Concevoir plus rapidement des systèmes de plus en plus flexibles et complexes

Agile Model-Based Systems Engineering (aMBSE)

Bruce Powel Douglass, Ph.D.

Chief Evangelist, Global Technology Ambassador IBM Rational

Bruce.Douglass@us.ibm.com

Twitter: @BruceDouglass

Yahoo: tech.groups.yahoo.com/group/RT-UML/

IBM: www-01.ibm.com/software/rational/leadership/thought/BruceDouglass.html

Jeudi 27 mars 2014 à l'IBM Client Center Paris

State of the Practice for Systems Development

- Systems Engineering Environments in general
 - Are document-centric
 - Require huge investment in planning that doesn't reflect actual project execution
 - Have difficulty adapting to change.
 - Require expensive and error-prone manual review and update processes.
 - Require long integration and validation cycles
 - Are difficult to maintain over the long haul
- Additional standards constraints (eg DO-178C, ARP4761, ISO26262, AUTOSAR, DoDAF) add to the challenge
 - Tooling Selection
 - Dependability engineering
 - Safety
 - Reliability
 - Security
 - System certification

Jeudi 27 mars 2014 à l'IBM Client Center Paris

What do we mean by "verification"?

- **Syntactic verification** "well-formedness" (*compliance in form*)
 - Performed by quality assurance personnel
 - Two types
 - Audits work tasks are performed as per plan and guidelines
 - Syntactic review work products conform to standard for organization, structure and format
 - Ex:
 - Requirements shall be uniquely numbered, be organized by use case, use the word "shall" to indicate the normative phrase of a requirement; functional requirements shall be modified by at least one quality of service requirement, ...
- Semantic verification "correct" (compliance in meaning)
 - Performed by engineering personnel
 - Three basic techniques
 - Testing requires Executability of work products, impossible to fully verify
 - Formal methods strongest but hard to do and subject to invariant violation
 - Semantic review (subject matter expert & peer) most common, weakest means

What does "agile" mean for Systems Engineering?

- Do what you need to do, no more and no less
 - This depends heavily on industry, regulation, and business environment
 - Provide the necessary level of rigor, precision, and repeatability
 - Often requires detailed traceability links among work products (e.g. requirements traceability)
 - Use tooling to automate manually-intensive, error-prone worl
- Work iteratively and incrementally
 - Group requirements with user stories or use cases
 - Incrementally add traceability
 - Incrementally develop system architecture
- Verify work products continuously
 - With syntactic verification (Q/A) activities
 - With semantic verification
 - With customer (aka "validation")
- Outcome contains textual specifications but also linked executable specifications
- Use dynamic planning to adjust project plans based on "ground truth" and responsiveness to change
 - Use goal-based metrics (KPIs) to track project progress
 - Continuously track progress against plan. Adjust planning frequently
 - Safety, Reliability, Dependability
 - Not "done once" but continuously assessed

Best Practices for Agile Systems Engineering

- High-fidelity model-based engineering (Hi-MBE)
- Incremental functional analysis with use cases
- Test-driven development of system specifications
 - –Example: Requirements verification via executable requirements modeling with SysML / UML
- Project risk management
- Incrementally add traceability
- Integrated safety and reliability analysis
- Model-based handoff to downstream engineering
- Automated document generation from model artifacts

Note: a key difference between agile SW and agile SE is that the *outcome* of SE is *specifications* and the *outcome* of SW is *implementation*

0

Model-Based Systems Engineering and Agile?

Advantages of MBSE

- Precision
 - Models constructed in formal (or semi-formal) languages are more precise than text
 - Recommendation: Link description informal text to precise, formal models
- Verification
 - Models can be executed, simulated, or (formally) analyzed
 - Requirements models
 - Architecture models
 - Dependability models
 - Control models
- Improved Handoff from systems engineering to downstream engineering
 - Precise models are less likely to be misinterpreted
 - If systems and software engineers use the same modeling languages, then no translation is required
- Improved understanding of architecture
- Improved visualization of functional, structural, and behavioral aspects
 - Decreased design learning time

IBM. 👸

IBM. 👸

.

6

Requirements Verification Using Rhapsody and Simulink

Test-Driven Development isn't just for software anymore

- The principle behind TDD is to develop and apply test cases as you develop a system to demonstrate that it is correct
 - This is done in parallel with the system development and *not* ex post facto
 - This is about *defect avoidance* not so much *defect identification and repair*
- TDD applies to the development of complex system use case models
 - During the nanocycle of a use case's development
 - Make small incremental changes (e.g. add a state, or a couple of actions, or a transition or two)
 - Identify what is the desired behavior of the system that you've specified so far
 - Execute that incomplete use case model to ensure that it is correct
 - Repeat until all requirements for the use case and all scenarios defined for the use case have been met in the normative specification
- TDD may be realized in SE Models

0

- By "instrumenting the actors" specifying behavior of the actors to perform tests
- Tooling implementing the UML Profile for Test (e.g. Test Conductor[™] and Automatic Test Generator[™])
- Manually writing test scripts

Traceability

- Traceability serves a number of purposes
 - It allows *impact analysis* what is the impact if I change this element?
 - It allows for coverage analysis are all elements realized?
 - It allows for *consistency analysis* are these different elements in different work products consistent and compatible with each other?

Traceability in Models

0

#IBMSymposiumSystemes

Jeudi 27 mars 2014 à l'IBM Client Center Paris

0

Integrated Dependability Analysis: UML Fault Tree Analysis Profile

Integrated Dependability Analysis: UML Security Analysis Profile

- Security Analysis Diagram (SAD) is like a Fault Tree Analysis (FTA) but for security, rather than safety
 - It looks for the logical relation between assets, vulnerabilities, attacks, and security violations
 - Permits reasoning about security
 - What kind?
 - How much?

0

Risk assessments

#IBMSymposiumSystemes

IBM. 👸

Auto-generation of documents (summary data) Fault Source Matrix, Fault Detection Matrix, Fault-Requirement Matrix, FMEA, Hazard Analysis...

AlarmManager		GasFlowSensor	Pump	Pressures	Sensor 🛃	SpO2Sensor	GasValve	PumpCo	PumpController		or 🗎	PowerSupplyRegulat	
Gas Supply Fault							SasValve						
Ventilator Pump Fault			`ຼຼາ Pump										
S → Ventilator Parameter Setting wrong								S PumpCo	ntroller_0				
Ventilat	Scope: DesignModel	1											
	scope. bealgrinoue	GasFlowSensor	Pressure	eSensor 📋 i	PumpController	GasMixer	PowerSu	pplyRegulator	Batte	ry 🗐 Prote	ctedCRCCI	ass 🗒	CO2Ser
Gas Supply Fault		GasElowSensor								-			
1 C Breathing Circuit Leak	<u> </u>	To: Requirement Scope: Requi	irementsAnalysis		-	-		-	-				
Ventilator Pump Fault	1 For			REG BCW 03	REQ_BCM_11	REQ_VD_03	REQ_VD_04	REQ_VD_06	E REQ_SPU	2_UI REQ_V	0_08	REQ_VD_10	E REQ.
y Ventilation Parameter Se	tting wrong	Gas Supply Fault		-		S REQ_VD_03	SI REQ_VD_04	S REQ_VD_06		SI REQ_V	J_08		
Gas Flo	Incorrect	Breathing Circuit Leak		-		"J REQ_VD_03	"J REQ_VD_04	J REQ_VD_06					_
Backup		Ventilator Pump Fault	8760015					ש REQ_VD_06					_
SpO2 S	Breatning Circu	Ventilator Parameter Setting w	rong	No. No. Sold Constant of Constant		-							_
Breathin 2 O 2 Supply Fault	faza	Ventilator Computation Incorre	ect	LA REQ_BCM_09									
S Inspirat	al Channel fails	Esophageal Intubation						1 REQ_VD_06					_
Expirate	niting Fails	Patient disconnect from Breath	ning Circuit			-							
S Ventilator Parameter CF	C check fails	Power Supply Fault											SI REQ_
G Backup Power Fails	1 00	Failure to Alarm											
SpO2 Sensor Fault	ndit	O2 Supply Fault		ŕ		Liberta and a second second second		~	-	- Incompany			
8 Breathing Circuit O2 Ser	nsor Fault	Redundant computational Char	nnel fails						Fau	+			Safet
Expiratory Limb CO2 set	nsor fault	Ventilator Parameter Limiting Fi	ails					Fault	tole	rance Proba	ibi Seve	r	integ
	sfer	♦ Gas Flow Sensor Fault		Hazard		Description		toleranci			ity	RISK	y ieve
	9	Ventilator Parameter CRC chec	ck fails										
	prato	♦ Backup Power Fails				brain and other	ard occurs when to organs receive	ne					
	2	SpO2 Sensor Fault				insufficient oxyg	en. In a normal 21 death or irreversi	%					
	ndev	Sreathing Circuit O2 Sensor Fa	sult			injury occurs aft	er five minutes of r	10				0.005	
	relo	Inspiratory Pressure Sensor Fault		Hypoxia	Hypoxia oxygen. If the pa 100% for a sign		ificant period of time,		5 min	ites 1.0	02	8 02	02 :
	ped	Expiratory Limb CO2 sensor fail	ult			this time is about	it 10 minutes.	·					
ceability improves your ability to			Overpressu	Overpressure ca			gs.	200 s milli	second 1.00E	+0	3.00E+0	2	
				possibly fatal		o neonates.		200 0					
ke vour safety/security case		Hyperovia	Hyperoxia to peopates		lems are usually limited		10 min	1.00E	+0	4.00E+0)		
te your surcey/seet	unity ous	0				blindness.	cre il carreause				Ŭ.	·	
						Inadequate ane	sthesia leads to na	tient					
			_			discomfort and	memory retention	of the		1.005		2.005.0	
nerate documents are a natural (and			Inadequate	anesthesia	not life threateni	ng but can be sev	erely	5 min	ites 1.00E	4	2 2.002+0	í	
			•			discomforting.							
omated) outcome of engineering			Over anestr	nesia				3 min	ites 1.00E	3	4 4.00E+0 3	3	
		3				Over anesthesia	a can lead to death	.					

IBM. 👸

Canonical Model Organization

#IBMSymposiumSystemes

Jeudi 27 mars 2014 à l'IBM Client Center Paris

6

Canonical System Engineering Model Organization

Summary

6

- Systems Engineering capability can be greatly enhanced with two key technologies
 - MBSE Use of SysML/UML Modeling to capture system
 - Functionality and Qualities of service (executable use cases)
 - Structure (architecture)
 - Model-based hand off to downstream engineering
 - Automatic generation of documentation from model-based work products
 - Agile methods employing
 - Incremental construction and verification of models
 - Test Driven Development nanocycle-level iteration
 - Incorporating dependability analysis with the SE workflow
 - Incremental traceability
- Harmony best practice workflows can be employed in an agile way
 - Process guidance linked guidance to performance of tasks and creation of work products
 - Project Planning create project plans with Harmony process templates in Rational Team Concert
 - Project Governance monitor KPIs in project dashboards

References

Jeudi 27 mars 2014 à l'IBM Client Center Paris

IBM. Ö