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State of the Practice for Systems Development
� Systems Engineering Environments in general

– Are document-centric

– Require huge investment in planning that doesn’t reflect actual project execution

– Have difficulty adapting to change.  

– Require expensive and error-prone manual review and update processes. 

– Require long integration and validation cycles

– Are difficult to maintain over the long haul

� Additional standards constraints 

(eg DO-178C, ARP4761, ISO26262, 

AUTOSAR, DoDAF) add to the challenge

– Tooling Selection

– Dependability engineering

• Safety

• Reliability

• Security

– System certification
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What do we mean by “verification”?
� Syntactic verification – “well-formedness” (compliance in form)

– Performed by quality assurance personnel

– Two types

• Audits – work tasks are performed as per plan and guidelines

• Syntactic review – work products conform to standard for organization, structure 

and format

– Ex:

• Requirements shall be uniquely numbered, be organized by use case, use the 

word “shall” to indicate the normative phrase of a requirement; functional 

requirements shall be modified by at least one quality of service requirement, E

� Semantic verification – “correct” (compliance in meaning)

– Performed by engineering personnel

– Three basic techniques

• Testing – requires Executability  of work products, impossible to fully verify

• Formal methods – strongest but hard to do and subject to invariant violation

• Semantic review (subject matter expert & peer) – most common, weakest means
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What does “agile” mean for Systems Engineering?
� Do what you need to do, no more and no less

– This depends heavily on industry, regulation, and business environment

– Provide the necessary level of rigor, precision, and repeatability

– Often requires detailed traceability links among work products (e.g. requirements traceability)

– Use tooling to automate manually-intensive, error-prone work

� Work iteratively and incrementally
– Group requirements with user stories or use cases

– Incrementally add traceability

– Incrementally develop system architecture

� Verify work products continuously

– With syntactic verification (Q/A) activities

– With semantic verification

– With customer (aka “validation”)

� Outcome contains textual specifications but also linked executable specifications

� Use dynamic planning to adjust project plans based on “ground truth” and responsiveness 
to change

– Use goal-based metrics (KPIs) to track project progress

– Continuously track progress against plan. Adjust planning frequently

� Safety, Reliability, Dependability
– Not “done once” but continuously assessed
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Best Practices for Agile Systems Engineering
� High-fidelity model-based engineering (Hi-MBE)

� Incremental functional analysis with use cases

� Test-driven development of system specifications

–Example: Requirements verification via executable requirements modeling with 

SysML / UML

� Project risk management

� Incrementally add traceability

� Integrated safety and reliability analysis

� Model-based handoff to downstream engineering

� Automated document generation from model artifacts
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Note: a key difference between agile SW 
and agile SE is that the outcome of SE is 
specifications and the outcome of SW is 
implementation



Model-Based Systems Engineering and Agile?
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Advantages of MBSE
� Precision

– Models constructed in formal (or semi-formal) languages are more precise than text

– Recommendation: Link description informal text to precise, formal models

� Verification

– Models can be executed, simulated, or (formally) analyzed

• Requirements models

• Architecture models

• Dependability models

• Control models

� Improved Handoff from systems engineering to downstream engineering

– Precise models are less likely to be misinterpreted

– If systems and software engineers use the same modeling languages, then no 

translation is required

� Improved understanding of architecture

� Improved visualization of functional, structural, and behavioral aspects

� Decreased design learning time
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Trade study
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Trade study

Model
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Models and Viewpoints in Model-Based Systems Engineering
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Making it Agile
Loop

Loop
Conceptualize requirement aspect
Incrementally augment model
Verify

Repeat until all requirements added
Repeat for all use cases

< 1 hr

Scenario Driven Use Case Construction / Validation



Requirements Verification Using Rhapsody and Simulink

10



Test-Driven Development isn’t just for software anymore

� The principle behind TDD is to develop and apply test cases as you develop a system to 

demonstrate that it is correct

– This is done in parallel with the system development and not ex post facto

– This is about defect avoidance not so much defect identification and repair 

� TDD applies to the development of complex system use case models

– During the nanocycle of a use case’s development

• Make small incremental changes (e.g. add a state, or a couple of actions, or a 

transition or two)

• Identify what is the desired behavior of the system that you’ve specified so far 

• Execute that incomplete use case model to ensure that it is correct

• Repeat until all requirements for the use case and all scenarios defined for the use 

case have been met in the normative specification

� TDD may be realized in SE Models

– By “instrumenting the actors” – specifying behavior of the actors to perform tests

– Tooling implementing the UML Profile for Test (e.g. Test Conductor™ and Automatic 

Test Generator™)

– Manually writing test scripts
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Traceability
� Traceability serves a number of purposes

– It allows impact analysis – what is the impact if I change this element?

– It allows for coverage analysis – are all elements realized?

– It allows for consistency analysis – are these different elements in different work 

products consistent and compatible with each other? 
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Gold plating?
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Traceability in Models
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Important to Relate Safety Information Through Lifecycle
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Integrated Dependability Analysis: UML Fault Tree Analysis Profile
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� Security Analysis Diagram 

(SAD) is like a Fault Tree 

Analysis (FTA) but for 

security, rather than safety

– It looks for the logical 

relation between assets, 

vulnerabilities, attacks, 

and security violations

– Permits reasoning about 

security

• What kind?

• How much?

• Risk assessments
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Integrated Dependability Analysis: UML Security Analysis Profile



Auto-generation of documents (summary data)
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Fault Source Matrix, Fault Detection Matrix, Fault-Requirement Matrix, FMEA, Hazard Analysis)

Traceability improves your ability to 

make your safety/security case

Generate documents are a natural (and 

automated) outcome of engineering 

work rather than as a separate activity



Model-Based Hand-off to Downstream Engineering
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Canonical Model Organization
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Canonical System Engineering Model Organization
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Summary
� Systems Engineering capability can be greatly enhanced with two key technologies

– MBSE - Use of SysML/UML Modeling to capture system

• Functionality and Qualities of service (executable use cases) 

• Structure (architecture)

• Model-based hand off to downstream engineering

• Automatic generation of documentation from model-based work products

– Agile methods employing

• Incremental construction and verification of models

• Test Driven Development nanocycle-level iteration

• Incorporating dependability analysis with the SE workflow

• Incremental traceability

� Harmony best practice workflows can be employed in an agile way 

– Process guidance – linked guidance to performance of tasks and creation of work products

– Project Planning – create project plans with Harmony process templates in Rational Team Concert

– Project Governance – monitor KPIs in project dashboards
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