
Delivering information you can trust
July 2008

The seven essential elements to
achieve highest performance &
scalability in information integration

IBM Information Management software

http://www.ibm.com/us/en/
http://www-306.ibm.com/software/data/?pgel=ibmhzn&cm_re=masthead-_-products-_-sw-infomgmt

Executive summary

Every day, torrents of data inundate IT organizations and overwhelm the business

managers who must sift through it all to glean insights that help them grow

revenues and optimize profits. Yet, after investing hundreds of millions of dollars

into new enterprise resource planning (ERP), customer relationship management

(CRM), supply chain management (SCM), business intelligence (BI), business

process management and data warehousing systems, many companies are still

plagued with disconnected, “dysfunctional” data—a massive, expensive sprawl

of disparate silos and unconnected, redundant systems that fail to deliver the

desired single view of the business.

In order to meet the business imperative for enterprise integration and stay

competitive, companies must manage the increasing variety, volume and velocity

of new data pouring into their systems from an ever-expanding number of

sources. They need to bring all of their corporate data together, and deliver it to

end-users as quickly as possible in order to maximize its value. And they need

to integrate data at a more granular level – dealing at the individual transaction

level rather than with general summary data.

To address these challenges, organizations require a scalable information

integration architecture that has:

1. A dataflow architecture supporting data pipelining that allows data to process from

input to output without landing to disk, for a variety of operations such as profiling,

cleansing and transformations

2. Dynamic data partitioning and in-flight repartitioning of data

3. Scalable hardware environments, portable across SMP, clustered environments, and

MPP platforms that don’t require modifications of the data flow design

4. Support for leading parallel databases including IBM® DB2® UDB, Oracle, and

Teradata in parallel and partitioned configurations

2 Executive summary

3 The case for parallelism

5 1. Data flow architecture

supporting data pipelining

8 2. Dynamic data partitioning,

in-flight data re-partitioning

12 3. Highest scalability across a

variety of hardware environments

at minimal cost

16 4. Parallel database connections

18 5. Real-time processing and

change data capture

20 6. Tooling for performance analysis

and optimization

22 7. Beyond ETL…enabling third

party software

23 Customer case study – InfoSphere

Information Server boost

throughput at MGM mirage by 10

times

26 Summary

Contents

Delivering information you can trust
Page 2

Benefits for CRM, Operations,

and Sales

5. High performance & scalability not only for bulk / batch movement but also for real-

time data processing

6. Extensive tooling to support resource estimation, performance analysis and

optimization

7. An extensible framework to incorporate in-house and third-party software

The architecture must be able to grow with the organization as data volumes

grow and performance requirements increase. Some of the most important

success criteria for an architecture’s scalability are:

•	 The	existence	of	any	upper	bounds	–	i.e.	are	there	any	limits	when	additional	

resources do not lead to improved performance,

•	 Linear	(or	better)	performance	improvements	when	adding	hardware	resources	–	i.e.	

will	n	additional	resources	lead	to	n-times	better	performance	(n	=	2,	4,	8,	…),	and

•	 Minimal	non-hardware	related	costs	when	the	environment	changes	due	to	changes	

in data characteristics or hardware resources are added. In order to achieve best

return-on-investment for your data integration project, it is critical to consider the

overhead in labor-intensive configuration changes when the environment changes.

Adding	processor(s)	or	nodes	to	the	hardware	environment	should	occur	with	no	

change to the design of your data transformations and the end-to-end flow in order

to avoid re-testing, re-compiling and deploying.

Delivering information you can trust
Page 3

•	 One	telecommunication	company	

is able to increase the number of

marketing campaigns it executes in

the long distance market from 4 to

40 per month because of a parallel

infrastructure, allowing them to

become profitable 18 months

ahead of projections.

•	 One	transportation	company	

created a yield management

application that allows them to

re-price their service as often as

four times per day, creating $100

million in incremental

revenue annually.

•	 One	bank	could	only	get	summary	

data out of its data warehouse, but

was not able to perform high-value

analysis off of summary-level data.

With a parallel infrastructure that

allows it to analyze more granular

customer transaction data and

parallelize SAS, it expects to

generate $100 million in additional

revenue annually.

The case for parallelism

This paper is written for business and technical decision-makers responsible for

designing, building, supporting, and using scalable data processing systems.

A combination of factors is fueling the dramatic growth of all forms of digitized

data. In order to compete, organizations need a more granular level of detail

(data) – individual transactions, not just summary data – and they need it faster

in order to respond to changing market and competitive pressures. Consider

these examples:

•	 In	order	to	make	faster	business	decisions,	one	large	retail	organization	with	nearly	

2,000	stores	in	North	America	wants	to	collect	transactional	data	as	it	occurs	–	every	

15	minutes	–	with	potentially	hundreds	of	transactions	per	hour	in	each	store;	the	

data volume and performance requirements are enormous.

•	 Currency	trading	is	a	24	hour	a	day	business;	brokerage	houses	need	to	provide	this	

data to traders in real-time to react to shifts in the market.

•	 	A	telecommunications	company	is	increasing	the	number	of	US	states	where	they	

are	offering	long	distance	service	from	2	to	14	in	one	year;	the	data	volume	and	

processing requirements for their marketing campaigns’ data warehouse will greatly

increase during that time.

To support this growing data volume, variety, & velocity, and the transitions

from monthly or weekly batch runs to daily or up to the minute data transitions,

builders and users of enterprise data warehouses require a high performance and

scalable architecture. Beware however: Not all “high performance” architectures

are alike. Terms such as “parallel processing” and “scalability” carry different

connotations and meanings from different vendors, analysts, and industry

experts. This paper explains the seven key elements that IT organizations

must consider when evaluating the real capabilities of a high performance and

scalable data infrastructure solution. These seven key elements for a parallel

architecture are:

Delivering information you can trust
Page 4

1. A data flow architecture supporting data pipelining without the necessity for

landing data to disk,

2. Dynamic data partitioning and in-flight repartitioning of data

3. Design once, deploy flexibly and achieve scalability on a variety of hardware

environments,

4. Support for parallel access to parallel databases,

5. Integrated platform for bulk / batch movement as well as real-time / trickle-feed

processing,

6. Extensive tooling for resource estimation, performance analysis and optimization,

7. An extensible framework to incorporate in-house and third-party software.

1. Data flow architecture supporting data pipelining

In considering the key issues associated with global, highly scalable

enterprise data warehousing applications, IT and data management staff

typically wish to accomplish many steps in a flow – picking up data from

source machines, transforming the data, enriching, and ultimately moving

the data to the enterprise data warehouse or other systems such as data

marts or OLAP tools – while at the same time minimizing or eliminating

any costly access to disk storage between steps.

IT development organizations should demand an information integration

platform and parallel-processing framework based on the data-flow model

which allows developers to create visually a sequence of operations that can

effectively manipulate data for quality and transformation purposes.

Data can be coming in from multiple data sources, such as flat files,

databases, packaged applications (like SAP, JD Edwards, etc.), or as streams

in real time. In all these cases, high throughput based on a data flow

architecture remains important.

Delivering information you can trust
Page 5

Traditional information integration approaches typically run all the data

through an individual step, and generally write the data to disk, before

starting the next step in the application. This creates a start-stop-start

sequence that bogs down the application and severely reduces performance.

This also creates an inordinate amount of disk usage – one execution of a

simple job can easily use 4 to 7 times the disk space as the original source

data occupied, creating a disk management nightmare. It quickly becomes

impractical for large data volumes – disk I/O consumes the processing and

terabytes of disk are required for temporary storage.

Delivering information you can trust
Page 6

Figure 2: Traditional batch processing

Figure 1: Data Flow Architecture

Shown in Figure 3, data pipelining eliminates the incremental writing and

reading to disk by flowing data from upstream processes immediately to

downstream processes when it is available using shared memory and piping,

even before the upstream process completes. Data pipelining also optimizes

the distribution of load among available resources “horizontally” (from source

to target): while upstream operations (on one node) still process data but start

to produce results, downstream operations (on another node) can start their

processing as soon data arrives.

To be more precise, data is (or can be) buffered in blocks so that each process

is not thrashing the system when executing one component or the next. This

avoids deadlocks and greatly accelerates performance by allowing both upstream

and downstream processes to execute concurrently.

Without a data flow architecture that supports data pipelining, the implications

are that:

Delivering information you can trust
Page 7

Figure 3: Data Pipelining

•	 Data	must	be	landed	to	disk	between	each	process,	severely	degrading	

performance, greatly increasing storage requirements, and creating a disk

management nightmare

•	 The	developer	must	manage	the	I/O	processing	between	each	component

•	 The	process	becomes	impractical	for	large	data	volumes.

The application will be slower, as disk use, management, and design

complexities increase.

2. Dynamic data partitioning, in-flight data re-partitioning

As described above, data pipelining is one approach to improve performance

and in particular to eliminate intermediate data staging. Multiple operations

in the end-to-end data flow sequence work “horizontally” (along the data flow

sequence) in parallel on multiple nodes. Although data pipelining can greatly

improve performance, it has also its limitations, in particular in the beginning

and towards the end of processing a data flow: Some downstream operations

need to wait until the first data entries “trickle” through the flow and some

upstream operations will be idle after they have completed their processing while

downstream operations finishing.

Data partitioning is a complimentary approach to achieve parallelism which

distributes the load “vertically” among multiple instances of the data flow against

separate data partitions. The selected scope of source data is split into sub sets

which are called partitions. Multiple instances of end-to-end data flows which

contain a sequence of operations then process the partition that is assigned to

that instance.

Delivering information you can trust
Page 8

Data partitioning is well suited to many commercial data-processing applications

because data records can usually be partitioned along a single variable (for

example, customer account number, zip code, or transaction date) and thereby

benefit from the parallel execution of application logic. Figure 4 shows data

partitioning of customer names beginning with A-F executing in one partition

(processor), G-M in another, and so on.

Figure 5 shows an example of parallelism achieved through executing multiple

instances of application logic against partitioned data.

Delivering information you can trust
Page 9

Figure 5: Data Partitioning and Parallel Execution

Figure 4: Partitioning customer names

A scalable architecture should support many types of data partitioning,

including:

•	 Key	(data)	values

•	 Range

•	 Round-robin

•	 Random

•	 Entire

•	 Modulus

•	 Database	matching	partitioning	(e.g.,	DB2)

One key characteristic of those partitioning mechanisms is that they distribute

the source data automatically in balanced partitions so that each partition has

approximately the same number of entries.

Typical information integration tools lack this capability and require

developers to “hard-wire” data partitions. When using these tools, architects or

administrators must manually assign boundaries of partitions, e.g. by specifying

the value that represents the boundary. This method is highly inefficient

and results in costly and time-consuming rewriting of data flows or the data

partitions whenever hardware capacity or source data volume/characteristic

changes. This can consume many weeks or months of development and testing

prior to production. Even worse, this labor-intensive effort has to be frequently

repeated in dynamic environments.

Keep in mind that the developer should not have to be concerned about the

number of partitions that will execute, the ability to increase the number of

partitions, and more importantly, data re-partitioning.

Delivering information you can trust
Page 10

In the example above, data was partitioned based on customer last name

and then the data partitioning was maintained throughout the flow. This is

impractical for many uses. Consider a transformation that is based on customer

last name, but the enriching needs to occur on zip code – for house-holding

purposes – and then loading into the warehouse is based on customer credit

card number (more on parallel database interfaces below). With in-flight or

dynamic data re-partitioning, data is re-partitioned between processes based on

the downstream process data partitioning needed on-the-fly, without landing the

data to disk. Meaning, this is done in memory. Keep in mind that data is also

being pipelined to downstream processes when it is available.

Most information integration tools can not dynamically repartition data; they

require separate manual “mappings” for each process, which forces data to disk

multiple times in between steps in order to complete each data flow. Depending

on the process and size of data, these I/O delays could increase processing times

by anywhere from 2 to 10 times or more.

The implication without partitioning and in-flight data re-partitioning is that the

developer must:

Delivering information you can trust
Page 11

Figure 6: In-flight Data Re-partitioning

•	 Create	separate	flows	for	each	data	partition,	based	on	the	current	

hardware configuration

•	 Land	data	to	disk	between	processes

•	 Manually	re-partition	the	data

•	 Start	the	next	process

Consequently, the resulting application will be slower, use more disk and disk

management, and have greatly increased design complexity.

3. Highest scalability across a variety of hardware environments at minimal cost

Hardware vendors have offered scalable parallel computers for many years.

Computing architectures span small, single processor machines, multi-CPU

systems, giant clusters, and systems that have dedicated memory and disks.

First, some definitions:

Uniprocessor

A uniprocessor machine has dedicated memory and disk for its single CPU.

Examples include PCs, workstations, and single processor servers.

Symmetric multiprocessor (SMP)

A Symmetric Multiprocessor (SMP) system is a multiple-processor environment

that shares everything – memory and disk – across the CPUs.

Clustered and massively parallel processor (MPP)

Clustered environments and Massively Parallel Processor (MPP) systems are

shared nothing environments. Each CPU or node (a single CPU or SMP) has

dedicated memory. Clusters often have SAN-based shared storage. An MPP is a

cluster without shared storage. Clusters and MPP environments can have 2 to

hundreds of processors.

Grid computing

With the commoditization of hardware computing power, grid computing is

becoming a highly compelling option for large enterprises. Grid computing

allows companies to bring more processing power to bear on a given task than

ever before possible.

Delivering information you can trust
Page 12

Grid computing takes advantage of all distributed computing resources –

processor and memory – available on the network to create a single system

image. Grid computing software provides a list of available computing resources

and a list of tasks. When a machine becomes available, it assigns new tasks

according to appropriate rules. There can literally be thousands of machines

available on the grid. What grid-computing software does best – balancing

IT supply and demand by letting users specify their jobs’ CPU and memory

requirements, then finding available machines on a network to meet those

specs – isn’t necessarily an advantage for business-computing tasks such as

managing the flow of raw materials and finished goods in a supply chain or

selling products through an E-commerce Web site. Grid computing provides a

set of horizontal integration capabilities that effectively addresses the challenge of

cross-enterprise, cross-functional, IT resource integration and even extends that

solution among multiple organizations. Grid computing is good news for batch

throughput; however it is unlikely to replace big symmetric multiprocessing

systems for running applications dependent on serial logic and large databases,

such as those from Oracle and SAP.

Enterprise data warehouses must not only be able to support the range of

hardware architectures, but more importantly, accommodate growth as data

volumes and complexity increases.

Delivering information you can trust
Page 13

Figure 7: Hardware environments

In order to make the best use of development resources, optimize use of

hardware, and avoid hitting performance walls down the road, IT organizations

should demand that information integration applications developed on a

workstation can run, without recompilation, on that workstation, on an SMP

server, or on a large scalable cluster or MPP system. Even more importantly,

the information integration approach should not force developers to change data

flow designs because of a change in database characteristics or when hardware

resources are added.

The key to this is a clear separation between the expression of the data flow

logic (developer’s responsibility) and the mapping of that logic to the underlying

parallel hardware platform (data integration software’s responsibility).

Delivering information you can trust
Page 14

Figure 8: Putting it all together: Dataflow to partitioning &

dynamic repartitioning to hardware deployment

Some data integration vendors claim they can run on SMPs and MPPs.

Although they do allow to deploy data flows on different hardware configurations,

there are some very important differences.

The first key differentiating advantage of InfoSphere Information Server is

that you design your data flow once (without considerations of how many

processors you will deploy it on), and then deploy flexibly. You can deploy the

same job without any changes to the job on a uni-processor, SMP, MPP, or

GRID environment. Traditional information integration tools require much more

labor-intensive changes: you may need to manually assign individual operations

to run on a dedicated processor, or even worse to manually redesign your data

flow and to split it up in multiple “sub” data flows. Whereas you only register

new nodes in the configuration file of InfoSphere Information Server – without

even recompiling the data flows – other traditional information integration tools

require labor-intensive changes and most likely a series of compile-test-tune-

deploy cycles.

Also, is the data integration platform truly saturating all of the nodes of the

MPP box or systems in the cluster/grid? Also equally important is letting the

data integration infrastructure optimize the use of all of the available hardware

resources. If, for example, a user wanted to run a project in parallel on 4

processors during the daytime and then in 20-way parallel mode at night when

additional resources are available, this would actually require extensive rewriting

of the data flow jobs. If the data integration software does not seamlessly handle

this, then it must be manually done by development. This means you can’t

maximize available hardware and spare computing power, nor can you easily

scale as performance needs increase. Most information integration approaches

cannot dynamically adjust to a change in the environment and to re-balance

the load automatically. Newly added hardware resources remain idle because

a complex data flow cannot be automatically and transparently to the user

divided into smaller components that are then delegated to the additional

resources. Changes in data volume and characteristics also negatively impact the

overall performance in most other products. The system doesn’t automatically

re-partition the load to re-balance the overall workload. Instead, most other

information integration platforms force the developer

Delivering information you can trust
Page 15

•	 to	recognize	the	change,	

•	 to	know	how	to	change	the	design	to	better	balance	the	load,	

•	 to	make	that	change,	

•	 to	test	the	modified	design,	

•	 to	deploy	it,

•	 then	to	analyze	the	performance	in	the	production	environment,	

•	 and	most	likely	to	iterate	through	this	change	process	again	and	multiple	times	until	

the	workload	is	optimized	(until	it	changes	again).		

Obviously, this can be a time consuming and therefore expensive

undertaking. Even worse, many customers have a dynamic environment

where such changes will occur frequently.

Without support for scalable hardware environments, the implications are:

•	 Slower	execution	because	all	available	hardware	resources	are	not	maximized	

•	 No	decoupling	of	application	design	and	hardware	configuration	which	will	require	

manual intervention for every hardware change

•	 An	inability	to	scale	on-demand.

4. Parallel database connections

Enterprises which have parallel hardware and parallel relational databases are

often unable to realize all of the benefits of end-to-end parallelism because

their information integration software does not allow users to extract or load data

in parallel from the database. This situation creates bottlenecks, undermines

true scalability and leaves IT organizations to cope with just a single connection

between the relational data and the application. This inefficiency often causes

batch processing windows to balloon.

Delivering information you can trust
Page 16

Delivering information you can trust
Page 17

Figure 9: Re-partitioning based on Database Partitioning

Many relational Database Management Systems, such as DB2 UDB, support

partitioning of a database within a single server or across a cluster of servers.

This capability provides multiple benefits including scalability to support

very large databases or complex workloads and increased parallelism for

administration tasks.

A true parallel processing infrastructure should support parallel access to leading

databases – IBM DB2 UDB, Oracle, Informix, and Teradata – automatically.

Productized database interfaces should support pulling and pushing multiple

data streams in and out of the database – as well as running transaction logic –

all in parallel to avoid any sequential bottlenecks in processing. In addition, data

partitioning should be done consistent with how the database partitions the data

(across nodes).

Figure 9 shows data being re-partitioned before calling the Load operation. The

Load process, running in parallel, uses the database load interface or utility to

load the database into the database partitions. These partitions could be across

clusters or nodes. The converse should also be true, that being unloading or

extracting in parallel based on the partitioning of the database.

Even files should be able to read in parallel. Each partition should be able to

read a contiguous range of records from the input data file. The other partitions

should know what records to read in its partition. The resulting data set

contains one partition per instance of the file read operation.

Many information integration tools simply do not support parallel loading nor

do they support automatic re-partitioning of data based on the source or target

database partitioning. With this seamless parallel extraction and loading,

developers can much more readily focus on information integration tasks and

avoid dealing with complexities of the database.

Without supporting parallel database interfaces and database partitioning, the

implications are:

•	 That	extraction	or	loading	will	bottleneck	into	a	single,	sequential	process	

greatly slowing performance minimizing the advantage of using a parallel

database

•	 This	will	force	data	to	disk	in	order	to	re-partition	data	before	the	load	

process making the flow slower

•	 Developers	will	have	to	handle	the	complexities	of	the	parallel	database	

connections and re-partitioning

In summary, the application will be slower, have increased disk use and

management, and greatly increased design complexity.

5. Real-time processing and change data capture

Data transformation has involved from batch and bulk data movement to also

include real-time data transfer based on change data capture (CDC). Whereas

batch and bulk data movement is scheduled on a relatively infrequent basis

for all data, real-time data transformation occurs whenever the data at the

source changes for just the data that is changed. The change data is captured,

transferred and transformed and then loaded into the target.

Delivering information you can trust
Page 18

One important factor influencing performance and scalability in real-time data

transformation is the model to capture a change at a source. One option that is

adopted by some technology providers is for the data transformation engine to

“pull” the source for any changes since the last pull request. Although this can

be easily implemented, it has negative implications on performance because the

transformation engine has to ask for any change instead of just receiving the

change. The second option is for a change data capture mechanism to “push”

changes as data streams. As soon as data is modified at the source the CDC

mechanism becomes aware of the change and forwards the modified data to be

further transformed and processed. InfoSphere Change Data Capture provides

the second, more efficient option.

There is a spectrum of options to capture a change in a source before pushing

or publishing the change for further processing. It ranges from simple trigger-

based mechanisms to highly advanced log scraping technologies. The advantage

of a log-based capture approach that is implemented by InfoSphere Change

Data Capture is the lower impact to the source database which results ultimately

in higher performance of the overall approach. Instead of putting the burden

of identifying the change on the database engine – e.g. when using triggers, a

dedicated, small-footprint CDC technology reads the changes directly from the

database log file.

The third important aspect of a CDC technology is whether or not data needs to

be temporarily persisted between capturing the change and processing it during

data transformation and load into the target. One of the unique advantages

of InfoSphere Change Data Capture is that changes can be streamed without

persisting them along the way. This increases performance further since the

data does not need to be written to disk and then accessed from disk by a data

transformation engine.

Delivering information you can trust
Page 19

6. Tooling for performance analysis and optimization

The first important step to ensure high performance is to have sufficient

resources for the required task. Insufficient resources (CPUs, disk, etc) have a

significant impact on the overall performance. The architect and developer need

to understand before they deploy the data transformation process in a production

environment what the required resources will be and to identify bottlenecks

ahead of time. The resource estimation can increase performance significantly,

and even more important avoid multiple cycles of deploying a data flow on

insufficient hardware, adding more resources, redeploying it, testing the impact,

etc. The best solution to a problem is not to have the problem. And efficient

tooling that can simulate a test run with parameters such as a specified data

volume estimates the required resources and is therefore a critical component to

ensure performance and scalability.

Delivering information you can trust
Page 20

Figure 10: Resource Estimation

Even if the required resources are perfectly planned ahead of time, it is

important for the architect and developer to understand how well data

transformation jobs are executing: how long did a job take, what was the elapsed

time by individual stages (i.e. transformation operations), what was the record

throughput, what was the CPU utilization of individual stages, what was the

memory utilization, etc. Graphical representation to very detailed statistics on

job execution (with drill down to partitions and stages) and resource utilization

makes it easy for the architect and developer to quickly assess problems and take

necessary actions to guarantee highest levels of performance.

Delivering information you can trust
Page 21

Figure 11: Performance Analysis

7. Beyond ETL…enabling third party software

A scalable infrastructure should provide native, high-performance parallel

components, in particular sorting, aggregation, joins, and so on. But because

any large enterprise has special and customized needs, a scalable infrastructure

should be extensible in order to integrate existing programs and third-party tools

as part of the information integration process. These programs originally written

to execute sequentially – should be able to execute in parallel on a partition of

data, and regardless of the programming language used (C, C++, COBOL, etc.).

A key requirement in order to integrate existing software code is the ability

to only operate on the data (columns/fields) of each record and for the

infrastructure to simply pass the rest of the data not used (touched/changed)

through the component to the next downstream component in the data flow.

This has been referred to as column or schema propagation. This is a critical

aspect in order to integrate existing applications without change, making

them more portable and useable. With this ability, software can be integrated

and parallelized.

Third-party tools should also be able to be integrated and executed in parallel,

including SAS. Many vendors claim to integrate with existing and third-party

tools. They usually do this by landing data to disk, then calling the “external”

program. This is usually done through manually writing scripts – which is not

an integrated solution and definitely not executing them in parallel.

Keep in mind a truly scalable architecture incorporates these non-native

components and tools taking advantage of data partitioning, dynamic

re-partitioning, and pipelining all without landing data to disk between

operations on any hardware environment.

Without an extensive framework that can incorporate existing programs and

third-party applications:

Delivering information you can trust
Page 22

•	 Can	not	be	integrated	into	the	data	flow

•	 Requires	data	to	be	collected	together	back	into	one	stream	from	its	

partitions and landed to disk

•	 Manually	invoke	the	program	sequentially

•	 Re-start	the	next	flow	and	partition	the	data

The application will be slower, use more disk and disk management, require

manual intervention or script writing and thus greatly increase design complexity.

Customer case study – InfoSphere Information Server boost throughput at MGM Mirage

by 10 times

Guest satisfaction is paramount to MGM MIRAGE, and the company

needed a single view of customers to improve customer service, ensure

proper recordkeeping and accounting, enable targeted marketing programs

and provide a critical basis for both tactical and strategic decisions. The

single view needed to encompass customer data from its multiple casinos,

hotels and other sources, including the newly launched Players Club

loyalty program.

Delivering information you can trust
Page 23

A	word	about	high	performance	sorting…	

Since sorting data is typically a critical and time-intensive task in

any large-scale information integration effort, IT organizations should

ensure that parallel infrastructure software has a built-in high-

performance sort to sort the records of a data set. In the absence of this,

sorting operations can create unacceptable time delays and processing

bottlenecks. To accommodate high data volumes, this sorting operation

should be capable of running on a single processor to sort an entire data

set or on multiple processors to sort the records in each partition of a

data	set	–	all	without	landing	to	disk	and	incurring	the	associated	I/O	

performance degradation. When coupled with an appropriate range

partitioner, a partition sort operation produces a completely ordered

data set in which the records in each partition are ordered and the

partitions themselves are ordered.

MGM MIRAGE had designed a warehouse to house the data that would

form the basis for its single customer view, but the company was seriously

constrained by its technology architecture. The existing environment

consisted of a series of extract, transform and load processes that had been

developed by a local integrator. MGM MIRAGE technical staff had no

access to the source code, and thus was unable to make modifications to

the programs without ongoing reliance on the third party. The result was

high costs.

With the IBM InfoSphere Information Server software, MGM MIRAGE has

the ability to access real-time customer information, providing the ability

to analyze customer behaviors for marketing and other purposes. This also

includes the ability to pull data from a variety of sources including the new

Players Club loyalty program, the hotel and table games.

The enterprise data warehouse match/survive processes have given MGM

MIRAGE the ability to cross-market key promotions to properties not yet

included in the Players Club loyalty system, thus bringing added revenue at

an accelerated pace.

Benefits such as improved customer service, reduced costs for customer

mailings and an improved basis for decision-making resulted as well. With

the InfoSphere Information Server SOA solution, MGM Mirage is creating

on-demand integration environment, with an up-to-date and authoritative

customer database. With same-day visibility into customer visits and gaming

activity across all its Las Vegas and non-Las Vegas casinos through the

company’s new customer data warehouse and CRM platform, MGM Mirage

has unprecedented ability to profile and promote to its most profitable and

active gambling customers.

Delivering information you can trust
Page 24

In addition, MGM MIRAGE took preemptive steps to handle increased load

by creating an EDW grid architecture based on Linux. The installation of

the grid project was completed in only six business days and test jobs were

deployed within only one day. The grid dramatically improved run statistics.

For example, performance for a test job that would traditionally take 1 hour

and 40 minutes was reduced to only 12 minutes on the grid. Another test

project that would take 33 hours on the non-grid architecture was reduced

to only five hours on the grid.

With IBM InfoSphere Information Server software, MGM MIRAGE

will meet its critical objective of self-sufficiency in managing its data

warehouse environment, eliminating reliance on a third party for both code

development and code maintenance and significantly reducing costs for

creating and maintaining integration solutions.

In addition, the IBM implementation will result in a streamlined

environment that MGM MIRAGE can control and modify as new

requirements emerge, for improved agility and flexibility as well as cost

savings. Not only will the company be able to create and maintain data

movement jobs efficiently with the WebSphere® DataStage® software,

but also it will enjoy the benefits of higher-quality data. Benefits such

as improved customer service, reduced costs for customer mailings

and an improved basis for decision making will result from the

implementation of the InfoSphere Information Analyzer and InfoSphere

QualityStage® software.

With the InfoSphere SOA solution, MGM MIRAGE will be able to create an

on-demand integration environment, with an up-to-date and authoritative

customer database. With same-day visibility into customer visits and gaming

activity across all its Las Vegas and non-Las Vegas casinos through the

company’s new customer data warehouse and CRM platform, MGM MIRAGE

will have unprecedented ability to profile and promote to its most profitable

and active gambling customers.

Delivering information you can trust
Page 25

IBM InfoSphere DataStage provides world-class data transformation

capabilities, delivers new metadata enhancements designed to improve

developer productivity and enable fast data flow design for creating and

populating data warehouses. The latest version of the product also achieves

unprecedented performance and scalability.

IBM InfoSphere QualityStage is newly redesigned to deliver massive

productivity gains and control over integration. It leverages the “design-as-

you-think” paradigm of the InfoSphere DataStage user interface, enables

a new class of user to create quality rules, and provides greater developer

productivity with interactive visual design of data quality rules and instant

feedback to allow developers more control over fine-tuning of quality logic.

Summary

In this paper, we have introduced seven elements that are critical to ensure

the highest degree of performance and scalability of your information

integration deployment.

1. A dataflow architecture supporting data pipelining that allows data

to process from input to output without landing to disk, for a variety of

operations such as profiling, cleansing and transformations,

2. Dynamic data partitioning and in-flight repartitioning of data

3. Design once, deploy flexibly and achieve scalability on a variety of

hardware environments at minimal costs, portable across SMP, clustered

environments, and MPP platforms

4. Support for leading parallel databases including IBM DB2 UDB, Oracle,

and Teradata in parallel and partitioned configurations

5. High performance & scalability not only for bulk / batch movement but also

for real-time data processing,

6. Extensive tooling to support resource estimation, performance analysis and

optimization,

7. An extensible framework to incorporate in-house and third-party software

Delivering information you can trust
Page 26

We have highlighted the unique advantages that InfoSphere Information

Server delivers as the best information integration platform to achieve the

highest level of performance and scalability and to ensure best ROI.

For more information

To explore how IBM can help your organization realize the promise of

information grids—gaining a single view of critical data—contact your local IBM

sales account executive or visit:

IBM Information Integration: ibm.com/software/data/integration

IBM InfoSphere DataStage: ibm.com/software/data/integration/datastage

IBM Grid Computing: ibm.com/grid

IBM BladeCenter: ibm.com/systems/bladecenter

Delivering information you can trust
Page 27

http://www-306.ibm.com/software/data/ips/
http://www-306.ibm.com/software/data/integration/datastage/
http://www-03.ibm.com/grid/
http://www-03.ibm.com/systems/bladecenter/

© Copyright IBM Corporation 2008

IBM Software Group
Route 100
Somers, NY 10589

Printed in the United States
July 2008
All Rights Reserved.

IBM and the IBM logo, InfoSphere, Information Server,
DataStage, QualityStage, DB2 and WebSphere are
trademarks or registered trademarks of International
Business Machines Corporation in the United States,
other countries or both.

Java and all Java-based trademarks are trademarks
of Sun Microsystems, Inc., in the United States, other
countries or both.

Other company, product or service names may be
trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

All statements regarding IBM’s future direction and
intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

TAKE BACK CONTROL WITH Information Management

http://www-306.ibm.com/software/data/?pgel=ibmhzn&cm_re=masthead-_-products-_-sw-infomgmt
http://www.ibm.com/us/en/

	Executive summary
	The case for parallelism
	1. Data flow architecture supporting data pipelining
	2. Dynamic data partitioning,in-flight data re-partitioning
	3. Highest scalability across a variety of hardware environments at minimal cost
	4. Parallel database connections
	5. Real-time processing and change data capture
	6. Tooling for performance analysis and optimization
	7. Beyond ETL…enabling third party software
	Customer case study – InfoSphere Information Server boost throughput at MGM mirage by 10 times
	Summary

