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Simultaneous Multi-Threading on POWER7 Processors 

 

PowerPC Server processors have supported Simultaneous Multi-Threading (SMT) for a number 

of processor designs now, starting in SMT’s current form with the Power5 processors but 

initially in an earlier form called Hardware Multi-Threading (HMT) in the Northstar processors 

(processors even preceding POWER4 designs).  With POWER7 its time for us to write an 

update; POWER7 processor cores support SMT4, a concept we will be describing here. 

 

Let’s start with an overview of what SMT really is and then we will get into SMT4.   

 

What you know for sure is that processor cores execute instructions, instructions defined by the 

PowerPC Instruction Set Architecture (ISA).  You’ve likely got some inkling that the processor 

executes these instructions at a rate approaching one instruction per processor cycle and you 

probably picture that as meaning that an instruction executes from beginning to end in this cycle.  

(A cycle, BTW, is the inverse of the processor frequency; a 4 GHz processor - 4 billion cycles 

per second - represents a ¼ nanosecond processor cycle.)  Although this rate of execution - 4 

billion instructions per second - is a rough first guesstimate, the truth is that instructions do not 

execute from beginning to end within the time of one cycle.  Instead, instructions execute 

through multiple stages before complete, each typically one cycle long, from the point from 

where they begin their execution to the point where the processor core treats them as complete.  

Think of this sort of like an assembly line; each one-cycle long stage does something with an 

instruction before passing it off to the next stage.  What is cool is that - as with an assembly line - 

once an instruction has gone through one stage, a subsequent instruction can execute using that 

now available stage.  You can see this in the following simple figure showing the execution of an 

ordered instruction stream of instructions A through G.  This is called - rather descriptively - a 

“pipeline”. 

 

 

This single pipe allows for a maximum instruction execution rate of one instruction per cycle.  

Recent server-based PowerPC processors support multiples of such pipes, allowing independent 

instructions to execute in parallel.  POWER7 supports  

 two pipes for executing the instructions which access storage (i.e., instructions 

loading/storing registers from/to cache),  

 two pipes for executing arithmetic instructions on the contents of registers (e.g., Add, 

Subtract, Compare, AND), 

 a pipe for branch instructions (i.e., instruction stream control flow),  

 as well as parallel support for floating-point and vector operations. 

This enables a remarkable amount of capacity for concurrently executing instructions.  Just 

looking at the first five pipes - those used most frequently - it is quite possible to execute 

instructions at a rate of five instructions per cycle.  In most programs, executing at rates of 

multiple instructions per cycle is quite typical for shorts bursts of time.  But on average over an 
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entire program, a single thread executing its instruction stream, it is more typical that the rate of 

instruction execution is very roughly five cycles per instruction.  This 25X difference means 

that, rather than the pipes stages being typically very busy, the pipe stages are on average 

relatively sparsely used; a lot of each processor core’s capacity is simply going unused. 

 

So why the big difference and what does this mean to SMT?  There are quite a few reasons for 

the difference but two are typical, cache misses and inter-instruction dependencies:  

 Cache misses ...The reality with processors is that the cores do not execute instructions 

directly out of memory; the core executes instructions out of the instruction cache.  In the 

event of an instruction cache miss, no more instructions are fed into any of the multiple pipes 

until more instructions have been filled into the cache; this can result in a delay of tens to 

hundreds of cycles, all the while the pipe stages are sitting idle waiting for the next 

instruction.  The same is largely true for data cache misses as well.  Simply stated, when a 

thread incurs a cache miss, the thread still remains associated with the core, but its instruction 

stream execution temporarily ceases instruction execution.  Part of what SMT buys is the 

capability for one or more other threads to execute their instruction streams during such 

delays. 

 Instruction dependency delays....  The compiler knows all about the multiple pipes of the 

cores and attempts to lay out instructions to execute independent instructions in parallel.  It is 

often successful.    However, any program is also likely to have dependencies between the 

instructions; a LOAD of data into a register is followed by a dependent ADD, which feeds a 

dependent COMPARE, which feeds a dependent conditional branch.  Such dependent 

instructions cannot be executed in parallel in the same cycle; they are delayed by the 

hardware until the results of a preceding instruction are available to be fed into a following 

instruction.  Such delays are individually minimal but also very frequent.  The result is that 

pipe line stages which might have been used by independent instructions here instead leave 

pipe stages unused because of the dependencies.  This is not bad, it happens quite frequently.  

But what it also means is that there are frequently pipe line stages - read that core capacity - 

left unused which could be used by the instruction stream of another thread.   

 

So what SMT enables is the concurrent execution of the instruction stream of multiple threads on 

the same core.  Their instruction streams, which are typically independent, really are being 

executed concurrently; if a pipe line stage is not being used by one thread’s instructions, another 

thread’s instruction stream gets to use it.  Conversely, if multiple task’s instruction’s want to use 

the same pipe line stage, only one gets to use it in that cycle, the other task’s instruction(s) are 

momentarily delayed.  This distinction is important. 

 

For example, consider the following figure.  Where a Thread 1’s instructions A-H could execute 

in parallel in just a couple cycles if independent and of the right types, we see here instead that 

the inter-instruction dependencies require more cycles to execute the same number of 

instructions.  But more importantly for SMT, it also means that there are a lot of pipe line stages 

simply not being used by this one thread’s instruction stream. 

 

So, as in the following figure, let’s add one more thread’s instruction stream, making it identical 

to the first to show an effect.  
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 Notice that the number of cycles spent by Thread 1 remained unchanged even with the addition 

of Thread 2’s instruction stream because the core’s pipes were able to provide pipe stages to both 

instruction streams as needed.  Of course, that is not always the case; where a pipe line stage is 

not available when needed a thread must wait.  In general, this typically means that both thread’s 

execution speed becomes slightly slower. 

 

 

 

 

 
 

 

For POWER7 processors, instead of just two instructions streams, POWER7 has support for 4-

way SMT; up to four thread’s instruction streams can concurrently use a core.  As can be seen in 

the above figure, there still remains some - but now less - additional pipe line capacity to take on 

the additional independent instruction streams of a couple more threads.  But it is just as obvious 

that there is diminishing opportunity for additional threads.  As additional threads are added, 

each individual thread is slowed by the competition for processor core resources.  But slower or 

not, the fact that they can execute concurrently - as opposed to waiting their turn for an available 

core - typically provides more performance capacity. 

 

It should be obvious now that 4-way SMT (within a single core) does not provide the same 

capacity as 4-way SMP (i.e., four independent cores).  What SMT does is to allow for the use of 

the compute capacity within each core that normally can’t be consumed by a single thread’s 

instruction stream.  Where in SMT each of the multiple threads is competing for the use of a 

single core’s resources, when executing alone on separate SMP cores these same thread’s 

instruction streams each get the full use of the core.   

 

The IBM i OS is well aware of this difference and of the performance characteristics of SMT.  It 

also knows that there are often periods when fewer than the maximum number of SMT4’s 

hardware threads are actually executing instructions; an 8-core partition also means 32 hardware 

threads and the potential for 32 concurrently executing software threads.  When there are fewer 

dispatchable tasks, tasks are often first dispatched to cores which either have no or the fewest 

number executing; tasks are spread over the cores available on a chip to allow them to 

individually execute more rapidly.  Only as utilization increases - as the number of tasks needing 

to execute concurrently increases - does POWER7’s core switch to support the increasing 

number of instruction streams. 
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Observations on SMT Performance 

 

As you think about SMT you quickly realize that both the performance of individual threads and 

even the overall capacity available from moment to moment is dependent on what it is that the 

hardware threads are doing.  A thread, which when executing alone might have used every stage 

of every pipe for a while, does not leave much capacity on that core for even one more thread, 

much less two or three more.  On the other hand, one thread with a fairly high rate of cache 

misses leaves a lot of pipe line capacity available for a threads with a higher rate of executing 

instructions.  It happens that the way each thread uses a core’s resources typically varies rapidly 

from moment to moment.  And the core gets used a lot of different ways by even one thread over 

a longer period of time.  As a result we can speak of the average benefit to capacity that SMT 

provides, but please realize that the use and so benefit of it can be quite variable. 

 

With that in mind, we typically speak of the capacity opportunity of SMT4 (4-way SMT) over 

ST (Single Thread on a core) as being in the range of 1.5 - 2X.  For example, let’s define a thread 

which, when executing alone, produces some throughput of - say - 100 transactions/second.  If 

we replicate that thread four times and place them all onto the same core, together they are said 

to generate 1.5 - 2X of the throughput - so 150 - 200 transactions/second.  Notice, again, that 

these four tasks placed individually on separate cores would approach 4X more throughput.  

With SMT4 it is possible, but not typical, that for some classes of work that the throughput 

improvement of SMT4 over ST can approach 4X.  Conversely, it is also possible for there to be 

minimal benefit when core resource competition is extreme.  The point is that we typically see 

some considerable capacity benefit from the use of POWER7’s SMT4 and highly recommend its 

use.  But it is also true that the average benefit of SMT4 can vary considerably. 

 

As the instruction streams of multiple threads compete for the resources of a core, the threads 

individually slow down.  So, how much?  We offer here a rule of thumb.  Let’s suppose a 

workload with a 2X throughput improvement of four tasks on the same core over the throughput 

of just one.  Let’s also suppose that these same four threads, when placed individually on 

separate cores, produced a throughput improvement of 4X.  The single-core SMT4-based tasks 

are producing only half the throughput of the four core-based tasks.  This implies that the four 

SMT tasks are executing individually at half the speed on average; on average each task is taking 

twice as long to execute the same thing.  Of course, when there are three, then two, then just one 

task remaining on a core, the individual task’s speed improves.   Clearly individual task 

performance also can vary quite considerably, depending on what the other hardware threads are 

doing but more so on whether other tasks are even present.  But let’s now reconsider the notion 

of improved capacity.  Yes, the individual threads might be slower, but they are slower while 

executing on a processor.  So suppose that SMT4 did not exist.  The same tasks which are 

executing slower with SMT4 are nonetheless executing; without SMT4, they would be taking 

their turn waiting and competing for the use of the same core that they are executing on with 

SMT4.  So slower while executing, yes, but faster because of decreased queueing up behind the 

cores. 
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Observations on Virtualization 

 

Virtualization offers a means of using the capacity improvements of SMT in shared-processor 

partitions. 

 

Virtualization includes a concept called a “Virtual Processor”.  The virtual processor is what gets 

assigned to a core; it is permanently assigned to a core for dedicated-processor partitions and 

temporarily for shared processor partitions.  For POWER7’s SMT4, assigning a virtual processor 

to a core also brings with it all four hardware threads.  If one or more virtual processor’s 

hardware threads are not being used at some moment, if its capacity is not being used, the target 

core’s capacity is also not going to be fully used. 

 

It is also true that a shared-processor pool can have assigned to it many more virtual processors 

than there are cores in that pool1.  This occurs naturally from the existence of fractional-core 

capacity partitions; for example, even with one virtual processor in - say - ten partitions with 0.1 

core’s capacity results in ten virtual processors using one core’s capacity. 

 

The value of maximum capacity defined for each shared-processor partition is used as a limit of 

what each partition is allowed.  To manage this the hypervisor measures the amount of capacity 

used; once used in a time slice, that partition might not be allowed any more processing time 

until the next time slice.  It does this measurement by determining how much time each 

partition’s virtual processor(s) were assigned to a core.  In the context of SMT, whether there are 

one, two, three, or four active hardware threads, whether all of the SMT-perceived capacity is 

being used or not, the hypervisor only tracks how long a virtual processor is assigned to a core.  

 

Now recall that for reasons of the performance of individual threads, the OS intentionally 

spreads the dispatchable tasks over the available cores, here meaning over the virtual processors.   

As you have seen, this intentionally leaves some of each core’s capacity unutilized for the benefit 

of individual task’s performance.  For dedicated-processor partitions, this can2 remain exactly the 

right thing to do.  For shared-processor partitions, it is not as clear whether spreading tasks over 

cores is always appropriate.  Since there can be a lot more virtual processors active than cores in 

the shared-processor pool, it also means that these virtual processors will compete for the use of 

these cores; some will execute while some will simply wait.  Now picture all of these virtual 

processors intentionally executing just one thread; they are executing just one thread each 

because each partition wants these threads to execute faster, but since many virtual processors 

are simply waiting to use a core, some of these threads are temporarily not executing at all.  And 

for those that are executing, the single threads are often not really consuming all of the capacity 

available in the cores. 

 

                                                           
1Please observe, though, that it is never a good idea to define any single shared-processor 

partition with more virtual processors than there are cores in the shared-processor pool.  

 
2Energy management considerations might suggest otherwise. 
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One trick to buy back some of this capacity is to decrease the number of active - as opposed to 

actual - number virtual processors.  This decreases the contention of an excessive number of 

active virtual processors being time sliced over the fewer available cores; fewer active virtual 

processors decreases wait time.  To acheive this for shared-processor partitions, rather than each 

partition spreading its tasks over the available number of virtual processors (i.e., rather than 

optimizing for the performance of individual tasks), the OS can spread less and start using SMT 

sooner.  This is called “Processor Folding”.  The same number of dispatchable tasks can still 

make progress, albeit slightly slower when executing, but on fewer virtual processors, but wait 

time will decrease as well.   

 

What this also does is good for the shared-processor pool as a whole; more of the pool’s capacity 

is able to be used.  Not only are the cores being used as desired, but the capacity within the cores 

as well.  There also happens to be an upside for the shared-processor partition’s themselves.  

Because of processor folding, each partition activating fewer virtual processors, the hypervisor 

perceives that each partition is consuming less of its allocated capacity and as a result its virtual 

processor(s) can remain attached to cores for a longer period of time.  Further, yes, the tasks 

execute individually slower due to increased SMT usage, but as a result they also get to be 

assigned to a core for a longer period of time, allowing them to potentially complete their 

execution sooner.  Because of the decreased switching of virtual processors onto and off of 

cores, this also has a side effect of decreasing the thread’s cache miss rate, indirectly further 

speeding the thread’s execution. 
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Observations on the Measurement of CPU Utilization 

 

It used to be that measuring CPU utilization was easy.  In the days of single-processor systems, 

CPU utilization merely meant finding out what percentage of the time a processor was or was not 

being used.  In the slightly more complex days of SMPs, the system would add up the amount of 

time that each core was being used in a measurement period, divide that by the number of cores, 

and divide that by the measurement period. Converting this to percentage and subtracting this 

from 100 provide the remaining capacity percentage. 

 

SMT throws a monkey wrench into the workings.  SMT provides a way to consume more of the 

capacity of each core.  So that means that there is capacity to consume and that needs to be 

measured and factored into the measurement of CPU utilization.  So how does one determine 

how much capacity remains in each core even when one or more hardware threads are executing 

instructions.   And, conversely, how much of the capacity was used and by who?  It happens that 

this is a tall order. 

 

Prior to SMT, one could measure the CPU cycles consumed - the value used to calculate CPU 

utilization - and from there know how much time a particular task had spent on a processor.  So 

when an SMT4 processor can have four different tasks executing at least one instruction from 

each task during the same cycle, which of these tasks is perceived to have used a processor 

cycle?   

 

The SMT processors - POWER5 through POWER7 - offer an internal mechanism for tracking 

relative usage of each core.  POWER7 took it a step further and provided a means of tuning this 

measurement.  The general intent is to provide a measure of CPU utilization wherein there is a 

linear relationship between the current throughput (e.g., transactions per second) and the CPU 

utilization being measured for that level of throughput.  For example, a throughput of 100,000 

transactions/second at 50% utilization should imply that at 100% utilization the throughput 

should be able to reach 200,000 transactions/second.  

 

This internal mechanism attempts to proportionally assign fractions of cycles to each of the four 

hardware threads.  This is true whether the hardware thread is executing a Run State task or is 

idle (i.e., idle meaning executing a Wait State task or simply not being used).  Since each Run 

State task executes slower as additional Run State tasks are added to the core, the mechanism 

adjusts cycle assignment accordingly.  As a result, although there can be no perfect means of 

measuring CPU utilization with SMT, POWER7 is producing the desired near linear relationship 

between throughput and CPU utilization for a number of typical workloads.  However, for 

atypical workloads seeing either little or a very large benefit from SMT4, the desired linear 

relationship can become nonlinear.   
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