———————

ilh
| [=& 38
I oG 9

IBM Systems - iSeries
Cryptographic Services APlIs

Version 5 Release 4

Note
Before using this information and the product it supports, be sure to read the information in

[“Notices,” on page 159

Sixth Edition (February 2006)

This edition applies to version 5, release 4, modification 0 of IBM i5/0S (product number 5722-SS1) and to all
subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all
reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Cryptographic Services APlIs.

APIs . .

Encryption and Decryptlon APIs

Decrypt Data (QC3DECDT, Qc3DecryptData)
Authorities and Locks . .
Required Parameter Group
Algorithm Description Formats .

Key Description Formats
Error Messages . .

Encrypt Data (QC3ENCDT, Qc3EncryptData)
Authorities and Locks . .
Required Parameter Group .

Clear Data Formats. . .
Clear Data Formats Field Descrlptlons .
Algorithm Description Formats.

Key Description Formats .

Error Messages . .

Translate Data (QC3TRNDT, Qc3TranslateData)
Authorities and Locks .

Required Parameter Group .
Error Messages .

Authentication APIs

Calculate Hash (QC3CALHA, QCSCalculateHash)
Authorities and Locks .

Required Parameter Group .
Input Data Formats. .
Algorithm Description Formats.
Error Messages . .

Calculate HMAC (QCSCALHM

Qc3CalculateHMAC) .
Authorities and Locks .
Required Parameter Group .
Input Data Formats. .
Algorithm Description Formats.
Key Description Formats .
Error Messages . .

Calculate MAC (QC3CALMA Qc3CalculateMAC)
Authorities and Locks .

Required Parameter Group .

Input Data Formats. . .
Input Data Formats Field DeSCI‘lpthl’lS
Algorithm Description Formats.
Algorithm Description Formats Field
Descriptions . .

Key Description Formats

Error Messages .

Calculate Signature (QCBCALSG

Qc3CalculateSignature) .
Authorities and Locks .

Required Parameter Group .
Input Data Formats.

Algorithm Description Formats
Key Description Formats .

Error Messages .

Verify Signature (QC3VFYSG Qc3Ver1fy81gnature)
Authorities and Locks .

© Copyright IBM Corp. 1998, 2006

. 34
. 34
. 34
. 36
. 37
. 38
.41

42

. 43
. 43
. 45
. 45
. 45

. 46
. 47
. 50

. 51
. 52
.52
. 54
. 54
. 56
. 58

59

. 59

Required Parameter Group .
Input Data Formats.
Algorithm Description Formats
Key Description Formats .
Error Messages .
Key Generation APIs .
Calculate Diffie-Hellman Secret Key (QC3CALDS
Qc3CalculateDHSecretKey) . o
Authorities and Locks .
Required Parameter Group .
Error Messages . .
Example of Three-Party Shared Secret Key
Exchange . .
Generate Diffie- Hellman Key Pa1r (QCSGENDK
Qc3GenDHKeyPair) .
Authorities and Locks .
Required Parameter Group .
Error Messages .
Generate Diffie-Hellman Parameters (QC3GENDP
Qc3GenDHParms) .
Authorities and Locks .
Required Parameter Group .
Error Messages . .
Generate PKA Key Pair (QC3GENPK
Qc3GenPKAKeyPair) . .o
Authorities and Locks .
Required Parameter Group .
Error Messages .
Generate Symmetric Key (QC3GENSK
Qc3GenSymmetricKey)
Authorities and Locks .
Required Parameter Group .
Error Messages .
Key Management APIs
Clear Master Key (QC3CLRMK,
Qc3ClearMasterKey)
Authorities and Locks .
Required Parameter Group .
Error Messages . .
Create Key Store (QC3CRTKS Qc3CreateKeyStore)
Authorities and Locks .
Required Parameter Group .
Error Messages . .
Delete Key Record (QC3DLTKR
Qc3DeleteKeyRecord) .
Authorities and Locks .
Required Parameter Group .
Error Messages .
Export Key (QC3EXPKY, Qc3Exp0rtKey)
Authorities and Locks .
Required Parameter Group .
Error Messages .
Extract Public Key (QC3EXTPB
Qc3ExtractPublicKey) .
Authorities and Locks .
Required Parameter Group .

. 60
. 62
. 62
. 64
. 66
. 68

. 68
. 68
. 69
. 69

.70

. 70
.71
.71
.72

.72
.73
.73
. 74

. 74
.75
.75
.78

.79
.79
.79
. 83
. 84

. 85
. 85
. 86
. 86

. 87
. 87
. 88

. 88
. 88
. 89
. 89
. 89
. 90
. 90
.92

. 93
. 94
. 94

iii

Error Messages .

Generate Key Record (QC3GENKR

Qc3GenKeyRecord). . .

Authorities and Locks .

Required Parameter Group .

Error Messages . .

Import Key (QC3IMPKY, Qc3ImportKey)
Authorities and Locks . .
Required Parameter Group .

Error Messages . .

Load Master Key Part (QCSLDMKP

Qc3LoadMasterKeyPart). .
Authorities and Locks
Required Parameter Group .

Error Messages . .

Retrieve Key Record Attrlbutes (QC3RTVKA

Qc3RetrieveKeyRecordAtr) . o
Authorities and Locks
Required Parameter Group .

Error Messages . .

Set Master Key (QCSSETMK Qc3SetMasterKey)
Authorities and Locks . .
Required Parameter Group .

Error Messages . .

Test Master Key (QC3TSTMK QcTestMasterKey)
Authorities and Locks . .
Required Parameter Group .

Error Messages . .

Translate Key Store (QCSTRNKS

Qc3TranslateKeyStore)

Authorities and Locks

Required Parameter Group .

Error Messages . .

Write Key Record (QCBWRTKR

Qc3WriteKeyRecord) .

Authorities and Locks

Required Parameter Group .

Error Messages . .
Pseudorandom Number Generatlon APIs .
Add Seed for Pseudorandom Number Generator
(QC3ADDSD, Qc3AddPRNGSeed) API.

Authorities and Locks

Required Parameter Group .

Error Messages . .

Generate Pseudorandom Numbers (QC3GENRN,

Qc3GenPRNs) APIL.

Authorities and Locks

iv IBM Systems - iSeries: Cryptographic Services APIs

. 97

. 98
. 98
. 98
. 101
. 101
. 102
. 102
. 103

. 104
. 104
. 104
. 105

. 106
. 106
. 106
. 107

108

. 108
. 108
. 109

109

. 109
. 110
. 110

. 111
. 111
11
. 112

. 112
. 113
. 113
. 115
. 116

. 117
. 117
. 117
. 118

. 118
. 118

Required Parameter Group . . 118
Error Messages . . . 119
Cryptographic Context APIs . 119
Create Algorithm Context (QC3CRTAX
Qc3CreateAlgorithmContext) . . 120
Authorities and Locks . 120
Required Parameter Group . . 120
Algorithm Description Formats . 121
Standards Resources . . 124
Error Messages . . . 124
Create Key Context (QCBCRTKX
Qc3CreateKeyContext) . . 125
Authorities and Locks . 125
Required Parameter Group . . 125
Error Messages 130
Destroy Algorithm Context (QC3DESAX,
Qc3DestroyAlgorithmContext). . 131
Authorities and Locks . 131
Required Parameter Group . . 132
Error Messages . . . 132
Destroy Key Context (QC3DESKX
Qc3DestroyKeyContext) . . 132
Authorities and Locks . 132
Required Parameter Group . . 132
Error Messages . . 133
Concepts . . . 133
i5/0S and 2058 Cryptographlc Functlon
Comparison . . 133
Scenario: Key Management and Frle Encryptron
Using the Cryptographic Services APIs. . 134
Warning: Temporary Level 3 Header . 136
Other Considerations. . 138
Example in ILE C: Writing encrypted data to a frle 138
Example in ILE RPG: Writing encrypted data to a
file . . . 144
Example in ILE C Readlng encrypted data frorn a
file . . . 148
Example in ILE RPG Readmg encrypted data frorn
a file .. . 153
Cryptographic Servrces Master Keys . 156
Cryptographic Services Key Store . 157
Appendix. Notices . 159
Programming Interface Information . . 160
Trademarks . . . lel
Terms and Conditions . 162

Cryptographic Services APIs

The i5/0S™ Cryptographic Services APIs help you ensure the following:
* Privacy of data

* Integrity of data

* Authentication of communicating parties

¢ Non-repudiation of messages

For general information about cryptography, refer to [Cryptography Concepts|in the Security topic.

The Cryptographic Services APIs perform cryptographic functions within the i5/0S™ or on the 2058
Cryptographic Accelerator for iSeries, as specified by the user. For more information about hardware
cryptography, refer to [Cryptographic Hardware|in the Security topic. For a comparison of function

performed in the i5/0S and on the 2058, refer to [“i5/0S and 2058 Cryptographic Function Comparison”]

The Cryptographic Services APIs include:

* |“Encryption and Decryption APIs”|

[“Authentication APIs” on page 29|

* ["’Key Generation APIs” on page 68|

+ [“Key Management APIs” on page 84|«

+ ["“Pseudorandom Number Generation APIs” on page 116|

+ [“Cryptographic Context APIs” on page 119|

" [“Scenario: Key Management and File Encryption Using the Cryptographic Services APIs” on page 134]
provides some sample designs and example programs. €%

In the release following V5R4, Licensed Product 5722-CR1 will no longer be supported.

xx-CR1f provides information on migrating your CR1 applications to the cryptographic services APIs.¢%

APIs by category]

APIs

These are the APIs for this category.

Encryption and Decryption APls

The Encryption and Decryption APIs allow you to store information or to communicate with other
parties while preventing uninvolved parties from understanding the stored information or understanding
the communication. Encryption transforms understandable text (cleartext) into an unintelligible piece of
data (ciphertext). Decrypting restores the cleartext from the ciphertext. Both processes involve a
mathematical formula (algorithm) and secret data (key).

The Encryption and Decryption APIs include:
* ["“Decrypt Data (QC3DECDT, Qc3DecryptData)” on page 2| (QC3DECDT, Qc3DecryptData) restores
encrypted data to a clear (intelligible) form.

* [“Encrypt Data (QC3ENCDT, Qc3EncryptData)” on page 13| (QC3ENCDT, Qc3EncryptData) protects
data privacy by scrambling clear data into an unintelligible form.

© Copyright IBM Corp. 1998, 2006 1

qc3MigrateCR1.htm
qc3MigrateCR1.htm
aplist.htm

+ [“Translate Data (QC3TRNDT, Qc3TranslateData)” on page 26| (QC3TRNDT, Qc3TranslateData)
translates data from encryption under one key to encryption under another key

@ | Cryptographic Services APIs I|APIs by category]

Decrypt Data (QC3DECDT, Qc3DecryptData)

Required Parameter Group:

1 Encrypted data Input Char(*)
2 Length of encrypted data Input Binary(4)
3 Algorithm description Input Char(¥)
4 Algorithm description format name Input Char(8)
5 Key description Input Char(*)
6 Key description format name Input Char(8)
7 Cryptographic service provider Input Char(1)
8 Cryptographic device name Input Char(10)
9 Clear data Output Char(*)
10 Length of area provided for clear data Input Binary(4)
11 Length of clear data returned Output Binary(4)
12 Error code I/0 Char(*)

Service Program Name: QC3DTADE
Default Public Authority: *USE
Threadsafe: Yes

The Decrypt Data (OPM, QC3DECDT; ILE, Qc3DecryptData) API restores encrypted data to a clear
(intelligible) form.

Information on cryptographic standards can be found in the [“Create Algorithm Context (QC3CRTAX)
[Qc3CreateAlgorithmContext)” on page 120| documentation.

Authorities and Locks

Required device description authority
*USE

=

Required file authority
*OBJOPR, *READ

&

Required Parameter Group

Encrypted data
INPUT; CHAR(¥)

The data to decrypt.

Length of encrypted data
INPUT; BINARY(4)

The length of the encrypted data parameter.
If the mode of operation is CFB 1-bit, this length must be specified in bits.

2 IBM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm

Algorithm description
INPUT; CHAR(¥)

The algorithm and associated parameters for decrypting the data.
The format of the algorithm description is specified in the algorithm description format name
parameter.

Algorithm description format name
INPUT; CHAR(8)

The format of the algorithm description.
The possible format names follow.

[“ALGD0100 format” on page 5|
The token for an algorithm context. This format must be used when performing the
decrypt operation over multiple calls. After the last call (when the final operation flag is
on), the context will reset to its initial state and can be used in another API.

[“ALGD0200 format” on page 5|
Parameters for a block cipher algorithm (DES, Triple DES, AES, and RC2).

[“ALGD0300 format” on page 5|
Parameters for a stream cipher algorithm (RC4-compatible).

[“ALGD0400 format” on page 5|
Parameters for a public key algorithm (RSA).

See [“Algorithm Description Formats” on page 5| for a description of these formats.

Key description
INPUT; CHAR(¥)

The key and associated parameters for decrypting the data.

The format of the key description is specified in the key description format name parameter.

If the decrypt operation extends over multiple calls (see ALGD0100 description above), only the
key description from the first call will be used. Therefore, on subsequent calls, you may set the
pointer to this parameter to NULL.

Key description format name
INPUT; CHAR(8)

The format of the key description.
If the pointer to the key description parameter is NULL, this parameter will be ignored.
The possible format names follow.

[“KEYD0100 format” on page 8|
Key context token. This format identifies a key context. A key context is used to store a
key value so it need not be recreated or retrieved every time it is used. To create a key
context, use the [“Create Key Context (QC3CRTKX, Qc3CreateKeyContext)” on page 125|
APL

[“KEYD0200 format” on page 8§
Key parameters.

2

[“KEYD0400 format” on page 8|
Key store label. This format identifies a key from key store. For more information on

cryptographic services key store, refer to the [“Cryptographic Services Key Store” on page]
ﬂ

article.

Cryptographic Services APIs

3

[“KEYD0500 format” on page 8|
PKCS5 passphrase. This format derives a key using RSA Data Security, Inc. Public-Key
Cryptography Standard (PKCS) #5.

[“KEYDO0600 format” on page 9|
PEM certificate. This format uses the PKA key in an ASCII encoded PEM based
certificate.

[“KEYDO0700 format” on page 9|
Certificate label. This format uses the public PKA key identified by a label into system
certificate key store (*SYSTEM).

[“KEYD0800 format” on page 9|
Distinguished name. This format uses the public PKA key identified by a distinguished
name for a certificate in system certificate key store (*SYSTEM).

[“KEYD0900 format” on page 9|
Application identifier. This format uses the private PKA key identified by an application
identifier. The application identifier must be assigned to a valid certificate label in system
certificate key store (*SYSTEM).

&

See|“Key Description Formats” on page 8| for a description of these formats.

Cryptographic service provider
INPUT; CHAR(1)

The cryptographic service provider (CSP) that will perform the decryption operation.

0 Any CSP.
The system will choose an appropriate CSP to perform the decryption operation.

1 Software CSP.
The system will perform the decryption operation using software. If the requested algorithm is not available
in software, an error is returned.

2 Hardware CSP.
The system will perform the decryption operation using cryptographic hardware. If the requested algorithm is
not available in hardware, an error is returned. A specific cryptographic device can be specified using the
cryptographic device name parameter. If the cryptographic device is not specified, the system will choose an
appropriate one.

Cryptographic device name
INPUT; CHAR(10)

The name of a cryptographic device description.
This parameter is valid when the cryptographic service provider parameter specifies 2 (hardware
CSP). Otherwise, this parameter must be blanks or the pointer to this parameter set to NULL.

Clear data
OUTPUT;, CHAR(*)

The area to store the decrypted data.

Length of area provided for clear data
INPUT; BINARY(4)

The length of the clear data parameter.

If the mode of operation is CFB 1-bit, this length must be specified in bits.

To ensure sufficient space, specify an area at least as large as the length of encrypted data. If the
length of area provided for clear data is too small, an error will be generated and no data will be
returned in the clear data parameter.

4 1BM Systems - iSeries: Cryptographic Services APIs

Length of clear data returned
OUTPUT; BINARY(4)

The length of the clear data returned in the clear data parameter.

If the mode of operation is CFB 1-bit, this length will be returned in bits.

Error code
I/0; CHAR(*)

The structure in which to return error information.
For the format of the structure, see [Error Code Parameter|

Algorithm Description Formats

For detailed descriptions of the table fields, see [“Algorithm Description Formats Field Descriptions” on|

ALGDO0100 format

Offset
Dec Hex Type Field
0 0 CHAR(8) Algorithm context token
8 8 CHAR(1) Final operation flag

ALGDO0200 format

Offset
Dec Hex Type Field
0 0 BINARY(4) Block cipher algorithm
4 4 BINARY(4) Block length
8 8 CHAR(1) Mode
9 9 CHAR(1) Pad option
10 A CHAR(1) Pad character
11 B CHAR(1) Reserved
12 C BINARY(4) MAC length
16 10 BINARY(4) Effective key size
20 14 CHAR(32) Initialization vector

ALGDO0300 format

Offset

Dec

Hex

Type

Field

0

0

BINARY(4)

Stream cipher algorithm

ALGDO0400 format

Offset

Dec

Hex

Type

Field

0

0

BINARY(4)

Public key cipher algorithm

Cryptographic Services APIs

5

Offset
Dec Hex Type Field
4 4 CHAR(1) PKA block format
CHAR(3) Reserved
8 8 BINARY(4) Signing hash algorithm

Algorithm Description Formats Field Descriptions

Algorithm context token
A token for an algorithm context. The algorithm context is created using the [‘Create Algorithm|
[Context (QC3CRTAX, Qc3CreateAlgorithmContext)” on page 120

Block cipher algorithm
The decryption algorithm. Following are the valid block cipher algorithms.

20 DES
21 Triple DES
22 AES
23 RC2

Block length
The algorithm block length. For DES, Triple DES, and RC2, the block length field must specify 8.
The valid block length values for AES are 16, 24, and 32.

Effective key size
For RC2, the number of key bits to use in the cipher operation. Valid values are from 1 to 1024. If
RC2 is not specifed for the block cipher algorithm, this field must be set to 0.

Final operation flag
The final processing indicator.

0 Continue.
The system will not perform final processing and the algorithm context will maintain the state of the
operation. The algorithm context can be used on future calls to this API to continue the decryption operation.
1 Final.
The system will perform final processing (e.g. remove padding) and the algorithm context will reset to its
initial state. The algorithm context can then be used to begin a new cryptographic operation (encrypt, decrypt,
etc.). When performing a final operation, the pointer to the encrypted data parameter may be set to NULL
and the length of encrypted data parameter set to 0. Final must be specified when performing an RSA
operation.

Initialization vector
The initialization vector (IV). An IV is not used for mode ECB, and must be set to nulll (binary
0’s). Refer to the mode standards for an explanation of its use. For DES, Triple DES, and RC2, the
first 8 bytes are used as the IV. For AES, the length of IV used is that specified by block length.
The IV must be the same as the IV used to encrypt the data.

MAC length
This field is not used on a decrypt operation and must be set to null (binary 0s).

Mode The mode of operation. Information on modes can be found in FIPS PUB 81 and ANSI X9.52.
Following are the valid modes.

0 ECB
CBC
OFB. Not valid with AES or RC2.

N R

6 IBM Systems - iSeries: Cryptographic Services APIs

3 CFB 1-bit. Not valid with AES or RC2.
4 CFB 8-bit. Not valid with AES or RC2.
5 CFB 64-bit. Not valid with AES or RC2.

Pad character
This field is not used on a decrypt operation and must be set to null (binary 0s).

Pad option
If requested, padding is removed at the end of the decrypt operation. Padding is not performed
for modes CFB 1-bit and CFB 8-bit. In these cases, the pad option must be set to 0. Do not specify
remove padding if the data was not padded when encrypted. Following are the valid pad

options.
0 Do not remove padding.
1 Remove padding.

PKA block format
The public key algorithm block format. Following are the valid values.

0 PKCS #1 block type 00

PKCS #1 block type 01

2 PKCS #1 block type 02
This format is recommended when decrypting non-hash items (such as keys). The other formats are normally
used in sign and verify functions.

4 Zero pad
Zero pad is not removed.

Jury

&
6 OAEP

&

Public key cipher algorithm
The decryption algorithm. Following are the valid public key cipher algorithms.

50 RSA

Reserved
Must be null (binary 0s).

Signing hash algorithm
This field is not used on a decrypt operation and must be set to null (binary 0s).

Stream cipher algorithm
The decryption algorithm. Following are the valid stream cipher algorithms.

30 RC4-compatible

Cryptographic Services APIs 7

Key Description Formats

For detailed descriptions of the table fields, see [“Key Description Formats Field Descriptions” on page|

KEYDO0100 format

Offset
Dec Hex Type Field

0 0 CHAR(8) Key context token

KEYDO0200 format

Offset
Dec Hex Type Field
0 0 BINARY(4) Key type
4 4 BINARY (4) Key string length
8 8 CHAR(1) Key format
9 9 CHAR(3) Reserved
12 C CHAR(¥) Key string
b
KEYDO0400 format
Offset
Dec Hex |Type Field
0 0 CHAR(20) Qualified key store file name
20 14 CHAR(32) Record label
52 34 CHAR(4) Reserved

KEYDO0500 format

Offset
Dec Hex Type Field
BINARY(4) Key type
4 4 BINARY(4) Derived key length
8 8 BINARY(4) Iteration count
12 C BINARY(4) Salt length
16 10 CHAR(16) Salt
32 20 BINARY(4) Passphrase CCSID
36 24 BINARY(4) Passphrase length
40 28 CHAR(*) Passphrase

8 IBM Systems - iSeries: Cryptographic Services APIs

KEYDO0600 format

Offset
Dec Hex Type Field
0 BINARY(4) PEM certificate length
4 4 CHAR(4) Reserved
8 CHAR(¥) PEM certificate

KEYDO0700 format

Offset
Dec Hex Type Field
0 0 BINARY(4) Certificate label length
4 4 CHAR(4) Reserved
8 8 CHAR(*) Certificate label

KEYDO0800 format

Offset
Dec Hex Type Field
BINARY(4) Distinguished name length
4 4 CHAR(®4) Reserved
8 8 CHAR(Y) Distinguished name

KEYD0900 format

Offset
Dec Hex Type Field
0 0 BINARY(4) Application identifier length
4 4 CHAR(4) Reserved
8 8 CHAR(*) Application identifier

&

Key Description Formats Field Descriptions

b

Application identifer
The application ID assigned to a certificate with a private key in system certificate key store

(*SYSTEM).

Application identifier length

The length of the application ID. The length can not be greater than 32.

Certificate label

The label of the certificate in system certificate key store (*SYSTEM). The certificate’s public key

will be used in the decryption operation.

Certificate label length
The length of the certificate label.

Cryptographic Services APIs

9

Derived key length
The length of key requested. The minimum allowed length is 1.

Distinguished name
The distinguished name of the certificate in system certificate key store (*SYSTEM). The
certificate’s public key will be used in the decryption operation.

Distinguished name length
The length of the distinguished name.

Iteration count
Used to greatly increase the cost of an exhaustive search while modestly increasing the cost of
key derivation. The minimum allowed value is 1. The standard recommends a minimum of 1000.
The maximum allowed length is 100,000.

&

Key context token
A token for a key context. The key context is created using the [‘Create Key Context (QC3CRTKX)
[Qc3CreateKeyContext)” on page 125

Key format
The format of the key string field. Following are the valid values.
0 Binary string.
The key is specified as a binary value.
1 BER string

If the key type field specifies 50 (RSA public), the key must be specified in BER encoded X.509 4 Certificate
or £¢ SubjectPublicKeyInfo format. For specifications of this format, refer to RFC 3280. If the key type field
specifies 51 (RSA private), the key must be specified in BER encoded PKCS #8 format. For specifications of
this format, refer to RSA Security Inc. Public-Key Cryptography Standards. To generate a PKA key pair, use
the [“Generate PKA Key Pair (QC3GENPK, Qc3GenPKAKeyPair)” on page 74

Key string
The key to use in the decrypt operation.

Key string length
Length of the key string specified in the key string field.

Key type
The type of key. Following are the valid values.

20 DES
4% The key string length or derived key string length must be 8 bytes. For key description KEYDO0200, the key
format must be 0. % Only 7 bits of each byte are used as the actual key. The rightmost bit of each byte is
used to set parity. Some cryptographic service providers require that a DES key have odd parity in every byte.
Others ignore parity.

21 Triple DES
4% The key string length or the derived key length can be 8, 16, or 24. For key description KEYDO0200, the key
format must be 0. £ Triple DES operates on a decryption block by doing a DES decrypt, followed by a DES
encrypt, and then another DES decrypt. Therefore, it actually uses three 8-byte DES keys. If 24 bytes are
supplied in the key string, the first 8 bytes are used for key 1, the second 8 bytes for key 2, and the third 8
bytes for key 3. If 16 bytes are supplied, the first 8 bytes are used for key 1 and key 3, and the second 8 bytes
for key 2. If only 8 bytes are supplied, it will be used for all 3 keys (essentially making the operation
equivalent to a single DES operation). Only 7 bits of each byte are used as the actual key. The rightmost bit of
each byte is used to set parity. Some cryptographic service providers require that a Triple DES key have odd
parity in every byte. Others ignore parity.

22 AES
% The key string length or derived key length can be 16, 24, or 32. For key description KEYDO0200, the key
format must be 0. £¥

10 1BM Systems - iSeries: Cryptographic Services APls

23 RC2
%% The key string length or derived key length can be from 1 to 128. For key description KEYD0200, the key
format must be 0. ¥

30 RC4-compatible
% The key string length or derived key length can be from 1 to 256. For key description KEYD0200, the key
format must be 0. ¢¥

50 RSA public
% Valid only for key description KEYD0200. <% The key format must be 1. Use an RSA public key if the data
was encrypted with an RSA private key. Encryption with a private key and decryption with a public key is
used for data authentication (e.g. sign/verify).

51 RSA private
% Valid only for key description KEYD0200. <% The key format must be 1. Use an RSA private key if the
data was encrypted with an RSA public key. Encryption with a public key and decryption with a private key
is used for data privacy.

b

Passphrase
A text string.

Passphrase CCSID
INPUT; BINARY(4)

The CCSID of the passphrase. The passphrase will be converted from the specified CCSID to
Unicode before calling the PKCS5 algorithm.

0 The CCSID of the job is used to determine the CCSID of the data to be converted. If the job
CCSID is 65535, the CCSID from the default CCSID (DFTCCSID) job attribute is used.
1-65533 A valid CCSID in this range is used. For a list of valid CCSIDs, see the topic in the

iSeries Information Center.

Passphrase length
The length of passphrase. The length must be in the range of 1 to 256.

PEM certificate
An ASCII encoded PEM formated certificate.

PEM certificate length
The length of the PEM certificate.

Qualified key store file name
The key store file where the key is stored. Key store files are created using the [“Create Key Store|
[(QC3CRTKS, Qc3CreateKeyStore)” on page 86| APL The first 10 characters contain the file name.
The second 10 characters contain the name of the library where the key store file is located. You
can use the following special values for the library name.

*CURLIB The job’s current library is used to locate the key store
file. If no library is specified as the current library for the
job, the QGPL library is used.

*LIBL The job’s library list is searched for the first occurence of
the specified file name.

Record label
The label of a key record in a key store file. The label will be converted from the job CCSID, or if
65535, the job default CCSID (DFTCCSID) job attribute to CCSID 1200 (Unicode UTE-16). Key
records are created using the [*Write Key Record (QC3WRTKR, Qc3WriteKeyRecord)” on page 112|
or [“Generate Key Record (QC3GENKR, Qc3GenKeyRecord)” on page 98] API.

&

Cryptographic Services APIs 11

Reserved
Must be null (binary 0s).

b

Salt Used to help thwart attacks by producing a large set of keys for each passphrase. The standard
recommends the salt be generated at random and be at least 8 bytes long. You may use the
[‘Generate Pseudorandom Numbers (QC3GENRN, Qc3GenPRNs) API” on page 118 API to obtain
a random value. Additionally, data that distinguishes between various operations can be added to
the salt for additional security. Refer to the standard for more information.

Salt length
The length of salt. The length must be in the range of 1 to 16.

{{

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.
CPF3CIE E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
2

CPF9D99 E Error openning certificate store.

CPF9DYA E Key is protected by a cryptographic coprocessor.
CPF9D9B E Internal error occured retrieving key from system certificate store.
CPFODIC E Function is disallowed with specified key context.
CPFODYF E Not authorized to key store file.

CPFODAO E Error occured opening key store file.

CPFODA1 E Key record not found.

CPFODA2 E Option 34 is not installed.

CPFODA3 E Not authorized to use APPIDs.

CPF9DA4 E APPID is not valid.

CPFODAS5 E Key store file not found.

CPFODAG6 E The key store file is not available.

CPFODA7 E File is corrupt or not a valid key store file.
CPFODAS D The application identifier length is not valid.
CPFODA9 D The format of the PEM certificate is not valid.
CPFODAA D A key requires translation.

CPFODAB E A key can not be decrypted.

CPF9DB1 E The CCSID is not valid.

CPF9DB3 E Qualified key store file name not valid.

CPF9DB6 E Record label not valid.

CPF9DBS E Error occured retrieving key record from key store.
CPFODBA E Derived key length not valid.

CPF9DBB E Iteration count not valid.

CPFODBC E Salt length not valid.

CPFODBD E Passphrase length not valid.

CPFIDBE E PEM certificate length not valid.

CPFODBF E Certificate label length not valid.

CPFODCO E Distinghished name length not valid.

CPF9DC2 E Key-encrypting algorithm context not compatible with key-encrypting key context.
CPFODC3 E Unable to decrypt data or key.

&

12 1BM Systems - iSeries: Cryptographic Services APls

Message ID
CPFODC6 E
CPFODC8 E
CPFIDD2 E
CPF9DD3 E
CPF9DD5 E
CPF9DD6 E
CPFODD7 E
CPFODDS8 E

CPFODD9 E
CPFODDA E
CPFODDB E
CPFODDD E
CPFODDE E
CPFODDF E
CPF9DEO E
CPF9DE1 E
CPF9DE2 E
CPF9DE3 E
CPF9DE4 E
CPF9DES5 E
CPF9DES6 E
CPFODE7 E
CPF9DE9 E
CPF9DEC E
CPFODED E
CPFIDEE E
CPFODF0 E

CPF9DF1 E
CPF9DF2 E
CPF9DE3 E
CPF9DF4 E
CPF9DEF5 E
CPFODF7 E
CPFODEFS E
CPFODF9 E
CPFODFB E
CPFODFD E
CPF9DEE E

Error Message Text

Algorithm not valid for encrypting or decrypting a key.
The input data parameter specifies a NULL pointer.
Algorithm description format name not valid.

Key description format name not valid.

Length of input data not valid.

Length of area provided for output data is too small.

The key-encrypting key context for the specified key is not valid or was previously destroyed.

The key-encrypting algorithm context for the specified key is not valid or was previously

destroyed.

Effective key size not valid.

Unexpected return code &1.

The key string or Diffie-Hellman parameter string is not valid.
The key string length is not valid.

Cipher algorithm not valid.

Block length not valid.

Hash algorithm not valid.

Initialization vector not valid.

MAC (message authentication code) length not valid.
Mode not valid.

Pad option not valid.

PKA (public key algorithm) block format not valid.
Public key algorithm not valid.

Key type not valid.

Key format not valid.

Cryptographic service provider not valid.

Final operation flag not valid.

Reserved field not null.

Operation, algorithm, or mode not available on the requested CSP (cryptographic service

provider).

The algorithm context token does not reference a valid algorithm context.
The algorithm context is not found or was previously destroyed.
Algorithm in algorithm context not valid for requested operation.

The key context token does not reference a valid key context.
The key context is not found or was previously destroyed.
Algorithm context not compatible with key context.
Cryptographic device name not valid.

Cryptographic device not found.

Cryptographic service provider (CSP) conflicts with the key context CSP.

Not authorized to device.
Cryptographic device not available.

API introduced: V5R3

@ | I“Cryptographic Services APIs,” on page 1| | [APIs by category]|

Encrypt Data (QC3ENCDT, Qc3EncryptData)

Required Parameter Group:

Clear data
Length of clear data
Clear data format name

Input Char(*)
Input Binary(4)
Input Char(8)

Cryptographic Services APIs

13

#TOP_OF_PAGE
aplist.htm

4 Algorithm description Input Char(*)
5 Algorithm description format name Input Char(8)
6 Key description Input Char(*)
7 Key description format name Input Char(8)
8 Cryptographic service provider Input Char(1)
9 Cryptographic device name Input Char(10)
10 Encrypted data Output Char(*)
11 Length of area provided for encrypted data Input Binary(4)
12 Length of encrypted data returned Output Binary(4)
13 Error code I/0 Char(*)

Service Program Name: QC3DTAEN
Default Public Authority: *USE
Threadsafe: Yes

clear data into an unintelligible form. To recover the clear data from the encrypted data, use the

The Encrypt Data (OPM, QC3ENCDT; ILE, Qc3EncryptData) API protects data privacy by scrambling
[Data (QC3DECDT, Qc3DecryptData)” on page 2| API.

Information on cryptographic standards can be found in the [“Create Algorithm Context (QC3CRTAX)
[Qc3CreateAlgorithmContext)” on page 120| API documentation.

Authorities and Locks

Required device description authority
*USE

=

Required file authority
*OBJOPR, *READ

&

Required Parameter Group

Clear data
INPUT; CHAR(*)

The data to encrypt.
The format of the clear data is specified in the clear data format name parameter

Length of clear data
INPUT; BINARY(4)

For clear data format DATA0100, this is the length of the data to encrypt. For restrictions on the
length of clear data, refer to the clear data length field below.
For clear data format DATA0200, this is the number of entries in the array.

Clear data format name
INPUT; CHAR(8)

The format of the clear data parameter.
The possible format names follow.

DATA0100
The clear data parameter contains the data to encrypt.

[“DATA0200 format” on page 17|
The clear data parameter contains an array of pointers and lengths to the data to encrypt.
See |“Clear Data Formats” on page 17| for a description of this format.

14 1BM Systems - iSeries: Cryptographic Services APls

Algorithm description
INPUT; CHAR(¥)

The algorithm and associated parameters for encrypting the data.
The format of the algorithm description is specified in the algorithm description format name
parameter.

Algorithm description format name
INPUT; CHAR(8)

The format of the algorithm description.
The possible format names follow.

[“ALGD0100 format” on page 18|
The token for an algorithm context. This format must be used when performing the
encrypt operation over multiple calls. After the last call (when the final operation flag is
on), the context will reset to its initial state and can be used in another API. To create an
algorithm context, use the [“Create Algorithm Context (QC3CRTAX)
[Qc3CreateAlgorithmContext)” on page 120] APL

[“ALGD0200 format” on page 18|
Parameters for a block cipher algorithm (DES, Triple DES, AES, and RC2).

[“ALGD0300 format” on page 18|
Parameters for a stream cipher algorithm (RC4-compatible).

[“ALGD0400 format” on page 18|
Parameters for a public key algorithm (RSA).

See [“Algorithm Description Formats” on page 18| for a description of these formats.

Key description
INPUT; CHAR(*)

The key to use for encrypting the data.

The format of the key description is specified in the key description format name parameter.

If the encrypt operation extends over multiple calls (see ALGD0100 description above), only the
key description from the first call will be used. Therefore, on subsequent calls, you may set the
pointer to this parameter to NULL.

Key description format name
INPUT; CHAR(8)

The format of the key description.
If the pointer to the key description parameter is NULL, this parameter will be ignored.
The possible format names follow.

[“KEYD0100 format” on page 20|
Key context token. This format identifies a key context. A key context is used to store a
key value so it need not be recreated or retrieved every time it is used. To create a key
context, use the [“Create Key Context (QC3CRTKX, Qc3CreateKeyContext)” on page 125|
APL

[“KEYD0200 format” on page 21|
Key parameters.

i

Cryptographic Services APIs 15

[“KEYD0400 format” on page 21|
Key store label. This format identifies a key from key store. For more information on
cryptographic services key store, refer to the [“Cryptographic Services Key Store” on page|
ﬂ

article.

[“KEYDO0500 format” on page 21|
PKCS5 passphrase. This format derives a key using RSA Data Security, Inc. Public-Key
Cryptography Standard (PKCS) #5.

[“KEYDO0600 format” on page 21|
PEM certificate. This format uses the PKA key in an ASCII encoded PEM based
certificate.

[“KEYD0700 format” on page 21|
Certificate label. This format uses the public PKA key identified by a label into system
certificate key store (*SYSTEM).

[“KEYDO0800 format” on page 22|
Distinguished name. This format uses the public PKA key identified by a distinguished
name for a certificate in system certificate key store (*SYSTEM).

[“KEYD0900 format” on page 22|
Application identifier. This format uses the private PKA key identified by an application
identifier. The application identifier must be assigned to a valid certificate label in system
certificate key store (*SYSTEM).

&

See [“Key Description Formats” on page 20| for a description of these formats.

Cryptographic service provider
INPUT; CHAR(1)

The cryptographic service provider (CSP) that will perform the encryption operation.

0 Any CSP.
The system will choose an appropriate CSP to perform the encryption operation.

1 Software CSP.
The system will perform the encryption operation using software. If the requested algorithm is not available
in software, an error is returned.

2 Hardware CSP.
The system will perform the encryption operation using cryptographic hardware. If the requested algorithm is
not available in hardware, an error is returned. A specific cryptographic device can be specified using the
cryptographic device name parameter. If the cryptographic device is not specified, the system will choose an
appropriate one.

Cryptographic device name
INPUT; CHAR(10)

The name of a cryptographic device description.
This parameter is valid when the cryptographic service provider parameter specifies 2 (hardware
CSP). Otherwise, this parameter must be blanks or the pointer to this parameter set to NULL.

Encrypted data
OUTPUT; CHAR(*)

The area to store the encrypted data.

Length of area provided for encrypted data
INPUT; BINARY(4)

16 1BM Systems - iSeries: Cryptographic Services APls

The length of the encrypted data parameter.

If the mode of operation is CFB 1-bit, this length must be specified in bits.
If the length of area provided for encrypted data is too small, an error will be generated and no
data will be returned in the encrypted data parameter.

Block ciphers

Stream ciphers
PKA ciphers

Length of encrypted data returned

The encrypted data parameter must be greater than or equal to the length of clear data. If

padding and performing final processing, the encrypted data parameter must be large
enough to include the pad characters. For more information, refer to the pad option

description.

The encrypted data parameter must be greater than or equal to the length of clear data.

The encrypted data parameter must be greater than or equal to the key size.

OUTPUT; BINARY(4)

The length of encrypted data returned in the encrypted data parameter.
If the mode of operation is CFB 1-bit, this length will be returned in bits.

Error code

1/0; CHAR(*)

The structure in which to return error information.
For the format of the structure, see [Error Code Parameter]

Clear Data Formats

For detailed descriptions of the table fields, see [‘Clear Data Formats Field Descriptions.”|

DATA0200 format

Offset

Dec | Hex Type

Field

These fields repeat. |PTR(SPP)

Clear data pointer

BINARY(4)

Clear data length

CHAR(12)

Reserved

Clear Data Formats Field Descriptions

Clear data length
The length of data to encrypt. Some cipher algorithms have restrictions on the clear data length.

DES, Triple DES, AES, RC2

RSA

When mode is 0 (ECB), 2 (OFB), or 5 (CFB 64-bit) and pad option is 0 (no pad), the total
of the clear data lengths for the entire encrypt operation must be a multiple of the block
length. For mode 3 (CFB 1-bit), the clear data length is specified in bits, not bytes.

For PKA block formats 0, 1, and 2, the clear data length must be at least 11 bytes shorter

than the key size. For PKA block format 4, the data to encrypt must be shorter than or
equal to the key size.

Clear data pointer
A space pointer to the data to encrypt.

Cryptographic Services APIs

17

Reserved
Must be null (binary 0s).

Algorithm Description Formats

For detailed descriptions of the table fields, see [“Algorithm Description Formats Field Descriptions” on|
page 19.| For algorithm standards and resources, see the |‘Create Algorithm Context (QC3CRTAX |
Qc3CreateAlgorithmContext)” on page 120| API documentation.

ALGDO0100 format

Offset
Dec Hex Type Field
0 0 CHAR(8) Algorithm context token
8 8 CHAR(1) Final operation flag

ALGD0200 format

Offset
Dec Hex Type Field
0 BINARY(4) Block cipher algorithm
4 4 BINARY (4) Block length
8 CHAR(1) Mode
9 9 CHAR(1) Pad option
10 A CHAR(1) Pad character
11 B CHAR(1) Reserved
12 C BINARY(4) MAC length
16 10 BINARY(4) Effective key size
20 14 CHAR(32) Initialization vector

ALGDO0300 format

Offset
Dec Hex Type Field

0 0 BINARY(4) Stream cipher algorithm

ALGD0400 format

Offset
Dec Hex Type Field
0 0 BINARY(4) Public key cipher algorithm
4 4 CHAR(1) PKA block format
5 5 CHAR(3) Reserved
8 8 BINARY (4) Signing hash algorithm

18 1BM Systems - iSeries: Cryptographic Services APls

Algorithm Description Formats Field Descriptions

Algorithm context token
A token for an algorithm context. The algorithm context is created using the [‘Create Algorithm|
[Context (QC3CRTAX, Qc3CreateAlgorithmContext)” on page 120{ APL

Block cipher algorithm
The encryption algorithm. Following are the valid block cipher algorithms.

20 DES
21 Triple DES
22 AES
23 RC2

Block length
The algorithm block length. For DES, Triple DES, and RC2 the block length field must specify 8.
The valid block length values for AES are 16, 24, and 32.

Effective key size
For RC2, the number of key bits to use in the cipher operation. Valid values are from 1 to 1024. If
RC2 is not specifed for the block cipher algorithm, this field must be set to 0.

Final operation flag
The final processing indicator.

0 Continue.
The system will not perform final processing and the algorithm context will maintain the state of the
operation. The algorithm context can be used on future calls to this API to continue the encryption operation.
1 Final.
The system will perform final processing (e.g. padding) and the algorithm context will reset to its initial state.
The algorithm context can then be used to begin a new cryptographic operation (encrypt, decrypt, etc.). When
performing a final operation, the pointer to the clear data parameter may be set to NULL and the length of
clear data parameter set to 0. This option must be specified if performing RSA encryption.

Initialization vector
The initialization vector (IV). An IV is not used for mode ECB, and must be set to NULL (binary
0s). Refer to the mode standards for an explanation of its use. For DES, Triple DES, and RC2, the
first 8 bytes are used as the IV. For AES, the length of IV used is that specified by block length.
The IV need not be secret, but it should be significantly unique for each message. If not unique, it
may compromise security. The IV can be any value. To obtain a good random IV value, use the
[“Generate Pseudorandom Numbers (QC3GENRN, Qc3GenPRNSs) API” on page 118{ APL

MAC length
This field is not used on an encrypt operation and must be set to null (binary Os).

Mode The mode of operation. Information on modes can be found in FIPS PUB 81 and ANSI X9.52.
Following are the valid modes.

ECB

CBC

OFB. Not valid with AES or RC2.

CFB 1-bit. Not valid with AES or RC2.
CFB 8-bit. Not valid with AES or RC2.
CFB 64-bit. Not valid with AES or RC2.

Ul b= W N = O

Pad character
The pad character for pad option 1. Using hex 00 as the pad character is equivalent to ANSI
X9.23 padding.

Cryptographic Services APIs 19

Pad option
If requested, padding is performed at the end of the encrypt operation. Be sure the encrypted
data parameter is large enough to include any padding. The data will be padded up to the next
block length byte multiple. For example, when using DES and total data to encrypt is 20, the text
is padded to 24. The last byte is filled with a 1-byte binary counter containing the number of pad
characters used. The preceeding pad characters are filled as specified by this field. Padding is not
performed for modes CFB 1-bit and CFB 8-bit. In these cases, the pad option must be set to 0.
Following are the valid pad options.

0 No padding is performed.
1 Use the character specified in the pad character field for padding.
2 The pad counter is used as the pad character. This is equivalent to PKCS #5 padding.

PKA block format
The public key algorithm block format. Following are the valid values.

0 PKCS #1 block type 00

PKCS #1 block type 01

2 PKCS #1 block type 02
This format is recommended when encrypting non-hash items (such as keys). The other formats are normally
used in sign and verify functions.

4 Zero pad
The clear data is placed in the low-order bit positions of a string of the same bit-length as the key modulus.
All leading bits are set to zero.

Y

Z
6 OAEP

&

Public key cipher algorithm
The encryption algorithm. Following are the valid public key cipher algorithms.

50 RSA

Reserved
Must be null (binary 0s).

Signing hash algorithm
This field is not used on an encrypt operation and must be set to null (binary Os).

Stream cipher algorithm
The encryption algorithm. Following are the valid stream cipher algorithms.

30 RC4-compatible

Key Description Formats

For detailed descriptions of the table fields, see [“Key Description Formats Field Descriptions” on page|

KEYDO0100 format

Offset
Dec Hex Type Field

0 0 CHAR(8) Key context token

20 1BM Systems - iSeries: Cryptographic Services APls

KEYDO0200 format

Offset
Dec Hex Type Field
0 BINARY(4) Key type
4 4 BINARY(4) Key string length
8 CHAR(1) Key format
9 9 CHAR(3) Reserved
12 C CHAR(¥) Key string
i
KEYDO0400 format
Offset
Dec Hex Type Field
0 0 CHAR(20) Qualified key store file name
20 14 CHAR(32) Record label
52 34 CHAR®#4) Reserved
KEYDO0500 format
Offset
Dec Hex Type Field
BINARY(4) Key type
4 4 BINARY(4) Derived key length
BINARY(4) Tteration count
12 C BINARY(4) Salt length
16 10 CHAR(16) Salt
32 20 BINARY(4) Passphrase CCSID
36 24 BINARY(4) Passphrase length
40 28 CHARC(*) Passphrase
KEYDO0600 format
Offset
Dec Hex Type Field
BINARY(4) PEM certificate length
4 4 CHAR(4) Reserved
CHAR(*) PEM certificate

KEYDO0700 format

Offset
Dec Hex Type Field
0 0 BINARY(4) Certificate label length
4 4 CHAR(4) Reserved

Cryptographic Services APIs

21

Offset
Dec Hex Type Field

8 8 CHARC(¥) Certificate label

KEYDO0800 format

Offset
Dec Hex Type Field
BINARY(4) Distinguished name length
4 4 CHAR(4) Reserved
CHARC(*) Distinguished name

KEYD0900 format

Offset
Dec Hex Type Field
BINARY (4) Application identifier length
4 4 CHAR(4) Reserved
CHAR(¥) Application identifier

&

Key Description Formats Field Descriptions

=

Application identifer
The application ID assigned to a certificate with a private key in system certificate key store
(*SYSTEM).

Application identifier length
The length of the application ID. The length can not be greater than 32.

Certificate label
The label of the certificate in system certificate key store (*SYSTEM). The certificate’s public key
will be used in the encryption operation.

Certificate label length
The length of the certificate label.

Derived key length
The length of key requested. The minimum allowed length is 1.

Distinguished name
The distinguished name of the certificate in system certificate key store (*SYSTEM). The
certificate’s public key will be used in the encryption operation.

Distinguished name length
The length of the distinguished name.

File name
The name of a key store file. Key store files are created using the |[“Create Key Store (QC3CRTKS)|
[Qc3CreateKeyStore)” on page 86{ API.

22 IBM Systems - iSeries: Cryptographic Services APls

Iteration count
Used to greatly increase the cost of an exhaustive search while modestly increasing the cost of
key derivation. The minimum allowed value is 1. The standard recommends a minimum of 1000.
The maximum allowed length is 100,000.

{{

Key context token
A token for a key context. The key context is created using the [‘Create Key Context (QC3CRTKX||
[Qc3CreateKeyContext)” on page 125 API.

Key format
The format of the key string field. Following are the valid values.

0 Binary string.
The key is specified as a binary value. To obtain a good random key value, use the |“Generate Symmetric Key]|

(QC3GENSK, Qc3GenSymmetricKey)” on page 79) or [“Generate Pseudorandom Numbers (QC3GENRN |

Qc3GenPRNs) API” on page 118/ API.

1 BER string
If the key type field specifies 50 (RSA public), the key must be specified in BER encoded X.509 % Certificate
or £% SubjectPublicKeyInfo format. For specifications of this format, refer to RFC 3280. If the key type field
specifies 51 (RSA private), the key must be specified in BER encoded PKCS #8 format. For specifications of
this format, refer to RSA Security Inc. Public-Key Cryptography Standards. To generate a PKA key pair, use
the [“Generate PKA Key Pair (QC3GENPK, Qc3GenPKAKeyPair)” on page 74| API.

Key string
The key to use in the encrypt operation.

Key string length
Length of the key string specified in the key string field.

Key type
The type of key. Following are the valid values.

20 DES
"% The key string length or derived key string length must be 8 bytes. For key description KEYD0200, the key
format must be 0. ¢ Only 7 bits of each byte are used as the actual key. The rightmost bit of each byte is
used to set parity. Some cryptographic service providers require that a DES key have odd parity in every byte.
Others ignore parity.

21 Triple DES
% The key string length or the derived key length can be 8, 16, or 24. For key description KEYD0200, the key
format must be 0. ¥ Triple DES operates on an encryption block by doing a DES encrypt, followed by a DES
decrypt, and then another DES encrypt. Therefore, it actually uses three 8-byte DES keys. If 24 bytes are
supplied in the key string, the first 8 bytes are used for key 1, the second 8 bytes for key 2, and the third 8
bytes for key 3. If 16 bytes are supplied, the first 8 bytes are used for key 1 and key 3, and the second 8 bytes
for key 2. If only 8 bytes are supplied, it will be used for all 3 keys (essentially making the operation
equivalent to a single DES operation). Only 7 bits of each byte are used as the actual key. The rightmost bit of
each byte is used to set parity. Some cryptographic service providers require that a Triple DES key have odd
parity in every byte. Others ignore parity.

22 AES
"% The key string length or derived key length can be 16, 24, or 32. For key description KEYD0200, the key
format must be 0. ¥

23 RC2
%% The key string length or derived key length can be from 1 to 128. For key description KEYD0200, the key
format must be 0. £

30 RC4-compatible
" The key string length or derived key length can be from 1 to 256. For key description KEYD0200, the key
format must be 0. ¥ Because of the nature of the RC4-compatible algorithm, using the same key for more
than one message will severely compromise security.

Cryptographic Services APIs 23

50 RSA public
%% Valid only for key description KEYD0200. % The key format must be 1. Encryption with a public key and
decryption with a private key is used for data privacy.

51 RSA private
%% Valid only for key description KEYDO0200. ¢ The key format must be 1. Encryption with a private key
and decryption with a public key is used for data authentication (e.g. signing).

b

Passphrase
A text string.

Passphrase CCSID
INPUT; BINARY(4)

The CCSID of the passphrase. The passphrase will be converted from the specified CCSID to
Unicode before calling the PKCS5 algorithm.

0 The CCSID of the job is used to determine the CCSID of the data to be converted. If the job
CCSID is 65535, the CCSID from the default CCSID (DFTCCSID) job attribute is used.
1-65533 A valid CCSID in this range is used. For a list of valid CCSIDs, see the topic in the

iSeries Information Center.

Passphrase length
The length of passphrase. The length must be in the range of 1 to 256.

PEM certificate
An ASCII encoded PEM formated certificate.

PEM certificate length
The length of the PEM certificate.

Qualified key store file name
The key store file where the key is stored. Key store files are created using the [“Create Key Store|
[(QC3CRTKS, Qc3CreateKeyStore)” on page 86| APL The first 10 characters contain the file name.
The second 10 characters contain the name of the library where the key store file is located. You
can use the following special values for the library name.

*CURLIB The job’s current library is used to locate the key store
file. If no library is specified as the current library for the
job, the QGPL library is used.

*LIBL The job’s library list is searched for the first occurence of
the specified file name.

Record label
The label of a key record in a key store file. The label will be converted from the job CCSID, or if
65535, the job default CCSID (DFTCCSID) job attribute to CCSID 1200 (Unicode UTE-16). Key
records are created using the [“Write Key Record (QC3WRTKR, Qc3WriteKeyRecord)” on page 112
or [“Generate Key Record (QC3GENKR, Qc3GenKeyRecord)” on page 98] API.

&
Reserved

Must be null (binary 0s).
b

Salt Used to help thwart attacks by producing a large set of keys for each passphrase. The standard
recommends the salt be generated at random and be at least 8 bytes long. You may use the
[‘Generate Pseudorandom Numbers (QC3GENRN, Qc3GenPRNs) API” on page 118 API to obtain

24 1BM Systems - iSeries: Cryptographic Services APls

a random value. Additionally, data that distinguishes between various operations can be added to
the salt for additional security. Refer to the standard for more information.

Salt length

The length of salt. The length must be in the range of 1 to 16.

{{

Error Messages

Message ID
CPF24B4 E
CPF3CI1E E
CPF3CF1 E
CPF3CF2 E
CPF9872 E
2
CPF9D99 E
CPF9DYA E
CPF9D9B E
CPFODIC E
CPF9DYF E
CPF9DAO E
CPFODA1 E
CPFODA2 E
CPFODA3 E
CPF9DA4 E
CPFIDAS E
CPFI9DAG6 E
CPFIDA7 E
CPF9DAS8 D
CPF9DA9 D
CPF9DAA D
CPFODAB E
CPFODB1 E
CPF9DB3 E
CPF9DB6 E
CPF9DB8 E
CPF9DBA E
CPF9DBB E
CPF9DBC E
CPF9DBD E
CPFODBE E
CPFODBF E
CPFODCO E
CPFODC2 E
CPFODC3 E
il
CPF9DC6 E
CPF9DCS8 E
CPF9DC9 E
CPFODCE E
CPFODCF E
CPFODDO E
CPFIDD2 E
CPF9DD3 E
CPF9DD4 E

Error Message Text

Severe error while addressing parameter list.

Required parameter &1 omitted.

Error code parameter not valid.

Error(s) occurred during running of &1 APL

Program or service program &1 in library &2 ended. Reason code &3.

Error openning certificate store.

Key is protected by a cryptographic coprocessor.
Internal error occured retrieving key from system certificate store.
Function is disallowed with specified key context.
Not authorized to key store file.

Error occured opening key store file.

Key record not found.

Option 34 is not installed.

Not authorized to use APPIDs.

APPID is not valid.

Key store file not found.

The key store file is not available.

File is corrupt or not a valid key store file.

The application identifier length is not valid.

The format of the PEM certificate is not valid.

A key requires translation.

A key can not be decrypted.

The CCSID is not valid.

Qualified key store file name not valid.

Record label not valid.

Error occured retrieving key record from key store.
Derived key length not valid.

Iteration count not valid.

Salt length not valid.

Passphrase length not valid.

PEM certificate length not valid.

Certificate label length not valid.

Distinghished name length not valid.
Key-encrypting algorithm context not compatible with key-encrypting key context.
Unable to decrypt data or key.

Algorithm not valid for encrypting or decrypting a key.
The input data parameter specifies a NULL pointer.

The total length of data in the input data array is not valid.
A data length is not valid.

A data pointer is not valid.

Clear data format name not valid.

Algorithm description format name not valid.

Key description format name not valid.

Length of clear data not valid.

Cryptographic Services APIs

25

Message ID
CPF9DD6 E
CPFODD7 E
CPF9DDS8 E

CPFODD9 E
CPF9DDA E
CPF9DDB E
CPFODDD E
CPFODDE E
CPFODDF E
CPF9DEO E
CPF9DE1 E
CPF9DE2 E
CPF9DE3 E
CPF9DE4 E
CPF9DES5 E
CPF9DE6 E
CPF9DE? E
CPFIODE9 E
CPFIDEC E
CPFODED E
CPFODEE E
CPFODF0 E

CPF9DF1 E
CPFODF2 E
CPFODE3 E
CPF9DF4 E
CPFODEF5 E
CPFODF7 E
CPF9DES E
CPF9DF9 E
CPF9DFA E
CPFODFB E
CPFODFD E
CPFODEFE E

Error Message Text

Length of area provided for output data is too small.

The key-encrypting key context for the specified key is not valid or was previously destroyed.
The key-encrypting algorithm context for the specified key is not valid or was previously
destroyed.

Effective key size not valid.

Unexpected return code &1.

The key string or Diffie-Hellman parameter string is not valid.

The key string length is not valid.

Cipher algorithm not valid.

Block length not valid.

Hash algorithm not valid.

Initialization vector not valid.

MAC (message authentication code) length not valid.

Mode not valid.

Pad option not valid.

PKA (public key algorithm) block format not valid.

Public key algorithm not valid.

Key type not valid.

Key format not valid.

Cryptographic service provider not valid.

Final operation flag not valid.

Reserved field not null.

Operation, algorithm, or mode not available on the requested CSP (cryptographic service
provider).

The algorithm context token does not reference a valid algorithm context.
The algorithm context is not found or was previously destroyed.
Algorithm in algorithm context not valid for requested operation.

The key context token does not reference a valid key context.

The key context is not found or was previously destroyed.

Algorithm context not compatible with key context.

Cryptographic device name not valid.

Cryptographic device not found.

Multiple-block encryption not valid with the requested mode.
Cryptographic service provider (CSP) conflicts with the key context CSP.
Not authorized to device.

Cryptographic device not available.

API introduced: V5R3

[Top] | ["Cryptographic Services APIs,” on page 1] | [APIs by category]

Translate Data (QC3TRNDT, Qc3TranslateData)

Required

—_

O 0 N O U = W N

Parameter Group:

Data to translate Input Char(¥)
Length of data to translate Input Binary(4)
Decrypt algorithm context token Input Char(8)
Decrypt key context token Input Char(8)
Encrypt algorithm context token Input Char(8)
Encrypt key context token Input Char(8)
Cryptographic service provider Input Char(1)
Cryptographic device name Input Char(10)
Translated data Output Char(*)

26 IBM Systems - iSeries: Cryptographic Services APls

#TOP_OF_PAGE
aplist.htm

10 Length of area provided for translated data Input Binary(4)
11 Length of translated data returned Output Binary(4)
12 Error code I/0 Char(*)

Service Program Name: QC3DTATR
Default Public Authority: *USE
Threadsafe: Yes

The Translate Data (OPM, QC3TRNDT; ILE, Qc3TranslateData) API translates data from encryption under

one key to encryption under another key.

Authorities and Locks

Required API authority
*USE

Required device description authority
*USE

Required Parameter Group

Data to translate
INPUT; CHAR(¥)

The data to be decrypted and encrypted again.

Length of data to translate
INPUT; BINARY(4)

The length of data in the data to translate parameter.
If the decrypt mode of operation is CFB 1-bit, the length must be specified in bits.

Decrypt algorithm context token
INPUT; CHAR(8)

The token for the algorithm context to use for decrypting the data.

The algorithm context is created using the Create Algorithm Context (OPM, QC3CRTAX; ILE,
Qc3CreateAlgorithmContext) APL

On a translate operation, the system always performs final processing (e.g. padding) and resets
the algorithm context to its initial state. The algorithm context can then be used to begin a new
cryptographic operation (encrypt, decrypt, etc.).

Decrypt key context token
INPUT; CHAR(8)

The token for the key context to use for decrypting the data.
The key context is created using the Create Key Context (OPM, QC3CRTKX; ILE,
Qc3CreateKeyContext) APL

Encrypt algorithm context token
INPUT; CHAR(8)

The token for the algorithm context to use for encrypting the data.
The algorithm context is created using the Create Algorithm Context (OPM, QC3CRTAX; ILE,
Qc3CreateAlgorithmContext) API.

Encrypt key context token
INPUT; CHAR(8)

The token for the key context to use for encrypting the data.
The key context is created using the Create Key Context (OPM, QC3CRTKX; ILE,
Qc3CreateKeyContext) APIL.

Cryptographic Services APIs

27

Cryptographic service provider
INPUT; CHAR(1)

The cryptographic service provider (CSP) that will perform the translate operation.

0 Any CSP.
The system will choose an appropriate CSP to perform the translate operation.

1 Software CSP.
The system will perform the translate operation using software. If the requested algorithms are not available
in software, an error is returned.

2 Hardware CSP.
The system will perform the translate operation using cryptographic hardware. If the requested algorithms are
not available in hardware, an error is returned. A specific cryptographic device can be specified using the
cryptographic device name parameter. If the cryptographic device is not specified, the system will choose an
appropriate one.

Cryptographic device name
INPUT; CHAR(10)

The name of a cryptographic device description.
This parameter is valid when the cryptographic service provider parameter specifies 2 (hardware
CSP). Otherwise, this parameter must be blanks or the pointer to this paramter set to NULL.

Translated data
OUTPUT; CHAR(*Y)

The area to store the translated data.

Length of area provided for translated data
INPUT; BINARY(4)

The length of the translated data parameter.

To ensure sufficient space, specify an area at least as large as the length of data to translate. Be
sure to add any space necessary for padding.

If the encrypt mode of operation is CFB 1-bit, this length must be specified in bits.

Length of translated data returned
OUTPUT; BINARY(4)

The length of the translated data returned in the translated data parameter.

If the length of area provided for the translated data is too small, an error will be generated and
no data will be returned in the translated data parameter.

If the encrypt mode of operation is CFB 1-bit, the length will be returned in bits.

Error code
I/0; CHAR(*)

The structure in which to return error information.
For the format of the structure, see [Error Code Parameter]

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPE3CI1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.

CPFODC2 E Key-encrypting algorithm context not compatible with key-encrypting key context.
CPFODC3 E Encrypted data contains invalid padding.

CPFODC6 E Algorithm not valid for encrypting or decrypting a key.

CPFODD4 E Length of clear data not valid.

28 IBM Systems - iSeries: Cryptographic Services APls

Message ID
CPF9DD5 E
CPF9DD6 E
CPFIDD7 E
CPFIDDS8 E

CPF9DDA E
CPF9DDB E
CPFODDD E
CPF9DE3 E
CPFIDEC E
CPFODF0 E

CPF9DF1 E
CPF9DF2 E
CPF9DE3 E
CPF9DF4 E
CPFODF5 E
CPFODF7 E
CPFODEFES E
CPFODF9 E
CPFI9DFB E
CPFODFD E
CPF9DEFE E
CPF9DFF E

Error Message Text

Length of input data not valid.

Length of area provided for output data is too small.

The key-encrypting key context for the specified key is not valid or was previously destroyed.
The key-encrypting algorithm context for the specified key is not valid or was previously
destroyed.

Unexpected return code &1.

The key string or Diffie-Hellman parameter string is not valid.

The key string length is not valid.

Mode not valid.

Cryptographic service provider not valid.

Operation, algorithm, or mode not available on the requested CSP (cryptographic service
provider).

The algorithm context token does not reference a valid algorithm context.

The algorithm context is not found or was previously destroyed.

Algorithm in algorithm context not valid for requested operation.

The key context token does not reference a valid key context.

The key context is not found or was previously destroyed.

Algorithm context not compatible with key context.

Cryptographic device name not valid.

Cryptographic device not found.

Cryptographic service provider (CSP) conflicts with the key context CSP.

Not authorized to device.

Cryptographic device not available.

Request not allowed by cryptographic attributes.

API introduced: V5R3

IEE' | [“Cryptographic Services APIs,” on page 1| | [APIs by category]|

Authentication APIs

The Authentication APIs help you to ensure the following;:

e Data has not been altered

 Data is not from an impostor

The Authentication APIs include:

+ [“Calculate Hash (QC3CALHA, Qc3CalculateHash)” on page 30| (QC3CALHA, Qc3CalculateHash) uses

a one-way hash function to produce a fixed-length output string from a variable-length input string.

[Calculate HMAC (QC3CALHM, Qc3CalculateHMAC)” on page 34| (QC3CALHM,

Qc3CalculateHMAC) uses a one-way hash function and a secret shared key to produce an
authentication value.

[‘Calculate MAC (QC3CALMA, Qc3CalculateMAC)” on page 42 (QC3CALMA, Qc3CalculateMAC)

produces a message authentication code.

[Calculate Signature (QC3CALSG, Qc3CalculateSignature)” on page 51| (QC3CALSG,

Qc3CalculateSignature) produces a digital signature by hashing the input data and encrypting the hash
value using a public key algorithm (PKA).

* [“Verify Signature (QC3VFYSG, Qc3VerifySignature)” on page 59 (QC3VFYSG, Qc3VerifySignature)

verifies that a digital signature is correctly related to the input data.

@ | Cryptographic Services APIs I[APIs by category]

Cryptographic Services APIs 29

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

Calculate Hash (QC3CALHA, Qc3CalculateHash)

Required Parameter Group:

1 Input data Input Char(*)
2 Length of input data Input Binary(4)
3 Input data format name Input Char(8)
4 Algorithm description Input Char(*)
5 Algorithm description format name Input Char(8)
6 Cryptographic service provider Input Char(1)
7 Cryptographic device name Input Char(10)
8 Hash Output Char(*)
9 Error code I/0 Char(*)

Service Program Name: QC3HASH
Default Public Authority: *USE
Threadsafe: Yes

The Calculate Hash (OPM, QC3CALHA; ILE, Qc3CalculateHash) API uses a one-way hash function to
produce a fixed-length output string from a variable-length input string. For all practical purposes,
one-way hashes are irreversible. This property makes them useful for authentication purposes.

Information on cryptographic standards can be found in the [“Create Algorithm Context (QC3CRTAX)
[Qc3CreateAlgorithmContext)” on page 120| documentation.

Authorities and Locks

Required API authority
*USE

Required device description authority
*USE

Required Parameter Group

Input data
INPUT; CHAR(¥)

The data to hash.
The format of the input data is specified in the input data format name parameter

Length of input data
INPUT; BINARY(4)

For input data format DATAOQ100, this is the length of the data to hash.
For input data format DATA0200, this is the number of entries in the array.

Input data format name
INPUT; CHAR(S8)

The format of the input data parameter.
The possible format names follow.

DATA0100
The input data parameter contains the data to hash.

[“DATA0200 format” on page 32|
The input data parameter contains an array of pointers and lengths to the data to hash.
See |“Input Data Formats” on page 32| for a description of this format.

30 IBM Systems - iSeries: Cryptographic Services APIs

Algorithm description

INPUT; CHAR(*)

The algorithm and associated parameters for hashing the data.
The format of the algorithm description is specified in the algorithm description format name
parameter.

Algorithm description format name

INPUT; CHAR(8)

The format of the algorithm description.
The possible format names follow.

[“ALGD0100 format” on page 32|
The token for an algorithm context. This format must be used when performing the hash
operation over multiple calls. After the last call (when the final operation flag is on), the
context will reset to its initial state and can be used in another APL

[“ALGD0500 format” on page 32|
Parameters for a hash algorithm (MD5, SHA-1, SHA-256, SHA-384, SHA-512).

See |“Algorithm Description Formats” on page 32| for a description of these formats.

Cryptographic service provider

INPUT; CHAR(1)
The cryptographic service provider (CSP) that will perform the hash operation.

Any CSP.

The system will choose an appropriate CSP to perform the hash operation.

Software CSP.

The system will perform the hash operation using software. If the requested algorithm is not available in
software, an error is returned.

Hardware CSP.

The system will perform the hash operation using cryptographic hardware. If the requested algorithm is not
available in hardware, an error is returned. A specific cryptographic device can be specified using the
cryptographic device name parameter. If the cryptographic device is not specified, the system will choose an
appropriate one.

Cryptographic device name

INPUT; CHAR(10)

The name of a cryptographic device description.
This parameter is valid when the cryptographic service provider parameter specifies 2 (hardware
CSP). Otherwise, this parameter must be blanks or the pointer to this parameter set to NULL.

Hash OUTPUT; CHARC(Y)
The area to store the hash. The length of hash is defined by the hash algorithm.

MD5 16 bytes

SHA-1 20 bytes

SHA-256 32 bytes

SHA-384 48 bytes

SHA-512 64 bytes

Error code

1/0; CHAR(*)

Cryptographic Services APIs 31

The structure in which to return error information.
For the format of the structure, see [Error Code Parameter]

Input Data Formats
For detailed descriptions of the table fields, see ['Input Data Formats Field Descriptions.”|

DATAO0200 format

Offset
Dec | Hex Type Field
These fields repeat. PTR(SPP) Input data pointer
BINARY (4) Input data length
CHAR(12) Reserved

Input Data Formats Field Descriptions

Input data length
The length of data to hash.

Input data pointer
A space pointer to the data to hash.

Reserved
Must be null (binary 0s).

Algorithm Description Formats

For detailed descriptions of the table fields, see [“Algorithm Description Formats Field Descriptions.”]

ALGDO0100 format

Offset
Dec Hex Type Field
0 0 CHAR(8) Algorithm context token
8 8 CHAR(1) Final operation flag

ALGDO0500 format

Offset
Dec Hex Type Field

0 0 BINARY(4) Hash algorithm

Algorithm Description Formats Field Descriptions

Algorithm context token
A token for an algorithm context. The algorithm context is created using the [‘Create Algorithm|
[Context (QC3CRTAX, Qc3CreateAlgorithmContext)” on page 120

Hash algorithm
The hash algorithm. Following are the valid hash algorithms.

1 MD5
Documented in RFC 1321.
2 SHA-1

Documented in FIPS 180-2.

32 IBM Systems - iSeries: Cryptographic Services APls

3 SHA-256

Documented in FIPS 180-2.

4 SHA-384

Documented in FIPS 180-2.

5 SHA-512

Documented in FIPS 180-2.

Final operation flag
The final processing indicator.

0 Continue.

The system will not perform final processing and the algorithm context will maintain the state of the
operation. The algorithm context can be used on future calls to this API to continue the hash operation. The

pointer to the hash parameter may be set to NULL because the hash value will not be returned until the final
operation flag is set on.

1 Final.

The system will perform final processing. The hash value will be returned and the algorithm context will reset
to its initial state. The algorithm context can then be used to begin a new cryptographic operation (hash,
HMAUC, etc.). When performing a final operation, the pointer to the input data parameter may be set to

NULL.

Error Messages

Message ID
CPF24B4 E
CPF3CI1E E
CPF3CF1 E
CPF9872 E
CPFODC7 E
CPF9DCS8 E
CPF9DC9 E
CPF9DCE E
CPF9DCF E
CPF9DD1 E
CPF9DD2 E
CPF9DD5 E
CPFODDA E
CPFODEO E
CPFODEC E
CPF9DED E
CPF9DEE E
CPF9DFO E

CPF9DF1 E
CPFODF2 E
CPFODE3 E
CPFODES E
CPFODF9 E
CPFODFD E
CPF9DEFE E

Error Message Text

Severe error while addressing parameter list.

Required parameter &1 omitted.

Error code parameter not valid.

Program or service program &1 in library &2 ended. Reason code &3.
The output data parameter specifies a NULL pointer.

The input data parameter specifies a NULL pointer.

The total length of data in the input data array is not valid.

A data length is not valid.

A data pointer is not valid.

Input data format name not valid.

Algorithm description format name not valid.

Length of input data not valid.

Unexpected return code &1.

Hash algorithm not valid.

Cryptographic service provider not valid.

Final operation flag not valid.

Reserved field not null.

Operation, algorithm, or mode not available on the requested CSP (cryptographic service
provider).

The algorithm context token does not reference a valid algorithm context.
The algorithm context is not found or was previously destroyed.
Algorithm in algorithm context not valid for requested operation.
Cryptographic device name not valid.

Cryptographic device not found.

Not authorized to device.

Cryptographic device not available.

Cryptographic Services APIs

33

API introduced: V5R3

@ | [*Cryptographic Services APIs,” on page 1| | |APIs by category|

Calculate HMAC (QC3CALHM, Qc3CalculateHMAC)

Required Parameter Group:

1 Input data Input Char(*)
2 Length of input data Input Binary(4)
3 Input data format name Input Char(8)
4 Algorithm description Input Char(*)
5 Algorithm description format name Input Char(8)
6 Key description Input Char(¥)
7 Key description format name Input Char(8)
8 Cryptographic service provider Input Char(1)
9 Cryptographic device name Input Char(10)
10 HMAC Output Char(*)
11 Error code I/0 Char(*)

Service Program Name: QC3HMAC
Default Public Authority: *USE
Threadsafe: Yes

The Calculate HMAC (OPM, QC3CALHM; ILE Qc3CalculateHMAC) API uses a one-way hash function
and a secret shared key to produce an authentication value. The HMAC function is documented in RFC
2104.

Information on cryptographic standards can be found in the [“Create Algorithm Context (QC3CRTAX|
[Qc3CreateAlgorithmContext)” on page 120[documentation.

Authorities and Locks

Required device description authority
*USE

b

Required file authority
*OBJOPR, *READ

b

Required Parameter Group

Input data
INPUT; CHAR(*)

The data to hash.
The format of the input data is specified in the input data format name parameter

Length of input data
INPUT; BINARY(4)

For input data format DATA0100, this is the length of the data to hash.
For input data format DATAQ0200, this is the number of entries in the array.

Input data format name
INPUT; CHAR(8)

34 1BM Systems - iSeries: Cryptographic Services APls

#TOP_OF_PAGE
aplist.htm

The format of the input data parameter.
The possible format names follow.

DATA0100
The input data parameter contains the data to hash.

[“DATA0200 format” on page 37|
The input data parameter contains an array of pointers and lengths to the data to hash.
See [“Input Data Formats” on page 36| for a description of this format.

Algorithm description
INPUT; CHAR(*)

The algorithm and associated parameters for hashing the data.
The format of the algorithm description is specified in the algorithm description format name
parameter.

Algorithm description format name
INPUT; CHAR(8)

The format of the algorithm description.
The possible format names follow.

[“ALGD0100 format” on page 37
The token for an algorithm context. This format must be used when performing the
HMAC operation over multiple calls. After the last call (when the final operation flag is
on), the context will reset to its initial state and can be used in another API.

[“ALGD0500 format” on page 37
Parameters for a hash algorithm (MD5, SHA-1 %, SHA-256, SHA-384, or SHA512)

&«

See |“Algorithm Description Formats” on page 37| for a description of these formats.

Key description
INPUT; CHAR(¥)

The key and associated parameters for the HMAC operation.

The format of the key description is specified in the key description format name parameter.

If the HMAC operation extends over multiple calls (see ALGD0100 description above), only the
key description from the first call will be used. Therefore, on subsequent calls, you may set the
pointer to this parameter to NULL.

Key description format name
INPUT; CHAR(8)

The format of the key description.
If the pointer to the key description parameter is NULL, this parameter will be ignored.
The possible format names follow.

[“KEYD0100 format” on page 38§|
The token for a key context. This format identifies a key context. A key context is used to
store a key value so it need not be recreated or retrieved every time it is used. To create a
key context, use the [‘Create Key Context (QC3CRTKX, Qc3CreateKeyContext)” on page
APL

[“KEYD0200 format” on page 38|
Key parameters.

2

Cryptographic Services APIs 35

[“KEYD0400 format” on page 38|
Key store label. This format identifies a key from key store. For more information on
cryptographic services key store, refer to the [“Cryptographic Services Key Store” on page|
ﬂ

article.

[“KEYDO0500 format” on page 39|
PKCS5 passphrase. This format derives a key using RSA Data Security, Inc. Public-Key
Cryptography Standard (PKCS) #5.

&«

See |“Key Description Formats” on page 38| for a description of these formats.

Cryptographic service provider
INPUT; CHAR(1)

The cryptographic service provider (CSP) that will perform the decryption operation.

0 Any CSP.
The system will choose an appropriate CSP to perform the HMAC operation.

1 Software CSP.
The system will perform the HMAC operation using software. If the requested algorithm is not available in
software, an error is returned.

2 Hardware CSP.
The system will perform the HMAC operation using cryptographic hardware. If the requested algorithm is
not available in hardware, an error is returned. A specific cryptographic device can be specified using the
cryptographic device name parameter. If the cryptographic device is not specified, the system will choose an
appropriate one.

Cryptographic device name
INPUT; CHAR(10)

The name of a cryptographic device description.
This parameter is valid when the cryptographic service provider parameter specifies 2 (hardware
CSP). Otherwise, this parameter must be blanks or the pointer to this parameter set to NULL.

HMAC
OUTPUT; CHAR(*)

The area to store the HMAC. The length of HMAC is defined by the hash algorithm.

MD5 16 bytes
SHA-1 20 bytes
2

SHA-256 32 bytes
SHA-384 48 bytes
SHA-512 64 bytes

%
Error code
I/0; CHAR(*)

The structure in which to return error information.
For the format of the structure, see [Error Code Parameter]|

Input Data Formats
For detailed descriptions of the table fields, see |“Input Data Formats Field Descriptions” on page 37

36 IBM Systems - iSeries: Cryptographic Services APIs

DATA0200 format

Offset
Dec | Hex Type Field
These fields repeat. PTR(SPP) Input data pointer
BINARY(4) Input data length
CHAR(12) Reserved

Input Data Formats Field Descriptions

Input data length
The length of data to hash.

Input data pointer
A space pointer to the data to hash.

Reserved
Must be null (binary 0s).

Algorithm Description Formats

For detailed descriptions of the table fields, see|‘Algorithm Description Formats Field Descriptions.”|

ALGDO0100 format

Offset
Dec Hex Type Field
0 0 CHAR(8) Algorithm context token
8 8 CHAR(1) Final operation flag

ALGDO0500 format

Offset
Dec Hex Type Field
0 0 BINARY(4) Hash algorithm

Algorithm Description Formats Field Descriptions

Algorithm context token
A token for an algorithm context. The algorithm context is created using the [‘Create Algorithm|
[Context (QC3CRTAX, Qc3CreateAlgorithmContext)” on page 120

Final operation flag
The final processing indicator.

0 Continue.
The system will not perform final processing and the algorithm context will maintain the state of the
operation. The algorithm context can be used on future calls to this API to continue the HMAC operation. The
pointer to the HMAC parameter may be set to NULL because the HMAC value will not be returned until the
final operation flag is set on.

Cryptographic Services APIs 37

1 Final.
The system will perform final processing. The HMAC value will be returned and the algorithm context will
reset to its initial state. The algorithm context can then be used to begin a new cryptographic operation (hash,
HMAC etc.). When performing a final operation, the pointer to the input data parameter may be set to NULL
and the length of input data parameter set to 0.

Hash algorithm
The hash algorithm. Following are the valid hash algorithms.

1 MD5
Documented in RFC 1321.
2 SHA-1

Documented in FIPS 180-2.

3 SHA-256

Documented in FIPS 180-2.
4 SHA-384

Documented in FIPS 180-2.
5 SHA-512

Documented in FIPS 180-2.

&

Key Description Formats

For detailed descriptions of the table fields, see [“Key Description Formats Field Descriptions” on page|

KEYDO0100 format

Offset
Dec Hex Type Field

0 0 CHAR(8) Key context token

KEYDO0200 format

Offset
Dec Hex Type Field
0 0 BINARY(4) Key type
4 4 BINARY (4) Key string length
8 8 CHAR(1) Key format
9 9 CHAR(3) Reserved
12 C CHAR(¥) Key string
b
KEYDO0400 format
Offset
Dec Hex Type Field
0 0 CHAR(20) Qualified key store file name
20 14 CHAR(32) Record label

38 IBM Systems - iSeries: Cryptographic Services APIs

Offset
Dec Hex Type Field
52 34 CHAR®#4) Reserved

KEYDO0500 format

Offset
Dec Hex Type Field

0 BINARY(4) Key type

4 4 BINARY (4) Derived key length
8 BINARY(4) Iteration count

12 C BINARY(4) Salt length

16 10 CHAR(16) Salt

32 20 BINARY(4) Passphrase CCSID

36 24 BINARY(4) Passphrase length

40 28 CHAR(¥) Passphrase

&

Key Description Formats Field Descriptions

b

Derived key length
The length of key requested. The minimum allowed length is 1.

Iteration count
Used to greatly increase the cost of an exhaustive search while modestly increasing the cost of
key derivation. The minimum allowed value is 1. The standard recommends a minimum of 1000.
The maximum allowed length is 100,000.

&

Key context token
A token for a key context. The key context is created using the [‘Create Key Context (QC3CRTKX)
[Qc3CreateKeyContext)” on page 125

Key format
The format of the key string field. Following are the valid values.

0 Binary string.
The key is specified as a binary value. To obtain a good random key value, use the |“Generate Pseudorandom|
[Numbers (QC3GENRN, Qc3GenPRNs) API” on page 118

Key string
The key to use in the HMAC operation.

Key string length
Length of the key string specified in the key string field. Refer to the key type field for more
information.

Key type
The type of key. Following are the valid values.

Cryptographic Services APIs 39

1 MD5

The minimum length for an MD5 HMAC key is 16 bytes.
2 SHA-1

The minimum length for an SHA-1 HMAC key is 20 bytes.

3 SHA-256

The minimum length for an SHA-256 HMAC key is 32 bytes.
4 SHA-384

The minimum length for an SHA-384 HMAC key is 48 bytes.
3 SHA-512

The minimum length for an SHA-512 HMAC key is 64 bytes.

<
A key longer than the minimum length does not significantly increase the function strength
unless the randomness of the key is considered weak. A key longer than 64 bytes ¥+ for MD5,
SHA-1, and SHA-256, or longer the 128 bytes for SHA-384 and SHA-512, %, will be hashed
before it is used.

>

Passphrase

A text string.

Passphrase CCSID
INPUT; BINARY(4)

The CCSID of the passphrase. The passphrase will be converted from the specified CCSID to
Unicode before calling the PKCS5 algorithm.

0 The CCSID of the job is used to determine the CCSID of the data to be converted. If the job
CCSID is 65535, the CCSID from the default CCSID (DFTCCSID) job attribute is used.
1-65533 A valid CCSID in this range is used. For a list of valid CCSIDs, see the topic in the

iSeries Information Center.

Passphrase length
The length of passphrase. The length must be in the range of 1 to 256.

Qualified key store file name
The key store file where the key is stored. Key store files are created using the [“Create Key Store|
[(QC3CRTKS, Qc3CreateKeyStore)” on page 86| APL The first 10 characters contain the file name.
The second 10 characters contain the name of the library where the key store file is located. You
can use the following special values for the library name.

*CURLIB The job’s current library is used to locate the key store
file. If no library is specified as the current library for the
job, the QGPL library is used.

*LIBL The job’s library list is searched for the first occurence of
the specified file name.

Record label
The label of a key record in a key store file. The label will be converted from the job CCSID, or if
65535, the job default CCSID (DFTCCSID) job attribute to CCSID 1200 (Unicode UTF-16). Key
records are created using the ["Write Key Record (QC3WRTKR, Qc3WriteKeyRecord)” on page 112
or [“Generate Key Record (QC3GENKR, Qc3GenKeyRecord)” on page 98 API.

&

Reserved
Must be null (binary 0s).

40 1BM Systems - iSeries: Cryptographic Services APls

=

Salt Used to help thwart attacks by producing a large set of keys for each passphrase. The standard

recommends the salt be generated at random and be at least 8 bytes long. You may use the

[“Generate Pseudorandom Numbers (QC3GENRN, Qc3GenPRNs) API” on page 118| API to obtain

a random value. Additionally, data that distinguishes between various operations can be added to
the salt for additional security. Refer to the standard for more information.

Salt length

The length of salt. The length must be in the range of 1 to 16.

&

Error Messages

Message ID
CPF24B4 E
CPF3CI1E E
CPF3CF1 E
CPF3CF2 E
CPF9872 E
&
CPF9DIC E
CPF9DYF E
CPF9DAO E
CPF9DA1 E
CPF9DAS E
CPF9DAG6 E
CPFODA7 E
CPFODAA D
CPFODAB E
CPF9DB1 E
CPF9DB3 E
CPF9DB6 E
CPF9DBS E
CPF9DBA E
CPFODBB E
CPFODBC E
CPFODBD E
CPFODC2 E
CPF9DC3 E
CPF9DC6 E
CPF9DC7 E
CPF9DCS8 E
&
CPFODC9 E
CPFODCE E
CPFIDCF E
CPFODD1 E
CPF9DD2 E
CPF9DD3 E
CPF9DD5 E
CPF9DD7 E
CPF9DDS8 E

CPF9DDA E
CPFODDB E

Error Message Text

Severe error while addressing parameter list.

Required parameter &1 omitted.

Error code parameter not valid.

Error(s) occurred during running of &1 APL

Program or service program &1 in library &2 ended. Reason code &3.

Function is disallowed with specified key context.
Not authorized to key store file.

Error occured opening key store file.

Key record not found.

Key store file not found.

The key store file is not available.

File is corrupt or not a valid key store file.

A key requires translation.

A key can not be decrypted.

The CCSID is not valid.

Qualified key store file name not valid.

Record label not valid.

Error occured retrieving key record from key store.
Derived key length not valid.

Iteration count not valid.

Salt length not valid.

Passphrase length not valid.

Key-encrypting algorithm context not compatible with key-encrypting key context.
Unable to decrypt data or key.

Algorithm not valid for encrypting or decrypting a key.
The output data parameter specifies a NULL pointer.
The input data parameter specifies a NULL pointer.

The total length of data in the input data array is not valid.
A data length is not valid.

A data pointer is not valid.

Input data format name not valid.

Algorithm description format name not valid.

Key description format name not valid.

Length of input data not valid.

The key-encrypting key context for the specified key is not valid or was previously destroyed.

The key-encrypting algorithm context for the specified key is not valid or was previously
destroyed.

Unexpected return code &1.

The key string or Diffie-Hellman parameter string is not valid.

Cryptographic Services APIs

41

Message ID
CPFODDD E
CPF9DEO E
CPF9DE7 E
CPF9DE9 E
CPFIDEC E
CPF9DED E
CPFIDEE E
CPFODFO E

CPF9DF1 E
CPFODF2 E
CPFODE3 E
CPF9DF4 E
CPFODF5 E
CPF9DEF7 E
CPF9DES E
CPF9DF9 E
CPFODFB E
CPFODFD E
CPFIDEFE E

Error Message Text

The key string length is not valid.

Hash algorithm not valid.

Key type not valid.

Key format not valid.

Cryptographic service provider not valid.

Final operation flag not valid.

Reserved field not null.

Operation, algorithm, or mode not available on the requested CSP (cryptographic service
provider).

The algorithm context token does not reference a valid algorithm context.
The algorithm context is not found or was previously destroyed.
Algorithm in algorithm context not valid for requested operation.

The key context token does not reference a valid key context.

The key context is not found or was previously destroyed.

Algorithm context not compatible with key context.

Cryptographic device name not valid.

Cryptographic device not found.

Cryptographic service provider (CSP) conflicts with the key context CSP.
Not authorized to device.

Cryptographic device not available.

API introduced: V5R3

@ | ["Cryptographic Services APIs,” on page 1| | |APIs by category]

Calculate MAC (QC3CALMA, Qc3CalculateMAC)

Required Parameter Group:

1 Input data Input Char(*)
2 Length of input data Input Binary(4)
3 Input data format name Input Char(8)
4 Algorithm description Input Char(*)
5 Algorithm description format name Input Char(8)
6 Key description Input Char(¥)
7 Key description format name Input Char(8)
8 Cryptographic service provider Input Char(1)
9 Cryptographic device name Input Char(10)
10 MAC Output Char(*)
11 Error code I/0 Char(*)

Service Program Name: QC3MAC
Default Public Authority: *USE
Threadsafe: Yes

The Calculate MAC (OPM, QC3CALMA; ILE, Qc3CalculateMAC) API produces a message authentication
code. Normally, a MAC is appended to the end of a message and later used to check the message’s
integrity. To produce a MAC, the input data is encrypted using CBC (cipher block chaining) mode. Some
or all of the bytes from the last encrypted data block are returned as the MAC value.

42 1BM Systems - iSeries: Cryptographic Services APls

#TOP_OF_PAGE
aplist.htm

Information on cryptographic standards can be found in the [“Create Algorithm Context (QC3CRTAX|
[Qc3CreateAlgorithmContext)” on page 120| documentation.

Authorities and Locks

Required device description authority
*USE

=

Required file authority
*OBJOPR, *READ

{{

Required Parameter Group

Input data
INPUT; CHAR(*)

The data to encrypt.
The format of the input data is specified in the input data format name parameter

Length of input data
INPUT; BINARY(4)

For input data format DATA0100, this is the length of the data to encrypt. If it is not a multiple of
the block length, the data will be padded with hex 00s.

For input data format DATAQ0200, this is the number of entries in the array.

Input data format name
INPUT; CHAR(8)

The format of the input data parameter.
The possible format names follow.

DATA0100
The input data parameter contains the data to encrypt.

[“DATA0200 format” on page 45|
The input data parameter contains an array of pointers and lengths to the data to
encrypt.
See [“Input Data Formats” on page 45| for a description of this format.

Algorithm description
INPUT; CHAR(*)

The algorithm and associated parameters for encrypting the data.
The format of the algorithm description is specified in the algorithm description format name
parameter.

Algorithm description format name
INPUT; CHAR(8)

The format of the algorithm description.
The possible format names follow.

[“ALGD0100 format” on page 45|
The token for an algorithm context. This format must be used when performing the MAC
operation over multiple calls. After the last call (when the final operation flag is on), the
context will reset to its initial state and can be used in another APL

Cryptographic Services APIs 43

[“ALGD0200 format” on page 46|
Parameters for a block cipher algorithm (DES, Triple DES, and AES).

See |“Algorithm Description Formats” on page 45| for a description of these formats.

Key description

INPUT; CHAR(*)

The key and associated parameters for encrypting the data.

The format of the key description is specified in the key description format name parameter.

If the MAC operation extends over multiple calls (see ALGD0100 description above), only the key
description from the first call will be used. Therefore, on subsequent calls, you may set the
pointer to this parameter to NULL.

Key description format name

INPUT; CHAR(8)

The format of the key description.
If the pointer to the key description parameter is NULL, this parameter will be ignored.
The possible format names follow.

[“KEYD0100 format” on page 47|
The token for a key context. This format identifies a key context. A key context is used to
store a key value so it need not be recreated or retrieved every time it is used. To create a
key context, use the [“Create Key Context (QC3CRTKX, Qc3CreateKeyContext)” on page|
APL

[“KEYD0200 format” on page 47|
Key parameters.

&

[“KEYD0400 format” on page 47|
Key store label. This format identifies a key from key store. For more information on
cryptographic services key store, refer to the [“Cryptographic Services Key Store” on page]
ﬂ

article.

[“KEYDO0500 format” on page 48|
PKCS5 passphrase. This format derives a key using RSA Data Security, Inc. Public-Key
Cryptography Standard (PKCS) #5.

&

See |[“Key Description Formats” on page 47 for a description of these formats.

Cryptographic service provider

44

INPUT; CHAR(1)
The cryptographic service provider (CSP) that will perform the decryption operation.

Any CSP.

The system will choose an appropriate CSP to perform the MAC operation.

Software CSP.

The system will perform the MAC operation using software. If the requested algorithm is not available in
software, an error is returned.

Hardware CSP.

The system will perform the MAC operation using cryptographic hardware. If the requested algorithm is not
available in hardware, an error is returned. A specific cryptographic device can be specified using the
cryptographic device name parameter. If the cryptographic device is not specified, the system will choose an
appropriate one.

IBM Systems - iSeries: Cryptographic Services APIs

Cryptographic device name
INPUT; CHAR(10)

The name of a cryptographic device description.
This parameter is valid when the cryptographic service provider parameter specifies 2 (hardware
CSP). Otherwise, this parameter must be blanks or the pointer to this parameter set to NULL.

MAC OUTPUT; CHAR(¥)

The area to store the MAC. The length of MAC is specified in the MAC length field in the
algorithm description.

Error code
I/0; CHAR(*)

The structure in which to return error information.
For the format of the structure, see [Error Code Parameter]|

Input Data Formats
For detailed descriptions of the table fields, see | Input Data Formats Field Descriptions.”]

DATA0200 format

Offset
Dec Hex Type Field
These fields repeat. | PTR(SPP) Input data pointer
BINARY (4) Input data length
CHAR(12) Reserved

Input Data Formats Field Descriptions

Input data length
The length of data to encrypt. When final processing is performed and the total of all the input
data lengths is not a multiple of the block length, the data will be padded with hex 00s.

Input data pointer
A space pointer to the data to encrypt.

Reserved
Must be null (binary 0s).

Algorithm Description Formats

For detailed descriptions of the table fields, see [“Algorithm Description Formats Field Descriptions” on|
-ae 46.

ALGDO0100 format

Offset
Dec Hex Type Field
0 0 CHAR(8) Algorithm context token
8 8 CHAR(1) Final operation flag

Cryptographic Services APIs 45

ALGD0200 format

Offset
Dec Hex Type Field
0 BINARY (4) Block cipher algorithm
4 4 BINARY(4) Block length
8 CHAR(1) Mode
9 9 CHAR(1) Pad option
10 A CHAR(1) Pad character
11 B CHAR(1) Reserved
12 C BINARY(4) MAC length
16 10 BINARY(4) Effective key size
20 14 CHAR(32) Initialization vector

Algorithm Description Formats Field Descriptions

Algorithm context token
A token for an algorithm context. The algorithm context is created using the [‘Create Algorithm|
[Context (QC3CRTAX, Qc3CreateAlgorithmContext)” on page 120

Block cipher algorithm
The encryption algorithm. Following are the valid block cipher algorithms.

20 DES
21 Triple DES
22 AES

Block length
The algorithm block length. For DES and Triple DES this field must specify 8. The valid block
length values for AES are 16, 24, and 32.

Effective key size
Effective key size is not used on a MAC operation and must be set to null (binary 0’s).

Final operation flag
The final processing indicator.

0 Continue.
The system will not perform final processing and the algorithm context will maintain the state of the
operation. The algorithm context can be used on future calls to this API to continue the MAC operation. The
pointer to the MAC parameter may be set to NULL because the MAC value will not be returned until the
final operation flag is set on.

1 Final.
The system will perform final processing (e.g. padding). The MAC value will be returned and the algorithm
context will reset to its initial state. The algorithm context can then be used to begin a new cryptographic
operation (encrypt, decrypt, etc.). When performing a final operation, the pointer to the input data parameter
may be set to NULL and the length of the input data parameter set to 0.

Initialization vector
The initialization vector (IV). For an explanation of its use, refer to the mode standards for CBC
in FIPS PUB 81 and ANSI X9.52. For DES and Triple DES, the first 8 bytes are used as the IV. For
AES, the length of IV used is that specified by block length. The IV need not be secret, but it

46 1BM Systems - iSeries: Cryptographic Services APls

should be unique for each message. If not unique, it may compromise security. The IV can be any
value. To obtain a good random IV value, use the [‘Generate Pseudorandom Numbers|
[(QC3GENRN, Qc3GenPRNs) API” on page 118

MAC length
The message authentication code length. It can not exceed the block length value. The leftmost
MAC length bytes from the last block of encrypted data are returned as the MAC.

Mode The mode of operation. Information on modes can be found in FIPS PUB 81 and ANSI X9.52.
Following are the valid modes for a MAC operation.

1 CBC

Pad character
This field is not used on a MAC operation and must be set to null (binary 0s).

Pad option
Following are the valid pad options for a MAC operation.

0 If the length of input data is not a multiple of 8, the input data will be padded with null (binary Os).

Reserved
Must be null (binary 0s).

Key Description Formats

For detailed descriptions of the table fields, see [‘Key Description Formats Field Descriptions” on page]

KEYDO0100 format

Offset
Dec Hex Type Field
0 0 CHAR(8) Key context token

KEYDO0200 format

Offset
Dec Hex Type Field
0 0 BINARY(4) Key type
4 4 BINARY(4) Key string length
8 8 CHAR(1) Key format
9 9 CHAR(3) Reserved
12 C CHAR(¥) Key string
Z
KEYDO0400 format
Offset
Dec Hex Type Field
0 0 CHAR(20) Qualified key store file name
20 14 CHAR(32) Record label
52 34 CHAR(4) Reserved

Cryptographic Services APIs 47

KEYDO0500 format

Offset
Dec Hex Type Field
BINARY(4) Key type
4 4 BINARY(4) Derived key length
BINARY(4) Iteration count
12 C BINARY(4) Salt length
16 10 CHAR(16) Salt
32 20 BINARY(4) Passphrase CCSID
36 24 BINARY(4) Passphrase length
40 28 CHAR(*) Passphrase

&

Key Description Formats Field Descriptions

2

Derived key length
The length of key requested. The minimum allowed length is 1.

File name
The name of a key store file. Key store files are created using the [‘Create Key Store (QC3CRTKS)
[Qc3CreateKeyStore)” on page 86{ APL

Iteration count
Used to greatly increase the cost of an exhaustive search while modestly increasing the cost of
key derivation. The minimum allowed value is 1. The standard recommends a minimum of 1000.
The maximum allowed length is 100,000.

&

Key context token
A token for a key context. The key context is created using the [“Create Key Context (QC3CRTKX)]|
[Qc3CreateKeyContext)” on page 125

Key format
The format of the key string field. Following are the valid values.

0 Binary string.
The key is specified as a binary value. To obtain a good random key value, use the [“Generate Symmetric Key]
(QC3GENSK, Qc3GenSymmetricKey)” on page 79 or [“Generate Pseudorandom Numbers (QC3GENRN |
Qc3GenPRNs) API” on page 118] APL.

Key string
The key to use in the MAC operation.

Key string length
Length of the key string specified in the key string field.

Key type
The type of key. Following are the valid values.

20 DES
The key format must be 0. The key string must be 8 bytes in length. Only 7 bits of each byte are used as the
actual key. The rightmost bit of each byte is used to set parity. Some cryptographic service providers require
that a DES key have odd parity in every byte. Others ignore parity.

48 1BM Systems - iSeries: Cryptographic Services APls

21 Triple DES
The key format must be 0. The key string can be 8, 16, or 24 bytes in length. When 24 bytes are specified, the
first 8 bytes are used for key 1, the second 8 bytes for key 2, and the third 8 bytes for key 3. When 16 bytes
are specified the first 8 bytes are used for keys 1 and 3, and the second 8 bytes for key 2. When just 8 bytes
are specified, the first 8 bytes are used for all 3 keys. A MAC operation using Triple DES encrypts the entire
input data (plus any padding) using DES and key 1. The last block is then decrypted using key 2 and
encrypted again with key 3. Only 7 bits of each byte are used as the actual key. The rightmost bit of each byte
is used to set parity. Some cryptographic service providers require that a Triple DES key have odd parity in
every byte. Others ignore parity.

22 AES
The key format must be 0. The key string can be 16, 24, or 32 bytes in length.

Z

Passphrase
A text string.

Passphrase CCSID
INPUT; BINARY(4)

The CCSID of the passphrase. The passphrase will be converted from the specified CCSID to
Unicode before calling the PKCS5 algorithm.

0 The CCSID of the job is used to determine the CCSID of the data to be converted. If the job
CCSID is 65535, the CCSID from the default CCSID (DFTCCSID) job attribute is used.
1-65533 A valid CCSID in this range is used. For a list of valid CCSIDs, see the topic in the

iSeries Information Center.

Passphrase length
The length of passphrase. The length must be in the range of 1 to 256.

Qualified key store file name
The key store file where the key is stored. Key store files are created using the [Create Key Store|
[(QC3CRTKS, Qc3CreateKeyStore)” on page 86| APL The first 10 characters contain the file name.
The second 10 characters contain the name of the library where the key store file is located. You
can use the following special values for the library name.

*CURLIB The job’s current library is used to locate the key store
file. If no library is specified as the current library for the
job, the QGPL library is used.

*LIBL The job’s library list is searched for the first occurence of
the specified file name.

Record label
The label of a key record in a key store file. The label will be converted from the job CCSID, or if
65535, the job default CCSID (DFTCCSID) job attribute to CCSID 1200 (Unicode UTE-16). Key
records are created using the [*Write Key Record (QC3WRTKR, Qc3WriteKeyRecord)” on page 112|
or [“Generate Key Record (QC3GENKR, Qc3GenKeyRecord)” on page 98 API.

L4
Reserved

Must be null (binary 0s).
A

Salt Used to help thwart attacks by producing a large set of keys for each passphrase. The standard
recommends the salt be generated at random and be at least 8 bytes long. You may use the
[“Generate Pseudorandom Numbers (QC3GENRN, Qc3GenPRNs) API” on page 118| API to obtain

Cryptographic Services APIs 49

a random value. Additionally, data that distinguishes between various operations can be added to

the salt for additional security. Refer to the standard for more information.

Salt length

The length of salt. The length must be in the range of 1 to 16.

{{

Error Messages

Message ID
CPF24B4 E
CPF3CI1E E
CPF3CF1 E
CPF3CF2 E
CPF9872 E
2
CPFOD9C E
CPFODYF E
CPF9DAO E
CPF9DA1 E
CPF9DAS5 E
CPF9DAG6 E
CPFODA7 E
CPFODAA D
CPFODAB E
CPF9DB1 E
CPF9DB3 E
CPF9DB6 E
CPF9DB8 E
CPF9DBA E
CPF9DBB E
CPF9DBC E
CPFODBD E
<
CPFODC2 E
CPFODC3 E
CPF9DC6 E
CPFODC7 E
CPF9DC8 E
CPF9DC9 E
CPF9DCD E
CPFODCE E
CPFODCF E
CPFODDO E
CPF9DD2 E
CPF9DD3 E
CPF9DD5 E
CPFIDD6 E
CPF9DD7 E
CPF9DDS8 E

CPF9DD9 E
CPF9DDA E
CPFODDB E
CPFODDD E
CPFODDE E

Error Message Text

Severe error while addressing parameter list.

Required parameter &1 omitted.

Error code parameter not valid.

Error(s) occurred during running of &1 APL

Program or service program &1 in library &2 ended. Reason code &S3.

Function is disallowed with specified key context.
Not authorized to key store file.

Error occured opening key store file.

Key record not found.

Key store file not found.

The key store file is not available.

File is corrupt or not a valid key store file.

A key requires translation.

A key can not be decrypted.

The CCSID is not valid.

Qualified key store file name not valid.

Record label not valid.

Error occured retrieving key record from key store.
Derived key length not valid.

Iteration count not valid.

Salt length not valid.

Passphrase length not valid.

Key-encrypting algorithm context not compatible with key-encrypting key context.
Unable to decrypt data or key.

Algorithm not valid for encrypting or decrypting a key.

The output data parameter specifies a NULL pointer.

The input data parameter specifies a NULL pointer.

The total length of data in the input data array is not valid.

Pad character not valid.

A data length is not valid.

A data pointer is not valid.

Clear data format name not valid.

Algorithm description format name not valid.

Key description format name not valid.

Length of input data not valid.

Length of area provided for output data is too small.

The key-encrypting key context for the specified key is not valid or was previously destroyed.
The key-encrypting algorithm context for the specified key is not valid or was previously
destroyed.

Effective key size not valid.

Unexpected return code &1.

The key string or Diffie-Hellman parameter string is not valid.

The key string length is not valid.

Cipher algorithm not valid.

50 IBM Systems - iSeries: Cryptographic Services APIs

Message ID
CPFODDF E
CPF9DE2 E
CPF9DE3 E
CPF9DE4 E
CPF9DE? E
CPFIDEY E
CPFODEC E
CPFODED E
CPFODEE E
CPFODFO E

CPF9DF1 E
CPFODFE2 E
CPFODE3 E
CPF9DF4 E
CPF9DEF5 E
CPF9DF7 E
CPFIDEFS8 E
CPFODF9 E
CPFODFB E
CPFODED E
CPFIDEFE E

Error Message Text

Block length not valid.

MAC (message authentication code) length not valid.
Mode not valid.

Pad option not valid.

Key type not valid.

Key format not valid.

Cryptographic service provider not valid.

Final operation flag not valid.

Reserved field not null.

Operation, algorithm, or mode not available on the requested CSP (cryptographic service

provider).

The algorithm context token does not reference a valid algorithm context.
The algorithm context is not found or was previously destroyed.
Algorithm in algorithm context not valid for requested operation.

The key context token does not reference a valid key context.

The key context is not found or was previously destroyed.

Algorithm context not compatible with key context.

Cryptographic device name not valid.

Cryptographic device not found.

Cryptographic service provider (CSP) conflicts with the key context CSP.
Not authorized to device.

Cryptographic device not available.

API introduced: V5R3

@ | [‘Cryptographic Services APIs,” on page 1| | |APIs by category]|

Calculate Signature (QC3CALSG, Qc3CalculateSignature)

Required Parameter Group:

O 0 NI O U1 i W N~

—_ = =
W N = O

Input data Input
Length of input data Input
Input data format name Input
Algorithm description Input
Algorithm description format name Input
Key description Input
Key description format name Input
Cryptographic service provider Input
Cryptographic device name Input
Signature Output
Length of area provided for signature Input
Length of signature returned Output
Error code I/0

Service Program Name: QC3SIGCL
Default Public Authority: *USE
Threadsafe: Yes

Char(*)
Binary(4)
Char(8)
Char(*)
Char(8)
Char(*)
Char(8)
Char(1)
Char(10)
Char(*)
Binary(4)
Binary(4)
Char(*)

The Calculate Signature (OPM, QC3CALSG; ILE, Qc3CalculateSignature) API produces a digital signature
by hashing the input data and encrypting the hash value using a public key algorithm (PKA). To verify

the signature, use the [“Verify Signature (QC3VFYSG, Qc3VerifySignature)” on page 59,

Cryptographic Services APIs 51

#TOP_OF_PAGE
aplist.htm

Information on cryptographic standards can be found in the [“Create Algorithm Context (QC3CRTAX|

[Qc3CreateAlgorithmContext)” on page 120[documentation.

Authorities and Locks

Required device description authority

=

*USE

Required file authority

=

*OBJOPR, *READ

Required Parameter Group

Input data

INPUT; CHAR(*)

The data to sign.
The format of the input data is specified in the input data format name parameter

Length of input data

INPUT; BINARY(4)

For input data format DATAO0100, this is the length of the data to sign.
For input data format DATAQ0200, this is the number of entries in the array.

Input data format name

INPUT; CHAR(8)

The format of the input data parameter.
The possible format names follow.

DATA0100
The input data parameter contains the data to sign.

[“DATA0200 format” on page 54|
The input data parameter contains an array of pointers and lengths to the data to sign.
See [“Input Data Formats” on page 54 for a description of this format.

Algorithm description

INPUT; CHAR(*)

The algorithm and associated parameters for signing the data.
The format of the algorithm description is specified in the algorithm description format name
parameter.

Algorithm description format name

52

INPUT; CHAR(8)

The format of the algorithm description.
The possible format names follow.

[“ALGD0100 format” on page 55|
The token for an algorithm context. This format must be used when performing the sign
operation over multiple calls. After the last call (when the final operation flag is on), the
context will reset to its initial state and can be used in another APL

[“ALGD0400 format” on page 55|
Parameters for a sign operation.

IBM Systems - iSeries: Cryptographic Services APIs

See |“Algorithm Description Formats” on page 54| for a description of these formats.

Key description
INPUT; CHAR(*)

The key and associated parameters for signing the data.

The format of the key description is specified in the key description format name parameter.

If the sign operation extends over multiple calls (see ALGD0100 description above), only the key
description from the first call will be used. Therefore, on subsequent calls, you may set the
pointer to this parameter to NULL.

Key description format name
INPUT; CHAR(8)

The format of the key description.
If the pointer to the key description parameter is NULL, this parameter will be ignored.
The possible format names follow.

[“KEYDO0100 format” on page 56|
The token for a key context. This format identifies a key context. A key context is used to
store a key value so it need not be recreated or retrieved every time it is used. To create a
key context, use the [‘Create Key Context (QC3CRTKX, Qc3CreateKeyContext)” on page]
APL

[“KEYD0200 format” on page 56|
Key parameters.

i

[“KEYD0400 format” on page 56|
Key store label. This format identifies a key from key store. For more information on
cryptographic services key store, refer to the [“Cryptographic Services Key Store” on page|
article.

[“KEYD0900 format” on page 56|
Application identifier. This format uses the private PKA key identified by an application
identifier. The application identifier must be assigned to a valid certificate label in object
signing certificate key store (*OBJECTSIGNING).

&«

See |“Key Description Formats” on page 56| for a description of these formats.

Cryptographic service provider
INPUT; CHAR(1)

The cryptographic service provider (CSP) that will perform the sign operation.

0 Any CSP.
The system will choose an appropriate CSP to perform the sign operation.

1 Software CSP.
The system will perform the sign operation using software. If the requested algorithm is not available in
software, an error is returned.

2 Hardware CSP.
The system will perform the sign operation using cryptographic hardware. If the requested algorithm is not
available in hardware, an error is returned. A specific cryptographic device can be specified using the
cryptographic device name parameter. If the cryptographic device is not specified, the system will choose an
appropriate one.

Cryptographic Services APIs 53

Cryptographic device name
INPUT; CHAR(10)

The name of a cryptographic device description.
This parameter is valid when the cryptographic service provider parameter specifies 2 (hardware
CSP). Otherwise, this parameter must be blanks or the pointer to this parameter set to NULL.

Signature
OUTPUT; CHAR(*)

The area to store the signature.

Length of area provided for signature
INPUT; BINARY(4)

The length of the signature parameter in bytes. The length of the signature will equal the key
size. (See [“Generate PKA Key Pair (QC3GENPK, Qc3GenPKAKeyPair)” on page 74 Because key
size is normally specified in bits, divide that value by 8 and round up to obtain the length of area
needed for the signature.

Length of signature returned
OUTPUT; BINARY(4)

The length of the signature returned in the signature parameter.
If the length of area provided for the signature is too small, an error will be generated and no
data will be returned in the signature parameter.

Error code
I/0; CHAR(*)

The structure in which to return error information.
For the format of the structure, see [Error Code Parameter]|

Input Data Formats
For detailed descriptions of the table fields, see [“Input Data Formats Field Descriptions.”|

DATA0200 format

Offset
Dec | Hex Type Field
These fields repeat. PTR(SPP) Input data pointer
BINARY(4) Input data length
CHAR(12) Reserved

Input Data Formats Field Descriptions

Input data length
The length of data to sign.

Input data pointer
A space pointer to the data to sign.

Reserved
Must be null (binary 0s).

Algorithm Description Formats

For detailed descriptions of the table fields, see |Algorithm Description Formats Field Descriptions” on|
-a e 55.

54 1BM Systems - iSeries: Cryptographic Services APls

ALGDO0100 format

Offset
Dec Hex Type Field
0 0 CHAR(8) Algorithm context token
8 8 CHAR(1) Final operation flag

ALGD0400 format

Offset
Dec Hex Type Field
0 0 BINARY (4) Public key cipher algorithm
4 4 CHAR(1) PKA block format
5 5 CHAR(3) Reserved
8 8 BINARY(4) Signing hash algorithm

Algorithm Description Formats Field Descriptions

Algorithm context token
A token for an algorithm context. The algorithm context is created using the [‘Create Algorithm|
[Context (QC3CRTAX, Qc3CreateAlgorithmContext)” on page 120

Final operation flag
The final processing indicator.

0 Continue.
The system will not perform final processing and the algorithm context will maintain the state of the
operation. The algorithm context can be used on future calls to this API to continue the sign operation. The
signature will not be returned until the final operation flag is set on. The pointer to the signature parameter
may be set to NULL because the signature will not be returned until the final operation flag is set on.

1 Final.
The system will perform final processing. The signature will be returned and the algorithm context will reset
to its initial state. The algorithm context can then be used to begin a new cryptographic operation. When
performing a final operation, the pointer to the input data parameter may be set to NULL.

PKA block format
The public key algorithm block format. Following are the valid values.

0 PKCS #1 block type 00
PKCS #1 block type 01
3 ISO 9796-1
Because of security weaknesses, this format should be used for compatibility purposes only.
5 ANSI X9.31
This format is only valid with signing hash algorithm 2 (SHA-1).

Jury

Public key cipher algorithm
The encryption algorithm. Following are the valid public key cipher algorithms.

50 RSA

Reserved
Must be null (binary 0s).

Cryptographic Services APIs 55

Signing hash algorithm
The hash algorithm. Following are the valid values for the signing hash algorithm.

1 MD5
2 SHA-1

Key Description Formats

For detailed descriptions of the table fields, see |Key Description Formats Field Descriptions.”|

KEYDO0100 format

Offset
Dec Hex Type Field

0 0 CHAR(8) Key context token

KEYDO0200 format

Offset
Dec Hex Type Field
0 BINARY(4) Key type
4 4 BINARY(4) Key string length
8 8 CHAR(1) Key format
9 9 CHAR(3) Reserved
12 C CHAR(*) Key string
=
KEYD0400 format
Offset
Dec Hex Type Field
0 0 CHAR(20) Qualified key store file name
20 14 CHAR(32) Record label
52 34 CHAR®#4) Reserved

KEYDO0900 format

Offset
Dec Hex Type Field
BINARY(4) Application identifier length
4 4 CHAR(4) Reserved
8 8 CHARC(*) Application identifier

{{

Key Description Formats Field Descriptions
=

56 IBM Systems - iSeries: Cryptographic Services APIs

Application identifer
The application ID assigned to a certificate with a private key in object signing certificate key
store (*OBJECTSIGNING).

Application identifier length
The length of the application ID. The length can not be greater than 32.

File name
The name of a key store file. Key store files are created using the [“Create Key Store (QC3CRTKS)
[Qc3CreateKeyStore)” on page 86| API.

&

Key context token
A token for a key context. The key context is created using the [“Create Key Context (QC3CRTKX)]|
[Qc3CreateKeyContext)” on page 125

Key format
The format of the key string field. Following are the valid values.

1 BER string
The key is specified in BER encoded PKCS #8 format. For specifications of this format, refer to RSA Securit
Inc. Public-Key Cryptography Standards. To generate a PKA key pair in this format, use the
[Key Pair (QC3GENPK, Qc3GenPKAKeyPair)” on page 74]

Key string
The key to use in the sign operation.
Key string length
Length of the key string specified in the key string field.

Key type
The type of key. Following are the valid values.

51 RSA private

Z

Qualified key store file name
The key store file where the key is stored. Key store files are created using the [“Create Key Store|
[(QC3CRTKS, Qc3CreateKeyStore)” on page 86| APL The first 10 characters contain the file name.
The second 10 characters contain the name of the library where the key store file is located. You
can use the following special values for the library name.

*CURLIB The job’s current library is used to locate the key store
file. If no library is specified as the current library for the
job, the QGPL library is used.

*LIBL The job’s library list is searched for the first occurence of
the specified file name.

Record label
The label of a key record in a key store file. The label will be converted from the job CCSID, or if
65535, the job default CCSID (DFTCCSID) job attribute to CCSID 1200 (Unicode UTE-16). Key
records are created using the [‘Write Key Record (QC3WRTKR, Qc3WriteKeyRecord)” on page 112
or [“Generate Key Record (QC3GENKR, Qc3GenKeyRecord)” on page 98] API.

&

Reserved
Must be null (binary 0s).

Cryptographic Services APIs 57

Error Messages

Message ID
CPF24B4 E
CPF3CIE E
CPF3CF1 E
CPF9872 E
2
CPF9D99 E
CPF9DIC E
CPF9DYF E
CPF9DAO E
CPF9DA1 E
CPFODA2 E
CPFODA3 E
CPFODA4 E
CPFODAS5 E
CPF9DA6 E
CPF9DA7 E
CPF9DAS D
CPF9DAA D
CPF9DAB E
CPFODB3 E
CPFODB6 E
CPFODBS8 E
<
CPFODC2 E
CPF9DC3 E
CPF9DC6 E
CPF9DC7 E
CPF9DCS8 E
CPF9DC9 E
CPFODCC E
CPFODCE E
CPFODCF E
CPFODDO E
CPF9DD2 E
CPF9DD3 E
CPF9DD5 E
CPF9DD6 E
CPF9DD7 E
CPFODDS8 E

CPF9DDA E
CPFODDB E
CPFODDD E
CPFODEO E
CPF9DE3 E
CPF9DES5 E
CPF9DES6 E
CPF9DE? E
CPFI9DE9 E
CPFIDEC E
CPFODED E
CPFIDEE E

Error Message Text

Severe error while addressing parameter list.

Required parameter &1 omitted.

Error code parameter not valid.

Program or service program &1 in library &2 ended. Reason code &S3.

Error openning certificate store.

Function is disallowed with specified key context.
Not authorized to key store file.

Error occured opening key store file.

Key record not found.

Option 34 is not installed.

Not authorized to use APPIDs.

RSA key identifier was not found in system certificate store.
Key store file not found.

The key store file is not available.

File is corrupt or not a valid key store file.

The application identifier length is not valid.

A key requires translation.

A key can not be decrypted.

Qualified key store file name not valid.

Record label not valid.

Error occured retrieving key record from key store.

Key-encrypting algorithm context not compatible with key-encrypting key context.
Unable to decrypt data or key.

Algorithm not valid for encrypting or decrypting a key.

The output data parameter specifies a NULL pointer.

The input data parameter specifies a NULL pointer.

The total length of data in the input data array is not valid.

The length of area provided for signature is not valid.

A data length is not valid.

A data pointer is null.

Clear data format name not valid.

Algorithm description format name not valid.

Key description format name not valid.

Length of input data not valid.

Length of area provided for output data is too small.

The key-encrypting key context for the specified key is not valid or was previously destroyed.
The key-encrypting algorithm context for the specified key is not valid or was previously
destroyed.

Unexpected return code &1.

The key string or Diffie-Hellman parameter string is not valid.

The key string length is not valid.

Hash algorithm not valid.

Mode not valid.

PKA (public key algorithm) block format not valid.

Public key algorithm not valid.

Key type not valid.

Key format not valid.

Cryptographic service provider not valid.

Final operation flag not valid.

Reserved field not null.

58 IBM Systems - iSeries: Cryptographic Services APIs

Message ID
CPFODFO E

CPF9DF1 E
CPFODFE2 E
CPFODE3 E
CPF9DF4 E
CPF9DEF5 E
CPF9DEF7 E
CPFIDEFS8 E
CPFODF9 E
CPFODFB E
CPFODED E
CPFIDEFE E

Error Message Text

Operation, algorithm, or mode not available on the requested CSP (cryptographic service
provider).

The algorithm context token does not reference a valid algorithm context.
The algorithm context is not found or was previously destroyed.
Algorithm in algorithm context not valid for requested operation.

The key context token does not reference a valid key context.

The key context is not found or was previously destroyed.

Algorithm context not compatible with key context.

Cryptographic device name not valid.

Cryptographic device not found.

Cryptographic service provider conflicts with the key context CSP.

Not authorized to device.

Cryptographic device not available.

API introduced: V5R3

@ | [‘Cryptographic Services APIs,” on page 1| | |APIs by category]|

Verify Signature (QC3VFYSG, Qc3VerifySignature)

Required Parameter Group:

O 0 NI O U1 = W N~

_ =
N = O

Signature Input Char(*)
Length of signature Input Binary(4)
Input data Input Char(*)
Length of input data Input Binary(4)
Input data format name Input Char(8)
Algorithm description Input Char(*)
Algorithm description format name Input Char(8)
Key description Input Char(¥)
Key description format name Input Char(8)
Cryptographic service provider Input Char(1)
Cryptographic device name Input Char(10)
Error code I/0 Char(*)

Service Program Name: QC3SIGVR
Default Public Authority: *USE
Threadsafe: Yes

The Verify Signature (OPM, QC3VFYSG; ILE, Qc3VerifySignature) API verifies a digital signature is
correctly related to the input data. If the verification fails with a CPFIDEEF, the input data has been
corrupted. A digital signature is created by hashing data and encrypting the hash value using a public
key algorithm (PKA). A digital signature can be created using the Calculate Signature (OPM, QC3CALSG;
ILE, Qc3CalculateSignature) APL

Information on cryptographic standards can be found in the [“Create Algorithm Context (QC3CRTAX

[Qc3CreateAlgorithmContext)” on page 120] API documentation.

Authorities and Locks

Required device description authority
*USE

b

Cryptographic Services APIs 59

#TOP_OF_PAGE
aplist.htm

Required file authority
*OBJOPR, *READ

b

Required Parameter Group

Signature
INPUT; CHAR(Y)

The digital signature to verify.

Length of signature
INPUT; BINARY(4)

The length of signature should be equal to the key size (size of the modulus), but expressed in
bytes.

Input data
INPUT; CHAR(¥)

The data to verify.
The format of the input data is specified in the input data format name parameter.

Length of input data
INPUT; BINARY(4)

For input data format DATAQ100, this is the length of the data to verify.
For input data format DATA0200, this is the number of entries in the array.

Input data format name
INPUT; CHAR(8)

The format of the input data parameter.
The possible format names follow.

DATA0100
The input data parameter contains the data to verify.

[“DATA0200 format” on page 62|
The input data parameter contains an array of pointers and lengths to the data to verify.
See |“Input Data Formats” on page 62| for a description of this format.

Algorithm description
INPUT; CHAR(*)

The algorithm and associated parameters for verifying the data.
The format of the algorithm description is specified in the algorithm description format name
parameter.

Algorithm description format name
INPUT; CHAR(8)

The format of the algorithm description.
The possible format names follow.

[“ALGD0100 format” on page 62|
The token for an algorithm context. This format must be used when performing the
verify signature operation over multiple calls. After the last call (when the final operation
flag is on), the context will reset to its initial state and can be used in another API.

[“ALGD0400 format” on page 63|
Parameters for a verify signature operation.

60 IBM Systems - iSeries: Cryptographic Services APIs

See |“Algorithm Description Formats” on page 62| for a description of these formats.

Key description
INPUT; CHAR(*)

The key and associated parameters for verifying the data.

The format of the key description is specified in the key description format name parameter.

If the verify operation extends over multiple calls (see ALGD0100 description above), only the
key description from the first call will be used. Therefore, on subsequent calls, you may set the
pointer to this parameter to NULL.

Key description format name
INPUT; CHAR(8)

The format of the key description.
If the pointer to the key description parameter is NULL, this parameter will be ignored.
The possible format names follow.

[“KEYD0100 format” on page 64|
The token for a key context. This format identifies a key context. A key context is used to
store a key value so it need not be recreated or retrieved every time it is used. To create a
key context, use the [‘Create Key Context (QC3CRTKX, Qc3CreateKeyContext)” on page]
APL

[“KEYD0200 format” on page 64|
Key parameters.

i

[“KEYDO0400 format” on page 64|
Key store label. This format identifies a key from key store. For more information on
cryptographic services key store, refer to the [“Cryptographic Services Key Store” on page|
ﬂ

article.

[“KEYD0600 format” on page 64|
PEM certificate. This format uses the PKA key in an ASCII encoded PEM based
certificate.

[“KEYDO0700 format” on page 64|
Certificate label. This format uses the public PKA key identified by a label into signature
verification certificate key store (*SIGNATUREVERIFICATION).

[“KEYD0800 format” on page 65|
Distinguished name. This format uses the public PKA key identified by a distinguished
name for a certificate in signature verification certificate key store
(*SIGNATUREVERIFICATION).

&

See [’Key Description Formats” on page 64| for a description of these formats.

Cryptographic service provider
INPUT; CHAR(1)

The cryptographic service provider (CSP) that will perform the verify signature operation.

0 Any CSP.
The system will choose an appropriate CSP to perform the verify signature operation.

1 Software CSP.
The system will perform the verify signature operation using software. If the requested algorithm is not
available in software, an error is returned.

Cryptographic Services APIs 61

2 Hardware CSP.
The system will perform the verify signature operation using cryptographic hardware. If the requested
algorithm is not available in hardware, an error is returned. A specific cryptographic device can be specified
using the cryptographic device name parameter. If the cryptographic device is not specified, the system will
choose an appropriate one.

Cryptographic device name
INPUT; CHAR(10)

The name of a cryptographic device description.
This parameter is valid when the cryptographic service provider parameter specifies 2 (hardware
CSP). Otherwise, this parameter must be blanks or the pointer to this parameter set to NULL.

Error code
I/0; CHAR(*)

The structure in which to return error information.
For the format of the structure, see [Error Code Parameter]|

Input Data Formats
For detailed descriptions of the table fields, see |“Input Data Formats Field Descriptions.”]

DATA0200 format

Offset
Dec | Hex Type Field
These fields repeat. |PTR(SPP) Input data pointer
BINARY(4) Input data length
CHAR(12) Reserved

Input Data Formats Field Descriptions

Input data length
The length of data to verify.

Input data pointer
A space pointer to the data to verify.

Reserved
Must be null (binary 0s).

Algorithm Description Formats

For detailed descriptions of the table fields, see [“Algorithm Description Formats Field Descriptions” on|
-ae 63.

ALGDO0100 format

Offset
Dec Hex Type Field
0 0 CHAR(8) Algorithm context token
8 8 CHAR(1) Final operation flag

62 IBM Systems - iSeries: Cryptographic Services APls

ALGD0400 format

Offset
Dec Hex Type Field
0 0 BINARY (4) Public key cipher algorithm
4 4 CHAR(1) PKA block format
5 5 CHAR(3) Reserved
8 8 BINARY(4) Signing hash algorithm

Algorithm Description Formats Field Descriptions

Algorithm context token
A token for an algorithm context. The algorithm context is created using the Create Algorithm
Context (OPM, QC3CRTAX; ILE, Qc3CreateAlgorithmContext) APL

Final operation flag
The final processing indicator.

0 Continue.
The system will not perform final processing and the algorithm context will maintain the state of the
operation. The algorithm context can be used on future calls to this API to continue the verify signature
operation. The result of the signature verification will not be returned until the final operation flag is set on.
The pointer to the signature parameter may be set to NULL because the signature is not used until the final
operation flag is set on.

1 Final.
The system will perform final processing. The signature will be verified and the algorithm context will reset
to its initial state. The algorithm context can then be used to begin a new cryptographic operation. When
performing a final operation, the pointer to the input data parameter may be set to NULL.

PKA block format
The public key algorithm block format. Following are the valid values.

0 PKCS #1 block type 00
1 PKCS #1 block type 01
3 ISO 9796-1

5 ANSI X9.31

This format is only valid with signing hash algorithm 2 (SHA-1).

Public key cipher algorithm
The encryption algorithm. Following are the valid public key cipher algorithms.

50 RSA

Reserved
Must be null (binary 0s).

Signing hash algorithm
The hash algorithm. Following are the valid values for the signing hash algorithm.

1 MD5
2 SHA-1

Cryptographic Services APIs

63

Key Description Formats

For detailed descriptions of the table fields, see [“Key Description Formats Field Descriptions” on page|

KEYDO0100 format
Offset
Dec Hex Type Field
0 0 CHAR(8) Key context token

KEYDO0200 format

Offset
Dec Hex Type Field
0 0 BINARY(4) Key type
4 4 BINARY (4) Key string length
8 8 CHAR(1) Key format
9 9 CHAR(3) Reserved
12 C CHAR(¥) Key string
b
KEYDO0400 format
Offset
Dec Hex Type Field
0 0 CHAR(20) Qualified key store file name
20 14 CHAR(32) Record label
52 34 CHAR(4) Reserved
KEYDO0600 format
Offset
Dec Hex Type Field
BINARY (4) PEM certificate length
4 4 CHAR(4) Reserved
8 8 CHARC(*) PEM certificate

KEYDO0700 format

Offset
Dec Hex Type Field
0 0 BINARY(4) Certificate label length
4 4 CHAR(4) Reserved
8 8 CHARC(*) Certificate label

64 1BM Systems - iSeries: Cryptographic Services APls

KEYDO0800 format

Offset
Dec Hex Type Field
BINARY (4) Distinguished name length
4 4 CHAR(4) Reserved
CHARC(*) Distinguished name

&

Key Description Formats Field Descriptions

b

Certificate label
The label of the certificate in signature verification certificate key store
(*SIGNATUREVERIFICATION).

Certificate label length
The length of the certificate label.

Distinguished name
The distinguished name of the certificate in signature verification certificate key store
(*SIGNATUREVERIFICATION).

Distinguished name length
The length of the distinguished name.

File name
The name of a key store file. Key store files are created using the |[“Create Key Store (QC3CRTKS)|
[Qc3CreateKeyStore)” on page 86{ API.

&

Key context token
A token for a key context. The key context is created using the Create Key Context (OPM,
QC3CRTKX; ILE, Qc3CreateKeyContext) API.

Key format
The format of the key string field. Following are the valid values.

1 BER string
The key is specified in BER encoded X.509 % Certificate or £ SubjectPublicKeyInfo format. For
specifications of this format, refer to RFC 3280.

Key string
The key to use in the verify signature operation.

Key string length
Length of the key string specified in the key string field. The format of the key string is specified
in the key format field.

Key type
The type of key. Following are the valid values.

50 RSA public

b

Cryptographic Services APIs 65

PEM certificate
An ASCII encoded PEM formated certificate.

PEM certificate length
The length of the PEM certificate.

Qualified key store file name
The key store file where the key is stored. Key store files are created using the [“Create Key Store]
[(QC3CRTKS, Qc3CreateKeyStore)” on page 86| APIL The first 10 characters contain the file name.
The second 10 characters contain the name of the library where the key store file is located. You
can use the following special values for the library name.

*CURLIB The job’s current library is used to locate the key store

file. If no library is specified as the current library for the
job, the QGPL library is used.

*LIBL The job’s library list is searched for the first occurence of
the specified file name.

Record label

The label of a key record in a key store file. The label will be converted from the job CCSID, or if
65535, the job default CCSID (DFTCCSID) job attribute to CCSID 1200 (Unicode UTE-16). The key
record may contain either an RSA public or private key. If a private key, the public key is
extracted to use in the verify operation. Key records are created using the [“Write Key Record|
(QC3WRTKR, Qc3WriteKeyRecord)” on page 112| or [“Generate Key Record (QC3GENKR |

Qc3GenKeyRecord)” on page 98 APL

&

Reserved

Must be null (binary 0s).

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.
CPE3CI1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
g

CPF9D99 E Error openning certificate store.

CPFODYF E Not authorized to key store file.

CPF9DAO E Error occured opening key store file.

CPF9DAL1 E Key record not found.

CPF9DA2 E Option 34 is not installed.

CPF9DA3 E Not authorized to use APPIDs.

CPF9DA4 E RSA key identifier was not found in system certificate store.
CPFODAS5 E Key store file not found.

CPF9DAG6 E The key store file is not available.

CPFODA7 E File is corrupt or not a valid key store file.
CPFODA9 D The PEM certificate contains invalid formatting.
CPFODAA D A key requires translation.

CPFI9DAB E A key can not be decrypted.

CPF9DB3 E Qualified key store file name not valid.
CPF9DB6 E Record label not valid.

CPF9DBS E Error occured retrieving key from key store.

66 IBM Systems - iSeries: Cryptographic Services APIs

Message ID
CPFODBE E
CPFIDBF E
CPFODCO E
il

CPF9DC2 E
CPF9DC6 E
CPFODCS8 E
CPFODC9 E
CPFODCC E
CPFODCE E
CPFIDCF E
CPFIDDO E
CPFIDD2 E
CPF9DD3 E
CPF9DD5 E
CPFODD6 E
CPFODD7 E
CPF9DDS8 E

CPFODDA E
CPFODDB E
CPFODDD E
CPF9DEO E
CPF9DE3 E
CPF9DES5 E
CPF9DES6 E
CPF9DE? E
CPFODE9 E
CPFODEC E
CPFODED E
CPFODEE E
CPFIDEF E
CPF9DFO E

CPF9DF1 E
CPFODF2 E
CPFODE3 E
CPFO9DF4 E
CPFODF5 E
CPF9DEF7 E
CPF9DES E
CPF9DF9 E
CPFODFB E
CPFODFD E
CPFODFE E

Error Message Text

PEM certificate length not valid.
Certificate label length not valid.
Distinguished name length not valid.

Key-encrypting algorithm context not compatible with key-encrypting key context.
Algorithm not valid for encrypting or decrypting a key.
The input data parameter specifies a NULL pointer.

The total length of data in the input data array is not valid.
The length of area provided for signature is not valid.

A data length is not valid.

A data pointer is not valid.

Clear data format name not valid.

Algorithm description format name not valid.

Key description format name not valid.

Length of input data not valid.

Length of area provided for output data is too small.

The key-encrypting key context for the specified key is not valid or was previously destroyed.

The key-encrypting algorithm context for the specified key is not valid or was previously
destroyed.

Unexpected return code &1.

The key string or Diffie-Hellman parameter string is not valid.

The key string length is not valid.

Hash algorithm not valid.

Mode not valid.

PKA (public key algorithm) block format not valid.

Public key algorithm not valid.

Key type not valid.

Key format not valid.

Cryptographic service provider not valid.

Final operation flag not valid.

Reserved field not null.

The signature verification failed.

Operation, algorithm, or mode not available on the requested CSP (cryptographic service
provider).

The algorithm context token does not reference a valid algorithm context.
The algorithm context is not found or was previously destroyed.
Algorithm in algorithm context not valid for requested operation.

The key context token does not reference a valid key context.

The key context is not found or was previously destroyed.

Algorithm context not compatible with key context.

Cryptographic device name not valid.

Cryptographic device not found.

Cryptographic service provider (CSP) conflicts with the key context CSP.
Not authorized to device.

Cryptographic device not available.

API introduced: V5R3

@ | [“Cryptographic Services APIs,” on page 1| | [APIs by category]

Cryptographic Services APIs

67

#TOP_OF_PAGE
aplist.htm

Key Generation APIs

Most cryptographic operations involve a mathematical formula (algorithm) and secret data (key). The Key
Generation APIs allow you to generate random key values for both symmetric and asymmetric (PKA)
algorithms.

The Key Generation APIs include:

+ [“Calculate Diffie-Hellman Secret Key (QC3CALDS, Qc3CalculateDHSecretKey)”| (QC3CALDS,
Qc3CalculateDHSecretKey) calculates a Diffie-Hellman shared secret key.

* [“Generate Diffie-Hellman Key Pair (QC3GENDK, Qc3GenDHKeyPair)” on page 70| (QC3GENDK,
Qc3GenDHKeyPair) generates a Diffie-Hellman (D-H) private/public key pair needed for calculating a
Diffie-Hellman shared secret key.

* [“Generate Diffie-Hellman Parameters (QC3GENDP, Qc3GenDHParms)” on page 72| (QC3GENDP,
Qc3GenDHParms) generates the parameters needed for generating a Diffie-Hellman key pair.

* |“Generate PKA Key Pair (QC3GENPK, Qc3GenPKAKeyPair)” on page 74 (QC3GENPK,
Qc3GenPKAKeyPair) generates a random PKA key pair.

* [“Generate Symmetric Key (QC3GENSK, Qc3GenSymmetricKey)” on page 79| (QC3GENSK,
Qc3GenSymmetricKey) generates a random key value that can be used with a symmetric cipher
algorithm

IEE' | Cryptographic Services APIs I[APIs by category

Calculate Diffie-Hellman Secret Key (QC3CALDS,
Qc3CalculateDHSecretKey)

Required Parameter Group:

1 D-H algorithm context token Input Char(8)
2 D-H public key Input Char(*)
3 Length of D-H public key Input Binary(4)
4 D-H secret key Output Char(*)
5 Length of area provided for D-H secret key Input Binary(4)
6 Length of D-H secret key returned Output Binary(4)
7 Error code I/0 Char(*)

Service Program Name: QC3DH
Default Public Authority: *USE
Threadsafe: Yes

Diffie-Hellman (D-H) is a public key algorithm used for producing a shared secret key. It is described in
RFC 2631 and Public Key Cryptography Standard (PKCS) #3. To share a secret key between two parties,
both parties calculate the shared secret key using their own private key and the other party’s public key.
To share a secret key with more than two parties, see the example below.

Information on cryptographic standards can be found in the [“Create Algorithm Context (QC3CRTAX)
[Qc3CreateAlgorithmContext)” on page 120| API documentation.

Authorities and Locks

Required API authority
*USE

Required device description authority
*USE

68 IBM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

D-H algorithm context token
INPUT; CHAR(8)

The token for the D-H algorithm context.

This must be the token for the algorithm context that was created using the |”Generat€|
IDiffie-Hellman Key Pair (QC3GENDK, Qc3GenDHKeyPair)” on page 70| The D-H parameters
and private key are contained in the context. Once the D-H secret key has been calculated, you
should destroy the D-H algorithm context using the [“Destroy Algorithm Context (QC3DESAX|
[Qc3Destroy AlgorithmContext)” on page 131

D-H public key
INPUT; CHAR(*)

The other party’s D-H public key.
This is the public key from the party with whom the secret key will be shared

Length of D-H public key
INPUT; BINARY(4)

The length of key specified in the D-H public key parameter.

D-H secret key
OUTPUT; CHAR(*)

The area to store the D-H secret key.
The entire output of the secret key may not be needed and the two parties must agree on which
bytes of the secret value will be used.

Length of area provided for D-H secret key
INPUT; BINARY(4)

The length of the D-H secret key parameter in bytes.
The size of the secret key will be no greater than the key size. (See [“Generate Diffie-Hellman|
[Parameters (QC3GENDP, Qc3GenDHParms)” on page 72)) Because key size is normally specified
in bits, divide that value by 8 and round up to obtain the length of area needed for the D-H
secret key.

Length of D-H secret key returned
OUTPUT; BINARY(4)

The length of the D-H secret key returned in the D-H secret key parameter.
If the length of area provided is too small, an error will be generated and no data will be
returned in the D-H secret key parameter.

Error code
I/0; CHAR(*)

The structure in which to return error information.
For the format of the structure, see [Error Code Parameter

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CIE E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFIDCA E Length of D-H (Diffie-Hellman) public key not valid.

CPFODD6 E Length of area provided for output data is too small.

Cryptographic Services APIs 69

Message ID Error Message Text

CPF9DDA E Unexpected return code &1.
CPFODF1 E The algorithm context token does not reference a valid algorithm context.
CPFODF2 E The algorithm context is not found or was previously destroyed.

Example of Three-Party Shared Secret Key Exchange

1.
2.

Beth uses Generate Diffie-Hellman Parameters and sends the output to Kathy and Terry.

Beth uses Generate Diffie-Hellman Key Pair to generate a private value (stored in a Diffie-Hellman
algorithm context), and a public value B1, which she sends to Kathy.

Kathy uses Generate Diffie-Hellman Key Pair to generate a private value (stored in a Diffie-Hellman
algorithm context), and a public value K1, which she sends to Terry.

Terry uses Generate Diffie-Hellman Key Pair to generate a private value (stored in a Diffie-Hellman
algorithm context), and a public value T1, which he sends to Beth.

Beth specifies T1 on Calculate Diffie-Hellman Secret Key to create another public value B2, which
she sends to Kathy.

Kathy specifies B1 on Calculate Diffie-Hellman Secret Key to create another public value K2, which
she sends to Terry.

Terry specifies K1 on Calculate Diffie-Hellman Secret Key to create another public value T2, which
he sends to Beth.

Beth specifies T2 on Calculate Diffie-Hellman Secret Key to create the shared secret key, S.
Kathy specifies B2 on Calculate Diffie-Hellman Secret Key to create the shared secret key, S.
Terry specifies K2 on Calculate Diffie-Hellman Secret Key to create the shared secret key, S.

API introduced: V5R3

@ | [“Cryptographic Services APIs,” on page 1| | |APIs by category]

Generate Diffie-Hellman Key Pair (QC3GENDK, Qc3GenDHKeyPair)

Required Parameter Group:

1 D-H parameters Input Char(*)
2 Length of D-H parameters Input Binary(4)
3 Cryptographic service provider Input Char(1)
4 Cryptographic device name Input Char(10)
5 D-H algorithm context token Output Char(8)
6 D-H public key Output Char(*)
7 Length of area provided for D-H public key Input Binary(4)
8 Length of D-H public key returned Output Binary(4)
9 Error code I/0 Char(*)

Service Program Name: QC3DH
Default Public Authority: *USE
Threadsafe: Yes

Diffie-Hellman (D-H) is a public key algorithm used for producing a shared secret key. It is described in
RFC 2631 and Public Key Cryptography Standard (PKCS) #3. The Generate Diffie-Hellman Key Pair
(OPM, QC3GENDK; ILE, Qc3GenDHKeyPair) API generates a Diffie-Hellman (D-H) private/public key
pair. The key pair is used to create a shared secret key using the [’Calculate Diffie-Hellman Secret Key|

[(QC3CALDS, Qc3CalculateDHSecretKey)” on page 68 The key pair can not be used for data encryption

or signing.

70

IBM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm

Information on cryptographic standards can be found in the [“Create Algorithm Context (QC3CRTAX|
[Qc3CreateAlgorithmContext)” on page 120| API documentation.

Authorities and Locks

Required API authority
*USE

Required device description authority
*USE

Required Parameter Group

D-H parameters
INPUT; CHAR(¥)

The ASN.1 BER encoded D-H parameters.
These parameters are obtained from the [‘Generate Diffie-Hellman Parameters (QC3GENDP)
[Qc3GenDHParms)” on page 72| or from another party.

Length of D-H parameters
INPUT; BINARY(4)

The length of the D-H parameters.

Cryptographic service provider
INPUT; CHAR(1)

The cryptographic service provider (CSP) that will perform the D-H operations (both generate
D-H key pair and calucalte D-H secret key).

0 Any CSP.
The system will choose an appropriate CSP to perform the D-H operations.

1 Software CSP.
The system will perform the D-H operations using software. If the requested algorithm is not available in
software, an error is returned.

2 Hardware CSP.

The system will perform the D-H operations using cryptographic hardware. If the requested algorithm is not

available in hardware, an error is returned. A specific cryptographic device can be specified using the

cryptographic device name parameter. If the cryptographic device is not specified, the system will choose an

appropriate one.

Cryptographic device name
INPUT; CHAR(10)

The name of a cryptographic device description.

This parameter is valid when the cryptographic service provider parameter specifies 2 (hardware

CSP). Otherwise, this parameter must be blanks or the pointer to this parameter set to NULL.

D-H algorithm context token
OUTPUT; CHAR(8)

The area to store the token for the created D-H algorithm context.

The D-H parameters and private key will be stored in the context upon completion of this
operation. This token should be supplied on the [“Calculate Diffie-Hellman Secret Key]
[(QC3CALDS, Qc3CalculateDHSecretKey)” on page 68]Once the D-H secret key has been

calculated, you should destroy the D-H algorithm context using the [“Destroy Algorithm Context]

[(QC3DESAX, Qc3DestroyAlgorithmContext)” on page 131)

Cryptographic Services APIs

71

D-H public key
OUTPUT; CHAR(¥)

The area to store the D-H public key.
The D-H public key must be given to the party with whom the secret key will be shared.

Length of area provided for D-H public key
INPUT; BINARY(4)

The length of the D-H public key parameter in bytes.
The size of the public key will be no greater than the key size. (See [“Generate Diffie-Hellman|
[Parameters (QC3GENDP, Qc3GenDHParms).”) Because key size is normally specified in bits,
divide that value by 8 to obtain the length of area needed for the D-H public key.

Length of D-H public key returned
OUTPUT; BINARY(4)

The length of the generated D-H public key returned in the D-H public key parameter.
If the length of area provided is too small, an error will be generated and no data will be
returned in the D-H public key parameter.

Error code
I/0; CHAR(*)

The structure in which to return error information.
For the format of the structure, see [Error Code Parameter]|

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CIE E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFIDCB E Length of D-H (Diffie-Hellman) parameters not valid.
CPFODD6 E Length of area provided for output data is too small.
CPFODDA E Unexpected return code &1.

CPFODDB E The key string or Diffie-Hellman parameter string is not valid.
CPFODDC E D-H (Diffie-Hellman) parameters not valid.

CPFODEC E Cryptographic service provider not valid.

CPFODEFS8 E Cryptographic device name not valid.

CPFODF9 E Cryptographic device not found.

CPFODFD E Not authorized to device.

CPFODFE E Cryptographic device not available.

API introduced: V5R3

@ | [“Cryptographic Services APIs,” on page 1| | |APIs by category]

Generate Diffie-Hellman Parameters (QC3GENDP, Qc3GenDHParms)

Required Parameter Group:

1 Key size Input Binary(4)
2 Cryptographic service provider Input Char(1)
3 Cryptographic device name Input Char(10)

72 IBM Systems - iSeries: Cryptographic Services APls

#TOP_OF_PAGE
aplist.htm

4 D-H parms Output Char(*)
5 Length of area provided for D-H parms Input Binary(4)
6 Length of D-H parms returned Output Binary(4)
7 Error code I/0 Char(*)

Service Program Name: QC3DH
Default Public Authority: *USE
Threadsafe: Yes

Diffie-Hellman (D-H) is a public key algorithm used for producing a shared secret key. It is described in
RFC 2631 and Public Key Cryptography Standard (PKCS) #3. The output from the Generate
Diffie-Hellman Parameters (OPM, QC3GENDH; ILE, Qc3GenDHParms) API is used in generating a D-H
key pair (“Generate Diffie-Hellman Key Pair (QC3GENDK, Qc3GenDHKeyPair)” on page 70). These
parameters are not secret and must be given to the party (or parties) with whom a secret key will be
shared. Alternatively, the D-H parameters may be supplied by another party.

Information on cryptographic standards can be found in the [“Create Algorithm Context (QC3CRTAX|
[Qc3CreateAlgorithmContext)” on page 120| API documentation.

Authorities and Locks

Required API authority
*USE

Required device description authority
*USE

Required Parameter Group

Key size
INPUT; BINARY(4)

The length of the modulus in bits.
The key size must be a multiple of 64 with a minimum size of 512 and a maximum size of 1024.

Cryptographic service provider
INPUT; CHAR(1)

The cryptographic service provider (CSP) that will perform the D-H operation.

1 Software CSP.
The system will perform the D-H operation using software.

Cryptographic device name
INPUT; CHAR(10)

This parameter must be set to blanks or the pointer to this parameter set to NULL.

D-H parms
OUTPUT; CHAR(¥)

The area to store the D-H parameters.

The generated D-H parameters will be returned in BER encoded PKCS #3 format. For
specifications of this format, refer to RSA Security Inc. Public-Key Cryptography Standards. The
D-H parameters are used in generating a Diffie-Hellman key pair and must be given to the party
with whom the secret key will be shared. The generated parameters are not sensitive and need
not be kept secret.

Length of area provided for D-H parms
INPUT; BINARY(4)

Cryptographic Services APIs 73

The length of the D-H parms parameter.
The maximum length needed (with a key size of 1024) is 288 bytes.

Length of D-H parms returned
OUTPUT; BINARY(4)

The length of the generated D-H parameters returned in the D-H parms parameter.
If the length of area provided is too small, an error will be generated and no data will be
returned in the D-H parms parameter.

Error code
I/0; CHAR(*)

The structure in which to return error information.
For the format of the structure, see [Error Code Parameter]|

Error Messages

Message 1D Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CIE E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFODD6 E Length of area provided for output data is too small.

CPFODDA E Unexpected return code &1.

CPFODEA E Key size not valid.

CPFODEC E Cryptographic service provider not valid.

CPFODF8 E Cryptographic device name not valid.

API introduced: V5R3

@ | [Other APIs in this part| | [APIs by category]|

Generate PKA Key Pair (QC3GENPK, Qc3GenPKAKeyPair)

Required Parameter Group:

1 Key type Input Binary(4)
2 Key size Input Binary(4)
3 Public key exponent Input Binary(4)
4 Key format Input Char(1)
5 Key form Input Char(1)
6 Key-encrypting key Input Char(*)
7 Key-encrypting algorithm Input Char(8)
8 Cryptographic service provider Input Char(1)
9 Cryptographic device name Input Char(10)
10 Private key string Output Char(*)
11 Length of area provided for private key string Input Binary(4)
12 Length of private key string returned Output Binary(4)
13 Public Key string Output Char(*)
14 Length of area provided for public key string Input Binary(4)
15 Length of public key string returned Output Binary(4)
16 Error code I/0 Char(*)

74 1BM Systems - iSeries: Cryptographic Services APls

#TOP_OF_PAGE
sec1.htm
aplist.htm

Service Program Name: QC3KEYGN
Default Public Authority: *USE
Threadsafe: Yes

The Generate PKA Key Pair (OPM, QC3GENPK; ILE, Qc3GenPKAKeyPair) API generates a random PKA

key pair that can be used with the PKA cipher algorithm RSA.

Information on cryptographic standards can be found in the [“Create Algorithm Context (QC3CRTAX
[Qc3CreateAlgorithmContext)” on page 120| API documentation.

Authorities and Locks

Required device description authority
*USE

Required Parameter Group

Key type
INPUT; BINARY(4)

The type of key. Following are the valid values.

50 RSA

Key size
INPUT; BINARY(4)

The modulus length in bits.
The key size must be an even number in the range 512 - 2048.

Public key exponent
INPUT; BINARY(4)

To maximize performance, the public key exponent is limited to the following two values.

3 Or hex 00 00 00 03.
65,537 Or hex 00 01 00 01.

Key format
INPUT; CHAR(1)

The format in which to return the key.
Following are the valid values.

1 BER string. The private key is returned in BER encoded PKCS #8 format. For specifications of this format,
refer to RSA Security Inc. Public-Key Cryptography Standards. The public key is returned in BER encoded
X.509 SubjectPublicKeyInfo format. For specifications of this format, refer to RFC 3280.

Key form
INPUT; CHAR(1)

The form in which to return the private key string.

0 Clear.
The key string is returned in the clear.
1 Encrypted.

The private key string is returned encrypted %% with a key-encrypting key. Tokens are specified in the
key-encrypting key and key-encrypting algorithm parameters and used to encrypt the private key string
before returning it. £¥

b

Cryptographic Services APIs

75

2 Encrypted with a master key
The private key string is returned encrypted with a master key. The master key is specified in the
key-encrypting key parameter.

&

Z

Key-encrypting key
INPUT; CHAR(¥)

For key form 0 (clear), this parameter must be set to blanks or the pointer to this parameter set to
NULL.

For key form 1 (encrypted), this parameter specifies the key context token to use to encrypt the
private key string.

For key form 2 (encrypted with a master key), this parameter has the following structure:

Offset
Dec Hex Type Field
0 BINARY(4) Master key ID
4 4 CHAR(4) Reserved
8 BINARY(4) Disallowed function
12 C CHAR(20) Master key KVV

Master key ID
The master key IDs are

Master key 1
Master key 2
Master key 3
Master key 4
Master key 5
Master key 6
Master key 7
Master key 8

@ I N Ul WON =

Reserved
Must be null (binary 0s).

Disallowed function
INPUT; BINARY(4)

This parameter specifies the functions that cannot be used with this key. The values listed
below can be added together to disallow multiple functions. For example, to disallow
everything but encryption, set the value to 14. This value should be saved along with the
encrypted private key string because it will be required when the encrypted private key
string is used on an APL

No functions are disallowed.
Encryption is disallowed.
Decryption is disallowed.
MACing is disallowed.
Signing is disallowed.

D BN = O

76 1BM Systems - iSeries: Cryptographic Services APls

Master key KVV
The key verification value of the master key that was used to encrypt the key is returned
in this field. This value should be saved along with the encrypted key value. When the
encrypted key value is used on an API and the KVV is supplied, the API will be able to
determine which version of the master key should be used to decrypt the key. This field
must be null (binary 0s) on input.

Key-encrypting algorithm
INPUT; CHAR(8)

For key form 0 (clear) and 2 (encrypted with a master key), this parameter must be set to blanks
or the pointer to this parameter set to NULL.

For key form 1 (encrypted), this parameter specifies the algorithm context token to use for
encrypting the private key string.

b

Cryptographic service provider
INPUT; CHAR(1)

The cryptographic service provider (CSP) that will perform the key generate operation.

1 Software CSP.
The system will perform the PKA key pair generation using software.

Cryptographic device name
INPUT; CHAR(10)

This parameter must be set to blanks or the pointer to this parameter set to NULL.

Private key string
OUTPUT; CHAR(*)

The area to store the generated private key string or the pointer to this parameter set to NULL.

Length of area provided for the private key string
INPUT; BINARY(4)

The length of the private key string parameter. At most, the generated private key string will be
1504 bytes.

Length of private key string returned
OUTPUT; BINARY(4)

The length of the generated private key string returned in the private key string parameter.
If the length of area provided is too small, an error will be generated and no data will be
returned in the private key string parameter.

Public key string
OUTPUT; CHAR(*)

The area to store the public key string.

Length of area provided for the public key string
INPUT; BINARY(4)

The length of the public key string parameter. At most, the public key string will be 512 bytes.

Length of public key string returned
OUTPUT; BINARY(4)

Cryptographic Services APIs 77

The length of the public key string returned in the public key string parameter.
If the length of area provided is too small, an error will be generated and no data will be
returned in the public key string parameter.

Error code

1/0; CHAR(*)

The structure in which to return error information.
For the format of the structure, see [Error Code Parameter]

Error Messages

Message ID
CPF24B4 E
CPF3CIE E
CPF3CF1 E
CPF3CF2 E
CPF9872 E
2
CPF9DAA D
CPF9DAB E
CPF9DAC E
CPF9DAD E
CPFODAF E
<
CPFODC2 E
CPFODC4 E
CPFODC5 E
CPF9DC6 E
CPFIDD6 E
CPF9DD7 E
CPF9DDS8 E

CPF9DDA E
CPFODDB E
CPFODE? E
CPF9DES E
CPFI9DEY E
CPFODEA E
CPFODEB E
CPF9DEC E
CPF9DFO E

CPF9DF1 E
CPFODF2 E
CPFODE3 E
CPF9DF4 E
CPFODF5 E
CPF9DF6 E
CPF9DF7 E
CPF9DEFS E
CPFODFB E
CPFODFC E

Error Message Text

Severe error while addressing parameter list.

Required parameter &1 omitted.

Error code parameter not valid.

Error(s) occurred during running of &1 APL

Program or service program &1 in library &2 ended. Reason code &S3.

A key requires translation.

A key can not be decrypted.
Disallowed function value not valid.
The master key ID is not valid.
Version &2 of master key &1 is not set.

Key-encrypting algorithm context not compatible with key-encrypting key context.

A key-encrypting algorithm context token does not reference a valid algorithm context.
A key-encrypting key context token does not reference a valid key context.

Algorithm not valid for encrypting or decrypting a key.

Length of area provided for output data is too small.

The key-encrypting key context for the specified key is not valid or was previously destroyed.

The key-encrypting algorithm context for the specified key is not valid or was previously
destroyed.

Unexpected return code &1.

The key string or Diffie-Hellman parameter string is not valid.

Key type not valid.

Key form not valid.

Key format not valid.

Key size not valid.

Public key exponent not valid.

Cryptographic service provider not valid.

Operation, algorithm, or mode not available on the requested CSP (cryptographic service
provider).

The algorithm context token does not reference a valid algorithm context.
The algorithm context is not found or was previously destroyed.
Algorithm in algorithm context not valid for requested operation.

The key context token does not reference a valid key context.

The key context is not found or was previously destroyed.

Key can not be encrypted.

Algorithm context not compatible with key context.

Cryptographic device name not valid.

Cryptographic service provider (CSP) conflicts with the key context CSP.
The key-encrypting algorithm or key context token is not valid.

78 I1BM Systems - iSeries: Cryptographic Services APls

API introduced: V5R3

@ | [*Cryptographic Services APIs,” on page 1| | |APIs by category]

Generate Symmetric Key (QC3GENSK, Qc3GenSymmetricKey)

Required Parameter Group:

1 Key type Input Binary(4)
2 Key size Input Binary(4)
3 Key format Input Char(1)
4 Key form Input Char(1)
5 Key-encrypting key Input Char(*)
6 Key-encrypting algorithm Input Char(8)
7 Cryptographic service provider Input Char(1)
8 Cryptographic device name Input Char(10)
9 Key string Output Char(*)
10 Length of area provided for key string Input Binary(4)
11 Length of key string returned Output Binary(4)
12 Error code I/0 Char(*)

Service Program Name: QC3KEYGN
Default Public Authority: *USE
Threadsafe: Yes

The Generate Symmetric Key (OPM, QC3GENSK; ILE, Qc3GenSymmetricKey) API generates a random
key value that can be used with symmetric cipher algorithms DES, Triple DES, AES, RC2, and
RC4-compatible, i or the HMAC algorithms MD5, SHA-1, SHA-256, SHA-384, and SHA-512. <%

Information on cryptographic standards can be found in the [“Create Algorithm Context (QC3CRTAX|
[Qc3CreateAlgorithmContext)” on page 120] API documentation.

Authorities and Locks

Required device description authority
*USE

Required Parameter Group

Key type
INPUT; BINARY(4)

The type of key.
Following are the valid values.

b
1 MD5

An MD?5 key is used for HMAC (hash message
authentication code) operations. The minimum length for
an MD5 HMAC key is 16 bytes. A key longer than 16
bytes does not significantly increase the function strength
unless the randomness of the key is considered weak. A
key longer than 64 bytes will be hashed before it is used.

Cryptographic Services APIs 79

#TOP_OF_PAGE
aplist.htm

=

21

22

23

80

IBM Systems - iSeries: Cryptographic Services APIs

SHA-1

An SHA-1 key is used for HMAC (hash message
authentication code) operations. The minimum length for
an SHA-1 HMAC key is 20 bytes. A key longer than 20
bytes does not significantly increase the function strength
unless the randomness of the key is considered weak. A
key longer than 64 bytes will be hashed before it is used.
SHA-256

An SHA-256 key is used for HMAC (hash message
authentication code) operations. The minimum length for
an SHA-256 HMAC key is 32 bytes. A key longer than 32
bytes does not significantly increase the function strength
unless the randomness of the key is considered weak. A
key longer than 64 bytes will be hashed before it is used.
SHA-384

An SHA-384 key is used for HMAC (hash message
authentication code) operations. The minimum length for
an SHA-384 HMAC key is 48 bytes. A key longer than 48
bytes does not significantly increase the function strength
unless the randomness of the key is considered weak. A
key longer than 128 bytes will be hashed before it is used.
SHA-512

An SHA-512 key is used for HMAC (hash message
authentication code) operations. The minimum length for
an SHA-512 HMAC key is 64 bytes. A key longer than 64
bytes does not significantly increase the function strength
unless the randomness of the key is considered weak. A
key longer than 128 bytes will be hashed before it is used.

DES

Only 7 bits of each byte are used as the actual key. The
rightmost bit of each byte will be set to odd parity
because some cryptographic service providers require that
a DES key have odd parity in every byte.

The key size parameter must specify 8.

Triple DES

Only 7 bits of each byte are used as the actual key. The
rightmost bit of each byte will be set to odd parity
because some cryptographic service providers require that
a DES key have odd parity in every byte.

The key size can be 8, 16, or 24. Triple DES operates on
an encryption block by doing a DES encrypt, followed by
a DES decrypt, and then another DES encrypt. Therefore,
it actually uses three 8-byte DES keys. If the key is 24
bytes in length, the first 8 bytes are used for key 1, the
second 8 bytes for key 2, and the third 8 bytes for key 3.
If the key is 16 bytes in length, the first 8 bytes are used
for key 1 and key 3, and the second 8 bytes for key 2. If
the key is only 8 bytes in length, it will be used for all 3
keys (essentially making the operation equivalent to a
single DES operation).

AES

The key size can be 16, 24, or 32.

AES keys are supported only by the software CSP.

RC2

The key size can be 1 - 128.

RC2 keys are supported only by the software CSP.

30 RC4-compatible
The key size can be 1 - 256.
RC4-compatible keys are supported only by the software
CSP. Because of the nature of the RC4-compatible
operation, using the same key for more than one message
will severely compromise security.

Key size
INPUT; BINARY(4)

The length of key to generate in bytes.
Refer to the key type parameter for restrictions.

Key format
INPUT; CHAR(1)

The format in which to return the key.
Following are the valid values.

0 Binary string.

The key is returned as a binary value.

Key form
INPUT; CHAR(1)

The form in which to return the key.

0 Clear.
The key string is returned in the clear.
1 Encrypted.

The key string is returned encrypted ¥ with a key-encrypting key. Tokens are specified in the key-encrypting
key and key-encrypting algorithm parameters and used to encrypt the generated key before returning it. %

A

2 Encrypted with a master key
The key string is returned encrypted with a master key. The master key is specified in the key-encrypting key
parameter.

&«

2

Key-encrypting key
INPUT;, CHAR(*)

For key form 0 (clear), this parameter must be set to blanks or the pointer to this parameter set to
NULL.

For key form 1 (encrypted), this parameter specifies the key context token to use to encrypt the
generated key.

For key form 2 (encrypted with a master key), this parameter has the following structure:

Offset
Dec Hex Type Field
0 0 BINARY(4) Master key ID
4 4 CHAR®#4) Reserved
8 8 BINARY(4) Disallowed function
12 C CHAR(20) Master key KVV

Cryptographic Services APIs 81

Master key ID
The master key IDs are

Master key 1
Master key 2
Master key 3
Master key 4
Master key 5
Master key 6
Master key 7
Master key 8

@I N Ul B WN =

Reserved
Must be null (binary 0s).

Disallowed function
INPUT; BINARY(4)

This parameter specifies the functions that cannot be used with this key. The values listed
below can be added together to disallow multiple functions. For example, to disallow
everything but MACing, set the value to 11. This value should be saved along with the
encrypted key value because it will be required when the encrypted key value is used on
an APL

No functions are disallowed.
Encryption is disallowed.
Decryption is disallowed.
MACing is disallowed.
Signing is disallowed.

DD BN = O

Master key KVV
The key verification value of the master key that was used to encrypt the key is returned
in this field. This value should be saved along with the encrypted key value. When the
encrypted key value is used on an API and the KVV is supplied, the API will be able to
determine which version of the master key should be used to decrypt the key. This field
must be null (binary Os) on input.

Key-encrypting algorithm
INPUT; CHAR(S8)

For key form 0 (clear) and 2 (encrypted with a master key), this parameter must be set to blanks
or the pointer to this parameter set to NULL.

For key form 1 (encrypted), this parameter specifies the algorithm context token to use for
encrypting the generated key.

&

Cryptographic service provider
INPUT; CHAR(1)

82 1BM Systems - iSeries: Cryptographic Services APls

The cryptographic service provider (CSP) that will perform the key generate operation.

0 Any CSP.
The system will choose an appropriate CSP to perform the key generate operation.

1 Software CSP.
The system will perform the key generate operation using software. If the requested key type or form is not
available in software, an error is returned.

2 Hardware CSP.
The system will perform the key generate operation using cryptographic hardware. If the requested key type
or form is not available in hardware, an error is returned. A specific cryptographic device can be specified
using the cryptographic device name parameter. If the cryptographic device is not specified, the system will
choose an appropriate one.

Cryptographic device name
INPUT; CHAR(10)

The name of a cryptographic device description.
This parameter is valid when the cryptographic service provider parameter specifies 2 (hardware
CSP). Otherwise, this parameter must be blanks or the pointer to this parameter set to NULL.

Key string
OUTPUT; CHAR(¥)

The area to store the generated key string.

Length of area provided for key string
INPUT; BINARY(4)

The length of the key string parameter.

The length of the generated key string will be the length specified in the key size parameter. If
the key form specifies 1 (encrypted), you must allow room for padding the encrypted key string
to the next block length multiple. (e.g. Add an additional 8 bytes for DES.) For more information
on block length, refer to the Create Algorithm Context (OPM, QC3CRTAX; ILE,
Qc3CreateAlgorithmContext) API.

Length of key string returned
OUTPUT; BINARY(4)

The length of the key string returned in the key string parameter.
If the length of area provided for the key string is too small, an error will be generated and no
data will be returned in the key string parameter.

Error code
I/0; CHAR(Y)

The structure in which to return error information.
For the format of the structure, see [Error Code Parameter

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.
CPF3CI1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
b

CPF9DAA D A key requires translation.

CPFODAB E A key can not be decrypted.

CPFODAC E Disallowed function value not valid.
CPF9DAD E The master key ID is not valid.

Cryptographic Services APIs 83

Message ID
CPFODAF E
<

CPFODC2 E
CPF9DC4 E
CPF9DC5 E
CPF9DC6 E
CPFODD6 E
CPFODD7 E
CPFODDS8 E

CPFODDA E
CPFODDB E
CPFODE7 E
CPFODES E
CPF9DEY E
CPF9DEA E
CPF9DEC E
CPFIDEE E
CPFODF0 E

CPF9DF1 E
CPF9DF2 E
CPF9DE3 E
CPF9DF4 E
CPF9DEF5 E
CPF9DF6 E
CPFODF7 E
CPFODEFS E
CPFODF9 E
CPFODFB E
CPFIDEC E
CPF9DFD E
CPFIDFE E

Error Message Text
Version &2 of master key &1 is not set.

Key-encrypting algorithm context not compatible with key-encrypting key context.

A key-encrypting algorithm context token does not reference a valid algorithm context.
A key-encrypting key context token does not reference a valid key context.

Algorithm not valid for encrypting or decrypting a key.

Length of area provided for output data is too small.

The key-encrypting key context for the specified key is not valid or was previously destroyed.
The key-encrypting algorithm context for the specified key is not valid or was previously
destroyed.

Unexpected return code &1.

The key string or Diffie-Hellman parameter string is not valid.

Key type not valid.

Key form not valid.

Key format not valid.

Key size not valid.

Cryptographic service provider not valid.

Reserved field not null.

Operation, algorithm, or mode not available on the requested CSP (cryptographic service
provider).

The algorithm context token does not reference a valid algorithm context.

The algorithm context is not found or was previously destroyed.

Algorithm in algorithm context not valid for requested operation.

The key context token does not reference a valid key context.

The key context is not found or was previously destroyed.

Key can not be encrypted.

Algorithm context not compatible with key context.

Cryptographic device name not valid.

Cryptographic device not found.

Cryptographic service provider (CSP) conflicts with the key context CSP.

The key-encrypting algorithm or key context token is not valid.

Not authorized to device.

Cryptographic device not available.

API introduced: V5R3

@ | [“Cryptographic Services APIs,” on page 1| | |APIs by category]

Key Management APIs

The Key Management APIs help you store and handle cryptographic keys. See [“Cryptographic Services|

[Master Keys” on page 156|and [“Cryptographic Services Key Store” on page 157] for key management

concept information.

The Key Management APIs include:

* [“Clear Master Key (QC3CLRMK, Qc3ClearMasterKey)” on page 85/ (QC3CLRMK,

Qc3ClearMasterKey) clears the specified master key version. <%

* [“Create Key Store (QC3CRTKS, Qc3CreateKeyStore)” on page 86| (QC3CRTKS, Qc3CreateKeyStore)

creates a database file for storing cryptographic key values for use with the cryptographic services set

of APIs. <%

+ ['Delete Key Record (QC3DLTKR, Qc3DeleteKeyRecord)” on page 88 (QC3DLTKR,

Qc3DeleteKeyRecord) deletes a key record from a key store file. €%

84 1BM Systems - iSeries: Cryptographic Services APls

#TOP_OF_PAGE
aplist.htm

W [“Export Key (QC3EXPKY, Qc3ExportKey)” on page 89 (QC3EXPKY, Qc3ExportKey) decrypts a key
encrypted under a master key and re-encrypts it under the specified key-encrypting key. €%

o W [“Extract Public Key (QC3EXTPB, Qc3ExtractPublicKey)” on page 93| (QC3EXTPB,
Qc3ExtractPublicKey) extracts a public key from a BER encoded PKCS #8 string or from a key record
containing a public or private PKA key. €%

* [“Generate Key Record (QC3GENKR, Qc3GenKeyRecord)” on page 98 (QC3GENKR,
Qc3GenKeyRecord) generates a random key or key pair and stores it in a key store file. 4%

+ ®[“Import Key (QC3IMPKY, Qc3ImportKey)” on page 101| (QC3IMPKY, Qc3ImportKey) encrypts a key
under the specified master key. <%

+ W [“Load Master Key Part (QC3LDMKP, Qc3LoadMasterKeyPart)” on page 104/ (QC3LDMKP,
Qc3LoadMasterKeyPart) loads a key part for the specified master key by hashing the specified
passphrase and adding it into the new master key version. <%

* ®[“Retrieve Key Record Attributes (QC3RTVKA, Qc3RetrieveKeyRecordAtr)” on page 106|
(QC3RTVKA, Qc3RetrieveKeyRecordAtr) returns the key type and key size of a key stored in a key
store file. It also identifies the master key under which the stored key is encrypted and the master
key’s KVV.

* %[“Set Master Key (QC3SETMK, Qc3SetMasterKey)” on page 108[(QC3SETMK, Qc3SetMasterKey) sets
the specified master key from the parts already loaded. %

* [“Test Master Key (QC3TSTMK, QcTestMasterKey)” on page 109| (QC3TSTMK, QcTestMasterKey)
returns the key verification value for the specified master key. <%

* % [“Translate Key Store (QC3TRNKS, Qc3TranslateKeyStore)” on page 111| (QC3TRNKS,
Qc3TranslateKeyStore) translates keys stored in the specified key store files to another master key, or if
the same master key is specified, to the current version of the master key. 4%

W [‘Write Key Record (QC3WRTKR, Qc3WriteKeyRecord)” on page 112| (QC3WRTKR,
Qc3WriteKeyRecord) stores the specified key value in a key store file. ¥

L4
[Top] I Cryptographic Services APIs I[APIs by category

Clear Master Key (QC3CLRMK, Qc3ClearMasterKey)

Required Parameter Group:

1 Master key ID Input Binary(4)
2 Master key version Input Char(1)
3 Error code 1/0 Char(*)

Service Program Name: QC3MKCLR
Default Public Authority: *EXCLUDE
Threadsafe: Yes

The Clear Master Key (OPM, QC3CLRMK; ILE, Qc3ClearMasterKey) API clears the specified master key
version. Before clearing an old master key version, care should be taken to ensure no keys or data are are
still encrypted under it.

For more information about master keys, refer to ['Cryptographic Services Master Keys” on page 156p.

Authorities and Locks

Required special authority
*ALLOBJ and *SECADM

Cryptographic Services APIs 85

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Master key ID
INPUT; BINARY(4)

The master key IDs are

Master key 1
Master key 2
Master key 3
Master key 4
Master key 5
Master key 6
Master key 7
Master key 8

@I D Ul WODN =

Master key version
INPUT; CHAR(1)

The new or old version of the master key

0 New version
2 Old version
Error code

I/0O; CHAR(Y)
The structure in which to return error information. For the format of the structure, see

Paramete

Error Messages

Message ID Error Message Text

CPF222E E &1 special authority is required.

CPF24B4 E Severe error while addressing parameter list.

CPF3CIE E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFODAD E The master key ID is not valid.

CPFODAE E The master key version is not valid.

CPFODDA E Unexpected return code &1.

L4
API introduced: V5R4

| Cryptographic Services APIs |

Create Key Store (QC3CRTKS, Qc3CreateKeyStore)

Required Parameter Group:

1 Qualified key store file name Input Char(20)
2 Master key ID Input Binary(4)
3 Public authority Input Char(10)
4 Text description Input Char(50)

86 IBM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm

5 Error code I/0 Char(¥)

Service Program Name: QC3KSCRT
Default Public Authority: *USE
Threadsafe: Yes

The Create Key Store (OPM, QC3CRTKS; ILE, Qc3CreateKeyStore) API creates a database file for storing
cryptographic key values for use with the cryptographic services set of APIs.

For more information about cryptographic services key store, refer to [“Cryptographic Services Key Store”]

Authorities and Locks

Required library authority
*EXECUTE, *ADD

Required Parameter Group

Qualified key store file name
INPUT; CHAR(20)

The key store file to be created. The first 10 characters contain the file name. The second 10
characters contain the name of the library in which the key store file will be located.

You can use the following special value for the library name.

*CURLIB The job’s current library is used for the key store file. If no library is specified as the current
library for the job, the QGPL library is used.

Master key ID
INPUT; BINARY(4)

The master key under which the key values will be encrypted before storing in the key store file.
The master key IDs are

Master key 1
Master key 2
Master key 3
Master key 4
Master key 5
Master key 6
Master key 7
Master key 8

@3 SN Ul WIN =

Public authority
INPUT; CHAR(10)

The authority you give to users who do not have specific private or group authority to the key

store file.
*ALL The user can perform all authorized operations on the key store file.
Authorization The key store file is secured by the specified authorization list, and its public authority is set to
list name *AUTL.
*CHANGE The user has read, add, update, and delete authority for the key store file and can read the object
description.
*EXCLUDE The user cannot access the key store file in any way.

*LIBCRTAUT The public authority for the key store file is taken from the CRTAUT value for the target library
when the file is created.

Cryptographic Services APIs 87

*USE The user can read the object description and contents, but cannot change the key store file.

Text description
INPUT; CHAR(50)

A brief description of the key store file.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.
CPF3CIE E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFOD9D E Unexpected error while setting keystore attributes.
CPFODAO E Error occured opening key store file.

CPFODAD E The master key ID is not valid.

CPF9DB3 E Qualified key store file name not valid..

CPFODB4 E Value &1 for public authority is not valid.
CPF9DB5 E Key store file &1 not created.

CPF9DB7 E Error occured writing to key store.

&

API introduced: V5R4

@ | ["Cryptographic Services APIs,” on page 1| | |APIs by category]

Delete Key Record (QC3DLTKR, Qc3DeleteKeyRecord)

Required Parameter Group:

1 Qualified key store file name Input Char(20)
2 Record label Input Char(32)
3 Error code I/0 Char(*)

Service Program Name: QC3KRDLT
Default Public Authority: *USE
Threadsafe: Yes

The Delete Key Record (OPM, QC3DLTKR; ILE, Qc3DeleteKeyRecord) API deletes a key record from a
key store file.

For more information about cryptographic services key store, refer to [“Cryptographic Services Key Store”|

Authorities and Locks

Required file authority
*OBJOPR, *DLT

88 IBM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Qualified key store file name
INPUT; CHAR(20)

The key store file from which the key record will be deleted. The first 10 characters contain the
file name. The second 10 characters contain the name of the library where the key store file is

located.

You can use the following special values for the library name.

*CURLIB The job’s current library is used to locate the key store file. If no library is specified as the current
library for the job, the QGPL library is used.
*LIBL The job’s library list is searched for the first occurence of the specified file name.

Record label

INPUT; CHAR(32)

The label of a key record in the specified key store file. The label will be converted from the job
CCSID, or if 65535, the job default CCSID (DFTCCSID) job attribute to CCSID 1200 (Unicode

UTE-16).

Error code

1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see
[Parameter]

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.
CPF3CIE E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFODYF E Not authorized to key store file.

CPFODAO E Error occured opening key store file.
CPFODA1 E Key record not found.

CPFODAS5 E Key store file not found.

CPF9DB3 E Qualified key store file name not valid.
CPFODB6 E Record label not valid.

CPF9DBY E Error occured deleting record from key store.
&

API introduced: V5R4

@ | [‘Cryptographic Services APIs,” on page 1] | |APIs by category]|

Export Key (QC3EXPKY, Qc3ExportKey)

Required Parameter Group:

1 Key string Input Char(*)
2 Length of key string Input Binary(4)
3 Key string format Input Char(1)
4 Key-encrypting key context token Input Char(8)

Cryptographic Services APIs 89

#TOP_OF_PAGE
aplist.htm

5 Key-encrypting algorithm context token Input Char(8)
6 Exported key Output Char(¥)
7 Length of area provided for exported key Input Binary(4)
8 Length of exported key returned Output Binary(4)
9 Error code I/0 Char(*)

Service Program Name: QC3KYEXP
Default Public Authority: *EXCLUDE
Threadsafe: Yes

The Export Key (OPM, QC3EXPKY; ILE, Qc3ExportKey) API decrypts a key encrypted under a master
key and re-encrypts it under the specified key-encrypting key.

Because this API could be used to recover the clear values of keys stored in key store files, care should be
taken to restrict access to this APIL

Authorities and Locks

Required special authority
*ALLOBJ and *SECADM

Required file authority
*OBJOPR, *READ

Required Parameter Group

Key string
INPUT; CHAR(¥)

A formatted structure identifying a key encrypted under a master key. The exact format of the
key string is specified in the key string format parameter.

Length of key string
INPUT; BINARY(4)

Length of the key string specified in the key string parameter.

Key string format
INPUT; CHAR(1)

Format of the key string parameter.
Following are the valid values.

3 The key string parameter specifies a key value encrypted under a master key. The key string parameter
should contain the following structure:

Offset
Dec Hex Type Field
0 BINARY(4) Master key ID
4 4 CHAR(4) Reserved
8 BINARY(4) Disallowed function
12 C CHAR(20) Master key KVV
32 20 CHAR(*) Encrypted key

Disallowed function
INPUT; BINARY(4)

90 IBM Systems - iSeries: Cryptographic Services APIs

This parameter specifies the functions that were not allowed to be used with this
key. This value was XOR’d into the master key when the key was encrypted and
therefore must be used in exporting the key. The values listed below can be added
together to disallow multiple functions. For example, if the key only allowed
MACing, this value would be 11.

0 No functions are disallowed.

1 Encryption is disallowed.

2 Decryption is disallowed.

4 MACing is disallowed.

8 Signing is disallowed.

Encrypted key
The encrypted key may be a symmetric key or a BER encoded PKCS #8 private key
string encrypted under the specified master key.

Master key ID
The master key IDs are

1 Master key 1

2 Master key 2

3 Master key 3

4 Master key 4

5 Master key 5

6 Master key 6

7 Master key 7

8 Master key 8

Master key KVV
The master key verification value. The master key version with a KVV that matches
this value will be used to decrypt the key. If this value is null, the current version of
the master key will be used.

Reserved
Must be null (binary 0s).

4 The key string parameter identifies a key in key store. To create a key in key store, use the |“Generate Ke?f'
Record (QC3GENKR, Qc3GenKeyRecord)” on page 98| or [“Write Key Record (QC3WRTKR,
Qc3WriteKeyRecord)” on page 112| APL The key string parameter should contain the following structure:
Offset

Dec Hex Type Field

0 CHAR(20) Qualified key store file name
14 CHAR(32) Record label
34 CHAR(4) Reserved
Qualified key store file name
The key store file where the key is stored. The first 10 characters contain the file
name. The second 10 characters contain the name of the library where the key store
file is located. You can use the following special values for the library name.
*CURLIB The job’s current library is used to locate the key store

file. If no library is specified as the current library for the
job, the QGPL library is used.

Cryptographic Services APIs 91

*LIBL The job’s library list is searched for the first occurence of
the specified file name.

Record label
The label of the key record. The label will be converted from the job CCSID, or if
65535, the job default CCSID (DFTCCSID) job attribute to CCSID 1200 (Unicode
UTF-16).

Reserved
Must be null (binary 0s).

Key-encrypting key context token
INPUT; CHAR(8)

The token for the key context to use for encrypting the key.
The kei context is created using the [‘Create Key Context (QC3CRTKX, Qc3CreateKeyContext)”|

Key-encrypting algorithm context token
INPUT; CHAR(8)

The token for the algorithm context to use for encrypting the key.
The algorithm context is created using the [‘Create Algorithm Context (QC3CRTAX)|
[Qc3CreateAlgorithmContext)” on page 120

Exported key
OUTPUT; CHAR(Y)

The area to store the exported key. This parameter will contain the exported symmetric key or the
exported PKCS #8 private key string.

Length of area provided for exported key
INPUT; BINARY(4)

The length of the exported key parameter.

Be sure to add any space necessary for padding.

If the encrypt mode of operation is CFB 1-bit, this length must be specified in bits, otherwise it
must be specified in bytes.

Length of exported key returned
OUTPUT; BINARY(4)

The length of the exported key returned in the exported key parameter.

If the length of area provided for the exported key is too small, an error will be generated and no
data will be returned in the exported key parameter.

If the encrypt mode of operation is CFB 1-bit, the length will be returned in bits, otherwise it is
returned in bytes.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

Error Messages

Message 1D Error Message Text

CPF222E E &1 special authority is required.

CPF24B4 E Severe error while addressing parameter list.
CPF3CIE E Required parameter &1 omitted.

92 IBM Systems - iSeries: Cryptographic Services APls

Message ID
CPF3CF1 E
CPF3CF2 E
CPF9872 E
CPF9D98 D
CPF9DYF D
CPF9DAO D
CPFODA5 D
CPFODA6 D
CPFODA7 D
CPFODAA D
CPF9DAB E
CPFODAC D
CPFODAD E
CPF9DB3 E
CPF9DB6 E
CPFODBS E
CPFODC2 E
CPFODC3 E
CPF9DD6 E
CPFI9DDB E
CPFODDD E
CPF9DE9 E
CPF9DEE E
CPF9DF1 E
CPFODF2 E
CPFODF3 E
CPFODF4 E
CPFODF5 E

&

Error Message Text

Error code parameter not valid.

Error(s) occurred during running of &1 APL

Program or service program &1 in library &2 ended. Reason code &3.
Operation not valid for this key type.

Not authorized to key store file.

Error occured opening key store file.

Key store file not found.

The key store file is not available.

File is corrupt or not a valid key store file.

A key requires translation.

A key can not be decrypted.

Disallowed function value not valid.

The master key ID is not valid.

Qualified key store file name not valid.

Record label not valid.

Error occured retrieving key record from key store.

Key-encrypting algorithm context not compatible with key-encrypting key context.
Unable to decrypt data or key.

Length of area provided for output data is too small.

The key string or Diffie-Hellman parameter string is not valid.

The key string length is not valid.

Key format not valid.

Reserved field not null.

The algorithm context token does not reference a valid algorithm context.
The algorithm context is not found or was previously destroyed.
Algorithm in algorithm context not valid for requested operation.

The key context token does not reference a valid key context.

The key context is not found or was previously destroyed.

API introduced: V5R4

@ | [“Cryptographic Services APIs,” on page 1| | [APIs by category]

Extract Public Key (QC3EXTPB, Qc3ExtractPublicKey)

Required Parameter Group:

1 Key string Input Char(*)
2 Length of key string Input Binary(4)
3 Key string format Input Char(1)
4 Key form Input Char(1)
5 Key-encrypting key Input Char(*)
6 Key-encrypting algorithm Input Char(8)
7 Public key Output Char(*)
8 Length of area provided for public key Input Binary(4)
9 Length of public key returned Output Binary(4)
10 Error code I/0 Char(*)

Service Program Name: QC3PBEXT
Default Public Authority: *USE

Threadsafe: Yes

Cryptographic Services APIs

93

#TOP_OF_PAGE
aplist.htm

The Extract Public Key (OPM, QC3EXTPB; ILE, Qc3ExtractPublicKey) API extracts a public key from a
BER encoded PKCS #8 string or from a key record containing a public or private PKA key.

Authorities and Locks

Required file authority
*OBJOPR, *READ

Required Parameter Group

Key string
INPUT; CHAR(*)

A BER encoded PKCS #8 string, or a formatted structure identifying a key record in key store.
The exact format of the key string is specified in the key string format parameter.

Length of key string
INPUT; BINARY(4)

Length of the key string specified in the key string parameter.

Key string format
INPUT; CHAR(1)

Format of the key string parameter.
Following are the valid values.

1 BER string. The key must be specified in BER encoded PKCS #8 format. For specifications of this format, refer
to RSA Security Inc. Public-Key Cryptography Standards.

94 1BM Systems - iSeries: Cryptographic Services APls

4 The key string parameter identifies a key in key store. To create a key in key store, use the|“Generate Ke?f'
Record (QC3GENKR, Qc3GenKeyRecord)” on page 98| or [“Write Key Record (QC3WRTKR))
Qc3WriteKeyRecord)” on page 112| APL. The key string parameter should contain the following structure:

Offset Type

Field
Dec Hex
0 0
CHAR(20)

Qualified key store file name
20 14
CHAR(32)

Record label
52 34
CHAR(®4)

Reserved

Qualified key store file name
The key store file where the key is stored. The first 10 characters contain the file name. The second 10
characters contain the name of the library where the key store file is located. You can use the
following special values for the library name.

*CURLIB
The job’s current library is used to locate the key store file. If no library is specified as the
current library for the job, the QGPL library is used.

*LIBL The job’s library list is searched for the first occurence of the specified file name.

Record label
The label of the key record. The label will be converted from the job CCSID, or if 65535, the job
default CCSID (DFTCCSID) job attribute to CCSID 1200 (Unicode UTF-16).

Reserved
Must be null (binary 0s).

Key form
INPUT; CHAR(1)

An indicator specifying if the key string parameter is in encrypted form.

0 Clear.
The key string is not encrypted.
1 Encrypted with a KEK

The key string is encrypted with a key-encrypting key. Tokens are specified in the key-encrypting key and
key-encrypting algorithm parameters and are used to decrypt the key string. This option is only allowed with
key string format 1 (BER string.)

2 Encrypted with a master key
The key string is encrypted with a master key. The master key is specified in the key-encrypting key
parameter. This option is only allowed with key string format 1 (BER string.)

Key-encrypting key
INPUT; CHAR(¥)
The key under which the key string parameter is encrypted

Cryptographic Services APIs 95

For key form 0 (clear), this parameter must be set to blanks or the pointer to this parameter set to
NULL.

For key form 1 (encrypted), this parameter specifies the 8-byte key context token to use for
decrypting the key string parameter.

For key form 2 (encrypted with a master key), this parameter has the following structure:

Offset
Dec Hex Type Field
0 BINARY(4) Master key ID
4 4 CHAR(4) Reserved
8 BINARY(4) Disallowed function
12 C CHAR(20) Master key KVV

DR N = O

@I S Ul b WON =

Disallowed function
INPUT; BINARY(4)

This parameter specifies the functions that are not allowed to be used with this key. This
value was XOR’d into the master key when this key was encrypted and therefore must be
used when decrypting the key string. The values listed below can be added together to
disallow multiple functions. For example, to disallow everything but MACing, set the
value to 11.

No functions are disallowed.
Encryption is disallowed.
Decryption is disallowed.
MACing is disallowed.
Signing is disallowed.

Master key ID
The master key to use for decrypting the key string parameter. The master key IDs are

Master key 1
Master key 2
Master key 3
Master key 4
Master key 5
Master key 6
Master key 7
Master key 8

Master key KVV
The master key verification value. The master key version with a KVV that matches this
value will be used to decrypt the key. If this value is null, the current version of the
master key will be used.

Reserved
Must be null (binary Os).

Key-encrypting algorithm

96

INPUT; CHAR(8)

IBM Systems - iSeries: Cryptographic Services APIs

For key form 0 (clear) and 2 (encrypted with a master key), this parameter must be set to blanks
or the pointer to this parameter set to NULL.

For key form 1 (encrypted), this parameter specifies the algorithm context token to use for
decrypting the key string parameter.

Public key

OUTPUT; CHAR(¥)

The area to store the public key. This parameter will contain the extracted public key in BER
encoded X.509 SubjectPublicKeyInfo format.

Length of area provided for public key
INPUT; BINARY(4)

The length of the public key parameter.

Length of public key returned
OUTPUT; BINARY(4)

The length of the extracted public key returned in the public key parameter.

If the length of area provided for the public key is too small, an error will be generated and no

data will be returned in the public key parameter.

Error code

1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

Error Messages

Message ID
CPF24B4 E
CPF3C1E E
CPF3CF1 E
CPF3CF2 E
CPF9872 E
CPF9DYF E
CPF9DAO E
CPF9DA1 E
CPF9DAS E
CPF9DA6 E
CPFODA7 E
CPFO9DAA D
CPF9DAB E
CPFODAC E
CPF9DB3 E
CPF9DB6 E
CPF9DBS E
CPF9DDB E
CPF9DC2 E
CPF9ODC3 E
CPFODC6 E
CPF9DCE E
CPF9DD6 E
CPF9DD7 E
CPF9DDS8 E

CPFODDA E

Error Message Text

Severe error while addressing parameter list.

Required parameter &1 omitted.

Error code parameter not valid.

Error(s) occurred during running of &1 APL

Program or service program &1 in library &2 ended. Reason code &3.

Not authorized to key store file.

Error occured opening key store file.

Key record not found.

Key store file not found.

The key store file is not available.

File is corrupt or not a valid key store file.

A key requires translation.

A key can not be decrypted.

Disallowed function value not valid.

Qualified key store file name not valid.

Record label not valid.

Error occured retrieving key record from key store.

The key string or Diffie-Hellman parameter string is not valid.

Key-encrypting algorithm context not compatible with key-encrypting key context.
Unable to decrypt data or key.

Algorithm not valid for encrypting or decrypting a key.

A data length is not valid.

Length of area provided for output data is too small.

The key-encrypting key context for the specified key is not valid or was previously destroyed.
The key-encrypting algorithm context for the specified key is not valid or was previously
destroyed.

Unexpected return code &1.

Cryptographic Services APIs

97

Message ID Error Message Text

CPF9DDB E The key string or Diffie-Hellman parameter string is not valid.
CPFODDD E The key string length is not valid.

CPFODE? E Key type not valid.

CPFODES E Key form not valid.

CPFODE9 E Key format not valid.

CPFODEE E Reserved field not null.

CPF9DF1 E The algorithm context token does not reference a valid algorithm context.
CPFODF3 E Algorithm in algorithm context not valid for requested operation.
CPFODF4 E The key context token does not reference a valid key context.
CPF9DEC E The key-encrypting algorithm or key context token is not valid.
&

API introduced: V5R4

@ | ["Cryptographic Services APIs,” on page 1| | |APIs by category]

Generate Key Record (QC3GENKR, Qc3GenKeyRecord)

Required Parameter Group:

1 Qualified key store file name Input Char(20)
2 Record label Input Char(32)
3 Key type Input Binary(4)
4 Key size Input Binary(4)
5 Public key exponent Input Binary(4)
6 Disallowed function Input Binary(4)
7 Cryptographic service provider Input Char(1)

8 Cryptographic device name Input Char(10)
9 Error code I/0 Char(*)

Service Program Name: QC3KRGEN
Default Public Authority: *USE
Threadsafe: Yes

The Generate Key Record (OPM, QC3GENKR; ILE, Qc3GenKeyRecord) API generates a random key or
key pair and stores it in a key store file.

For more information about cryptographic services key store, refer to [‘Cryptographic Services Key Store”]

fon page 157.

Authorities and Locks

Required file authority
*OBJOPR, *READ, *ADD

Required device description authority
*USE

Required Parameter Group

Qualified key store file name
INPUT; CHAR(20)

The key store file where the key will be stored. The first 10 characters contain the file name. The
second 10 characters contain the name of the library where the key store file is located.

98 IBM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm

Record label

INPUT; CHAR(32)

The label for the key record. The label will be converted from the job CCSID, or if 65535, the job
default CCSID (DFTCCSID) job attribute to CCSID 1200 (Unicode UTE-16).

Key type

20

21

22

23

30

50

INPUT; BINARY (4)

The type of key.
Following are the valid values.

MD5

An MDS5 key is used for HMAC (hash message authentication code) operations. The minimum length for an
MD5 HMAC key is 16 bytes. A key longer than 16 bytes does not significantly increase the function strength
unless the randomness of the key is considered weak. A key longer than 64 bytes will be hashed before it is
used.

SHA-1

An SHA-1 key is used for HMAC (hash message authentication code) operations. The minimum length for an
SHA-1 HMAC key is 20 bytes. A key longer than 20 bytes does not significantly increase the function strength
unless the randomness of the key is considered weak. A key longer than 64 bytes will be hashed before it is
used.

SHA-256

An SHA-256 key is used for HMAC (hash message authentication code) operations. The minimum length for
an SHA-256 HMAC key is 32 bytes. A key longer than 32 bytes does not significantly increase the function
strength unless the randomness of the key is considered weak. A key longer than 64 bytes will be hashed
before it is used.

SHA-384

An SHA-384 key is used for HMAC (hash message authentication code) operations. The minimum length for
an SHA-384 HMAC key is 48 bytes. A key longer than 48 bytes does not significantly increase the function
strength unless the randomness of the key is considered weak. A key longer than 128 bytes will be hashed
before it is used.

SHA-512

An SHA-512 key is used for HMAC (hash message authentication code) operations. The minimum length for
an SHA-512 HMAC key is 64 bytes. A key longer than 64 bytes does not significantly increase the function
strength unless the randomness of the key is considered weak. A key longer than 128 bytes will be hashed
before it is used.

DES

Only 7 bits of each byte are used as the actual key. The rightmost bit of each byte will be set to odd parity
because some cryptographic service providers require that a DES key have odd parity in every byte.

The key size parameter must specify 8.

Triple DES

Only 7 bits of each byte are used as the actual key. The rightmost bit of each byte will be set to odd parity
because some cryptographic service providers require that a DES key have odd parity in every byte.

The key size can be 8, 16, or 24. Triple DES operates on an encryption block by doing a DES encrypt, followed
by a DES decrypt, and then another DES encrypt. Therefore, it actually uses three 8-byte DES keys. If the key
is 24 bytes in length, the first 8 bytes are used for key 1, the second 8 bytes for key 2, and the third 8 bytes for
key 3. If the key is 16 bytes in length, the first 8 bytes are used for key 1 and key 3, and the second 8 bytes
for key 2. If the key is only 8 bytes in length, it will be used for all 3 keys (essentially making the operation
equivalent to a single DES operation).

AES

The key size can be 16, 24, or 32.

RC2

The key size can be 1 - 128.

RC4-compatible

The key size can be 1 - 256. Because of the nature of the RC4-compatible operation, using the same key for
more than one message will severely compromise security.

RSA

The key size specifies the modulus length in bits and must be an even number in the range 512 - 2048. Both
the RSA public and private key parts are stored in the key record.

Cryptographic Services APIs 99

Key size
INPUT; BINARY(4)
The length of key to generate. For RSA keys this length is specified in bits. For all other keys it is
specified in bytes.
Refer to the key type parameter for restrictions.

Public key exponent
INPUT; BINARY(4)

This parameter is valid when key type parameter specifies 50 (RSA). Otherwise, this parameter
must be set to 0. To maximize performance, the public key exponent is limited to the following

two values.
3 Or hex 00 00 00 03.
65,537 Or hex 00 01 00 01.

Disallowed function
INPUT; BINARY(4)

This parameter specifies the functions that cannot be used with this key record. The values listed
below can be added together to disallow multiple functions. For example, to disallow everything
but MACing, set the value to 11.

No functions are disallowed.
Encryption is disallowed.
Decryption is disallowed.
MACing is disallowed.
Signing is disallowed.

DN = O

Cryptographic service provider
INPUT; CHAR(1)

The cryptographic service provider (CSP) that will perform the key generate operation.

0 Any CSP.
The system will choose an appropriate CSP to perform the key generate operation.

1 Software CSP.
The system will perform the key generate operation using software.
2 Hardware CSP.

The system will perform the key generate operation using cryptographic hardware. If the requested key type
can not be generated in hardware, an error is returned. A specific cryptographic device can be specified using
the cryptographic device name parameter. If the cryptographic device is not specified, the system will choose
an appropriate one.

Cryptographic device name
INPUT; CHAR(10)

The name of a cryptographic device description.
This parameter is valid when the cryptographic service provider parameter specifies 2 (hardware
CSP). Otherwise, this parameter must be blanks or the pointer to this parameter set to NULL.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

100 1BM Systems - iSeries: Cryptographic Services APIs

Error Messages

Message ID
CPF24B4 E
CPF3CIE E
CPF3CF1 E
CPF3CF2 E
CPF9872 E
CPF9DYE E
CPFODYF E
CPFIDAO E
CPF9DAS E
CPF9DAG6 E
CPFODA7 E
CPFIDAC E
CPFODB3 E
CPFODB6 E
CPF9DB7 E
CPF9DB8 E
CPFIDDA E
CPF9DE7 E
CPF9DEA E
CPFODEB E
CPFODEC E
CPFODFO E

CPFODEFES E
CPFODF9 E
CPFODED E
CPFIDEFE E

&

Error Message Text

Severe error while addressing parameter list.

Required parameter &1 omitted.
Error code parameter not valid.

Error(s) occurred during running of &1 APL

Program or service program &1 in library &2 ended. Reason code &3.

Record label already exists.

Not authorized to key store file.
Error occured opening key store file.
Key store file not found.

The key store file is not available.

File is corrupt or not a valid key store file.

Disallowed function value not valid.

Qualified key store file name not valid.

Record label not valid.
Error occured writing to key store.

Error occured retrieving key record from key store.

Unexpected return code &1.
Key type not valid.

Key size not valid.

Public key exponent not valid.

Cryptographic service provider not valid.

Operation, algorithm, or mode not available on the requested CSP (cryptographic service

provider).

Cryptographic device name not valid.

Cryptographic device not found.
Not authorized to device.
Cryptographic device not available.

API introduced: V5R4

@ | [“Cryptographic Services APIs,” on page 1| | [APIs by category]|

Import Key (QC3IMPKY, Qc3ImportKey)

Required

O 0 NI O Ul = W IN -

S
N = O

Parameter Group:

Key string

Length of key string

Key form

Key-encrypting key context token
Key-encrypting algorithm context token
Master key ID

Disallowed function

Master key KVV

Imported key

Length of area provided for imported key
Length of imported key returned

Error code

Input
Input
Input
Input
Input
Input
Input
Output
Output
Input
Output
1/0

Cryptographic Services APIs

Char(*)
Binary(4)
Char(1)
Char(8)
Char(8)
Binary(4)
Binary(4)
Char(20)
Char(*)
Binary(4)
Binary(4)
Char(*)

101

#TOP_OF_PAGE
aplist.htm

Service Program Name: QC3KYIMP
Default Public Authority: *EXCLUDE
Threadsafe: Yes

The Import Key (OPM, QC3IMPKY; ILE, Qc3ImportKey) API encrypts a key under the specified master
key.

Authorities and Locks

None.

Required Parameter Group

Key string
INPUT; CHAR(*)

The key to be encrypted under a master key. This can be a symmetric key or a PKA private key.

Length of key string
INPUT; BINARY(4)

Length of the key string specified in the key string parameter.

Key form
INPUT; CHAR(1)

An indicator specifying if the key string parameter is in encrypted form.

0 Clear.
The key string is not encrypted.
1 Encrypted.

The key string is encrypted. The key-encrypting key context token and key-encrypting algorithm context
token parameters are used to decrypt the key string before encrypting it under the specified master key.

Key-encrypting key context token
INPUT; CHAR(8)

The key context token specifying the key for decrypting the key string parameter. If the key
string parameter is not encrypted (key form parameter is 0), this parameter must be set to blanks
or the pointer to this parameter set to NULL.

Key-encrypting algorithm context token
INPUT; CHAR(8)

The algorithm context token specifying the algorithm for decrypting the key string parameter. If
the key string parameter is not encrypted (key form parameter is 0), this parameter must be set to
blanks or the pointer to this parameter set to NULL.

Master key ID
INPUT; BINARY(4)

The master key under which the specified key will be encrypted. For more information about
master keys, refer to [‘Cryptographic Services Master Keys” on page 156 The master key IDs are

Master key 1
Master key 2
Master key 3
Master key 4
Master key 5
Master key 6
Master key 7
Master key 8

@ I N Ul WON =

102 1BM Systems - iSeries: Cryptographic Services APIs

Disallowed function
INPUT; BINARY(4)

This parameter specifies the functions that cannot be used with this key. The values listed below
can be added together to disallow multiple functions. For example, to disallow everything but
MACing, set the value to hex 11. This value should be saved along with the encrypted key value
because it will be required when the encrypted key value is used on an APL

No functions are disallowed.
Encryption is disallowed.
Decryption is disallowed.
MACing is disallowed.
Signing is disallowed.

DN = O

Master key KVV
OUTPUT; CHAR(20)

The key verification value of the master key that was used to encrypt the key. This value should
be saved along with the encrypted key value. When the encrypted key value is used on an API
and the KVV is supplied, the API will be able to determine which version of the master key
should be used to decrypt the key.

Imported key
OUTPUT; CHAR(*)

The area to store the imported key.

Length of area provided for imported key
INPUT; BINARY(4)

The length of the imported key parameter.

To ensure sufficient space, specify an area as large as the clear key string length plus space for
padding. The key string will be encrypted using AES with a 32-byte block size. Therefore, the
clear key string length will always be padded out to the next 32-byte boundary before encrypting.

Length of imported key returned
OUTPUT; BINARY(4)

The length of the imported key returned in the imported key parameter.
If the length of area provided for the imported key is too small, an error will be generated and
no data will be returned in the imported key parameter.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CI1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.
CPFODAA E A key requires translation.

CPFODAB E A key can not be decrypted.

CPFODAC E Disallowed function value not valid.

Cryptographic Services APIs 103

Message ID

Error Message Text

CPF9DAD E The master key ID is not valid.

CPF9DAF E &1 version of master key &2 is not set.

CPFODC2 E Key-encrypting algorithm context not compatible with key-encrypting key context.

CPFODD6 E Length of area provided for output data is too small.

CPFODD7 E The key-encrypting key context for the specified key is not valid or was previously destroyed.

CPFODDS8 E The key-encrypting algorithm context for the specified key is not valid or was previously
destroyed.

CPF9DDA E Unexpected return code &1.

CPF9DDB E The key string or Diffie-Hellman parameter string is not valid.

CPFODDD E The key string length is not valid.

CPF9DES E Key form not valid.

CPFODF1 E The algorithm context token does not reference a valid algorithm context.

CPFODF2 E The algorithm context is not found or was previously destroyed.

CPF9DF3 E Algorithm in algorithm context not valid for requested operation.

CPFODF4 E The key context token does not reference a valid key context.

CPFODF5 E The key context is not found or was previously destroyed.

CPFODF7 E Algorithm context not compatible with key context.

CPF9DEC E The key-encrypting algorithm or key context token is not valid.

&

API introduced: V5R4

@ | [“Cryptographic Services APIs,” on page 1| | |APIs by category]

Load Master Key Part (QC3LDMKP, Qc3LoadMasterKeyPart)

Required Parameter Group:

1 Master key ID Input Binary(4)
2 Passphrase Input Char(*)
3 Length of passphrase Input Binary(4)
4 CCSID of passphrase Input Binary(4)
5 Error code I/0 Char(*)

Service Program Name: QC3MKPLD
Default Public Authority: *EXCLUDE
Threadsafe: Yes

The Load Master Key Part (OPM, QC3LDMKP; ILE, Qc3LoadMasterKeyPart) API loads a key part for the
specified master key by hashing the specified passphrase and adding it into the new master key version.

For more information about master keys, refer to [“Cryptographic Services Master Keys” on page 156

Authorities and Locks

Required special authority
*ALLOBJ and *SECADM

Required Parameter Group

Master key ID
INPUT; BINARY(4)

104 1BM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm

The master key IDs are

Master key 1
Master key 2
Master key 3
Master key 4
Master key 5
Master key 6
Master key 7
Master key 8

P S Ul WN =

Passphrase
INPUT; CHAR(*)

A text string.

Length of passphrase
INPUT; BINARY(4)

The length of text specified in the passphrase parameter. The length must be in the range of 1 to
256.

CCSID of passphrase
INPUT; BINARY(4)

The CCSID of the passphrase. The passphrase will be converted from the specified CCSID to
Unicode before creating the key part.

0 The CCSID of the job is used to determine the CCSID of the data to be converted. If the job
CCSID is 65535, the CCSID from the default CCSID (DFTCCSID) job attribute is used.
1-65533 A valid CCSID in this range is used. For a list of valid CCSIDs, see the topic in the

iSeries Information Center.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see
[Parameter]

Error Messages

Message ID Error Message Text

CPF222E E &1 special authority is required.

CPF24B4 E Severe error while addressing parameter list.
CPF3CIE E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFODAD E The master key ID is not valid.

CPF9DB1 E The CCSID is not valid.

CPFODB2 E The length of passphrase is not valid.
CPFODDA E Unexpected return code &1.

&

API introduced: V5R4

IEE' | [“Cryptographic Services APIs,” on page 1| | |JAPIs by category|

Cryptographic Services APIs 105

#TOP_OF_PAGE
aplist.htm

Retrieve Key Record Attributes (QC3RTVKA,
Qc3RetrieveKeyRecordAtr)

Required Parameter Group:

1 Qualified key store file name Input Char(20)
2 Record label Input Char(32)
3 Key type Output Binary(4)
4 Key size Output Binary(4)
5 Master key ID Output Binary(4)
6 Master key verification value Output Char(20)
7 Disallowed function Output Binary(4)
8 Error code I/0 Char(*)

Service Program Name: QC3KARTV
Default Public Authority: *USE
Threadsafe: Yes

The Retrieve Key Record Attributes (OPM, QC3RTVKA; ILE, Qc3RetrieveKeyRecordAtr) API returns the
key type and key size of a key stored in a key store file. It also identifies the master key under which the
stored key is encrypted and the master key’s KVV.

For more information about cryptographic services key store, refer to [Cryptographic Services Key Store”]

Authorities and Locks

Required file authority
*OBJOPR, *READ

Required Parameter Group

Qualified key store file name
INPUT; CHAR(20)

The key store file where the key is stored. The first 10 characters contain the file name. The
second 10 characters contain the name of the library where the key store file is located.

You can use the following special values for the library name.

*CURLIB The job’s current library is used to locate the key store file. If no library is specified as the current
library for the job, the QGPL library is used.
*LIBL The job’s library list is searched for the first occurence of the specified file name.

Record label
INPUT; CHAR(32)

The label of the key record. The label will be converted from the job CCSID, or if 65535, the job
default CCSID (DFTCCSID) job attribute to CCSID 1200 (Unicode UTF-16).

Key type
OUTPUT; BINARY(4)

The type of key.
The output values have the following meanings.

1 MD5
SHA-1
3 SHA-256

N

106 1BM Systems - iSeries: Cryptographic Services APIs

4 SHA-384

5 SHA-512
20 DES

21 Triple DES
22 AES

23 RC2

30 RC4-compatible
50 RSA public
51 RSA public and private

Key size
OUTPUT; BINARY(4)

Key size in bits.

Master key ID
OUTPUT; BINARY(4)

The master key IDs are

Master key 1
Master key 2
Master key 3
Master key 4
Master key 5
Master key 6
Master key 7
Master key 8

@I SN Ul b WODN =

Master key verification value
OUTPUT; CHAR(20)

The KVV for the master key at the time the key was encrypted. This can be compared with the
current master key KVV to determine if the key must be re-encrypted.

Disallowed function
OUTPUT; BINARY(4)

The functions that cannot be used with this key. The values listed below can be added together to
disallow multiple functions. For example, a key that disallows everything but MACing would
have a value of 11.

0 No functions are disallowed.
1 Encryption is disallowed.

2 Decryption is disallowed.

4 MACing is disallowed.

8 Signing is disallowed.

Error code

I/0; CHAR(Y)
The structure in which to return error information. For the format of the structure, see

Paramete

Error Messages

Message ID Error Message Text
CPF24B4 E Severe error while addressing parameter list.

Cryptographic Services APIs 107

Message ID Error Message Text

CPF3CI1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFODYF E Not authorized to key store file.

CPFODAO E Error occured opening key store file.

CPFODA1 E Key record not found.

CPFODAS5 E Key store file not found.

CPFODAG6 E The key store file is not available.

CPF9DA7 E File is corrupt or not a valid key store file.
CPFODB3 E Qualified key store file name not valid.

CPF9DB6 E Record label not valid.

CPFODBS E Error occured retrieving key record from key store.
<

API introduced: V5R4

@ | [“Cryptographic Services APIs,” on page 1| | |APIs by category]

Set Master Key (QC3SETMK, Qc3SetMasterKey)

Required Parameter Group:

1 Master key ID Input Binary(4)
2 Key verification value Output Char(20)
3 Error code I/0 Char(*)

Service Program Name: QC3MKSET
Default Public Authority: *EXCLUDE
Threadsafe: Yes

The Set Master Key (OPM, QC3SETMK; ILE, Qc3SetMasterKey) API sets the specified master key from
the parts already loaded.

For more information about master keys, refer to [“Cryptographic Services Master Keys” on page 156

Authorities and Locks

Required special authority
*ALLOB] and *SECADM

Required Parameter Group

Master key ID
INPUT; BINARY(4)

The master key IDs are

Master key 1
Master key 2
Master key 3
Master key 4
Master key 5
Master key 6
Master key 7

N O Ul b= WON =

108 1BM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm

8 Master key 8

Key verification value
OUTPUT; CHAR(20)

The key verification value (KVV) can be used to determine if the master key has changed.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see
[Parameter]

Error Messages

Message ID Error Message Text

CPF222E E &1 special authority is required.

CPF24B4 E Severe error while addressing parameter list.
CPF3CIE E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFODAD E The master key ID is not valid.

CPFODBO E No key parts have been loaded.

CPFODDA E Unexpected return code &1.

&

API introduced: V5R4

IEE' | [“Cryptographic Services APIs,” on page 1| | |JAPIs by category|

Test Master Key (QC3TSTMK, QcTestMasterKey)

Required Parameter Group:

1 Master key ID Input Binary(4)
2 Master key version Input Char(1)
3 Key verification value Output Char(20)
4 Error code I/0 Char(*)

Service Program Name: QC3MKTST
Default Public Authority: *EXCLUDE
Threadsafe: Yes

The Test Master Key (OPM, QC3TSTMK; ILE, Qc3TestMasterKey) API returns the key verification value
for the specified master key.

For more information about master keys, refer to [“Cryptographic Services Master Keys” on page 156

Authorities and Locks

Required special authority
*ALLOBJ and *SECADM

Cryptographic Services APIs 109

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Master key ID
INPUT; BINARY(4)

The master key IDs are

Master key 1
Master key 2
Master key 3
Master key 4
Master key 5
Master key 6
Master key 7
Master key 8

@I D Ul WODN =

Master key version
INPUT; CHAR(1)

The old or current version of the master key

1 Current version
2 Old version

Key Verification Value
OUTPUT; CHAR(20)

The key verification value can be used to determine if the master key has changed.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

Error Messages

Message ID Error Message Text

CPF222E E &1 special authority is required.

CPF24B4 E Severe error while addressing parameter list.
CPF3CIE E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFODAD E The master key ID is not valid.

CPFODAE E The master key version is not valid.
CPF9DAF E Version &2 of master key &1 is not set.
CPF9DDA E Unexpected return code &1.

&

API introduced: V5R4

@ | [“Cryptographic Services APIs,” on page 1| | |APIs by category|

110 1BM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm

Translate Key Store (QC3TRNKS, Qc3TranslateKeyStore)

Required Parameter Group:

1 Key store file list Input Char(*)
2 Master key ID Input Binary(4)
3 Error code I/0 Char(*)

Service Program Name: QC3KSTRN
Default Public Authority: *USE
Threadsafe: Yes

The Translate Key Store (OPM, QC3TRNKS; ILE, Qc3TranslateKeyStore) API translates keys stored in the
specified key store files to another master key, or if the same master key is specified, to the current

version of the master key.

If an error occurs, processing halts immediately.

For more information about cryptographic services key store, refer to [“Cryptographic Services Key Store’]

Authorities and Locks

Required file authority
*OBJOPR, *READ, *UPD
Required Parameter Group

Key store file list
INPUT; CHAR(¥)

The list of key store files to re-encrypt. This parameter has the following structure.

Offset
Dec Hex Type Field
0 0 BINARY(4) Number of key store files
This field repeats. | CHAR(20) Qualified key store file name

Number of key store files
The number of qualified key store file names specified in this structure.

Qualified key store file name
The name of a key store file to re-encrypt. The first 10 characters contain the file name.
The second 10 characters contain the name of the library where the key store file is
located.

Master key ID
INPUT; BINARY(4)

The master key under which the keys will be re-encrypted.

Master key 1
Master key 2
Master key 3
Master key 4
Master key 5

Ul b= W N =

Cryptographic Services APIs 111

6 Master key 6
7 Master key 7
8 Master key 8

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.
CPE3CI1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 APL
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPF9D9%6 E Key store file requires recovery.

CPFODYF E Not authorized to key store file.

CPFODAO E Error occured opening key store file.

CPFODAS5 E Key store file not found.

CPFODAG6 E The key store file is not available.

CPFODA7 E File is corrupt or not a valid key store file.
CPFODAB E A key can not be decrypted.

CPFODAD E The master key ID is not valid.

CPF9DB3 E Qualified key store file name not valid.

CPF9DB7 E Error occured writing to key store.

CPFODBS8 E Error occured retrieving key record from key store.
CPFODC1 E Number of key store files not valid.

CPFODDA E Unexpected return code &1.

<

API introduced: V5R4

@ | [“Cryptographic Services APIs,” on page 1| | |APIs by category]

Write Key Record (QC3WRTKR, Qc3WriteKeyRecord)

Required Parameter Group:

1 Qualified key store file name Input Char(20)
2 Record label Input Char(32)
3 Key string Input Char(¥)
4 Length of key string Input Binary(4)
5 Key format Input Char(1)
6 Key type Input Binary(4)
7 Disallowed function Input Binary(4)
8 Key form Input Char(1)
9 Key-encrypting key context token Input Char(8)
10 Key-encrypting algorithm context token Input Char(8)
11 Error code I/0 Char(*)

112 1BM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm

Service Program Name: QC3KRWRT
Default Public Authority: *USE
Threadsafe: Yes

The Write Key Record (OPM, QC3WRTKR; ILE, Qc3WriteKeyRecord) API stores the specified key value
in a key store file.

For more information about cryptographic services key store, refer to [“Cryptographic Services Key Store”]

Authorities and Locks

Required file authority
*OBJOPR, *READ, *ADD

Required Parameter Group

Qualified key store file name
INPUT; CHAR(20)

The key store file where the key will be stored. The first 10 characters contain the file name. The
second 10 characters contain the name of the library where the key store file is located.

Record label
INPUT,; CHAR(32)

The label for the key record. The label will be converted from the job CCSID, or if 65535, the job
default CCSID (DFTCCSID) job attribute to CCSID 1200 (Unicode UTF-16).

Key string
INPUT, CHAR(*)

A binary string or a formatted structure containing the key. The exact format of the key string is
specified in the key format parameter.

Length of key string
INPUT; BINARY(4)

Length of the key string specified in the key string parameter.

Note this is not the same thing as key length. Key length is determined based on the other

parameters. Following are some examples:

¢ If key format is O (binary string) and
— the key form is 0 (clear) then the key length equals the length of key string.
— the key form is 1 (encrypted) then the key length will be the decrypted key string length.

* If key format is 1 (BER string) then the key length will be the length specified within the BER
string.

* If key format is 6 (PEM certificate) then the key length will be the length specified in the
certificate.

Most algorithms have key length requirements. Refer to the key type parameter for restrictions on
key length.

Key format
INPUT; CHAR(1)

Format of the key string parameter.
Following are the valid values.

Cryptographic Services APIs 113

0 Binary string. The key is specified as a binary value. To obtain a good random key value, use the |”Generate|
Symmetric Key (QC3GENSK, Qc3GenSymmetricKey)” on page 79 or |“Generate Pseudorandom Numbers|
(QC3GENRN, Qc3GenPRNs) API” on page 118 APIL

1 BER string. If the key type field specifies 50 (RSA public), the key may be specified in BER encoded X.509
Certificate or SubjectPublicKeyInfo format. For specifications of these formats, refer to RFC 3280. If the key
type field specifies 51 (RSA private), the key must be specified in BER encoded PKCS #8 format. For
specifications of this format, refer to RSA Security Inc. Public-Key Cryptography Standards. To generate a
PKA key pair, use the|“Generate PKA Key Pair (QC3GENPK, Qc3GenPKAKeyPair)” on page 74| APL

6 PEM certificate. The key string parameter contains a PEM based certificate.

Key type

INPUT; BINARY(4)
The type of key.
Following are the valid values.

1 MD5
The key format must be 0. An MD5 key is used for HMAC (hash message authentication code) operations.
The minimum length for an MD5 HMAC key is 16 bytes. A key longer than 16 bytes does not significantly
increase the function strength unless the randomness of the key is considered weak. A key longer than 64
bytes will be hashed before it is used.

2 SHA-1
The key format must be 0. An SHA-1 key is used for HMAC (hash message authentication code) operations.
The minimum length for an SHA-1 HMAC key is 20 bytes. A key longer than 20 bytes does not significantly
increase the function strength unless the randomness of the key is considered weak. A key longer than 64
bytes will be hashed before it is used.

3 SHA-256
The key format must be 0. An SHA-256 key is used for HMAC (hash message authentication code)
operations. The minimum length for an SHA-256 HMAC key is 32 bytes. A key longer than 32 bytes does not
significantly increase the function strength unless the randomness of the key is considered weak. A key longer
than 64 bytes will be hashed before it is used.

4 SHA-384
The key format must be 0. An SHA-384 key is used for HMAC (hash message authentication code)
operations. The minimum length for an SHA-384 HMAC key is 48 bytes. A key longer than 48 bytes does not
significantly increase the function strength unless the randomness of the key is considered weak. A key longer
than 128 bytes will be hashed before it is used.

5 SHA-512
The key format must be 0. An SHA-512 key is used for HMAC (hash message authentication code)
operations. The minimum length for an SHA-512 HMAC key is 64 bytes. A key longer than 64 bytes does not
significantly increase the function strength unless the randomness of the key is considered weak. A key longer
than 128 bytes will be hashed before it is used.

20 DES
The key format must be 0. The key must be 8 bytes in length. Only 7 bits of each byte are used as the actual
key. The rightmost bit of each byte is used to set parity. Some cryptographic service providers require that a
DES key have odd parity in every byte. Others ignore parity.

21 Triple DES
The key format must be 0. The key must be 8, 16, or 24 bytes in length. Triple DES operates on an encryption
block by doing a DES encrypt, followed by a DES decrypt, and then another DES encrypt. Therefore, it
actually uses three 8-byte DES keys. If 24 bytes are supplied in the key string, the first 8 bytes are used for
key 1, the second 8 bytes for key 2, and the third 8 bytes for key 3. If 16 bytes are supplied, the first 8 bytes
are used for key 1 and key 3, and the second 8 bytes for key 2. If only 8 bytes are supplied, it will be used for
all 3 keys (essentially making the operation equivalent to a single DES operation). Only 7 bits of each byte are
used as the actual key. The rightmost bit of each byte is used to set parity. Some cryptographic service
providers require that a Triple DES key have odd parity in every byte. Others ignore parity.

22 AES
The key format must be 0. The key must be 16, 24, or 32 bytes in length.

23 RC2
The key format must be 0. The key must be from 1 to 128 bytes in length.

114 1BM Systems - iSeries: Cryptographic Services APIs

30 RC4-compatible
The key format must be 0. The key must be from 1 to 256 bytes in length. Because of the nature of the
RC4-compatible algorithm, using the same key for more than one message will severely compromise security.
50 RSA public
The key format must be 1 or 6.
51 RSA private
The key format must be 1.

Disallowed function
INPUT; BINARY(4)

This parameter specifies the functions that cannot be used with this key record. The values listed
below can be added together to disallow multiple functions. For example, to disallow everything
but MACing, set the value to 11.

0 No functions are disallowed.
1 Encryption is disallowed.
2 Decryption is disallowed.
4 MACing is disallowed.
8 Signing is disallowed.
Key form

INPUT; CHAR(1)

An indicator specifying if the key string parameter is in encrypted form.
0 Clear.

The key string is not encrypted.

1 Encrypted.

The key string is encrypted. The key-encrypting key context token and key-encrypting algorithm context
token parameters are used to decrypt the key string when a cryptographic operation is performed. This
option is only allowed with key formats 0 (binary string) and 1 (BER string.)

Key-encrypting key context token
INPUT; CHAR(8)

The key context token specifying the key for decrypting the key string parameter. If the key
string parameter is not encrypted (key form parameter is 0), this parameter must be set to blanks
or the pointer to this parameter set to NULL.

Key-encrypting algorithm context token
INPUT; CHAR(8)

The algorithm context token specifying the algorithm for decrypting the key string parameter. If
the key string parameter is not encrypted (key form parameter is 0), this parameter must be set to
blanks or the pointer to this parameter set to NULL.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.
CPF3CI1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

Cryptographic Services APIs 115

Message ID
CPF3CF2 E

CPF9872 E

CPF9DYE D
CPF9DYF D
CPF9DAO D
CPF9DAS5 D
CPFODA6 D
CPFODA7 D
CPFODAY D
CPFIDAC E
CPF9DB3 E
CPF9DB6 E
CPF9DB7 E
CPF9DBS E
CPFIDC2 E
CPFODC6 E
CPFODD7 E
CPFODDS8 E

CPFODDA E
CPFODDB E
CPFODDD E
CPFODE7 E
CPF9DES E
CPF9DE9 E
CPF9DF1 E
CPFIDEF3 E
CPF9DF4 E
CPFIDFC E

{{

Error Message Text

Error(s) occurred during running of &1 APL

Program or service program &1 in library &2 ended. Reason code &3.

Record label already exists.

Not authorized to key store file.

Error occured opening key store file.

Key store file not found.

The key store file is not available.

File is corrupt or not a valid key store file.

The PEM certificate contains invalid formatting.

Disallowed function value not valid.

Qualified key store file name not valid.

Record label not valid.

Error occured writing to key store.

Error occured retrieving key record from key store.

Key-encrypting algorithm context not compatible with key-encrypting key context.
Algorithm not valid for encrypting or decrypting a key.

The key-encrypting key context for the specified key is not valid or was previously destroyed.
The key-encrypting algorithm context for the specified key is not valid or was previously
destroyed.

Unexpected return code &1.

The key string or Diffie-Hellman parameter string is not valid.

The key string length is not valid.

Key type not valid.

Key form not valid.

Key format not valid.

The algorithm context token does not reference a valid algorithm context.
Algorithm in algorithm context not valid for requested operation.

The key context token does not reference a valid key context.

The key-encrypting algorithm or key context token is not valid.

API introduced: V5R4

@ | [“Cryptographic Services APIs,” on page 1| | |APIs by category]

Pseudorandom Number Generation APIls

The Pseudorandom Number Generation APIs allow you to generate pseudorandom values that are
statistically random and unpredictable (cryptographically secure).

The Pseudorandom Number Generation APIs include:

+ [“Add Seed for Pseudorandom Number Generator (QC3ADDSD, Qc3AddPRNGSeed) API” on page 117

(QC3ADDSD, Qc3AddPRNGSeed) allows the user to add seed into the server’s pseudorandom number
generator system seed digest.

* |“Generate Pseudorandom Numbers (QC3GENRN, Qc3GenPRNs) API” on page 118{ (QC3ADDSD,

Qc3GenPRNs) generates a pseudorandom binary stream.

@ | Cryptographic Services APIs I[APIs by category

116 1BM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

Add Seed for Pseudorandom Number Generator (QC3ADDSD,
Qc3AddPRNGSeed) API

Required Parameter Group:

1 Seed data Input Char(¥)
2 Seed data length Input Binary(4)
3 Error Code 1/0 Char(*)

Service Program Name: QC3PRNG
Default Public Authority: *USE
Threadsafe: Yes

The Add Seed for Pseudorandom Number Generator (OPM, QC3ADDSD; ILE, Qc3BAddPRNGSeed) API
allows the user to add seed into the server’s pseudorandom number generator system seed digest.

The pseudorandom number generator is composed of two parts: pseudorandom number generation and
seed management. Pseudorandom number generation is performed using the FIPS 186-1 algorithm. (See
the Generate Pseudorandom Numbers (Qc3GenPRNs) APL.) Cryptographically-secure pseudorandom
numbers rely on good seed. The FIPS 186-1 key and seed values are obtained from the system seed
digest. The server automatically generates seed using data collected from system information or by using
the random number generator function on a cryptographic coprocessor, such as a 4758, if one is available.
System-generated seed can never be truly unpredictable. If a cryptographic coprocessor is not available,
you can use this API to add your own random seed to the system seed digest. This should be done as
soon as possible any time the Licensed Internal Code is installed.

Authorities and Locks
All object (*ALLOBYJ) special authority is needed to use this APL

User Profile Authority
*ALLOBJ

Required Parameter Group

Seed data
INPUT; CHAR(¥)

The input seed data for the system seed digest.

It is important that the seed data be unpredictable and have as much entropy as possible.
Entropy is the minimum number of bits needed to represent the information contained in some
data. For seeding purposes, entropy is a measure of the amount of uncertainty or unpredictability
of the seed. The system seed digest holds a maximum of 160 bits of entropy. You should add at
least that much entropy to refresh the system seed digest totally. Possible sources of seed data are
coin flipping, keystroke or mouse timings, or a noise source such as the one available on the 4758
Cryptographic Coprocessor.

Seed data length
INPUT; BINARY(4)

The length of the seed data, in bytes. If this length is 0, no seed data is added.

Error code
I/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see

Paramete

Cryptographic Services APIs 117

Error Messages

Message ID Error Message Text

CPF222E E *ALLOBJ special authority is required.
CPF3C17 E Error occurred with input data parameter.
CPF3CF1 E Error code parameter not valid.

API introduced: V5R1

@ | Miscellaneous APIs| | |[APIs by category]

Generate Pseudorandom Numbers (QC3GENRN, Qc3GenPRNs) API

Required Parameter Group:

1 PRN data Output Char(*)
2 PRN data length Input Binary(4)
3 PRN type Input Char(1)
4 PRN Parity Input Char(1)
5 Error code I/0 Char(*)

Service Program Name: QC3PRNG
Default Public Authority: *USE
Threadsafe: Yes

The Generate Pseudorandom Numbers (OPM, QC3GENRN; ILE, Qc3GenPRNs) API generates a
pseudorandom binary stream.

The pseudorandom number generator is composed of two parts: pseudorandom number generation and
seed management. Pseudorandom number generation is performed using the FIPS 186-1 algorithm.
Cryptographically-secure pseudorandom numbers rely on good seed. The FIPS 186-1 key and seed values
are obtained from the system seed digest. The server automatically generates seed using data collected
from system information or by using the random number generator function on a cryptographic
coprocessor, such as a 4758, if one is available. System-generated seed can never be truly unpredictable. If
a cryptographic coprocessor is not available, you can use the Add Seed for PRNG (Qc3AddPRNGSeed)
API to add your own random seed to the system seed digest. This should be done as soon as possible
any time the Licensed Internal Code is installed.

Authorities and Locks

None.

Required Parameter Group

PRN data
OUTPUT; CHAR(¥)

The generated pseudorandom binary stream.

PRN data length
INPUT; BINARY(4)

The number of pseudorandom number bytes to return in the PRN data parameter. If 0 is
specified, no pseudorandom numbers are returned.

118 1BM Systems - iSeries: Cryptographic Services APIs

#TOP
misc1.htm
aplist.htm

PRN type
INPUT; CHAR(1)

The API can generate a real pseudorandom binary stream or a test binary stream.

The FIPS 186-1 algorithm obtains the inital key and seed values from the system seed digest
when generating a real pseudorandom binary stream. When generating a test binary stream, the
algorithm uses preset values for the key and seed. Valid values are:

0 Generate real pseudorandom numbers.
1 Generate test pseudorandom numbers.
PRN Parity

INPUT; CHAR(1)

The API sets each byte of the pseudorandom number binary stream to the specified parity by
altering the low order bit in each byte as necessary. Valid values are:

0 Do not set parity.

1 Set each byte to odd parity.
2 Set each byte to even parity.
Error code

1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see
[Parameter]

Error Messages

Message 1D Error Message Text

CPF3C19 E Error occurred with receiver variable specified.
CPF3CF1 E Error code parameter not valid.

CPFBAF1 E PRN type not valid.

CPFBAF2 E Parity not valid.

CPFBAF3 E The system seed digest is not ready.

API introduced: V5R1

IT_Tgl | Miscellaneous APIs| | |APIs by category]

Cryptographic Context APIs

The Cryptographic Context APIs are used to temporarily store the key and algorithm parameters for
cryptographic operations.

The Cryptographic Context APIs include:

* [“Create Algorithm Context (QC3CRTAX, Qc3CreateAlgorithmContext)” on page 120] (QC3CRTAX,
Qc3CreateAlgorithmContext) creates a temporary area for holding the algorithm parameters and the
state of the cryptographic operation.

+ [“Create Key Context (QC3CRTKX, Qc3CreateKeyContext)” on page 125/ (QC3CRTKX,
Qc3CreateKeyContext) creates a temporary area for holding a cryptographic key.

* ["“Destroy Algorithm Context (QC3DESAX, Qc3Destroy AlgorithmContext)” on page 131/ (QC3DESAX,
Qc3DestroyAlgorithmContext) destroys the algorithm context created with the Create Algorithm
Context (OPM: QC3CRTAX; ILE: Qc3CreateAlgorithmContext) APL

Cryptographic Services APIs 119

#TOP
misc1.htm
aplist.htm

+ [“Destroy Key Context (QC3DESKX, Qc3DestroyKeyContext)” on page 132/ (QC3DESKX,
Qc3DestroyKeyContext) destroys the key context created with the Create Key Context (OPM:
QCBCRTKX; ILE: Qc3CreateKeyContext) APL

@ | Cryptographic Services APIs I|APIs by category]

Create Algorithm Context (QC3CRTAX, Qc3CreateAlgorithmContext)

Required Parameter Group:

1 Algorithm description Input Char(*)
2 Algorithm description format name Input Char(8)
3 Algorithm context token Output Char(8)
4 Error code I/0 Char(*)

Service Program Name: QC3CTX
Default Public Authority: *USE
Threadsafe: Yes

The Create Algorithm Context (OPM, QC3CRTAX; ILE, Qc3CreateAlgorithmContext) API creates a
temporary area for holding the algorithm parameters and the state of the cryptographic operation. The
API returns a token which can be used on subsequent cryptographic APIs. The algorithm context token
can be used to extend a cryptographic operation over multiple calls. The algorithm context can not be
shared between jobs. It should be destroyed using the [‘Destroy Algorithm Context (QC3DESAX |
[Qc3Destroy AlgorithmContext)” on page 131.|If not explicitly destroyed, the algorithm context will be
destroyed at job end.

Authorities and Locks

None

Required Parameter Group

Algorithm description
INPUT; CHAR(¥)

The algorithm and associated parameters.
The format of the algorithm description is specified in the algorithm description format name
parameter.

Algorithm description format name
INPUT; CHAR(8)

The format of the algorithm description.
The possible format names follow.

[“ALGD0200 format” on page 121
Block cipher algorithm (DES, Triple DES, AES, and RC2).

[“ALGD0300 format” on page 121|
Stream cipher algorithm (RC4-compatible).

[“ALGD0400 format” on page 121|
Public key algorithm (RSA).

[“ALGD0500 format” on page 122|
Hash algorithm (MD5, SHA-1, SHA-256, SHA-384, SHA-512).

See [“ Algorithm Description Formats” on page 121 for a description of these formats.

120 1BM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm

Algorithm context token
OUTPUT; CHAR(8)

The area to store the token for the created algorithm context.

Each token will contain an authentication value. If the token is used on a subsequent API but

with an incorrect authentication value, the user will be subjected to a 10 second penalty wait. For
each authentication error in that job, the penalty wait will increase 10 seconds up to a maximum

of 10 minutes.

Error code
I/0; CHAR(*)

The structure in which to return error information.
For the format of the structure, see [Error Code Parameter]|

Algorithm Description Formats
For detailed descriptions of the fields in the tables, see [“Algorithm Description Formats Field|

[Descriptions” on page 122

ALGDO0200 format

Offset

Dec Hex Type Field

0 0 BINARY(4) Block cipher algorithm

4 4 BINARY (4) Block length

8 8 CHAR(1) Mode

9 9 CHAR(1) Pad option

10 A CHAR(1) Pad character

11 B CHAR(1) Reserved

12 C BINARY(4) MAC length

16 10 BINARY(4) Effective key size
20 14 CHAR(32) Initialization vector

ALGDO0300 format

Offset

Dec Hex

Type

Field

0 0

BINARY(4)

Stream cipher algorithm

ALGDO0400 format

Offset
Dec Hex Type Field
0 0 BINARY(4) Public key algorithm
4 4 CHAR(1) PKA block format
5 5 CHAR(3) Reserved
8 8 BINARY (4) Signing hash algorithm

Cryptographic Services APIs

121

ALGDO0500 format

Offset
Dec Hex Type Field

0 0 BINARY(4) Hash algorithm

Algorithm Description Formats Field Descriptions

Block cipher algorithm
Following are the valid block cipher algorithms:

20 DES
Documented in FIPS 46-3. DES is no longer considered secure enough for today’s fast computers. It should be
used for compatibility purposes only.

21 Triple DES
Documented in FIPS 46-3.

22 AES
Documented in FIPS 197.
23 RC2

Documented in RFC 2268.

Block length
The algorithm block length. For DES, Triple DES, and RC2, this field must specify 8. The valid
block length values for AES are 16, 24, and 32.

Effective key size
For RC2, the number of key bits to use in the cipher operation. Valid values are from 1 to 1024. If
RC2 is not specifed for the block cipher algorithm, this field must be set to 0.

Hash algorithm
Following are the valid hash algorithms:

1 MD5
Documented in RFC 1321.
2 SHA-1

Documented in FIPS 180-2.
3 SHA-256

Documented in FIPS 180-2.
4 SHA-384

Documented in FIPS 180-2.
5 SHA-512

Documented in FIPS 180-2.

Initialization vector
The initialization vector (IV). Refer to the mode standards for an explanation of its use. For DES,
Triple DES, and RC2, the first 8 bytes are used as the IV. For AES, the length of IV used is that
specified by block length. The IV need not be secret, but it should be unique for each message. If
not unique, it may compromise security. The IV can be any value. To obtain a good random IV
value, use the [Generate Pseudorandom Numbers (QC3GENRN, Qc3GenPRNs) API” on page|
An IV is not used for mode ECB, and must be set to NULL (hex 0’s).

MAC length
The message authentication code length. This field is used only by the [“Calculate MAC]
[(QC3CALMA, Qc3CalculateMAC)” on page 42/MAC length can not exceed the block length
value. When calculating a MAC, the leftmost MAC length bytes from the last block of encrypted
data are returned as the MAC.

Mode The mode of operation. Information on modes can be found in FIPS PUB 81 and ANSI X9.52.

122 1BM Systems - iSeries: Cryptographic Services APIs

Following are the valid modes:

ECB

CBC

OFB. Not valid with AES or RC2.

CFB 1-bit. Not valid with AES or RC2.
CFB 8-bit. Not valid with AES or RC2.
CFB 64-bit. Not valid with AES or RC2.

gl b= W N = O

Pad character
The pad character for pad option 1. Using hex 00 as the pad character is equivalent to ANSI
X9.23 padding.

Pad option
Padding, if requested, is performed at the end of the operation. Be sure the area provided for the
encrypted data is large enough to include the pad characters. The data will be padded up to the
next block length byte multiple. For example, when using DES and and total data to encrypt is
20, the text is padded to 24. The last byte is filled with a 1-byte binary counter containing the
number of pad characters used. The preceeding pad characters are filled as specified by this field.
Padding is not performed for modes CFB 1-bit and CFB 8-bit. In these cases, the pad option must
be set to 0. Following are the valid pad options.

0 No padding is performed.
1 Use the character specified in the pad character field for padding.
2 The pad counter is used as the pad character. This is equivalent to PKCS #5 padding.

PKA block format
The public key algorithm block format. Following are the valid values:

0 PKCS #1 block type 00
PKCS #1 block type 01
2 PKCS #1 block type 02
This format is allowed on encryption and decryption operations only.
3 ISO 9796-1
This format is allowed on calculate signature and verify signature operations only. Because of security
weaknesses, this format should be used for compatibility purposes only.
4 Zero pad
This format is allowed on encryption and decryption operations only. The clear data is placed in the
low-order bit positions of a string of the same bit-length as the key modulus. All leading bits are set to zero.
5 ANSI X9.31
This format is allowed on calculate signature and verify signature operations only.

Jury

2
6 OAEP

&

Public key algorithm
Following are the valid public key algorithms:

50 RSA
Documented in Public-Key Cryptography Standard (PKCS) #1.

Reserved
Must be null (binary 0s).

Signing hash algorithm
The hash algorithm for a sign or verify operation. Following are the valid values for the signing
hash algorithm:

Cryptographic Services APIs 123

0 This algorithm context will not be used in a sign or verify operation.

1 MD5

Documented in RFC 1321.

2 SHA-1

Documented in FIPS 180-2.

Stream cipher algorithm
Following are the valid stream cipher algorithms:

30 RC4-compatible

Standards Resources
* FIPS publications are available from NIST Computer Security Resource Center at [http:/ /csre.nist.gov /|

5.

* RFC publications are available from IETF at Ihttp:/ /www.ietf.org/ I-lﬁr .
* PKCS publications are available from RSA Security Inc. web pages.
* ANSI and ISO publications are available from the ANSI eStandards store at http:/ /webstore.ansi.org /|

pnsidocstore/] 3

* ISO publications are available from the ISO Store at

Ihttp: / /www.iso.org/iso/en/prods-services/ISOstore / store.h’fmll--lijr .

Error Messages

Message ID
CPF24B4 E

CPF3CIE E

CPF3CF1 E

CPF9872 E

CPFODD2 E
CPF9DD9 E
CPF9DDA E
CPF9DDE E
CPF9DDF E
CPF9DEO E
CPFODE1 E
CPF9DE2 E
CPF9DE3 E
CPF9DE4 E
CPF9DES E
CPF9DE6 E
CPF9DEE E

Error Message Text

Severe error while addressing parameter list.
Required parameter &1 omitted.

Error code parameter not valid.

Program or service program &1 in library &2 ended. Reason code &S3.
Algorithm description format name not valid.
Effective key size not valid.

Unexpected return code &1.

Cipher algorithm not valid.

Block length not valid.

Hash algorithm not valid.

Initialization vector not valid.

MAC (message authentication code) length not valid.
Mode not valid.

Pad option not valid.

PKA (public key algorithm) block format not valid.
Public key algorithm not valid.

Reserved field not null.

API introduced: V5R3

@ | [“Cryptographic Services APIs,” on page 1| | |APIs by category]

124 1BM Systems - iSeries: Cryptographic Services APIs

http://csrc.nist.gov/
http://www.ietf.org
http://webstore.ansi.org/ansidocstore/
http://webstore.ansi.org/ansidocstore/
http://www.iso.org/iso/en/prods-services/ISOstore/store.html
#TOP_OF_PAGE
aplist.htm

Create Key Context (QC3CRTKX, Qc3CreateKeyContext)

Required Parameter Group:

1 Key string Input Char(¥)
2 Length of key string Input Binary(4)
3 Key format Input Char(1)
4 Key type Input Binary(4)
5 Key form Input Char(1)
6 Key-encrypting key Input Char(*)
7 Key-encrypting algorithm Input Char(8)
8 Key context token Output Char(8)
9 Error code I/0 Char(*)

Service Program Name: QC3CTX
Default Public Authority: *USE
Threadsafe: Yes

The Create Key Context (OPM, QC3CRTKX; ILE, Qc3CreateKeyContext) API creates a temporary area for
holding a cryptographic key. The API returns a token which can be used on subsequent cryptographic
APIs when specifying a key. The key context can not be shared between jobs. It should be destroyed
using the [‘Destroy Key Context (QC3DESKX, Qc3DestroyKeyContext)” on page 132|If the key context is
not destroyed before relinquishing control, it could be used by other users of the job. If not explicitly
destroyed, the key context will be destroyed at job end.

Information on cryptographic standards can be found in the [“Create Algorithm Context (QC3CRTAX)
[Qc3CreateAlgorithmContext)” on page 120| API documentation.

Authorities and Locks

Z

Required file authority
*OBJOPR, *READ

&

Required Parameter Group

Key string
INPUT; CHAR(¥)

s A binary string, a formatted structure containing the key, or a reference to the location of the
key. The exact format of the key string is specified in the key format parameter. ¥

Length of key string
INPUT; BINARY(4)

Length of the key string specified in the key string parameter.
¥ Note this is not the same thing as key length. Key length is determined based on the other
parameters. Following are some examples:
¢ If key format is O (binary string) and
— the key form is 0 (clear) then the key length equals the length of key string.
— the key form is 1 (encrypted) then the key length will be the decrypted key string length.
¢ If key format is 1 (BER string) then the key length will be the length specified within the BER
string.

* If key format is 4 (a stored key) then the key length is obtained from the stored key record.

Cryptographic Services APIs 125

* If key format is 5 (a PKCS5 key) then the key length is the specified derived key length.

¢ If key format is 6 (PEM certificate) then the key length will be the length specified in the
certificate.

* If key format is 7 or 8 (a key from certificate store) then the key length will be the length
stored in the certificate.

Most algorithms have key length requirements. Refer to the key type parameter for restrictions on
key length.

&«

Key format
INPUT; CHAR(1)

Format of the key string parameter.
Following are the valid values.

0 Binary string. The key is specified as a binary value. To obtain a good random key value, use the |”Generate|

Symmetric Key (QC3GENSK, Qc3GenSymmetricKey)” on page 79 or [“Generate Pseudorandom Numbers|

(QC3GENRN, Qc3GenPRNs) API” on page 118] APL

1 BER string. If the key type field specifies 50 (RSA public), the key may be specified in BER encoded X.509 '
Certificate or £% SubjectPublicKeyInfo format. For specifications of these formats, refer to RFC 3280. If the key
type field specifies 51 (RSA private), the key must be specified in BER encoded PKCS #8 format. For
specifications of this format, refer to RSA Security Inc. Public-Key Cryptography Standards. To generate a
PKA key pair, use the|“Generate PKA Key Pair (QC3GENPK, Qc3GenPKAKeyPair)” on page 74{ APL

b
4 Key store label. The key string parameter identifies a key from key store. To create a key in key store, use the
“Generate Key Record (QC3GENKR, Qc3GenKeyRecord)” on page 98| or [“Write Key Record (QC3WRTKR)
Qc3WriteKeyRecord)” on page 112| API. The length of key string parameter must specify 56. The key string
parameter should contain the following structure:
Offset
Dec Hex Type Field
0 0 CHAR(20) Qualified key store file name
20 14 CHAR(32) Record label
52 34 CHAR(4) Reserved
Qualified key store file name
The key store file where the key is stored. The first 10 characters contain the file
name. The second 10 characters contain the name of the library where the key store
file is located. You can use the following special values for the library name.
*CURLIB The job’s current library is used to locate the key store file. If no library is specified as the current
library for the job, the QGPL library is used.
*LIBL The job’s library list is searched for the first occurence of the specified file name.

Record label
The label of the key record. The label will be converted from the job CCSID, or if
65535, the job default CCSID (DFTCCSID) job attribute to CCSID 1200 (Unicode
UTE-16).

Reserved
Must be null (binary 0s).

126 1BM Systems - iSeries: Cryptographic Services APIs

5 PKCS5 passphrase. A key is derived using RSA Data Security, Inc. Public-Key Cryptography Standard (PKCS)
#5. The length of key string parameter must be in the range of 41 to 296. The key string parameter should
contain the following structure:

Offset

Dec Hex Type Field

0 0 CHAR(4) Reserved

4 4 BINARY (4) Derived key length

8 8 BINARY(4) Iteration count

12 C BINARY (4) Salt length

16 10 CHAR(16) Salt

32 20 BINARY(4) Passphrase CCSID
36 24 BINARY(4) Passphrase length
40 28 CHAR(¥) Passphrase

Reserved

Must be null (binary 0s).

Derived key length
The length of key requested. The minimum allowed length is 1.

Iteration count
Used to greatly increase the cost of an exhaustive search while modestly increasing
the cost of key derivation. The minimum allowed value is 1. The standard
recommends a minimum of 1,000. The maximum allowed length is 100,000.

Salt length
The length of salt. The length must be in the range of 1 to 16.

Salt Used to help thwart attacks by producing a large set of keys for each passphrase.
The standard recommends the salt be generated at random and be at least 8 bytes
long. You may use the [“Generate Pseudorandom Numbers (QC3GENRN)]|
[Qc3GenPRNs) API” on page 118/ API to obtain a random value. Additionally, data
that distinguishes between various operations can be added to the salt for additional
security. Refer to the standard for more information.

Passphrase CCSID
INPUT; BINARY(4)

The CCSID of the passphrase. The passphrase will be converted from the specified
CCSID to Unicode before calling the PKCS5 algorithm.

0 The CCSID of the job is used to determine the CCSID of the data to be converted. If the job
CCSID is 65535, the CCSID from the default CCSID (DFTCCSID) job attribute is used.
1-65533 A valid CCSID in this range is used. For a list of valid CCSIDs, see the topic in the

iSeries Information Center.

Passphrase length
The length of passphrase. The length must be in the range of 1 to 256.

Passphrase
A text string.

6 PEM certificate. The key string parameter contains an ASCII encoded PEM based certificate. £&

Cryptographic Services APIs 127

Key type

b

{{
20

21

22
23

30

50

51

128

INPUT; BINARY(4)

The type of key.
Following are the valid values.

MD5

The key format must be 0 % 4, or 5. ¢ An MDS5 key is used for HMAC (hash message authentication code)
operations. The minimum length for an MD5 HMAC key is 16 bytes. A key longer than 16 bytes does not
significantly increase the function strength unless the randomness of the key is considered weak. A key longer
than 64 bytes will be hashed before it is used.

SHA-1

The key format must be 0 % 4, or 5. % An SHA-1 key is used for HMAC (hash message authentication
code) operations. The minimum length for an SHA-1 HMAC key is 20 bytes. A key longer than 20 bytes does
not significantly increase the function strength unless the randomness of the key is considered weak. A key
longer than 64 bytes will be hashed before it is used.

SHA-256

The key format must be 0, 4, or 5. An SHA-256 key is used for HMAC (hash message authentication code)
operations. The minimum length for an SHA-256 HMAC key is 32 bytes. A key longer than 32 bytes does not
significantly increase the function strength unless the randomness of the key is considered weak. A key longer
than 64 bytes will be hashed before it is used.

SHA-384

The key format must be 0, 4, or 5. An SHA-384 key is used for HMAC (hash message authentication code)
operations. The minimum length for an SHA-384 HMAC key is 48 bytes. A key longer than 48 bytes does not
significantly increase the function strength unless the randomness of the key is considered weak. A key longer
than 128 bytes will be hashed before it is used.

SHA-512

The key format must be 0, 4, or 5. An SHA-512 key is used for HMAC (hash message authentication code)
operations. The minimum length for an SHA-512 HMAC key is 64 bytes. A key longer than 64 bytes does not
significantly increase the function strength unless the randomness of the key is considered weak. A key longer
than 128 bytes will be hashed before it is used.

DES

The key format must be 0 ' 4, or 5. % The key must be 8 bytes in length. Only 7 bits of each byte are used
as the actual key. The rightmost bit of each byte is used to set parity. Some cryptographic service providers
require that a DES key have odd parity in every byte. Others ignore parity.

Triple DES

The key format must be 0 %% 4, or 5. % The key must be 8, 16, or 24 bytes in length. Triple DES operates on
an encryption block by doing a DES encrypt, followed by a DES decrypt, and then another DES encrypt.
Therefore, it actually uses three 8-byte DES keys. If 24 bytes are supplied in the key string, the first 8 bytes are
used for key 1, the second 8 bytes for key 2, and the third 8 bytes for key 3. If 16 bytes are supplied, the first
8 bytes are used for key 1 and key 3, and the second 8 bytes for key 2. If only 8 bytes are supplied, it will be
used for all 3 keys (essentially making the operation equivalent to a single DES operation). Only 7 bits of each
byte are used as the actual key. The rightmost bit of each byte is used to set parity. Some cryptographic
service providers require that a Triple DES key have odd parity in every byte. Others ignore parity.

AES

The key format must be 0 % 4, or 5. &% The key must be 16, 24, or 32 bytes in length.

RC2

The key format must be 0 % 4, or 5. &% The key must be from 1 to 128 bytes in length.

RC4-compatible

The key format must be 0 ' 4, or 5. 4% The key must be from 1 to 256 bytes in length. Because of the nature
of the RC4-compatible operation, using the same key for more than one message will severely compromise
security.

RSA public

The key format must be 1% 4, or 6. <%

RSA private

The key format must be 1 % or 4. 4%

IBM Systems - iSeries: Cryptographic Services APIs

Key form

b

&

INPUT; CHAR(1)
An indicator specifying if the key string parameter is in encrypted form.

Clear.
The key string is not encrypted.

Encrypted with a KEK

The key string is encrypted with a key-encrypting key. Tokens are specified in the key-encrypting key and
key-encrypting algorithm parameters and are used to decrypt the key string when a cryptographic operation
is performed. This option is only allowed with key formats 0 (binary string) and 1 (BER string.)

Encrypted with a master key

The key string is encrypted with a master key. The master key is specified in the key-encrypting key
parameter. This option is only allowed with key formats 0 (binary string) and 1 (BER string.)

Key-encrypting key

INPUT; CHAR(¥)
The key under which the key string parameter is encrypted

For key form 0 (clear), this parameter must be set to blanks or the pointer to this parameter set to
NULL.

For key form 1 (encrypted), this parameter specifies the 8-byte key context token to use for
decrypting the key string parameter.

i

For key form 2 (encrypted with a master key), this parameter has the following structure:

Offset
Dec Hex Type Field
0 BINARY(4) Master key ID
4 CHAR(4) Reserved
8 BINARY(4) Disallowed function
C CHAR(20) Master key KVV

D@3 S Ul WDN =

Master key ID
The master key to use for decrypting the key string parameter. The master key IDs are

Master key 1
Master key 2
Master key 3
Master key 4
Master key 5
Master key 6
Master key 7
Master key 8

Disallowed function
INPUT; BINARY(4)

Cryptographic Services APIs 129

This parameter specifies the functions that are not allowed to be used with this key. This
value was XOR’d into the master key when this key was encrypted and therefore must be
used when creating a key context for this key. The values listed below can be added
together to disallow multiple functions. For example, to disallow everything but MACing,
set the value to 11.

No functions are disallowed.
Encryption is disallowed.
Decryption is disallowed.
MACing is disallowed.
Signing is disallowed.

DD BN = O

Master key KVV
The master key verification value. The master key version with a KVV that matches this
value will be used to decrypt the key. If this value is null, the current version of the
master key will be used.

Reserved
Must be null (binary Os).

&«

Key-encrypting algorithm
INPUT; CHAR(S8)

For key form 0 (clear) and 2 (encrypted with a master key), this parameter must be set to blanks
or the pointer to this parameter set to NULL.

For key form 1 (encrypted), this parameter specifies the algorithm context token to use for
decrypting the key string parameter.

Key context token
OUTPUT; CHAR(8)

The area to store the token for the created key context.

Each token will contain an authentication value. If the token is used on a subsequent API but
with an incorrect authentication value, the user will be subjected to a 10 second penalty wait. For
each authentication error in that job, the penalty wait will increase 10 seconds up to a maximum
of 10 minutes.

Error code
I/0; CHAR(*)

The structure in which to return error information.
For the format of the structure, see [Error Code Parameter]|

Error Messages

Message 1D Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CIE E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CE2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
b4

CPFI9D9F E Not authorized to key store file.

CPFIDAO E Error occured opening key store file.

CPFIDAL E Key record not found.

130 1BM Systems - iSeries: Cryptographic Services APIs

Message ID

Error Message Text

CPFIDAS E Key store file not found.

CPFIODAG6 E The key store file is not available.

CPFODA7 E File is corrupt or not a valid key store file.

CPF9DAC E Disallowed function value not valid.

CPFODAD E The master key ID is not valid.

CPF9DB1 E The CCSID is not valid.

CPF9DB3 E Qualified key store file name not valid.

CPFODB6 E Record label not valid.

CPFODBS8 E Error occured retrieving key from key store.

CPF9DBA E Derived key length not valid.

CPF9DBB E Iteration count not valid.

CPFODBC E Salt length not valid.

CPFODBD E Passphrase length not valid.

CPFODDA E Unexpected return code &1.

CPFODDD E The key string length is not valid.

CPFODE?7 E Key type not valid.

CPFODES E Key form not valid.

CPF9DE9 E Key format not valid.

CPFODEE E Reserved field not null.

CPFODF1 E The algorithm context token does not reference a valid algorithm context.
CPFODF2 E The algorithm context is not found or was previously destroyed.
CPFODEF3 E Algorithm in algorithm context not valid for requested operation.
CPFODF4 E The key context token does not reference a valid key context.
CPFODF5 E The key context is not found or was previously destroyed.
CPFODF7 E Algorithm context not compatible with key context.

CPFIDFC E The key-encrypting algorithm or key context token is not valid.

API introduced: V5R3

@ | [“Cryptographic Services APIs,” on page 1| | |APIs by category]|

Destroy Algorithm Context (QC3DESAX, Qc3DestroyAlgorithmContext)

Required Parameter Group:

1 Algorithm context token Input
2 Error code I/0

Char(8)
Char(*)

Service Program Name: QC3CTX
Default Public Authority: *USE
Threadsafe: Yes

The Destroy Algorithm Context (OPM, QC3DESAX; ILE, Qc3DestroyAlgorithmContext) API destroys an
algorithm context created by the |“Create Algorithm Context (QC3CRTAX, Qc3CreateAlgorithmContext)”|

Authorities and Locks

Required API authority
*USE

Cryptographic Services APIs 131

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Algorithm context token
INPUT; CHAR(8)

The token of the algorithm context to destroy.

Error code
I/0; CHAR(*)

The structure in which to return error information.
For the format of the structure, see [Error Code Parameter]|

Error Messages

Message 1D Error Message Text

CPF3CIE E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFODDA E Unexpected return code &1.

CPFODF1 E The algorithm context token does not reference a valid algorithm context.
CPFODF2 E The algorithm context is not found or was previously destroyed.

API introduced: V5R3

@ | [“Cryptographic Services APIs,” on page 1| | |APIs by category]

Destroy Key Context (QC3DESKX, Qc3DestroyKeyContext)

Required Parameter Group:

1 Key context token Input Char(8)
2 Error code I/0 Char(*)

Service Program Name: QC3CTX
Default Public Authority: *USE
Threadsafe: Yes

The Destroy Key Context (OPM, QC3DESKX; ILE, Qc3DestroyKeyContext) API destroys the key context
created with the [“Create Key Context (QC3CRTKX, Qc3CreateKeyContext)” on page 125

Authorities and Locks
Required API authority

*USE
Required Parameter Group

Key context token
INPUT; CHAR(8)

The token of the key context to destroy.

Error code
I/0; CHAR(*)

132 1BM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm

The structure in which to return error information.
For the format of the structure, see [Error Code Parameter

Error Messages

Message ID
CPF3CI1E E
CPF3CF1 E
CPF9872 E
CPFODDA E
CPFODF4 E
CPF9DF5 E

API introduced: V5R3

Error Message Text

Required parameter &1 omitted.
Error code parameter not valid.
Program or service program &1 in library &2 ended. Reason code &3.
Unexpected return code &1.
The key context token does not reference a valid key context.
The key context is not found or was previously destroyed.

@ | [“Cryptographic Services APIs,” on page 1| | [APIs by category|

Concepts

These are the concepts for this category.

i5/0S and 2058 Cryptographic Function Comparison

The following table lists what cryptographic functions are available in i5/0S® and on the 2058 through

the Cryptographic Services APIs.

Function | i5/0S 2058

Qc3EncryptData, Qc3DecryptData, Qc3TranslateData
DES ECB Yes Yes
DES CBC Yes Yes
DES OFB Yes No
DES CFB 1-bit Yes No
DES CFB 8-bit Yes No
DES CFB 64-bit Yes No
TDES ECB Yes Yes
TDES CBC Yes Yes
TDES OFB Yes No
TDES CFB 1-bit Yes No
TDES CFB 8-bit Yes No
TDES CFB 64-bit Yes No
AES ECB Yes No
AES CBC Yes No
RC4 Yes No
RSA Yes Yes'

Qc3CalculateMAC
DES Yes No

Cryptographic Services APIs

133

#TOP_OF_PAGE
aplist.htm

Function i5/0S 2058
TDES Yes No
AES Yes No

Qc3CalculateHash
MD5 Yes No
SHA-1 Yes No
SHA-256 Yes No
SHA-384 Yes No
SHA-512 Yes No

Qc3CalculateHMAC
MD5 Yes No
SHA-1 Yes No

2
SHA-256 Yes No
SHA-384 Yes No
SHA-512 Yes No
X
Qc3CalculateSignature, Yes Yes?
Qc3VerifySignature

Qc3GenPRNs Yes Yes®

Qc3GenSymmetricKey Yes Yes

Qc3GenPKAKeyPair Yes No

Qc3GenDHParms Yes No

Qc3GenDHKeyPair Yes No

Qc3CalculateDHSecretKey Yes Yes

'Block formating is done in i5/0S.
*Only the encryption is done on the 2058. The block formatting and hash functions are done in i5/0S.

’The i5/0S PRNG will automatically seed from a crypto card if one is available.

@ | Cryptographic Services APIs I[APIs by category

Scenario: Key Management and File Encryption Using the
Cryptographic Services APIs

See|Code disclaimer information| for information pertaining to code examples.

Z

Prior to reading this article, you may want to review the information in the following articles:

* |Cryptography Concepts|
* [“Cryptographic Services Master Keys” on page 156|

* |“Cryptographic Services Key Store” on page 157]

134 1BM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm

Briana is writing an application that handles customer data and accounts receivable. Because of recent
privacy legislation, she needs to store the customer data encrypted.

Briana will store customer data encrypted in a database file. Each record will represent a different
customer. Each record includes a customer unique number which is used as the database key field, an
initialization vector which is used in the encrypt/decrypt operations, the accounts receivable balance, and
the encrypted customer data.

The following is Briana’s DDS for the customer file, which she names CUSDTA.

Ax CUSTOMER FILE

A*

A R CUSDTAREC TEXT('Customer record')

A CUSNUM 8 0 TEXT('Customer number')

A IV 16 TEXT('Initialization vector')

A CCSID(65535)

A ARBAL 10 2 TEXT('Accounts receivable balance')
A CUSDTA 80 TEXT('Encrypted customer data')
A CCSID(65535)

A= 20 Name

Ax 20 Address

Ax 20 City

Ax 2 State

Ax 5 Zip Code

Ax 10 Phone number

A* 3 Pad

A K CUSNUM

A*

Briana has several choices for an encryption key (which we will call the file key).
e A clear key

* A key store key

* A key encrypted under a clear key

* A key encrypted under a master key

* A key encrypted under a key store key

* A key encrypted under a certificate store key

* A key derived from PKCS5 parameters

* Combinations of the above

Briana carefully thinks through the requirements of her application and the security implications. Her
decision is to use a key encrypted under a key store key. She will store the encrypted file key in a
separate file called CUSPIL Although the file key is encrypted, Briana is still careful to restrict authority to
CUSPI.

In addition to the encrypted file key, Briana needs to store the last used customer number. Following is
Briana’s DDS for the customer processing information file, CUSPL

A+ CUSTOMER PROCESSING INFORMATION

A*

A R CUSPIREC TEXT('Customer processing info')
A KEY 16 TEXT('Encryption key')

A CCSID(65535)

A LASTCUS 8 0 TEXT('Last customer number')

A*

Briana’s application includes a program to setup and intialize the files and keys, a program that writes
customer data to the CUSDTA file, and a program that bills customers. These programs are described
below. Code examples for these programs are also provided.

Cryptographic Services APIs 135

Warning: Temporary Level 3 Header

Setup_Cus

The
1.

Setup_Cus program performs the following steps:
Create CUSDTA and CUSPI files.

2. Create key store file CUSKEYFILE using the [“Create Key Store (QC3CRTKS, Qc3CreateKeyStore)” on|
3. Generate a KEK in CUSKEYFILE with a label of CUSDTAKEK using the |“Generate Key Record|
[(QC3GENKR, Qc3GenKeyRecord)” on page 98
4. Create a key context for CUSDTAKEK using the [‘Create Key Context (QC3CRTKX)
[Qc3CreateKeyContext)” on page 125,
5. Create an AES algorithm context for CUSDTAKEK using the [“Create Algorithm Context
[(QC3CRTAX, Qc3CreateAlgorithmContext)” on page 120
6. Generate a file key encrypted under CUSDTAKEK using the [“Generate Symmetric Key (QC3GENSK)
[Qc3GenSymmetricKey)” on page 79|
7. Write a record containing the encrypted file key and last customer number (set to 0) to file CUSPI.
8. Erase the encrypted file key value from program storage.
9. Destroy key context using the [“Destroy Key Context (QC3DESKX, Qc3DestroyKeyContext)” on page|
10. Destroy algorithm context using the [“Destroy Algorithm Context (QC3DESAX)|
[Qc3Destroy AlgorithmContext)” on page 131
Examples

Here are example programs for Setup_Cus.

+ [Example in ILE C: Setting up keys|

+ [Example in ILE RPG: Setting up keys|

Write_Cus
The Write_Cus program performs the following steps:
1. Create an AES algorithm context for CUSDTAKEK using the |[“Create Algorithm Context|
[(QC3CRTAX, Qc3CreateAlgorithmContext)” on page 120
2. Create a key context for CUSDTAKEK using the [‘Create Key Context (QC3CRTKX)
[Qc3CreateKeyContext)” on page 125,
3. Open the customer processing information file, CUSPI. (Return an error if the file does not exist.)
4. Read the first (and only) record from CUSPI to retrieve the encrypted file key and last customer
number. (Return an error if record not found.)
5. Create a key context for the file key using the [‘Create Key Context (QC3CRTKX||
[Qc3CreateKeyContext)” on page 125,
6. Open the customer data file, CUSDTA, for update. (Return an error if the file does not exist.)
7. Call Get_Customer_Info to retrieve customer information and customer number. (If customer
number = 0, it is a new customer. If customer number = 99999999, end the application.)
8. While customer number != 99999999.
9. Generate an IV using the [‘Generate Pseudorandom Numbers (QC3GENRN, Qc3GenPRNs) API” on|
10. Encrypt the customer data using the [“Encrypt Data (QC3ENCDT, Qc3EncryptData)” on page 13]
* If customer number = 0 (new customer)
— Add one to last customer number.
— Set customer number to last customer number.
— Write the new record to CUSDTA file.
136 1BM Systems - iSeries: Cryptographic Services APIs

qc3SetupCusILEC.htm
qc3SetupCusILERPG.htm

Else

— Read CUSDTA record using customer number as the database key. (Return error if record not
found.)

- Update record.
¢ (Call Get_Customer_Info.

11. Update last customer number in CUSPL
12. Erase any customer plaintext data still in program storage.
13. Destroy key contexts using the ["Destroy Key Context (QC3DESKX, Qc3DestroyKeyContext)” on|
14. Destroy the algorithm context using the [“Destroy Algorithm Context (QC3DESAX)
[Qc3Destroy AlgorithmContext)” on page 131
15. Close CUSDTA and CUSPI files.
Examples

Here are example programs for Write_Cus.

* |[“Example in ILE C: Writing encrypted data to a file” on page 138§|

+ [“Example in ILE RPG: Writing encrypted data to a file” on page 144|

Bill_Cus
The Bill_Cus program performs the following steps:

1.

Create an AES algorithm context for CUSDTAKEK using the [‘Create Algorithm Context]
[(QC3CRTAX, Qc3CreateAlgorithmContext)” on page 120

2. Create a key context for CUSDTAKEK using the [“Create Key Context (QC3CRTKX||
[Qc3CreateKeyContext)” on page 125,
3. Open the customer processing information file, CUSPIL. (Return an error if the file does not exist.)
4. Read the first (and only) record from CUSPI to retrieve the encrypted file key. (Return an error if
record not found.)
5. Create a key context for the file key using the [‘Create Key Context (QC3CRTKX)
[Qc3CreateKeyContext)” on page 125,
6. Erase the encrypted file key value from program storage.
7. Close CUSPI file.
8. Open the customer data file, CUSDTA, for sequential read.
9. Setup the algorithm description.
10. While not EOF
* Read next record.
* If accounts receivable balance > 0
— Decrypt customer data using the [“Decrypt Data (QC3DECDT, Qc3DecryptData)” on page 2|
— Call Create_Bill, passing in the decrypted customer data and balance.
11. Erase any customer plaintext data still in program storage.
12. Destroy the key contexts using the [“Destroy Key Context (QC3DESKX, Qc3DestroyKeyContext)” on|
13. Destroy the algorithm context using the [“Destroy Algorithm Context (QC3DESAX |
[Qc3Destroy AlgorithmContext)” on page 131
14. Close CUSDTA file.
Examples

Here are example programs for Bill_Cus.

* [“Example in ILE C: Reading encrypted data from a file” on page 14|

* |[“Example in ILE RPG: Reading encrypted data from a file” on page 153|

Cryptographic Services APIs 137

Other Considerations

To backup file CUSDTA, you must backup files CUSPI and CUSKEYFILE as well. A perpetrator should
not be able to use these files on another system because CUSDTAKEK is encrypted under a master key;,
and master keys should never be shared between systems. However, if the perpetrator has the ability to
restore these files onto the orignal system and has access to the Decrypt Data API, he will be able to hack
the customer data.

It is a good idea to periodically change the value of the master key. Whenever the master key is changed,
CUSDTAKEK must be re-encrypted under the new master key value. You can do this with the
[Key Store (QC3TRNKS, Qc3TranslateKeyStore)” on page 111| API. Remember to backup a key store file
whenever you re-encrypt the key values under a new master key.

L4
@ | Cryptographic Services APIs I[APIs by category

Example in ILE C: Writing encrypted data to a file

See [Code disclaimer information| for information pertaining to code examples.

Refer to [‘Scenario: Key Management and File Encryption Using the Cryptographic Services APIs” on|
[page 134| for a description of this scenario.

g

gy */
/* */
/* Sample C program: Write Cus */
/* */
/* COPYRIGHT 5722-SS1 (c) IBM Corp 2004 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these programs. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* EXPRESSLY DISCLAIMED. IBM provides no program services for */
/* these programs and files. */
/* */
/* Description: */
/* This is a sample program to demonstrate use of the Cryptographic */
/* Services APIs. APIs demonstrated in this program are: */
/* Create Algorithm Context */
/* Create Key Context */
/* Generate Pseudorandom Numbers */
/* Encrypt Data */
/* Destroy Key Context */
/* Destroy Algorithm Context */
/* */
/* Function: */
/* Get customer information, encrypt it, and write it to the */
/* Customer Data file (CUSDTA). The file key is kept in the */
/* Customer Processing Information file (CUSPI). */
/* */
/* Refer to the iSeries (TM) Information Center for a full */
/* description of this scenario. */
/* */
/* Use the following commands to compile this program: */
/* CRTCMOD MODULE(MY_LIB/WRITE_CUS) SRCFILE(MY_LIB/MY_SRC) */

138 1BM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm

/* CRTSRVPGM SRVPGM(MY_LIB/WRITE_CUS) + */

/% MODULE (MY_LIB/WRITE_CUS MY_LIB/GET_CUSTOMER_INFO) + x/
/* BNDSRVPGM(QC3CTX QC3PRNG QC3DTAEN) */
/* */
J e m e e e e e */
Ly S PR */
/* Retrieve various structures/utilities. */
gy */
#include <stdio.h> /* Standard I/0 header */
#include <stdlib.h> /* General utilities */
#include <stddef.h> /* Standard definitions */
#include <string.h> /* String handling utilities */
#include <recio.h> /* Record I/0 routines */
#include <qusec.h> /* Error code structure */
#include <qc3ctx.h> /* Hdr file for Context APIs =*/
#include <qc3prng.h> /* Hdr file for PRNG APIs */
#include <qc3dtaen.h> /* Hdr file for Encrypt Dta API*/
Ly S L P */
/* The following structures were generated with GENCSRC. */
ey */

#ifdef _ cplusplus

#include <bcd.h>

#else

#include <decimal.h>

#endif
£y *
// PHYSICAL FILE : MY_LIB/CUSPI

// FILE LAST CHANGE DATE : 2004/02/11

// RECORD FORMAT : CUSPIREC

// FORMAT LEVEL IDENTIFIER : 248C15A88E09C

typedef Packed struct {
char KEY[16]; /* ENCRYPTION KEY =/

#ifndef __cplusplus
decimal(8, 0) LASTCUS;

#else
_DecimalT< 8, 0> LASTCUS; /* LAST CUSTOMER NUMBER =/
/* BCD class SPECIFIED IN DDS =*/
#endif

} CUSPIREC_both t;

Sy gy *
// PHYSICAL FILE : MY_LIB/CUSDTA

// FILE LAST CHANGE DATE : 2004/02/11

// RECORD FORMAT : CUSDTAREC

// FORMAT LEVEL IDENTIFIER : 434C857F6F5B3

typedef _Packed struct {

#ifndef _ cplusplus
decimal(8, 0) CUSNUM;

#else
_DecimalT< 8, 0> CUSNUM; /* CUSTOMER NUMBER =*/
/* BCD class SPECIFIED IN DDS =/
#endif
char IV[16]; /* INITIALIZATION VECTOR =*/

#ifndef __cplusplus
decimal(10, 2) ARBAL;
#else
_DecimalT<10, 2> ARBAL; /* ACCOUNTS RECEIVABLE BALANCE =*/
/* BCD class SPECIFIED IN DDS =/

Cryptographic Services APIs 139

#endif
char ECUSDTA[80]; /* ENCRYPTED CUSTOMER DATA =/
} CUSDTAREC both t;

J e m e e e */
/* Function declarations */
J == ==~ ... */

/* Get a customer information =*/
void Get_Customer_Info(char *customerInfo,
decimal(8, 0) *customerNumber);

J e m e e e e */
/* Start of mainline code. */
J == === —— o ... */
int Write_Cus()
{
J e m e e e */
/* Return codes */
J == == -~ ... */
int rtn; /* Return code */
#define ERROR -1
#define 0K 0
2y */
/* File handling variables */
2y */
_RFILE *cuspiPtr; /* Pointer to CUSPI file */
_RFILE *cusdtaPtr; /* Pointer to CUSDTA file */
CUSPIREC_both_t cuspis; /* CUSPI record */
CUSDTAREC_both_t cusdtain; /* CUSDTA input record */
CUSDTAREC_both_t cusdtaout; /* CUSDTA output record */
2y */
/* Parameters needed by the Cryptographic Services APIs */
e */
Qus_EC_t errCode; /* Error code structure */
char csp; /* Crypto service provider */
Qc3_Format_ALGD0200 T algD; /* Block cipher alg description*/
char AESctx[8]; /* AES alg context token */
int keySize; /* Key size */
char keyFormat; /* Key format */
int keyType; /* Key type */
char keyForm; /* Key form */
int keyStringlLen; /* Length of key string */
Qc3_Format_KEYDO40O T kskey; /* Key store key name structure*/
char KEKctx[8]; /* KEK key context token */
char FKctx[8]; /* File key context token */
char pcusdta[80]; /* Plaintext customer data */
int cipherLen; /* Length of ciphertext */
int plainLen; /* Length of plaintext */
int rtnlLen; /* Return length */
char PRNtype; /* PRN type */
char PRNparity; /* PRN parity */
unsigned int PRN1en; /* Length of PRN data */
J == == -~ ... */
/* Input values from Get Customer Information. */
Ty */
char inCusInfo[80];/* Customer Information */
decimal (8, 0) inCusNum; /* Customer number */

140 1BM Systems - iSeries: Cryptographic Services APIs

/* Initializations */
2 */
/* Init to good return */

rtn = 0K;

/* Set to generate exceptions */
memset (&errCode, 0, sizeof(errCode));

/* Use any crypto provider */
csp = Qc3_Any CSP;
/* Set inCusInfo to null */
memset (inCusInfo, 0, sizeof(inCusInfo));
Ly S L PR */
/* Create an AES algorithm context for the key-encrypting key (KEK). =/
Ty */
memset (&algD, 0, sizeof(algD)); /* Init alg description to null*/
algD.Block_Cipher_Alg = Qc3_AES; /* Set AES algorithm */
algD.Block_Length = 16; /* Block size is 16 */
algD.Mode = Qc3_CBC; /* Use cipher block chaining */
algD.Pad Option = Qc3_No_ Pad; /* Do not pad */

/* Create algorithm context */
Qc3CreateAlgorithmContext ((unsigned char *)&algD,
Qc3_Alg_Block_Cipher, AESctx, &errCode);

2y */
/* Create a key context for the key-encrypting key (KEK). */
2 */
keyFormat = Qc3_KSLabel Struct; /* Key format is keystore labelx*/
keyStringLen = sizeof(kskey); /* Length of key string */
keyType = Qc3_AES; /* Key type is AES */
keyForm = Qc3_Clear; /* Key string is clear */
memset (&kskey, 0, sizeof(kskey)); /* Init name structure to null =/
/* Set key store file name */

memset (kskey.Key_Store, 0x40, sizeof(kskey.Key Store));
memcpy (kskey.Key Store,"CUSKEYFILEMY LIB", 16);

/* Set key store label */
memset (kskey.Record_Label, 0x40, sizeof(kskey.Record Label));
memcpy (kskey.Record_Label, "CUSDTAKEK", 9);

/* Create key context */
Qc3CreateKeyContext ((charx)&kskey, &keyStringlLen, &keyFormat, &keyType,

&keyForm, NULL, NULL, KEKctx, &errCode);

ey */
/* Open Customer Processing Information file. Read first record */
/* to obtain the encrypted file key and last customer number. */
ey */
/* Open CUSPI file */

if ((cuspiPtr = _Ropen("MY_LIB/CUSPI", "rr+, arrseq=Y, riofb=N"))

== NULL)

{ /* If null ptr returned */
/* Send error message */

printf("Open of Customer Processing Information file (CUSPI) failed.");

return ERROR; /* Return with error */
}
/* Read the first(only) record */
/* to get encrypted file key. =*/
if ((_Rreadf(cuspiPtr, &cuspi, sizeof(cuspi), _ DFT))->num_bytes

== EOF)
{ /* If record not found */
/* Send error message */
printf("Customer Processing Information (CUSPI) record missing.");
_Rclose(cuspiPtr); /* Close CUSPI file */
return ERROR; /* Return with error */

Cryptographic Services APIs

141

Create a key context for the file key
keySize = sizeof(cuspi.KEY); /* Set key size
keyFormat = Qc3_Bin_String; /* Key is a binary string
keyType = Qc3_AES; /* Key type is AES
keyForm = Qc3_Encrypted; /* Key is encrypted with a KEK
/* Create key context
Qc3CreateKeyContext (cuspi.KEY, &keySize, &keyFormat, &keyType,
&keyForm, KEKctx, AESctx, FKctx, &errCode);
Open Customer Data file.
/* Open CUSDTA file
if ((cusdtaPtr = _Ropen("MY_LIB/CUSDTA", "rr+, riofb=N"))
== NULL)
{ /* If null ptr returned
/* Send error message
printf("Open of CUSDTA file failed.");
_Rclose(cuspiPtr); /* Close CUSPI file
return ERROR; /* Return with error
}
Get customer information.
/* Get customer information
/* and customer number
Get_Customer_Info(inCusInfo, &inCusNum);
Repeat Toop until no more customers to add/update.
/* Exit program when customer
while (inCusNum != 99999999) /* number = 99999999
{
Generate an Initialization Vector for the customer.
PRNtype = Qc3PRN_TYPE_NORMAL; /* Generate real random numbers
PRNparity = Qc3PRN_NO PARITY; /* Do not adjust parity
PRN1en = 16; /* Generate 16 bytes
Qc3GenPRNs (cusdtaout.IV, PRNlen, PRNtype, PRNparity, &errCode);
Encrypt customer information.
/* Copy IV to alg description
memcpy (algD.Init_Vector, cusdtaout.IV, 16);
/* Encrypt customer data

plainLen = sizeof(inCusInfo);
cipherLen = sizeof(cusdtaout.ECUSDTA);
Qc3EncryptData(inCusInfo, &plainLen, Qc3 Data,
(charx)&algD, Qc3_Alg_Block_Cipher,
FKctx, Qc3_Key Token,
&csp, NULL, cusdtaout.ECUSDTA, &cipherLen, &rtnLen

142 1BM Systems - iSeries: Cryptographic Services APIs

*/
*/

*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/

*/
*/

*/
*/
*/
*/
*/

*/
*/

*/
*/
*/

*/

*/

&errCode) ;

2 */
/* Write customer data to file CUSDTA. */
J e m e e e e e */

if (inCusNum == @) /* If new customer */

{

cuspi.LASTCUS += 1; /* Increment Tast customer num */
cusdtaout.CUSNUM=cuspi.LASTCUS; /* Give new customer a number =*/
cusdtaout.ARBAL = 10; /* Set balance to setup fee */
/* Write record to file */
if ((_Rwrite(cusdtaPtr, &cusdtaout, sizeof(cusdtaout)))->num bytes
< sizeof(cusdtaout))
{ /* If write fails */
/* Send error message */
printf("Error occurred writing record to CUSDTA file.");
inCusNum = 99999999; /* Set to exit loop */
rtn = ERROR; /* Indicate error condition */
}

1

else /* If existing customer */

{

/* Read existing record */
if ((_Rreadk(cusdtaPtr, &cusdtain, sizeof(cusdtain), _ KEY_EQ,
&inCusNum, sizeof(inCusNum))) -> num_bytes < sizeof(cusdtain))
{ /* If read fails */
/* Send error message */
printf("Error occurred reading record in CUSDTA file.");
inCusNum = 99999999, /* Set to exit loop */
rtn = ERROR; /* Indicate error condition */
1
/* Copy customer number */
cusdtaout.CUSNUM = cusdtain.CUSNUM;
/* Copy balance */
cusdtaout.ARBAL = cusdtain.ARBAL;
/* Update customer record */
if ((_Rupdate(cusdtaPtr, &cusdtaout, sizeof(cusdtaout)))->num bytes
< sizeof(cusdtaout))
{ /* 1f update fails */
/* Send error message */
printf("Error occurred updating record in CUSDTA file.");
inCusNum = 99999999; /* Set to exit Toop */
rtn = ERROR; /* Indicate error condition */
}

1
2y */
/* Get customer information. */
i */

/* Get customer information */
if (rtn == 0K) /* and customer number */
Get_Customer_Info(inCusInfo, &inCusNum);

} /* Return to top of while loop */
J e m e e e e e e */
/* Update Tlast customer number in CUSPI file. */
Ly S L PR */
/* Write record to file */

if ((_Rupdate(cuspiPtr, &cuspi, sizeof(cuspi)))->num bytes

< sizeof(cuspi))

{ /* If write fails */
/* Send error message */

Cryptographic Services APIs

143

printf("Error occurred updating record in CUSPI file.");

gy */
/* Cleanup. */
ey */

/* Clear plaintext data */

memset (inCusInfo, 0, sizeof(inCusInfo));
/% Destroy file key context */
Qc3DestroyKeyContext (FKctx, &errCode);

/* Destroy KEK context */
Qc3DestroyKeyContext (KEKctx, &errCode);
/* Destroy the alg context */
Qc3DestroyAlgorithmContext (AESctx, &errCode);
/* Close CUSDTA file */
_Rclose(cusdtaPtr);
/* Close CUSPI file */
_Rclose(cuspiPtr);
/* Return */
return rtn;
1
L4

@ | Cryptographic Services APIs I[APIs by category

Example in ILE RPG: Writing encrypted data to a file

Note: By using the code examples, you agree to the terms of the [Code license and disclaimer information}

Refer to [‘Scenario: Key Management and File Encryption Using the Cryptographic Services APIs” on|
[page 134| for a description of this scenario.

Sample RPG program: write_cus

COPYRIGHT 5722-SS1 (c) IBM Corp 2004, 2006

This material contains programming source code for your
consideration. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function
of these programs. All programs contained herein are
provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
EXPRESSLY DISCLAIMED. 1IBM provides no program services for
these programs and files.

Description: This is a sample program to demonstrate use
of the Cryptographic Services APIs. APIs demonstrated in
this program are:

Create Algorithm Context

Create Key Context

Generate Pseudorandom Numbers

Encrypt Data

Destroy Key Context

Destroy Algorithm Context

Function: Get customer information, encrypt it, and write it
to the Customer Data file (CUSDTA). The file key is kept
in the Customer Processing Information file (CUSPI).

Refer to the iSeries (TM) Information Center for a full
description of this scenario.

£ %k kX ok o ok 3k X X ok ok Sk X X X ok Sk 3k X X X %k 3k X X X X F F

144 1BM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm
codedisclaimer.htm

Use the following command to compile this program:
CRTRPGMOD MODULE (MY _LIB/WRITE_CUS) SRCFILE(MY LIB/QRPGLESRC)

L R

H nomain bnddir('QC2LE")

Fcuspi uf e disk usropn
Fcusdta uf a e disk prefix(C) usropn

* System includes
D/Copy QSYSINC/QRPGLESRC,QUSEC
D/Copy QSYSINC/QRPGLESRC,QC3CCI

* Prototypes

DWrite_Cus pr 101 0 extproc('Write Cus')

D Get_Customer_Info...

D pr extproc('Get_Customer_Info')
D inCusInfo 1

D inCusNbr 8 0

DCrtAlgCtx pr extproc('Qc3CreateAlgorithmContext')
D algD 1 const

D algFormat 8 const

D AESctx 8

D errCod 1

DCrtKeyCtx pr extproc('Qc3CreatekKeyContext")
D key 1 const

D keySize 107 0 const

D keyFormat 1 const

D keyType 107 0 const

D keyForm 1 const

D keyEncKey 8 const options(*xomit)

D keyEncAlg 8 const options(*omit)

D keyTkn 8

D errCod 1

DDestroyKeyCtx pr extproc('Qc3DestroyKeyContext')
D keyTkn 8 const

D errCod 1

DDestroyAlgCtx pr extproc('Qc3DestroyAlgorithmContext')
D AESTkn 8 const

D errCod 1

DEncryptData pr extproc('Qc3EncryptData')

D clrData 1 const

D clrDataSize 107 0 const

D clrDataFmt 8 const

D algDesc 1 const

D algDescFmt 8 const

D keyDesc 1 const

D keyDescFmt 8 const

D csp 1 const

D cspDevNam 10 const options(*omit)

D EncDta 1

D DtalenPrv 107 0 const

D DtalenRtn 101 0

D errCod 1

DGenPRN pr extproc('Qc3GenPRNs"')

D PRNData 1

D PRNDataLen 107 0 const

D PRNType 1 const

D PRNParity 1 const

D errCod 1

Cryptographic Services APIs 145

DPrint pr 101 0 extproc('printf"')

D charString 1 const options(*nopass)
PWrite_Cus b export
DWrite_Cus pi 107 0
* Local variable
D csp S 1 inz('0"')
D error S 101 0 inz(-1)
D ok S 107 0 inz(0)
D rtn S 101 0
D rtnLen S 101 0
D plainLen s 107 0
D cipherLen S 107 0
D kekTkn S 8
D AESctx S 8
D KEKctx S 8
D FKctx S 8
D keySize s 107 0
D keyType S 101 0
D keyFormat S 1
D keyForm S 1
D inCusInfo s 80
D inCusNum S 8 0
D ECUSDTA s 80
C eval rtn = ok
C eval QUSBPRV = 0
*x Create an AES algorithm context for the key-encrypting key (KEK)
C eval QC3D0200 = =*1oval
C eval QC3BCA = 22
C eval QC3BL = 16
C eval QC3MODE = '1'
C eval QC3P0 = '0'
C callp CrtAlgCtx(QC3D0200 :'ALGDO200"
C :AESctx :QUSEC)
*x Create a key context for the key-encrypting key (KEK)
C eval keySize = %size(QC3D040000)
C eval keyFormat = '0'
C eval keyType = 22
C eval keyForm = '0'
C eval QC3D040000 = *1oval
C eval QC3KS00 = 'CUSKEYFILEMY_LIB'
C eval QC3RL = 'CUSDTAKEK'
C callp CrtKeyCtx(QC3D040000 :keySize :'4'
C :keyType :keyForm :*OMIT
C :*xOMIT :KEKctx :QUSEC)
C
* Open CUSPI file
C open(e) cuspi
C if %error = '1'
C callp Print('Open of Customer Processing -
C Information File (CUSPI) failed')
C return error
C endif

* Read first (only) record to get encrypted file key

C read(e) cuspirec

C if %eof = '1'

C callp Print('Customer Processing Information -
C (CUSPI) record missing')

C close cuspi

C return error

C endif

* Create a key context for the file key

C eval keySize = %size(KEY)

C eval keyFormat = 'O’

146 1BM Systems - iSeries: Cryptographic Services APIs

:keyType :keyForm :KEKctx
:AESctx :FKctx :QUSEC)

C eval keyType = 22

C eval keyForm = '1'

C callp CrtKeyCtx(KEY :keySize :keyFormat
C

C

* Open CUSDTA

C open(e) cusdta
C if %error = '1'
C callp Print('Open of CUSDTA file failed')
C close cuspi
C return error
C endif
* Get customer information and customer number
C callp Get_Customer_Info(inCusInfo :inCusNum)
* Repeat loop until no more customers to add/update
C dow inCusNum <> 99999999
* Generate an initialization Vector for the customer
C callp GenPRN(QC3IV :16 :'0' :'0' :QUSEC)
* Encrypt customer information
C eval plainLen = %size(CCUSDTA)
C eval cipherLen = %size(CCUSDTA)
C callp EncryptData(inCusInfo :plainLen
C : 'DATA0100" :QC3D0200
C : "ALGD0O200" :FKctx
C :'"KEYDO10O" :csp
C *OMIT :ECUSDTA
C :cipherLen :rtnLen
C :QUSEC)
* Write customer data to file CUSDTA
C if inCusNum = 0
C eval LASTCUS += 1
C eval CCUSNUM = LASTCUS
C eval CARBAL = 10
C eval CCUSDTA = ECUSDTA
C eval CIV = QC3IV
C write(e) cusdtarec
C if %error = '1'
C callp Print('Error occurred writing -
C record to CUSDTA file')
C eval inCusNum = 99999999
C eval rtn = error
C endif
C else
* Read existing customer
C inCusNum chain(e) cusdtarec
C if %error = '1'
C callp Print('Error occurred reading -
C record in CUSDTA file')
C eval inCusNum = 99999999
C eval rtn = error
C endif
C eval CIV = QC3IV
C eval CCUSDTA = ECUSDTA
C update(e) cusdtarec
C if %error = '1'
C callp Print('Error occurred updating -
C record in CUSDTA file')
C eval inCusNum = 99999999
C eval rtn = error
C endif
C endif
C if rtn = ok
C callp Get_Customer_Info(inCusInfo :inCusNum)
C endif
C enddo
C update(e) cuspirec
C if %error = '1'

Cryptographic Services APIs

147

C callp Print('Error occurred updating -
C record in CUSPI file')
C endif

* Cleanup
C eval inCusInfo = *loval
C callp DestroyKeyCtx(FKctx :QUSEC)
C callp DestroyKeyCtx(KEKctx :QUSEC)
C callp DestroyAlgCtx(AESctx :QUSEC)
C close cusdta

C close cuspi

C return rtn

P e

L34
@ | Cryptographic Services APIs I[APIs by category

Example in ILE C: Reading encrypted data from a file

See [Code disclaimer information| for information pertaining to code examples.

Refer to [“Scenario: Key Management and File Encryption Using the Cryptographic Services APIs” on|
[page 134| for a description of this scenario.

b4

2y */
/* */
/* Sample C program: Bill Cus */
/* */
/* COPYRIGHT 5722-SS1 (c) IBM Corp 2004, 2006 */
/* */
/* This material contains programming source code for your */
/* consideration. These examples have not been thoroughly */
/* tested under all conditions. IBM, therefore, cannot */
/* guarantee or imply reliability, serviceability, or function */
/* of these programs. All programs contained herein are */
/* provided to you "AS IS". THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* EXPRESSLY DISCLAIMED. IBM provides no program services for */
/* these programs and files. */
/* */
/* Description: */
/* This is a sample program to demonstrate use of the Cryptographic */
/* Services APIs. APIs demonstrated in this program are: */
/* Create Algorithm Context */
/* Create Key Context */
/* Decrypt Data */
/* Destroy Key Context */
/* Destroy Algorithm Context */
/* */
/* Function: */

/* For each record in the Customer Data file (CUSDTA), check the */
/* accounts receivable balance. If there is a balance, decrypt the x*/
/* customer's data and call Bi11_Cus to create a bill. The customerx/
/* data is encrypted with a file key kept in the Customer Processingx/

/* Information file (CUSPI). */
/* */
/* Refer to the iSeries (TM) Information Center for a full */
/% description of this scenario. */
/* */
/* Use the following commands to compile this program: */
/* CRTCMOD MODULE (MY LIB/BILL_CUS) SRCFILE(MY LIB/MY_SRC) */

148 1BM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm

/* CRTSRVPGM SRVPGM(MY_LIB/BILL_CUS) + */

/* MODULE (MY_LIB/BILL_CUS MY_LIB/CREATE BILL) + */
/* BNDSRVPGM(QC3CTX QC3PRNG QC3DTADE) */
/* */
J e m e e e e e */
Ly S PR */
/* Retrieve various structures/utilities. */
gy */
#include <stdio.h> /* Standard I/0 header */
#include <stdlib.h> /* General utilities */
#include <stddef.h> /* Standard definitions */
#include <string.h> /* String handling utilities */
#include <recio.h> /* Record I/0 routines */
#include <qusec.h> /* Error code structure */
#include <qc3ctx.h> /* Hdr file for Context APIs =*/
#include <qc3dtade.h> /* Hdr file for Decrypt Dta API*/
2 */
/* The following structures were generated with GENCSRC. */
2 */

#ifdef _ cplusplus

#include <bcd.h>

#else

#include <decimal.h>

#endif

[* e e e e e e ——————— *
// PHYSICAL FILE : MY_LIB/CUSPI

// FILE LAST CHANGE DATE : 2004/02/11

// RECORD FORMAT : CUSPIREC

// FORMAT LEVEL IDENTIFIER : 248C15A88E09C

typedef _Packed struct {
char KEY[16]; /* ENCRYPTION KEY =/

#ifndef _ cplusplus
decimal(8, 0) LASTCUS;

#else
_DecimalT< 8, 0> LASTCUS; /* LAST CUSTOMER NUMBER =/
/* BCD class SPECIFIED IN DDS =*/
#endif

} CUSPIREC_both_t;

[* mm e e e e *
// PHYSICAL FILE : MY_LIB/CUSDTA

// FILE LAST CHANGE DATE : 2004/02/11

// RECORD FORMAT : CUSDTAREC

// FORMAT LEVEL IDENTIFIER : 434C857F6F5B3

typedef Packed struct {

#ifndef __cplusplus
decimal(8, 0) CUSNUM;

#else
_DecimalT< 8, 0> CUSNUM; /* CUSTOMER NUMBER =*/
/* BCD class SPECIFIED IN DDS =*/
#endif
char IV[16]; /* INITIALIZATION VECTOR =*/

#ifndef _ cplusplus
decimal(10, 2) ARBAL;

#else
_DecimalT<10, 2> ARBAL; /* ACCOUNTS RECEIVABLE BALANCE =%/
/* BCD class SPECIFIED IN DDS =/

#endif

Cryptographic Services APIs 149

char ECUSDTA[80]; /% ENCRYPTED CUSTOMER DATA */
} CUSDTAREC_both_t;

gy */
/* Function declarations */
ey */
/* Create a bill */
void Create Bill(char *customerData, decimal(10, 2) balance);
gy */
/* Start of mainline code. */
ey */
int Bi11_Cus()
{
gy */
/* Return codes */
2y */
int rtn; /* Return code */
#define ERROR -1
#define 0K 0
J e m e e e e */
/* File handling variables */
== === - ... */
_RFILE *cuspiPtr; /* Pointer to CUSPI file */
_RFILE *cusdtaPtr; /* Pointer to CUSDTA file */
CUSPIREC both_t cuspis /* CUSPI record */
CUSDTAREC_both_t cusdta; /* CUSDTA record */
gy */
/* Parameters needed by the Cryptographic Services APIs */
2y */
Qus_EC_t errCode; /* Error code structure */
char csp; /* Crypto service provider */
Qc3_Format_ALGDO200_T algD; /* Block cipher alg description*/
char AESctx[8]; /* AES alg context token */
int keySize; /* Key size */
char keyFormat; /* Key format */
int keyType; /* Key type */
char keyForm; /* Key form */
int keyStringlLen; /* Length of key string */
Qc3_Format_KEYDO40O T kskey; /* Key store structure */
char KEKctx[8]; /* KEK key context token */
char FKctx[8]; /* File key context token */
char pcusdta[80]; /* Plaintext customer data */
int cipherLen; /* Length of ciphertext */
int plainLen; /* Length of plaintext */
int rtnLen; /* Return length */
gy */
/* Initializations */
gy */

/* Set to generate exceptions =/
memset (&errCode, 0, sizeof(errCode));

/* Use any crypto provider */

csp = Qc3_Any CSP;
2y */
/* Create an AES algorithm context for the key-encrypting key (KEK). x/
2 */

150 1BM Systems - iSeries: Cryptographic Services APIs

memset (&algD, 0, sizeof(algD)); /* Init alg description to nullx/

algD.Block Cipher_ Alg = Qc3_AES; /* Set AES algorithm */
algD.Block_Length = 16; /* Block size is 16 */
algD.Mode = Qc3_CBC; /* Use cipher block chaining */
algD.Pad_Option = Qc3_No_Pad; /* Do not pad */

/* Create algorithm context */
Qc3CreateAlgorithmContext ((unsigned char *)&algD,
Qc3_Alg_Block_Cipher, AESctx, &errCode);

ey */
/* Create a key context for the key-encrypting key (KEK). */
2 */
keyFormat = Qc3_KSLabel Struct; /* Key format is keystore labelx/
keyStringLen = sizeof(kskey); /* Length of key string */
keyType = Qc3_AES; /* Key type is AES */
keyForm = Qc3_Clear; /* Key string is clear */
memset (&kskey, 0, sizeof(kskey)); /* Init name structure to null =/
/* Set key store file name */

memset (kskey.Key Store, 0x40, sizeof(kskey.Key Store));
memcpy (kskey.Key Store,"CUSKEYFILEMY LIB", 16);
/* Set key store label %/
memset (kskey.Record Label, 0x40, sizeof(kskey.Record Label));
memcpy (kskey.Record_Label, "CUSDTAKEK", 9);
/* Create key context */

Qc3CreateKeyContext ((charx)&kskey, &keyStringlLen, &keyFormat, &keyType,

&keyForm, NULL, NULL, KEKctx, &errCode);

2y */
/* Open Customer Processing Information file (CUSPI). */
/* Read first record to obtain the encrypted file key. */
J e m e e e e e */
/* Open CUSPI file */

if ((cuspiPtr = Ropen("MY_LIB/CUSPI", "rr, arrseq=Y, riofb=N"))

== NULL)

{ /* If null ptr returned */
/* Send error message */
printf("Open of Customer Processing Information file (CUSPI) failed
return ERROR; /* Return with error */

}
/* Read the first(only) record */
/* to get encrypted file key. =*/
if ((_Rreadf(cuspiPtr, &cuspi, sizeof(cuspi), _ DFT))->num_bytes

== EOF)

{ /* If record not found */
/* Send error message */

printf("Customer Processing Information (CUSPI) record missing.");
_Rclose(cuspiPtr); /* Close CUSPI file */
return ERROR; /* Return with error */

}

Ly S PR */
/* Create a key context for the file key */
ey */
keySize = sizeof(cuspi.KEY); /* Key size */
keyFormat = Qc3_Bin_String; /* Key format is binary string */
keyType = Qc3_AES; /* Key type is AES */
keyForm = Qc3_Encrypted; /* Key is encrypted with a KEK */
/* Create key context */

Qc3CreateKeyContext (cuspi.KEY, &keySize, &keyFormat, &keyType,
&keyForm, KEKctx, AESctx, FKctx, &errCode);

/* Wipe out the encryptd file key value from program storage and */

N

Cryptographic Services APIs

151

/* close the CUSPI file. */

/* Wipe out encrypted file key =/
memset (cuspi.KEY, 0, sizeof(cuspi.KEY));

_Rclose(cuspiPtr); /* Close CUSPI file */
2 */
/* Open Customer Data file. */
Sy */

/* Open CUSDTA file */
if ((cusdtaPtr = _Ropen("MY_LIB/CUSDTA", "rr, arrseq=Y, riofb=N"))
== NULL)
{ /* If null ptr returned */
/* Send error message */

printf("Open of CUSDTA file failed.");
return ERROR;

}

J == == -~ ... */

/* Read each record of CUSDTA. */

gy */

/* Read next record in file */

/* while not End-0f-File */

while ((_Rreadn(cusdtaPtr, &cusdta, sizeof(cusdta), _ DFT))->num_bytes
I= EOF)

{
S Uy S Sy Sy Sy S Sy S Sy S S Sy ——— */
/* 1f accounts receivable balance > 0, decrypt customer data and */
/* create a bill for the customer. */
2 */

if (cusdta.ARBAL > 0)

{
/* Copy IV to alg description =*/
memcpy (algD.Init_Vector, cusdta.IV, 16);

/* Decrypt customer data */

cipherLen = sizeof(cusdta.ECUSDTA);
plainLen = sizeof(pcusdta);
Qc3DecryptData(cusdta.ECUSDTA, &cipherLen,

(charx)&algD, Qc3_Alg_Block Cipher,

FKctx, Qc3_Key Token,

&csp, NULL, pcusdta, &plainLen, &rtnLen,

&errCode) ;

/* Create bill */
Create Bill(pcusdta, cusdta.ARBAL);
}

}
2y */
/* Cleanup. */
e */

/* Clear plaintext data */
memset (&pcusdta, 0, sizeof(pcusdta));

/* Destroy file key context */
Qc3DestroyKeyContext (FKctx, &errCode);

/* Destroy KEK context */
Qc3DestroyKeyContext (KEKctx, &errCode);

/* Destroy the alg context */
Qc3DestroyAlgorithmContext (AESctx, &errCode);

/* Close CUSDTA file */

152 1BM Systems - iSeries: Cryptographic Services APIs

_Rclose(cusdtaPtr);
/* Return successful */
return 0K;

L34
@ | Cryptographic Services APIs I[APIs by category]

Example in ILE RPG: Reading encrypted data from a file

Note: By using the code examples, you agree to the terms of the [Code license and disclaimer information}

Refer to [“Scenario: Key Management and File Encryption Using the Cryptographic Services APIs” on|

[page 134 for a description of this scenario.
Sample RPG program: bill_cus

COPYRIGHT 5722-SS1 (c) IBM Corp 2004, 2006

This material contains programming source code for your
consideration. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function
of these programs. A1l programs contained herein are
provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
EXPRESSLY DISCLAIMED. 1IBM provides no program services for
these programs and files.

Description: This is a sample program to demonstrate use
of the Cryptographic Services APIs. APIs demonstrated in
this program are:

Create Algorithm Context

Create Key Context

Decrypt Data

Destroy Key Context

Destroy Algorithm Context

Function: For each record in the Customer Data file (CUSDTA),
check the accounts receivable balance. If there is a balance
decrypt the customers data and call bill_cus to create a bill.
The customer data is encrypted with a file key kept in the
Customer Processing Information file (CUSPI).

Refer to the iSeries (TM) Information Center for a full
description of this scenario.

Use the following command to compile this program:
CRTRPGMOD MODULE (MY_LIB/BILL_CUS) SRCFILE(MY_LIB/QRPGLESRC)

E o S T R N I S R R T R G N

H nomain bnddir('QC2LE")

Fcuspi uf e disk usropn
Fcusdta uf a e disk prefix(C) usropn

* System includes
D/Copy QSYSINC/QRPGLESRC,QUSEC
D/Copy QSYSINC/QRPGLESRC,QC3CCI

* Prototypes
DBi11_Cus pr 107 0 extproc('Bi1l_Cus')

DCreate_Bill pr 10i 0 extproc('Create Bill')

Cryptographic Services APIs

153

#TOP_OF_PAGE
aplist.htm
codedisclaimer.htm

D cusDta 1 const

D balance 10 2 value

DCrtAlgCtx pr extproc('Qc3CreateAlgorithmContext')
D algD 1 const

D algFormat 8 const

D AESctx 8

D errCod 1

DCrtKeyCtx pr extproc('Qc3CreatekeyContext')
D key 1 const

D keySize 101 0 const

D keyFormat 1 const

D keyType 107 0 const

D keyForm 1 const

D keyEncKey 8 const options(*omit)

D keyEncAlg 8 const options(*omit)

D keyTkn 8

D errCod 1

DDestroyKeyCtx pr extproc('Qc3DestroyKeyContext')
D keyTkn 8 const

D errCod 1

DDestroyAlgCtx pr extproc('Qc3DestroyAlgorithmContext')
D AESTkn 8 const

D errCod 1

DDecryptData pr extproc('Qc3DecryptData')
D encData 1 const

D encDataSize 107 0 const

D algDesc 1 const

D algDescFmt 8 const

D keyDesc 1 const

D keyDescFmt 8 const

D csp 1 const

D cspDevNam 10 const options(*xomit)

D clrDta 1

D clrLenPrv 107 0 const

D clrLenRtn 101 0

D errCod 1

DPrint pr 101 0 extproc('printf')

D charString 1 const options(*nopass)
PBi11_Cus b export

DBi11_Cus pi 107 0

* Local variable

D csp S 1 inz('0')

D error s 10i 0 inz(-1)

D ok s 107 0 inz(0)

D rtn S 107 0

D rtnLen S 107 0

D plainLen S 107 0

D cipherLen s 107 0

D kekTkn s 8

D AESctx S 8

D KEKctx S 8

D FKctx S 8

D keySize S 101 0

D keyType S 107 0

D keyFormat S 1

D keyForm S 1

D inCusInfo S 80

D inCusNum S 8 0

D ECUSDTA S 80

154 1BM Systems - iSeries: Cryptographic Services APIs

C eval

QUSBPRV = 0

* Create an AES algorithm context for the key-encrypting key (KEK)

C eval QC3D0200 = *Toval
C eval QC3BCA = 22
C eval QC3BL = 16
C eval QC3MODE = '1'
C eval QC3P0 = '0'
C callp CrtATgCtx(QC3D0200 :'ALGDO20O"
C :AESctx :QUSEC)
* Create a key context for the key-encrypting key (KEK)
C eval keySize = %size(QC3D040000)
C eval keyFormat = 'O’
C eval keyType = 22
C eval keyForm = '0'
C eval QC3D040000 = *1oval
C eval QC3KSO00 = 'CUSKEYFILEMY LIB'
C eval QC3RL = '"CUSDTAKEK'
C callp CrtKeyCtx(QC3D040000 :keySize :'4'
C :keyType :keyForm :*OMIT
C :*OMIT :KEKctx :QUSEC)
C
* Open CUSPI file
C open(e) cuspi
C if %error = '1'
C callp Print('Open of Customer Processing -
C Information File (CUSPI) failed')
C return error
C endif
% Read first (only) record to get encrypted file key
C read(e) cuspirec
C if %eof = '1"
C callp Print('Customer Processing Information -
C (CUSPI) record missing')
C close cuspi
C return error
C endif
C close cuspi
* Create a key context for the file key
C eval keySize = %size(KEY)
C eval keyFormat = '0'
C eval keyType = 22
C eval keyForm = '1'
C callp CrtKeyCtx(KEY :keySize :keyFormat
C :keyType :keyForm :KEKctx
C :AESctx :FKctx :QUSEC)
* Wipe out the encrypted file key value from program storage
C eval Key = *1oval
* Open CUSDTA
C open(e) cusdta
C if %error = '1'
C callp Print('Open of CUSDTA file failed')
C close cuspi
C return error
C endif
* Read each record of CUSDTA
C read(e) cusdtarec
C dow %eof <> '1!'

* If accounts receivable balance > 0, decrypt customer data and

* create a bill
C if
* Decrypt customer

C eval
C eval
C eval
C callp
C

CARBAL > 0

information

QC3IV = CIV

plainLen = %size(CCUSDTA)

cipherLen = %size(ECUSDTA)

DecryptData(CCUSDTA :cipherLen
:QC3D0200 :'ALGD0200'

Cryptographic Services APIs

155

C :FKctx :'KEYDO100'
C :csp :*xOMIT
C :ECUSDTA :plainLen
C :rtnlen :QUSEC)
C callp Create Bi11(ECUSDTA :CARBAL)
C endif
C read(e) cusdtarec
C enddo
* Cleanup
C eval ecusdta = *loval
C callp DestroyKeyCtx(FKctx :QUSEC)
C callp DestroyKeyCtx(KEKctx :QUSEC)
C callp DestroyAlgCtx(AESctx :QUSEC)
C close cusdta
C return ok
P e

L34
IEE' | Cryptographic Services APIs I[APIs by category

Cryptographic Services Master Keys

The eServer i5 server is capable of storing eight master keys, which cannot be directly modified or
accessed by the user (including the security officer). These master keys are 256-bit AES keys and can be
used with the cryptographic services APIs to protect other keys.

Each master key is composed of three 32-byte values, called versions. The versions are new, current, and
old. The new master key version contains the value of the master key while it is being loaded. The
current master key version contains the active master key value. This is the value that will be used when
a master key is specified on a cryptographic operation (unless specifically stated otherwise). The old
master key version contains the previous current master key version. It is used to prevent the loss of data
and keys when the master key is changed.

The [“Load Master Key Part (QC3LDMKP, Qc3LoadMasterKeyPart)” on page 104 API loads a key part
into the new master key version. To ensure no single person has the ability to reproduce a master key,
assign different key parts to different individuals.

The [“Set Master Key (QC3SETMK, Qc3SetMasterKey)” on page 108/ API copies the current master key
version into the old master key version, copies the new master key version into the current master key
version, and then clears the new master key version by setting it to binary Os.

The current and old master key versions each have a 20-byte key verification value (KVV). The KVV is
used to determine if the master key has changed. Use the [“Test Master Key (QC3TSTMK)
[QcTestMasterKey)” on page 109 API to retrieve the KVV values. In addition, if a KVV is associated with
a key when that key is encrypted under a master key, the KVV can be used later to determine if the
master key has changed, and if the encrypted key should be re-encrypted.

The [“Clear Master Key (QC3CLRMK, Qc3ClearMasterKey)” on page 85| API clears a new or old master
key version by setting it to binary Os.

Each of these APIs create a security CY audit record.
The server’s master keys are not saved as part of a SAVSYS operation. Therefore, the passphrases used

with Load Master Key Part should be saved so that a master key can be restored in the event it is lost.
For example, the master keys will be destroyed when the licensed internal code is installed.

156 1BM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm

Whenever a master key is changed, all keys encrypted under that master key require re-encryption. For
key store files, use the [“Translate Key Store (QC3TRNKS, Qc3TranslateKeyStore)” on page 111] APIL For
keys stored outside a key store file, use the [“Export Key (QC3EXPKY, Qc3ExportKey)” on page 89| then
[“Import Key (QC3IMPKY, Qc3ImportKey)” on page 101] APIs. For more information about key store files,
refer to [“Cryptographic Services Key Store.”]

Whenever a key is encrypted under a master key, the KVV for the current version of the master key is
returned. Keys encrypted under a master key can be stored in a key store file, or stored at the discretion
of the user. When a key is stored in a key store file, the KVV of the master key is stored in the key record
along with the key value. When a key encrypted under a master key is stored by the user, the user
should also save the KVV. When a key encrypted under a master key is used on an API and the master
key KVV is supplied, cryptographic services will check the supplied KVV against the master key
versions” KVVs. If the supplied KVV matches the current version KVV, the operation will proceed
normally. If the supplied KVV matches the old version KVYV, the operation will proceed but return a
diagnostic to the API and to QSYSOPR informing the user that the key needs retranslation. If the
supplied KVV matches neither, the operation will end with an error.

&

@ | [“Cryptographic Services APIs,” on page 1| | |APIs by category]|

Cryptographic Services Key Store

Before reading this information, review the information in [Cryptographic Services Master Keys” on page
-156.

Cryptographic services key store is a set of database files used for storing cryptographic keys. A key store
file is created using the |“Create Key Store (QC3CRTKS, Qc3CreateKeyStore)” on page 86/ API. Any type
of key supported by cryptographic services (e.g. DES, RC2, RSA, MD5-HMAC) can be stored in a key
store file. Keys stored in a cryptographic services key store file can be used with the cryptographic
services APIs in operations on data or keys.

Keys are added to a key store file using the [“Write Key Record (QC3WRTKR, Qc3WriteKeyRecord)” on|
[page 112 or [Generate Key Record (QC3GENKR, Qc3GenKeyRecord)” on page 98/ API. Each record in a
key store file holds a key or key pair. When the key store file is created, the user specifies the master key
under which the key values will be encrypted before storing (except for RSA public key values which are
stored in plaintext.) Besides the key value, the record contains the key type (e.g. TDES, AES, RSA), the
key size, the key verification value (KVV) of the master key at the time the key value was encrypted, and
a label. All fields in the key store record are stored as CCSID 65535 except for the record label. The record
label will be converted from the job CCSID or the job default CCSID to Unicode UTF-16 (CCSID 1200).

Use the [‘Retrieve Key Record Attributes (QC3RTVKA, Qc3RetrieveKeyRecordAtr)” on page 106| API to
retrieve the key type, key size, master key ID, and KVV for a given key record.

If a master key for a key store file is changed, the keys in that file must be re-encrypted. The
[Key Store (QC3TRNKS, Qc3TranslateKeyStore)” on page 111| API can be used to translate key store keys
to another master key, or if the same master key is specified, to the current version of the master key.

When a key store key is used, the KVV stored in the record is compared with the KVVs for the master
key to determine under which version of the master key the key store key is encrypted. If the KVV
matches the current version KVV, the operation proceeds normally. If the KVV matches the old version
KVYV, the operation proceeds but a warning is issued. The user should use the Translate Key Store API to
re-encrypt the key store file. If the KVV matches neither, an error is returned indicating the key store key
is outdated. It cannot be recovered unless the master key under which it is encrypted is restored.

Cryptographic Services APIs 157

#TOP_OF_PAGE
aplist.htm

After a key store file is changed by adding keys or translating the key values, make a backup of the key
store file (e.g by using SAVOB]).

To export key store keys to another system, use the [“Export Key (QC3EXPKY, Qc3ExportKey)” on page|
API which will return the key value encrypted under another key. Because this API can be used to
obtain clear key values, care should be taken to restrict access to this APL

[‘Delete Key Record (QC3DLTKR, Qc3DeleteKeyRecord)” on page 88| API deletes a key record from a key
store file.

&

IEE' | [“Cryptographic Services APIs,” on page 1| | |APIs by category|

158 1BM Systems - iSeries: Cryptographic Services APIs

#TOP_OF_PAGE
aplist.htm

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2006 159

IBM Corporation

Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,
IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

(C) IBM 2006. Portions of this code are derived from IBM Corp. Sample Programs. (C) Copyright IBM
Corp. 1998, 2006. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This Application Programming Interfaces (API) publication documents intended Programming Interfaces
that allow the customer to write programs to obtain the services of IBM i5/0S.

160 1BM Systems - iSeries: Cryptographic Services APIs

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:
Advanced 36

Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP

AIX

AS/400

COBOL/400

CUA

DB2

DB2 Universal Database
Distributed Relational Database Architecture
Domino

DPI

DRDA

eServer

GDDM

IBM

Integrated Language Environment
Intelligent Printer Data Stream
IPDS

i5/0S

iSeries

Lotus Notes

MVS

Netfinity

Net.Data

NetView

Notes

OfficeVision

Operating System/2
Operating System /400

0s/2

0S/400

PartnerWorld

PowerPC

PrintManager

Print Services Facility

RISC System /6000

RPG /400

RS/6000

SAA

SecureWay

System/36

System /370

System/38

System /390

VisualAge

WebSphere

xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Appendix. Notices 161

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and Conditions

Permissions for the use of these Publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these Publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
Publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these Publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these Publications, or reproduce, distribute or display these Publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the Publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations. IBM MAKES NO
GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS"” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE

162 1BM Systems - iSeries: Cryptographic Services APIs

Printed in USA

	Contents
	Cryptographic Services APIs
	APIs
	Encryption and Decryption APIs
	Decrypt Data (QC3DECDT, Qc3DecryptData)
	Authorities and Locks
	Required Parameter Group
	Algorithm Description Formats
	ALGD0100 format
	ALGD0200 format
	ALGD0300 format
	ALGD0400 format
	Algorithm Description Formats Field Descriptions

	Key Description Formats
	KEYD0100 format
	KEYD0200 format
	KEYD0400 format
	KEYD0500 format
	KEYD0600 format
	KEYD0700 format
	KEYD0800 format
	KEYD0900 format
	Key Description Formats Field Descriptions

	Error Messages

	Encrypt Data (QC3ENCDT, Qc3EncryptData)
	Authorities and Locks
	Required Parameter Group
	Clear Data Formats
	DATA0200 format

	Clear Data Formats Field Descriptions
	Algorithm Description Formats
	ALGD0100 format
	ALGD0200 format
	ALGD0300 format
	ALGD0400 format
	Algorithm Description Formats Field Descriptions

	Key Description Formats
	KEYD0100 format
	KEYD0200 format
	KEYD0400 format
	KEYD0500 format
	KEYD0600 format
	KEYD0700 format
	KEYD0800 format
	KEYD0900 format
	Key Description Formats Field Descriptions

	Error Messages

	Translate Data (QC3TRNDT, Qc3TranslateData)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Authentication APIs
	Calculate Hash (QC3CALHA, Qc3CalculateHash)
	Authorities and Locks
	Required Parameter Group
	Input Data Formats
	DATA0200 format
	Input Data Formats Field Descriptions

	Algorithm Description Formats
	ALGD0100 format
	ALGD0500 format
	Algorithm Description Formats Field Descriptions

	Error Messages

	Calculate HMAC (QC3CALHM, Qc3CalculateHMAC)
	Authorities and Locks
	Required Parameter Group
	Input Data Formats
	DATA0200 format
	Input Data Formats Field Descriptions

	Algorithm Description Formats
	ALGD0100 format
	ALGD0500 format
	Algorithm Description Formats Field Descriptions

	Key Description Formats
	KEYD0100 format
	KEYD0200 format
	KEYD0400 format
	KEYD0500 format
	Key Description Formats Field Descriptions

	Error Messages

	Calculate MAC (QC3CALMA, Qc3CalculateMAC)
	Authorities and Locks
	Required Parameter Group
	Input Data Formats
	DATA0200 format

	Input Data Formats Field Descriptions
	Algorithm Description Formats
	ALGD0100 format
	ALGD0200 format

	Algorithm Description Formats Field Descriptions
	Key Description Formats
	KEYD0100 format
	KEYD0200 format
	KEYD0400 format
	KEYD0500 format
	Key Description Formats Field Descriptions

	Error Messages

	Calculate Signature (QC3CALSG, Qc3CalculateSignature)
	Authorities and Locks
	Required Parameter Group
	Input Data Formats
	DATA0200 format
	Input Data Formats Field Descriptions

	Algorithm Description Formats
	ALGD0100 format
	ALGD0400 format
	Algorithm Description Formats Field Descriptions

	Key Description Formats
	KEYD0100 format
	KEYD0200 format
	KEYD0400 format
	KEYD0900 format
	Key Description Formats Field Descriptions

	Error Messages

	Verify Signature (QC3VFYSG, Qc3VerifySignature)
	Authorities and Locks
	Required Parameter Group
	Input Data Formats
	DATA0200 format
	Input Data Formats Field Descriptions

	Algorithm Description Formats
	ALGD0100 format
	ALGD0400 format
	Algorithm Description Formats Field Descriptions

	Key Description Formats
	KEYD0100 format
	KEYD0200 format
	KEYD0400 format
	KEYD0600 format
	KEYD0700 format
	KEYD0800 format
	Key Description Formats Field Descriptions

	Error Messages

	Key Generation APIs
	Calculate Diffie-Hellman Secret Key (QC3CALDS, Qc3CalculateDHSecretKey)
	Authorities and Locks
	Required Parameter Group
	Error Messages
	Example of Three-Party Shared Secret Key Exchange

	Generate Diffie-Hellman Key Pair (QC3GENDK, Qc3GenDHKeyPair)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Generate Diffie-Hellman Parameters (QC3GENDP, Qc3GenDHParms)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Generate PKA Key Pair (QC3GENPK, Qc3GenPKAKeyPair)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Generate Symmetric Key (QC3GENSK, Qc3GenSymmetricKey)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Key Management APIs
	Clear Master Key (QC3CLRMK, Qc3ClearMasterKey)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Create Key Store (QC3CRTKS, Qc3CreateKeyStore)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Delete Key Record (QC3DLTKR, Qc3DeleteKeyRecord)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Export Key (QC3EXPKY, Qc3ExportKey)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Extract Public Key (QC3EXTPB, Qc3ExtractPublicKey)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Generate Key Record (QC3GENKR, Qc3GenKeyRecord)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Import Key (QC3IMPKY, Qc3ImportKey)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Load Master Key Part (QC3LDMKP, Qc3LoadMasterKeyPart)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Retrieve Key Record Attributes (QC3RTVKA, Qc3RetrieveKeyRecordAtr)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Set Master Key (QC3SETMK, Qc3SetMasterKey)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Test Master Key (QC3TSTMK, QcTestMasterKey)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Translate Key Store (QC3TRNKS, Qc3TranslateKeyStore)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Write Key Record (QC3WRTKR, Qc3WriteKeyRecord)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Pseudorandom Number Generation APIs
	Add Seed for Pseudorandom Number Generator (QC3ADDSD, Qc3AddPRNGSeed) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Generate Pseudorandom Numbers (QC3GENRN, Qc3GenPRNs) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Cryptographic Context APIs
	Create Algorithm Context (QC3CRTAX, Qc3CreateAlgorithmContext)
	Authorities and Locks
	Required Parameter Group
	Algorithm Description Formats
	ALGD0200 format
	ALGD0300 format
	ALGD0400 format
	ALGD0500 format
	Algorithm Description Formats Field Descriptions

	Standards Resources
	Error Messages

	Create Key Context (QC3CRTKX, Qc3CreateKeyContext)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Destroy Algorithm Context (QC3DESAX, Qc3DestroyAlgorithmContext)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Destroy Key Context (QC3DESKX, Qc3DestroyKeyContext)
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Concepts
	i5/OS and 2058 Cryptographic Function Comparison
	Scenario: Key Management and File Encryption Using the Cryptographic Services APIs
	Warning: Temporary Level 3 Header
	Setup_Cus
	Examples
	Write_Cus
	Examples
	Bill_Cus
	Examples

	Other Considerations

	Example in ILE C: Writing encrypted data to a file
	Example in ILE RPG: Writing encrypted data to a file
	Example in ILE C: Reading encrypted data from a file
	Example in ILE RPG: Reading encrypted data from a file
	Cryptographic Services Master Keys
	Cryptographic Services Key Store

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions

