 3 in response to an error
message.

� The job is ended, using the End Job
(ENDJOB) or End Subsystem (ENDSBS) CL
command. Either command signs the user off
the system.

When a job or job step ends, the OS/400 program
performs system actions necessary to end the job
or job step. If more job steps need to be pro-
cessed in the job, the System/36 environment
returns control to the System/36 environment initi-
ator function. If the job step is the last in the job,
or if a MRT program releases its last requester,
the OS/400 program ends the job, returns control
to the System/36 environment command
processor, and ends any active ICF sessions.

Normal Ending: When a job step ends, or
when you select option 2 (Cancel job step and
close files; new data is saved) in response to an
error message, the System/36 environment does
the following:

� Saves newly created resident files on disk
� Initializes work areas used by the next job

step
� Deletes scratch files (RETAIN-S) used by the

job

In addition, if the job step is the last of the job, the
System/36 environment does the following:

� Deletes job files (RETAIN-J) used by the job

� Releases the requesting display station (if it is
still attached to the job) and returns control to
the command processor so you can request
another job

� Ends the requesting ICF session if the
program was requested by a remote program
and the remote session is still active

� Frees any system resources the job used

Abnormal Ending: Abnormal ending of a
program happens when any of the following condi-
tions occur:

� A user selects option 3 in response to an error
message.

� The user interrupts the program and selects
option 2 (Cancel job and close files; new data
is saved) from the System Request menu for
all programs except MRT programs.

For MRT programs, option 2 (Cancel job and
close files; new data is saved) releases the
display station from the MRT program and
continues with the next job step.

� The system detects an error condition during
normal ending and cannot let the job normally
end.

� Either the ENDJOB CL or the ENDSBS CL
commands are processed.

� The // CANCEL procedure control expression
is processed.

When one of the conditions described above
occurs, the ending function is run automatically by
the System/36 environment. Any job steps fol-
lowing the job step in error are not performed.
When an abnormal end occurs:

� Files contain all updates done before the
abnormal end.

� Additions made to shared and nonshared files
remain in the files.

� If RETAIN-S was specified for a resident file in
this job step, the resident file is not deleted.

� New files created by the current job step are
deleted.

When the System/36 environment ending function
is completed, the SSP0010 escape message dis-
plays. For interactive jobs, the System/36 envi-
ronment ending function returns control back to
the System/36 environment command processor.
For noninteractive jobs, the jobs are ended. The
escape message has the following implications:

18-6 OS/400 System/36 Environment Programming V3R6

� In an interactive job, the command remains on
the command line, and an error message is
displayed at the bottom of the menu.

� If the System/36 job was started by the
STRS36PRC command in a CL program, the
CL program should use the MONMSG
command to determine if the System/36 pro-
cedure ended abnormally.

� If the System/36 job is running in a batch job
that was started by a SBMJOB command or in
a batch job stream, the job ending severity
(ENDSEV keyword) is used to determine
whether the batch job ended abnormally. If
the batch job ends abnormally, no more
requests are to be processed in the batch job,
and an error message is sent to the submitter
if a completion message was requested.

Managing and Scheduling Jobs

The system allows you to manage and schedule
your jobs. For example, you can determine:

� How your programs use main storage with dif-
ferent run priorities

� The order in which the system runs your jobs
using different job queue priorities

Note: The scheduling of jobs based on the job’s
priority is handled by the OS/400 program. For
more information about job scheduling, see the
Work Management book.

 Job Priorities

Priority is the relative order of importance of
items. For example, a job with high run priority
should run before a job with medium or low pri-
ority.

You can specify the processing priority for a job or
job step with the ATTR OCL statement. To have
a job processed at the same priority each time it is
run, specify the ATTR OCL statement in the job’s
procedure. Following are the processing priorities:

� High or Yes
 � Medium
� Low or No

Note: See Figure 18-4 for information about the
mapping of System/36 environment priorities to
AS/400 priorities.

If your job does not specify a run priority, the
system assigns it normal priority. The System/36
Environment Reference book describes the ATTR
OCL statement.

The initiator function considers the following items
regarding run priorities of jobs:

� Each job step (or program) can have its own
priority, and the priority becomes effective as
soon as the initiator function checks the OCL
statements.

� If a job issues the //ATTR OCL statement to
change the priority of the job, jobs created by
this job will be started with the priority speci-
fied on the //ATTR OCL statement.

� The priority of a MRT program is not related
to current requesters of the MRT. The fol-
lowing items determine priority of MRT pro-
grams:

– The priority of the MRT procedure
– The priority specified when you first

requested the MRT procedure
– The priority specified in the single

requester terminal (SRT) procedure (when
appropriate)

Job Priority Considerations: Use the run
and job queue priorities to establish groups of jobs
with shared characteristics. For example, you can
run your testing jobs with one run priority and your
production programs with another run priority.

You can assign run priority to programs based on
the following values:

� Assign high priority to jobs that require fast
response time at a display station, or quick
system throughput.

� Assign low priority to jobs that do not use
display stations, or that run for a long time.

Assigning a high priority to more than one job
reduces the response time of all high priority jobs.
Do not assign high-priority to jobs not debugged
or tested.

The following table shows how System/36 environ-
ment priorities are mapped to AS/400 priorities:

 Chapter 18. Jobs and Job Processing 18-7

Using Batch Job Immediate
Support

The batch job immediate support is the default for
starting batch jobs within the System/36 environ-
ment for // EVOKE, MRT jobs, and job steps
started with // ATTR RELEASE-YES.

The batch job immediate support starts a batch
job without using a job queue. The batch job runs
in the same subsystem as the submitting job and
is started with the attributes of the submitting job.
This reduces the amount of time the batch job
takes to get started.

Configuration options are provided by the
CHGS36 and WRKS36 command to set:

� Method of job initiation (*IMMED) for this
support

� Default job priority of the batch job

� Storage pool to be used, (*BASE is the
default)

See the sections on “S/36 Environment Values” on
page 3-9 and “S/36 MRT Security and
Performance” on page 3-11 in this book for more
details.

Using the Job Queue

A job queue is an object that contains a list of
batch jobs waiting to be processed by the system.
The system-recognized identifier for the object
type is *JOBQ. Use the job queue to run batch
jobs while you continue to use your display station
for other work.

If job initialization is JOBQ, the System/36 envi-
ronment submits batch jobs to the following job
queues:

Job queue jobs
When you specify the Job Queue (JOBQ)
command or the // JOBQ OCL statement, the
system submits jobs to job queue QBATCH in
library QGPL.

Evoke jobs
When you specify the // EVOKE OCL state-
ment, the system submits jobs to job queue
QS36EVOKE in library QGPL.

Note: Procedures placed on the
QS36EVOKE job queue by the // EVOKE OCL
statement will end abnormally if the job is held
on the job queue, an IPL is performed, and
the job is released after the IPL.

SBMJOB jobs
When you use the SBMJOB CL statement to
submit System/36 procedures, the procedure
must be entered using the Request Data
(RQSDTA) keyword.

Nonrequester terminal (NRT) jobs
When you specify the // ATTR RELEASE-YES
OCL statement for a SRT job, the system
submits jobs to job queue QS36EVOKE in
library QGPL. Do not end NRT jobs on this
job queue.

Multiple requester terminal (MRT) jobs
MRT jobs are submitted to job queue
QS36MRT in library QGPL. Do not end MRT
jobs on this job queue.

When the AS/400 system is installed, there is no
maximum for the number of job queue jobs that
can be active at one time on the system.

Changing the maximum activity levels can cause
problems for MRT and NRT jobs. When an SRT
job starts a NRT or MRT job, the system sus-
pends the SRT job until the NRT or MRT job
starts.

Job Queue Priority Levels: You can
specify six job queue priority levels, 0 through 5.
Job queue priority 5 is the highest level, and 0 is
the lowest level.

If you do not assign a priority level to a job using
the job queue, the system assigns the job a
level-3 priority. For example, assign level 5 to
important batch portions of a printing application
(such as the printing of payroll checks), but assign
level 1 to program compilations.

Figure 18-4. Mapping of System/36 Environment Priori-
ties to AS/400 Priorities

System/36
Environment Priority AS/400 Priority

High/Yes 10
Medium 20
Low 50
No 20 (interactive, MRT and

ICF evoked jobs)
No 50 (batch jobs)

18-8 OS/400 System/36 Environment Programming V3R6

The following table shows how System/36 environ-
ment JOBQ priority values are mapped to the
AS/400 system job queue priority values:

You must use System/36 environment priorities for
System/36 environment commands and AS/400
priorities for AS/400 CL commands.

Changing Job Queue Priority Levels: Use the
CHANGE JOBS command to redefine the active
job values for jobq QBATCH in System/36 envi-
ronment. Use the CHANGE JOBS,JOBQ
command to set the number of job queue jobs you
want active at one time in the system. For
example, if you want three job queue jobs running
at one time, enter CHANGE JOBS,JOBQ,3. You
can also use the Change Job Queue
(CHGJOBQE) CL command to change the
maximum number of active jobs allowed from all
priorities of a job queue.

Use the CHANGE JOBS,PRIORITY command to
set the number of job queue jobs of the priority
you want active in the system. For example, if
you want to run two priority-5 jobs at once, enter
CHANGE JOBS,5,2. Also, you can use the
CHGJOBQE CL command to change the
maximum number of active jobs for a priority (you
must use System/36 environment priority
mapping).

The STOP JOBQ command sets the maximum
| number of jobs for job queue QBATCH to 0. For
| example, STOP JOBQ,3 sets the maximum

number of active jobs for priority level 3 to 0.
| Another example would be STOP JOBQ,ALL
| which sets the maximum number of active jobs to
| 0 for all System/36 environment job queue priori-
| ties. The START JOBQ,ALL command specifies
| that all jobs running at a priority that maps to a
| System/36 environment priority on the job queue
| can run. If no parameter is specified, ALL is
| assumed. All sets the maximum number of active
| jobs to 1 for all System/36 environment job queue
| priorities. This parameter value resets any values

| set by a CHANGE JOB command. For example,
| START JOBQ,3 sets the maximum number of
| active jobs for priority level 3 to 1. Another
| example would be START JOBQ,ALL which sets
| the maximum number of active jobs to 1 for the
| queue and 1 for all priorities. The maximum

number of job queue jobs for the specified priority
in effect before the STOP JOBQ command is not
retained.

You can increase the number of jobs to run from
the job queue by typing CHANGE JOBS,JOBQ,#
OF JOBS. Using this command allows you to
have multiple job queue jobs and sequential job
processing.

To have 5 job queue jobs run at the same time,
but also have job queue priority-3 jobs process
sequentially, type CHANGE JOBS,3,1, and then
type CHANGE JOBS,JOBQ,5.

You specify the job queue priority of a job when
you put it on the job queue using the JOBQ
control command or OCL statement. For
example, JOBQ 4,PAYLIB,PAYROLL puts the
PAYROLL procedure (from the PAYLIB library) on
the job queue with a level-4 priority. The
System/36 Environment Reference book describes
the JOBQ control command and OCL statement.

The System/36 environment commands that
control the job queue affect only the QBATCH job
queue in the library QGPL. The CHANGE,
START, and STOP commands initially attempt to
affect the QBATCH job queue entry in the sub-
system description under which the job is running.
If such a job queue entry does not exist, the com-
mands attempt to affect the QBATCH job queue
entry in the QBATCH subsystem description in
libraries QGPL and QSYS. The CHGJOBQE CL
command must be used to control the job queue if
the QBATCH job queue entry is moved to a dif-
ferent subsystem description than those specified,
or if the QBATCH subsystem description, under
which the QBATCH job queue is running, is
moved to a library other than QSYS or QGPL.

Job Queue Processing Priorities: Processing
priority is different from job queue priority. Pro-
cessing priority is the order in which jobs already
running on the system are assigned system
resources. You can assign jobs on the job queue
a processing priority, but it becomes meaningful
only when the job queue job starts running.

System/36 Environment
Job Queue Priority

AS/400 System
Job Queue Priority

5 3
4 4
3 5
2 6
1 7
0 8

 Chapter 18. Jobs and Job Processing 18-9

The following table shows the order in which the
system considers jobs to be run (based on the
order the jobs were placed on the job queue), and
the job queue priority specified:

You can start and stop individual jobs within each
priority level. For example, if you do not want job
4 with priority level 3 to run, you use the HOLD
JOBQ control command so the system selects
jobs in the order shown in the following table:

To run job 4, use the RELEASE JOBQ control
command so job 4 is selected from the job queue.

The system does not run a job being held until it
is released. The system runs other jobs that are
not held at the same priority level.

You can prevent the system from running an
entire priority level. For example, if you do not
want to run jobs from priority level 3, use the
STOP JOBQ control command. The program pre-
sents jobs to the system in the order shown in the
following table:

Use the START JOBQ command to have the
system run the priority-3 jobs.

Priority Level 0: Priority level 0 is not automat-
ically stopped at Initial Program Load (IPL) on the
AS/400 system. To set up priority level 0 to run
similar to priority level 0 on System/36, you must
add the Change Job Queue Entry (CHGJOBQE)
command to your start up procedure (#STRTUP1
or #STRTUP2). See “Running Jobs during Initial
Program Load (IPL)” on page 18-13 for more
information on start up procedures.

An example of the command is as follows:

CHGJOBQE SBSD(QGPL/QBATCH)
 JOBQ(QGPL/QBATCH) MAXPTY8(ð)

This example sets the maximum number of jobs
active for System/36 environment priority level 0 to
0 and stops priority level 0 jobs from running.

Assign priority level 0 to jobs that do not need to
be run soon. For example, assign jobs priority
level 0 if you want them run later in the day or
overnight.

You can submit jobs with priority level 0 during the
day, and start priority level 0 at night to run over-
night.

Use priority level 0 with the system’s automatic
message response capability to submit jobs to be
run overnight when the processing load of the
system is not too great, and the system can run
unattended. For more information about the
system’s automatic response capability, see
Chapter 15, “Messages and Message Members.”

Run Priority of Jobs on the Job
Queue: Each job on the job queue can have a
different run priority. The job queue priority level
determines which jobs are presented to the
system for processing. The run priority deter-
mines the order in which the system runs jobs.

The run priority of a job placed in the job queue is
medium unless you use the ATTR OCL statement
to specify a different run priority. (See
Figure 18-4 on page 18-7 for mapping of
System/36 environment priorities to AS/400 priori-
ties.) For example, the following // ATTR and
JOBQ commands put the PAYROLL procedure
(from the library PAYLIB) on the job queue with a
job queue priority of 4, and a run priority of high:

// ATTR HIGH
JOBQ 4,PAYLIB,PAYROLL

Job Queue
Order

System/36 Environment
Priority

Order System
Runs the Job

Job 1 3 Job 6
Job 2 4 Job 2
Job 3 2 Job 1
Job 4 3 Job 4
Job 5 1 Job 3
Job 6 5 Job 5

Job Queue
Order

System/36 Environment
Priority

Order System
Runs the Job

Job 1 3 Job 6
Job 2 4 Job 2
Job 3 2 Job 1
Job 4 3 Job 3
Job 5 1 Job 5
Job 6 5

Job Queue
Order

System/36 Environment
Priority

Order System
Runs the Job

Job 6 5 Job 6
Job 2 4 Job 2
Job 1 3 Job 3
Job 4 3 Job 5
Job 3 2
Job 5 1

18-10 OS/400 System/36 Environment Programming V3R6

If you use a procedure to place a job in the job
queue, your job has the same run priority as the
procedure.

Use the Change Job (CHGJOB) CL command to
change the run priority of a job running or a job
queue.

Evoking Other Jobs

Use the EVOKE OCL statement to start a new job
from a job that is running. For example, a proce-
dure with one or more job steps is similar to the
job shown below:

\ Start order entry program
// LOAD ORDENT
// FILE NAME-ORDFILE
// RUN
\ Start order summary listing program
// LOAD PRTLIST
// FILE NAME-ORDFILE
// RUN

The first program, ORDENT, uses the display
station to enter new orders into the system. The
orders are stored in a disk file. The second
program, PRTLIST, reads a disk file and prints the
information on an order form. Because the
PRTLIST program does not require a display
station, you could use the display to do other work
while PRTLIST runs. However, the display station
remains attached to the procedure while the
PRTLIST job step is running, thus preventing the
display station from doing other work.

If you create two procedures, and you use the
EVOKE OCL statement to start the second proce-
dure, your display station can do additional work
while the PRTLIST program runs. For example:

\ Start order entry program
// LOAD ORDENT
// FILE NAME-ORDFILE
// RUN
\ Start order summary listing procedure
// EVOKE PRTLIST

The following PRTLIST procedure is started:

\ Start order summary listing program
// LOAD PRTLIST
// FILE NAME-ORDFILE
// RUN

The System/36 Environment Reference book
describes the EVOKE OCL statement.

Submitting Jobs to Run Later

You can submit a job to start at a later time using:

� The job queue
� The WAIT OCL statement

Using Job Queue to Run Jobs
Later

See “Using the Job Queue” on page 18-8 for
more information about using job queues. Use
the JOBQ control command, or the JOBQ OCL
statement to place a job on the job queue. For
more information, see the System/36 Environment
Reference book.

The JOBQ OCL statement allows you to place a
job on the job queue from within a job that is
already running. Use the HOLD and RELEASE
commands to hold and release jobs on the job
queue. Use the START and STOP commands to
start and stop the processing of jobs from the job
queue, or to start and stop the processing of job
queue priority levels. To immediately start a job
on the job queue, use the CHGJOB command and
specify JOBQ(QGPL/QS36EVOKE).

Note: Procedures placed on the QS36EVOKE
job queue by the // EVOKE OCL statement com-
plete abnormally if the job is held on the job
queue. When this occurs, an IPL is performed
and the job is released after the IPL.

WAIT OCL Statement

The WAIT OCL statement causes a job to wait
until a specified time, or until a specified period of
time has passed. Once the system processes a
WAIT OCL statement, the job does not resume
processing until it meets the specified condition.
The System/36 Environment Reference book
describes the WAIT OCL statement.

If you use the WAIT OCL statement, consider the
following points:

� You can use the ?TIME? substitution
expression, along with the WAIT OCL state-
ment, to see whether the job has waited until

 Chapter 18. Jobs and Job Processing 18-11

a specific time. Processing can begin based
on how long the job has waited.

� Use the STATUS control command with the
USERS parameter to see if the job is waiting.
The function field on the display will show DLY
if the job is waiting.

� You can end a job even if it is waiting.

� If you place a job containing a WAIT OCL
statement on the job queue, that job can
prevent other jobs on the queue from pro-
cessing. Processing can be delayed quite a
bit, depending on the length of time the job
specified uses the WAIT OCL statement.

The following example shows how to make a pro-
cedure wait until 4 p.m. (a time of 160000):

// IFF ?TIME?>16ðððð WAIT TIME-16ðððð
// EVOKE PROC1

If it is after 4 p.m., the system does not process
the WAIT statement. For example, if the system
ran the procedure at 5 p.m., PROC1 runs imme-
diately. If you do not do the ?TIME? test, the
PROC1 procedure does not run until 4 p.m. the
next day.

Unattended System Operation: You can
use default responses to have the system process
programs without operators. For example, place
certain programs in priority level 0 of the job
queue during the day and start the job queue in
the evening to have the system process these
programs during the night. Any messages created
by the system or the programs should have
default responses created for them. See “Sup-
plying Default Responses for Messages” on
page 15-5 for complete information about creating
default responses.

If you are planning to run programs while the
system is unattended, you should consider the fol-
lowing points:

 � Printed output:

– Put the correct forms in the printer.
– Put enough forms in the printer to print all

jobs.
– Align the forms correctly in the printer.

You can have reports write to the output
queue and not print until an operator is

present. Do this by specifying PRIORITY-0
on the PRINTER OCL statement.

You can also have the system print your
output while no operators are present and
have one copy stored in the output queue
(System/36 spooled file). Do this by speci-
fying HOLD-YES on the PRINTER OCL state-
ment. Therefore, you can print your output,
but if something goes wrong with the paper or
the printer, you can print the output that is
saved in the output queue.

 � Diskette processing:

– Put a diskette in the diskette drive.
– Do not run any jobs that require removal

or insertion of diskettes in the diskette
drive.

 � Tape processing:

– Place the tapes in the correct tape drives.
– Do not run any jobs that require removal

or insertion of tapes in the tape drive.

 � Program processing:

– Run programs that do not use a display
station.

– Run jobs that have been tested and are
working correctly.

– Have some method of starting your
program again, in the event of program
errors.

Submitting Jobs by Security
Classification

You can specify that users with a particular secu-
rity classification run certain security jobs. Fol-
lowing is a list of the security levels you can
assign. They are listed from the highest to the
lowest level of security:

1. Master security officer (M)
2. Security officer (S)
3. System operator (O)
4. Alternative console operator (C)
5. Display station operator (D)

The mapping of System/36 environment security
levels to AS/400 user classes is shown in the fol-
lowing table:

18-12 OS/400 System/36 Environment Programming V3R6

For more information about user classes, see the
Security – Reference book.

When you submit a job, use the SECURITY condi-
tional expression to determine whether an oper-
ator has the required security level.

The following example uses the SECURITY condi-
tional expression to determine whether the user
who submitted the job has a security classification
of system operator or higher:

// IFF SECURITY-O CANCEL
// LOAD PROGRAM
// RUN

The SECURITY-O expression tests for the system
operator security classification. If the user does
not have system operator classification or higher,
the IFF statement ends the job.

Also, you can use the SECURITY conditional
expression to determine whether password secu-
rity is active.

The System/36 Environment Reference book has
more information about the SECURITY conditional
expression.

Preventing Users from Ending
Jobs

Specify CANCEL-NO on the ATTR OCL statement
to prevent a job from being ended from the
System Request menu.

Preventing Interrupted Jobs

Specify INQUIRY-NO on the ATTR OCL state-
ment of a job to prevent another job from being
started from the display station. The System/36
Environment Reference book has more informa-
tion about the ATTR OCL statement.

If you are running MRT programs, place the ATTR
OCL statement in the MRT procedure.

 Preventing Informational
Messages from Appearing

Most IBM-supplied procedures display informa-
tional messages at the display station from which
you run them. When the job is composed of pro-
grams and IBM-supplied procedures that display
informational messages (like DELETE), the mes-
sages can confuse a user who does not know the
system’s processing steps.

Messages sent to remote display stations cause
the system to:

1. Store the display on disk.
2. Show the informational message.
3. Show the previous display again.

Sending messages to remote display stations
decreases the remote station’s performance.

Use the INFOMSG control command or OCL
statement to select whether informational mes-
sages from procedures should appear. The
System/36 Environment Reference book has more
information.

Running Jobs during Initial
Program Load (IPL)

When the system is initial program loaded, it auto-
matically runs the #STRTUP1 and #STRTUP2
procedures if the following are true:

� #STRTUP1 and #STRTUP2 are on the
system.

� The IPL is in attended mode.
� The operator is a System/36 environment user

who has selected #STRTUP1 and #STRTUP2
to run on the IPL overrides display.

System/36
Security
Classification

AS/400
User
Classification

Master Security Officer *SECOFR

Security Officer *SECADM

System Operator *SYSOPR

Subconsole Operator *SYSOPR

Display Station Operator *USER

 Chapter 18. Jobs and Job Processing 18-13

Other users can sign on to and use System/36
environment while these procedures are running.

You can use the Start System/36 Procedure
(STRS36PRC) command in the AS/400 start-up
program to specify that the #STRTUP1 and
#STRTUP2 procedures run at each IPL (attended
or nonattended). The start-up program is defined
by system value QSTRUPPGM. For more infor-
mation on the start-up program, see the Work
Management book. The System/36 Environment
Reference book has more information about the
#STRTUP1 and #STRTUP2 procedures.

Running Jobs without Operators

You can run jobs on the system while no system
operators are present. When you schedule jobs
to run without operator supervision, consider the
following:

� Use tested programs that work correctly. The
programs should not require display stations.

� Use the automatic response function to
respond to error messages. Automatic
response is discussed in Chapter 15, “Mes-
sages and Message Members.”

� Use the HOLD-YES parameter of the
PRINTER OCL statement if you are printing.
The HOLD-YES parameter holds one copy of
the output on the output queue. Use it to
reprint the output queue entry without having
to run the job again that created the printed
output.

� Ending the print writers prevents output from
printing. However, your programs run and the
output is stored in the output queue.

� If you print the output from programs, your
printers must have enough forms or paper to
complete the jobs and the forms must be
aligned properly.

 End-of-Day Processing

Use the WAIT and Power Down System
(PWRDWNSYS) CL commands together to auto-
matically start end-of-day processing and turn the
power off.

Following is an example of a nightly save proce-
dure:

\ Nightly Save Procedure
\
\ Wait until 6 p.m. before beginning save
\ and power-down sequence.
// WAIT TIME-18ðððð
\
\ Allocate the tape drive
// ALLOCATE UNIT-T1
\
\ Save the master files on tape
SAVE CUSTMAST,,,VOLðð1,T1
SAVE ITEMMAST,,,VOLðð1,T1
SAVE ACCTMAST,,,VOLðð1,T1
SAVE SHIPMAST,,,VOLðð1,T1
\
\ Power down the system
\ in 3ð minutes
PWRDWNSYS OPTION(\CNTRLD) DELAY (18ðð)

This procedure requires a tape in drive T1. It
must be run before 6 p.m.

Note: The PWRDWNSYS CL command turns off
the system even if there is system activity.

Job Date and Date Format

The System/36 environment supports a session
date and a program date. The AS/400 system
supports the job date. The session date in the
System/36 environment is the date associated
with a session. The job date is the date associ-
ated with a job. The job date usually assumes the
system date, but can be changed by the user.
The CHGJOB CL command changes the
System/36 dates in the same way the DATE OCL
statement does. A CHGJOB command between a
LOAD OCL statement and a RUN OCL statement
changes the job date only for the duration of the
job step. After the job step ends, the job date is
restored to the System/36 session date.

The CHGJOB CL command also affects the
System/36 date format, as does the System/36
utility $SETCF. The System/36 environment does
not support the Julian date format (yyddd). If you
use the CHGJOB command to change the job
date format to anything other than a Julian date
format, a corresponding change is made in the
System/36 date format. If you specify Julian for
the job date format, the System/36 date format is
set to yymmdd (year-month-day), and the two date
formats will not be the same.

18-14 OS/400 System/36 Environment Programming V3R6

When entering the System/36 environment, the
System/36 session date format is always set to
the AS/400 job date format if the AS/400 job date
format is not Julian. If the job date format is
Julian, both formats are set to yymmdd format.
When the System/36 environment is exited, the

AS/400 date format is set back to Julian, unless
the date format is changed while in the System/36
environment. Use the $SETCF utility, the SET
procedure, or the CHGJOB CL command to
change the date format.

 Chapter 18. Jobs and Job Processing 18-15

18-16 OS/400 System/36 Environment Programming V3R6

Chapter 19. Error Prevention, Detection, and Recovery

This chapter describes how to prevent, detect, and
recover from System/36 environment failures and
errors. It helps you anticipate and prevent the
unexpected.

Once you understand the errors that can occur,
and define the type of backup and recovery your
system requires, you can make your own backup
and recovery plan.

Types of Failures and Errors

The probability of a failure or error depends on the
type of problem. This section describes the most
common errors or failures and gives a general
description of the required recovery.

 System Failures

A system failure can damage a file or library. To
recover from such a failure, restore a copy of the
file or library and reapply all changes to the file or
library since the last recorded save operation.
Keeping up-to-date copies of your files and
libraries makes recovery easier.

Disk Device Failures

A disk device failure can cause the loss of data
stored on disks. If you do not use disk recovery
tools, you cannot identify which data has been lost
because the system automatically stores objects
on disk. Disk recovery tools include:

� Auxiliary storage pools (ASP) that isolate
storage of certain objects on certain disk
devices. This protects against losing data on
other devices and different ASPs.

� Check sum protection that takes data
residing on several disk devices and combines
it on another device. If the device fails, its
contents can be recovered by recombining the
data on remaining devices.

� Mirroring keeps two copies of the data on
separate disk devices in an ASP. If the

device fails, its contents can be recovered
from the other device.

If you do not use these recovery tools, you must
recover from a disk device failure by reloading the
entire system from backup media.

 Power Failures

Power failures can damage programs and files in
use at the time of the failure. To recover from a
power failure, you must find which programs and
files were in use when the power failure occurred.
You must find the last successful checkpoint, the
last point at which data in the files correctly and
accurately reflected the corresponding data in
other files. Changes made to the files after the
last successful checkpoint should be removed.
Changes from that checkpoint should be reap-
plied.

 Equipment Failures

An equipment failure could be a modem failure, a
problem with a communications line, a problem
with external disks, or a display station problem.
Often an error message is displayed when the
system detects an equipment failure. You can
cancel the job or continue the job. If you continue
the job, a code may be returned to your program
indicating the error type. Your program can check
the status of the data you were processing, or
make the necessary corrections.

 Programming Errors

When a program unsuccessfully tries to use a
display station, or when you find inaccurate infor-
mation in a printout, a programming error has
become apparent. Handle this type of error as
you would a power failure (also debug the
program producing the error). Other programming
errors can be detected only after a long period of
time, such as when the error causes inaccurate
monthly or yearly summaries. This kind of error
might be unrecoverable. To prevent errors, test
your programs extensively before using them.

 Copyright IBM Corp. 1995 19-1

System Operator Errors

System operator errors are much more frequent
than programming errors. For example, if the
system operator inadvertently cancels an impor-
tant job, data in your files might not accurately
reflect the corresponding data in other files. It is
important to detect and correct such a situation as
soon as possible. As with a power failure, look for
the last successful checkpoint and reapply trans-
actions made since that checkpoint. You will have
fewer transactions to reapply if you do checkpoints
more often.

 User Errors

Because users of applications are not always
aware of how their system works, they may not
know when an error occurs. As a result, users
may be unfamiliar with the consequences of the
error.

Common user errors include the following:

� Inadvertently powering off a display station
� Entering inaccurate data

To reduce the occurrence of errors, restrict the
user to running options from an assigned menu. If
a problem occurs, allow the program to detect the
problem and stop the user from going further.
You or the program (not the user) should handle
the recovery. Recovery from user errors should
be treated in the same way as recovery from
system operator errors.

 Error Prevention

This section describes how to prevent some fail-
ures and errors.

Using the Automatic Response
Function

Use the RESPONSE and NOHALT procedures to
automatically respond to system messages.
When you use these procedures, the system auto-
matically responds instead of displaying an error
message. So, you can define a specific response
that will be used automatically, rather than having
an operator enter a response.

See “Supplying Default Responses for Messages”
on page 15-5 for more information.

Preventing Unscheduled Ending
of Jobs

One of the major causes of system operator or
user error is the unscheduled ending of jobs.

Using the CANCEL-NO parameter of the ATTR
OCL statement, you can prevent the system
request cancel option (option 2 on the System
Request menu) from being displayed. See “Pre-
venting Users from Ending Jobs” on page 18-13
for more information.

Testing and Debugging Programs

Thoroughly test and debug your programs to mini-
mize programming errors.

As you test your programs and procedures, use
the LOG OCL statement or the LOG procedure to
ensure that all OCL statements in your procedures
are recorded to the job log. Logging OCL state-
ments to the job log allows you to trace the
activity of your procedures and programs.

The DEBUG OCL statement allows you to follow
the logic of your procedures as you run them.
Using the DEBUG OCL statement, you can
specify whether procedure control expressions
and OCL statements in your procedures should be
listed as they are evaluated, and whether the pro-
cedures should stop after each job step. Like the
LOG statement or procedure, the DEBUG state-
ment enables you to evaluate your procedures
and programs as you test them. The System/36
Environment Reference book has more informa-
tion about the LOG OCL statement, the LOG pro-
cedure, and the DEBUG OCL statement.

Many programming languages allow you to debug
operations during compile time. Some program-
ming languages allow you to override debugging
operations, preventing the debugging information
from being added to your source code. However,
the debug option is a good way to detect program
errors before they occur. For more information
about the problem analysis and program debug-
ging capabilities of the programming language you
use, see the corresponding language manual.

19-2 OS/400 System/36 Environment Programming V3R6

Using the WAIT and FILE OCL
Statements

The WAIT OCL statement causes a job to wait
until a certain time, or until a certain period of time
has passed. Once the system processes a WAIT
OCL statement, the job does not continue until a
specified condition is met.

If a program needs to use a file or resource, and
that file or resource is being used by another
program or procedure, an error can occur. The
WAIT parameter of the FILE OCL statement can
prevent other programs from waiting for the
resources owned by another job. The System/36
Environment Reference book has more informa-
tion about the WAIT and FILE OCL statements.

See “Extendable Files” on page 7-23 for informa-
tion about correctly extending files.

Allocating the Diskette or Tape
Drive to a Job

You can use the ALLOCATE OCL statement to
dedicate the diskette or a tape drive to a job. For
example, you normally do not keep control of the
drives between SAVE procedures. After FILE1 is
saved, but before FILE2 is saved, another proce-
dure on the system uses the drive. Because of
this, your SAVE FILE2 procedure must wait until
the other procedure is done.

To avoid allocating the drive longer than neces-
sary, use the DEALLOC OCL statement to deallo-
cate the drive. For example, your procedure
saves three files and runs another type of job that
did not use the drive. You could use the
DEALLOC OCL statement to allow other jobs on
the system to use the drive. The System/36 Envi-
ronment Reference book has more information
about these statements.

 Error Detection

Errors can occur in the system functions or the
input data that your program uses. Try to antic-
ipate these problems by putting code in your pro-
grams to handle them. If such code is not in your
programs, output data and files can contain errors
you are not aware of.

Error Detection Subroutines

Special error detection subroutines are supplied
by some programming languages, such as
System/36-Compatible RPG II. If your program-
ming language does not supply error-detection
capabilities, include error-handling code in the
program.

Your error-handling code performs functions such
as correcting problems and stopping the program.
A message should alert your users to the situ-
ation. You can define the message, severity
levels, and various procedures the display station
operator should perform when an error occurs.

When a routine detects an error, the program
must determine what to do. Consider the fol-
lowing:

� Try the display station operation again. If your
program cannot read a display format, the
program can continue trying to read the
display format.

� Save the data the program uses and end the
program. If you do this, you must be able to
use the saved data and start the program
again.

� End the program without saving the data, or
end the program and discard previously-saved
data. You must load the program and enter
the data again.

� Release the display station from a multiple
requesting terminal (MRT) program.

For more information, refer to “Error-Handling
Considerations” on page 19-8.

Program Language Error
Detection

Each programming language supplies ways to
detect errors as they occur. The following
sections describe some of these error detection
capabilities. For more information about the error
detection capabilities and the error return codes
for programming languages, see the appropriate
language manual.

 Chapter 19. Error Prevention, Detection, and Recovery 19-3

 System/36-Compatible COBOL
Language

Use the EXCEPTION/ERROR declarative to
specify how the program handles input or output
errors.

System/36-Compatible RPG II
Language

The WORKSTN file information data structure
(INFDS) contains status information the program
checks to determine the type of error. Using the
information in the INFDS data structure, the
program determines which error conditions the
INSFR subroutine can process.

User-Coded Error Detection
Routines

You can create your own detection routines for
errors unique to your computer system. The
design and purpose of such coding depends on
your particular application.

Checking Return Codes in
Procedures

Using the ?CD? substitution expression, your pro-
cedures can check a return code that indicates
abnormal or problem situations (such as disk fail-
ures). Procedure logic flow can be based on the
substituted return code, and the procedure can
branch to recovery routines if a particular return
code is found. Refer to the System/36 Environ-
ment Reference book for an explanation of how to
use the ?CD? substitution expression and the
return codes that you can use to control program
logic.

Referring to the Job Log

Use the LOG OCL statement to log OCL state-
ments to the job log. The system logs each pro-
cedure that contains a LOG OCL statement to the
job log, regardless of the OCL statement job-
logging indicator in that procedure. When you
refer to the job log, you can create your proce-
dures with the job logging-indicator set to off (for

better performance), but still have the OCL state-
ments logged to the job log when it is necessary
to debug the procedure. To look at the job log,
use the Display Job Log (DSPJOBLOG)
command. The system logs error messages and
responses. For complete instructions on using the
LOG OCL statement, see System/36 Environment
Reference book.

Backup and Recovery

A backup is an alternative copy used as a substi-
tute if the original is lost or destroyed. System
backup plans and procedures should minimize the
effect of any breakdown in the system and allow
recovery from the breakdown as quickly and eco-
nomically as possible.

Most backup procedures used for batch systems
also apply to interactive systems. However, there
are additional backup considerations in interactive
systems. In interactive applications, the entire
business can become dependent on the system.
Therefore, the system must have reliable backup
and recovery procedures.

Recovery is a series of steps you follow, or pro-
cedures you run, to restore data on the system.
Recovery procedures can require removing all or
some master files, restoring backed up master
files, and running procedures that updated files to
post transactions in the order in which they were
originally processed.

The following information describes backup and
recovery procedures for your system.

 Equipment Backup

Mutual backup plans between users with similar
equipment are generally not practical in an inter-
active environment. Even if an identically config-
ured system could be located, the delays and
difficulty of establishing the necessary data links
prevent you from relying on this approach to
equipment backup.

Equipment backup plans can vary according to the
business requirements and the cost of using the
plans. Equipment backup can range from having
a spare display station to completely duplicating
the central system. Determine the level of equip-
ment backup required by comparing the cost

19-4 OS/400 System/36 Environment Programming V3R6

against the possible business loss if the backup is
not there when it is needed.

Data Backup and Recovery

Because data can be damaged or destroyed by
incorrect modification, a system failure, operator
errors, or a natural disaster, keep backup copies
of vital information. Backup procedures involve
copying the vital information kept on the system,
and then storing the copy in a safe location. For
example, copy files and libraries to diskettes or
tape, date and label them, and store them in a
fireproof safe or at another location.

Establish and use a standard, well-documented
backup procedure. Save master files and all files
related to the master files at the same time. After
you enter and edit new data (like batches of trans-
action records), copy it to disk, diskette, or tape.
You can use these saved transactions during
recovery procedures to make the master files
current.

The level of data protection can vary greatly
without a significant difference in the cost of imple-
mentation. Developing a backup plan and testing
that plan can supply a return far greater than the
time and effort involved. Developing a backup
plan includes analyzing the effects of a system
failure on each step of an application, defining the
correct recovery procedures, and testing those
procedures. It is important to test the procedures.

Before designing a backup and recovery plan,
consider each type of data that you use:

 � Historical data
 � Master files
� Data processed but not distributed
� Data logged but not processed
� Data received but not logged

Historical Data: Because you do not use his-
torical or permanently stored data in day-to-day
processing, save it in a secure location, preferably
off site. Any test of the backup plans should
include trying to reconstruct current files from
these historical files. The test should verify con-
siderations such as:

� Are the files always available?
� Are the storage media compatible with the

present hardware?

� Are the media protected against modification
or deterioration?

� Are copies of the programs that process the
data protected in the off-site location? Is the
program documentation available?

� How current are master files the system
reconstructs directly from these historical
files? What would be the cost of making the
reconstructed files more current?

� Are operating procedures and run books avail-
able?

� Is the stored data the correct data?

Master Files: Master files are used in
day-to-day operations. Keep backup copies of all
master files on site and update them on a daily
basis. So that you can lose no more than one
day’s processing, and so the transactions for that
day are logged in the transaction log file, keep the
transaction log file until the daily update run has
been successfully completed.

Data Processed but Not Distributed: If
the system fails during the day’s processing, you
must consider data that has been processed but
not distributed. Master files have been updated,
but the output of the application is stored within
the system and is not recoverable. You cannot
run the transactions again because the master
files would reflect double activity. Application pro-
grams that process the transaction file can flag the
header record of all orders processed. The
recovery plan would be designed to:

� Begin processing at the last order printed or
distributed to a display station

� Process all the following transaction records,
but not actually update master files or memo
fields on flagged orders.

Data Logged but Not Processed: When
the recovery program has processed the flagged
orders, the records in the transaction file that have
been received from the display stations, but have
not been processed, must be recovered. If the
system fails, users must not enter these records
again. Users must be notified as quickly as pos-
sible not to enter more data because a recovery is
in process. The recovery program must scan the
transaction file and identify for the operator the
last record correctly entered in the transaction file.
If transactions are linked together by display

 Chapter 19. Error Prevention, Detection, and Recovery 19-5

station within the transaction file, the logic of the
recovery program can be more direct.

Data Received but Not Logged: Data
received but not logged must be reentered by
users. Because this data was in main storage at
the time of the power or system failure, it is lost.

Loss of Transaction File Data: The
transaction file is important in a successful
recovery from a system failure. Users must
reenter transaction file data that is lost or unus-
able. Transaction file data can be made less crit-
ical if master files are backed up each day. If the
master files are backed up twice a day, a
maximum of one-half day’s input has to be
entered again. Even orders that have been pro-
cessed and printed have to be entered again so
that the master files can be correctly updated.
The printing of the output can be bypassed for the
duplicates to prevent wasting forms.

Whichever method you use, compare the time
required to enter records again to the time
required to save files.

Backup and Recovery Methods

Programs and procedures can be designed to
restore and recover all files, inform the operators
about the last items correctly processed, and allow
operations to continue from that point. This effort
might involve using additional fields in records and
using additional calculations in programs. Also,
new files, programs, and procedures might be
needed, particularly for recovery in an interactive
environment. Businesses that depend most on
their data processing system require the shortest
recovery times, and should develop the most elab-
orate backup and recovery procedures. Regard-
less of their complexity, backup and recovery
procedures should be well described so operators
use them correctly.

Note: See the System/36 Environment Refer-
ence book for information about using the
System/36 environment SAVE and RESTORE
procedures for backing up and restoring.

There are three methods of backup and recovery:

� The first method requires the least design and
programming effort, but requires the longest
recovery time because transaction batches

are not saved. The operator must periodically
save master files and files that the application
updates to establish a point from which to
recover (start the application again). For
example, after all transactions have been
posted, the operator might run a procedure
that contains SAVE procedures to save all
master files and their related files on diskette
or tape.

Operators should keep a log of the work they
do on the system. This manually kept log
must be accurate if it is to be relied on during
recovery. One way to keeping a log is to use
a run sheet, as shown in Figure 19-1 on
page 19-7.

Another way to obtain a log of work done on
the system is to print the job log. This
requires the system operator to do the fol-
lowing:

– Delete the files from disk.
– Restore the backup copies from diskettes

or tapes to establish a point from which to
recover.

– Reprocess all transactions that have been
entered since the last backup was done.

Work done since the last backup must be
done again. Transaction batches must be
entered again because they are not saved.
This method is adequate for a business that
processes low volumes of data and that fre-
quently backs up its data.

� The second method requires more planning
and programming, but reduces the amount of
recovery time required because it is not nec-
essary to reenter the transactions. The oper-
ator must do the following:

– Periodically save the master files and their
related files.

– Save batches of transactions at logical
breakpoints in the application.

For example, at the end of each day after all
transactions have been posted, the operator
runs a procedure that contains SAVE proce-
dures to back up master files and their related
files on diskettes or tapes. As part of the
transaction-posting procedure run during
normal processing, a batch of transactions is
saved on diskette or tape and deleted from
disk. The operator labels the diskettes or
tapes that contain the transactions to describe

19-6 OS/400 System/36 Environment Programming V3R6

RSLW079-1

Start
Time

Stop
Time

Display Station ID Date Page

RUN SHEET

Menu, Job, or Command Name Comments, Halts, or Messages
Operator’s
Initials

Figure 19-1. Run Sheet

the sequence in which the batches have been
saved. Also, the operator lists the names of
the procedures in the order that they were
run.

The recovery method requires the operator to
do the following:

– Delete the files from disk.
– Restore the backup copies from diskettes

or tapes to establish a point from which to
recover.

– Reprocess the application’s procedures in
their original order using the saved copies
of the transaction batches. The operator
uses the information labeled on the
diskettes or tapes to ensure that the trans-
action batches are restored in the correct
order.

This method prevents the reentering of trans-
actions required in the first method.

� The third method requires the most planning
and programming, but it provides the quickest
way to recover data because the operator’s
involvement is minimized. Code must be
included in an application’s procedures to do
the following:

– Periodically save the master files and their
related files.

– Automatically save batches of transactions
on disk, diskette, or tape at logical break-
points in the application.

– Assign names and sequence numbers to
these batches of transactions.

– Keep a log of all procedures the operator
runs after the previous backup.

– Provide a common recovery procedure.

 Chapter 19. Error Prevention, Detection, and Recovery 19-7

The recovery method requires the operator to
run the common recovery procedure. It lists
the control file, and restores the files. The
operator uses the log to run the application’s
procedures again in their original order. The
common recovery procedure prompts the
operator to insert the proper backup diskettes
or tapes in the correct sequence.

This recovery method uses a program-created
control log that is more accurate than a manu-
ally kept log. Because unnecessary proce-
dures such as reprinting statements or reports
could be skipped during recovery, this method
supplies the quickest recovery of the three
methods. This method is similar to the
backup and recovery procedures used in
some IBM-licensed application programs.

Service Aid Procedures

You may need to run service aid procedures to do
problem analysis and correction. See the
System/36 Environment Reference book for infor-
mation about service aids procedures.

 Error-Handling Considerations

This section describes error-handling consider-
ations for:

� Disk storage full
 � Display stations
 � Printers
 � ICF
 � Databases

Disk Storage Full

On System/36, the operating system allocates all
of the space requested by the user when a file,
library, or folder is created (and allows them to be
extended). System/36 requires that space for a
file or library be contiguous. If sufficient space is
not available, the request does not complete suc-
cessfully.

If secondary storage (disk space) becomes filled
on System/36, the operator can end the job that
encounters the secondary storage full condition.
For example, if a file is being restored from
diskette, or a program is being compiled, and
there is not enough secondary storage to hold the

file or the compiled program, the operator would
end the restore or the compile. Other jobs active
in the system will continue. The System/36 oper-
ator can then:

� Save files to diskette or tape
� Delete files to make more secondary storage

available
� Condense space in a library, to eliminate the

need to extend it

The AS/400 system is designed for single-level
storage, where main storage and secondary
storage are managed as a single large address
space. The AS/400 system does not allocate all
of the space for a file, for example, when it is
created. The OS/400 program obtains space and
extends a file as it is needed. A file or library
does not need to occupy contiguous storage.

Because the OS/400 program manages secondary
storage as a single large area, when it fills to
capacity the entire system stops (abnormally
ends). As space utilization approaches capacity,
messages are sent to the system operator
message queue, informing the operator that sec-
ondary storage use exceeds a user preset value
(default 90% of secondary storage available).

Note: Do not let secondary storage fill to
capacity. Re-IPLing and recovery can be a long
process.

For more information on secondary storage man-
agement and recovery, refer to the Auxiliary
Storage Pool (ASP) threshold description in the
disk recovery chapter of the Backup and Recovery
– Advanced book.

Display Station Device Error
Considerations

When a display station device error occurs on
System/36, the System/36 operating system gen-
erally displays a message at the system console
informing the operator of the error. The operator
can select either to have the system or application
program retry the failed operation, or to have the
system end the job and sign the user off.

If the operator returns control to the System/36
program to retry the operation, the general
System/36 programming action is to reissue the
failed operation. If the operation completes suc-
cessfully the program continues. If the operation

19-8 OS/400 System/36 Environment Programming V3R6

does not complete successfully, a new message is
sent to the console and the operator again can
choose to retry the failed operation, or end the
job.

When the System/36 programs are migrated to
the System/36 environment, you may need to
modify System/36 programs that are designed to
recover from display station errors by reissuing the
last operation.

The OS/400 program generally returns control to
the application program when a device error
occurs, and allows the program to determine the
appropriate recovery action. In some cases the
device error return code the program receives can
be corrected by reissuing the operation in error.
The system ends the program if the program
keeps reissuing an operation to a device with a
permanent error (ends program after 6 attempts).
Because a message is not necessarily sent to the
system operator, the error recovery routine in an
application program should prevent it from getting
into an infinite loop. An infinite loop could occur
when the program releases and reacquires a
display station, and the device error is permanent.

The following list describes some of the possible
error return codes:

2800 Error Indication: Your program has issued
a release operation for the requester device,
and is now attempting to use it. Because
that device was released from your program,
this operation was not performed, and any
further attempts to use the requester display
station will result in another 2800 return
code.

Used in the System/36 environment only.

Recovery Action: Continue local pro-
cessing, end your program, or reacquire the
requester device. Your program may be in
error; you should correct it so that the
release operation is issued after all use of
the requesting device has been completed.

Message:

 CPF4761 (Escape)

3200 Error Indication: Your program has
attempted to acquire a display device for
which it is not authorized. The acquire was
not successful and any attempts to use that
display will fail.

Used in the System/36 environment only.

Recovery Action: If the operation was an
open, close the file, correct the problem,
then reissue the open. If the operation was
an acquire, correct the problem and reissue
the acquire. For authority errors, obtain
authority to the device from your security
officer or the device owner.

Message:

 CPF5279 (Escape)

3800 Error Indication: The acquire operation
was not successful because the display
device you are acquiring is in use in another
process or is not varied on. The session
was not started.

Used in the System/36 environment only.

Recovery Action: Vary on the device or
wait for the display station to become avail-
able, then reissue the acquire operation.
Otherwise, you may continue other pro-
cessing or end the program. The
WRKCFGSTS command may be used to
determine whether the device is in use or
not varied on.

Consider increasing the WAITFILE param-
eter with the CHGDSPF or OVRDSPF
command to allow more time for the device
to become available.

Messages:

 CPF4282 (Escape)
 CPF4285 (Escape)
 CPF5332 (Escape)
 CPF5333 (Escape)

Refer to the Display Station File chapter in the
Application Display Programming book for more
information regarding additional coding consider-
ations for display station error handling.

If the display station is a remotely attached device,
communications line and controller errors can also
occur. You can find additional information about
remote display station error processing in the
Remote Work Station Support book.

When coding for display station device error
recovery, consider the following:

� Releasing a display station associated with a
MRT returns the requester to the job that the

 Chapter 19. Error Prevention, Detection, and Recovery 19-9

MRT was called from. The MRT will be
unable to reacquire the display station. You
may need to:

– Prevent a partial transaction from being
entered by the device that was released

– Prevent control from being prematurely
returned to the job that called the MRT
program (for example, before a local data
area used to communicate between the
jobs is set up).

Other display stations associated with the
MRT could be interrupted for a period of
time, while specific operations are issued
to the display station in error.

� For some errors the recovery action is to
close the file and to reopen it.
System/36-Compatible RPG II performs an
implicit OPEN and CLOSE function for the
user when the program begins and ends.
Because the OPEN and CLOSE operations
are not available to the System/36-Compatible
RPG II programmer, the program should ter-
minate.

If a System/36 environment program is not
designed to handle display station device errors,
the operating system or high-level language gen-
erally terminates the program.

Display Station Device Error
Recovery

On the AS/400 system, you can choose a device
error recovery action for a particular session, or
for the entire system. Enter the Display Job
command (DSPJOB CL) and select option 2 from
the Display Job menu to display the current device
recovery action for the session. Use the Change
Job command (CHGJOB CL) to change the
device recovery action for the session
(DEVRCYACN parameter).

There are several possible values for the device
recovery action job attribute and each results in a
different device recovery action in the System/36
environment:

*MSG
The application program requesting the
input/output operation receives an error
message indicating the input/output operation

failed. This is the default error recovery
action.

*DSCMSG
The job is automatically disconnected when
the input/output operation is detected. When
the job is reconnected, the system can com-
municate with the device again.

*DSCENDRQS
The job is automatically disconnected when
the input/output operation is detected. When
the job is reconnected, the system ends the
current job and the system can communicate
with the device again. For interactive ses-
sions, your menu is displayed.

*ENDJOB
The job and the session are ended. A job log
is produced for the session.

*ENDJOBNOLIST
The job and the session are ended. A job log
is not produced for the session.

For more information about the DSPJOB CL
command, CHGJOB CL command, or device
recovery action, see the Work Management book.

Printer Device Error
Considerations

As on System/36, most printed output is spooled
to secondary storage, rather then sending the
output directly to the printer from the application
program. Printer device error recovery and
restarting of a device after an error is handled by
the OS/400 spool support. Additional information
on spool error handling and printer considerations
can be found in the Printer Device Programming
book.

Programs which use print files that go directly to
the device, instead of being spooled, should close
the file and reopen it when an error occurs.

ICF Error Considerations

On the System/36, if a permanent communication
error occurs when two programs are communi-
cating using a System Support Program-
Interactive Communications Function (SSP-ICF)
session, the session is released by SSP-ICF data
management.

19-10 OS/400 System/36 Environment Programming V3R6

On the AS/400 system, the ICF session is auto-
matically released by the OS/400 ICF support. If
the ICF session is attached to a multiple requester
terminal (MRT) program, the session is released
from the MRT program. The MRT can continue to
support other ICF sessions or display stations that
are attached to the MRT program. When the
session is released by the OS/400 ICF support
due to a permanent error, the source program can
attempt to acquire a new session with the target
system. If the acquire is successful, the source
program can continue sending and receiving data.
If the acquire is unsuccessful, the source program
can continue to support other ICF sessions or
display stations associated with the application
program. If no other ICF sessions are active, the
source program can end.

In addition, the AS/400 system has support to
handle program loops that occur because of per-
manent device errors. When an ICF session
encounters a permanent device error, the applica-
tion program receiving the error usually goes into

a retry loop if the program is not written to handle
the error. The system limits this loop to only five
iterations before ending the job with a reduced pri-
ority, thus reducing the overhead associated with
these errors.

You can find additional information about pro-
cessing communications errors in the ICF Pro-
gramming book.

Database File Error Conditions

The AS/400 system attempts to recover from any
secondary storage device errors that occur. If
control is returned to the program, indicating a
device error has occurred, the program should
close the file and end the program. The DB2 for
OS/400 Database Programming book has a
chapter that describes handling database file
errors in a program. The Backup and Recovery –
Advanced book also discusses the procedures an
operator could use to recover a file that becomes
unusable.

 Chapter 19. Error Prevention, Detection, and Recovery 19-11

19-12 OS/400 System/36 Environment Programming V3R6

Chapter 20. System/36 Environment National Language
Support

This chapter describes the national language
support for the System/36 environment

System/36 Environment Multiple
Language Support

Multiple language support deals with entering data
and displaying data in different national languages
on the same system. This data can be broken
down into two distinct groups:

 � IBM-supplied data
 � User-supplied data

Multiple Language Support for
IBM-Supplied Data

IBM-supplied data, such as help prompts, help
text, menus, and messages, is part of the
System/36 environment. This data is translated by
IBM and shipped to you in various languages.
The System/36 environment can display this data
in various national languages on the same
system. This allows information in one national
language to be presented to one user while infor-
mation in a different national language is pre-
sented to another user. The presentation of this
data is based on the current setting of the library
list for the job.

The System/36 environment is installed with the
IBM-supplied data in library QSSP in the primary
national language of the system. For example, if
the primary national language of the system is
English, library QSSP contains the English version
of the data. Secondary national languages are
installed in separate national language libraries.
For example, French is contained in library
QSYS2928, and German is contained in library
QSYS2929.

If you want the System/36 environment data pre-
sented in a language different from the primary
national language, change the library list so the
desired national language library is before the
primary national language library (QSSP) in the
library list. For example, if you want the French
version of data, type CHGSYSLIBL QSYS2928 to

place the French version of the data at the top of
the library list.

If you usually want a national language different
from the primary national language, you can set
up the initial library list for the job. To do this,
define an initial program (in the user profile) that
uses the Change System Library List
(CHGSYSLIBL) command to add the desired
national language library to the front of the library
list.

The use of the CHGSYSLIBL command is
restricted when shipped by IBM. Use one of the
following methods to make the CHGSYSLIBL
command available to all users:

� Use the Edit Object Authority (EDTOBJAUT)
command so all users are authorized to run
the CHGSYSLIBL command.

� Write a CL program containing the
CHGSYSLIBL command. A security officer
should write and own the CL program, and the
program should adopt the security officers
profile.

For information on security, see the Security –
Basic book. For information on writing CL pro-
grams and commands, see the CL Programming
book.

Multiple Language Support
User-Supplied Data

User-supplied data, such as database files,
display files, menus, and help text, is part of the
user application. This data is not necessarily
translated when it is created.

Maintaining data integrity when character data is
passed from system to system or user to user is
critical. The System/36 environment can maintain
the data integrity for database or source files on
all SAA* systems. Tagging the character data in
these files with a Coded Character Set Identifier
(CCSID) ensures this integrity. The CCSID identi-
fies the code points used to represent the char-
acter data. The CCSID value of the file is then
used to encode the character data as needed to

 Copyright IBM Corp. 1995 20-1

preserve its meaning. Each job that is running on
the system also has a CCSID associated with it.
These two CCSIDs (file CCSID and job CCSID)
are used to maintain the integrity of the data that
is passed between the job and the file.

If data is being read from a database or source
file and the CCSID of the file is the same as the
job CCSID, no encoding of the data must be
done. If the CCSID of the file and the job CCSID
are different, the data is encoded to match the
CCSID of the job.

If data is being written to a database or source file
and the CCSID of the file is the same as the job
CCSID, no encoding of the data must be done. If
the CCSID of the file and the job CCSID are dif-
ferent, the data is encoded to match the CCSID of
the file.

The job CCSID value is the same as the system
CCSID value unless it is changed through the
user profile or a Change Job (CHGJOB)
command.

The file CCSID for all database files created by
the System/36 environment functions have a
CCSID of 65535 with the following exceptions:

� A file restored using the RESTORE procedure
that was saved from another AS/400 system.
This file has the same CCSID as it did on the
system it was saved from.

� A file copied using the COPYDATA procedure
and the input file is an externally described
file. If the output file is externally described,
the CCSID of the new output file is the same
as the input file.

The CCSID for all source files created by the
System/36 environment functions is set to the job
CCSID with the following exceptions:

� The source files in a library that were restored
to the system using the RESTLIBR procedure.
The CCSID of these source files will be the
same as the CCSID of the saved file.

� A QS36PRC source file that contains
IBM-supplied procedures has a CCSID of
65535.

Multilingual System Environment

A multilingual system environment is where you
are running jobs that have a job CCSID that is dif-
ferent from the system CCSID. If this is true for
your system the following should be considered:

� The CCSID of the QS36PRC source file that
contains the procedures you run should have
a CCSID of 65535. This must be done so any
variant characters (such as $, # and @) in the
procedure do not get converted. For example,
if one of the procedures has a // LOAD
$COPY in it and the CCSID of the source file
is 273 for Germany, the $ has a value of
hexadecimal '5B'. The CCSID of the job that
is to run that procedure is 277 for Denmark.
The $ will be converted to a hexadecimal '67'
when it is read from the source file. The
$COPY utility program would not be found
because the $ in the name in the library is a
hexadecimal '5B' and an error message would
be issued. If the CCSID of the QS36PRC
source file was 65535, no conversion would
take place and the $ would remain a
hexadecimal '5B'.

� The CCSID of the QS36PRC source files
should also be looked at. If any of the source
in these files contain variant characters, a
CCSID of 65535 should be considered.

� The sort specifications used by the Disk Sort
utility should also be looked at. If the input file
for the sort was created by the System/36
environment it has a CCSID of 65535, indi-
cating no conversion of character data should
take place. If the sort specifications that are
to be used for the sort are read from a source
file where conversion does take place, some
of the include, omit, and record characters
may not be the same as those in the file. In
this case, the CCSID of the source file should
be changed to 65535.

If the input to the sort is from a file whose
CCSID is not 65535, the CCSID of the source
file with the sort specifications should be the
same as the CCSID of the input file.

More information on CCSIDs can be found in the
National Language Support book.

20-2 OS/400 System/36 Environment Programming V3R6

 System/36 Environment
Double-Byte Character Support

Characters defined by 1 byte of data (alphanu-
meric characters) are called single-byte charac-
ters and are part of the single-byte character set
(SBCS).

Because some national languages include thou-
sands of characters, a single byte cannot uniquely
represent each character in the system. In the
double-byte version of a national language, each
character is represented by 2 bytes of data. Char-
acters defined by 2 bytes of data are called
double-byte characters and are part of the
double-byte character set (DBCS).

The System/36 environment can process data for
double-byte national languages. Following are
examples of double-byte national languages:

 � Japanese Kanji
 � Traditional Chinese
 � Simplified Chinese
 � Korean Hanguel

You must have special display stations and
printers to display, enter, and print double-byte
characters.

AS/400 Double-Byte Character
Set System Value

The AS/400 system maintains a DBCS system
value (QIGC) that indicates whether or not you
have installed the DBCS version of the operating
system.

The AS/400 DBCS system value is used by the
System/36 environment to control what action is
performed for the following functions:

� Creating or changing System/36 print files

This can be done when a new printer is con-
figured on the system or the Change S/36
Configuration (CHGS36) command is run.

If the DBCS system value indicates the
system is capable of handling DBCS data, the
description of the printer is checked to see if it
is DBCS capable. If it is, the print file is
created or changed to allow DBCS data. If it
is not, the print file is created or changed not
to allow DBCS data.

If the DBCS system value indicates the
system is not capable of handling DBCS data,
the description of the printer is not checked,
and the print file is created not to allow DBCS
data. Any existing print files are not changed.

� Processing the PRINTER OCL statement

If the DBCS system value indicates the
system is capable of handling DBCS data and
any of the following parameters were specified
on the PRINTER statement: IGCCPI, SOSI,
TYPE-IGC or EXTN, an Override Printer File
(OVRPRTF) command is run with the corre-
sponding keywords.

If the DBCS system value indicates the
system is not capable of handling DBCS data
and any of the following parameters were
specified on the PRINTER statement:
IGCCPI, SOSI, TYPE-IGC or EXTN, the
values are ignored.

 � Librarian Functions

If the DBCS system value indicates the
system is capable of handling DBCS data,
shift-out (SO) and shift-in (SI) characters are
scanned for when copying data from the
READER.

AS/400 Double-Byte Character
Set Job Attribute

The AS/400 system maintains a DBCS job attri-
bute for every job running on the system. The job
attribute indicates if the job is capable of handling
double-byte character data. The job attribute is
initially set when you sign on to a work station or
when a batch job is started. The job attribute is
based on the job CCSID value and the DBCS
system value.

If the job CCSID is mixed and the DBCS system
value indicates the DBCS operating system is
installed, the job attribute indicates the job is
capable of handling DBCS data.

If the job CCSID is SBCS and the DBCS system
value indicates the DBCS operating system is
installed, the job attribute indicates the job is not
capable of handling DBCS data.

If the job CCSID is SBCS and the DBCS system
value indicates the DBCS operating system is not

 Chapter 20. System/36 Environment National Language Support 20-3

installed, the job attribute indicates the job is not
capable of handling DBCS data.

Note: The job CCSID cannot be mixed if the
DBCS system value indicates the DBCS operating
system is not installed.

The AS/400 job attribute is used in the System/36
environment to control what action is performed
for the following functions:

� Creating a System/36 menu

This can be done by running the BLDMENU
procedure or loading the $BMENU utility
program.

If the DBCS job attribute indicates the job is
capable of handling DBCS data, the option
and command line of the menu are created
with the open field attribute. The source file
and display file created for the menu allows
DBCS data.

If the DBCS job attribute indicates the job is
not capable of handling DBCS data, the option
and command line of the menu are created
with the alphameric field attribute. The source
file and the display file created for the menu
does not allow DBCS data.

� Creating System/36 messages

This can be done by running the CREATE
procedure or loading the $MGBLD utility
program.

If the DBCS job attribute indicates the job is
capable of handling DBCS data and a
Message ID Character (MIC) of A000
appeared in the source member before the
messages, the following actions take place:

– The third character of the message prefix
is changed to a Z (that is, USZ).

– Shift-out (SO) and shift-in (SI) characters
are inserted when a IGC string is con-
tinued on another line.

– The source file created for the Create
System/36 Message File (CRTS36MSGF)
command allows DBCS data.

If the DBCS job attribute indicates the job is
not capable of handling DBCS data, the fol-
lowing actions will take place:

– The third character of the message prefix
is not changed to a Z (that is, USR).

– The scanning of shift-out (SO) and shift-in
(SI) characters is not done.

– The source file created for the Create
S/36 Message File (CRTS36MSGF)
command does not allow DBCS data.

� Creating System/36 display files

This can be done by running the FORMAT
procedure or loading the $SFGR utility
program.

If the DBCS job attribute indicates the job is
capable of handling DBCS data, the following
actions take place:

– All input fields are created with the open
field attribute.

– Syntax checking allows IGC constants.
– Shift-out (SO) and shift-in (SI) characters

are inserted when a IGC constant is con-
tinued on another line.

– The source file and display file created will
allow DBCS data.

If the DBCS job attribute indicates the job is
not capable of handling DBCS data, the fol-
lowing actions will take place:

– All input fields are created with the alpha-
meric field attribute.

– Syntax checking does not allow IGC con-
stants.

– The scanning of shift-out (SO) and shift-in
(SI) characters is not done.

– The source file and display file created do
not allow DBCS data.

� Creating System/36 data files

This can be done by running any System/36
procedure or utility program that creates a
System/36 data file or any user application
program that creates a System/36 data file.

If the DBCS job attribute indicates the job is
capable of handling DBCS data, the file is
created allowing DBCS data.

If the DBCS job attribute indicates the job is
not capable of handling DBCS data, the file is
created not allowing DBCS data.

� Updating the Auto Response value for
messages

This can be done by running the RESPONSE
procedure or loading the $ARSP utility
program.

If the DBCS job attribute indicates the job is
capable of handling DBCS data, the DBCS
messages are updated. An example would be

20-4 OS/400 System/36 Environment Programming V3R6

those messages that have an X as the third
character in the prefix, such as USX.

If the DBCS job attribute indicates the job is
not capable of handling DBCS data, the SBCS
messages are updated. An example would be
those messages that do not have an X as the
third character in the prefix, such as USR.

� IGC-related help prompts shown for OCL
and PCE

This can be done by running the HELP proce-
dure or pressing F4.

If the DBCS job attribute indicates the job is
capable of handling DBCS data, the help
prompts will have IGC-related parameters.

If the DBCS job attribute indicates the job is
not capable of handling DBCS data, the help
prompts will not have IGC-related parameters.

 � Librarian functions

This can be done by running the BLDLIBR,
TOLIBR, RESTLIBR, JOBSTR, and LIBRLIBR
procedures or loading the $MAINT utility
program.

If the DBCS job attribute value indicates the
job is capable of handling DBCS data, the
QS36PRC (procedure members) and
QS36SRC (source members) source files are
created allowing DBCS data.

� Data file copy functions

This can be done by running the SAVE,
RESTORE, COPYDATA, or LISTDATA proce-
dures or loading the $COPY utility program.

If the DBCS job attribute indicates the job is
capable of handling DBCS data, any interme-
diate files created during the operation allow
DBCS data.

If the DBCS job attribute indicates the job is
not capable of handling DBCS data, any inter-
mediate files created during the operation do
not allow DBCS data.

� Force a program dump

This can be done by taking a D option to any
System/36 environment message.

If the DBCS job attribute indicates the job is
capable of handling DBCS data, the dump is
taken allowing DBCS data.

If the DBCS job attribute indicates the job is
not capable of handling DBCS data, the dump
is taken not allowing DBCS data.

� Display System/36 messages

This can be done whenever an error message
is displayed to a user by a System/36 function
in the System/36 environment.

If the DBCS job attribute indicates the job is
capable of handling DBCS data, an attempt is
made to display a DBCS message. The prefix
of a DBCS message ends with a Z (such as,
USZ). If the DBCS version cannot be found,
the SBCS version is used.

If the DBCS job attribute indicates the job is
not capable of handling DBCS data, an
attempt is made to display a SBCS message.
The prefix of a SBCS message does not end
with a Z (such as, USR). If the SBCS
message is not found, an error is issued.

� Output to SYSLIST device

This is done by one of the System/36 environ-
ment utilities that is used to display data such
as CATALOG, LISTLIBR, or FORMAT.

If the DBCS job attribute indicates the job is
capable of handling DBCS data, the printer or
display station is opened to allow DBCS data.

If the DBCS job attribute indicates the job is
not capable of handling DBCS data, the
printer or display station is opened not to
allow DBCS data.

� Process the MSG command or MSG OCL
statement

If the DBCS job attribute indicates the job is
capable of handling DBCS data, shift-out (SO)
and shift-in (SI) characters are inserted when
a IGC string is continued on another line.

If the DBCS job attribute indicates the job is
not capable of handling DBCS data, and if
there are shift-out (SO) and shift-in (SI) char-
acters in the message text, characters are
replaced with periods (“.”).

 Chapter 20. System/36 Environment National Language Support 20-5

 System/36 Environment
Double-Byte Character Job
Attribute

The System/36 environment maintains a job attri-
bute for every job running in the System/36 envi-
ronment. This job attribute indicates if the job is
capable of handling DBCS data.

 IGC Procedure

The System/36 environment uses the IGC proce-
dure to set or reset the System/36 environment
DBCS job attribute for both interactive and batch
jobs. The IGC procedure support is similar to the
IGC SESSION prompt support on the System/36
Sign-on display. The following figure shows the
format of the IGC procedure:

RSLW100-1

IGC YES
NO

Note: A parameter must be entered. There is no
default value for it.

For more information about the IGC procedure,
see the System/36 Environment Reference book.

When a DBCS-capable display station starts an
interactive System/36 environment job (either from
the Sign-on display or the Start System/36
(STRS36) command), the job automatically
becomes a System/36 environment DBCS job.
Therefore, you do not need to run the IGC proce-
dure to set the System/36 environment DBCS job
attribute. If you are using a DBCS-capable
display station, but you do not want the job to be
a System/36 environment DBCS job, you can use
the IGC procedure to change the System/36 envi-
ronment DBCS job attribute.

If you run the IGC procedure from a display
station that is not capable of handling double-byte
characters, the procedure does not set the
System/36 environment DBCS job attribute. The
procedure ignores the request to change the
System/36 environment DBCS job attribute
because the display station is not capable of han-
dling double-byte characters.

Also, you can set or reset the System/36 environ-
ment DBCS job attribute in a batch job using the
IGC procedure. When you create a batch job with
System/36 environment functions like // EVOKE or
// JOBQ, the batch job is the same as the setting
of the System/36 DBCS job attribute. For
example, if the current job is a System/36 environ-
ment DBCS job and // EVOKE is used to create a
batch job, the batch job created is a System/36
environment DBCS job.

Because MRT procedures allow only a single
// LOAD and // RUN pair, System/36 environment
provides a special interface that allows a MRT
procedure to set the System/36 environment
DBCS job attribute. The interface is a call to a
System/36 environment program that sets or
resets the System/36 environment DBCS job attri-
bute based on the parameters passed to the
program.

Following is an example of a MRT procedure that
sets the System/36 environment DBCS job attri-
bute:

\ MRT Procedure to set on the S/36 environment
\ double-byte character job attribute
CALL PGM(QSSP/QEXIGCP) PARM(\YES)
// LOAD MRTPGM
// RUN

The following example of a MRT procedure resets
the System/36 environment DBCS job attribute:

\ MRT Procedure to set off the S/36 environment
\ double-byte character job attribute
CALL PGM(QSSP/QEXIGCP) PARM(\NO)
// LOAD MRTPGM
// RUN

Note: The initial setting of the System/36 envi-
ronment DBCS job attribute is off when a MRT
procedure is started.

The System/36 environment DBCS job attribute
controls the following System/36 environment
functions:

� // IF DSPLY-IGC procedure control
expression

If the System/36 environment DBCS job attri-
bute is not on, the // IF DSPLY-IGC procedure
control expression is false. If the System/36
environment DBCS job attribute is on, the // IF
DSPLY-IGC procedure control expression is
true. If you use the // IF DSPLY-IGC proce-

20-6 OS/400 System/36 Environment Programming V3R6

dure control expression in a batch job, the
system displays an error message.

� Retrieve DBCS messages

The System/36 environment supports both
single- and double-byte versions of messages
for IBM-supplied programs and for user-written
System/36 environment applications.

Messages displayed by IBM-supplied pro-
grams use the library list to determine whether
to send the single- or double-byte version of a
message. See “Setting the Library List for
DBCS Session” for information on setting the
library list to display single- or double-byte
versions of messages.

Messages retrieved and sent by user-written
System/36 environment applications use the
System/36 environment DBCS job attribute. If
the job attribute is on, an attempt is made to
retrieve a DBCS version of the message. The
prefix of a DBCS message ends with a Z
(such as, USZ). If the DBCS version cannot
be found, the SBCS version is used. If the
System/36 environment DBCS job attribute is
off, the SBCS version of the message is
retrieved for the application.

For more information on creating SBCS and
DBCS versions of messages, see the
description of the CREATE procedure in the
System/36 Environment Reference book.

� SYSLIST interpretation of shift-out (SO)
and shift-in (SI)

If the System/36 environment DBCS job attri-
bute and AS/400 job attribute indicate the job
is capable of handling DBCS data, the SO/SI
characters are left in the data that is sent to
the SYSLIST device.

If either the System/36 environment DBCS job
attribute or the AS/400 job attribute indicate
the job is not capable of handling DBCS data,
the SO/SI characters and the string they sur-
round are replaced with periods (“.”).

� SYSLOG interpretation of shift-out (SO)
and shift-in (SI)

If the System/36 environment DBCS job attri-
bute and AS/400 job attribute indicate the job
is capable of handling DBCS data, the SO/SI
characters are left in the data when the
message is sent. Also, SO/SI characters are

inserted when a DBCS string is continued on
another line.

If either the System/36 environment DBCS job
attribute or the AS/400 job attribute indicate
the job is not capable of handling DBCS data,
the SO/SI characters and the string they sur-
round are replaced with periods (“.”).

The STATUS SESSION (D S) operator control
command can be used to display the current
setting of the System/36 environment DBCS job
attribute.

Notes:

1. Messages sent to the console from a
System/36 environment application are not
affected by the current setting of the
System/36 environment job attribute. The
double-byte version of System/36 environment
messages are sent to the console message
queue (QSYSOPR) if the AS/400 job attribute
indicates the job is capable of handling DBCS
data and the message member contains a
DBCS version of the message.

2. If an interactive job attempts to display DBCS
characters on a S/36 Program Message
display that is not capable of displaying DBCS
data, the system replaces the DBCS charac-
ters with periods (“.”).

Setting the Library List for DBCS
Session

The DBCS support for IBM-supplied data is similar
to support for displaying multiple national lan-
guages. See “System/36 Environment Multiple
Language Support” on page 20-1 for information
about System/36 environment multiple language
support. How IBM-supplied data is presented is
based on the setting of the job’s library list.

When you install the System/36 environment, the
IBM-supplied data in library QSSP is in the
primary national language of the system. For
example, if the primary national language of the
system is a single-byte national language, library
QSSP contains the single-byte version of the
IBM-supplied data. If the primary national lan-
guage of the system is a double-byte national lan-
guage, QSSP contains the double-byte version of
the IBM-supplied data.

 Chapter 20. System/36 Environment National Language Support 20-7

Secondary national languages are installed in sep-
arate national language libraries. For example,
Kanji is contained in library QSYS2962.

If you want the System/36 environment
IBM-supplied data presented in the primary
national language of the system (for example,
double-byte Kanji), simply sign on to the
System/36 environment. The System/36 environ-
ment national language default is the primary
national language of the system.

If you want the System/36 environment
IBM-supplied data presented in a national lan-
guage other than the system’s primary national
language, you must change the library list so the
national language library you want is above the
primary national language library (QSSP) in the
library list. For example, if your system’s primary
national language is double-byte Traditional
Chinese, but you want the Kanji version of
IBM-supplied data, type CHGSYSLIBL QSYS2962
to place the Kanji version at the top of the library
list.

If the system contains only DBCS-capable display
stations and all users want the IBM-supplied data
presented in a national language different from the
primary national language, you can change the
system value QSYSLIBL so the national language
library you want is placed at the front of the
system portion of the library list.

Use the Display System Value (DSPSYSVAL)
command to display the value of QSYSLIBL, and
the Change System Value (CHGSYSVAL)
command to change the value of QSYSLIBL for all
users. For example, if you specify CHGSYSVAL
SYSVAL(QSYSLIBL) VALUE('QSYS2962 QSYS
QUSRSYS QHLPSYS'), the system uses the
Kanji version of the IBM-supplied data for all jobs.

If the system contains a mixture of display stations
that can handle DBCS data and some that cannot,
and you want the national language library set
based on display station type, use work station
entries and routing entries to set the library list.
Use the work station entries to select a routing
entry based on the type of work station signing on
to the subsystem. You can use the routing entries
to select the program called when signing on to
the subsystem.

The default program for IBM-supplied subsystems
is QCMD. The routing entry should specify a
user-written program that adds the national lan-
guage library you want to the front of the system
portion of the library list (using the CHGSYSLIBL
command). Then the program should transfer
control from the user-written program to the
program QCMD (using the Transfer Control
(TFRCTL) command).

For information on subsystems, work station
entries, and routing entries, see the Work Man-
agement book. For information on writing CL pro-
grams, see the CL Programming book. For
information on CL commands, see the CL Refer-
ence book.

If the system contains a mixture of display stations
that can handle DBCS data and some that cannot,
and you want the national language library set
based on display station type and the user running
at the display station, you can use an initial proce-
dure and some System/36 environment OCL
(Operation Control Language) functions to set the
library list.

The initial procedure defined for the user (initial
program attribute in that user’s profile) should
contain the following statements:

\ Initial procedure to put library QSYS2962 at the top of
\ the system portion of the library list if the current
\ display station is DBCS-capable
// IF DSPLY-IGC CHGSYSLIBL QSYS2962 /\ If this is a \/
\ /\ DBCS device, \/
\ /\ add QSYS2962 \/
\ /\ to lib list \/

If the job is a System/36 environment DBCS job,
the // IF DSPLY-IGC procedure control expression
is true. Therefore, the CHGSYSLIBL QSYS2962
command runs. If the job is not a System/36 envi-
ronment DBCS job, the // IF DSPLY-IGC proce-
dure control expression is false. Therefore, the
CHGSYSLIBL QSYS2962 command does not run.

When you create a batch job with a System/36
environment function like // EVOKE or // JOBQ,
the system initializes the library list of the batch
job based on the setting of the library list of the
job that creates the batch job. For example, if you
use // EVOKE to create a batch job, the library list
of the batch job is the same as the library list of
the job that created the batch job. Therefore, the
batch job can display messages in the same

20-8 OS/400 System/36 Environment Programming V3R6

national language as the job that created the
batch job.

When you start a MRT job, the library list is set up
as defined in the QS36MRT job description in
library QGPL. The elements in the following list
make up the default setting for this job description:

� The system portion of the library list is set to
the libraries contained in system value
QSYSLIBL.

� The current library is set to the current library
of the job that started the MRT procedure.

� The user portion of the library list is set to the
libraries contained in system value
QUSRLIBL.

For information on job descriptions, see the Work
Management book.

System/36 Environment DBCS
Printer Support

For every printer defined in the System/36 envi-
ronment, the system creates a print file with the
same name as the System/36 environment printer.
If P1 is a System/36 environment printer ID, library
#LIBRARY contains a print file named P1. When
a System/36 environment application creates
printed output, the System/36 environment support
uses these print files to define some of the attri-
butes of the spooled file.

If the printer can print double-byte characters and
the AS/400 system value indicates the job is
capable of handling DBCS data, the system
creates the print file in #LIBRARY with the
IGCDTA parameter specified as *YES. This
allows DBCS data to be printed.

If the printer cannot print double-byte characters
or the AS/400 system value indicates the job is
not capable of handling DBCS data, the IGCDTA
parameter is not specified when the print file is
created. Thus, DBCS data cannot be printed and
DBCS characters sent to the printer are inter-
preted as single-byte characters.

If the system created a spooled file with the
IGCDTA parameter of *YES and you move this file
to a printer that cannot print DBCS data, the
system sends a message to the message queue

for the printer informing the operator that the
spooled file may not print correctly on the printer.
If the operator selects the option to print the
spooled file on the non DBCS-capable printer, the
system does not send advanced printer functions
to the printer.

If you change the printers device description to be
DBCS capable from not being DBCS-capable, the
System/36 environment print file associated with
this printer does not match the current printer
description. You can perform the following steps
to update the System/36 environment print files to
match the printer device descriptions:

1. Enter the Change System/36 environment
(CHGS36) CL command.

2. Type 2 in the S/36 printer IDs field of the
Change S/36 Environment Configuration
display.

3. Press the Enter key when the Change S/36
Printer IDs display appears.

4. When the Change S/36 Environment Config-
uration display appears again, press the Enter
key to update the System/36 environment
print files.

The CHGS36 command updates the System/36
environment print files to match the IGC attribute
in the printer device descriptions. If you cannot
change a System/36 environment print file, an
error message appears. The message describes
the reason you cannot change the print file and
the action you need to take to correct the problem.
After you correct the problem, run the CHGS36
command again to update the print files.

Writing Applications for
Translating Considerations

Consider the following guidelines if you are writing
applications that will be translated into several lan-
guages:

� Information the user sees should be separated
from the programming statements. Messages
a user sees should be in a message member
rather than literals in programming language
statements.

� Each translation of IBM-supplied data should
be in a separate language library.

 Chapter 20. System/36 Environment National Language Support 20-9

� Use the library list to select the national lan-
guage in which the application shows
IBM-supplied data.

20-10 OS/400 System/36 Environment Programming V3R6

Appendix A. Access Algorithms for Direct Files

This appendix describes some access algorithms
you can use with direct files. With them you can
design your direct files more efficiently.

To design and use a direct file define an access
algorithm that satisfies the processing require-
ments for the file while preserving the advantages
of direct files.

Assign relative record numbers sequentially. The
first record placed in the file has relative record
number 1, the second record has relative record
number 2, and so on.

Use a control field in each record as its relative
record number. For example, use loan number
3456 without change as relative record number
3456. Use a control field directly as a relative
record only if a large number of unused values are
not within the range of values for the control field.
If there are many unused values and record posi-
tions, define an algorithm to reduce the size of the
file.

Choosing an Access Algorithm

An access algorithm is the method you use to
determine the position each record will occupy.
The algorithm must supply a positive, whole
number as a relative record number.

Use a formula as an algorithm to determine the
record number. For example, if loan numbers
start with 1001, loan number 3456 could be rela-
tive record number 2456 (3456 minus 1000). The
formula can be as complex as you need to make
it. Refer to “Examples of Access Algorithms” on
page A-2 for more information and examples.

Another method is to use a control field that con-
tains alphanumeric data. An algorithm would
convert the alphanumeric data to a relative record
number. Refer to “Handling Synonym Records”
for an example of using a customer name as the
control field.

The choice of an access algorithm and the deci-
sion about whether to use a direct file is usually
based on how well synonym records can be
handled. A synonym record is a record in a

direct file whose control field supplies the same
relative record number as another control field.
The first record with a relative record number is
called the home record . If the handling of syno-
nyms requires a significant number of additional
disk accesses, you lose one of the important
advantages of the direct file. If the algorithm and
synonym handling are changed, you may need to
rebuild files and change all the programs that use
those files, if the access algorithm and the
synonym code must reside in each program that
uses a direct file.

Handling Synonym Records

You can handle synonyms in many ways. Fol-
lowing are two common ways:

� Place synonyms in a separate part of the file.
� Place synonyms in the next available blank

location.

The record must contain a pointer to the synonym
record. If two or more synonyms exist, the first
synonym contains a pointer to the second
synonym, and so on.

For example, the control field for a file is the first
five characters of the customer’s name. The file
contains space for 40 000 records and allowance
for three synonyms for each home record. The
customer’s name is converted to a decimal value,
as shown in the following figure:

RSLW046-1

F2 F4 F9 F3 F8

E2 D4 C9 E3 C8 (EBCDIC code)

(zoned decimal)

(decimal)2 4 9 3 8

S M I T H

The decimal value is then divided by 9999:

24938 / 9999 = 2.494ð

 Copyright IBM Corp. 1995 A-1

Ignoring the whole number of the quotient, you
would calculate the location as follows:

(494ð x 4) + 1 = 19761

Because many customers can have the same
name, the program may have to read records
19761, 19762, 19763, and 19764 to find the
correct Smith. If extra synonyms are required, the
third synonym could point to the next available
space in the file (possibly an unused synonym
location for the next home record). Also, to
reduce the number of synonyms, you can accept
six or more characters from the customer name.

Examples of Access Algorithms

The following example illustrates approaches to
designing access algorithms for direct files. In the
example, the major goals are to build a file in
which:

� The records can be accessed with an average
of one disk access

� The disk space used for the file should
contain little unused space

� The file should easily accommodate new
records

Defining the Algorithm

An indexed item file is to be converted to a direct
file for an interactive order entry application. The
key field is a five-digit item number; four digits are
assigned by the user, and the fifth digit is a check
digit. The four digits start with 1001, and the user
assigns the next sequential number to new items.
Deleted item numbers are not reused until item
9999 has been taken. Approximately 20 new
items are added per month, and four items are
deleted. The highest number is currently 4317,
but the file contains only 2812 items.

The algorithm could state that the direct file posi-
tion for each record is equal to the four-digit item
number. Assume that the new record is a few
bytes larger than the old record and that the file
also accommodates 12 months of growth before
reorganization. The algorithm requires a file con-
taining 4557 record positions. The items are
related to direct file positions, as shown in the fol-
lowing figure:

RSLW053-0

Item
Number

File
Position

Unused

12 Months’
Growth

1001

1002

1003

4317

4557

1

1000

1001

1002

1003

4317

4557

The approach shown in the preceding figure sup-
plies no synonyms. It uses only two-thirds of the
record positions, and most of the unused space is
at the beginning of the file.

You can change the algorithm to state that the
direct file position for each record is equal to the
four-digit item number minus 1000. The file now
requires 3557 positions.

The following figure shows the relationships:

RSLW054-0

Item
Number

File
Position

1001

1002

1003

4317

4557

1

2

3

3317

3557

The approach shown in the preceding figure also
supplies no synonyms, but uses 85% of the record
positions. The unused portions are embedded
randomly within the file where items have been

A-2 OS/400 System/36 Environment Programming V3R6

deleted. Although each record requires only one
disk access, the file size is 15% larger than the
data portion of the indexed file it is to replace.

Further change the algorithm to state that the
direct file position for each is found by subtracting
1000 from the four-digit item number, multiplying
the difference by 0.85, and half-adjusting the
result. The file then occupies 3023 positions with
the relationships shown in the following figure:

RSLW055-0

Item
Number

File
Position

1001

1002

1003

4317

4557

1

2

3

2819

3023

The approach shown in the preceding figure uses
99% of the record positions, and the file size is
1% larger than an indexed file. It has, however,
introduced the possibility of synonym records. For
example, if item 1004 exists, it is assigned to
direct file record position number 3 (same as item
1003). Similarly, items 4316 and 4317 conflict, as
do items 4556 and 4557. Thus, the refinement of
the algorithm to meet the second major goal,
minimum file space, may now affect the first goal,

minimum disk accesses, because synonym
records take a minimum of two accesses.

 Handling Synonyms

Your method for handling synonyms must mini-
mize accesses and file space. Define (program)
how a record is placed in an alternative position
when its home location is filled.

Further analysis of the item file in this example
can offer some suggestions for synonym handling.
In this example, a synonym occurs about once in
seven records.

The previous algorithm caused the mapping
shown in Figure A-1 (asterisks identify synonyms).

In Figure A-1, approximately one in seven item
numbers is unused because of deleted items and
because the file is only 86% full. There is an
unused position in the direct file about as fre-
quently as the synonyms occur.

For example, the method of handling synonyms
can state that a synonym record is placed in the
next higher numbered position that is unused.
Because the file uses only 85% of the range of
numbers, 15% of the numbers are not used
because they are deleted. However, the deleted
numbers are randomly distributed throughout the
range of numbers. Thus, some positions are
available in the file for synonym records. About
every seventh number is a synonym. Assume
that of the first 40 item numbers, items 1007,
1008, 1015, 1017, 1020, and 1039 are among
those deleted numbers, as shown in Figure A-2
on page A-4.

RSLW056-0

Item
Number

File
Position

Item
Number

File
Position

Item
Number

File
Position

1001

1002

1003

1004

1005

1006

1007

1008

1

2

3*

3*

4

5

6

7

1009

1010

1011

1012

1013

1014

1015

1016

8

9*

9*

10

11

12

13

14*

1017

1018

1019

1020

1021

1022

1023

1024

14*

15

16

17

18

19

20*

20*

Figure A-1. File Position Mapping When Using Synonym Handling

 Appendix A. Access Algorithms for Direct Files A-3

RSLW057-0

Item
Number

File
Position

Item
Number

File
Position

Item
Number

File
Position

14

15

16

18

19

20

33

21

22

23

24

25

1016

1018

1019

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1040

1001

1002

1003

1004

1005

1006

1009

1010

1011

1012

1013

1014

1

2

3

6

4

5

8

9

13

10

11

12

26

**

27

28

29

30

31

**

32

34

Figure A-2. Items Deleted When Using Synonym Handling

Consider the following:

� Item 1031 is placed after position 34.

� Item 1037 occupies a higher-numbered posi-
tion than item 1031.

� File positions 7 and 17 are unused.

� After accessing a record, the program has to
verify that the record is the one requested. If
it is not, the program must access a synonym.

� No more than two items have the same rela-
tive record number. Thus, most records
require no more than two disk accesses.

Note: In this example, records are loaded into
locations before synonym records are loaded in a
second run, and few records are added. If
records are added after the synonyms are loaded,
the locations for the added records can be occu-
pied by synonyms. Thus, the added record
becomes a pseudosynonym . If many records
are added, most have to be handled as syno-
nyms. In this situation, the technique described
here can be less useful because performance is
degraded as records are added.

In this synonym-handling technique, the average
synonym should be close to the first position
searched. Thus, a second access is necessary
approximately 15% of the time, and this access
should find the record not too distant from the ori-
ginal location.

The file should be loaded, and the synonyms
added in a second run. As the synonyms are
added in the next available higher-numbered posi-
tion, a synonym pointer in the record has to be
updated to point to the synonym record position.

Indexed File with Keys

In this example, a customer master file contains
three types of records (A, B, and C) for three
types of customers. These records are in an
indexed file with keys. Type A records have cus-
tomer numbers from 10000 to 49999. Type B
records are numbered from 60000 to 79999.
Type C records are numbered from 90000 to
99999. Each type of record is arranged alphabet-
ically by customer name.

The file was first loaded with approximately 500
alphabetized type C records, followed by 1000
alphabetized type B records, and finally by about
3000 alphabetized type A records.

Records were added at the end of the file as
follows:

� The added record type is determined (A, B, or
C).

� The added record is assigned an unused cus-
tomer number that corresponds to the alpha-
betic sequence of the customer name
according to a printout of the file.

A-4 OS/400 System/36 Environment Programming V3R6

The following figure shows the contents of the file
when first loaded:

Type C (alphabetical
by customer name)

Type B (alphabetical
by customer name)

Type A (alphabetical
by customer name)

RSLW058-0

Record
Number

Customer
Number

0001

0002

0003

0467

0468

0479

1592

1593

1594

1595

90000

90020

90040

60020

60040

60060

10000

10013

10026

10039

The file originally contained 4725 records. Space
was allowed for 6000 records. Now, 18 months
later, the file contains 5638 records.

An analysis of the file indicates the following:

� The file expands at the rate of about 12% per
year and should probably be planned for
about 6600 records to meet one year’s
requirements.

� Eight percent of customer numbers 10000
through 50000 are used, and 5% of the other
numbers are used.

� You should keep synonym records as close
as possible to the expected location.

� The best file design solution is to use more
than one file and more than one type of file
organization.

� If all the customer numbers are in one file, an
algorithm must take into account the necessity
of loading type C customers at the front of the
file, followed by types B and A.

� The ratio of A to B to C types is about 6 to 2
to 1.

A trial algorithm may try to accomplish the
mapping shown in the following table:

To accomplish the mapping, the algorithm must:

� Convert customer numbers 90000 through
99999 into a set of relative record numbers
from 1 through 733

� Convert customer numbers 60000 through
79999 into a set of relative record numbers
from 734 through 2200

� Convert customer numbers 10000 through
49999 into a set of relative record numbers
from 2201 through 6600

Following is a method for doing these conver-
sions:

� If the customer number is greater than 89999,
subtract 89999 from it, multiply the difference
by 0.0733 (the ratio of 733 positions to 10000
numbers), and use the half-adjusted product
as the record position.

� If the customer number is less than 50000,
subtract 9999 from it, multiply the difference
by 0.11 (the ratio of 4400 record positions to
40000 record numbers), add the half-adjusted
product to 2200, and use the sum as the
record position.

� For all other customer names (60000 to
79999), subtract 59999 from the number, mul-
tiply the difference by 0.0733 (the ratio of
1467 record positions to 20 000 numbers),
add the half-adjusted product to 733, and use
the sum as the record position.

The synonym-handling technique can be the same
as in “Defining the Algorithm” on page A-2. You
should test the synonym-handling technique by
loading the file. Then another program that
attempts to retrieve all records, and counts the
number of necessary accesses, can measure the
technique’s effectiveness. The results of the
second program indicate whether changes are
necessary or desirable. To further test the
synonym-handling technique, run a sample
program in an interactive environment to see

Customer Number Type File Record Number

90000 through 99999 C 0001 through 0733
(1/9 x 6600 = 733)

60000 through 79999 B 0734 through 2200
(2/9 x 6600 = 1467)

10000 through 49999 A 2201 through 6600
(6/9 x 6600 = 4400)

 Appendix A. Access Algorithms for Direct Files A-5

whether response time at the display stations is
acceptable.

 Randomizing Techniques

This example uses randomizing techniques.
These techniques use part of the data to deter-
mine the record position. Regardless of which
randomizing technique you use, describe the
concept and approach in each program that uses
the technique.

Some master files have different uses and use dif-
ferent techniques. For example, a rate file in a
telephone revenue accounting application has one
record for every from-to location in the United
States. A call made from number (123) 555-1234
to (456) 555-4567 requires the retrieval of a rate
record from the master file with a key of
123555456555.

To convert such a number to relative record posi-
tion on a direct file, develop an algorithm that
multiplies the numbers 123555 and 456555 and
uses the second, fourth, sixth, eighth, and tenth
digits of the product as the relative record position.
This technique can produce a random distribution
across a file for approximately 100,000 records.

Another approach is to use an algorithm that takes
the second, fourth, sixth, eighth, and tenth digits
from the 12-digit key. Thus, the first algorithm can
locate the rate record in relative position 20632
(123555 × 456555 = 22109653025); the second
algorithm might place the same record in position
25555.

Some records for a specific billing location are
more active than the majority of the records. You
can put these very active records into a separate
file which may or may not be direct.

A-6 OS/400 System/36 Environment Programming V3R6

Appendix B. $SFGR Specification Forms

The following sections tell you how to complete
each column of the S-, H-, and D-specifications
forms.

Display Control (S) Specifications

The first record coded for each display format is
the display control (S) specification. The
S-specification supplies information about the
entire display format, not about individual fields.
One display control specification is required and
must be the first record in the specifications for
each display format.

Use the form shown in Figure B-1 on page B-2 to
code the S-specification.

The following sections describe the entries on the
S-specification section of the Display Format
Specifications form:

Note: If the entries for a field are shorter than the
length of the form, you must left-justify them.

Sequence Number (Columns 1 through
5): Columns 1 through 5 do not require an
entry. These columns contain record sequence
information to number the records in a display
format. The FORMAT procedure does not
process record sequence information.

A special sequence number value of *DDS when
column 7 contains an asterisk (*) indicates that the
record contains user-supplied data definition state-
ments (DDS), which is inserted at this position in
the DDS generated by the system format gener-
ator utility ($SFGR). In the generated DDS, the
asterisk in column 7 is replaced by a blank and
the character in column 6 is replaced by an A. All
of the remaining text remains unchanged,
including the *DDS in the sequence number. Only
the first 80 characters of text are used.

When a *DDS comment is encountered, warning
message SYX5328 is issued in the SFGR compile
listing.

Warning: System/36 treats warning message
SYX5328 as a comment and the DDS is ignored,
but this loss of function could affect the display or
application if ported back to System/36. The func-
tion specified by the *DDS statement might not be
supported on a previous release of the OS/400
program. If the SFGR or DDS source is ported to
an AS/400 system where an earlier release is
installed, the display might not compile success-
fully. Avoid using Screen Design Aid (SDA) to
modify this source member. SDA may move the
*DDS comment to another location, causing a dif-
ference in function or causing the DDS compile to
fail. The *DDS comment is not recommended for
general use. It is recommended for inserting the
FRCDTA keyword into the generated DDS at
column 45, when placed immediately after an
S-specification defining a format which must be
immediately written to the display, even though
the display file is created with the DFRWRT(*YES)
attribute. (The FRCDTA keyword is supported in
OS/400 Release 1.0.) See “DFRWRT Attribute”
on page 14-26 for details related to DFRWRT.
See the CRTS36DSPF and CRTDSPF commands
and the DDS Reference book.

Because other types of DDS may not be compat-
ible for use by System/36 environment applica-
tions, results cannot be predicted for all other uses
of this function. If the resulting DDS fails to
compile, you must remove or correct all *DDS
comments in the SFGR source.

Specification Type (Column 6): The
character S identifies this record as the display
control specification. An entry in column 6 is
required and is preprinted on the S-specification
form.

Display Format Name (Columns 7
through 14): Enter a display format name in
columns 7 through 14 that meets the following
requirements:

� The name cannot include commas, single
quotation marks ('), or embedded blanks.

� The name can have a maximum of eight char-
acters with the first an alphabetic character (A
through Z), or a special character including #,
$, or @.

 Copyright IBM Corp. 1995 B-1

RSLW082-0

2724 25 26 30 31 32 33 34 35 36 3728 29 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 72 73 74 75 76 77 78 79 80711 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

S

Review
Mode
Record
Identifying
IndicatorsSequence

Number

Display Control Specification

Display
Format
Name

Enter
Mode
Sequence

WSU Only

Insert
Mode
Record
Identifying
Indicators Reserved Key Mask

F
or

m
at

 ID
 (

W
S

U
 O

nl
y)

N
um

be
r

of
 L

in
es

to
 C

le
ar

R
es

et
 K

ey
bo

ar
d

W
S

U
 O

nl
y

S
ta

rt
 L

in
e

 N
u

m
b

e
r

Lo
w

er
ca

se

R
e

tu
rn

 I
n

p
u

t

S
ou

nd
 A

la
rm

E
na

bl
e

F
un

ct
io

n
K

ey
s

E
na

bl
e

C
om

m
an

d
K

ey
s

B
lin

k
 C

u
rs

o
r

E
ra

s
e

 I
n

p
u

t
F

ie
ld

s

O
ve

rr
id

e
 F

ie
ld

s

S
u

p
p

re
ss

 I
n

p
u

t

N
u

ll
F

ill

P
ri
o

ri
ty

13
2

C
ol

um
n

R
ig

h
t-

to
-L

e
ft

 D
is

p
la

y

S
ta

rt

E
nd

E
n

tr
y

R
e

q
u

ir
e

d
R

ep
ea

t

R
es

er
ve

d

P
re

pr
oc

es
s

R
es

er
ve

d

1 2 3 321

S
p

e
ci

fic
a

tio
n

 T
yp

e

Figure B-1. S-Specification Portion of the Display Format Specifications Form

� The name must be left-justified in the field.

� The name must be unique.

� An asterisk (*) in column 7 identifies this
record as a comment statement.

Note: See *DDS in column 1 for a special
exception.

See “Format Names” on page 14-24 for additional
considerations.

Start Line Number (Columns 17 and
18): Select one of the following entries for
columns 17 and 18:

blank
Line 1 is the start line number.

1 through 24/27
This number must be less than or equal to
the number of lines on a display (24 for an
80-column display and 27 for a 132-column
display). This number must be right-adjusted.
A leading zero is not required.

V The start line number is variable. The appli-
cation program using this display format
defines it. If you specify V and the application
program does not define a start line number,
the system uses line 1 as the start line
number.

Number of Lines to Clear (Columns 19
and 20): Select one of the following entries for
columns 19 and 20:

blank
All lines of the current display clear before
this display format appears.

0 through 24/27
The number of lines to clear before this
display format appears must be less than or
equal to the number of lines on a display (24

for an 80-column display, 27 for a 132-column
display). The number of lines to clear must
be right-justified. A leading zero is not
required.

Be careful when you partially cover a second
display format. You lose the help areas in any
portion of the display cleared by a display format.
Input fields covered by a new display format still
allow data entry. When you show a display format
that does not define input fields, do not clear the
lines that contain an existing input field or fields.

Figure B-2 on page B-3 shows the use of the
start line number and the lines to clear entries to
show one display format over another.

Lowercase (Column 21): Select one of the
following entries in column 21 to allow lowercase:

N (or blank)
The system displays all alphabetic characters
typed by the operator and sends them to the
application program in uppercase.

Y The system displays all alphabetic characters
typed by the operator and sends them to the
application program in lowercase or upper-
case. Lowercase is ignored for fields with an
X data type.

Note: If you specify Y (lowercase allowed) in
column 21 of the S-specification, but you specify
N (uppercase only) in column 51 of the
D-specification for an input field, the operator can
type only uppercase alphabetic characters in the
input field.

Return Input (Column 22): Select one of
the following entries for column 22:

Y (or blank)
The contents of all input fields return to the
application program when the operator
presses Enter. If you specify mandatory entry

B-2 OS/400 System/36 Environment Programming V3R6

RSLW097-0

Bottom of Display A

Top of Display ATop of Display A

Display B Display B

Display B (starts at
Line 12 and clears
Lines 12 through 24
of Display A)

Display A Result=+

Figure B-2. Use of Start Line Number and the Lines to Clear Entries

in column 29 of the D-specification for any
input field in the display format, the operator
must type data in that field. An error
message appears if the operator presses a
function or command key or the Enter key
and does not type data in the mandatory
entry field. The operator must press the Error
Reset key and type data in the mandatory
entry field.

N The contents of all input fields return to the
application program only if the operator types
in data. If no data is entered in any input
field, RPG II program record input specifica-
tion indicators dependent on display constants
do not turn on because the input fields do not
return to the application program.

Note: You can improve response time for display
formats shown at a remote display station if you
specify N (No) for return input.

Sound Alarm (Columns 25 and 26):
Select one of the following entries for columns 25
and 26:

N (or blank)
If you specify N (No) or leave these columns
blank, the alarm does not sound when the
operator looks at this display format.

Y If you specify Y (Yes), the alarm sounds when
the operator looks at this display format.

01 through 99
The alarm sounds if the specified indicator is
on when this format is displayed.

Enable Function Keys (Column 27):
Use column 27 to enable function keys. When a
function key is enabled, the key performs a
special function and must be handled by the appli-
cation program. When a function key is disabled,
the key either has no special function in the
program or is handled by the system. Specify one
of the following values in column 27:

blank
All function keys are enabled. All numbers
listed in the key mask are ignored.

Y The function keys identified by numbers listed
in the key mask are enabled, while all others
not listed are disabled. If the key mask con-
tains no numbers, all the function keys are
disabled.

N The function keys identified by numbers listed
in the key mask are disabled, while all others
not listed are enabled. If the key mask con-
tains no numbers, all the function keys are
enabled.

R (retain)
The function keys previously enabled remain
enabled, and those previously disabled
remain disabled. All numbers in the key
mask are ignored.

Notes:

1. An error message appears if the operator
presses an inactive function key. The oper-
ator can then press the Error Reset key, fol-
lowed by the correct function key. You
identify the function keys to be turned on or
off by numbers in the key mask (columns 64
through 79).

 Appendix B. $SFGR Specification Forms B-3

2. System/36 environment compilers may disable
some function keys at run time. For more
details, see the System/36-Compatible
COBOL User’s Guide and Reference and the
System/36-Compatible RPG II User’s Guide
and Reference.

Enable Command Keys (Column 28):
Use column 28 to enable command keys. When
a command key is enabled, the key is allowed and
must be handled by the application program.
When a command key is disabled, the key is not
allowed. Specify one of the following values in
column 28:

blank
All command keys are enabled. All alpha-
betic characters listed in the key mask are
ignored.

Y The command keys identified by alphabetic
characters listed in the key mask are enabled,
while all others not listed are disabled. If the
key mask contains no alphabetic characters,
all the command keys are disabled.

N The command keys identified by alphabetic
characters listed in the key mask are disa-
bled, while all others not listed are enabled. If
the key mask contains no alphabetic charac-
ters, all the command keys are enabled.

R (retain)
The command keys previously enabled
remain enabled, and those disabled remain
disabled. All alphabetic characters in the key
mask are ignored.

Note: An error message appears if the operator
presses an inactive command key. The operator
can then press the Error Reset key, followed by
the correct command key. You identify the
command keys to be turned on or off by alpha-
betic characters in the key mask (columns 64
through 79).

Blink Cursor (Columns 29 and 30):
Select one of the following entries for columns 29
and 30:

N (or blank)
The cursor does not blink when this display
format appears.

Y The cursor blinks when this display format
appears.

01 through 99
The cursor blinks if the specified indicator is
on when this display format appears.

Erase Input Fields (Columns 31 and
32): Select one of the following entries for
columns 31 and 32:

N (or blank)
Data is not erased from the input and
input/output fields when the display format
appears.

Y The input and input/output fields are erased
each time the display format appears. You
should usually not specify Y because the
application program ignores all entries on the
D-specifications when this display format
appears. If you want to erase the input fields,
specify an indicator in column 31, and turn
that indicator on when this display format
appears.

01 through 99
The application program erases the data from
the input and input/output fields and resets
the keyboard if the specified indicator is on
when the display format appears.

Note: If you specify an override operation in
columns 33 and 34 of the S-specification, the
display format is sent to the display station. Both
the erase input and override operations are pro-
cessed if you specify both operations.

Use the erase-input-fields entry when you use one
display format for repeated input operations. The
indicator should be off the first time the display
format appears. Each time the display format
appears and the indicator is on, the input fields
are blank and the operator can type data.

A display station error occurs if you request that
the system erase input fields when there are no
input fields currently on the display format. Use
the erase-input-fields entry only after a display
format with input or input/output fields has
appeared without erase input.

Considerations for the Erase-Input-Fields
Entry: The following operations are affected after
you do an erase-input-fields operation:

Return input
Data contained in all input fields returns to the
application program if the operator types data

B-4 OS/400 System/36 Environment Programming V3R6

in an input field. If the operator does not type
data in any input field, input data does not
return to the application program.

Mandatory entry
The system does not require the operator to
type data in mandatory entry fields if the oper-
ator does not type data in any input field.

The following occur after you do another
erase-input-fields operation:

� If the operator has pressed the Enter key
without typing in data, data contained in
the input fields is not erased, including
mandatory entry input fields.

� If the operator has typed data in any input
field, then only those input fields in which
the operator has typed in data are erased.
If the operator types data in any of the
input fields, the operator must type data in
all mandatory entry input fields; data in the
mandatory entry fields is also erased.

The first erase-input-fields operation erases data
from all input fields. The second erase-input-fields
operation erases data from only those input fields
in which data has been typed since the first erase-
input-fields operation, if the following occur:

1. A display format with return input specified
appears.

2. An erase-input-fields operation is done.
3. Another erase-input-fields operation is done.

Override Fields (Columns 33 and 34):
An override operation allows you to change (over-
ride) fields in a display format without showing the
same display format again. If the application
program determines the operator typed incorrect
data into a field, turn this indicator on to override
the entry and display the same display format
again. If the indicator specified in the output data
entry for a field in columns 23 and 24 of the
D-specification is off, the incorrect data does not
change. Once the operator corrects the error, turn
the indicators off and display the display format
again using an override operation to remove any
highlighted fields or error messages.

Field attributes may be changed if the
D-specification contains one or more of the fol-
lowing:

� An output indicator (columns 23 and 24)
� A high intensity field attribute (columns 39 and

40)
� A blink field attribute (columns 41 and 42)
� A nondisplay field attribute (columns 43 and

44)
� A reverse image field attribute (columns 45

and 46)
� An underline field attribute (columns 47 and

48)

Note: If an indicator specified in the protect-field
entry (columns 37 and 38 of the D-specification) is
on, that indicator is ignored during the override
operation.

Select one of the following entries for columns 33
and 34:

N (or blank)
The application program does not do an over-
ride operation for this display format. The
system shows a normal output operation.

01 through 99
An override operation does not occur if this
indicator is off when the display format
appears.

The following occur during an override opera-
tion when the indicator in columns 33 and 34
is on:

� The data does not change in a field for
which you specified an indicator for the
output data entry in columns 23 and 24 of
the D-specification, and that indicator is
off. Data the operator typed is
unchanged. Any field with a Y (Yes), an
N (No), or a blank specified for the output
data entry does not change.

� The program displays the field with data
supplied by the application program if the
indicator for the output data entry is on.

Y If Y is specified in column 33, an override
operation is performed every time this format
is displayed. Generally, Y should not be
specified. If an override operation must be
performed for this format, an indicator should
be used.

Figure B-3 on page B-7 summarizes the effects
of indicators on output data during an override
operation.

 Appendix B. $SFGR Specification Forms B-5

Considerations for the Override Fields Entry:
The following operation is affected after you do an
override fields operation:

Return Input
If you specify N (No) for return input when the
override fields indicator is on, the contents of
the input field return to the application
program even if the operator does not enter
any data.

Suppress Input (Columns 35 and 36):
Specify suppress input from the keyboard when
several display formats appear before the applica-
tion program needs input. Specify suppress input
on all but the last display format, even if the
display formats do not contain input fields, when
you send multiple display formats. If you show a
display format over a portion of another display
format, data can be typed and read only from the
input fields defined by the last display format.

Select one of the following entries for columns 35
and 36:

N (or blank)
The input fields are read and returned to the
application program when the operator
presses the Enter key.

Y The keyboard locks and the input fields are
not read or returned to the application
program until the following occur:

� A display format for which you specified N
(No) appears, or for which the specified
indicator is off appears.

� The operator presses the Enter key at the
display format.

01 through 99
If the specified indicator is on, the keyboard
locks and the input fields are not read or
returned to the application program until the
following occur:

� A display format for which you specified N
(No) appears, or for which the specified
indicator is off appears.

� The operator presses Enter at the display
format.

Note: If you specify a Y (Yes) on the
S-specification for a help format, it is processed as
if you had specified N (No) when the display

format appears. See ADTS/400: Screen Design
Aid for the System/36 Environment book for more
information. Always specify N (or blank) for any
format used by a MRT or RUF. For menus not
displayed by a MRT, always specify Y. See
“DFRWRT Attribute” on page 14-26 for related
information.

Null Fill (Columns 37 and 38): If you
specify null fill for a display format, any remaining
character positions in the input or input/output
fields on the display fill with null characters.

Columns 37 and 38 are syntax-checked, but have
no effect on the creation of the display on the
AS/400 system. On the AS/400 system, all char-
acter fields have their trailing blanks replaced by
null characters on the display. This approach
allows easier use of the Insert key to enter data.

Null characters (unfilled character positions) in
input fields become blanks when the application
program reads the fields.

Select one of the following entries for columns 37
and 38:

N (or blank)
Blanks do not change to null characters when
the display format appears.

Y The following occur when the display format
appears:

� All blanks in the first constant input field
change to null characters.

� All blanks in application-program-supplied
data sent to input fields change to null
characters.

01 through 99
The following occur if you specify an indicator:

� All blanks in the first constant input field
change to null characters.

� If the specified indicator is on when the
display format appears, any blanks in
program-supplied data sent to input fields
change to null characters.

� If the specified indicator is off when the
display format appears, blanks in
program-supplied data sent to input fields
do not change to null characters.

B-6 OS/400 System/36 Environment Programming V3R6

RSLW099-0

No change occurs
to output data
on the display.

Output data
comes from the
program.

Normal Output
Operation

Override Operation

OFF ON

ON

OFF

Indicator Specified
in the Output Data
Entry for the Field

Indicator Specified in the
Override Fields Entry

Output data is
constant data
specified for
the field.

Output data
comes from the
program.

Figure B-3. Effects of Indicators during an Override Operation

132-Column Format (Column 39):
Select one of the following entries for column 39
to specify 132-column format :

N (or blank)
The display format is 80 columns.

Y The display format is 132 columns and can
appear only on display stations which support
132 columns.

Note: Mixing both 80-column display formats and
132-column display formats in the same display
file can result in poor performance.

Right-to-Left Display (Column 40): You
must use source entry utility (SEU) to specify
right-to-left display.

The entry you make in column 40 of the
S-specification controls cursor movement from
input field to input field for the entire display. Use
column 27 of the D-specification to control the
cursor movement in individual fields on the
display. If necessary, the operator can use the
Reverse key to reverse the direction of the cursor
in an input field.

Select one of the following entries for column 40:

N (or blank)
The cursor moves in a left-to-right direction
from input field to input field. The application
program processes input fields in a left-to-
right sequence.

Y The cursor moves in a right-to-left direction
from input field to input field. The application
program processes input fields in a right-to-
left sequence.

Notes:

1. The right-to-left option is ignored by display
stations that do not handle this feature.

2. The first format in the source member controls
the right-to-left option for the entire display file,
including all other formats. If the right-to-left
option is specified in formats after the first
format, they are ignored on the AS/400
system.

3. The right-to-left option is used only during a
$SFGR CREATE operation, and is ignored
during a $SFGR ADD or UPDATE operation.

Reserved (Columns 41 through 63):
The FORMAT procedure does not use columns 41
through 63. Leave them blank.

Key Mask (Columns 64 through 79):
The key mask is a string of numbers or letters that
identify the function and command keys to be
turned on (allowed) or turned off (not allowed)
when the display format appears. You can specify
the function and command key numbers and
letters in any order. The key mask cannot contain
any embedded blanks.

Function Keys: The function keys are identified
in the key mask by a number, as shown in the fol-
lowing table:

 Appendix B. $SFGR Specification Forms B-7

Note: When you specify Y (Yes) for the enable
function keys entry (column 27), the numbers in
the key mask identify function keys to be allowed.
If you specify Y (Yes) for the enable function keys
entry and the key mask does not contain any
numbers, all function keys are disallowed.

When you specify N (No) for the enable function
keys entry (column 27), the numbers in the key
mask identify function keys to be disallowed. If
you specify N (No) for the enable function keys
entry and the key mask does not contain any
numbers, all function keys are allowed.

Print Key Exception: When a display format
enables the Print key, the operator can use it like
any of the other function keys to control program
operations. When the Print key is disabled, using
it causes the contents of the display to print. For
further information about the Print key, see “Using
the Print Key” on page 14-25. For more informa-
tion about assigning the Print key, see the
System/36 Environment Reference book.

Help Key Exception: When a display format
enables the Help key, the operator can use it just
like any of the other function keys to control
program operations. When the Help key is disa-
bled and H-specifications are not defined for this
format, or the display station is showing an error
message, the Help key functions normally (for
example, it displays help information for a key-
board error). Do not enable the Help key if you
want help formats to display.

Command Keys: Command keys are identified
in the key mask by alphabetic characters, as
shown in the following table:

Note: When you specify Y (Yes) for the enable
command keys entry (column 28), the letters in
the key mask identify command keys that are
allowed. If the key mask does not contain any
letters, all command keys are disallowed.

When you specify N (No) for the enable command
keys entry (column 28), the letters in the key mask
identify command keys that are disallowed. If you
specify N (No) for the enable command keys entry
and the key mask does not contain any letters, all
command keys are allowed. For example, to
enable the Page Up, Page Down, and Home keys
and all the command keys except 1 and 15, you
would specify the following options:

� In column 27, Y for enable function keys
� In column 28, N for enable function keys
� 236AP in columns 64 through 68 for the key

mask, which identify the following keys:
2 This identifies the Page Up key.
3 This identifies the Page Down key.
6 This identifies the Home key.
A This identifies command key 1.
P This identifies command key 15.

Help Definition (H) Specifications

The help definition (H) specifications follow the
S-specification and precede the first
D-specification. They are optional. You can add
the H-specifications to the display formats without
any changes to your application.

Each H-specification specifies an area on the
display format for which you have defined online
help information or have supplied input to online
information. A display containing help information

Function Key Key Mask Entry Alphabetic
Character

Command
Key

Alphabetic
Character

Command
Key

Print 1 (see “Print Key Excep-
tion” below) A

B
C
D
E
F
G
H
I
J
K
L

1
2
3
4
5
6
7
8
9

10
11
12

M
N
P
Q
R
S
T
U
V
W
X
Y

13
14
15
16
17
18
19
20
21
22
23
24

Page Down (Roll Up) 2
Page Up (Roll Down) 3
Clear 4
Help 5 (see “Help Key Excep-

tion” below)
Home (when the cursor is
in the home position)

6

B-8 OS/400 System/36 Environment Programming V3R6

appears when the operator presses the Help key
while the cursor is in a help area. A help docu-
ment appears when the operator presses the Help
key while the cursor is in an area for which you
specified an online document.

For information about help areas and how they
are used, see the ADTS/400: Screen Design Aid
book.

Figure B-4 on page B-10 shows the portion of the
Display Format Specifications form used for
coding the help definition specifications.

The following sections describe the entries in the
H-specification section of the Display Format
Specifications form:

Sequence Number (Columns 1 through
5): Columns 1 through 5 do not require an
entry. These columns contain record sequence
information to number the records in a display
format. The FORMAT procedure does not
process record sequence information. A special
sequence number value of *DDS when column 7
contains an asterisk (*) indicates that the record
contains user-supplied DDS, which is inserted at
this position in the DDS generated by $SFGR.
See “Sequence Number (Columns 1 through 5)”
on page B-1 for a more complete description and
warnings.

Specification Type (Column 6): The
character H identifies this record as a help defi-
nition specification. This entry is required and is
preprinted on the H-specification form.

Help Format Name (Columns 7 through
14): The help format name specifies the name
of the first format displayed if the operator presses
the Help key while the cursor is in the help area
defined in columns 34 through 42.

Enter a help format name in columns 7 through 14
exactly 8 characters long, in the form axxxxxnn ,
where:

a An alphabetic character (one of the
characters A through Z).

xxxxx Five alphanumeric characters. Name
the help formats with an abbreviation of
the application or information they
describe. Avoid using special charac-
ters. If special characters are included
and an external display file name is
specified in columns 16 through 23, the
H-specification is ignored.

nn Two numeric digits in the range 00
through 99.

You can define up to 100 help formats for one
help area. All help formats for a help area must
be in the display file specified in columns 16
through 23 of the H-specification. These help
formats must have the same first 6 characters as
specified in columns 7 through 12. The last 2
characters must be different and must vary in the
range 00 through 99. The system uses the last 2
digits to select the sequence in which the help
formats appear.

Note: See “Format Names” on page 14-24 for
additional considerations.

Help Text Label (Columns 7 through
14): Use the help text label if you specify online
document in column 53 of the H-specification.
The help text label identifies the location in the
help document that appears when the operator
presses the Help key with the cursor in this help
area. This label represents the label typed on a
help text instruction in the help document.

Enter a help text label that meets the following
requirements:

� Must be from 1 to 8 characters long.
� Must begin with an alphabetic character (A

through Z), #, $, or @.
� Must not contain a comma (,), single quotation

mark ('), or blank. Avoid using special charac-
ters.

If the help text label is fewer than 8 characters
long, you must left-justify it in this field (it must
start in column 7). An asterisk (*) in column 7
identifies this record as a comment statement.

Reserved (Columns 15, 24, 33, 38, 43,
46, 49, 52, 54–80): The FORMAT procedure
does not use these columns. Leave them blank.

 Appendix B. $SFGR Specification Forms B-9

RSLW081-0

2724 25 26 30 31 32 33 34 35 36 3728 29 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 72 73 74 75 76 77 78 79 8071

Help Definition Specification

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Sequence
Number

Help Format
Name/Help
Text Label

Help Load Member
Name/Help
Document Name

Help Library
Name/Folder
Name

Reserved

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

U
pp

er
 L

ef
t R

ow
 N

um
be

r

U
pp

er
 L

ef
t C

ol
um

n
N

um
be

r

O
nl

in
e

D
oc

um
en

t

S
p

e
ci

fic
a

tio
n

 T
yp

e

Lo
w

er
 R

ig
ht

 R
ow

 N
um

be
r

Lo
w

er
 R

ig
ht

C

ol
um

n
N

um
be

r

S
up

pr
es

s
S

el
ec

tio
n

In
di

ca
to

r

R
es

to
re

 A
pp

lic
at

io
n

F
or

m
at

B
ou

nd
ar

y
In

di
ca

to
r

H

Figure B-4. H-Specification Portion of the Display Format Specifications Form

Help Display File Name (Columns 16
through 23): Use the help display file name
to specify the name of the display file that con-
tains the help format specified in columns 7
through 14. The display file can contain more
than one help format for a help area, but all help
formats for one help area must be in the same
display file. Help formats for different help areas
need not be in the same display file.

If the display file name is fewer than 8 characters,
you must left-justify it in the field.

If you do not enter a display file name in columns
16 through 23, the help format or display format
for this help area must be in the display file cur-
rently used by the application program. If you do
not enter a display name, you cannot specify a
library name in columns 25 through 32 of the
H-specification.

Help Document Name (Columns 16
through 23): Use the help document name if
you specify online document in column 53 of the
H-specification. The help document name speci-
fies the name of the help document to appear
when the operator presses the Help key while the
cursor is in this help area. An error message
appears if the system does not find the document
in the specified folder when the operator presses
the Help key.

Enter an online document name that meets the
following requirements:

� Must be from 1 to 8 characters long

� Must not contain a question mark (?), single
quotation mark ('), slash (/), period (.), hyphen
(-), equal sign (=), greater than sign (>),
comma (,), asterisk (*), or blank

� Cannot be ALL, SYSTEM, NEW, or DIR

You must left-justify the document name (starting
in column 16) in this field if it is fewer than 8 char-
acters long.

Help Library Name (Columns 25
through 32): Use the help library name to
specify the name of the library that contains the
display file specified in columns 16 through 23 of
this H-specification. You cannot specify a library
name if you do not specify a display file name.
The operator must be able to reach the specified
library name if resource security is active. See
the Security – Reference book for information
about restricting library use.

You must left-justify a library name fewer than 8
characters long.

If you specify a library name, the system looks in
that library for the display file specified in columns
16 through 23. If the system does not find the
display file in the specified library, an error
message appears when the operator presses the
Help key.

If you do not specify a library name, the system
looks for the display file in the user’s library list.
An error message appears if the system does not
find the display file in either library when the oper-
ator presses the Help key.

Folder Name (Columns 25 through
32): Use the folder name if you specify online
document in column 53 of the H-specification.
The folder name specifies the name of the folder
containing the document specified in columns 16
through 23 of the H-specification. An error
message appears if the system does not find the

B-10 OS/400 System/36 Environment Programming V3R6

specified document name in this folder when the
operator presses the Help key.

Type a folder name that meets the following
requirements:

� Must be from 1 to 8 characters long.

� Must not contain a question mark (?), single
quotation mark ('), slash (/), period (.), hyphen
(-), equal sign (=), greater than sign (>),
comma (,), asterisk (*), or blank. Procedures
and the operation control language (OCL) use
these characters as delimiters.

� Cannot be ALL, #LIBRARY, F1, READER,
PRINT, or DISK.

You must left-justify the folder name (starting in
column 25) in this field if it is fewer than 8 charac-
ters long.

Upper Left Row and Column (Columns
34 through 37): Use this field to specify the
location, in the form rrcc, of the upper left corner
of the rectangular help area. The row number, rr,
must be a number from 1 through 24 for an
80-column display format, or 1 through 27 for a
132-column display format. Leading zeros are not
required, but you must right-justify the value in
columns 34 and 35. The column number, cc, is a
2-digit number (if below 100), or alphanumeric
(100 through 132) character that represents
columns from 1 through 80 for an 80-column
display and from 1 through 132 for a 132-column
display.

Columns 100 through 132 are represented by
alphanumerics, as shown in the following table:

Note: Values beyond D2 are not permitted.

For example, if the upper left corner of the help
area is located at row 5, column 10, you would
type:

│ │5│1│ð│
└─┴─┴─┴─┘

If you specify a start line number or V (variable
start line) in columns 17 and 18 of the
S-specification of this display format, the row
numbers in columns 34 and 35 of the
H-specification are adjusted using the following
equation:

For example, if you specify an upper left row
number of 5 in columns 34 and 35 of the
H-specification, and a start line number of 10 in
columns 17 and 18 of the S-specification, the
actual row number would be 14, as shown by the
following calculation:

10 + 5 − 1 = 14

If the resulting upper left row number is greater
than the number of lines on the display (24 for an
80-column display station or 27 for a 132-column
display station), one of the following occurs:

� If you specify a numeric value for the start line
number, the system reports a terminal error
when you compile the display format.

� If you specify V for the start line number and
the resulting row number is greater than 24 for
an 80-column display station or 27 for a
132-column display station, the application
program ignores this H-specification when the
display format appears.

If you do not specify the upper left row and
column numbers, you must also leave the lower
right row and column numbers entry blank in
columns 39 through 42 of the H-specification.

You can define a null help area by omitting all row
and column entries. An operator cannot see the
help formats of a null help area by pressing the

Start line number specified in columns 17 and
18 of display control specification

+
Row number specified in columns 34 and 35
of help definition specification

− 1

= Actual row number

Figure B-5. Alphanumeric Row and Column Numbers
for 100 through 132

100=A0 110=B0 120=C0 130=D0
101=A1 111=B1 121=C1 131=D1
102=A2 112=B2 122=C2 132=D2
103=A3 113=B3 123=C3
104=A4 114=B4 124=C4
105=A5 115=B5 125=C5
106=A6 116=B6 126=C6
107=A7 117=B7 127=C7
108=A8 118=B8 128=C8
109=A9 119=B9 129=C9

 Appendix B. $SFGR Specification Forms B-11

Help key. The operator can use help formats of a
null help area by using Page Down and Page Up.

Lower Right Row and Column
(Columns 39 through 42): You can
specify the location, in the form rrcc, of the lower
right corner of the rectangular help area. The row
number, rr, must be a decimal number from 1
through 24 for an 80-column display, or from 1
through 27 for a 132-column display. Leading
zeros are not required, but the value must be
right-justified in columns 39 and 40. The column
number is a 2-digit number, which represents
numbers from 1 through 80 for an 80-column
display and from 1 through 132 for a 132-column
display. See Figure B-5 for information on how to
represent columns 100 through 132. Leading
zeros are not required, but the value must be
right-justified in columns 41 and 42.

The system adjusts the row number in columns 39
and 40 of the H-specification if you specify a start
line number or V (variable start line) in columns 17
and 18 of the S-specification of this display format.
See “Upper Left Row and Column (Columns 34
through 37)” on page B-11 for additional explana-
tion.

If you do not specify lower right row and column
numbers, you must also leave the upper left row
and column numbers entry in columns 34 through
37 of the H-specification blank.

Suppress Selection Indicator (Columns
44 and 45): Select one of the following entries
for columns 44 and 45:

blank
The system uses this H-specification to create
a help area when the display format appears.
The application program displays the help
formats for this help area when the operator
presses the Help key.

01 through 99
If the specified indicator is on when the
display format appears, the system ignores
this H-specification and does not create the
help area it defines. The application program
does not display the help formats for the help
area when the operator presses the Help key.

If the specified indicator is off when the
display format appears, the system uses this
H-specification to create a help area.

Do not specify Y or N in columns 44 or 45. If you
do, an error message appears when the FORMAT
procedure processes this display format.

Restore Display Format (Columns 47
and 48): Select one of the following entries for
columns 47 and 48:

Y (or blank)
When the operator presses an active function
key to leave a help format, the display format,
and any data typed in, appears.

N If the operator stops looking at a help format
by pressing an active function key, the display
format and any input data do not appear.
The system sends the function key back to
the application program, along with any data
the operator typed in the help format before
pressing the function key. Data the operator
typed into the display format before pressing
the Help key is lost. The application program
must clear the display to remove the help
format and must display the display format
again.

01 through 99
If the specified indicator is on when the
display format appears, and the operator
presses an active function key to stop looking
at a help format, the system restores the
display format and any input data the operator
typed in. The system sends the function key
back to the application program, along with
any input data the operator typed in the
display format before pressing the Help key.

If the specified indicator is off when the
display format appears and the operator
presses an active function key to stop seeing
a help format, the system does not restore
the display format or any input data. The
system sends the function key back to the
application program, along with any input data
the operator typed in the help format before
the pressing the function key. Input data the
operator typed in the display format before
pressing the Help key is lost. The application
program must clear the display to remove the
help format and must display the display
format again.

B-12 OS/400 System/36 Environment Programming V3R6

Notes:

1. This function is not supported on the AS/400
system. It is syntax-checked and ignored by
the $SFGR compiler.

2. This field must be blank on an online docu-
ment H-specification. The FORMAT proce-
dure ignores any entry in this field and
produces a $SFGR warning error.

Boundary Indicator (Columns 50 and
51): The operator uses Page Down and Page
Up to look at all the help formats for a help area.
To restrict the amount and type of online help
information the operator can see, use the
boundary indicator to specify that the
H-specification for a help area is the end point for
using Page Up and Page Down. Select one of
the following entries for columns 50 and 51:

N (or blank)
This H-specification does not act as a
boundary for using Page Up and Page Down.

Y Use this H-specification as the boundary for
using Page Up and Page Down.

01 through 99
If the specified indicator is on, the application
program uses this H-specification as a
boundary for using Page Up and Page Down
when it shows the display format. If the spec-
ified indicator is off, the application program
does not use this H-specification as a
boundary for using Page Up and Page Down
when the display format appears.

Note: This field must be blank on a document
H-specification. The FORMAT procedure ignores
any entry in this field and produces a $SFGR
warning error.

Online Document (Column 53): Use the
online document field to indicate that this is an
online document H-specification. If you specify Y
(Yes) in column 53, the system processes this
H-specification as a document H-specification.
When the operator presses the Help key with the
cursor in this help area, the application program
opens the document described by the document
name field (columns 16 through 23) and folder
name field (columns 25 through 32). The applica-
tion program shows the document starting with the
location identified by the help information label
field (columns 7 through 14).

If you omit this field (column 53 is blank) or N [No]
is specified, the system processes this
H-specification as a display format H-specification.

See the ADTS/400: Screen Design Aid book and
the Using OfficeVision/400 Word Processing book
for additional information.

Field Definition (D) Specifications

The records that follow the S-specification and the
optional H-specifications are field definition (D)
specifications. Each D-specification completely
describes a single field on the display. You must
use a D-specification to specify each field on the
display.

Code the D-specifications in a left-to-right and top-
to-bottom pattern from the fields on the layout
sheet. For each field on the display, the
D-specification can identify the following:

� Name of the field
� Length of the data field or constant
� Starting location (line and column number) of

the field
� Field type (input or output field, or both)
� Cursor position when the display first appears
� Any field attributes such as reverse image or

high intensity
� Data requirements of the field
� Type of data the operator can type in the field
� What data appears in the field

Use the field definition specification portion of the
Display Format Specifications form shown in
Figure B-6 on page B-14 to code the
D-specifications.

The following sections describe the entries on a
D-specification section of the Display Format
Specification form:

Sequence Number (Columns 1 through
5): Columns 1 through 5 do not require an
entry. These columns contain record sequence
information to number the records in a display
format. The FORMAT procedure does not
process record sequence information.

A special sequence number value of *DDS when
column 7 contains an asterisk (*) indicates that the
record contains user supplied DDS, which is

 Appendix B. $SFGR Specification Forms B-13

RSLW080-0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

27

20 21 22 23

24 25 26 30 31 32 33 34 35 36 3728 29 38 39 40 41 42 43 44 45 46 4748 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 6970 72 73 74 75 76 77 78 7980

Field Definition Specification

71

D
1 2 3 4 5 6 7 8 9 10 11 12 1314 1516 1718 19 20 21 22 23

Sequence
Number

WSU
Field Name

WSU Arrays

Field Name
Field
Length

Starting
Location

Reserved

L
in

e
 N

u
m

b
e

r

H
o

ri
z
o

n
ta

l
P

o
s
it
io

n

O
u

tp
u

t
D

a
ta

S
p

e
c
if
ic

a
ti
o

n
 T

y
p

e

E
le

m
e

n
ts

 p
e

r
R

o
w

 o
r

C
o

lu
m

n
F

ill
 D

ir
e

c
ti
o

n
L

in
e

 S
k
ip

 F
a

c
to

r

H
o

ri
z
o

n
ta

l
P

o
s
it
io

n
s

S
p

a
c
e

 F
a

c
to

r

A
d

ju
s
t/

F
ill

P
o

s
it
io

n
 C

u
rs

o
r

E
n

a
b

le
 D

u
p

C
o

n
tr

o
lle

d
 F

ie
ld

 E
x
it

A
u

to
 R

e
c
o

rd
 A

d
v
a

n
c
e

P
ro

te
c
t
F

ie
ld

H
ig

h
 I
n

te
n

s
it
y

B
lin

k
 F

ie
ld

N
o

n
d

is
p

la
y

R
e

v
e

rs
e

 I
m

a
g

e

U
n

d
e

rl
in

e

C
o

lu
m

n
 S

e
p

a
ra

to
rs

R
e

s
e

rv
e

d
L

o
w

e
rc

a
s
e

C
o

n
s
ta

n
t
T

y
p

e

C
o

n
ti
n

u
a

ti
o

n

M
a

n
d

a
to

ry
 F

ill

In
p

u
t

A
llo

w
e

d
E

d
it
 C

o
d

e
 (

W
S

U
 O

n
ly

)

D
a

ta
 T

y
p

e

M
a

n
d

a
to

ry
 E

n
tr

y
S

e
lf
-C

h
e

c
k

Constant Data

Figure B-6. D-Specification Portion of the Display Format Specifications Form

inserted at this position in the DDS generated by
$SFGR. See “Sequence Number (Columns 1
through 5)” on page B-1 for a more complete
description and warnings.

Specification Type (Column 6): The
character D identifies this record as a field defi-
nition. This entry is required and is preprinted on
the D-specifications form.

Field Name (Columns 7 through 14):
The field name entry specifies the name of the
field being defined. The field name can have a
maximum of 8 characters. Use it for reference
only; it is not included in the display format.

An asterisk (*) in column 7 identifies this record as
a comment statement. If it is a continuation of the
previous record, you must specify the character X
in column 80 of the previous record.

Note: The system uses the first 6 characters of
the screen design aid (SDA) field names to create
RPG field names. The first 6 characters of the
SDA field names must be unique if you use option
4 (Edit source and procedure members) on the
SDA Main Menu because RPG field names
cannot be copied.

Field Length (Columns 15 through
18): The field length entry specifies the length
of the field defined by the D-specification. The
field length can be any number from 1 through
1919 (1 through 3563 for terminals that support
132 columns). The field length value must be
right-justified. Leading zeros are not required.

Self-check fields cannot be longer than 32 posi-
tions. Fields must be 6 characters long or longer

if a message identified by a message identification
code and a message member identifier appear in
column 56.

Note: If you are using the double-byte character
set (DBCS) version of the OS/400 operating
system and you defined the field as data type E,
F, or X in column 27, the field length must be an
even number equal to or greater than 4.

Line Number (Columns 19 and 20):
The line number entry specifies the line number at
which the field begins, relative to the start line
number specified in columns 17 and 18 of the
S-specification. You must right-justify the line
number entry. A leading zero is not required.

The start line number specified in columns 17 and
18 of the S-specification affects the actual line
number at which the application program displays
the field. Use the following equation to determine
the actual line number at which a field is dis-
played:

Start line number Line number specified
Actual specified for for line number
line = start line number + (columns 19 and 2ð of – 1
number (columns 17 and 18 the D-specification)
 of S-specification)

For example, if you specify 5 as the start line
number and 6 as the line number, the field actu-
ally begins at line 10, as shown by the following
equation:

5 + 6 − 1 = 10

If you do not specify a start line number in the
S-specification, the application program uses a
start line of 1.

B-14 OS/400 System/36 Environment Programming V3R6

Horizontal Position (Columns 21 and
22): The horizontal position entry specifies the
column number of the farthest left position in a
field.

The column number is a 2-digit number, repre-
senting numbers from 1 through 80 for an
80-column display and from 1 through 132 for a
132-column display. For display formats to
appear on an 80-column display, the row number
can be from 1 through 24 and the column number
from 1 through 80. For display formats to appear
on a 132-column display, the row number can be
from 1 through 27 and the column number from 1
through 132.

Column numbers 100 through 132 are repre-
sented by alphanumerics, as shown in the fol-
lowing table:

You must right-justify the horizontal position entry.
A leading zero is not required.

The system reserves and uses the first column of
the display (row 1, column 1) for control informa-
tion. A field cannot begin in row 1, column 1 (and
also row 1, column 2 for SDA). Each field is pre-
ceded on the left by one nondisplay control char-
acter that defines the attributes of the field. The
character supplied by the system does not appear
on the display. You must allow at least one space
between fields to leave room for this control char-
acter. If a field begins in column 1 of a row, the
control character is in column 80 of the previous

row for an 80-column display format and in
column 132 for a 132-column display format.

The horizontal column must be an even number if
both of the following conditions exist:

� You are using the DBCS version of the
OS/400 operating system.

� The horizontal column plus the field length
(columns 15 through 18 on the
D-specification) is greater than 81 and the
data type is E, F, or O.

Output Data (Columns 23 and 24): The
output data entry allows you to make this field an
output field. The field is an input/output field when
you use it with the input-allowed entry in column
26. When you use it with other D-specification
entries, you can specify the type of data to appear
in this field. You must reserve space for the field
in the application program output data area if the
field is an output field. If you specify M for the
constant type in column 56 of the D-specification,
you need to reserve only 6 bytes for the field in
the program.

Select one of the following entries for columns 23
and 24:

N (or blank)
This field is not an output field.

Y The type of information or data that appears
in the output field depends on what you
specify in the other columns of the
D-specification for the field.

Figure B-7 shows the result of the output
field, depending on the entries you make.

01 through 99
If you specify an indicator, the type of data
the application program displays in the output
field depends on the entries you make in the
other columns of the D-specification for the
field.

Figure B-8 on page B-16 shows the result of
the output field, depending on the entries you
make.

100=A0 110=B0 120=C0 130=D0
101=A1 111=B1 121=C1 131=D1
102=A2 112=B2 122=C2 132=D2
103=A3 113=B3 123=C3
104=A4 114=B4 124=C4
105=A5 115=B5 125=C5
106=A6 116=B6 126=C6
107=A7 117=B7 127=C7
108=A8 118=B8 128=C8
109=A9 119=B9 129=C9

 Appendix B. $SFGR Specification Forms B-15

Figure B-7. Output Field Result When You Specify Y for Output Data

Value in
Columns
 23 and 24
(Output Data)

Value in
Column 56
(Constant Type)

Contents of
Columns 57 through 79
(Constant Data)

Result
(Contents of Output Field)

Y Blank Blank Output data is supplied
by program.

Data Data in columns
57 through 79 appears.

C Blank Blanks appear.

Data Data in columns
57 through 79 appears.

M Blank Message identified
by program appears.

Message
identification
code (MIC)
number and Message
member identifier

Message identified in
columns 57 through 62
appears.

Figure B-8. Output Field Result for Numeric Specification

Value in
Columns 23 and 24
(Output Data)

Value in
Column 56
(Constant Type)

Contents of
Columns 57 through 79
(Constant Data) Result (Contents of Output Field)

Indicator
01 through 99

Blank Blank If specified indicator is on, output data is
supplied by program. If specified indicator
is off, blanks appear.

Data If specified indicator is on, output data is
supplied by program. If specified indicator
is off, data in columns 57 through 79
appears.

C1 Blank Blanks appear.

Data Data in columns 57 through 79 appears.

M Blank If specified indicator is on, a message
identified by the program is displayed. If
specified indicator is off, blanks appear.

MIC number and
Message member
identifier

If specified indicator on, message identi-
fied by program is displayed. If specified
indicator is off, message identified in
columns 57 through 62 appears.

1 When you specify a valid indicator in columns 23 and 24 (output data) and you specify C in column 56 (con-
stant type), the application program issues a warning message and assumes Yes for the output entry. It
ignores the indicator for this specification.

If the application program does an override opera-
tion and the specified indicator is on, data sup-
plied by the application program or the message
identified by the application program appears in

this field. See “Override Fields (Columns 33 and
34)” on page B-5 for information about override
operations.

B-16 OS/400 System/36 Environment Programming V3R6

This field does not change if the application
program does an override operation and the spec-
ified indicator is off.

If you specify a field as an output-only field, the
operator cannot change data in the field. If you
define a field as an input/output field, the operator
can change data in the field.

For more information about specifying constant
type, constant data, or messages and message
members, see “Constant Type (Column 56)” on
page B-24 and “Constant Data (Columns 57
through 79)” on page B-24.

Input Allowed (Column 26): Select one of
the following entries for column 26:

N (or blank)
This field is not an input field.

Y This field is an input field.

The type of data the operator can type in the input
field is identified by the data type entry described
in “Data Type (Column 27).”

Data Type (Column 27): The data type
entry specifies the type of data the operator can
type in an input field. You cannot specify data
type for an output field, except data type O when
running the DBCS version of the OS/400 oper-
ating system. Entries allowed for the data type
are as follows:

B (or blank)
This field can contain any type of character
data. This definition is useful for input fields
that require values made up of both alpha-
betic characters and numbers, such as
addresses or part numbers.

A This field can contain only alphabetic charac-
ters (the characters A through Z) and some
special characters. This definition is useful
for input fields that require customer names or
cities.

M This field can contain all alphabetic data, but
on data entry keyboards, the keyboard will
automatically shift to numeric shift for this field
when manual shift is not active.

N This field can contain only numeric data,
blanks, commas, periods, plus signs, or minus
signs. This definition is useful for input fields

that are made up strictly of numbers, such as
account balances or inventory amounts.

For some programming languages (such as
RPG II or COBOL), when special characters
(commas, plus signs, or minus signs) are
entered in an N-type field, the program might
not be able to use these characters. In that
case, an error recovery routine should be
included in the program that uses this format.

S This field can contain only signed numeric
data; the last position of the field is reserved
for a sign. Only the decimal digits (0 through
9) can be entered in the field, and a control
field exit key must be used to exit from the
field. The Field + key and the Field Exit key
can be used to enter a positive value. The
Field − key can be used to enter a negative
value.

An input or input/output field with a data type
of S (signed numeric) can be from 2 through
16 characters long. A signed numeric field
requires one byte less in the program input or
output data area than the field length.

R The field contains data to be read from the
magnetic stripe reader. The field can have a
maximum of 128 characters. If you specify
data type R, nondisplay must also be speci-
fied on the SDA Field Attributes display or in
columns 43 and 44 of the D specifications.

A data type of R cannot be specified in a
display format used by a WSU program.

Z This entry specifies that the cursor moves
from right to left within this input field. For
more information about right-to-left display
processing, see the description of column 40
of the S specification.

The SDA Field Attributes display does not
allow a Z entry. You must use DSU or SEU
to make this entry to the display format
source specifications. A data type of Z
cannot be specified in a display format used
by a WSU program.

D Input data typed in this field can contain only
the numeric characters 0 through 9. The
Field − key cannot be used in this type of
field; all other function keys can be used. A
data type of D can be used on remote
systems only if the system is attached to a
5294 work station controller. Remote screens
attached to a 5251 Model 12 Display Station

 Appendix B. $SFGR Specification Forms B-17

will allow alphanumeric characters to be
entered into a D type field.

K This field can contain Katakana characters.

Note: When column 40 of the S-specification
(right-to left display) is a Y, the K data type is
treated like the Z data type. When column 40
of the S-specification is not a Y, it is an error
to have K data types and Z data types in the
same display file.

E This field can contain alphanumeric (A/N) and
Katakana characters or double-byte charac-
ters, but not both. The field is initially filled
with binary zeros and the display station is set
to enter alphanumeric and Katakana charac-
ters. The cursor blinks when it is in the first
position of the field to indicate that the oper-
ator can switch modes and enter double-byte
characters.

Note: The AS/400 system does not support
the F data type. When data type F is speci-
fied, it is treated like the E data type.

O This field can contain any combination of
alphanumeric, Katakana, and double-byte
characters.

X This field can contain only double-byte data.

Notes:

1. E, F, O, and X are used only for the double-
byte version of the OS/400 operating system.
E, F, X, and O cannot be specified for a
display format that is to be used by a remote
work station attached through a 5251 Model 2
or 12.

2. If an E, F, or O field is an input/output field (Y
in column 23 of the D specification, or
columns 23 and 24 of the D specification
specify an indicator that is on when the field is
displayed), the output data, whether from the
format or from the program, will overlay the
alphanumeric or double-byte nulls and over-
ride the coded input attributes of the E, F, and
O fields.

3. If an X field is an input/output field, the output
data from either the format or from the
program should be double-byte data.

On the AS/400 system, when $SFGR converts the
SFGR source to DDS, the data types are mapped
as follows:

SFGR DDS
Data Type Data Type
blank blank
B A
A X
M N
N M
S S
R I
Z A
D D
K W
E E1

F E1

O O1

X J1

1 On a nondouble-byte character set version of
the system, these data types are mapped to the
A data type in DDS.

Mandatory Fill (Column 28): Select one
of the following entries for column 28:

N (or blank)
The operator does not have to fill this input
field.

Y If the operator typed at least 1 character in
the field, all positions in the field must be filled
with characters the operator can type from the
keyboard. You cannot specify adjust/fill in
column 31 if you specify mandatory fill for the
same field. The operator does not have to fill
this field if you specify mandatory fill for an
input/output field.

Mandatory Entry (Column 29): Manda-
tory entry means the operator must type at least 1
character in this input field. The system can
return input from the display station to the user
program.

Note: Input data does not return to the applica-
tion program if a mandatory entry is bypassed.

If you specify mandatory entry, the operator can
bypass a mandatory entry field if the return input
entry is N (No), and the operator does not type
data in any of the fields.

The operator can use the cursor keys to exit from
a mandatory entry field. However, if the operator
uses the cursor keys and adjust/fill is specified, no
adjusting occurs.

B-18 OS/400 System/36 Environment Programming V3R6

Select one of the following entries for column 29:

N (or blank)
The operator does not have to type data in
the field.

Y The operator must type at least 1 character in
the field before input from the display station
can return to the application program.

Self-Check (Column 30): If you specify
modulus 10 or modulus 11 self-checking (for-
mulas used to calculate the check digit for a self-
check field), the farthest right position of the input
field (the self-check digit) is checked by the
correct check algorithm after the operator enters
the field. Self-check fields cannot be longer than
32 positions.

Select one of the following entries for column 30:

blank
This input field is not a self-check field.

T This input field is a modulus 10 self-check
field.

E This input field is a modulus 11 self-check
field.

You can specify self-check for a right-to-left field
(see column 40 of the S-specification and column
27 of the D-specification), but the position of the
self-check digit remains at the right end of the
input field. In a right-to-left self-check field, the
first digit entered is the self-check digit. The self-
check entry is ignored for fields having a data type
of E, F, O, or X.

Adjust/Fill (Column 31): Select one of the
following entries for column 31:

blank
If you leave column 31 blank, the system
assumes blank fill on input for signed numeric
input fields. The system does not adjust or fill
for all other input fields.

Z The system right-justifies information entered
in this field and fills unused positions with
zeros before sending the field to the applica-
tion program. A Z entry is ignored for fields
that have a data type of E, F, O, or X.

B The system right-justifies information typed in
this field and fills unused positions with blanks
before sending the field to the application
program. The system replaces leading zeros

with blanks for output to a signed numeric
field (S specified for column 27).

Note: If you specify adjust/fill, the system
assumes controlled field exit. The operator must
press one of the field exit keys before the cursor
leaves this input field. For more information, see
“Considerations for Using the Adjust/Fill Entry”
below and “Controlled Field Exit (Column 35)” on
page B-20.

Considerations for Using the Adjust/Fill Entry:
Consider the following factors when you use the
adjust/fill entry:

� You cannot specify adjust/fill and mandatory
fill (in column 28) for the same field.

� To enter adjust/fill fields, the operator must
press the Field+ key for numeric or signed
numeric fields, the Field– key for signed
numeric fields, or the Field Exit key. The
operator can use the Field– key to enter a
numeric-only field from a remote display
station only.

The operator can press the Field Advance key
to enter an adjust/fill field, but the adjust/fill
does not occur. You should supply informa-
tion explaining which keys you want the oper-
ator to use.

� When you specify adjust/fill for a right-to-left
input field, no adjusting occurs when the oper-
ator uses the Field Exit key and the cursor
direction is from right to left. An adjust/fill
action can cause data typed to the right of the
cursor to be lost when the cursor direction is
from left to right.

Position Cursor (Columns 32 and 33):
Use the position-cursor entry to move the cursor
to the first position of an input field if the keyboard
is going from an inactive to an active state.

If the keyboard is active when this display format
appears, the home position of the cursor changes,
but the cursor position itself does not change.

See “Protect Field (Columns 37 and 38)” on
page B-21 for considerations regarding the
position-cursor entry when the input field is pro-
tected.

Select one of the following entries for columns 32
and 33:

 Appendix B. $SFGR Specification Forms B-19

N (or blank)
The cursor appears in the first position of this
field if all the following conditions are present:

� This field is the first unprotected input
field on the display.

� You have not specified a Y (Yes) in any
field for the position-cursor entry.

� You have not specified an indicator that is
on for any other fields for the position-
cursor entry.

Y The cursor appears at the first position in this
input field unless you have specified indica-
tors for other fields in columns 32 and 33 and
one or more of these indicators are on when
the display format appears. In this case, the
cursor appears in the first position of the first
field on this display format specifying a cursor
position. You can specify Y for only one field
in the display.

01 through 99
If the indicator is on when display format
appears, the cursor appears in the first posi-
tion of this input field. If more than one field
has the cursor on, the cursor appears in the
first position of the first field on the display
with a cursor position specified.

Note: On the AS/400 system, a cursor posi-
tion specified with an indicator does not nec-
essarily override a cursor position specified
with a Y. The system uses the first active
cursor position encountered.

Enable Dup Key (Column 34): When the
Dup (duplicate) key is enabled and the operator
presses the Dup key, the system fills the position
of the cursor and the remainder of the field with a
character called the duplicate character . The
duplicate character is displayed as an overscored
asterisk, as follows:

(*)

RSLW106-0

This duplicate character has a hexadecimal value
of X'1C'. The operator can type data into the
first record and press the Dup key for following
records to contain the same data. For each fol-
lowing record, the program removes the duplicate
characters and replaces them with the actual data.

Select one of the following entries for column 34:

N (or blank)
The field does not allow Dup. An error
appears if the operator presses the Dup key
while the cursor is in this input field.

Y The field allows Dup. The operator can press
it while the cursor is in this input field.

Controlled Field Exit (Column 35): If
you specify controlled field exit, the operator must
press one of the field exit keys before the cursor
leaves this input field. The following are field exit
keys:

 � Field Advance
 � Field Exit
 � Field+
 � Field–
 � Field Backspace
 � Home
 � Erase Input
 � Duplicate

Select one of the following entries for column 35:

N (or blank)
The cursor automatically exits from the field
when it is filled. If you specify adjust/fill in
column 31 of the D-specification, the system
ignores an N or blank entry.

Y The operator must press one of the field exit
keys before the cursor leaves this input field.

Note: The operator can use the cursor keys to
exit from a controlled exit field. No adjusting
occurs.

Automatic Record Advance (Column
36): Select one of the following entries for
column 36:

N (or blank)
The system does not return the data typed in
the input fields on this display to the applica-
tion program until the operator enters the
entire display.

Y When the operator types data into the input
fields on the display, the system automatically
returns to the application program when one
of the following occurs:

� You type the last character in this input
field and specify N (No) or blank for con-
trolled field exit.

B-20 OS/400 System/36 Environment Programming V3R6

� The cursor is in this input field and the
operator presses the Enter key, the Field
Adv key, the Field Exit key, the Field+
key, the Field– key (if the field is a signed
numeric field), or the Dup key.

Protect Field (Columns 37 and 38):
Use the protect-field entry to prevent an operator
from entering or changing data in an input field.

N (or blank)
The operator can type data in this field.

Y The operator cannot type data into this field.
You can specify Y (Yes) for input fields only.

01 through 99
If you specify an indicator, the operator
cannot type data into this input field when the
indicator is on.

Considerations for Using the Protect-Field
Entry: Protect field can be specified for input
fields only. If you specify Y (Yes) or an indicator
for the protect-field entry, some or all of the fol-
lowing considerations may apply:

� If you use an override operation, the system
ignores the protect field indicator.

� The cursor might still appear in a protect field
if all the following conditions exist:

– The field is protected by an indicator that
is on when the display format appears.

– The field is the first input field (that does
not specify a Y in column 37) defined by a
D specification in the format.

– The cursor is not positioned by an indi-
cator to any field not protected.

Note: Although the cursor may appear in a
protect field if all of these conditions exist, the
operator cannot type input data into the field.

� If a field is defined as either nondisplay or pro-
tected, or both, and column separators are
requested, the column separators are dis-
played on a 5251 Display Station and on a
5291 Display Station; the column separators
are not displayed on a 5292 Color Display
Station.

� If an indicator controls either the nondisplay or
protect field attributes, or both, and column
separators are requested, the separators are

not displayed if the indicator is on when the
field is displayed.

High Intensity (Columns 39 and 40):
Select one of the following entries for columns 39
and 40:

N (or blank)
The application program shows characters in
this field with normal intensity.

Y The program shows characters in this field
with high intensity.

01 through 99
The application program shows the applica-
tion characters in this field with high intensity
if the specified indicator is on, and with
normal intensity if the specified indicator is off.

If the display format appears on a 5292 Color
Display Station and you specified high intensity,
the field appears with white characters. The color
may be different if you also specify other field attri-
butes. See Figure B-9 on page B-23 for the
result of specific attribute combinations.

You cannot specify high intensity, reverse image,
and underline for the same field at the same time.
If the operator tries to display the field with all
three attributes requested, the application program
shows the field as a nondisplay field.

Blink Field (Columns 41 and 42): Select
one of the following entries for columns 41 and
42:

N (or blank)
The characters in this field do not blink when
the display format appears.

Y The characters in this field blink when the
display format appears.

01 through 99
The characters in this field blink if the speci-
fied indicator is ON when the display format
appears. The characters in this field do not
blink if the specified indicator is off when the
display format appears.

If the display format appears on a 5292 Color
Display Station and you specified blink field, the
application program shows the field with red char-
acters and without blink. Specify high intensity to
cause the characters in the field to blink. For

 Appendix B. $SFGR Specification Forms B-21

more information, see Figure B-9 on page B-23
for the result of specific attribute combinations.

Nondisplay (Columns 43 and 44):
When you specify nondisplay for an output or
input field, information sent in the field is not
visible on the display.

Select one of the following entries for columns 43
and 44:

N (or blank)
The information in this field displays.

Y Information in this field does not display.

01 through 99
Information in this field does not appear if the
specified indicator is on.

Consider the following factors if you specify Y
(Yes) or an indicator in the nondisplay entry:

� If you specify nondisplay and high intensity,
reverse image, or underline, the system
defines the field as nondisplay only.

� If you specified the nondisplay attribute,
protect-field attribute, or both, and you
requested column separators, the column sep-
arators appear on a 5251 Display Station and
on a 5291 Display Station. They do not
appear on a 5292 Color Display Station.

� The system does not display column separa-
tors if you specified Y (Yes) for one of the
nondisplay or protect-field entries and the
other is controlled by an indicator, or if indica-
tors control both the nondisplay and protect-
field attributes.

Reverse Image (Columns 45 and 46):
Select one of the following entries for columns 45
and 46:

N (or blank)
The characters in this field appear as light
characters on a dark background.

Y The characters in this field appear as dark
characters on a light background.

01 through 99
The characters in this field appear as dark
characters on a light background if the indi-
cator is on when the display format appears.

You cannot specify reverse image, high intensity,
and underline for one field at the same time. If
the operator tries to see a field with all three attri-
butes requested, the application program shows
the field as nondisplay.

Underline (Columns 47 and 48): You
can use an underline to show the location or
length of an input field, or to emphasize informa-
tion displayed in an output field.

Select one of the following entries for columns 47
and 48:

N (or blank)
The field is not underlined.

Y The field is underlined.

01 through 99
The field is underlined if the indicator is on
when the display format appears.

If this display format appears on a 5292 Color
Display Station and you specify underline, the field
appears with a blue line under the character posi-
tions in the field. The color of the characters dis-
played in the field depends on the other field
attributes you specified. See Figure B-9 on
page B-23 for the result of specific attribute com-
binations.

You cannot specify underline, reverse image, and
high intensity for the same field at the same time.
If the operator tries to display the field with all
three attributes requested, the application program
shows the field as nondisplay.

Column Separators (Column 49):
Column separators are vertical lines or dots that
precede and follow each character position in a
field. They do not require additional character
positions.

Select one of the following entries for column 49:

N (or blank)
Column separators do not appear in this field.

Y Each character position in this field is pre-
ceded and followed by column separators.

Note: If this display format appears on a 5292
Color Display Station, the column separators
appear as blue dots at the bottom corners of each
character position in the field. If you also specify
blink field, the column separators do not appear

B-22 OS/400 System/36 Environment Programming V3R6

on the display. The color of the characters dis-
played in the field depends on the other field attri-
butes you specify. See Figure B-9 for the results
of specific attribute combinations.

If an indicator controls the nondisplay attribute,
protected field attribute, or both, and you request
column separators, the separators do not appear if
the indicator is on when the field appears.

The first dot of a column separator appears in the
character cell of the field starting attribute. The
last dot of a column marked Field appears in the
character cell of the field ending attribute. The fol-

lowing occurs when a field starts in the farthest
left column of the display:

� A column mark appears at the end of the row
preceding the fields (that is, at the right of the
field starting attribute).

� The first column mark in the field is dimmer
than the other column marks because it is a
single dot only.

A similar situation occurs when the field ends in
the farthest right column of the display.
Figure B-9 shows the results of specific attribute
combinations.

Figure B-9. Using Field Attributes to Control Color

Attributes Specified:

Color Result:

Column
Separators 1

Blink
Field

High
Intensity

Reverse
Image

Underline
Can Also
Be Specified

Green
Green, reverse image

X X
X

White
White, reverse image

X
X

X X

Red
Red, reverse image
Red, blink
Red, reverse image, blink

X2

X2

X
X

X
X

X
X

X
X
X

Turquoise, column separators
Turquoise, reverse image,
 column separators

X
X

X X

Pink
Pink, reverse image

X3

X3
X2

X2
X X

X

Yellow, column separators
Yellow, reverse image,
 column separators

X
X

X
X

X X

Blue
Blue, reverse image

X3

X3
X2

X2
X
X

X X

Data in fields with these
combinations of attributes
does not appear.

X
X

X
X

X
X
X
X

X
X
X
X

X
X
X
X

1 Column separators do not appear when you use reduced line spacing.
2 Field does not blink.
3 Column separators do not appear.

 Appendix B. $SFGR Specification Forms B-23

Notes:

1. Underlines and column separators are always
blue.

2. Underlines do not blink if you also specify
blink field.

3. Column separators do not appear if you also
specify blink field.

4. Use the limit color select option of the 5292
Color Display Station to see how a display
format designed for color appears on a single-
color display.

Lowercase (Column 51): If you specify
lowercase, the system displays and sends all
alphabetic characters typed into this field to the
application program in lowercase (if the operator
does not press the Shift key when typing a char-
acter) or in uppercase (if the operator presses the
Shift key when typing a character).

The D-specification entry for lowercase always
takes precedence over the S-specification entry
for lowercase.

You can use the lowercase entry for input fields
only. Lowercase data cannot be specified for
numeric fields. The lowercase entry is ignored for
fields with the X data type.

Use Figure B-10 on page B-25 to determine what
the operator can type in the input field depending
on what you specify in the display format specifi-
cations.

Columns 50, 52 through 55: Leave
columns 52 through 55 blank. The system does
not use them.

Constant Type (Column 56): You can
define information as a constant on the SDA Attri-
bute Work display or in columns 57 through 79 of
the D-specification, or you can indicate that a
message is displayed by specifying a MIC and a
message member identifier.

If you specify Y (Yes) for output data columns 23
and 24, you can select the following entries for
column 56:

blank
If column 56 is blank, and you define constant
information for this field in columns 57
through 79 of the D-specification, that infor-

mation appears in this field. If you leave
column 56 blank and no constant information
is defined, information sent from the applica-
tion program appears.

C If you specify C, the constant information
defined in columns 57 through 79 of the
D-specification appears in this field. C is
required only if the constant information is all
blanks, and you want to show all blanks in the
field. For more information on possible com-
binations, refer to “Output Data (Columns 23
and 24)” on page B-15.

M A message appears in this output field. The
user identifies the message by an MIC and a
message member identifier in columns 57
through 62 of the D-specification. If columns
57 through 62 are blank, the application
program or PROMPT OCL statement must
specify the MIC and message load member
identifier.

The $SFGR compiler assumes that the
message ID has a prefix of USR. On the
AS/400 system, a message has the format
PPPmmmm, where PPP is the message ID prefix
and mmmm is the MIC. Your application
program should not supply the prefix.

For more information, see “Output Data (Columns
23 and 24)” on page B-15.

Constant Data (Columns 57 through
79): The constant data entry specifies the infor-
mation to be included in an output or input/output
field when the display format appears.

If you specify Y (Yes) for output data columns 23
and 24, you can select the following entries for
columns 57 through 79:

� If you specify C or blank in column 56 (con-
stant type), columns 57 through 79 contain the
information that will appear in the field. If you
leave columns 57 through 79 blank, blanks or
data supplied by the application program
appear in the field.

� If you specify M in column 56 (constant type),
the application program shows the message
identified by a 4-digit MIC in columns 57
through 60 and a 2-character message
member identifier in columns 61 and 62. The
MIC number identifies the message containing
the information to appear in the field.

B-24 OS/400 System/36 Environment Programming V3R6

Entry in Column 51
of the D Specification

Blank

Entry in Column 21 of the S Specification
or on the SDA Format Attributes Display

Y

RSLW098-1

Blank

N

N

Y

uppercase only uppercase only

uppercase only uppercase onlyuppercase only

lowercase or
uppercase

lowercase or
uppercase

lowercase or
uppercase

lowercase or
uppercase

Figure B-10. Entries to Specify What the Operator Can Use in the Input Field

Depending on the length of the output field,
the system fills the message text with blanks
or shortens it to the length of the field when
the display format appears.

The message member identifier identifies the
message member that contains the message.
The message member identifier can be one of
the following:

U1 or blank
User-1 message member

U2 User-2 message member

P1 Program-1 message member

P2 Program-2 message member

M1 System/36 environment level-1 message
member (##MSG1)

M2 System/36 environment level-2 message
member (##MSG1)

If you specify a MIC, but do not specify a
message member identifier, the system
assumes U1 as the message member. A
user or procedure can redirect the system to
the proper message member and library by
using the //MEMBER OCL statement, or by
using the Override Message File (OVRMSGF)
CL command. The // MEMBER OCL state-
ment takes precedence over the OVRMSGF
CL command.

If you leave columns 57 through 79 blank, the
following happens:

– If an application program is used to show
the display and the program passes a MIC
number, the message text for that number
is shown on the line of the display file.

– If an application program is used to show
the display and the program does not
pass a MIC number, the line on the
display is left blank.

– If the PROMPT OCL statement is used to
display a screen, the system looks at the
value of the parameter that corresponds
with the output field of the display file. If
that value is a MIC number, the message
text for that MIC number is shown on that
line of the display file. If the value is
blank, the line on the display file is left
blank.

For example, if you specify M in column
56 of the D specification for the third
output field on a display file, leave
columns 57 through 79 blank, and the
third parameter of the procedure that con-
tains the PROMPT statement is 0001, the
message text for MIC number 0001 is dis-
played in the third output field. If the
value for the third parameter of the proce-
dure is not given, the third output field is
left blank.

If the MIC is not found, or if the message
member is not found, then the MIC, fol-
lowed by ?? is shown on the display file
where the message text would normally
be shown. For example, if you specify
MIC 1234, but this MIC has not been
defined in the message member, 1234??
would be shown on the display file. The
job log for the job would also contain diag-
nostic message CPF2419, with more infor-
mation about the MIC and the message
file. If the message member could not be
found, escape message CPF2407 would
be in the job log with the message file and
library name identified.

If the MIC is not numeric or not between A
and F, then the MIC followed by the
message member identifier is shown on
the display file where the message text
would normally be shown. For example, if

 Appendix B. $SFGR Specification Forms B-25

you specify MIC 123G and a message
member identifier of U1, 123G*USR1
would be shown on the display file.

For information about assigning user-1,
user-2, program-1, and program-2
message members, see the description of
the MEMBER OCL statement in the
System/36 Environment Reference book.

For more information about what is displayed in
the field, see “Output Data (Columns 23 and 24)”
on page B-15.

Considerations for Using the Constant Data
Entry: Consider the following factors when you
use the constant data entry:

� Information from the program output data area
appears if you do not specify C in column 56
and you leave columns 57 through 79 blank,
and if the field is an output field (Y (Yes)
specified in column 23).

� If you specify an MIC in columns 57 through
79, you need to reserve only 6 bytes for the
field in the program output data area.

� M1 and M2 are valid only if you specify
SSP-YES on the LOADMBR utility control
statement of the $SFGR utility program. The
$SFGR utility program is run by the FORMAT
procedure. See the description of the $SFGR
utility control statements in the System/36
Environment Reference book for more infor-
mation.

Continuation (Column 80): The system
requires an entry to this column only if you are
using the D-specification coding form and the
output-constant information is greater than the
space in columns 57 though 79.

If you use more than 23 positions of constant data

(specified in columns 57 through 79), you must
also make an entry in column 80. You must
specify an X in column 80 to indicate that the next
record (or D-specification) is a continuation of this
record. Positions 7 through 79 of the next
D-specification contain the continued constant
data.

A comment, indicated by an asterisk (*) in column
7, cannot follow a D-specification with an entry
made in column 80.

The constant for the DBCS version of the OS/400
operating system can contain DBCS characters.
The shift-out (SO) and shift-in (SI) characters are
counted as part of the data. If the constant output
consists of more than 10 DBCS characters, you
must code an alphanumeric X in column 80. The
DBCS data continues on the next D-specification.

If a Shift-in (SI) character is in column 78 or 79
and the constant continues with a Shift-out (SO)
character in column 7 of the next D-specification,
the system deletes the SI/SO pair. When column
78 contains a SI character, any character in
column 79 is omitted when the constant is joined
and displayed.

When column 78 contains an SO character, and
column 79 contains an SI character, the system
deletes the SO/SI pair regardless of what char-
acter is in column 7 of the next D-specification.

If you are using extended DBCS characters, put
an SO character in column 57 to show the DBCS
characters correctly. You can also specify Open
Data Type (O) for the output field. This specifica-
tion causes the application program to show the
DBCS character correctly.

B-26 OS/400 System/36 Environment Programming V3R6

Appendix C. Merging Graphics and Text

This appendix describes how to print a graphics
file alone or with other output.

System/36 supports the intelligent printer data
stream (IPDS) graphics/text merge functions with
the following PRPQs:

� Program Number PRPQ P84096 (5799-CGJ)
for the 5360/5362 System Unit

� Program Number PRPQ P84097 (5799-CGP)
for the 5363/5364 System Unit

When using graphics/text merge functions, you
must use an IPDS printer.

Printing a Graphics File Only

This function allows you to print graphic files, such
as Business Graphics Utility (BGU) graphs or
charts, separate from other print files.

The procedure for printing graphics alone is:

PRTGRAPH prtid,FILE,filename,width

The parameters are described as follows:

prtid
Is the ID of the IPDS printer to print the
graphics file. The default printer is the
session printer.

FILE
Indicates that the data is in a disk file.

filename
Is the name of the graph object file to be
printed. The file with the latest date is used.
This function also supports remote files.

width
Is the width of the graphics area in inches.
The width should not exceed the width of the
paper. The default is 13.2 inches.

This parameter cannot contain more than 5
characters, specified in decimal numbers of
any combination of xx.xx, where x is any
number from 0 through 9. The specified
value cannot be more than 13.2 inches.

The graphics area is placed as follows:

� The upper left corner of the graphics area is
the same as the upper left corner of the page.

� The length of the graphics area is the same
as the length of the page.

Note: The printer will scale the graph to fit a
square area. The dimensions of the square are
determined by the value for either the width or the
length of the graphics area, whichever is smaller.

Graphics File Printout Example

The following figure is an example of a graphic
printout.

Bar Chart

Label 1 Label 2 Label 3 Label 4

Horizontal (X-axis)

V
e

rt
ic

a
l
(Y

-a
x
is

)

1
5

1
0

5
0

set 1 set 2

Page Corner/Graphic Corner

Page Area

Graphic Area

RSLW004-0

The printing of a graphics file function generates
no error messages. However, if an error occurs,
the #$@INCLGRPH control record prints in place
of the graph.

 Copyright IBM Corp. 1995 C-1

Printing a Graphics File Along
with Other Output

This function allows a user to include a graph any-
where in the data that is printed by any program
(for example, AS/400 word processing, COBOL, or
RPG). You can create the graphics file by using
such utilities as the Business Graphics Utility
(BGU) or the IPDS Advanced Functions.

For more information about the BGU, see the
BGU User’s Guide and Reference book. For
more information about word processing, see the
Getting Started with OfficeVision/400 book or the
Using OfficeVision/400 Word Processing book.
For more information about the IPDS advanced
functions, see Appendix D, “Intelligent Printer
Data Stream (IPDS) Advanced Function Support.”

To include graphics with other program output,
use a special control record. The format for this
control record is:

#$@INCLGRPH filename,x,y,w,l

The parameters are described as follows:

filename
Is the name of the graph object file to include.
The file with the latest date will be used. This
function also supports remote files.

 x Is the distance in inches from the left edge of
the page to the left edge of the graphics area
on the page. The default is 0.

 y Is the distance in inches from the top of the
page to the top edge of the graphics area on
the page. The default is 0.

 w Is the width of the graphics area in inches.
The default is the width of the current page
you are using.

 l Is the length of the graphics area in inches.
The default is the length of the current page
you are using.

Consider the following when using the
#$@INCLGRPH control record:

� Parameters x, y, w, and l define the area on
the page where the graphics file will print.
Parameters x and y define the upper left
corner of the graphics area, and parameters w
and l define the size of the graphics area.

� There must be only one space between the
command word and the parameters.

� The #$@INCLGRPH control record should be
in a print record by itself, because any other
data along with it may be considered as
parameters.

� Actual parameters should immediately follow
one another, separated by commas, using no
blanks.

� The specified values for width (w) and length
(l) should be equal, since the printer will scale
the graphic to fit a square area.

� Parameters x, y, w, and l can be specified in
decimal numbers of any combination of xx.xx,
where x is any number from 0 through 9. The
specified value cannot be more than 22.75
and, if a 0 value is specified, the result is the
default value for that parameter.

� The characters #, $, and @ must be given as
defined in code page 500. That is, they must
be X'7B', X'5B', and X'7C' respectively.

If there is anything wrong with the control record
or an error occurs while processing the graphics
file, the control record will print as normal text
data.

Example of an Included Graphics
File

The following figure is an example of a graphics
file that is included with other output:

C-2 OS/400 System/36 Environment Programming V3R6

Percent of Increase

40

30

20

10

0

Sep. Oct.
1983

Auto Sales

Mj.Appliance

House Sales

Graph name - FORMAT5 Press Enter to Continue

Sample of Graphic/Text Merge Page

This is a sample page of text produced by using the word processing
function of the AS/400 Office program product with a bar graph merged
onto the page. The graph/text merger was done by inserting an include
graphics control record in the text of the page on which the graph was
to appear.

The graphic control record for making this sample graphic/text merge is:

#$@INCLGRPH BARGRAPH, 3.75, 2.5, 4, 4

where BARGRAPH is the name of the

graphic object file to be printed;
3.75, 2.5 is the distance in inches
from the upper left corner of the
page to the upper left corner of
the graphic area on the page;
and 4, 4 is the width and length,
respectively, of the graphic
area on the page.

This control record can be added
anywhere on the displayed page of
text. You must, however, edit
your page to provide adequate blank
space for your graphic or else
the graphic will overlay the text.

The graphic area will always be a
square (all sides are equal) of
the size of the smallest specified
value for w (width) and l (length).
If the size of the graphic area is
too small or the graphic too complex, the graphic may not be legible.
You can enhance legibility by making the graphic area larger or by
editing the graphic to reduce the amount of detail shown and building
a new graphic object file. You can also choose a different character
style and character size in the graphic to enhance legibility.

RV2W108-1

 Programming Considerations

This section includes considerations for printing a
graphics file along with other input using
#$@INCLGRPH. The following considerations
refer to Figure C-1:

.A/ If you use the #$@INCLGRPH control
record in an application program, do not
place the entire word (#$@INCLGRPH) all
together in the source program.

.B/ If #$@INCLGRPH is placed all together,
and the compiler output prints on an IPDS
printer, the result is that the graphics file
prints with the compiler output as well as
in the program output.

.C/ To prevent printing the graphics file with
the compiler output, divide
#$@INCLGRPH into two parts and have
the program concatenate the parts when
the program runs.

Printer Storage Limitations: All of the
included graphic files for a print file are down-
loaded to the printer storage, separate from the
rest of the print file. There are two conditions you
must consider:

� The included graphic files may overflow the
printer storage and cause an error condition.
To prevent this, include fewer graphs or make
the included graphs less complicated. For
example, choose a simpler character type or
smaller character size, remove extraneous
text and details, and so forth.

� All included graphic files in printer storage are
deleted from storage at the start of a new
page.

 Appendix C. Merging Graphics and Text C-3

Unit Price TotalQtyItem Description

Subtotal

Less Discount

Total

$

$

$

Account Number

Wholesale
Tire & Supply

Company

175 R14 Tire Drive
Radial City, MI

Bill To:

10% Discount
On All Orders Over

$500.00

PIC X(28).
PIC X(20).
PIC X(15).
PIC X(2).
PIC X(5).
PIC X(11).
PIC X(9).

STNO -A . . . B . . . C O B O L S O U R C E S T A T E M E N T . . . IDENTFCN SEQ/NO S

IDENTIFICATION DIVISION
PROGRAM-ID. D10105.
AUTHOR. LL HIRSCH - FUT TESTER FOR DEPT 48X.
INSTALLATION ROCHESTER.
DATE-WRITTEN
DATE-COMPILED. 85/11/20.
SECURITY.

COBOL TEST PROGRAM - D10105

THIS PROGRAM IS USED FOR TESTING THE GRAPHICS/TEXT MERGE USING
THE #$@INCLGRPH CONTROL RECORD. IN THIS TEST CASE, THE CONTROL
RECORD STRING APPEARS TOGETHER ON THE COMPILED OUTPUT; SO THAT
THE GRAPH WILL BE MERGED AT THE TIME OF THE COMPILER OUTPUT AS
WELL AS ON THE PROGRAM OUTPUT.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-S36,
OBJECT-COMPUTER, IBM-S36.
SPECIAL NAMES.

C01 IS TO-NEW-PAGE,
UPSI-0 IS
LOCAL-DATA IS LOCAL-DATA-AREA.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT PRINT-FILE ASSIGN TO PRINTER-CBLPRT.
SELECT CUST-FILE ASSIGN TO DISK-CUSTFILE.

SELECT PART-FILE ASSIGN TO DISK-PARTFILE.

DATA DIVISION.
FILE SECTION.
FD PRINT-FILE

LABEL RECORDS ARE OMITTED.
RECORD CONTAINS 80 CHARACTERS,
DATA RECORD IS PRINT-RECORD.

01 PRINT-RECORD PIC X(80).

FD CUST-FILE
LABEL RECORDS ARE STANDARD,
RECORD CONTAINS 90 CHARACTERS,
DATA RECORD IS CUST-RECORD.

01 CUST-RECORD.
02 CUST-NAME-IN
02 STREET-IN
02 CITY-IN
02 STATE-IN
02 ZIP-IN

02 ACCT-NUM-IN
02 FILLER

WORKING-STORAGE SECTION.
01 INCLUDE-RECORD.

02 FILLER PIC X(28) VALUE ’#$@INCLGRPH FORM, 0, 0, 8, 5, 11 ’.
02 FILLER PIC X(52) VALUE SPACES.

WORKING-STORAGE SECTION.
01 INCLUDE-RECORD.

02 FILLER PIC X(3) VALUE ’#$@’.
02 FILLER PIC X(28) VALUE ’INCLGRPH FORM, 0, 0, 8, 5, 11 ’.
02 FILLER PAC X(53) VALUE SPACES.

Entire Word

Graphic Overlays
Compiler Output

Divided Word

RSLW000-1

1
2
3
4
5
6
7

8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23

24

25

26
27
28
29
30
31
32
33

Figure C-1. Output Example when the Control Word (#$@INCLGRPH) in the Source Program is Not Divided

C-4 OS/400 System/36 Environment Programming V3R6

Appendix D. Intelligent Printer Data Stream (IPDS) Advanced
Function Support

This appendix describes the following functions of
the intelligent printer data stream (IPDS) advanced
function support and tells how to use them. The
intelligent printer data stream (IPDS) is an all-
points-addressable data stream that allows users
to position text, images, and graphics at any
defined point on a printed page.

� Calling the IPDS advanced function subrou-
tines

� Using the IPDS advanced function support,
including:

– Setting printer options
– Printing graphics using RPG II and

COBOL subroutines
– Printing forms and graphs
– Printing bar codes

“Sample Form” on page D-14 describes how to
print a sample form to demonstrate the use of the
forms generation utility.

System/36 supports the IPDS advanced functions
with the following PRPQs:

� Program Number PRPQ P84094 (5799-CGK)
for the 5360/5362 System Unit

� Program Number PRPQ P84095 (5799-CGL)
for the 5363/5364 System Unit

When using IPDS advanced functions you must
use an IPDS printer. The printer file must also
specify an *SCS data type and to spool the
output. If you do not spool the data, the AS/400
will override the *SCS data type, and may gen-
erate incorrect output.

Calling the Subroutines

This section includes information on calling the
subroutines when using IPDS advanced functions.

 COBOL Subroutines

The following are COBOL subroutines:

PRTAPI Sets printer options
PRTGRC Prints graphics
PRTBAR Prints bar codes

The following coding example shows how to call
the PRTAPI subroutine. The same coding format
is used for the PRTGRC and PRTBAR subrou-
tines.

CALL 'PRTAPI' USING FNAME,OPTION,PARM,RTCODE

FNAME is the name of the printer file. For
example, if the name of your printer file is
COBPRT, enter the following:

CALL 'PRTAPI' USING COBPRT,OPTION,PARM,RTCODE

The parameters to be passed to the subroutine
are described in “RPG II and COBOL Printer
Parameters.”

RPG II Subroutines

The following are RPG II subroutines:

SUBR50 Sets printer options
SUBR51 Prints graphics
SUBR52 Prints bar codes

Figure D-1 on page D-2 is a RPG II coding
example calling the SUBR50 subroutine. The
same coding format is used for SUBR51 and
SUBR52.

The parameters to be passed to the subroutine
are described in “RPG II and COBOL Printer
Parameters.”

RPG II and COBOL Printer
Parameters

The following are the printer parameters passed to
COBOL and RPG II subroutines. All printer
parameters must be left-justified.

FNAME
Is an 8-character field that contains the name
of the printer file.

OPTION
Is an 8-character field that tells the system
which printer option to specify. See “Setting
Printer Options” on page D-2 for descriptions
of the options.

 Copyright IBM Corp. 1995 D-1

F
or

m
 T

yp
e

C
on

tr
ol

 L
ev

el
 (

L0
-L

9,
LR

, O
R

, A
N

/O
R

)

Line
Name Length

Factor 1 Operation Factor 2 Comments

N
ot

N
ot

N
ot

D
e

ci
m

a
l P

o
si

tio
n

s

H
a

lf
A

d
ju

st
 (

H
)

Arithmetic

Plus Minus Zero

Compare

1 > 2 1 < 2 1 = 2

Lockup(Factor 2)is

High Low Equal

C

C

C

C

C

C

C

C

0 1

0 2

0 3

0 4

0 5

0 6

0 7

Indicators Resulting
Indicators

Result Field

And And

Date

Graphic

Key

Page of

Printed in U.S.A.

75 76 77 78 79 80

Programmer

Program Card Electro Number
1 2

Program
Identification

International Business Machines Corporation

Keying
Instruction

GX21-9092 UM/050*

RPG CONTROL AND FILE DESCRIPTION SPECIFICATIONS

RSLW001-1

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2720 21 22 23 24 25 26 30 31 32 33 34 35 36 3728 29 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 72 73 7471

Figure D-1. RPG II Subroutine Coding Example

PARM
Is an 80-character field that contains the
value for the OPTION specified.

RTCODE
Is a 2-character field that contains the return
code. The subroutine returns this value to the
application program to indicate the result of
the printer operation.

Valid values are:

Value Description
40 Normal completion.
41 The specified OPTION is not valid.
42 The specified PARM is not valid.
43 An I/O error was detected by printer

data management.
44 The specified FNAME is not valid.
45 The specified OPTION is not valid in

this sequence.
46 The specified OPTION is not sup-

ported by this printer.

Using the IPDS Advanced
Function Support

This section describes how to use the advanced
functions listed below:

� Setting printer options
� Printing graphics using RPG II and COBOL

subroutines

� Printing forms and graphs
� Printing bar codes

Setting Printer Options

The advanced functions support allows a user
application program to specify the printer options,
using the following subroutines:

� PRTAPI for COBOL programs
� SUBR50 for RPG II programs

The options you specify are used until you change
them or until the start of the next print job. Then
the printer default values are reset (except when
otherwise noted later in this manual).

These subroutines control the following printer
options:

� Characters per inch (cpi)
� Character style (font)

 � Color
 � Drawer selection
� Emphasis (highlight, make bold)
� Forms characters (for building boxes)
� IPDS transparent options (IHTRANS,

IPTRANS)
� Lines per inch (lpi)

 � Print quality
 � Page rotation
 � Transparent

D-2 OS/400 System/36 Environment Programming V3R6

yes 10, 12
15

5, 10
12, 15
16.7

10, 12
15

3, 4
6, 8

3, 4
6, 8

6, 8

4, 6, 8

yes

yes

yes

yes

yes

yes

yes

10, 15

10, 15

no

no

no

6, 8

3, 4
6, 8

no

no

no

no

no

yes

yes

yes yes

yes

yes

yes

1, 2

no

no

no

no

no

no

no

no

no

1, 2

no

no

no

no

no

yes

yes

yes

yes yes yes yes no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

no

yes

no

3, 4
6, 8

1, 2, 3

yes

yes

yes

yes no no nono no nononononono

yes no no nono no nononononono

3812

4214

5219

5224

5225

4245

5262

IPDS

6262

5256

RSLW109-0

Trans- Print Trans- Rota-
IPDS

pha-
Em-

Printer parent CPI LPI Fonts Text Drawer Forms sis Quality Color parent tion

Figure D-2. IPDS Advanced Function Support AS/400 Printer Options

IPDS Advanced Function Support
Printer Options and the AS/400
Printers: Not every printer option can be used
by all AS/400 printers. Figure D-2 shows the
options that you can use with each AS/400 printer
or its equivalent.

Note: In this figure, IPDS means intelligent
printer data stream printers.

You must be sure that the options you specify are
valid for the printer that you use. Otherwise, an
error occurs. If you specify printer options in a
spool file, the file could be sent to a printer that
does not support these options, and an error could
occur.

Characters per Inch Option: The charac-
ters per inch (cpi) option lets you specify the
number of characters to be printed per inch. Valid
values are 5, 10, 12, 15, and 16.7. There is no
default for this option. A parameter value must be
specified.

Consider the following when specifying characters
per inch:

� When you specify 5 cpi for the 4214 Printer,
the printed characters are double-wide.

� When the record length of the printer file is
greater than 132, the printer OCL statement
must set characters per inch to 15, even
though the IPDS advanced function support
may set characters per inch to 12, 15, or 16.7
within the program.

� When you change the characters per inch
option for the 5219 Printer, the font ID that
normally corresponds with this characters per
inch value display on the 5219. Press the
Start key on the 5219 to start printing. You do
not need to change the print wheel to the font
that is displayed.

Character Style Option: You can specify
any character style (FONT) ID of up to 4
hexadecimal characters from 01 to FFFE.

You must specify a parameter value because
there is no default for this option.

Consider the following when specifying character
style:

� Selection of an F0 through F9 character style
results in double-wide characters on IPDS and
3812 printers.

 Appendix D. Intelligent Printer Data Stream (IPDS) Advanced Function Support D-3

� On IPDS printers, print quality and character
style selections interact with one another. To
get the best results, print quality should be set
first, then the character style. See “Print
Quality Options” on page D-6 for information
on setting print quality.

Printing OCR Characters: To print optical char-
acter recognition (OCR) characters on the 3812
printer, you must set the code page to 340 (hex
0154), using the transparent (TRANS) option. For
information on the TRANS option, see “Trans-
parent Option” on page D-5. The parameter for
the TRANS option is:

2BD1ð6ð1ððððð154

After setting the code page, select either of the
character styles OCR-A or OCR-B, using the char-
acter style option (FONT). The parameters are:

Hex Value Character Style
0013 OCR-A
0003 OCR-B

Before changing back to another non-OCR char-
acter style, use the TRANS option to set the code
page to your default value.

Printing Mathematical Symbols: To print math-
ematical symbols on the 3812 printer, perform the
same steps as above for printing OCR characters,
except use the math symbols font code (hex
001E) for the character style option parameter and
code page 259 (hex 0103) for the transparent
option parameter. At the start of the next job, the
code page is set to the value selected at the
printer operator panel.

Color Option: The color (COLOR) option is
only valid for the color models of IPDS printers.
This option sets the color for the printed output.
The parameters are:

BLACK RED
BLUE TURQ (turquoise, also cyan)
BROWN YELLOW

GREEN WHITE (no color)
PINK (magenta)

The default is BLACK.

Consider the following when specifying the color
option:

� If the specified color cannot be printed by the
ribbon currently on the printer, black is printed.

� The color option WHITE does not print a char-
acter, but allows the printer to advance (print
a blank) for each character printed.

Drawer Selection Option: Select the
printer source drawer for paper using the drawer
selection (DRAWER) option. Valid values are 1,
2, and 3. You must specify a parameter value
since there is no default.

When you specify the DRAWER option, you auto-
matically start a new page of printing. If you are
not currently printing a page, a blank page may be
fed from the current drawer.

 Emphasis Option: The emphasis
(EMPHASIS) option causes bold characters to
print on IPDS printers by using a double-strike
character style (FONT). The parameters are:

Parameter Description
ON Begin emphasis printing
OFF End emphasis printing

You must specify a parameter value for this option
because there is no default for this option.

Forms Characters Option: The forms
characters (FORMS) option downloads to the
printer, a set of 11 characters used for drawing
boxes. Valid values for this option are a blank, 22
hexadecimal characters, or RESET.

You can use a set of default values for these
characters by leaving the PARM field blank. The
following figure shows the default values for the
box characters:

D-4 OS/400 System/36 Environment Programming V3R6

Printed Output

System List

Data and Control
Codes for Display

Output to
Be Listed

or

Displayed Output

System/36
Environment
Utility Program

RSLW008-3

Data and Control
Codes for Printer

Note: The default character values in the pre-
ceding figure are for the U.S. character set. If you
use a character set other than U.S., the default
hexadecimal values remain the same, but the
default characters that they represent may be dif-
ferent.

When you use the FORMS values to print box
characters, the box or forms characters replace
the characters that would normally be printed.
The printer documentation contains a list of
hexadecimal code point values for normal opera-
tion.

If you do not want to use the default value for one
or more of the box characters, you can specify a
different hexadecimal value for that character.
This value should be greater than hex 40. You
must specify a hexadecimal value for each box
character, even if only one of the hexadecimal
values is different from the default values. For
example, if you do not want the less than (<) char-
acter to be used as a box character, you could
specify hex 6C or the percent sign (%), for that

character. In this case, the value for PARM would
be 6C4A6ED06AC05A5E7C4FA1.

The print speed is slower while the printer is
printing forms characters than it is during normal
printing.

To return to the printer’s default character set, call
the printer subroutine again and specify FORMS
RESET.

For the 4214 Printer consider the following:

� The FORMS characters print at 10 or 15 cpi.
If you specify 5 or 12 cpi, then the FORMS
characters print at 10 cpi. If you specify 16.7
cpi, the FORMS characters print at 15 cpi.

� The FORMS characters print at draft quality
only. If you specify TEXT YES, the default
characters print rather than the FORMS box
characters. If you specify TEXT NO later in
the program, the box characters print again.

Transparent Option: You can use the
transparent (TRANS) option to pass non-IPDS
commands to the printer from RPG II and COBOL
programs. Valid values for this option are 2-byte
hexadecimal codes for printer commands.

Consider the following when using the transparent
option:

� The data must be left-justified in the param-
eter field, otherwise you will get return code
42. (The specified parameter is not valid.)

� The parameter must contain an even number
of characters.

� The data in the parameter field must be in
EBCDIC.

� A blank (hex 40) anywhere in the parameter
field indicates the end of the data stream.

� Do not use the TRANS option for vertical posi-
tioning.

IPDS Transparent Options: Two trans-
parent options, IPTRANS and IHTRANS send an
IPDS data stream to a printer.

The IPTRANS option sends page state commands
to the printer. The IHTRANS option sends home
state commands to the printer.

The only parameter consists of a data stream of
EBCDIC-coded, 2-character hexadecimal

 Appendix D. Intelligent Printer Data Stream (IPDS) Advanced Function Support D-5

numbers, followed by a blank (hex 40) to denote
the end of the data stream.

Consider the following when specifying trans-
parent options:

� The data must be left-justified in the param-
eter field; otherwise, you will get return code
42. (The specified parameter is not valid.)

� The parameter must contain an even number
of characters.

� The data in the parameter field must be in
EBCDIC.

� A blank (hex 40) anywhere in the parameter
field indicates the end of the data stream.

� Do not request an acknowledgment from the
printer, because there is no facility provided to
handle such acknowledgement, and the
results are unpredictable.

Lines per Inch Option: The lines per inch
(lpi) option lets you set the lines per inch to print.
Valid values are 3, 4, 6, or 8.

You must specify a parameter value for this
option, since there is no default.

If you are using cut forms on the 5219 or 4214
Printer, the lines per page set on the printer OCL
statement in a procedure should correspond with
the lines per inch value. For example, if the form
length is 11 inches and the lines per inch is 8,
then the lines per page should be 88.

For the best printing results, do not change the
lines per inch setting more than once within a
page.

For a 5262 printer, the actual number of lines per
inch depends on which was set last: the lines per
inch switch on the printer, or the lines per inch
value in this subroutine. For example, if you set
lines per inch to 6 in this subroutine but change
the lines per inch switch to 8, the line spacing will
be 8 lpi. The default lines per inch value is not
reset for a 5262 printer at the start of the next
print job. You must reset it at the end of your
program.

Print Quality Options: There are two ways
to set print quality on a printer, one is to use the
TEXT option and the other is to use the QUALITY
option.

Text Option: You can set the print quality on
4214, 5219, and IPDS printers by using the text
(TEXT) option. Valid values are YES or NO. If
you specify TEXT YES, the printer always prints in
final quality. If you specify TEXT NO, the printer
setting determines print quality.

For example, suppose that the 4214 printer is set
for draft quality (using the operator control panel).
If you specify TEXT YES, the printer prints in best
quality. If you specify TEXT NO, however, the
printer setting determines print quality, so it prints
in draft quality.

For a 4214 printer that is set to 5, 15, or 16.7 cpi,
the printer always prints draft quality, even if you
have specified TEXT YES. If you want best
quality, you must specify 10 or 12 cpi.

TEXT NO is not supported on 3812 and 5219
printers.

Quality Option: The quality (QUALITY) option is
similar to the text option, except that it always sets
the print quality to the specified value. It does not
use the quality setting on the printer operator
panel. It is used with printers that have two or
more quality levels. The parameters are:

Parameter Description
 1 Best quality
 2 Good quality
 3 Draft quality

Page Rotation Option: The page rotation
(ROTATE) option, used with the 3812 printer,
rotates the printed output on the page, or prints a
computer output reduction (COR), which means
printing 11 by 14 inch computer output on an 8.5
by 11 inch page, rotated 90 degrees. The param-
eters are:

Parameter Description
0 No rotation
90 90 degree clockwise rotation
180 180 degree clockwise rotation
270 270 degree clockwise rotation
COR Computer output reduction

The ROTATE option overrides the rotation
selection at the operator’s panel on the printer.
The default for this option is the printer default
rotation at the printer control panel.

D-6 OS/400 System/36 Environment Programming V3R6

Printing Graphics Using
Subroutines

There are two subroutines that allow you to print
graphics with your RPG II or COBOL program.
SUBR51 allows you to print graphics with RPG II
and PRTGRC allows you to print graphics with
COBOL.

Note: These subroutines can only be used with
an IPDS printer.

The parameters for these options are specified in
80-byte fields, left-justified. The unused bytes
should be blank. When specifying more than one
parameter, separate the parameters with a comma
or one or more blanks. Figure D-3 lists the avail-
able options with short descriptions. For more
detailed information on the options, see the
sections beginning with “Begin Filled Area Option”
on page D-8.

In some options, you must specify parameters,
such as x (horizontal), y (vertical), w (width), and l
(length), for positioning the graphic area and the
current position from which a graphics is drawn.
Figure D-4 and Figure D-5 show the orientation
for specifying the required measurements. The
measurements are specified in inches.

0

11

8.5

y=2

x=1.5

w=6

l=6

Page

1.5, 2, 6, 6
(x, y, w, l)

BEGSEG

Graphic
Area

RSLW121-0

Figure D-4. Orientation for Specifying Measurements,
Part 1

0

6

6

.

y=4.5

Page

POSITION 2, 4.5
(x, y)

x=2

RSLW122-0

Graphic
Area

Current
Position

Figure D-5. Orientation for Specifying Measurements,
Part 2

Some options define graphic characteristics, such
as color. Once such an option is defined, it
remains in effect until changed or until you use an
ENDSEG option. For example, if you want
several lines drawn each of the same color, you
only have to specify the color option once.

The graphics area is located on the page by using
the Begin graphics area (BEGSEG) option. The

Figure D-3. SUBR51 and PRTGRC Subroutine
Options

Option Description

BEGAREA Begin filled area
BEGSEG Begin graphics area (segment); must

be the first option used
CHARORI Set character orientation
CHARSIZE Set character size
CIRCLE Draw a circle
COLOR Set color
ENDAREA End filled area
ENDSEG End graphics area (segment); must

be the last option used
IGTRANS Graphics transparent option
LINE Draw a line
LINETYPE Set line type
LINEWDTH Set line width
MARKER Print a marker
MARKTYPE Set marker type
PATTYPE Set fill pattern
POSITION Set current position
TEXT Print option

 Appendix D. Intelligent Printer Data Stream (IPDS) Advanced Function Support D-7

current position for drawing the graphic is located
by using the Position (POSITION) option.

Once you begin to define a graphic area with the
BEGSEG option, only the options listed in
Figure D-3 on page D-7 should be used until you
have closed the current graphic area with the
ENDSEG option. The BEGSEG option sets the
printer for printing graphics only. Any attempt to
print something else during the time between
BEGSEG and ENDSEG causes a printer error.
The graphics area definition is ended by the
ENDSEG option.

The ENDSEG option causes all the other options
to return to their default value.

Begin Filled Area Option: The begin filled
area (BEGAREA) option defines an area that can
be filled with the current shading function, or fill
pattern . The filled area itself must be drawn by
using the line and circle options.

There are no parameters for this option.

You can draw approximately 36 lines in the filled
area specified by BEGAREA and ENDAREA (end
filled area). You can use a maximum of 221 bytes
to define the filled area specified by this option
and ENDAREA. If you exceed the 221-byte
maximum while defining the area, or if an
ENDAREA or ENDSEG (End graphics area)
option is missing, an error message issues.

Do not use the following options between the
BEGAREA and ENDAREA. If you use these
options within a filled area, you will get an error.

� Character orientation (CHARORI)
� Character size (CHARSIZE)

 � Marker (MARKER)
� Marker type (MARKTYPE)
� Fill pattern type (PATTYPE) (See note)

 � Text (TEXT)

Note: You must use the PATTYPE option just
prior to the BEGAREA option for the fill area being
specified.

Begin Graphics Area (Segment)
Option: The begin graphics area (BEGSEG)
option defines the size and location of the area
containing the graphic output. It must be the first
option used. The parameters are:

Parameter Description

 x The distance in inches from the left
edge of the page to the left edge of
the graphics area on the page. The
default is 0.

 y The distance in inches from the top of
the page to the top edge of the
graphics area on the page. The
default is 0.

 w The width of the graphics area in
inches. The default is 8.5 inches.

 l The length of the graphics area in
inches. The default is 11 inches.

Consider the following when using the begin
graphics area option:

� Parameters x, y, w, and l can be specified in
decimal numbers of any combination of xx.xx,
where x is any number from 0 through 9.

� All xx.xx values should be less than 22.75.
� If the size of the graphic is larger than the size

of the page, an error message issues.
� The printer may not print graphics that are

less than 0.1 inch from the edge of the
graphic area or that extend beyond the
graphic area. No error message issues.

Character Orientation Option: The set
character orientation (CHARORI) option defines
the angle on the page that the characters defined
by the text option are printed. The parameters
are:

Parameter Description

 0 Characters print as normal, across the
page. This is the default.

 90 Characters are rotated 90 degrees
counterclockwise from normal.

180 Characters print upside down across
the page.

270 Characters are rotated 270 degrees
counterclockwise from normal.

D-8 OS/400 System/36 Environment Programming V3R6

Character Size Option: The character size
(CHARSIZE) option defines the size of the charac-
ters printed by the text option. The parameters
are:

Parameter Description

w The width of the character in inches.
The default is 0.14.

h The height of the character in inches.
The default is 0.13.

You can specify parameters w and h in decimal
numbers of any combination of xx.xx, where x is
any number from 0 through 9.

Circle Option: Use the circle (CIRCLE)
option to draw a circle with the current position as
its center. See “Position Option” on page D-10,
for information on the position option. The only
parameter is r, which defines the radius of the
circle in inches. The default is 1.

Consider the following when using the circle
option:

� The characteristics for the circle are set by the
color, line type, and line width options.

� You can specify parameter r in decimal
numbers of any combination of xx.xx, where x
is any number from 0 through 9.

� If the circle is too big for the BEGSEG option,
only the part within the graphics area will print.

Color Option: The color (COLOR) option is
used to select the color for the graphic to be
drawn. The parameter is one of the following:

BLACK RED
BLUE TURQ (turquoise, also cyan)
BROWN WHITE (no color; see note)
GREEN YELLOW
PINK (magenta)

The default is BLACK.

Consider the following when using the color
option:

� WHITE will only appear if printed over a non-
white graphics background.

� If the specified color cannot be printed by the
ribbon currently on the printer, black is printed.

End Filled Area Option: Use the end filled
area (ENDAREA) option to identify the end of the
filled area as defined by the begin filled area
option. The area to be filled should be closed. If
an area is not closed, the printer will attempt to
draw a line to close it. There are no parameters
for this option.

End Graphics Area (Segment) Option:
Use the end graphics area (ENDSEG) option to
identify the end of the graphic defined by the
begin graphics area option. There are no parame-
ters for this option. It must be the last option used
after all the graphics have been specified for this
area.

Graphic Transparent Option: Use the
graphic transparent (IGTRANS) option to send a
graphic drawing order that is not supported by the
other options to a printer. The parameter is a
drawing order of EBCDIC coded, 2-character
hexadecimal numbers, followed by a blank (hex
40) to denote the end of the drawing order.

Consider the following when using the graphic
transparent option:

� The data must be left-justified in the param-
eter field. Otherwise, an error issues.

� The parameter must contain an even number
of characters.

� The data in the parameter field must be in
EBCDIC.

� A blank (hex 40) anywhere in the parameter
field indicates the end of the drawing orders.

Line Option: Use the line (LINE) option to
draw a line from the current position to a specified
position. See “Position Option” on page D-10 for
more information on the position option. The
specified position is defined by the parameters x
and y, which define the coordinate, in inches,
where the line is to be drawn. The horizontal
measurement is x, and the vertical measurement
is y. See Figure D-4 on page D-7 and
Figure D-5 on page D-7 for an example of how
parameters x and y are measured. The default is
0,0.

Note: The line option updates the current posi-
tion to the coordinates for the end of the line.

 Appendix D. Intelligent Printer Data Stream (IPDS) Advanced Function Support D-9

You can specify parameters x and y in decimal
numbers of any combination of xx.xx, where x is
any number from 0 through 9.

The characteristics for the line are set by the
color, line type, and line width options.

Line Type Option: The line type
(LINETYPE) option defines the line type or style
for the line and circle options. The parameter is
one of the parameters in the following figure. The
default is SOLID.

SOLID

DOT

SDASH (Short Dash)

DASHDOT (Dash Dot)

LDASH (Long Dash)

DASHDD (Dash Double Dot)

DBLDOT (Double Dot)

INVIS (Invisible)

Parameter

RSLW123-0

Line Width Option: Use the line width
(LINEWDTH) option to set the width of the line or
circle to be drawn. The parameter is either
NORMAL or THICK. The default is NORMAL.

Marker Option: Use the marker (MARKER)
option to print a marker at the current position.
See “Position Option” for more information on the
position option. There are no parameters for this
option.

The characteristics for the marker are set by the
color and marker type options.

Marker Type Option: The marker type
(MARKTYPE) option defines the marker type or
style for the marker option. The parameter is one
of the parameters in the following figure. The
default is CROSS.

CROSS

PLUS

DIAMOND

SQUARE

6STAR (6 Pointed Star)

8STAR (8 Pointed Star)

FDIAMOND (Filled Diamond)

FSQUARE (Filled SQUARE)

DOT

CIRCLE

Parameter

RSLW124-0

Pattern Type Option: Use the pattern type
(PATTYPE) option to select the fill pattern for
filling the space defined by circle and line options
between a BEGAREA and ENDAREA.

The fill patterns are shown in the following figure.
Select a parameter value from 1 to 16. The
default is 16 (solid).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

RSLW003-0

Position Option: Use the position (POSI-
TION) option to set the current position for the
circle, line, marker, and text options. The current
position is set by the parameters x and y, which
are defined in inches. The horizontal measure-
ment is x, and the vertical measurement is y. The
default is 0,0. You must specify a parameter
value. See Figure D-4 on page D-7 and

D-10 OS/400 System/36 Environment Programming V3R6

Figure D-5 on page D-7 for an example of how
parameters x and y are measured.

Parameters x and y can be specified in decimal
numbers of any combination of xx.xx, where x is
any number from 0 through 9.

Text Option: The text (TEXT) option is used
to print the text defined in the parameter field at
the current position. See “Position Option” on
page D-10 for information on the position option.
The characteristics for the text are set by the
color, character orientation, and character size
options. There are no options provided to change
print quality or character style (font).

Printing Forms and Graphs

The forms generation utility reads the options and
parameters as if they were the options used in
SUBR51 and PRTGRC subroutines. However,
the options and parameters are in a library source
member. The utility either prints the graphics
output on a printer or saves the information in a
graphics object file.

The utility reads all of the records from the source
member until it encounters the ENDSEG option.
Everything in the source member after the
ENDSEG option is ignored.

Note: You can use this function only with an
IPDS printer.

The utility provides two procedures: one for
printing graphics (PRTGRAPH) and one for
building a graphics object file (BLDGRAPH).

Print Graphic Procedure: Use the print
graphic (PRTGRAPH) procedure to print the form
or graphics data by itself.

To print the graphics data from a disk file, the
format is:

PRTGRAPH prtid,FILE,graphics file name,width

prtid
Is the ID of the IPDS printer to print the form
or graphics file. The default is the current
session printer.

FILE
Specifies that the graphics data is in a disk
file.

graphics file name
Specifies the name of the graphics object file
to be printed.

width
Specifies the width, in inches, of the graphics
area to be printed. This parameter cannot
contain more than 5 characters specified in
decimal numbers. The specified value cannot
be more than 45.50. For example, if the area
to be printed is 13 inches, you can specify
either 13 or 13.0 for this parameter. If you do
not specify this parameter, 13.2 is assumed.

To print the graphics data from a library source
member, the format is:

PRTGRAPH prtid,SOURCE,membername,libraryname

prtid
Is the ID of the IPDS printer to print the form
or graphics file. The default is the current
session printer.

SOURCE
Indicates that the data is in a library source
member.

membername
Is the name of the library source member that
contains the graphic options and parameters.
Each record in the source member must be in
the following format:

Columns 1 through 8, the option name
Column 9, leave blank
Columns 10 through 89, the parameters
for the option

Note: This utility supports comment records.
Place an asterisk (*) in column 1 of the
source records containing the comment.

libraryname
Is the library name that contains the source
member. If not specified, only the current
library is searched.

Build Graphics Object File Procedure:
Use the build graphics object file (BLDGRAPH)
procedure to build a graphics object file containing
the graphic options and parameters for printing
with other data print files.

The format for this procedure is:

BLDGRAPH membername,libraryname,filename

 Appendix D. Intelligent Printer Data Stream (IPDS) Advanced Function Support D-11

membername
Is the name of the library source member that
contains the graphic options and parameters.
Each record in the source member must be in
the following format:

Columns 1 through 8, the option name
Column 9, leave blank
Columns 10 through 89, the parameters
for the option

libraryname
Is the library name that contains the source
member. If not specified, only the current
library is searched.

filename
Is the name of the graphics object file to be
created.

Note: This utility supports comment records.
Place an asterisk (*) in column 1 of the source
records containing the comment.

See section “Sample Form” on page D-14 for a
sample source member.

Printing Bar Codes

This bar code function provides two subroutines
for printing bar codes: SUBR52 for RPG II pro-
grams and PRTBAR for COBOL programs.

Note: You can use this function only with an
IPDS printer.

The options and parameters valid for this function
are described in Figure D-6.

Figure D-6 (Page 1 of 2). Valid Options and Parameters for the Bar Code Function

Option Description

BARCODE This option causes the data specified in the parameter field to print as a bar code. The charac-
teristics are set by the BARSIZE, BARTYPE, HRI, and POSITION options. The following param-
eter is available:

Parameter Description

Bar code data The length of the data is from the beginning of the parameter field to the last
nonblank character. There is no default. Data must be specified in the param-
eter field. The BARTYPE option specifies the type of data allowed.

BARSIZE Set bar code size. This option is used to specify the height of the bar code in inches. The
following parameter is available:

Parameter Description

A The height of the bar code in inches. The default is 1 inch. Specify parameter A in
decimal numbers of any combination of xx.xx, where x is any number from 0
through 9.

D-12 OS/400 System/36 Environment Programming V3R6

Figure D-6 (Page 2 of 2). Valid Options and Parameters for the Bar Code Function

Option Description

BARTYPE Bar code type. This option sets the type of bar code printed by a bar code option. The following
parameters are available:

Parameter Description

MSI Modified Plessey, up to 50 digits per bar code. The range of characters allowed is
0 through 9. Two modulus 10 check digits are generated.

UPCA Eleven digits per bar code. The range of characters allowed is 0 through 9. One
check digit is generated.

UPCE Ten digits per bar code. Only six digits are encoded into bars. The range of char-
acters allowed is 0 through 9. One check digit is generated.

UPC2 If a UPC two-digit add on is used, it must follow a UPCA or UPCE bar code. There
can only be two digits per bar code. The range of characters allowed is 0 through
9. No check digit is generated.

UPC5 If a UPC five-digit add-on is used, it must follow a UPCA or UPCE bar code. There
can only be five digits per bar code. The range of characters allowed is 0 through
9. No check digit is generated.

EAN8 Seven digits per bar code. The range of characters allowed is 0 through 9. One
check digit is generated.

EAN13 Twelve digits per bar code. The range of characters allowed is 0 through 9. One
check digit is generated.

EAN2 If a EAN two-digit add-on is used, it must follow an EAN8 or EAN13 bar code.
There can only be two digits per bar code. The range of characters allowed is 0
through 9. No check digit is generated.

EAN5 If a EAN five-digit add-on is used, it must follow an EAN8 or EAN13 bar code.
There can only be five digits per bar code. The range of characters allowed is 0
through 9. No check digit is generated.

25INDUS A 2 of 5 industrial code of up to 50 digits per bar code. The range of characters
allowed is 0 through 9. One check digit is generated.

25MATRIX A 2 of 5 matrix code of up to 50 digits per bar code. The range of characters
allowed is 0 through 9. One check digit is generated.

25INTRL A 2 of 5 interleaved code of up to 50 digits per bar code. The range of characters
allowed is 0 through 9. One check digit is generated.

CODE39 A 3 of 9 code of up to 50 characters per bar code. The range of characters allowed
is 0 through 9, A through Z, -.$/=% and (blank). No check digit is generated.

The default is UPCA.

HRI Set human readable interpretation (HRI). This option is used to specify whether or not the HRI
will print. The following parameters are available:

Parameter Description
YES The HRI is printed.
NO The HRI is not printed.

The default is NO.

POSITION The coordinate in inches from the upper left corner of the page to the upper left corner of the bar
code. There is no default for this option. A nonzero parameter value must be specified. The
following parameter is available:

Parameter Description

x,y Specify parameters x and y in decimal numbers of any combination of xx.xx, where
x is any number from 0 through 9.

 Appendix D. Intelligent Printer Data Stream (IPDS) Advanced Function Support D-13

 Sample Form

The following is a sample source member that you
can use with the PRTGRAPH procedure to create
a form:

BEGSEG ð,ð,8.5,11
CHARSIZE .1ð,.1ð
\
\ DRAW BIG OUTSIDE SQUARE
\
POSITION .5,1.5
LINE 8,1.5
LINE 8,1ð.5
LINE .5,1ð.5
LINE .5,1.5
\
\ DRAW 2 SQUARES IN UPPER RIGHT CORNER
\
PATTYPE 7
BEGAREA
POSITION 5,9.5
LINE 7,9.5
LINE 7,1ð.25
LINE 5,1ð.25
LINE 5,9.5
ENDAREA
POSITION 5,8.5
LINE 7,8.5
LINE 7,9.25
LINE 5,9.25
LINE 5,8.5
POSITION 5,9
LINE 7,9
\
\ DRAW ALL THICK HORIZONTAL LINES
\
LINEWDTH THICK
POSITION .5,6.3
LINE 7,6.3
POSITION .5,5.72
LINE 7,5.72
POSITION .5,3
LINE 7,3
POSITION 6,2.75
LINE 7,2.75
POSITION 4.5,2
LINE 7,2
\
\ DRAW REST OF HORIZONTAL LINES
\
LINEWDTH NORMAL
POSITION .5,5.55
LINE 7,5.55
POSITION .5,5.38
LINE 7,5.38
POSITION .5,5.21

LINE 7,5.21
POSITION .5,5.ð4
LINE 7,5.ð4
POSITION .5,4.87
LINE 7,4.87
POSITION .5,4.7
LINE 7,4.7
POSITION .5,4.53
LINE 7,4.53
POSITION .5,4.36
LINE 7,4.36
POSITION .5,4.19
LINE 7,4.19
POSITION .5,4.ð2
LINE 7,4.ð2
POSITION .5,3.85
LINE 7,3.85
POSITION .5,3.68
LINE 7,3.68
POSITION .5,3.51
LINE 7,3.51
POSITION .5,3.34
LINE 7,3.34
POSITION .5,3.17
LINE 7,3.17
POSITION 4.5,2.75
LINE 6,2.75
POSITION 4.5,2.44
LINE 7,2.44
\
\ DRAW REST OF VERTICAL LINES
\
POSITION 4.5,6.3
LINE 4.5,2
POSITION 5,6.3
LINE 5,3
POSITION 6,6.3
LINE 6,2
POSITION 7,6.3
LINE 7,2
POSITION 5.8ð,5.72
LINE 5.8ð,3
POSITION 6.8ð,5.72
LINE 6.8ð,2
\
\ ALL TEXT FOR THE FORM FOLLOWS
\
CHARSIZE .2ð,.2ð
POSITION 1.5,9.5
TEXT Wholesale
POSITION 1.1,9.35
TEXT Tire & Supply
POSITION 1.65,9.2
TEXT Company
CHARSIZE .1,.1
POSITION 1.4,8.7
TEXT 175 R14 Tire Drive
POSITION 1.65,8.55

D-14 OS/400 System/36 Environment Programming V3R6

TEXT Radial City, MI
POSITION 5.4,9.95
TEXT 1ð% Discount
POSITION 5.1,9.8
TEXT On All Orders Over
POSITION 5.6,9.65
TEXT $5ðð.ðð
POSITION 5.3,9
TEXT Account Number
POSITION 4.25,7.9
TEXT Bill To:
POSITION 1.88,5.9
TEXT Item Description
POSITION 4.63,5.9
TEXT Qty
POSITION 5.ðð,5.9
TEXT Unit Price
POSITION 6.19,5.9
TEXT Total
POSITION 4.52,2.82
TEXT Subtotal
POSITION 4.52,2.54
TEXT Less Discount
POSITION 4.52,2.15
TEXT Total
POSITION 6.ð2,2.82
TEXT $

POSITION 6.ð2,2.54
TEXT $
POSITION 6.ð2,2.15
TEXT $
ENDSEG

Use the following steps to print the sample graph:

1. The form generated by this source member
requires a page that is 11 inches long. To
ensure the proper page length, enter the fol-
lowing procedure:

PRINT ,66,6

2. Print the form by entering the following proce-
dure:

PRTGRAPH prtid,SOURCE,DEMOFORM,#LIBRARY

where prtid is the ID for an IPDS printer.

You may want to study this listing and compare it
to the form it produced. You can use this source
member to learn how to make your own form.

Figure D-7 on page D-16 shows the sample form
created by the sample source member using the
PRTGRAPH procedure.

 Appendix D. Intelligent Printer Data Stream (IPDS) Advanced Function Support D-15

Unit Price TotalQtyItem Description

Subtotal

Less Discount

Total

$

$

$

Account Number

Wholesale
Tire & Supply

Company

175 R14 Tire Drive
Radial City, MI

Bill To:

RSLW002-0

10% Discount
On All Orders Over

$500.00

Figure D-7. Sample Form Created by PRTGRAPH Procedure

D-16 OS/400 System/36 Environment Programming V3R6

Appendix E. Security Considerations for the System/36
Environment

This appendix lists System/36 procedures, com-
mands, and OCL statements, along with any
special authorities to AS/400 objects or commands
needed to support them. Authorities are listed in
terms of the generic *ALL, *CHANGE, and *USE,
and not by the specific object authorities.

 System/36 Procedures

Figure E-1 describes authorities required for
System/36 procedures on the AS/400 system, as
follows:

� System/36 procedures and the utility programs
called by the procedures

� The utility control statements (if any) used to
pass information to the utility programs

� The OS/400 commands run by the utility pro-
grams to perform the requested function

� The authorities to objects used to perform the
request

In addition to the special authorities listed, you
need *USE authority for the following:

� Utility programs called by System/36 proce-
dures

� OS/400 commands run by the utility programs
� Library QSSP, including the QS36PRC source

file in library QSSP
� The ##MSG1 and ##MSG2 message files in

library QSSP

Figure E-1 (Page 1 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

#ERR $CPPE/#ERR *USE, to the message files specified on the
USER1 and USER2 keywords of the MEMBER
OCL statement.

*USE, to the library specified on the LIBRARY
keyword on the MEMBER OCL statement.

#FORMAT $SFGR/LOADMBR
$SFGR/INOUT
$SFGR/DELETE
$SFGR/END

CRTDSPF, CPYF
and RMVM

*ALL, to the display file if it exists and
REPLACE is specified.

*CHANGE, to the library to contain the display
file.

*USE, to the library containing the QS36SRC
source file.

*USE, to the source file QS36SRC.

AUTOC $UASF/SPOOL
$UASC
QEXSETLB
#RPDD
#AUTO

CHGS36MSGL *USE, to library #RPGLIB and all objects
therein.

*USE, for message file QRPG2MSGE in library
QSSP.

*USE, to message file #RP#CPL1 and
#RP#CPL2 in library #RPGLIB.

*USE, to the library containing the source
program.

*USE, to the source file QS36SRC in the library
containing the source program.

*CHANGE, to the library to contain the compiled
program.

 Copyright IBM Corp. 1995 E-1

Figure E-1 (Page 2 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

BLDFILE $FBLD/FILE CRTPF *CHANGE, to the files library.

*CHANGE, to the existing file for date-
differentiated files.

BLDINDEX $FBLD/FILE CRTLF *CHANGE, to the files library.

*ALL, to the parent file.

BLDGRAPH $DPGR
$DPGR2

*USE, to the printer device description and
device file.

*USE, to the physical file.

BLDLIBR $MAINT/ALLOCATE CRTLIB

BLDMENU $MAINT/COPY
$MAINT/DELETE
$MGBLD/MGBLD
$SFGR/LOADMBR
$SFGR/INOUT
$SFRR/CREATE
$SFGR/END
$BMENU

CRTMSGF
ADDMSGD
CRTDSPF
CRTSRCPF
CPYF
RMVM

*USE, to source file QS36SRC.

*USE, to source library.

*ALL, to the display file if it exists.

*ALL, to the message file if it exists.

*CHANGE, to the library to contain the display
file.

CATALOG $LABEL/DISPLAY CHKDKT
DSPDKT
CHKTAP
DSPTAP
DSPLIB
DSPOBJD
DSPFD

*USE, to the device description and the device
file for the diskette or tape drive, if specified.

*USE, to the device description and print file for
the output printer.

*USE, to the System/36 files library.

*USE, to the file being cataloged.

Note: You must be enrolled in the system dis-
tribution directory to list any folders.

CHNGEMEM $MAINT/CHANGE RNMOBJ
RNMM
CHGS36SRCA
CHGS36PRCA
CHGS36PGMA

*ALL, to the QS36PRC or QS36SRC files if pro-
cedure or source members are to be renamed.

*ALL, to any other object to be renamed.

*CHANGE, to the library that contains the object
to be renamed.

*CHANGE, to the QS36PRC or QS36SRC files
and *USE, to the library, if the subtype or refer-
ence number of a procedure or source member
is to be changed.

E-2 OS/400 System/36 Environment Programming V3R6

Figure E-1 (Page 3 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

CGU QCGPGM
QEXSETLB

CHGS36MSGL *USE, for one of the following:

*IGCTBL object QIGC2424
*IGCTBL object QIGC2424K
*IGCTBL object QIGC2424C
*IGCTBL object QIGC24242S

If any of the following exist, you must have at
least *USE authority to one of the following:

*IGCTBL object QIGC3232
*IGCSRT object QCGMSTR
*IGCSRT object QCGACTV
*IGCSRT object QCGACTVK
*IGCSRT object QCGMSTRC
*IGCSRT object QCGACTVC

Certain functions from the CGU Main Menu
require the following authorities:

*CHANGE, to *IGCTBL objects.
*ALL, to *IGCSRT objects.

*USE, to the libraries #CGULIB and QPDA.

CLRPF CLRPFM
CHGS36MSGL

*ALL, to the DB file

COBOL QEXSETLB
#CB00

CHGS36MSGL *USE, for library #COBLIB.

*USE, for message files #CB#M1, #CB#M2 and
QSBLMSG in library #COBLIB.

*USE, for programs in #COBLIB.

*USE, to the library containing the source
program.

*USE, to the source file QS36SRC in the library
containing the source program.

*CHANGE, to the library to contain the compiled
program.

COBOLC QEXSETLB
$UASF/SPOOL
#CB00
$UASC

CHGS36MSGL See the COBOL procedure.

COBSDA QEXSETLB CHGS36MSGL *USE, for message file #CB#M1 in library
#COBLIB.

See the SDA procedure for additional authori-
ties.

COBSEU CHGS36MSGL *USE, for message file #CB#M1 in library
#COBLIB.

See the SEU procedure for additional authori-
ties.

 Appendix E. Security Considerations for the System/36 Environment E-3

Figure E-1 (Page 4 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

COPYDATA $COPY/COPYFILE CPYF *USE, to the DB input file.

*CHANGE, to the DB output file.

*CHANGE, to the System/36 files library.

Note: Load-to-old processing using OCL and
utility control statements requires *ALL
authority to the DB output file.

COPYI1 $DUPRD/COPYI1 DUPDKT *USE, to the device description and device file
for the diskette drive.

COPYPRT $UASF/SPOOL CRTPF
CPYSPLF
DLTSPLF
RLSSPLF

*JOBCTL or *SPLCTL special authority to use
the SYSTEM keyword.

*USE, to the output queue that contains the
spool file to be copied.

*CHANGE, to the files library.

*CHANGE, to the output queue that contains
the spool file to be canceled or released. If you
created the spool file, or you have *JOBCTL or
*SPLCTL special authority and the output queue
was created with operator control right, you do
not need *CHANGE authority.

COPYPRT $UASC CPYF
DSPSPLF

*USE, to the data file that contains the copied
spool files.

*USE, to the files library.

*USE, to the printer device description and print
file if the print option is selected.

CREATE $MGBLD/MGBLD CRTMSGF
ADDMSGD

*USE, to source file containing source member.

*USE, to library containing source member.

*ALL, to the message file named in the source.

*CHANGE, to the message file library.

DEFSUBD CRTFLR
DLTDLO
WRKFLR
CHGS36MSGL

*USE, for the ##MSG1 message file in library
#LIBRARY.

DELETE $DELET/SCRATCH
$DELET/REMOVE

DLTF
DLTLIB
RMVM
INZDKT
CLRDKT
DLTDKTLBL

*ALL, to the file, library or member.

Security officer authority is required for
LABEL-ALL, UNIT-F1.

*USE, to the device description and device file
of the diskette drive, if specified.

Note: You must be enrolled in the system dis-
tribution directory to delete a folder.

E-4 OS/400 System/36 Environment Programming V3R6

Figure E-1 (Page 5 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

DFU #DFMP
QEXSETLB

STRDFU
CHGS36MSGL

*USE, to library QPDA.

*USE, to library QSYS.

*USE, to library QSSP.

*USE, to library #DFULIB and all objects
therein.

*USE, to all objects having a name starting with
QDF or QDL in libraries QPDA, QSYS, and
QSSP.

*USE, to message file #DF#MG in library
#DFULIB.

*USE, to library #DSULIB.

*USE, to message file #ED#M1, #ED#M2, and
#ED#M3 in library #DSULIB.

DISPLAY $COPY/COPYFILE CPYF
DSPPFM

*USE, to the DB input file.

*USE, to the System/36 files library.

*USE, to the device description and print file for
the output printer.

DSPLOCK WRKOBJLCK
CHGS36MSGL

DSPSYS WRKSYSSTS
CHGS36MSGL

DSU QEXSETLB
#EDLIS

CHGS36MSGL *USE, to library #DSULIB *USE, to message file
#ED#ML, #ED#M2 and #EDM3 in library
#DSULIB

EM3270 #EMFP
#EMAD
#EM9D

STREML3270
STRPRTEML
ENDPRTEML
SBMJOB

Authority to the emulation location (user-
specified), the print file (QPEMPRTF), and the
emulation devices associated with the location.

*USE, to #EM#M1 System/36 messages.

ENTER See the DFU procedure.

ENTER# See the DFU procedure.

EP3270 #ESFP
#ESEP

STREML3270
STRPRTEML
ENDPRTEML
EJTEMLOUT
SBMJOB

Authority to the emulation location (user-
specified), and the emulation devices associated
with the location.

*USE, to #ES#M1 System/36 messages.

ERR See the #ERR procedure.

ES3270 #ESFP
#ESAD
#ESPI

STREML3270
STRPRTEML
ENDPRTEML
EJTEMLOUT
SBMJOB

Authority to the emulation location (user-
specified), the print file (QPEMPRTF), and the
emulation devices associated with the location.

*USE, to #ES#M1 System/36 messages.

*USE, to program #ESFP.

 Appendix E. Security Considerations for the System/36 Environment E-5

Figure E-1 (Page 6 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

EXTRACT $COPY/COPYFILE CPYF
DSPPFM

*USE, to the DB input file.

*CHANGE, to the DB output file, if any.

*USE, to the System/36 files library for the
display/print operation.

*CHANGE, to the System/36 files library for the
copy operation.

*USE, to the device description and print file for
the output printer, for display/print operation.

FLIB ADDLIBLE *USE, for the specified library.

FORMAT $SFGR/LOADMBR
$SFGR/CREATE
$SFGR/ADD
$SFGR/UPDATE
$SFGR/END

CRTDSPF
CRTSRCPF
CPYF
RMVM

*USE, to source file QS36SRC.

*USE, to the library containing the QS36SRC
source file.

*ALL, to the display file if it exists and
REPLACE is specified.

CHANGE, to the library to contain the display
file.

FROMLIBR $MAINT/COPY CRTSAVF
SAVS36LIBM
SAVOBJ

*USE, to the diskette or tape device descriptions
and device files, if I1, T1, T2 or TC are speci-
fied.

*CHANGE, to the files library, if F1 is specified.

*USE, to the QS36PRC and QS36SRC files, if
procedures or source members are to be
copied.

*USE, to any other object to be copied.

*USE, to the library from which the members
are to be copied.

Note: If you have save system (*SAVSYS)
special authority, you can copy the
object.

E-6 OS/400 System/36 Environment Programming V3R6

Figure E-1 (Page 7 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

IDDUDCT #DSIN WRKDTADCT *USE to message file #DS#1 in library QSSP.

*USE, to display file QDIDDU in library QSYS
for procedures IDDUDCT, IDDUDFN, and
IDDULINK.

Depending on the options and function keys
requested for IDDUDCT, IDDUDFN, and
IDDUDISK, there may be additional authorities
required during the interactive session for the
following commands:

 UPDDTA
 WRKDTADCT
 WRKDTADFN
 WRKDBFIDD
 EDTOBJAUT
 DSPDTADCT
 CRTDTADCT
 DLTDTADCT
 CRTLIB
 CRTPF

You must have appropriate authority for the
files, libraries, and data dictionaries referenced
for all of these procedures.

IDDUDFN WRKDTADFN See the IDDUDCT procedure.

IDDUDISK WRKDBFIDD See the IDDUDCT procedure.

IDDULINK LNKDTADFN See the IDDUDCT procedure.

IDDUPRT DSPDTADCT See the IDDUDCT procedure.

IGC QEXIGCP

INIT $INIT/UIN
$INIT/VOL

CLRDKT
INZDKT
RNMDKT
CHKDKT

*USE, to the device file and device description
for the diskette drive.

INQUIRY See the DFU procedure.

INQUIRY# See the DFU procedure.

ITF QY1ITF36 STRITF
CHGS36MSGL

*USE, to the files library.

*ALL, to files QS36SRC and QS36PRC.

*USE, for folders and documents.

*USE, to message file QSSPMSG in library
QSSP.

JOBSTR $MAINT/COPY
$MAINT/DELETE

CRTSRCPF
RSTS36LIBM
RSTOBJ
CPYF
RNMM
SBMJOB

*USE, to the procedure library.

*CHANGE, to the QS36PRC source file if proce-
dure is to be saved; *ALL if procedure is not to
be saved.

*USE, to the diskette or tape device descriptions
and device files.

*CHANGE, to the job queue QBATCH in library
QGPL.

 Appendix E. Security Considerations for the System/36 Environment E-7

Figure E-1 (Page 8 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

KEYSORT $DDST/KEYSORT *USE, to files library.

*USE, to the file.

LIBRLIBR $MAINT/COPY CPYF
CRTDUPOBJ

*CHANGE, to the QS36PRC and QS36SRC
files in the library to which procedure or source
members are to be copied. If members are to
be replaced, *ALL authority is required.

*USE, to the QS36PRC and QS36SRC files in
the library from which procedure or source
members are to be copied.

*ALL, to any other objects in the TO library that
are to be copied.

*USE, to any other objects in the FROM library
that are to be copied.

*CHANGE, to the library into which the
members are to be copied.

*USE, to the library from which the members
are to be copied.

LIST See the DFU procedure.

LIST# See the DFU procedure.

LISTDATA $COPY/COPYFILE CPYF
DSPPFM
RSTOBJ

*USE, to the DB input file.

*USE, to the diskette or tape input file.

*USE, to the System/36 files library, if displaying
or printing the DB input file.

*USE, to the device description and device file
for the specified diskette or tape drive, if dis-
playing or printing a diskette or tape input file.

*CHANGE, to the user profile for the diskette or
tape input file being displayed or printed.

*USE, to the device description and print file for
the output printer.

LISTFILE $BICR/DISPLAY DSPPFM
CHKDKT
CPYF

*USE, to the diskette drive device file and
device description.

LISTFILE $COPY/COPYFILE See the LISTDATA procedure.

LISTFILE $MAINT/COPY DSPDKT
DSPTAP
DSPSAVF

*USE, to the diskette or tape device descriptions
and device files if I1, T1, T2 or TC are specified.

*USE, to the save file (SAVF) and to the files
library if F1 is specified.

*USE, to the printer device description and print
file on which the output is to print.

LISTFILE $TCOPY/DISPLAY CPYF
DSPPFM
CHKTAP
OVRTAPF

*USE, to the tape device description and device
file.

*USE, to the printer device description and print
file assigned to the system list device.

E-8 OS/400 System/36 Environment Programming V3R6

Figure E-1 (Page 9 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

LISTLIBR $MAINT/COPY *USE, to the library that is listed.

*USE, to the printer device description and print
file assigned to the system list device.

MSDOWNL SNDEMLIGC
CHGS36MSGL

*CHANGE, to virtual diskette file QAPIVDKT.

MSRJE STRRJESSN
STRRJECSL
SBMRJEJOB

*USE, to library QRJE.

*USE, to the session description (*SSND).

*USE, to the forms control table (*FCT) (this is
optional and depends on the RJE configuration).

MS3270 #MEFP
#MEEP

STREML3270 Authority to the emulation location (user-
specified) and emulation devices associated
with the location.

*USE, to message file #ES#M1 in library QSSP.

OFCCAL QOFEELIB CHGS36MSGL
STROFC
ADDLIBLE

OFCDFLT QOFEELIB CHGS36MSGL
STROFC
ADDLIBLE

OFCDIR WRKDIR
CHGS36MSGL

OFCFILE QOFEELIB CHGS36MSGL
WRKDOC
ADDLIBLE

OFCGRP WRKDSTL
CHGS36MSGL

OFCLDF QOFEELIB CHGS36MSGL
STROFC
ADDLIBLE

OFCMAIL QOFEELIB
QOFCMAIL

CHGS36MSGL
STROFC
SNDDOC
ADDLIBLE

*USE, to message file QOFCMSG in library
QSYS.

OFCMSG QOFEELIB CHGS36MSGL
STROFC
ADDLIBLE

OFCSRCH QOFEELIB CHGS36MSGL
STROFC
ADDLIBLE

OFCSTAT QOFEELIB CHGS36MSGL
STROFC
ADDLIBLE

OFCUSER QOFEELIB CHGS36MSGL
STROFC
ADDLIBLE

 Appendix E. Security Considerations for the System/36 Environment E-9

Figure E-1 (Page 10 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

ORGANIZE $COPY/COPYFILE CPYF
SAVOBJ

*USE, to the DB input file, if copying data to a
DB output file.

*ALL, to the DB input file, if saving a file to
diskette.

*CHANGE, to the DB output file, if any.

*CHANGE, to the System/36 files library, if
copying data to a DB output file.

*USE, to the System/36 files library, if saving a
file to diskette.

*USE, to the device description and device file
for the specified diskette drive, if the output
device is diskette.

Note: If you have *SAVSYS special authority,
no other authority is required to DB input
file when saving file to diskette.

PASSWORD $PRPWD CHGPWD

PCEXEC #ORXT
QEXSETLB

CHGS36MSGL *USE, to QORCMD command help.

*USE, to QDORDSP DDS display file.

PCOPROF #ORPR
QEXSETLB

CHGPCOPRF
CHGS36MSGL

*USE, to message file QIWSMSG in library
QIWS.

*USE, to QGORPROF panel group.

*USE, to QHORPROF panel group.

PCOFRPC See the PCEXEC procedure.

PCOTOPC See the PCEXEC procedure.

PCOVPRT See the PCEXEC procedure.

PCU CVTTOFLR
CHGS36MSGL

*USE, to menu PCSHOST.

PRINTKEY $SETCF

PRTGRAPH $DPGP
$DPGR

*USE, to file QSYSPRT.

QRY #QUDA *USE, to message file QQRYMSG in library
QSSP.

QRYDE $DSIN UPDDTA See the IDDUDCT procedure.

QRYRUN See the QRY procedure.

READINFO DSPHLPDOC
CHGS36MSGL

*USE, to message file QOFCMSG in library
QSYS.

REBLD $COPY/COPYFILE CPYF *USE, to the DB input file.

*CHANGE, to the DB output file.

*CHANGE, to the System/36 file library.

E-10 OS/400 System/36 Environment Programming V3R6

Figure E-1 (Page 11 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

REMOVE $MAINT/DELETE RMVM
DLTCLS
DLTCMD
DLTDTAARA
DLTDTAQ
DLTF
DLTFCT
DLTJOBQ
DLTJRN
DLTJRNRCV
DLTMSGF
DLTMSGQ
DLTOUTQ
DLTPRTIMG
DLTPGM
DLTQRY
DLTSSND
DLTSPADCT
DLTTBL

*ALL, to the QS36PRC and QS36SRC files if
procedure or source members are to be
removed.

*ALL, to any other members that are to be
removed.

*USE, to the library from which the members
are to be removed.

*ALL, to any other object being deleted. This
includes job queues, journals, journal receivers,
message files, message queues, output queues,
print images, programs, session descriptions,
spelling aid dictionaries, and tables.

RENAME $RENAM/RENAME RNMOBJ *USE, to files library or folder.

*ALL, to object being renamed.

Note: You must be enrolled in the system dis-
tribution directory to rename a folder.

RESPONSE $ARSP/RESPONSE ADDMSGD
CHGMSGD

*CHANGE, to the message file for which
responses are being altered.

*USE, to the library in which the message file
resides.

*USE, to the source file QS36SRC containing
the response data.

*USE, to the library in which the source file
resides.

RESTLIBR $MAINT/COPYLIBR RSTLIB *USE, to the diskette or tape device descriptions
and device files if I1, T1, T2 or TC are specified.

*CHANGE, to the library to be restored.

*ALL, to every object in the library to be
restored.

Note: If you have *SAVSYS special authority,
you can restore any object.

 Appendix E. Security Considerations for the System/36 Environment E-11

Figure E-1 (Page 12 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

RESTORE
(ALL files)

$COPY/COPYALL RSTOBJ
RSTS36F

*ALL, to diskette or tape input files.

*ALL, to DB output files being created.

*CHANGE, to the System/36 files library.

*USE, to the device description and device file
for the specified diskette or tape drive.

*ADD, to the owner’s user profile for the DB
output files being created.

Note: If you have *SAVSYS special authority,
no other authority is required for diskette
or tape input files, or DB output files.

E-12 OS/400 System/36 Environment Programming V3R6

Figure E-1 (Page 13 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

RESTORE
(Single file)

$COPY/COPYFILE RSTOBJ
CPYF
RSTS36F

For any restore operation, one of the following
authorities is required:

*SAVSYS special authority or

*CHANGE authority to the System/36 files
library.

In addition to either of these, you must have:

*USE authority to the device description,
and

*USE authority to the device file for the
diskette or tape device being used.

If an existing disk file has the same label as the
diskette file to be restored, and the diskette file
is to be restored without changes, and a load-
to-old operation is not performed, then one of
the following authorities is required:

*SAVSYS special authority or

*ALL authority to the existing disk file.

If an existing disk file has the same label as the
disk file you create by restoring the diskette file,
and the restored disk file is to have a file label
or file attributes that differ from the diskette file,
or record selection is to be performed, or you do
a load-to-old operation, then one of the following
authorities is required:

*SAVSYS special authority or

*CHANGE authority to the user profile of the
owner of the diskette file being restored.

In addition to either of these, you must have:

*ALL authority to the existing disk file, and

*USE authority to the diskette file being
restored.

If an authority holder has the same label as the
diskette file to be restored, but no disk file exists
with that label, and the diskette file is to be
restored without changes, then one of the fol-
lowing authorities is required:

*SAVSYS special authority or

*CHANGE authority to the user profile of the
owner of the diskette file being restored.

In addition to either of these, you must have:

*ALL authority to the authority holder.

 Appendix E. Security Considerations for the System/36 Environment E-13

Figure E-1 (Page 14 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

RESTORE
(Single file)
(continued)

$COPY/COPYFILE RSTOBJ
CPYF
RSTS36F

If an authority holder has the same label as the
disk file you create by restoring the diskette file,
but no disk file exists with that label, and the
restored disk file is to have a file label or file
attributes that differ from the diskette file, or
record selection is to be performed, then one of
the following authorities is required:

*SAVSYS special authority or

*CHANGE authority to the user profile of the
owner of the diskette file being restored.

In addition to either of these, you must have:

*ALL authority to the authority holder, and

*ALL authority to the diskette file being
restored if the file is a logical file, or

*USE authority to the diskette file being
restored if the file is a physical file.

If no disk file or authority holder exists with the
same label as the diskette file to be restored,
and the diskette file is to be restored without
changes, then one of the following authorities is
required:

*SAVSYS special authority or

*CHANGE authority to the user profile of the
owner of the diskette file being restored.

If no disk file or authority holder has the same
label as the disk file you create by restoring the
diskette file, and the restored disk file is to have
a file label or file attributes that differ from the
diskette file, or record selection is to be per-
formed, then one of the following authorities is
required:

*SAVSYS special authority or

*CHANGE authority to the user profile of the
owner of the diskette file being restored.

In addition to either of these, you must have
one of the following:

*ALL authority to the diskette file being
restored if the file is a logical file, or

*USE authority to the diskette file being
restored if the diskette file is a physical file.

RGZFILE CPYF
CHGPF
RGZPFM

*ALL, to the DB file

E-14 OS/400 System/36 Environment Programming V3R6

Figure E-1 (Page 15 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

RJFILE CVTRJEDTA *USE, to the library QRJE.

*USE, to the session description *SSND.

*USE, to the forms control table *FCT (optional).

*USE, to message file QRJEMSG in library
QRJE.

RJTABLE CRTFCT
DLTFCT
ADDFCTE
CHGFCT
CHGFCTE
WRKFCT
CMDFCT
GO

*ALL, to the forms control table *FCT.

*USE, to the forms control table and the library
QRJE.

*USE, to the CMDFCT menu.

RPGC QEXSETLB
$UASF/SPOOL
$UASC
#RPDD
#RPG

CHGS36MSGL *USE, to the library #RPGLIB and all objects
therein.

*USE, to the message file QRPG2MSGE in
library QSSP.

*USE, to message file #RP#CPL1 and
#RP#CPL2 in library #RPGLLIB.

*USE, to the library containing the source file.

*USE, to the source file QS36SRC in the library
containing the source program.

*CHANGE, to the library to contain the compiled
program.

RPGR QEXSETLB
$MAINT/COPY
$SFGR/LOADMBR
$SFGR/INOUT
$SFGR/CREATE
$MAINT/DELETE
#RPGEN

CHGS36MSGL *USE, to the library #RPGLIB and all objects
therein.

*USE, to message file #RP#CPL1 and
#RPCPL2 in library #RPGLIB.

*USE, to the library containing the source
program.

*USE, to the source file QS36SRC in the library
containing the source program.

*CHANGE, to the library to contain format load
member.

RPGSDA QEXSETLB CHGS36MSGL See the SDA procedure.

*USE, to message file #RP#CPL1 in library
#RPGLIB.

RPGSEU QEXSETLB CHGS36MSGL See the SEU procedure.

*USE, to message file #RP#CPL1 and
#RP#CPL2 in library #RPGLIB.

 Appendix E. Security Considerations for the System/36 Environment E-15

Figure E-1 (Page 16 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

RPGX CRTS36AUTO
CHGS36MSGL

*USE, to #RPGLIB and all objects within.

*USE, to message file #RP#CPL1 and
#RP#CPL2 in library #RPGLIB.

*USE, to the library containing the source
program.

*USE, to the source file QS36SRC in the library
containing the source program.

SAVE
(ADD)

$COPY/COPYADD SAVOBJ *ALL, to the DB input file.

*USE, to the System/36 files library.

*USE, to the device description and device file
for the specified diskette or tape drive.

Note: If you have *SAVSYS special authority,
the DB input files require no other
authority.

SAVE
(ALL)

$COPY/COPYALL SAVOBJ *ALL, to the DB input files.

*CHANGE, to the System/36 files library.

*USE, to the device description and device file
for the specified diskette or tape drive.

Note: If you have *SAVSYS special authority,
DB input files require no other authority.

SAVE
(Single file)

$COPY/COPYFILE CPYF
SAVOBJ

*ALL, to the DB input file.

*USE, to the System/36 files library.

*USE, to the device description and device file
for the specified diskette or tape drive.

Note: If you have *SAVSYS special authority,
the DB input file requires no other
authority.

SAVELIBR $MAINT/COPYLIBR SAVLIB *USE, to the diskette or tape device descriptions
and device files if I1, T1, T2 or TC are specified.

*CHANGE, to the library to be restored.

*ALL, to every object in the library to be
restored.

Note: If you have *SAVESYS authority, you
can save any object.

SDA QSDBIN in QPDA CHGS36MSGL
CRTSRCPF
CRTS36DSPF
CRTS36MNU

To use all SDA functions, *CHANGE for the
selected library.

*ALL for the source file QS36SRC in the
selected library, and *USE for the display file to
be viewed from the selected library.

*USE, to library #SDALIB and all objects within.

SET $SETCF CHGDEVDSP *CHANGE, to device description of the display.

E-16 OS/400 System/36 Environment Programming V3R6

Figure E-1 (Page 17 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

SEU QEXSETLB
#SEU

STRSEU
CHGS36MSGL

*ALL, to the file being edited, either QS36SRC
or QS36PRC.

*CHANGE, to the library containing these files.

*USE, to library #SEULIB and all objects within.

SORT #GSORT/SOURCE FMTDTA *USE, to the source file QS36SRC.

*USE, to the source library.

*ALL, to the input files.

*CHANGE, to the output file.

*USE, to message file #GS#MM in library
QSSP.

SRTX #KASRT/SOURCE FMTDTA *USE, to source library.

*USE, to the source file QS36SRC.

*ALL, to the input files.

*CHANGE, to the output files.

*USE, to message file #GS#MM in library
QSSP.

SRTXBLD STRCGU *ALL, to *IGCSRT, object QCGMSTR and
object QCGACTV.

*USE, to library #CGULIB and all objects within.

STARTPCO QEXSETLB
#ORTS

CHGS36MSGL *USE, to message file QIWSMSG in library
QIWS.

*USE, to library QIWS and all objects within.

STOPPCO SIGNOFF
CHGS36MSGL

TAPECOPY $TCOPY/TRANSFER OVRTAPF
CHKTAP
CPYTOTAP
CPYFRMTAP

*USE, to the tape device description and device
file.

*USE, to the disk file to be copied to tape and
to the files library.

*CHANGE, to the files library if a tape file is to
be copied to a disk file.

*CHANGE, to the disk file if a tape file is to be
added to a disk file.

TAPEINIT $TINIT/VOL CHKTAP
INZTAP

*USE, to the device file and device description
for the tape drive.

TEXTDCT #TUPH *ALL, to file QADDENDA in QUSR library.

TEXTDOC
(blank)

#TUPH WRKDOC *USE, to the folder.

*USE, to message file QOFCMSG in library
QSYS.

TEXTDOC
(copy)

#TUPH CPYDOC *CHANGE, to the specified documents and
folders.

*USE, to message file QOFCMSG in library
QSYS.

 Appendix E. Security Considerations for the System/36 Environment E-17

Figure E-1 (Page 18 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

TEXTDOC
(create)

#TUPH CRTDOC *CHANGE, to the specified folder.

*USE, to message file QOFCMSG in library
QSYS.

TEXTDOC
(delete)

#TUPH DLTDLO *ALL, to the specified document. *USE, to the
folder.

USE, to message file QOFCMSG in library
QSYS.

TEXTDOC
(merge)

#TUPH MRGDOC *CHANGE, to the specified documents and
folders.

*USE, to message file QOFCMSG in library
QSYS.

TEXTDOC
(paginate)

#TUPH PAGDOC *CHANGE, to the specified document.

*USE, to message file QOFCMSG in library
QSYS.

TEXTDOC
(print)

#TUPH PRTDOC *USE, to the specified document. If *ALL is
specified for the document, *USE authority is
required for all documents in the specified
folder.

*USE, to message file QOFCMSG in library
QSYS.

TEXTDOC
(prtfile)

#TUPH PRTDOC *CHANGE, to the System/36 files library.

*CHANGE, to the specified database file, if it is
already created.

See the PRINT option for additional authorities.

*USE, to message file QOFCMSG in library
QSYS.

TEXTDOC
(rename)

#TUPH RNMDLO *ALL, to the specified document.

*USE, to message file QOFCMSG in library
QSYS.

TEXTDOC
(revise)

#TUPH EDTDOC *CHANGE, to the specified document.

*USE, to message file QOFCMSG in library
QSYS.

TEXTDOC
(spell)

#TUPH CHKDOC *CHANGE, to the specified document.

*USE, to message file QOFCMSG in library
QSYS.

TEXTDOC
(view)

#TUPH DSPDOC *USE, to the specified document.

*USE, to message file QOFCMSG in library
QSYS.

TEXTFLDR #TUPH WRKFLR *USE, to the specified folder.

TEXTOBJ #TUPH WRKDOC *USE, to the specified folder.

TEXTPROF #TUPH WRKTXTPRF

TEXTPRTQ #TUPH WRKDOCPRTQ

E-18 OS/400 System/36 Environment Programming V3R6

Figure E-1 (Page 19 of 19). Authorities Required for System/36 Procedures on the AS/400 System

System/36
Procedure

Utilities
Called

OS/400
Commands

Additional Authorities
Required

TIMER CHGSYSVAL
DSPSYSVAL

*ALLOBJ and *SECADM special authorities, if
attempting to enable or to disable any of the
three unattended IPL operations.

TOLIBR $MAINT/COPY RSTS36LIBM
RSTOBJ
CPYF

*USE, to the diskette or tape device descriptions
and device files if I1, T1, T2 or TC are specified.

*USE, to the save file (SAVF) if F1 is specified.

*USE, to the files library if F1 is specified.

*CHANGE, to the QS36PRC and QS36SRC
files if the procedures or source are to be
copied. If members are to be replaced, *ALL
authority is required.

*ALL, to any other object to be copied.

*CHANGE, to the library the members are to be
copied to.

Note: If you have *SAVESYS special authority,
you can copy any object.

TRANSFER $BICR/TRANSFER ADDPFM
CHKDKT
CPYFRMDKT
CPYTODKT

*USE, to the diskette drive device file and
device description.

*USE, to the file, if transferring to diskette and
*ALL, to the file, if transferring from diskette.

*CHANGE, to the file if doing a load-to-old.

UPDATE See the DFU procedure.

UPDATE# See the DFU procedure.

WRKSPL WRKSPLF
CHGS36MSGL

WRKUSER WRKUSRJOB
CHGS36MSGL

 Appendix E. Security Considerations for the System/36 Environment E-19

System/36 Operator Control
Commands

The following table lists System/36 commands
with the special authorities needed to run them:

Figure E-2 (Page 1 of 3). Authorities Required for System/36 Commands on the AS/400 System

System/36
Commands

OS/400
Commands Authorities Required

ASSIGN Not supported

CANCEL
 jobname
 JOBQ,ALL
 PRT

WRKUSRJOB
CLRJOBQ
DLTSPLF

*JOBCTL, if ALL is specified.
Owner of the spool file.
If printer id, ALL, FORMS, or USER are specified, one of the following
authorities:

 � *SPLCTL
� *JOBCTL and output queue containing spool file is defined OPRCTL

(*YES).
� *READ, *ADD and *DTL authority to the output queue containing the

spool file and the queue is defined AUTCHK(*DTAAUT).
� Owner of the output queue containing the spool file and the queue

is defined AUTCHK(*OWNER).

 SESSION WRKUSRJOB

CHANGE
 COPIES
 DEFER
 FORMS
 ID
 JOBQ
 JOBS
 PRT
 PRTY
 SEP

CHGSPLFA
CHGSPLFA
CHGSPLFA
CHGSPLFA
WRKJOBQ
CHGJOBQE
CHGSPLFA
CHGJOB
CHGWTR

See CANCEL PRT command.

See CANCEL PRT command.
See CANCEL PRT command.
*JOBCTL
*JOBCTL
*JOBCTL
*JOBCTL
*JOBCTL
See CANCEL PRT command.

CONSOLE CHGMSGQ *USE and *DELETE, to the message queue
*READ, to the library containing the message queue.

HOLD
 JOBQ
 PRT

WRKJOBQ
HLDSPLF

*JOBCTL and output queue containing spool file entry is
defined OPRCTL (*YES), if parameter ALL is specified.

INFOMSG

JOBQ SBMJOB *USE, to job queue QBATCH in library QGPL.

MENU GO *USE, to menu.
*USE, to library, if specified.

MODE Not supported.

E-20 OS/400 System/36 Environment Programming V3R6

Figure E-2 (Page 2 of 3). Authorities Required for System/36 Commands on the AS/400 System

System/36
Commands

OS/400
Commands Authorities Required

MSG
 workstn-id
 user-id
 PC location
 user-defined
 group name
 ALL

SNDNETMSG
SNDNETMSG
SNDNETMSG
SNDNETMSG
SNDNETMSG
SNDBRKMSG

*CHANGE, to the associated message queue.
*CHANGE, to the associated message queue.
*CHANGE, to the associated message queue.
Must be enrolled in the distribution directory.
*CHANGE, to the associated message queue.
*CHANGE, to the associated message queue.

OFF SIGNOFF

POWER OFF PWRDWNSYS *JOBCTL

PRTY WRKUSRJOB

RELEASE
 JOBQ
 PRT

WRKJOBQ
RLSSPLF

*JCBCTL, if the job being released is not your own.
*JOBCTL and output queue containing spool file entry is
defined OPRCTL (*YES), if parameter ALL is specified.
See CANCEL PRT command.

REPLY DSPMSG *USE, to the message queue and library that contains the message
queue.

RESTART CHGSPLFA See CANCEL PRT command.

START
 JOB
 JOBQ,ALL
 JOBQ,priority
 JOBQ,jobname
 PRT
 SERVICE
 SESSION
 SYSTEM
 WRKSTN

WRKUSRJOB
CHGJOBQE
CHGJOBQE
CHGJOB
STRPRTWTR

STRSBS
WRKCFGSTS

| *JCBCTL
| *JCBCTL, *ALL (to the QINTER and QBATCH subsystem descriptions)
| *JCBCTL, *ALL (to the QINTER and QBATCH subsystem descriptions)
| *JCBCTL
| *JCBCTL

Not supported.
Not supported.
*OBJOPR to subsystem and *READ to the library.
*OBJOPR to device description.

STATUS
 ALERT
 APPC
 COMM
 COMCNFIG
 JOBQ
 LINE
 MESSAGE
 MSRJE
 PRT
 SESSION
 SUBSESS
 SUBSYS
 SYSTASK
 USERS
 WORKSTN
 WRT

DSPNETA

WRKCFGSTS
WRKCFGSTS
WRKJOBQ
WRKCFGSTS
DSPMSGQ
WRKRJESSN
WRKSPLF
DSPJOB

WRKUSRJOB
WRKCFGSTS
WRKWTR

Not supported.

Not supported.
Not supported.
Not supported.

STATUSF
 JOBQ
 PRT
 WORKSTN
 USER

WRKJOBQ
WRKSPLF
WRKCFGSTS
WRKUSRJOB

 Appendix E. Security Considerations for the System/36 Environment E-21

Figure E-2 (Page 3 of 3). Authorities Required for System/36 Commands on the AS/400 System

System/36
Commands

OS/400
Commands Authorities Required

STOP
 JOB
 JOBQ
 PRT
 SERVICE
 SESSION
 SYSTEM
 WORKSTN

WRKUSRJOB
CHGJOBQE
ENDWTR

ENDSBS
WRKCFGSTS

*JOBCTL

| *JOBCTL, *ALL (to the QBATCH and QINTER subsystem descriptions)
See CANCEL PRT command.
Not supported.
Not supported.
*JCBCTL
*OBJOPR, to the device description.

TIME

VARY VRYCFG *JOBCTL

System/36 OCL Statements

The following table lists System/36 OCL state-
ments with the special authorities needed to run
them:

Figure E-3 (Page 1 of 3). Authorities Required for System/36 OCL Statements on the AS/400 System

OCL
Statements

OS/400
Commands Authorities Required

ABEND

ALLOCATE ALCOBJ *USE, for the device description of the allocated device.

ASSIGN Supported for compatibility only.

ATTR
 RELEASE-YES

*CHANGE, for job queue QS36EVOKE in library QGPL.

CANCEL DLTSPLF Owner of spool file. If printer id, ALL, FORMS or USER are specified, one
of the following authorities:

 1. *SPLCTL
2. *JOBCTL and output queue containing spool file is defined

OPRCTL(*YES).
3. *READ, *ADD and *DLT authority to the output queue containing the

spool file and the queue is defined AUTCHK(*DTAAUT).
4. Owner of the output queue containing the spool file and the queue is

defined AUTCHK(*OWNER).

CHANGE
 COPIES
 FORMS
 ID

CHGSPLFA
CHGSPLFA
CHGSPLFA

Owner of the spool file. If printer id, ALL, FORMS or USER are specified,
one of the following authorities:

 1. *SPLCTL
2. *JOBCTL and output queue containing spool file is defined

OPRCTL(*YES).
3. *READ, *ADD and *DLT authority to the output queue containing the

spool file and the queue is defined AUTCHK(*DTAAUT).
4. Owner of the output queue containing the spool file and the queue is

defined AUTCHK(*OWNER).

COMM Not supported.

E-22 OS/400 System/36 Environment Programming V3R6

Figure E-3 (Page 2 of 3). Authorities Required for System/36 OCL Statements on the AS/400 System

OCL
Statements

OS/400
Commands Authorities Required

COMPILE *USE, for the library specified.
*USE, to the library containing the source program.
*USE, to the source file QS36SRC in the library
containing the source program.
*CHANGE, to the library to contain the compiled program.

DATE

DEALLOC DLCOBJ *USE, for the device description of the allocated device.

DEBUG

EVOKE SBMJOB *CHANGE, for job queue QS36EVOKE in library QGPL.

FILE (disk) *USE, for the System/36 files library.

FILE (diskette) *USE, for the diskette device description.

FILE (tape) *USE, for the tape device description.

FILELIB ADDLIBLE *USE, for the library specified.

FORMS

IMAGE Supported for compatibility only.

INCLUDE SBMJOB *USE, for the procedure library and the procedures file QS36PRC in that
library.

Note: The SMBJOB command applies only to MRT procedures.

INFOMSG

JOBQ SBMJOB *CHANGE for job queue QBATCH in library QGPL.

LIBRARY CHGCURLIB *USE, for the library specified.

LOAD *USE, for the program being loaded.

LOCAL

LOG

MEMBER *USE, for the library containing the message member.

MENU GO *USE, for the menu specified. *USE, for library, if specified.

MSG
 workstn-id
 user-id
 PC location
 user-defined
 group name
 ALL

SNDNETMSG
SNDNETMSG
SNDNETMSG
SNDNETMSG
SNDNETMSG
SNDBRKMSG

*CHANGE, to the associated message queue.
*CHANGE, to the associated message queue.
*CHANGE, to the associated message queue.
Must be enrolled in the distribution directory.
*CHANGE, to the associated message queue.
*CHANGE, to the associated message queue.

NOHALT *JOBCTL, if SYSTEM is specified.

OFF SIGNOFF

POWER PWRDWNSYS *JCBCTL

PRINTER

PROMPT *USE, for the display format and its library.

REGION Supported for compatibility only.

RESERVE Supported for compatibility only.

RUN OVRICFDEVE
ALCOBJ

*USE, for the program specified in the LOAD statement.

 Appendix E. Security Considerations for the System/36 Environment E-23

Figure E-3 (Page 3 of 3). Authorities Required for System/36 OCL Statements on the AS/400 System

OCL
Statements

OS/400
Commands Authorities Required

SESSION

SETDEV *USE, to library specified *USE, to device descriptions

START STRPRTWTR See CANCEL OCL statement.

STOP ENDWTR See CANCEL OCL statement.

SWITCH

SYSLIST

TIMERSET CHGSYSVAL
DSPSYSVAL

*ALLOBJ and *SECADM special authorities, if attempting to enable or to
disable any of the three unattended IPL operations.

VARY VRYCFG *JOBCTL

WAIT DLYJOB

WORKSTN

System/36 Procedure Control
Statements

The following table lists System/36 procedure
control statements with the special authorities
needed to run them. Procedure control state-
ments not listed do not require any special author-
ities.

Procedure Control
Statements Authorities Required

IF LOAD *USE, for the library.

IF SOURCE *USE, for the library.

IF PROC *USE, for the library.

IF SUBR *USE, for the library.

E-24 OS/400 System/36 Environment Programming V3R6

OS/400 System/36 Commands

The following table lists OS/400 commands that
pertain to the System/36 environment, along with
the special authorities needed to run them.
Besides these special authorities, you need *USE
authority for library QSSP.

Figure E-4 (Page 1 of 3). Authorities Required for OS/400 Commands in the System/36 Environment

OS/400
Command Referenced Object Authorities Required to Referenced Object

CHGS36 Configuration object QS36ENV
Library #LIBRARY

*CHANGE, to configuration object QS36ENV
*USE, to Library #LIBRARY

CHGS36A Configuration object QS36ENV
Library #LIBRARY

*CHANGE, to configuration object QS36ENV
*USE, to Library #LIBRARY

CHGS36PGMA Program
Library

*OBJMGT, to the program
*USE, to the library

CHGS36PRCA Source file QS36PRC
Source file library

*CHANGE, to source file QS36PRC
*USE, to source file library

CHGS36SRCA Source file QS36SRC
Source file library

*CHANGE, to source file QS36SRC
*USE, to source file library

CRTMSGFMNU Message file with command messages
Message file library
Message file with option messages
Message file library
Source file QS36DDSSRC
Source file library
Source file if TOMBR not *NONE
Source file library
Display file if it already exists
Display file library
CRTDSPF command

*USE, to message file with command messages
*USE, to message file library
*USE, to message file with option messages
*USE, to message file library
*ALL, to source file QS36DDSSRC
*USE, to source file library
*ALL, to source file if TOMBR is not *NONE
*CHANGE, to source file library
*ALL, to display file if it already exists
*CHANGE, to display file library
*USE, to CRTDSPF command

CRTS36CBL Library #COBLIB and its contents
Source file with COBOL source
Source file library
Program if it already exists
Program library

*USE, to library #COBLIB and its contents
*USE, to source file with COBOL source
*USE, to source file library
*ALL, to the program if it already exists
*CHANGE, to the program library

CRTS36DSPF Source file with SFGR source
Source file library
Source file QS36DDSSRC
Source file library
Source file if TOMBR not *NONE
Source file library
Display file if it already exists
Display file library
CRTDSPF command

*USE, to source file with SFGR source
*USE, to source file library
*ALL, to source file QS36DDSSRC
*USE, to source file library
*ALL, to source file
*CHANGE, to source file library
*ALL, to the display file if it already exists
*CHANGE, to display file library
*USE, to CRTDSPF command

CRTS36MNU Source file with command text
Source file library
Source file with option text
Source file QS36DDSSRC
Source file if TOMBR not *NONE
Source file library
Display file if it already exists
Display file library
Message file if it already exists
Message file library
CRTDSPF command
CRTMSGF command
ADDMSGD command

*USE, to source file with command text
*USE, to source file library
*USE, to source file with option text
*ALL, to source file QS36DDSSRC
*ALL, to source file
*CHANGE, to source file library
*ALL, to display file if it already exists
*CHANGE, to display file library
*ALL, to message file if it already exists
*CHANGE, to message file library
*USE, to CRTDSPF command
*USE, to CRTMSGF command
*USE, to ADDMSGD command

 Appendix E. Security Considerations for the System/36 Environment E-25

Figure E-4 (Page 2 of 3). Authorities Required for OS/400 Commands in the System/36 Environment

OS/400
Command Referenced Object Authorities Required to Referenced Object

CRTS36MSGF Source file with message source
Source file library
Source file if TOMBR not *NONE
Source file library
Message file if it already exists and
 OPTION(*CREATE)
Message file if it already exists and

OPTION(*ADD) or (*CHANGE)
Message file library
CRTMSGF command
ADDMSGD command
CHGMSGD command

*USE, to source file with message source
*USE, to source file library
*ALL, to source file
*CHANGE, to source file library
*ALL, to message file if it already exists and
 OPTION(*CREATE)
*ALL, to message file if it already exists and

OPTION(*ADD) or (*CHANGE)
*CHANGE, to message file library
*USE, to CRTMSGF command
*USE, to ADDMSGD command
*USE, to CHGMSGD command

CRTS36RPG Library #RPGLIB and its contents
Message file QRPG2MSGE in library QSYS
Source file with RPG source
Source file library
Program if it already exists
Program library

*USE, to library #RPGLIB and its contents
*USE, to message file QRPG2MSGE in library QSYS
*USE, to source file with RPG source
*USE, to source file library
*ALL, to program if it already exists
*CHANGE, to program library

CRTS36RPGR Library #RPGLIB and its contents
Source file RPG source
Source file library
Display file library
Source file to receive formats
Source file library
Source file to receive DDS
Source file library

*USE, to library #RPGLIB and its contents
*USE, to source file RPG source
*USE, to source file library
*CHANGE, to display file library
*ALL, to source file to receive formats
*CHANGE, to source file library
*ALL, to source file to receive DDS
*CHANGE, to source file library

CRTS36RPT Library #RPGLIB
Source file with AUTO source
Source file library
Program if it already exists
Program library

*USE, to library #RPGLIB and its contents
*USE, to source file with AUTO source
*USE, to source file library
*ALL, to the program if it already exists
*CHANGE, to program library

DSPS36 Configuration object QS36ENV
Library #LIBRARY

*USE, to configuration object QS36ENV
*USE, to library #LIBRARY

EDTS36PGMA Program
Library

*OBJMGT, to the program
*USE, to the library

EDTS36PRCA Source file QS36PRC
Source file library

*CHANGE, to source file QS36PRC
*USE, to source file library

EDTS36SRCA Source file QS36PRC
Source file library

*CHANGE, to source file QS36PRC
*USE, to source file library

ENDS36

RSTS36F Phyfile if *PHYFILE
Phyfile library if *PHYFILE
To-file if it already exists
To-file library
Device file and device description

*USE, to phyfile if *PHYFILE
*USE, to phyfile library if *PHYFILE
*ALL, to to-file if it already exists
*CHANGE, to to-file library
*USE, to device file and device description

RSTS36FLR Phyfile if *PHYFILE
Phyfile library if *PHYFILE
To-folder if it already exists and

replacing the contents
To-folder if it already exists and adding new data

To-folder library
Device file and device description

Note: Must be enrolled in Office if document folder

*USE, to phyfile if *PHYFILE
*USE, to phyfile library if *PHYFILE
*ALL, to to-file if it already exists

*OBJOPR, *ADD, *DLT, *READ, and *UPD, to to-folder

if it already exists and adding new data
*CHANGE, to to-folder library
*USE, to device file and device description

RSTS36LIBM Phyfile if *PHYFILE
Phyfile library if *PHYFILE
To-file
To-file library
Device file and device description

*USE, to phyfile if *PHYFILE
*USE, to phyfile library if *PHYFILE
*CHANGE, to to-file
*CHANGE, to to-file library
*USE, to device file and device description

RTVS36A Configuration object QS36ENV
Library #LIBRARY

*USE, to configuration object QS36ENV
*USE, to library #LIBRARY

E-26 OS/400 System/36 Environment Programming V3R6

Figure E-4 (Page 3 of 3). Authorities Required for OS/400 Commands in the System/36 Environment

OS/400
Command Referenced Object Authorities Required to Referenced Object

SAVS36F From-file
From-file library
Phyfile if *PHYFILE and it already exists
Phyfile library if *PHYFILE
Device file and device description

*USE, to from-file
*USE, to from-file library
*ALL, to phyfile if *PHYFILE and it already exists
*CHANGE, to phyfile library if *PHYFILE
*USE, to device file and device description

SAVS36LIBM From-file
From-file library
Phyfile if *PHYFILE and it already exists
Phyfile library if *PHYFILE
Device file and device description

*USE, to from-file
*USE, to from-file library
*ALL, to phyfile if *PHYFILE and it already exists
*CHANGE, to phyfile library if *PHYFILE
*USE, to device file and device description

STRS36 Library #LIBRARY
S/36 environment configuration object (QS36ENV)
Library specified as current library
S/36 environment files library
Initial menu, if specified
Menu library, if menu specified
Source file QS36PRC, if initial procedure specified
Source file library, if initial procedure specified
Initial program, if initial program specified
Initial program library, if initial program specified

*USE, to library #LIBRARY
*USE, to S/36 environment configuration object (QS36ENV)
*USE, to library specified as current library
*USE, to S/36 environment files library
*USE, to initial menu, if specified
*USE, to menu library, if menu specified
*USE, to source file QS36PRC, if initial procedure specified
*USE, to source file library, if initial procedure specified
*USE, to initial program, if initial program specified
*USE, to initial program library, if initial program specified

STRS36PRC Library #LIBRARY
S/36 environment configuration object (QS36ENV)
Library specified as current library
S/36 environment files library
Source file QS36PRC contain the procedure
Source file library

*USE, to library $LIBRARY
*USE, to S/36 environment configuration object (QS36ENV)
*USE, to library specified as current library
*USE, to S/36 environment files library
*USE, to source file QS36PRC containing the procedure
*USE, to source file library

WRKS36 Configuration object QS36ENV
Library #LIBRARY

*USE, to configuration object QS36ENV
*USE, to library #LIBRARY

WRKS36PGMA Program (if attributes change)
Library

*USE and *OBJMGT, to program if attributes change
*USE, to library

WRKS36PRCA Source file QS36PRC (if attributes changed)

Source file library

*USE and *CHANGE, to source file
QS36PRC if attributes change

*USE, to source file library

WRKS36SRCA Source file QS36SRC (if attributes changed)
Source file library

*USE and *CHANGE, to source file
QS36SRC if attributes change

*USE, to source file library

 Appendix E. Security Considerations for the System/36 Environment E-27

E-28 OS/400 System/36 Environment Programming V3R6

 Bibliography

The following books contain information you may need.
Except where otherwise indicated, each is an AS/400
system book.

General AS/400-Related Books
� Backup and Recovery – Advanced, SC41-4305,

provides programmers with information about the
different media available to save and protect system
data, as well as a description of how to record
changes made to database files and how that infor-
mation can be used for system recovery and activity
report information.

� DDS Reference, SC41-3712, provides application
programmers with detailed descriptions of the
entries and keywords needed to describe both
logical and physical database files and certain
device files (for displays and printers) external to
the user’s programs.

� Data Management, SC41-4710, provides application
programmers with information about using files in
application programs.

� DB2 for OS/400 Database Programming,
SC41-4701, provides application programmers and
programmers with a detailed discussion of the
AS/400 database structure, including information on
how to create, describe, and manipulate database
files on the system.

� Application Display Programming, SC41-4715, pro-
vides application programmers with information
about defining screens for display on display
devices. This includes information about display
device descriptions, display device files, and how
they are used to define and display screens on
display devices.

� Printer Device Programming, SC41-3713, provides
application and system programmers with informa-
tion on how to control and understand printing:
printing elements and concepts, printer file support,
print spooling support, printer connectivity,
advanced function printing, and printing with per-
sonal computers.

� Tape and Diskette Device Programming,
SC41-4716, provides application programmers with
information about the tape and diskette media sup-
ported by the AS/400 system, configuration
descriptions and device files for tape or diskette,
and information about using tape device files or
diskette device files in high-level language pro-
grams.

� Client Access/400 for DOS and OS/2 Technical Ref-
erence, SC41-3563, provides application program-

mers with technical information needed to do
advanced configuration or tailoring of Client
Access/400 for a special operating environment.

� Client Access/400 for DOS with Extended Memory
User Guide, SC41-3501, provides Client
Access/400 users with concepts and examples of
how to use the Client Access functions in DOS.

� Client Access/400 for OS/2 User Guide,
SC41-3521, provides users with personal computers
attached to an AS/400 system with concepts and
examples of how to use the Client Access/400 func-
tions in the OS/2* environment.

� CL Programming, SC41-4721, provides application
programmers and programmers with information on
AS/400 programming topics, including a general dis-
cussion on objects and libraries, control language
(CL) programming, controlling flow and communi-
cating between programs, working with objects in
CL programs, and creating CL programs, predefined
and impromptu messages and message handling,
and defining and creating user-defined commands
and menus.

� CL Reference, SC41-4722, provides application and
system programmers with a description of the
AS/400 control language (CL) and its commands.
Each command is defined, including its syntax
diagram, parameters, default values, and keywords.

� Performance Tools/400, SC41-4340, provides pro-
grammers with information about what AS/400 Per-
formance Tools are, gives an overview of the tools,
and tells how the tools can be used to help manage
system performance.

� System/36 Environment Reference, SC41-4731,
provides application programmers, system program-
mers, and system operators with information about
the procedure control expressions, procedures,
operation control language (OCL) statements,
control commands, and utilities supported in the
System/36 environment.

� Work Management, SC41-4306, provides program-
mers with information about how to create an initial
work management environment and how to change
it.

� Query/400 Use, SC41-4210, provides business pro-
fessionals and programmers with detailed informa-
tion about how to use Query/400 to get data from
any database file.

� Security – Basic, SC41-3301, and Security – Refer-
ence, SC41-4302, explain why security is neces-
sary, define major concepts, and provide
information on planning, implementing, and moni-
toring basic security on the AS/400 system.

 Copyright IBM Corp. 1995 H-1

� Getting Started with OfficeVision/400, SH21-0732,
provides OfficeVision for OS/400 users with infor-
mation on learning how to use the word processing
functions of OfficeVision for OS/400.

� Using OfficeVision/400, SH21-0697, provides
OfficeVision for OS/400 users with detailed informa-
tion on how to use OfficeVision for OS/400,
including information on handling mail and calen-
dars.

� Using OfficeVision/400 Word Processing,
SH21-0701, provides OfficeVision for OS/400 users
with information on using all the word processing
functions of OfficeVision for OS/400.

Programming Language and
Utility Books
� ADTS/400: Character Generator Utility, SC09-1769,

provides application programmers and programmers
with information about using the Application Devel-
opment Tools character generator utility (CGU) to
create and maintain a double-byte character set
(DBCS) on the AS/400 system.

� ADTS/400: Data File Utility, SC09-1773, provides
application programmers, programmers, and help
desk personnel with information about using the
Application Development Tools data file utility (DFU)
to create programs to enter data into files, update
files, inquire into files, and run DFU programs.

� ADTS/400: Programming Development Manager,
SC09-1771, provides application programmers,
system programmers, and help desk personnel with
information about using the Application Develop-
ment Tools programming development manager
(PDM) utility to work with lists of libraries, objects,
members, and user-defined options to easily
perform such operations as copy, delete, and print.

� ADTS/400: Screen Design Aid, SC09-1768, pro-
vides application programmers with information
about using the Application Development Tools
screen design aid (SDA) to design, create, and
maintain display formats and menus on the AS/400
system in the System/38 environment.

� ADTS/400: Screen Design Aid for the System/36
Environment, SC09-1893, provides application pro-
grammers and system operators with information on
how to use the screen design aid (SDA) for devel-
oping displays, menus, and online information in the
System/36 environment of the AS/400 system.

� ADTS/400: Source Entry Utility, SC09-1774, pro-
vides application programmers and help desk per-
sonnel with information about using the Application
Development Tools source entry utility (SEU) to
create and edit source members.

� BGU User’s Guide and Reference, SC09-1408, pro-
vides application programmers, programmers,

system administrators, and business and technical
professionals with information about using AS/400
Business Graphics Utility (BGU) to create various
types of charts.

� System/36-Compatible COBOL User’s Guide and
Reference, SC09-1815, provides application pro-
grammers with information about using COBOL in
the System/36 environment on the AS/400 system.

� System/36-Compatible RPG II User’s Guide and
Reference, SC09-1818, provides application pro-
grammers with information on how to design, code,
enter, compile, test, and run RPG II programs. In
addition, differences between compiling in the
System/36 environment and the AS/400 system are
described and explained.

� Software Installation, SC41-4120, provides system
operators and system administrators with informa-
tion on new programs and releases and how to
install them.

� System/36 Assembler Conversion Newsletter,
GC21-8160, provides information about rewriting
System/36 assembler subroutines.

| � DFU User's Guide and Reference, SC09-1362, pro-
| vides application programmers with information to

create programs that list files, change an existing
list program, and run a program against a given file
to produce a listing in the System/36 environment.

� IDDU Use, SC41-3704, provides administrative sec-
retaries, business professionals, and programmers
with detailed information on how to use the OS/400
interactive data definition utility (IDDU) to describe
data dictionaries, files, and records to the system.

� Using the Object Distribution Facility/36 PRPQ,
SC12-9800, provides information about using the
Object Distribution Facility/36 PRPQ.

 Communications Books
� APPN Support, SC41-3407, provides programmers

with information for defining or using OS/400
advanced peer-to-peer networking (APPN).

� APPC Programming, SC41-3443, provides applica-
tion programmers with information for developing
application programs that use OS/400 advanced
program-to-program communications (APPC).

� Asynchronous Communications Programming,
SC41-3444, provides application programmers with
information which includes a description of asyn-
chronous communications, configuration require-
ments, commands used to start a communications
session, and programming considerations for the
AS/400 system.

� BSC Equivalence Link Programming, SC41-3445,
provides application and system programmers with
the information needed to write programs using

H-2 OS/400 System/36 Environment Programming V3R6

OS/400 binary synchronous communications equiv-
alence link (BSCEL) with the AS/400 system to
communicate with a remote system.

� SNA Distribution Services, SC41-3410, provides
system operators and system administrators with
information about administering data communica-
tions applications on an AS/400 system and may
also be useful to a programmer who works with
data communications functions on the AS/400
system.

� Finance Communications Programming,
SC41-3449, provides application programmers,
system operators, and system administrators with
information on the OS/400 finance support program.
It describes how finance support communicates with
a controller and how to set up finance support.

� ICF Programming, SC41-3442, provides application
programmers with the information needed to write
application programs that use AS/400 communica-
tions and the ICF file.

� Intrasystem Communications Programming,
SC41-3447, provides application programmers with
information for defining or using intrasystem com-
munications support to develop communications
between two application programs on the same
system.

� Communications Management, SC41-3406, pro-
vides application programmers with information on
how to start, stop, verify, and test communications,
handle communications errors, and work with com-
munications status.

� Communications Configuration, SC41-3401, pro-
vides system operators, system programmers, and
service personnel with general configuration infor-
mation, including detailed descriptions of network
interface, line, controller, device, mode, and class-
of-service descriptions, configuration lists and con-
nection lists.

� Remote Work Station Support, SC41-3402, provides
system operators, application and system program-
mers, and service personnel with information on
using the following supports: DHCF, Display Station
Pass-Through, 3270 remote attachment, remote
work station configuration support, and 5394 on an
SNA backbone.

� Retail Communications Programming, SC41-3448,
provides application programmers and system
administrators with information on using the OS/400
retail support program. It describes how retail
support communicates with a controller and how to
set up retail support.

� SNA Upline Facility Programming, SC41-3446, pro-
vides application and system programmers with pro-
gramming information for using the OS/400
Systems Network Architecture (SNA) upline facility
with the AS/400 system, describing how to set up
the SNA upline facility, how to write application pro-
grams for the SNA upline facility, and the return
codes the SNA upline facility can send to a
program.

� Local Device Configuration, SC41-4121, provides
system operators and system administrators with
information on how to do an initial configuration and
how to change that configuration. It also contains
conceptual information about device configuration.

 Migration Books
� System/36 Migration Planning, SC41-4152, provides

application programmers, system administrators,
and data processing managers with information to
help migration of products and applications with the
System/36 Migration Aid.

� System/36 Migration Assistant, SC41-4151, pro-
vides system operators, application programmers,
programmers, and data processing managers with
information about using the System/36 Migration Aid
to move System/36 items to the AS/400 system
using menus and displays, or commands.

 Bibliography H-3

H-4 OS/400 System/36 Environment Programming V3R6

 Index

Special Characters
// IF LOAD 6-9
// IF SUBR 6-9
$SFGR

See screen format generator
*NONE 2-1
*S36 2-1, 3-2
*SYSVAL 2-1
#$@INCLGRPH C-1
#LIBRARY 5-4, 6-1

Numerics
3270 device emulation 3-2

A
abnormal ending 18-6
ACCEPT statement 13-24
access algorithms

choosing A-1
defining A-2
direct files A-1
examples A-2
handling synonym records A-1
indexed file with keys A-4
randomizing techniques A-6

accessing folders 8-1
ACQUIRE statement 13-24
acquired session 13-37
Add Authority List Entry (ADDAUTLE)

command 11-7
ADDAUTLE

See Add Authority List Entry command
addressing 5-1
advanced peer-to-peer networking (APPN) 13-4
advanced program-to-program communication

(APPC)
definition 13-4
ICF support 13-16
mapping 13-19
output support 13-45
procedures 13-4
programming considerations 13-45
reason codes 13-11
System/36 to AS/400 13-40, 13-41
using SESSION OCL statement 13-19

all object special authority 11-3
ALLOCATE OCL statement 9-6, 10-5
alphanumeric fields 12-5
alternative indexed files 7-9, 7-12

APPC
See advanced program-to-program communication

APPN
See advanced peer-to-peer networking

ARCHIVE procedure 8-2
AS/400 CL commands in the System/36 environment

error handling 17-3, 17-4
in procedures

special characters 17-3
substitution expressions 17-4
syntax 17-3

used interactively 17-2
AS/400 system

Client Access/400 1-5
device identification 3-3
general environment values 3-9
ICF files 13-17
library QSSP 5-3
objects 5-1
office

tasks 1-4
word processing 1-4

program start request errors 13-11
programming languages 1-5
securing files 7-3
subsystem considerations 13-7
System library (QSYS) 6-1

ASP
See auxiliary storage pool

assigning libraries 6-3
asynchronous communications 13-34
attention key 2-5
ATTR OCL statement 2-4
attributes

special environment (SPCENV) 2-1
values 2-1

audit (AUDIT) 11-4
authority

all object (*ALLOBJ) 11-3
assigning 11-2
audit (AUDIT) 11-4
data 11-5
defined 11-3
files 7-3
holders 11-7
input/output system configuration (IOSYSCFG) 11-4
job control (*JOBCTL) 11-3
lists 11-7
object 11-5
public 11-7
save system (*SAVSYS) 11-3
security administrator 11-3

 Copyright IBM Corp. 1995 X-1

authority (continued)
service (*SERVICE) 11-3
special 11-2
specifying for libraries 6-4
spool control (SPLCTL) 11-4
system-defined

All (*ALL) 11-6
Change (*CHANGE) 11-6
Exclude (*EXCLUDE) 11-6
Use (*USE) 11-6

user profiles 11-2
autodial support 13-45
automatic advance to next tape drive 10-4
auxiliary storage pool (ASP)

references 6-10
user information 6-10

B
backup and recovery 1-4
bar codes, printing D-12
BARCODE D-12
BARSIZE D-12
BARTYPE D-12
basic data exchange format 9-1
batch jobs 2-2, 6-8
batch programs, definition 16-1
begin filled area (BEGAREA) option D-8
begin graphics area (BEGSEG) option D-8
BEGSEG

See begin graphics area option
BGU

See business graphics utility
binary format 12-4
BLDFILE

See Build File procedure
BLDGRAPH

See Build Graphics Object File procedure
BLDINDEX

See Build Index (BLDINDEX) procedure
BLDLIBR

See Build Library procedure
BLDMENU

See Build Menu procedure
block, definition 1-2
blocking records 7-25
bold printing D-4
box characters D-4
BSCEL

BSC/CICS to AS/400 system 13-41
BSC/IMS to AS/400 system 13-42
configuration considerations 13-37
programming considerations 13-37
terminology considerations 13-36

Build File (BLDFILE) procedure 7-1, 7-23

Build Graphics Object File (BLDGRAPH)
procedure D-11

Build Index (BLDINDEX) procedure 7-9
Build Library (BLDLIBR) procedure 6-6
Build Menu (BLDMENU) procedure 1-3, 14-7
business graphics utility (BGU) 1-4, C-1

C
cache 3-9, 7-4
CALL statement 17-8
called program, definition 17-8
calling program, definition 17-8
CANCEL PRT command 4-6
CATALOG procedure 5-5, 6-7, 8-1, 10-5
CGU

See character generator utility
chaining

definition 7-25
menus 14-5

Change Authority List Entry (CHGAUTLE)
command 11-7

CHANGE COPIES command 4-6
CHANGE DEFER command 4-6
Change Device Printer (CHGDEVPRT)

command 2-3
CHANGE FORMS command 4-6
CHANGE ID command 4-6
Change Job (CHGJOB) command 4-4
Change Member (CHNGEMEM) procedure 6-7
CHANGE PRT command 4-6
CHANGE PRTY command 4-6
CHANGE SEP command 4-6
Change System Value (CHGSYSVAL)

command 2-1, 4-3, 4-5
Change System/36 (CHGS36) command 3-4
Change System/36 Environment Attributes

(CHGS36A) 2-5, 3-2
Change System/36 Message List (CHGS36MSGL)

command 2-5
Change System/36 Procedure Attributes

(CHGS36PRCA) command 2-5
Change System/36 Program Attributes

(CHGS36PGMA) command 2-5
Change System/36 Source Attributes

(CHGS36SRCA) command 2-5, 14-23
Change User Profile (CHGUSRPRF) command 2-1,

11-2
character generator utility (CGU) 1-4
character orientation (CHARORI) option D-8
character size (CHARSIZE) option D-9
character style options D-3
characters per inch (cpi) D-3
CHARORI

See character orientation option

X-2 OS/400 System/36 Environment Programming V3R6

CHARSIZE
See character size option

CHGAUTLE
See Change Authority List Entry command

CHGDEVPRT
See Change Device Printer command

CHGJOB
See Change Job (CHGJOB) command

CHGS36
See Change System/36 command

CHGS36A
See Change System/36 Environment Attributes

command
CHGS36MSGL

See Change System/36 Message List command
CHGS36PGMA

See Change System/36 Program Attributes
command

CHGS36PRCA
See Change System/36 Procedure Attributes

command
CHGS36SRCA

See Change System/36 Source Attributes command
CHGSYSVAL

See Change System Value command
CHGUSRPRF

See Change User Profile command
CHNGEMEM

See Change Member procedure
CIRCLE option D-9
CL commands

See commands
Client Access/400 1-5
COBOL statements 13-24
code-link form displays 14-15
COLOR option D-4, D-9
command processor, definition 18-2
command security 11-11
commands

ADDAUTLE (Add Authority List Entry) 11-7
CANCEL PRT 4-6
CHANGE COPIES 4-6
CHANGE DEFER 4-6
CHANGE FORMS 4-6
CHANGE ID 4-6
CHANGE PRT 4-6
CHANGE PRTY 4-6
CHANGE SEP 4-6
CHGAUTLE (Change Authority List Entry) 11-7
CHGDEVPRT (Change Device Printer) 2-3
CHGJOB (Change Job) 4-4
CHGS36 (Change System/36) 3-4
CHGS36A (Change System/36 Environmental Attri-

butes) 2-5
CHGS36A (Change System/36Attributes) 3-12
CHGS36MSGL (Change System/36 Message

List) 2-5

commands (continued)
 CHGS36PGMA (Change System/36 Program Attri-

butes) 2-5
CHGS36PRCA (Change System/36 Procedure Attri-

butes) 2-5
CHGS36SRCA (Change System/36 Source Attri-

butes) 2-5, 14-23
CHGSYSVAL (Change System Value) 2-1, 4-3, 4-5
CHGUSRPRF (Change User Profile) 2-1, 11-2
control language 6-9
CPYFRMDKT (Copy from Diskette) 9-7
CPYTODKT (Copy to Diskette) 9-7
CRTAUTL (Create Authority List) 11-7
CRTDEVPRT (Create Device Printer) 2-3
CRTMSGFMNU (Create System/36 Message File

Menu) 2-5
CRTS36CBL (Create System/36 COBOL

Program) 2-5
CRTS36DSPF (Create System/36 Display File) 2-5,

14-21, 14-25
CRTS36MNU (Create System/36 Menu) 2-5
CRTS36MSGF (Create System/36 Message

File) 2-5
CRTS36RPG (Create System/36 RPG II

Program) 2-6
CRTUSRPRF (Create User Profile) 2-1, 11-2
DLTOVR (Delete Override) 13-44
DSPJOBLOG (Display Job Log) 16-28
DSPMSG (Display Message) 2-4
DSPOBJAUT (Display Object Authority) 11-5
DSPS36 (Display System/36) 3-13
DSPSYSVAL (Display System Value) 2-1
EDTOBJAUT (Edit Object Authority) 11-5
EDTS36PGMA (Edit System/36 Program

Attributes) 2-6
EDTS36PRCA (Edit System/36 Procedure

Attributes 2-6
EDTS36SRCA (Edit System/36 Source

Attributes) 2-6
ENDS36 (End System/36) 2-2, 2-6
ENDSBS (End Subsystem) 6-4
GRTOBJAUT (Grant Object Authority) 11-5
HOLD PRT 4-6
in System/36 environment 17-2
overview 2-2
OVRDBF (Override Database File) 7-35
OVRICFDEVE (Override ICF Device Entry) 13-18
OVRICFF (Override ICF File) 13-44
procedures 2-5
RCLSTG (Reclaim Storage) 6-4
RELEASE PRT 4-6
RESTART PRT 4-6
RGZDLO (Reorganize Document Library

Object) 8-2
RMVAUTLE (Remove Authority List Entry) 11-7
RSTDLO (Restore Document Library Object) 8-2

 Index X-3

commands (continued)
RSTS36F (Restore System/36 File) 2-6
RSTS36FLR (Restore System/36 Folder) 2-6, 8-3
RSTS36LIBM (Restore System/36 Library

Member) 2-6, 6-10
RTVS36A (Retrieve System/36 Environment Attri-

butes) 2-6
SAVDLO (Save Document Library Object) 8-2
SAVLIB (Save Library) 6-3
SAVOBJ (Save Object) 6-3
SAVS36F (Save System/36 File) 2-6, 9-7
SAVS36LIBM (Save System/36 Library

Member) 2-6
SBMJOB (Submit Job) 2-3
SETATNPGM (Set Attention Program) 2-5
SIGNOFF 2-4
START PRT 4-6, 4-7
STATUS 4-5
STATUS SESSION 4-2
STATUSF 4-5
STOP PRT 4-6
STRS36 (Start System/36) 2-1, 2-2, 2-6, 11-11
STRS36PRC (Start System/36 Procedure) 2-2, 2-6,

11-11
STRSEU (Start Source Entry Utility) 6-2
WRKOBJLCK (Work Object Lock) 6-5
WRKS36 (Work with System/36 Configuration) 2-6
WRKS36 (Work with System/36 Environment

command) 3-13
WRKS36PGMA (Work with System/36 Program Attri-

butes) 2-6
WRKS36PRCA (Work with System/36 Procedure

Attributes) 2-6
WRKS36SRCA (Work with System/36 Source Attri-

butes) 2-7
communications

APPC (advanced program-to-program communica-
tions) 13-16, 13-40

asynchronous 13-16, 13-31, 13-34
autodial and telephone number list support 13-45
BSC/CICS 13-41
BSC/IMS 13-42
BSCEL 13-36, 13-37
configuring environment 13-1
controller description 13-5
debugging 13-30
ENABLE hierarchy/example 13-6
file transfer 13-30, 13-31, 13-33
files 17-12
finance communications 13-16, 13-38
ICF

COBOL 13-24
files 13-17
IDDU data dictionaries 13-27
operations 13-20
RPG II 13-23
system-supplied formats 13-25

communications (continued)
intrasystem communications 13-16, 13-39
line description 13-5
override commands 13-44
OVRICFDEVE command 13-18
procedures examples 13-2
program start request errors 13-11
QICDMF file 13-17
receiving objects 13-47, 13-48
resource name 13-6
retail 13-39
return codes 13-28, 13-30
sending objects 13-47
SESSION OCL statement 13-18
SNA distribution services (SNADS) 13-46
SNA upline facility (SNUF) 13-16, 13-41, 13-42
subsystems 13-15
testing applications 13-28
VRYCFG hierarchy/example 13-6

compress, definition 9-3
computer output reduction (COR) D-6
configuration menus 3-4
configuring

asynchronous considerations 13-34
communications environment 13-1

consecutive processing method 7-14
console, definition 2-3
CONTINUE parameter 4-8, 17-11, 17-12
control command, definition 1-1
control language commands

See commands
control language, definition 1-1
controlling print spooling 4-4
Copy from Diskette (CPYFRMDKT) command 9-7
Copy to Diskette (CPYTODKT) command 9-7
COPYDATA procedure 7-1, 7-3, 7-24
copying files 7-3
copying information 9-4
copying libraries 6-7
COPYPRT procedure 4-6, 4-7
cpi

See characters per inch
CPYFRMDKT

See Copy from Diskette command
CPYTODKT

See Copy to Diskette command
Create Authority List (CRTAUTL) command 11-7
Create Device Printer (CRTDEVPRT) command 2-3
Create System/36 COBOL Program (CRTS36CBL)

command 2-5
Create System/36 Display File (CRTS36DSPF)

command 2-5
Create System/36 Menu (CRTS36MNU)

command 2-5
Create System/36 Message File CRTS36MSGF

command 2-5

X-4 OS/400 System/36 Environment Programming V3R6

Create System/36 Message File Menu
(CRTMSGFMNU) command 2-5

Create System/36 RPG II Program (CRTS36RPG)
command 2-6

Create User Profile (CRTUSRPRF) command 2-1,
11-2

creation date, definition 7-2
CRTAUTL

See Create Authority List command
CRTDEVPRT

See Create Device Printer command
CRTS36CBL

See Create System/36 COBOL Program command
CRTS36DSPF

See Create System/36 Display File command
CRTS36MNU

See Create System/36 Menu command
CRTS36MNUF

See Create System/36 Message File Menu
command

CRTS36MSGF
See Create System/36 Message File command

CRTS36RPG
See Create System/36 RPG II Program command

CRTUSRPRF
See Create User Profile command

current position D-10

D
D-Spec

adjust/fill B-19
automatic record advance B-20
blink field B-21
column separators B-22
constant data B-24
constant type B-24
continuation B-26
controlled field exit B-20
data type B-17
DBCS B-26
enable dup key B-20
field length B-14
high intensity B-21
horizontal position B-15
input allowed B-17
line number B-14
lowercase B-24
mandatory entry B-18
mandatory fill B-18
nondisplay B-22
output data B-15
position cursor B-19
protect field B-21
reverse image B-22
self-check B-19

D-Spec (continued)
shift-in B-26
shift-out B-26
underline B-22

data
authority

Add (*ADD) 11-6
Delete (*DLT) 11-6
Execute (*EXECUTE) 11-6
Read (*READ) 11-5
Update (*UPD) 11-6

communications 1-3
compression 9-3
definition 8-1
dictionaries 8-2
transfer 1-5
types 14-11

Data Description Specifications (DDS)
creating new files 14-22
creating, adding, changing, or deleting a display

file 14-21
data file utility (DFU) 1-4, 7-1
data terminal equipment (DTE), definition 13-34
database files

deleted files stored in cache 7-4
in System/36 application job steps 17-8
naming conventions 17-11

date-differentiated files 7-2
DBCS

See double-byte character set
DDS

See Data Description Specifications
DEALLOC OCL statement 9-6, 10-5
DEBUG statement 16-28
DEFER parameter 4-8
defer write (DFRWRT) attribute 14-26, B-1
Delete Override (DLTOVR) command 13-44
DELETE procedure 7-2, 8-1
device description 13-2
device identification 3-3
DFRWRT

See defer write attribute
DFU

See data file utility
disk

allocating to a job 9-6
coexistence considerations 9-6
data compression 9-3
definition 5-1
exchange formats 9-1
file expiration dates 9-3
files 9-2
measuring activity 5-5
migrating 9-8
organizing space 7-21
overview 9-1

 Index X-5

disk (continued)
preparing 9-4
removing a file from 7-3
restoring 9-7
space 7-21
storage 1-2, 5-1
system information 5-3
types and storage capacities 9-1
types of files 9-2
user information 5-4

diskette
exchange formats

basic data 9-1
H-data 9-2
I-data 9-2

files 9-2
I/O device 17-14
information

copying 9-4
listing 9-5
removing 9-6
restoring 9-5
saving 9-5
storing 9-2

DISP-NEW keyword 5-5
DISP-NEW parameter 7-1
display

adjacent-form 14-14
attributes 14-12
code-link form 14-15
color or highlighting 14-15
control (S) specifications B-1
copying output from output queue 4-6
creating formats 14-17
data management 14-10, 14-12
data types 14-11
description 1-3, 14-10
designing 14-13
enhancements 14-25
erase input fields operation 14-12
files 7-4, 14-26, 17-12
fixed-form 14-14
FORMAT procedure 14-18
formats

programming languages 14-19
with COBOL 14-19
with RPG II 14-19
within a procedure 14-20

free-form 14-14
input operations and fields 14-11
maximum number of devices 14-23
menu-form 14-14
multiple formats 14-15
online help information 14-18
output operations and fields 14-11
overriding fields 14-13

display (continued)
public authority 14-23
self-check digits 14-17
station device error considerations 19-8
suppressing input 14-13
system operator 15-9
work station 15-8

display IDs
removing 3-14

Display Job Log (DSPJOBLOG) command 16-28
Display Message (DSPMSG) command 2-4
Display Object Authority (DSPOBJAUT)

command 11-5
Display System Value (DSPSYSVAL) command 2-1
Display System/36 (DSPS36) command 3-2
displays

Change S/36 Diskette IDs 3-7
Change S/36 Display IDs 3-5
Change S/36 Environment Configuration 3-5
Change S/36 Environment Values 3-9
Change S/36 MRT Security and Performance 3-11
Change S/36 Printer IDs 3-6
Change S/36 Tape IDs 3-7
Change System/36 3270 Device Emulation

Values 3-8
Display System/36 Environment Configuration 3-13

DLTOVR
See Delete Override command

document, definition 1-2
double-byte character set (DBCS) support 20-3
downloading forms and box characters D-4
drawer selection (DRAWER) option D-4
DROP statement 13-25
DSPJOBLOG

See Display Job Log command
DSPMSG

See Display Message command
DSPOJBAUT

See Display Object Authority command
DSPS36

See Display System/36 command
DSPSYSVAL

See Display System Value command
dual-routed messages 15-13
DUPKEY parameter 7-11
duplicate keys 7-11

E
Edit Object Authority (EDTOBJAUT) command 11-5
Edit System/36 Procedure Attributes (EDTS36PRCA)

command 2-6
Edit System/36 Program Attributes (EDTS36PGMA)

command 2-6
Edit System/36 Source Attributes (EDTS36SRCA)

command 2-6

X-6 OS/400 System/36 Environment Programming V3R6

EDTOBJAUT
See Edit Object Authority command

EDTS36PGMA
See Edit System/36 Program Attributes command

EDTS36PRCA
See Edit System/36 Procedure Attributes command

EDTS36SRCA
See Edit System/36 Source Attributes command

EMPHASIS option D-4
end filled area (ENDAREA) option D-8, D-9
end segment (ENDSEG) option D-9
End Subsystem (ENDSBS) command 6-4
End System/36 (ENDS36) command 2-2, 2-6
ENDAREA

See end filled area option
ENDS36

See End System/36 command
ENDSBS

See End Subsystem command
ENDSEG

See end segment option
error

detection
description 19-3
program language 19-3
subroutines 19-3
System/36-Compatible COBOL language 19-4
System/36-Compatible RPG II language 19-4
user-coded routines 19-4

disk device failures 19-1
equipment failures 19-1
job log 19-4
power failure 19-1
prevention

automatic response function 19-2
description 19-2
testing and debugging 19-2
unscheduled ending of jobs 19-2
using WAIT and FILE OCL statements 19-3

programming 19-1
recovery

data backup 19-5
description 19-4
equipment 19-4
historical data 19-5
master files 19-5
methods 19-6
service aid procedures 19-8

return codes 19-4
system failures 19-1
system operator 19-2
types 19-1
user 19-2

expiration dates
diskette files 9-3
tape files 10-3

EXTEND parameter 7-23
extendable file 7-23
externally-described files 17-10

F
field definition (D) specification B-13
file and library storage 1-2, 5-1
File Library (FILELIB) OCL statement

changing
current files library 6-10, 7-1
current library list search indicator 6-10, 7-31

files library 7-31
File Library (FLIB) procedure

changing
files library 5-2
session files library 6-10, 7-1
session library list search indicator 6-10, 7-31

FILE OCL statement 7-1, 19-3
file transfer subfiles

APPC 13-33
description 13-30
subroutine parameters 13-31
support considerations 13-33

FILELIB
See File Library (FILELIB) OCL statement

files
activity 7-20
adding records 7-25
alternative indexed 7-12
attributes

delete-capable 7-24
extendable 7-23
job 7-21
list of 7-21
resident 7-21
scratch 7-21

blocked or unblocked data 10-1
blocking records 7-25
change errors 7-30
COPYFILE 10-2
copying 7-3
creating 7-1
creating a sequential set on tape 10-7
data-differentiated 7-2
database 17-8
date-differentiated 7-34
dates 7-2
DBLOCK 7-26
deadlock conditions 7-29
delete-capable 7-24
deleting records from 7-24
description 7-1
direct 7-5, 7-14, 7-17
diskette 9-2
display 14-26

 Index X-7

files (continued)
displaying 7-4
dynamically created 5-5
EXCHANGE 10-2
exchanging with other systems 10-3
expiration dates 9-3, 10-3
extendable 7-23
extending 7-35
externally-described 17-10
group 7-2
indexed 7-5, 7-14, 7-17
job 7-21
label definition 7-1
library 5-2, 7-31
library QSSP 5-3
LIBRFILE 10-2
loading program 7-5
locked records 7-29
logical 7-9
master 7-19
members 7-34
multiple file libraries 7-31
multiple indexes 7-9, 7-10
multiple names 7-30
naming conventions 5-4, 7-1
organization

activity 7-20
application 7-20
choosing 7-19
description 7-5
direct 7-5, 7-7
disk space 7-21
indexed 7-5, 7-8
master 7-19
processing 7-20
sequential 7-5
transaction 7-19

physical 7-9
placing data in 7-3
printing 7-4
processing

consecutive method 7-14
current record pointer 7-12
generalized method 7-17
in System/36 environment 17-8
keyed 7-13
methods 7-13
nonkeyed 7-13
programming considerations 7-31
random by key 7-17
random by relative record number 7-16
sequential by key 7-15
with deleted records 7-25
with duplicate keys 7-12

program-described 7-33, 17-10
record blocking 7-25

files (continued)
record sharing protection 7-28
record-mode 6-6
relative record number 7-7
releasing locked records 7-29
remote 7-38
removing 7-3
renaming 7-3
resident 7-21
restoring multiple-index 7-11
Save/Restore 10-3
SAVEFLDR 10-3
SAVELIBR 10-3
saving multiple-index 7-10
scratch 7-21
searching 6-10
sector-mode 6-5
securing 7-3
sequential 7-5, 7-14, 7-17
sharing

considerations 7-26
deadlock conditions 7-29
levels 7-26, 7-36
record protection 7-28
releasing locked records 7-29
WAIT parameter 7-28
waiting for files to become available 7-27
within the same job 7-37

specifying in a program 7-3
storage 5-1, 7-4
synonym records 7-8
transaction 7-19
use 7-19
user 5-4

fill pattern D-10
fill pattern, definition D-8
finance communications support 13-38
first-level message, definition 15-1
fixed-form displays 14-14
fixed-form menu 14-3
flag parameter 14-21
FLIB procedure

See File Library (FLIB) procedure
floating-point format 12-5
folders

accessing 8-1
coexistence considerations 8-3
creating 8-1
deleting 8-1
description 8-1
listing information 8-1
members 8-1
migration considerations 8-1, 8-3
naming conventions 5-4
programming considerations 8-2
removing 8-1

X-8 OS/400 System/36 Environment Programming V3R6

folders (continued)
renaming 8-1
reorganizing 8-2
restoring 8-2
saving 8-2
securing 8-1
user 5-4

font selection D-3
form printing D-11
FORMAT

parameter 9-1
procedure 1-3, 14-18

FORMAT2 parameter 9-1
FORMS

See forms characters option
forms characters (FORMS) option D-4
forms generation utility D-11
free-form displays 14-14
FROMLIBR procedure 9-7

G
generalized processing method 7-17
Grant Object Authority (GRTOBJAUT)

command 11-5
graphic transparent (IGTRANS) option D-9
graphics object file D-11
group files 7-2
group libraries, definition 6-1
GRTOBJAUT

See Grant Object Authority command

H
H-data exchange format 9-2
H-Spec

boundary indicator B-13
field name B-14
folder name B-10
help display file name B-10
help document name B-10
help format name B-9
help library name B-10
help text label B-9
lower right row and column B-12
online document B-13
restore display format B-12
sequence number B-9, B-13
suppress selection B-12
upper left row and column B-11

HALT parameter 14-24
help definition (H) specifications B-8
help information, online 14-18
highlighting D-4
HOLD PRT command 4-6

HRI
See human readable interpretation

human readable interpretation (HRI) D-12

I
I-data exchange format 9-2
ICF

See intersystem communications function
IDDU

See interactive data definition utility
IDDUDCT procedure 8-2
IDDUDFN procedure 8-2
IDDUDISK procedure 8-2
IDDULINK procedure 8-2
IDDUPRT procedure 8-2
IF expression, definition 16-26
IF LOAD 6-9
IF SUBR 6-9
IGTRANS

See graphic transparent option
IHTRANS D-5
INCLGRPH C-1
index

alternative 7-9
file organization 7-8
keys 7-11
multiple 7-9, 7-10
primary 7-8

indexed files 7-5, 7-14
informational messages 15-1
INIT procedure 2-4, 9-1
initial program security 11-4
initiator, definition 3-4
input

fields 14-11
operations 14-11
stream, definition 16-12

input/output system configuration
(IOSYSCFG) 11-4

inquiry 16-6
intelligent printer data stream (IPDS)

advanced function support D-2
bar codes D-12
definition D-1
description D-1
files 7-4
parameters D-1
printer options D-2
printing

forms and graphs D-11
text D-11

subroutines D-1
transparent options D-5

interactive data definition utility (IDDU) 7-1

 Index X-9

interactive programs, definition 16-1
intersystem communications function (ICF)

additional considerations 13-30
APPC (advanced program-to-program communica-

tions) 13-16
asynchronous communications 13-16
BSCEL 13-16
COBOL statements for communications 13-24
communications operations 13-20
debugging programs 13-30
definition 2-3
description 13-16
finance communications 13-16
IDDU data dictionaries 13-27
intrasystem communications 13-16
mapping SESSION OCL to OVRICFDEVE 13-18
OS/400 files 13-17
QICDMF File 13-17
retail communications 13-16
return codes 13-28
RPG II 13-23
SNA upline facility (SNUF) 13-16
system-supplied formats 13-25
testing applications 13-28
tying application to configuration 13-17

intrasystem communications
APPC 13-45
programming considerations 13-39, 13-45
using CL override commands 13-44

IPDS
See intelligent printer data stream

IPTRANS D-5

J
job control (*JOBCTL) 11-3
JOB-YES parameter 7-23
jobs

command processor 18-2
concepts 18-1
date 18-14
definition 1-3
description 18-2
end-of-day processing 18-14
ending

abnormal 18-6
description 18-6
function 18-6
normal 18-6

evoking other jobs 18-11
job priorities 18-7
job steps 1-3, 18-1
library 6-3
managing 18-7
preventing

cancellation 18-13
informational messages from appearing 18-13

jobs (continued)
preventing (continued)

interruption 18-13
procedure control expressions 18-4
processing 18-1
processing OCL statements 18-4
queue

changing priority levels 18-9
definition 18-8
priority 18-8, 18-10
processing priorities 18-9
running jobs later 18-11
types 18-8
unattended system operation 18-12
using 18-8
WAIT OCL statement 18-11

running
during initial program load (IPL) 18-13
without operators 18-14

scheduling 18-7
security classification 18-12
starting 18-1, 18-4
submitting to run later 18-11
system input processing example 18-5
using 18-1

journal files 5-4

K
key

attention 2-5
definition 12-5
duplicate

checking for 7-12
processing a file 7-12
sequence 7-12
sorting 7-38
specifying 7-11

function differences 14-1
index 7-11
random processing 7-17
sequential processing 7-15
system request 2-4
using 7-11, 12-6

keyed processing 7-13
KEYSORT procedure 7-38

L
LABEL parameter 7-2
LDA

See local data area (LDA)
LEAVE parameter for tape files 10-5
libraries

application 6-1
assigning 6-3

X-10 OS/400 System/36 Environment Programming V3R6

libraries (continued)
authority 6-4
backup and recovery 6-4
changing 6-4
coexistence considerations 6-9
copying 6-7
creating 6-6
creating members 6-6
current 2-2, 6-3, 6-7
definition 6-1
deleting 6-3
group 6-1
job 6-3
licensed program 5-4
list search indicators 7-31
listing files 6-7
listing information 6-6
lists

batch job information 6-8
current library 6-7, 7-31
description 6-7, 7-31
keyword (LIBL) 7-31
MRT job information 6-8
product libraries 6-7
search order 6-9
support for files 7-31
support for procedures 7-33
support for substitution expressions 7-33
support for utilities 7-32
system part 6-7
user part 6-7

members
creating 6-6
definition 6-2
listing 6-6
load 6-2
names 6-2
procedure 6-2
removing 6-7
renaming 6-7
source 6-2
subroutine 6-2

migration 6-10
naming conventions 5-4, 6-1
other licensed program 6-1
overview 6-1
programming guidelines 6-6
QSSP 5-3
record-mode files 6-6
recovering from damage

#LIBRARY 6-4
Library QSSP 6-5
QS36ENV *S36 in #LIBRARY 6-5

removing 6-3, 6-7
renaming 6-3, 6-7
restoring 6-3, 6-6

libraries (continued)
saving 6-6
searching

database files 6-10
indicators 7-31
migration commands 6-9
procedures 6-9
programs 6-9
source and load members 6-9
subroutines 6-9

sector-mode files 6-5
session 6-3
set up (#LIBRARY) 3-9
sharing 6-3
sign-on 6-3
specifying authority 6-4
storage 5-1
system (QSYS) 6-1
System/36 environment 6-1
types of members 6-2
user 5-4
user (#LIBRARY) 6-1
using 6-2

LIBRARY 5-4, 6-1
LIBRARY OCL statement 6-4
Library to Library (LIBRLIBR) procedure 6-7
library-level security 11-7
LIBRLIBR

See Library to Library procedure
licensed program libraries 5-4
licensed programs

Client Access/400 1-5
OfficeVision for OS/400 1-4
Query 1-4
utilities and application development tools 1-4

LINE option D-9
line type (LINETYPE) option D-10
line width (LINEWDTH) option D-10
lines per inch (lpi) D-6
LINETYPE

See line type option
LINEWDTH

See line width option
List File (LISTFILE) procedure 6-6, 7-4
List Library (LISTLIBR) procedure 6-6
LISTDATA procedure 7-4
LISTFILE

See List File procedure
listing files 6-7
listing information from diskette 9-5
LISTLIBR

See List Library procedure
load members, definition 6-2
LOAD OCL statement 17-5
loading program 7-5

 Index X-11

local data area (LDA) 16-13
LOG OCL statement 16-28
logical unit, definition 13-2

M
magnetic tape storage 1-2
managing jobs 18-7
mantissa, definition 12-5
MARKER option D-10
marker type (MARKTYPE) option D-10
MARKTYPE

See marker type option
mathematical symbols D-4
MAXDEV attribute 14-23, 14-26, 16-29
MAXPGMDEV attribute 16-29
menus

BLDMENU procedure 1-3, 14-7
chaining 14-5
color or highlighting 14-9
command text message file 14-7
configuration 3-4
creating and changing 14-7
description 14-1
designing 14-4
differences

from System/36 14-2
help 14-3
user 14-3

display file 14-7
fixed-form 14-3
form displays 14-14
formats 14-3
free-form 14-4
function key processing 14-1
online help information 14-7
screen design aid (SDA) 14-7
security 11-4, 14-3
system request 2-4, 18-6
user 14-2

merging graphics and text
description C-1
examples C-1
printer storage limitations C-3
printing a graphics file along with other output C-2
printing a graphics file only C-1
programming considerations C-3

message members
application design 15-2
concepts 15-1
creating or changing source 15-14
default responses 15-14
definition 1-3
displaying from procedures 15-16
file considerations 15-15
migrating 15-17

message members (continued)
programming guidelines 15-14
required parameters 15-17
severity levels 15-14
uses 15-1
with displays 15-17
with programs 15-17
within a procedure 15-15

messages
automatic reply handling 15-13
changing 15-3
command text file 14-7
concepts 15-1
console 15-13
converting text 15-4
creating 15-2
default responses 15-5, 15-7
displaying 15-8
dual-routed 15-13
embedding 15-10
enhancements 15-13
file considerations 15-15
files 15-2
formatting with control characters 15-9
from procedures 15-16
handling 2-3, 15-11
handling defaults 15-11
identification 13-33
inserting variable data 15-3
nondisplayed errors 15-12
problems 15-12
prompting 15-8
restrictions 15-13
sending 15-9, 15-11
severity levels 15-5
types 15-1
with displays 15-17
with programs 15-17
work station displays 15-8

mixed mode applications
architectural restrictions 17-1
AS/400 application in a System/36 environment

job 17-10
AS/400 program followed by a System/36

program 17-9
definition 17-1
file processing

communications 17-12
database 17-8
display 17-12
externally-described 17-10
printer 17-11
program-described 17-10

program control 17-5
System/36 program followed by a System/36

program 17-10

X-12 OS/400 System/36 Environment Programming V3R6

mixed mode applications (continued)
System/36 program followed by an AS/400

program 17-9
using CL commands in System/36 procedures

error handling 17-4
special characters 17-3
substitution expressions 17-4
syntax 17-3

mixing CL, OCL commands 17-2
mixing System/36 programs and AS/400 programs

See mixed mode applications
modulus 10/modulus 11 checking B-19
MRT

See multiple requester terminal
multiple indexes for a file 7-9, 7-11
multiple requester terminal (MRT)

configuring 3-11
definition 2-5
MRTDLY attribute 16-20, 16-25
MRTMAX value 16-3, 16-17
programs 2-5, 11-12, 16-3, 16-15, 16-23
security 3-4, 11-12

N
NAME parameter 7-2
naming conventions

diskette devices 17-14
files 5-4, 7-1
folders 5-4
libraries 5-4
library member 6-2
library names 6-1
printer files 17-12
tape devices 17-14

national language support 1-4
NEP

See never-ending program
never-ending program 16-6
NLS 1-4
NONE 2-1
nonkeyed processing 7-13
nonrequester terminal (NRT) programs 16-4
NUMBER parameter 14-24

O
object authority

alter (*OBJALTER) 11-5
existence (*OBJEXIST) 11-5
list management (*AUTLMGT) 11-5
management (*OBJMGT) 11-5
operational (*OBJOPR) 11-5
reference (*OBJREF) 11-5

object, definition 5-2

OCL
See operation control language (OCL)

OCR characters D-4
OLINK procedure 6-9
online help information 14-18
operating in the System/36 environment 2-1
operating system, definition 2-3
operation control language (OCL), definition 2-3
options

BEGAREA (begin filled area) D-8
BEGSEG (begin graphics area) D-8
CHARORI (character orientation) D-8
CHARSIZE (character size) D-9
CIRCLE D-9
COLOR D-4, D-9
DRAWER (drawer selection) D-4
EMPHASIS D-4
ENDAREA (end filled area) D-8, D-9
ENDSEG (end segment) D-9
FORMS (forms characters) D-4
IGTRANS (graphic transparent) D-9
LINE D-9
LINETYPE (line type) D-10
LINEWDTH (line width) D-10
MARKER (marker) D-10
MARKTYPE (marker type) D-10
PATTYPE (pattern type) D-10
POSITION D-10
QUALITY D-6
ROTATE (page rotation) D-6
TEXT D-6, D-11
TRANS (transparent) D-5

organization of files 7-5
output

fields 14-11
operations 14-11
queues 4-3, 5-4

Override Database File (OVRDBF) command 7-35
Override ICF Device Entry (OVRICFDEVE)

command 13-18
Override ICF File (OVRICFF) command 13-44
OVRDBF

See Override Database File command
OVRICFDEVE

See Override ICF Device Entry command
OVRICFF

See Override ICF File command

P
page rotation (ROTATE) option D-6
pages, definition 16-5
parameters

COBOL printer D-1
CONTINUE 4-8, 17-11, 17-12
DEFER 4-8

 Index X-13

parameters (continued)
DISP-NEW 7-1
DUPKEY 7-11
EXTEND 7-23
FORMAT 9-1
FORMAT2 9-1
HALT 14-24
JOB-YES 7-23
LABEL 7-2
LEAVE 10-5
NAME 7-2
NUMBER 14-24
PRT 4-5
RETAIN-S 7-10
REWIND 10-5
RPG II printer D-1
SPCENV 2-1, 3-1
UNLOAD 10-5
WAIT 7-28

parent-child concept 11-11
pattern type (PATTYPE) option D-10
PATTYPE

See pattern type option
PDM

See programming development manager
POSITION option D-10
positional parameter, definition 13-1
print file, definition 4-7
Print Graphic (PRTGRAPH) procedure D-11
print graphics subroutines D-7
print spooling

commands 4-5
controlling 4-5
description 4-3

printed output
assigning priorities 4-8
attributes 4-9
combining files 4-7
controlling or displaying print spooling 4-3, 4-4, 4-5
creating and controlling 4-1
data management 4-1
delayed status 4-8
forms number 4-7
printer control guidelines 4-4
procedures 4-1
spool writer messages 4-4
system list 4-3
using output queues 4-3

printer control guidelines
change

Print key printer 4-5
printer configuration information 4-5
printer information in a procedure 4-5
session printer 4-4
system list device 4-5
system printer 4-5

printer control guidelines (continued)
description 4-4

printer data management 1-1, 4-1
printer files

attribute processing 17-11
CONTINUE-YES processing 17-11
naming conventions 17-12
open time processing 17-11

PRINTER OCL statement 4-1, 4-8
PRINTKEY procedure 4-5
priority, definition 18-7
procedure member, definition 6-2
procedure members, definition 6-2
procedures

// IF 6-9
ARCHIVE 8-2
attributes 16-21
BLDFILE (Build File) 7-1, 7-23
BLDGRAPH (Build Graphics Object File) D-11
BLDINDEX 7-9
BLDLIBR (Build Library) 6-6
BLDMENU (Build Menu) 1-3, 14-7
calling 16-22, 16-23, 16-29
CATALOG 5-5, 8-1, 10-5
changing printer information 4-5
CHNGEMEM (Change Member) 6-7
commands 2-5
concepts 16-21
controlling 16-27
COPYDATA 7-1, 7-3, 7-24
COPYPRT 4-6, 4-7
creating and changing 16-27
debugging 16-28
DELETE 7-2, 8-1
description 1-3
designing 16-1, 16-26
FLIB (File Library) 5-2, 6-10, 7-1
FORMAT 1-3, 14-18
FROMLIBR 9-7
functions 16-22
IDDUDCT 8-2
IDDUDFN 8-2
IDDUDISK 8-2
IDDULINK 8-2
IDDUPRT 8-2
INIT 2-4, 9-1
job log processing 16-28
KEYSORT 7-38
LIBRLIBR (Library to Library) 6-7
List File (LISTFILE) 7-4
LISTDATA 7-4
LISTFILE (List File) 6-6
listing 16-27
LISTLIBR (List Library) 6-6
members 1-3, 6-2, 16-22
migration utility 16-29

X-14 OS/400 System/36 Environment Programming V3R6

procedures (continued)
MRT 16-23, 16-29
naming 16-26
OLINK 6-9
parameters 16-22
parts 16-21
performance and coding techniques 16-26
PRINTKEY 4-5
programming considerations 16-27
PRTGRAPH (Print Graphic) D-11
RENAME 7-3, 8-1
RESTLIBR (Restore Library) 6-3, 6-4
RESTORE 7-1, 7-2, 7-3, 7-11
RETRIEVE 8-2
SAVE 7-2, 7-10
SAVEFLDR (Save Folder) 8-2
SAVELIBR (Save Library) 6-4, 9-7
searching for 6-9
SET 4-5
SEU (Source Entry Utility) 6-2
SYSLIST (System List) 4-5
TAPECOPY 7-1, 7-3
TAPEINIT 10-5
TESTFLDR 8-2
TEXTDOC 8-1
TEXTFLDR 8-1
TOLIBR (To Library) 6-4, 9-7
TRANSFER 7-1, 7-3, 9-2, 9-7
using 16-22
with menus 16-23

processing
batch 7-20
files

communications 17-12
database 17-8
display 17-12
printer 17-11

interactive 7-20
methods 7-13

profiles 11-2
program control 17-5
program date, definition 9-3
program temporary fix (PTF)

definition 3-4
deleting 3-4
installing 3-4
IPL (initial program load) 3-4
removing 3-4
saving 3-4

program-described files, description 17-10
programming

considerations
for accessing and maintaining folders 8-2
for diskette processing 9-4
for file processing 7-31
for managing disk storage 5-5
for MRT programs 16-15

programming (continued)
considerations (continued)

for multiple-user programs 16-13
for procedures 16-27
for tape processing 10-4

guidelines for libraries 6-6
languages 1-5
printer data management 4-1
using printer data management 4-1
using system list 4-1

programming development manager (PDM) 1-4
Programming Request for Price Quotation (PRPQ),

definition 13-46
programs

application structure 16-5
attributes 16-6
batch and interactive 16-1
characteristics 16-2
COBOL D-1, D-2
comparison of types 16-4
description 16-1
designing 16-1
differences

batch and interactive 16-5
requesters and acquired display stations 16-5
SRT and MRT 16-5

MRT 16-3, 16-15
multiple-user 16-2, 16-13
no-user 16-2
NRT 16-4
number of users 16-2
one-user 16-2
RPG II D-1, D-2
SRT 16-2
summary table of users and requesters 16-4
types 16-2

PRPQ
See Programming Request for Price Quotation

PRT parameter 4-5
PRTAPI D-1
PRTBAR D-12
PRTGRAPH

See print graphic procedure
PRTGRC D-7
PTF

See program temporary fix

Q
QCONSOLE system value 3-1
QDEVNAMING system value 3-1
QICDMF file 13-17
QPRTDEV system value 3-1
QS36ENV object 3-2
QSPCENV system value 2-1, 3-1

 Index X-15

QSSP 6-1
QSSP library 5-3
QTEMP 7-31
QUALITY option D-6
Query 1-4

R
random processing 7-16
randomizing techniques A-6
RCLSTG

See Reclaim Storage command
READ statement 13-25
read-under-format (RUF) technique

external calls 17-12
programming considerations 16-12
using 14-20
with AS/400 programs 17-13

Reclaim Storage (RCLSTG) command 6-4
record blocking

blocking factors 7-26
DBLOCK value 7-26
sharing files 7-26

record-mode files 6-6
records

deletion of records 12-6
description 12-1
fields

alphanumeric 12-5
naming 12-1
new 12-6
numeric 12-1
required 12-1
size 12-6

format
binary 12-4
floating-point 12-5
packed decimal 12-3
zoned decimal 12-2

keys 12-5
layout 12-6
length 12-6
menus 14-4

related printed information H-1
relative record number 7-7
RELEASE PRT command 4-6
remote files 7-38
remote location name 13-1
Remove Authority List Entry (RMVAUTLE)

command 11-7
removing

a folder 8-1
display IDs 3-14
information from diskette 9-6
libraries 6-7

RENAME procedure 7-3, 8-1
renaming a folder 8-1
renaming libraries 6-7
Reorganize Document Library Object (RGZDLO)

command 8-2
resource ownership 11-8
RESTART PRT command 4-6
RESTLIBR

See Restore Library procedure
Restore Document Library Object (RSTDLO)

command 8-2
Restore Library (RESTLIBR) procedure 6-3, 6-4
RESTORE procedure 7-1, 7-2, 7-3, 7-11
Restore System/36 File (RSTS36F) command 2-6
Restore System/36 Folder (RSTS36FLR)

command 2-6, 8-3
Restore System/36 Library Member (RSTS36LIBM)

command 2-6, 6-10
restoring information 9-5
restoring multiple-index files 7-11
restoring the AS/400 System to System/36 9-7
retail communications support 13-39
RETAIN-S parameter 7-10
RETRIEVE procedure 8-2
Retrieve System/36 Attributes (RTVS36A) 3-2
Retrieve System/36 Environment Attributes

(RTVS36A) command 2-6
REWIND parameter for tape files 10-5
RMVAUTLE

See Remove Authority List Entry command
ROTATE

See page rotation option
RSTDLO

See Restore Document Library Object command
RSTS36F

See Restore System/36 File command
RSTS36FLR

See Restore System/36 Folder command
RSTS36LIBM

See Restore System/36 Library Member command
RUF

See read-under-format (RUF) technique
RUN OCL statement 17-5, 17-6
run priority, description 18-10

S
S-Spec

132-column format B-7
alarm B-3
blink cursor B-4
command keys B-4
comment B-1
erase input fields B-4
format name B-1
function keys B-3

X-16 OS/400 System/36 Environment Programming V3R6

S-Spec (continued)
key mask B-7
lowercase B-2
null fill B-6
number of lines to clear B-2
override fields B-5
return input B-2
right-to-left display B-7
sequence number B-1
start line number B-2
suppress input B-6

S/36 Configuration Menus 3-13
S/36 Environment Attributes 3-12
S/36 Environment Configuration 3-13
S36 2-1, 3-2
SAVDLO

See Save Document Library Object command
Save Document Library Object (SAVDLO)

command 8-2
Save Folder (SAVEFLDR) procedure 8-2
Save Library (SAVELIBR) procedure 6-4, 9-7
Save Library (SAVLIB) command 6-3
Save Object (SAVOBJ) command 6-3
SAVE procedure 7-2, 7-10
save system (*SAVSYS) 11-3
Save System/36 File (SAVS36F) command 2-6
Save System/36 Library Member (SAVS36LIBM)

command 2-6
SAVEFLDR

See Save Folder (SAVEFLDR) procedure
SAVELIBR

See Save Library (SAVELIBR) procedure
saving information 9-5
SAVLIB

See Save Library (SAVLIB) command
SAVOBJ

See Save Object (SAVOBJ) command
SAVS36F

See Save System/36 File command
SAVS36LIBM

See Save System/36 Library Member command
SBMJOB

See Submit Job command
scheduling jobs 18-7
screen design aid (SDA) 1-3, 1-4
screen format generator ($SFGR)

considerations 14-21
creating, adding, changing, or deleting display file

formats 14-21
data types 14-25
definition 2-5
format names 14-24
FORMAT procedure parameters 14-24
functions 14-22
HALT parameter 14-24
NUMBER parameter 14-24

screen format generator ($SFGR) (continued)
printed output 14-21
public authority 14-23
right-to-left cursor 14-24

SDA
See screen design aid

second-level message, definition 15-1
sector-mode files 6-5
securing folders 8-1
security

all object (*ALLOBJ) 11-3
attributes 3-11
audit (AUDIT) 11-4
command 11-11
data 11-1
definition 1-2
initial program 11-4
input/output system configuration (IOSYSCFG) 11-4
introduction 11-1
job control (*JOBCTL) 11-3
levels 11-1
library-level 11-7
limited capability 11-4
menu 11-4, 14-3
passwords 11-1
resource 11-1, 11-4
save system (*SAVSYS) 11-3
security administrator (*SECADM) 11-3
service (*SERVICE) 11-3
sign-on 11-1
special authority 11-2
spool control (SPLCTL) 11-4
user class 11-2

sequential files
consecutive processing 7-14
generalized processing method 7-17
organization 7-5
random processing 7-16

sequential processing by key 7-15
service (*SERVICE) 11-3
session

date, definition 18-14
definition 2-3
library 6-3
printer, definition 4-4

SESSION OCL statement 13-18
Set Attention Program (SETATNPGM)

command 2-5
SET procedure 4-5
SETATNPGM

See Set Attention Program command
SEU

See source entry utility
severity code, definition 15-6
$SFGR

See screen format generator

 Index X-17

sharing files 7-26
sharing libraries 6-3
sign-on library 6-3
SIGNOFF command 2-4
single requester terminal program, definition 16-2
SNA

See Systems Network Architecture (SNA)
SNA distribution services (SNADS) 13-46
SNA upline facility (SNUF) 13-41
SNADS

See SNA distribution services
SNUF

See SNA upline facility (SNUF)
Source Entry Utility (SEU) procedure 1-4, 6-2
source file, definition 6-2
source members, definition 6-2
SPCENV

See special environment (SPCENV) parameter
special characters 12-5, 17-3
special environment (SPCENV) parameter 2-1, 3-1
special user authority 11-2
specifications

display control (S) B-1
field definition (D) B-13
help definition (H) B-8

SPLCTL
See spool control

spool control (SPLCTL) 11-4
spool files 4-3
spool writer messages 4-4
spooling, print 4-3
SRT 16-2
START PRT command 4-6, 4-7
Start Source Entry Utility (STRSEU) command 6-2
Start System/36 (STRS36) command 2-1, 2-2, 2-6,

11-11
Start System/36 (STRS36PRC) procedure 2-6
Start System/36 Procedure (STRS36PRC)

command 2-2, 11-11
statements

ACCEPT 13-24
ACQUIRE 13-24
ALLOCATE OCL 9-6, 10-5
ATTR OCL 2-4
CALL 17-8
DEALLOC OCL 9-6, 10-5
DEBUG 16-28
DROP 13-25
FILE OCL 7-1, 19-3
FILELIB OCL 6-10, 7-1, 7-31
LIBRARY OCL 6-4
LOAD OCL 17-5
LOG OCL 16-28
PRINTER OCL 4-1, 4-8
READ 13-25
RUN OCL 17-5, 17-6

statements (continued)
SESSION OCL 13-18
WAIT OCL 18-11, 19-3
WORKSTN OCL 4-5
WRITE 13-25

STATUS command 4-5
STATUS SESSION command 4-2
STATUSF command 4-5
STOP PRT command 4-6
STRS36

See Start System/36 command
STRS36PRC

See Start System/36 Procedure command
STRSEU

See Start Source Entry Utility command
subconsoles 2-3
Submit Job (SBMJOB) command 2-3
SUBR50 D-1, D-2
SUBR51 D-1, D-7
SUBR52 D-1, D-12
subroutine members, definition 6-2
subroutines

COBOL D-1, D-2
printing graphics D-7
PRTAPI D-1, D-2
PRTBAR D-1, D-12
PRTGRC D-1, D-7
RPG II D-2
SUBR50 D-1, D-2
SUBR51 D-1, D-7
SUBR52 D-1, D-12

substitution expressions 17-4
subsystem, definition 2-1
synonym records 7-8, A-1
SYSLIST

See System List procedure
system

date, definition 7-2
library, definition 5-2
list device, definition 4-3
list output 4-3
program, definition 2-3
request menu 2-4, 16-6, 16-11, 18-6
security 11-1

System List (SYSLIST) procedure 4-5
system printer, changing 4-5
System Request menu 2-4, 16-6, 16-11, 18-6
system-defined authority

All (*ALL) 11-6
Change (*CHANGE) 11-6
Exclude (*EXCLUDE) 11-6
Use (*USE) 11-6

system-supplied formats 13-25
System/36 application, definition 17-1
System/36 environment

access levels 11-8

X-18 OS/400 System/36 Environment Programming V3R6

System/36 environment (continued)
accessing functions 2-2
application job steps

AS/400 application in a System/36 environment
job 17-10

AS/400 program followed by a System/36
program 17-9

System/36 program followed by a System/36
program 17-10

System/36 program followed by an AS/400
program 17-9

architectural restrictions 17-1
auxiliary storage pool 6-10
CL commands 17-2
Command Entry display 2-2
commands and procedures 2-5
commands to access functions 2-2
configuration 3-1
configuration commands 3-2
configuring 3-2
database file processing 17-8
device identification 3-3
double-byte character 1-4
entering 11-11
files 11-10
function key processing 14-1
group names 11-10
information 5-3
libraries 11-8
library 5-4
library QSSP 5-3
licensed programs 1-4
migration 6-10
objects 5-1
OCL statements E-22
OLINK procedure 6-9
operating 2-1
operator control commands E-20
OS/400 commands E-25
overview

backup and recovery 1-4
configuration 1-1
data communications 1-3
designing records 1-2
diskette and magnetic tape storage 1-2
double-byte character set (DBCS) 1-4
file and library storage 1-2
files 1-2
folders 1-2
jobs and job processing 1-3
libraries 1-2
menus and displays 1-3
messages and message members 1-3
national language support 1-4
operating 1-1
printed output 1-1
programs and procedures 1-3

System/36 environment (continued)
overview (continued)

security 1-2
parent-child concept 11-11
printed output

assigning priorities 4-8
combining files 4-7
controlling print spooling 4-4
copying and displaying 4-6
creating and controlling 4-1
data management 4-1
delayed status 4-8
forms number 4-7
print spooling 4-3
printer control guidelines 4-4
procedures 4-1
spool writer messages 4-4
system list 4-3
using output queues 4-3

procedure control statements E-24
procedures 1-1, E-1
program control 17-5
QDEVNAMING 3-1
resource ownership 11-8
resource security file 11-8
return code considerations 13-28
search order 6-9
security considerations 11-11
SFGR functions 14-22
subconsoles 2-3
subsystem considerations 13-7
system library 11-11
system library (QSSP) 6-1
system values

QCONSOLE 3-1
QDEVNAMING 3-1
QPRTDEV 3-1
QSPCENV 3-1

user identification file 11-8
user library (#LIBRARY) 6-1
user profile attribute 2-1

Systems Network Architecture (SNA) 13-2
SYSVAL 2-1

T
tape

automatic advance 10-4
coexistence considerations 10-8
copying information 10-6
creating a sequential set of files 10-7
drives

allocating to a job 10-5
migration considerations 10-10
multiple 10-7
supported 10-1

 Index X-19

tape (continued)
files

COPYFILE 10-2
EXCHANGE 10-2
exchanging with other systems 10-3
expiration dates 10-3
LIBRFILE 10-2
Save/Restore 10-3
SAVEFLDR 10-3
SAVELIBR 10-3

formats
IBM standard label 10-1
nonlabeled 10-2

header labels 10-1
I/O device 17-14
LEAVE processing 10-5
listing information 10-7
marks (TM) 10-1
preparing 10-5
programming considerations 10-4
removing information 10-7
restoring information 10-7
REWIND processing 10-5
saving information 10-6
securing read/write access 10-4
security

access 10-4
other systems 10-4
read/write access 10-4
write access 10-4

storage 10-1
trailer labels 10-1
UNLOAD processing 10-5
using multiple drives 10-7
volume label 10-1

TAPECOPY procedure 7-1, 7-3
TAPEINIT procedure 10-5
telephone number list support 13-45
TESTFLDR procedure 8-2
testing communications applications 13-28
Text (TEXT) option D-11
TEXT option D-6
text rotation D-6
TEXTDOC procedure 8-1
TEXTFLDR procedure 8-1
To Library (TOLIBR) procedure 6-4, 9-7
TOLIBR

See To Library procedure
TRANS

See transparent option
TRANSFER procedure 7-1, 7-3, 9-2, 9-7
transparent (TRANS) option D-5

U
UNLOAD parameter for tape files 10-5
UPSI

See user program status indicator switch
user

class 11-2
files 5-4
folders 5-4
libraries 5-4
profile attribute 2-1
profiles 11-2

user program status indicator switch 16-22

V
values

changing 3-9
QSPCENV 2-1, 3-1
system 3-1

virtual circuit, definition 13-5
virtual printer support 1-5
VTAM 13-41

W
WAIT OCL statement 18-11, 19-3
WAIT parameter 7-28
word processing 1-4
work file, definition 6-4
Work Object Lock (WRKOBJLCK) command 6-5
work station id, definition 2-3
work station, definition 1-1
Work with System/36 Configuration (WRKS36)

command 2-6, 3-2
Work with System/36 Procedure Attributes

(WRKS36PRCA) 2-6
Work with System/36 Program Attributes

(WRKS36PGMA) 2-6
Work with System/36 Source Attributes

(WRKS36SRCA) 2-7
WORKSTN OCL statement 4-5
WRITE statement 13-25
WRKOBJLCK

See Work Object Lock command

X
X.21 13-46
X.25 13-5

X-20 OS/400 System/36 Environment Programming V3R6

Reader Comments—We'd Like to Hear from You!

AS/400 Advanced Series
System/36 Environment Programming
Version 3

Publication No. SC41-4730-00

Overall, how would you rate this manual?

Very
Satisfied Satisfied Dissatis-

fied

Very
Dissatis-

fied

Overall satisfaction

How satisfied are you that the information in this manual is:

Accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your tasks

T H A N K Y O U !

Please tell us how we can improve this manual:

May we contact you to discuss your responses? __ Yes __ No
Phone: (____) ___________ Fax: (____) ___________ Internet: ___________

To return this form:

 � Mail it
 � Fax it

United States and Canada: 800+937-3430
 Other countries: (+1)+507+253-5192
� Hand it to your IBM representative.

Note that IBM may use or distribute the responses to this form without obligation.

Name Address

Company or Organization

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

Reader Comments—We'd Like to Hear from You!
SC41-4730-00

IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN DEPT 542 IDCLERK
IBM CORPORATION
3605 HWY 52 N
ROCHESTER MN 55901-9986

Fold and Tape Please do not staple Fold and Tape

SC41-4730-00

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC41-473ð-ðð

S
pine inform

ation:

I
B

M
A

S/400 A
dvanced Series

System
/36 E

nvironm
ent P

rogram
m

ing
V

ersion 3

