
Agile Model-Based Systems

Engineering (aMBSE)
Bruce Powel Douglass, Ph.D.
Chief Evangelist, Global Technology Ambassador

IBM Rational

Bruce.Douglass@us.ibm.com

Twitter: @BruceDouglass

Yahoo: tech.groups.yahoo.com/group/RT-UML/

IBM: www-01.ibm.com/software/rational/leadership/thought/BruceDouglass.html

State of the Practice for Systems Development
� Systems Engineering Environments in general

– Are document-centric

– Require huge investment in planning that doesn’t reflect actual project execution

– Have difficulty adapting to change.

– Require expensive and error-prone manual review and update processes.

– Require long integration and validation cycles

– Are difficult to maintain over the long haul

� Additional standards constraints

(eg DO-178C, ARP4761, ISO26262,

AUTOSAR, DoDAF) add to the challenge

– Tooling Selection

– Dependability engineering

• Safety

• Reliability

• Security

– System certification

2

What do we mean by “verification”?
� Syntactic verification – “well-formedness” (compliance in form)

– Performed by quality assurance personnel

– Two types

• Audits – work tasks are performed as per plan and guidelines

• Syntactic review – work products conform to standard for organization, structure

and format

– Ex:

• Requirements shall be uniquely numbered, be organized by use case, use the

word “shall” to indicate the normative phrase of a requirement; functional

requirements shall be modified by at least one quality of service requirement, E

� Semantic verification – “correct” (compliance in meaning)

– Performed by engineering personnel

– Three basic techniques

• Testing – requires Executability of work products, impossible to fully verify

• Formal methods – strongest but hard to do and subject to invariant violation

• Semantic review (subject matter expert & peer) – most common, weakest means

3

What does “agile” mean for Systems Engineering?
� Do what you need to do, no more and no less

– This depends heavily on industry, regulation, and business environment

– Provide the necessary level of rigor, precision, and repeatability

– Often requires detailed traceability links among work products (e.g. requirements traceability)

– Use tooling to automate manually-intensive, error-prone work

� Work iteratively and incrementally
– Group requirements with user stories or use cases

– Incrementally add traceability

– Incrementally develop system architecture

� Verify work products continuously

– With syntactic verification (Q/A) activities

– With semantic verification

– With customer (aka “validation”)

� Outcome contains textual specifications but also linked executable specifications

� Use dynamic planning to adjust project plans based on “ground truth” and responsiveness
to change

– Use goal-based metrics (KPIs) to track project progress

– Continuously track progress against plan. Adjust planning frequently

� Safety, Reliability, Dependability
– Not “done once” but continuously assessed

4

Best Practices for Agile Systems Engineering
� High-fidelity model-based engineering (Hi-MBE)

� Incremental functional analysis with use cases

� Test-driven development of system specifications

–Example: Requirements verification via executable requirements modeling with

SysML / UML

� Project risk management

� Incrementally add traceability

� Integrated safety and reliability analysis

� Model-based handoff to downstream engineering

� Automated document generation from model artifacts

5

5

Note: a key difference between agile SW
and agile SE is that the outcome of SE is
specifications and the outcome of SW is
implementation

Model-Based Systems Engineering and Agile?

6

Advantages of MBSE
� Precision

– Models constructed in formal (or semi-formal) languages are more precise than text

– Recommendation: Link description informal text to precise, formal models

� Verification

– Models can be executed, simulated, or (formally) analyzed

• Requirements models

• Architecture models

• Dependability models

• Control models

� Improved Handoff from systems engineering to downstream engineering

– Precise models are less likely to be misinterpreted

– If systems and software engineers use the same modeling languages, then no

translation is required

� Improved understanding of architecture

� Improved visualization of functional, structural, and behavioral aspects

� Decreased design learning time

7

Trade study

Model

Trade study

Model

Trade study

Model

Models and Viewpoints in Model-Based Systems Engineering

8

Functional

Model

Executable use cases

Functional and

QoS requirements

Dependability

Model

Safety, reliability,

and security analysis

FTA, FMEA, FEMCA,

Asset Diagram, SAD

Control

Model

Control algorithms,

mathematical models

Architectural

Model

Subsystems, interfaces,

Subsystem use cases/

Requirements

Model-based
handoff

Subsystem

Model(s)

Mechanical

Specification

Electronic

Specification

Software

Specification Model and text

Model and text

Model and textHeat

Power
WeightStability

9

Making it Agile
Loop

Loop
Conceptualize requirement aspect
Incrementally augment model
Verify

Repeat until all requirements added
Repeat for all use cases

< 1 hr

Scenario Driven Use Case Construction / Validation

Requirements Verification Using Rhapsody and Simulink

10

Test-Driven Development isn’t just for software anymore

� The principle behind TDD is to develop and apply test cases as you develop a system to

demonstrate that it is correct

– This is done in parallel with the system development and not ex post facto

– This is about defect avoidance not so much defect identification and repair

� TDD applies to the development of complex system use case models

– During the nanocycle of a use case’s development

• Make small incremental changes (e.g. add a state, or a couple of actions, or a

transition or two)

• Identify what is the desired behavior of the system that you’ve specified so far

• Execute that incomplete use case model to ensure that it is correct

• Repeat until all requirements for the use case and all scenarios defined for the use

case have been met in the normative specification

� TDD may be realized in SE Models

– By “instrumenting the actors” – specifying behavior of the actors to perform tests

– Tooling implementing the UML Profile for Test (e.g. Test Conductor™ and Automatic

Test Generator™)

– Manually writing test scripts

11

Traceability
� Traceability serves a number of purposes

– It allows impact analysis – what is the impact if I change this element?

– It allows for coverage analysis – are all elements realized?

– It allows for consistency analysis – are these different elements in different work

products consistent and compatible with each other?

12
Gold plating?

Unimplemented

requirement

Traceability in Models

13

Important to Relate Safety Information Through Lifecycle

14

Integrated Dependability Analysis: UML Fault Tree Analysis Profile

15

� Security Analysis Diagram

(SAD) is like a Fault Tree

Analysis (FTA) but for

security, rather than safety

– It looks for the logical

relation between assets,

vulnerabilities, attacks,

and security violations

– Permits reasoning about

security

• What kind?

• How much?

• Risk assessments

16

Integrated Dependability Analysis: UML Security Analysis Profile

Auto-generation of documents (summary data)

17

Fault Source Matrix, Fault Detection Matrix, Fault-Requirement Matrix, FMEA, Hazard Analysis)

Traceability improves your ability to

make your safety/security case

Generate documents are a natural (and

automated) outcome of engineering

work rather than as a separate activity

Model-Based Hand-off to Downstream Engineering

18

Canonical Model Organization

19

Canonical System Engineering Model Organization

20

Summary
� Systems Engineering capability can be greatly enhanced with two key technologies

– MBSE - Use of SysML/UML Modeling to capture system

• Functionality and Qualities of service (executable use cases)

• Structure (architecture)

• Model-based hand off to downstream engineering

• Automatic generation of documentation from model-based work products

– Agile methods employing

• Incremental construction and verification of models

• Test Driven Development nanocycle-level iteration

• Incorporating dependability analysis with the SE workflow

• Incremental traceability

� Harmony best practice workflows can be employed in an agile way

– Process guidance – linked guidance to performance of tasks and creation of work products

– Project Planning – create project plans with Harmony process templates in Rational Team Concert

– Project Governance – monitor KPIs in project dashboards

21

References

22

