
Page 1 of 10

Under the Hood: Simultaneous Multi-Threading on POWER7 Processors

Under the Hood:

Simultaneous Multi-Threading on

POWER7 Processors

January 28, 2010

Page 2 of 10

Under the Hood: Simultaneous Multi-Threading on POWER7 Processors

Disclaimer – Simultaneous Multi-Threading on P7 Processors

Copyright © 2016 by International Business Machines Corporation.

No part of this document may be reproduced or transmitted in any form without written permission
from IBM Corporation.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is
subject to change without notice. This information may include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or
programs(s) at any time without notice. References in this document to IBM products, programs,
or services does not imply that IBM intends to make such products, programs or services
available in all countries in which IBM operates or does business.
THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS"
WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY
DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT. IBM shall have no responsibility to update
this information. IBM products are warranted according to the terms and conditions of the
agreements (e.g., IBM Customer Agreement, Statement of Limited Warranty, International
Program License Agreement, etc.) under which they are provided. IBM is not responsible for the
performance or interoperability of any non-IBM products discussed herein.

The performance data contained herein was obtained in a controlled, isolated environment.
Actual results that may be obtained in other operating environments may vary significantly. While
IBM has reviewed each item for accuracy in a specific situation, there is no guarantee that the
same or similar results will be obtained elsewhere.
Statements regarding IBM’s future direction and intent are subject to change or withdrawal
without notice, and represent goals and objectives only.
The provision of the information contained herein is not intended to, and does not, grant any right
or license under any IBM patents or copyrights. Inquiries regarding patent or copyright licenses
should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Page 3 of 10

Under the Hood: Simultaneous Multi-Threading on POWER7 Processors

Simultaneous Multi-Threading on POWER7 Processors

PowerPC Server processors have supported Simultaneous Multi-Threading (SMT) for a number

of processor designs now, starting in SMT’s current form with the Power5 processors but

initially in an earlier form called Hardware Multi-Threading (HMT) in the Northstar processors

(processors even preceding POWER4 designs). With POWER7 its time for us to write an

update; POWER7 processor cores support SMT4, a concept we will be describing here.

Let’s start with an overview of what SMT really is and then we will get into SMT4.

What you know for sure is that processor cores execute instructions, instructions defined by the

PowerPC Instruction Set Architecture (ISA). You’ve likely got some inkling that the processor

executes these instructions at a rate approaching one instruction per processor cycle and you

probably picture that as meaning that an instruction executes from beginning to end in this cycle.

(A cycle, BTW, is the inverse of the processor frequency; a 4 GHz processor - 4 billion cycles

per second - represents a ¼ nanosecond processor cycle.) Although this rate of execution - 4

billion instructions per second - is a rough first guesstimate, the truth is that instructions do not

execute from beginning to end within the time of one cycle. Instead, instructions execute

through multiple stages before complete, each typically one cycle long, from the point from

where they begin their execution to the point where the processor core treats them as complete.

Think of this sort of like an assembly line; each one-cycle long stage does something with an

instruction before passing it off to the next stage. What is cool is that - as with an assembly line -

once an instruction has gone through one stage, a subsequent instruction can execute using that

now available stage. You can see this in the following simple figure showing the execution of an

ordered instruction stream of instructions A through G. This is called - rather descriptively - a

“pipeline”.

This single pipe allows for a maximum instruction execution rate of one instruction per cycle.

Recent server-based PowerPC processors support multiples of such pipes, allowing independent

instructions to execute in parallel. POWER7 supports

 two pipes for executing the instructions which access storage (i.e., instructions

loading/storing registers from/to cache),

 two pipes for executing arithmetic instructions on the contents of registers (e.g., Add,

Subtract, Compare, AND),

 a pipe for branch instructions (i.e., instruction stream control flow),

 as well as parallel support for floating-point and vector operations.

This enables a remarkable amount of capacity for concurrently executing instructions. Just

looking at the first five pipes - those used most frequently - it is quite possible to execute

instructions at a rate of five instructions per cycle. In most programs, executing at rates of

multiple instructions per cycle is quite typical for shorts bursts of time. But on average over an

ABC

1 cycle1 cycle1 cycle1 cycle 1 cycle 1 cycle

DEFG ABC

1 cycle1 cycle1 cycle1 cycle1 cycle1 cycle 1 cycle1 cycle 1 cycle1 cycle

DEFG

Page 4 of 10

Under the Hood: Simultaneous Multi-Threading on POWER7 Processors

entire program, a single thread executing its instruction stream, it is more typical that the rate of

instruction execution is very roughly five cycles per instruction. This 25X difference means

that, rather than the pipes stages being typically very busy, the pipe stages are on average

relatively sparsely used; a lot of each processor core’s capacity is simply going unused.

So why the big difference and what does this mean to SMT? There are quite a few reasons for

the difference but two are typical, cache misses and inter-instruction dependencies:

 Cache misses ...The reality with processors is that the cores do not execute instructions

directly out of memory; the core executes instructions out of the instruction cache. In the

event of an instruction cache miss, no more instructions are fed into any of the multiple pipes

until more instructions have been filled into the cache; this can result in a delay of tens to

hundreds of cycles, all the while the pipe stages are sitting idle waiting for the next

instruction. The same is largely true for data cache misses as well. Simply stated, when a

thread incurs a cache miss, the thread still remains associated with the core, but its instruction

stream execution temporarily ceases instruction execution. Part of what SMT buys is the

capability for one or more other threads to execute their instruction streams during such

delays.

 Instruction dependency delays.... The compiler knows all about the multiple pipes of the

cores and attempts to lay out instructions to execute independent instructions in parallel. It is

often successful. However, any program is also likely to have dependencies between the

instructions; a LOAD of data into a register is followed by a dependent ADD, which feeds a

dependent COMPARE, which feeds a dependent conditional branch. Such dependent

instructions cannot be executed in parallel in the same cycle; they are delayed by the

hardware until the results of a preceding instruction are available to be fed into a following

instruction. Such delays are individually minimal but also very frequent. The result is that

pipe line stages which might have been used by independent instructions here instead leave

pipe stages unused because of the dependencies. This is not bad, it happens quite frequently.

But what it also means is that there are frequently pipe line stages - read that core capacity -

left unused which could be used by the instruction stream of another thread.

So what SMT enables is the concurrent execution of the instruction stream of multiple threads on

the same core. Their instruction streams, which are typically independent, really are being

executed concurrently; if a pipe line stage is not being used by one thread’s instructions, another

thread’s instruction stream gets to use it. Conversely, if multiple task’s instruction’s want to use

the same pipe line stage, only one gets to use it in that cycle, the other task’s instruction(s) are

momentarily delayed. This distinction is important.

For example, consider the following figure. Where a Thread 1’s instructions A-H could execute

in parallel in just a couple cycles if independent and of the right types, we see here instead that

the inter-instruction dependencies require more cycles to execute the same number of

instructions. But more importantly for SMT, it also means that there are a lot of pipe line stages

simply not being used by this one thread’s instruction stream.

So, as in the following figure, let’s add one more thread’s instruction stream, making it identical

to the first to show an effect.

Page 5 of 10

Under the Hood: Simultaneous Multi-Threading on POWER7 Processors

 Notice that the number of cycles spent by Thread 1 remained unchanged even with the addition

of Thread 2’s instruction stream because the core’s pipes were able to provide pipe stages to both

instruction streams as needed. Of course, that is not always the case; where a pipe line stage is

not available when needed a thread must wait. In general, this typically means that both thread’s

execution speed becomes slightly slower.

For POWER7 processors, instead of just two instructions streams, POWER7 has support for 4-

way SMT; up to four thread’s instruction streams can concurrently use a core. As can be seen in

the above figure, there still remains some - but now less - additional pipe line capacity to take on

the additional independent instruction streams of a couple more threads. But it is just as obvious

that there is diminishing opportunity for additional threads. As additional threads are added,

each individual thread is slowed by the competition for processor core resources. But slower or

not, the fact that they can execute concurrently - as opposed to waiting their turn for an available

core - typically provides more performance capacity.

It should be obvious now that 4-way SMT (within a single core) does not provide the same

capacity as 4-way SMP (i.e., four independent cores). What SMT does is to allow for the use of

the compute capacity within each core that normally can’t be consumed by a single thread’s

instruction stream. Where in SMT each of the multiple threads is competing for the use of a

single core’s resources, when executing alone on separate SMP cores these same thread’s

instruction streams each get the full use of the core.

The IBM i OS is well aware of this difference and of the performance characteristics of SMT. It

also knows that there are often periods when fewer than the maximum number of SMT4’s

hardware threads are actually executing instructions; an 8-core partition also means 32 hardware

threads and the potential for 32 concurrently executing software threads. When there are fewer

dispatchable tasks, tasks are often first dispatched to cores which either have no or the fewest

number executing; tasks are spread over the cores available on a chip to allow them to

individually execute more rapidly. Only as utilization increases - as the number of tasks needing

to execute concurrently increases - does POWER7’s core switch to support the increasing

number of instruction streams.

A1C2D2G1

A2C1E1G2

B1D1F1

B2E2F2

H1

A1C2D2G1

A2C1E1G2

B1D1F1

B2E2F2

H1

Page 6 of 10

Under the Hood: Simultaneous Multi-Threading on POWER7 Processors

Observations on SMT Performance

As you think about SMT you quickly realize that both the performance of individual threads and

even the overall capacity available from moment to moment is dependent on what it is that the

hardware threads are doing. A thread, which when executing alone might have used every stage

of every pipe for a while, does not leave much capacity on that core for even one more thread,

much less two or three more. On the other hand, one thread with a fairly high rate of cache

misses leaves a lot of pipe line capacity available for a threads with a higher rate of executing

instructions. It happens that the way each thread uses a core’s resources typically varies rapidly

from moment to moment. And the core gets used a lot of different ways by even one thread over

a longer period of time. As a result we can speak of the average benefit to capacity that SMT

provides, but please realize that the use and so benefit of it can be quite variable.

With that in mind, we typically speak of the capacity opportunity of SMT4 (4-way SMT) over

ST (Single Thread on a core) as being in the range of 1.5 - 2X. For example, let’s define a thread

which, when executing alone, produces some throughput of - say - 100 transactions/second. If

we replicate that thread four times and place them all onto the same core, together they are said

to generate 1.5 - 2X of the throughput - so 150 - 200 transactions/second. Notice, again, that

these four tasks placed individually on separate cores would approach 4X more throughput.

With SMT4 it is possible, but not typical, that for some classes of work that the throughput

improvement of SMT4 over ST can approach 4X. Conversely, it is also possible for there to be

minimal benefit when core resource competition is extreme. The point is that we typically see

some considerable capacity benefit from the use of POWER7’s SMT4 and highly recommend its

use. But it is also true that the average benefit of SMT4 can vary considerably.

As the instruction streams of multiple threads compete for the resources of a core, the threads

individually slow down. So, how much? We offer here a rule of thumb. Let’s suppose a

workload with a 2X throughput improvement of four tasks on the same core over the throughput

of just one. Let’s also suppose that these same four threads, when placed individually on

separate cores, produced a throughput improvement of 4X. The single-core SMT4-based tasks

are producing only half the throughput of the four core-based tasks. This implies that the four

SMT tasks are executing individually at half the speed on average; on average each task is taking

twice as long to execute the same thing. Of course, when there are three, then two, then just one

task remaining on a core, the individual task’s speed improves. Clearly individual task

performance also can vary quite considerably, depending on what the other hardware threads are

doing but more so on whether other tasks are even present. But let’s now reconsider the notion

of improved capacity. Yes, the individual threads might be slower, but they are slower while

executing on a processor. So suppose that SMT4 did not exist. The same tasks which are

executing slower with SMT4 are nonetheless executing; without SMT4, they would be taking

their turn waiting and competing for the use of the same core that they are executing on with

SMT4. So slower while executing, yes, but faster because of decreased queueing up behind the

cores.

Page 7 of 10

Under the Hood: Simultaneous Multi-Threading on POWER7 Processors

Observations on Virtualization

Virtualization offers a means of using the capacity improvements of SMT in shared-processor

partitions.

Virtualization includes a concept called a “Virtual Processor”. The virtual processor is what gets

assigned to a core; it is permanently assigned to a core for dedicated-processor partitions and

temporarily for shared processor partitions. For POWER7’s SMT4, assigning a virtual processor

to a core also brings with it all four hardware threads. If one or more virtual processor’s

hardware threads are not being used at some moment, if its capacity is not being used, the target

core’s capacity is also not going to be fully used.

It is also true that a shared-processor pool can have assigned to it many more virtual processors

than there are cores in that pool1. This occurs naturally from the existence of fractional-core

capacity partitions; for example, even with one virtual processor in - say - ten partitions with 0.1

core’s capacity results in ten virtual processors using one core’s capacity.

The value of maximum capacity defined for each shared-processor partition is used as a limit of

what each partition is allowed. To manage this the hypervisor measures the amount of capacity

used; once used in a time slice, that partition might not be allowed any more processing time

until the next time slice. It does this measurement by determining how much time each

partition’s virtual processor(s) were assigned to a core. In the context of SMT, whether there are

one, two, three, or four active hardware threads, whether all of the SMT-perceived capacity is

being used or not, the hypervisor only tracks how long a virtual processor is assigned to a core.

Now recall that for reasons of the performance of individual threads, the OS intentionally

spreads the dispatchable tasks over the available cores, here meaning over the virtual processors.

As you have seen, this intentionally leaves some of each core’s capacity unutilized for the benefit

of individual task’s performance. For dedicated-processor partitions, this can2 remain exactly the

right thing to do. For shared-processor partitions, it is not as clear whether spreading tasks over

cores is always appropriate. Since there can be a lot more virtual processors active than cores in

the shared-processor pool, it also means that these virtual processors will compete for the use of

these cores; some will execute while some will simply wait. Now picture all of these virtual

processors intentionally executing just one thread; they are executing just one thread each

because each partition wants these threads to execute faster, but since many virtual processors

are simply waiting to use a core, some of these threads are temporarily not executing at all. And

for those that are executing, the single threads are often not really consuming all of the capacity

available in the cores.

1Please observe, though, that it is never a good idea to define any single shared-processor

partition with more virtual processors than there are cores in the shared-processor pool.

2Energy management considerations might suggest otherwise.

Page 8 of 10

Under the Hood: Simultaneous Multi-Threading on POWER7 Processors

One trick to buy back some of this capacity is to decrease the number of active - as opposed to

actual - number virtual processors. This decreases the contention of an excessive number of

active virtual processors being time sliced over the fewer available cores; fewer active virtual

processors decreases wait time. To acheive this for shared-processor partitions, rather than each

partition spreading its tasks over the available number of virtual processors (i.e., rather than

optimizing for the performance of individual tasks), the OS can spread less and start using SMT

sooner. This is called “Processor Folding”. The same number of dispatchable tasks can still

make progress, albeit slightly slower when executing, but on fewer virtual processors, but wait

time will decrease as well.

What this also does is good for the shared-processor pool as a whole; more of the pool’s capacity

is able to be used. Not only are the cores being used as desired, but the capacity within the cores

as well. There also happens to be an upside for the shared-processor partition’s themselves.

Because of processor folding, each partition activating fewer virtual processors, the hypervisor

perceives that each partition is consuming less of its allocated capacity and as a result its virtual

processor(s) can remain attached to cores for a longer period of time. Further, yes, the tasks

execute individually slower due to increased SMT usage, but as a result they also get to be

assigned to a core for a longer period of time, allowing them to potentially complete their

execution sooner. Because of the decreased switching of virtual processors onto and off of

cores, this also has a side effect of decreasing the thread’s cache miss rate, indirectly further

speeding the thread’s execution.

Page 9 of 10

Under the Hood: Simultaneous Multi-Threading on POWER7 Processors

Observations on the Measurement of CPU Utilization

It used to be that measuring CPU utilization was easy. In the days of single-processor systems,

CPU utilization merely meant finding out what percentage of the time a processor was or was not

being used. In the slightly more complex days of SMPs, the system would add up the amount of

time that each core was being used in a measurement period, divide that by the number of cores,

and divide that by the measurement period. Converting this to percentage and subtracting this

from 100 provide the remaining capacity percentage.

SMT throws a monkey wrench into the workings. SMT provides a way to consume more of the

capacity of each core. So that means that there is capacity to consume and that needs to be

measured and factored into the measurement of CPU utilization. So how does one determine

how much capacity remains in each core even when one or more hardware threads are executing

instructions. And, conversely, how much of the capacity was used and by who? It happens that

this is a tall order.

Prior to SMT, one could measure the CPU cycles consumed - the value used to calculate CPU

utilization - and from there know how much time a particular task had spent on a processor. So

when an SMT4 processor can have four different tasks executing at least one instruction from

each task during the same cycle, which of these tasks is perceived to have used a processor

cycle?

The SMT processors - POWER5 through POWER7 - offer an internal mechanism for tracking

relative usage of each core. POWER7 took it a step further and provided a means of tuning this

measurement. The general intent is to provide a measure of CPU utilization wherein there is a

linear relationship between the current throughput (e.g., transactions per second) and the CPU

utilization being measured for that level of throughput. For example, a throughput of 100,000

transactions/second at 50% utilization should imply that at 100% utilization the throughput

should be able to reach 200,000 transactions/second.

This internal mechanism attempts to proportionally assign fractions of cycles to each of the four

hardware threads. This is true whether the hardware thread is executing a Run State task or is

idle (i.e., idle meaning executing a Wait State task or simply not being used). Since each Run

State task executes slower as additional Run State tasks are added to the core, the mechanism

adjusts cycle assignment accordingly. As a result, although there can be no perfect means of

measuring CPU utilization with SMT, POWER7 is producing the desired near linear relationship

between throughput and CPU utilization for a number of typical workloads. However, for

atypical workloads seeing either little or a very large benefit from SMT4, the desired linear

relationship can become nonlinear.

Page 10 of 10

Under the Hood: Simultaneous Multi-Threading on POWER7 Processors

The Power Architecture and Power.org wordmarks
and the Power and Power.org logos and related marks
are trademarks and service marks licensed by
Power.org.
UNIX is a registered trademark of The Open Group in
the United States, other countries or both.
Java and all Java-based trademarks and logos are
trademarks of Sun Microsystems, Inc. In the United
States and/or other countries.
TPC-C and TPC-H are trademarks of the Transaction
Performance Processing Council (TPPC).
SPECint, SPECfp, SPECjbb, SPECweb,
SPECjAppServer, SPEC OMP, SPECviewperf,
SPECapc, SPEChpc, SPECjvm, SPECmail,
SPECimap and SPECsfs are trademarks of the
Standard Performance Evaluation Corporation
(SPEC).
InfiniBand, InfiniBand Trade Association and the
InfiniBand design marks are trademarks and/or
service marks of the InfiniBand Trade Association.

© IBM Corporation 2013
IBM Corporation
Systems and Technology Group
Route 100
Somers, New York 10589

Produced in the United States of America
February 2013
All Rights Reserved
This document was developed for products and/or
services offered in the United States. IBM may not
offer the products, features, or services discussed in
this document in other countries.
The information may be subject to change without
notice. Consult your local IBM business contact for
information on the products, features and services
available in your area.
All statements regarding IBM future directions and
intent are subject to change or withdrawal without
notice and represent goals and objectives only.
IBM, the IBM logo, ibm.com, AIX, Power Systems,
POWER5, POWER5+, POWER6, POWER6+,
POWER7, TurboCore and Active Memory are
trademarks or registered trademarks of International
Business Machines Corporation in the United States,
other countries, or both. If these and other IBM
trademarked terms are marked on their first
occurrence in this information with a trademark symbol
(® or ™), these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time
this information was published. Such trademarks may
also be registered or common law trademarks in other
countries. A current list of IBM trademarks is available
on the Web at "Copyright and trademark information"
at www.ibm.com/legal/copytrade.shtml
Other company, product, and service names may be
trademarks or service marks of others.
IBM hardware products are manufactured from new
parts, or new and used parts. In some cases, the
hardware product may not be new and may have been
previously installed. Regardless, our warranty terms
apply.
Photographs show engineering and design models.
Changes may be incorporated in production models.
Copying or downloading the images contained in this
document is expressly prohibited without the written
consent of IBM.
This equipment is subject to FCC rules. It will comply
with the appropriate FCC rules before final delivery to
the buyer.
Information concerning non-IBM products was
obtained from the suppliers of these products or other
public sources. Questions on the capabilities of the
non-IBM products should be addressed with those
suppliers.
All performance information was determined in a
controlled environment. Actual results may vary.
Performance information is provided “AS IS” and no
warranties or guarantees are expressed or implied by
IBM. Buyers should consult other sources of
information, including system benchmarks, to evaluate
the performance of a system they are considering
buying.
When referring to storage capacity, 1 TB equals total
GB divided by 1000; accessible capacity may be less.
The IBM home page on the Internet can be found at:
http://www.ibm.com.
A full list of U.S. trademarks owned by IBM may be found

at: http://www.ibm.com/legal/copytrade.shtml.

The IBM Power Systems home page on the Internet
can be found at: http://www.ibm.com/systems/power/

http://www.ibm.com/
http://www.ibm.com/systems/power/

