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performance or interoperability of any non-IBM products discussed herein.
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same or similar results will be obtained elsewhere.
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without notice, and represent goals and objectives only.
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Introduction

Welcome to “Under the Hood: Logical Partitions on POWER7”. In this paper we will show you what is
really going on under the abstractions being provided for logical partitions. Reading this, we are
assuming that you are familiar with the view of logical partitions provided by the HMC. Y ou already
know that you can specify:

e Each partition’s entitled capacity —its “Entitlement” - in terms of whole or fractional processor units
(1.0 processor units is approximately one core’ s worth of processing capacity),

e The amount of memory that each partition will be allocated,

o Whether the partition is designated as a dedicated-processor or shared-processor partition, and

e Thenumber of Virtual Processors, along with many more configuration settings.

These abstractions are handy in understanding the basics of logical partitioning, but there are also some
interesting subtleties that you might also want to influence. This paper will alow you to peek under the
hood, to better understand what is really going on, and from there to more intelligently control your multi-
partitioned system. Thisisnot a“Virtualization for Dummies’ paper. After you read thisyou will be
much more familiar with processor virtualization.

In getting there, we'll be looking at performance considerations relating to

e Virtual Processors
Partition Entitlement
Capped and Uncapped Shared-Processor Partitions
CPU Utilization and the Measurement of Consumed Compute Capacity
Simultaneous Multi-Threading as it relates to Processor Virtualization
Virtualization Effects of Non-Uniform Memory-based Topologies

This document is not intended to be a comprehensive “best practices’” document for LPAR performance.
Reference the POWERY Virtualization Best Practices Guide for more details:
POWERY Virtualization Best Practices Guide

Although much of this performance discussion is applicable to any operating system (OS), be aware that
as we discuss the related performance implications of operating system design, the operating system of
interest hereis primarily IBM i.
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The Virtual Processors

The Processor : The hardware entity to which tasks are assigned, executing their programs.

System processors are such a basic feature of your computer system that we tend to forget that each
processor, even within a partition, is aready virtualized. In a partition with many jobs, processes, and
threads, you do not need to know when or which processor is executing your task. All your program
needs to do is make atask dispatchable and you can be sure that it will get its opportunity to execute
somewhere and soon, even if all processors are busy.

Consider a partition with multiple processor cores. Even if you did know when your task was executing,
have you really ever wanted to know or control which coreis being used? The partition provides
compute capacity and handles the rest for you. Providing more cores to a partition just means more
compute capacity; this provides more opportunity to concurrently execute multiple tasks, and to minimize
any task’ swait time. Still more compute capacity comes from the fact that most modern processor cores
areindividually capable of concurrently executing multiple tasks via SMT (Simultaneous Multi-
Threading); POWER?7 cores can concurrently execute up to four tasks per core.  Not only could your
task be executing on any core, but it could be executing with three additional tasks on that core.

The point hereis that even within a partition, the operating system’s Task Dispatcher is virtualizing
processors, hiding the details of the processor cores. Although task dispatching is actually quite complex,
you need only think of the Task Dispatcher — as in the following figure - as being a hopper of
dispatchable tasks, spreading tasks in some fair and performance optimized manner over the available
“processors’ of its partition.

Partition A’'s Cores Partition B’s Cores

Figure 1 —Task Dispatcher

The innovation that we call “virtualization” isthat multiple operating system instances — Partitions - can
reside on the same Symmetric multiprocessing (SMP) processors and memory previously only used by
one. With processor virtualization, each dedicated-processor partition uses just a subset of particular
coresin the system. And even though they all reside within the same SMP, asfar as a dedicated-
processor Partition A is concerned, its cores are the whole of this system; Partition A has no visibility
outside of that.

POWERY Logical Partitions 6
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Maybe later — perhaps via DLPAR (Dynamic LPAR) - Partition A getstold that it getsto have more
physical cores or must instead free up afew; the point is that a partition’ s fixed view of its resources can
change. Partition A might even, on its own, temporarily give up the use of one or more cores for the
benefit of one or more other partitions or even energy usage. The partition’s Task Dispatcher is flexible
enough to handle these changes. Partition A’s Task Dispatcher isitself virtualizing even the number of
its cores.

Since the readlity isthat you don't really know upon which core each of your tasks executes, Processor
Virtualization allows the partition’s processor coresto be further abstracted as “Virtual Processors’.
This abstraction allows us to think of each Virtual Processor as not necessarily tied to any particular core
in the system. The partition’s Task Dispatcher dispatches tasks instead to Virtual Processors, not cores.
The Virtual Processor can be thought of as being assigned to a core shortly thereafter.

In practice, though, dedicated-processor partition’s Virtual Processorsreally aretightly tied to particular
cores and do have some longer-term persistence to cores. A task assigned to a Virtual Processor really is
also being assigned to some particular core; using the same Virtual Processor later typically does mean
using the same core aswell. Even so, these Virtual Processors can and do move, just not particularly
frequently.

A shared-processor partition’s Virtual Processors, though, might be thought of as having only short-
term persistence to acore. Unlike dedicated-processor partitions having persistent association to some
specific cores, the shared-processor partition’s Virtual Processors are all sharing the processor core
resources of something called the “ Shar ed-Processor Pool”. It istrue that even a shared-processor
partition’s Virtual Processor can remain attached to a core for quite awhile, but your general mindset
ought to be that there is no long term persistence between a Virtual Processor and any particular core and
the processor cache residing there.

There are times when there are many more dispatchable tasks than there are “processors’ for them all to
execute. When that happens, the partition’ s tasks take turns executing. The same thing happens with the
cores of the Shared-Processor pool; the cores of the Shared-Processor pool get shared by potentially many
more active Virtual Processors. Just like tasks waiting their turn for processors, whenever there are more
active virtual processors than there are coresin this pool, Virtual Processors must take turns to execute on
the pool’ s cores. Just like tasks switching on and off within a processor, for any shared-processor
partition a virtual processor’s persistence to a core can be quite temporary. A waiting Virtual Processor
may get assigned to the very next available core, no matter itslocation (or of the core where the Virtual
Processor last executed).

Even dedicated-processor cores might beidle; they don’t always have tasks dispatched to them. Same
thing can be true for Virtual Processors. Any Virtual Processor might be “inactive” because there are no
tasks dispatched there. For dedicated-processor partitions, this can — but not always — mean that the
associated coreis going unused. For shared-processor partitions, this simply means that the empty
Virtual Processor is not assigned to any core at thistime. Being inactive, it is also not competing with
active Virtual Processors for the use of the Shared-Processor pool’s cores.

Assigning one or more tasks to a Virtual Processor makesit “active”. We would want that Virtual
Processor to be attached to a core quickly thereafter. Conversely, when the Virtual Processor’s last task
ceases its execution and leaves its Virtual Processor (i.e., making it inactive), the Virtual Processor
quickly frees up that core. This active period — the time during which the Virtual Processor persistson a
core - can be very short, perhaps no longer than between atask’ s pair of page faults or lock conflicts.
Such wait events temporarily remove atask from assignment to a Virtual Processor and, so, a Virtual
Processor from executing on a particular core. When aVirtual Processor without tasks is dispatched
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there, the Virtual Processor ceases its association with acore. And thisisjust as you would want it; any
waiting active Virtual Processor can now use the freed core.

Each POWERY? Virtual Processor should also be thought of as representing up to four dispatched tasks,
because an SM T4 core supports up to four tasks. The Virtual Processor is considered active (for potential
use of acore) if there are one through four tasks assigned there; even just one task makes it active. When
the last task ceases execution there, the Virtual Processor becomes inactive again.

Y ou can now see again that a Virtual Processor isreally just an abstraction; it represents the notion of a
processor core—with all of its SMT hardware threads (4 in the following figure) — to the partition itself,
or more specificaly, to a partition’s Task Dispatcher. The Virtual Processor effectively provides the
means by which a partition need not know the physical location of the cores on which itstasks are
executing, or, for that matter, when they really are executing.

Partition’s Task Dispatcher
with Dispatchable Tasks

Task Dispatcher dispatches
Tasks to Virtual Processors
for its partition.

Hypervisor assigns subset of
Active Virtual Processors to cores.

=
-

; _ d Cores of Shared-Processor Pool
h K & executing tasks of Virtual Processors

0
&

Figure2—Virtual Processors

Dispatching of Virtual Processors

The difference in Virtual Processor persistence between dedicated and shared-processor partitions results
in some interesting differences in performance behavior as well.

For a POWERY processor, a dedicated-processor partition is executing at maximum compute capacity
only when all of the partition’s cores are executing four (SMT4) tasks. When there are SMT hardware
threads avail able — because there are fewer tasks executing — any newly dispatchable task can begin
executing immediately. Thereis no queuing delay. Any additional dispatchable tasks above four tasks
per core wait for awhile; often thiswait is until an executing task stops, freeing up a processor. These
tasks are going to perceive a queuing delay as they wait their turn for a processor. The wait period is
dependent on both the individual task’ s priority and the number of dispatchable tasks.

This wait before getting to execute iswhat you nhormally think of asa“CPU Queuing” delay. Like waits
dueto 1/O and lock conflicts, you know that CPU Queuing delays are a component of the response time
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of your application. Decreasing response time, when high for this reason, might require more compute
capacity (e.g., more cores).

Contrasting these observations with shared-processor partitions, getting atask to execute thereis

occasionally atwo step process;

1. First dispatch atask to avirtual processor (which might itself introduce CPU queuing delays), then

2. Attach aVirtual Processor to aphysical core to execute the task’ sinstruction stream; this can also
introduce a delay when there are too many active Virtual Processors contending for the available
cores.

To be more complete, when atask gets dispatched to a POWERY Virtual Processor, the Virtual Processor

will be in one of the following states:

e Already active and attached to a core, executing fewer than four other tasks on an SMT4 core. The
new task gets to execute immediately here without delay.

o Already in an active state, but waiting for an available core (i.e., al of the shared-processor pool’s
cores already have Virtual Processors assigned). The new task dispatched to this Virtual Processor
waits because its Virtual Processor has to wait.

¢ Inaninactive state (i.e., no tasks yet assigned there), the one newly dispatched task makes the Virtual
Processor active, but

o0 Thenewly active Virtual Processor gets immediately assigned to an available core (so the
new task getsto immediately execute),

0 All of the shared-processor pool’s cores are busy (so the new task continues to wait to
execute).

Y ou aready know that tasks can experience queuing delays. Here you also see that for shared-processor
partitions there is arelated effect which is afunction of the over-subscription of active virtual processors
for the cores of the shared-processor pool.

@
Waiting .. @ : ..
Tasks \_Q_‘ L | LQJ

Dispatchable . Partition B'S
Tasks Of Virtual Processors

Partition A

Partition C's
Virtual Processors

r
Waiting
Virtual % E
Processors
Hypervisor-managed

: — Legend:
Executing @ % E Ezl % EB % @ @ Waiting Tasks
Virtual E % EE % O Dispatchable Tasks
Processors EB @ EH EB @ Dispatched / Executing Tasks
The 16-core Shared-Processor Pool EB Virtual Processor (SMT4)

Residing in two 8-core processor chips.

Figure 3 - —Virtual Processors— Dispatching Partitions
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The previous figure pulls together what you have seen so far. It outlines the various states of tasks and

virtual processors.

e Starting at the top, in red are tasks which are waiting on some resource to be made available or event
to occur. Think herein terms of tasks waiting on locks and completion of 10 operations as
examples. These waiting tasks might also simply be tasks waiting for their next piece of work to
arrive (e.g., like you hitting an Enter key). These tasks are not in a dispatchable state and not
contending for a processor.

¢ Inorange are tasks which are dispatchable, their previous wait period on aresource or event has
ended. These tasks have not yet been assigned to avirtual processor for execution. Thisis often
because the partition’ s virtual processors are simply totally busy at that moment, with each virtual
processor already fully committed supporting its set of tasks.

e Ingreen are tasks which have been dispatched to an SMT hardware thread of a virtual processor.
These 4-way subdivided boxesin blue are Virtual Processors; there are four parts because each
POWERY coreis capable of concurrently executing four tasks.

¢ |Indedicated-processor partitions, these dispatched tasks are executing once they have been assigned
to avirtual processor (each virtual processor here also representing a core). In shared-processor
partitions, the associated Virtual Processor

0 might be waiting for the hypervisor to assign it to acore,

o might simply have no tasks assigned there and so are inactive, or

0 might be already assigned to a core, in which case the task(s) dispatched there are also
executing.

Performance Tip: Perhaps the most often noticed performance effect is increased response
time. One important component of that is processor queuing delays. One typical way to
minimize that is to increase the number of “processors’, which here can include POWERT’s
SMT4 hardware threads. With dedicated-processor partitions, there is always a fixed number
of cores available to provide this capacity. With shared-processor partitionsit is possible that
the Virtual Processor count can provide the same effect. But, for shared-processor partitions,
these same Virtual Processors must compete for the compute resources of the shared-
processor pool with the Virtual Processors of this and other partitions. This can add its own
form of queuing delays, resulting in increasing response time.

Asyou have now seen, a shared-processor partition’s Virtual Processors — and the dispatched task(s) they
represent - may need to wait to be attached to a core and, yes, that can take awhile. But, because of the
logical partition notions of “Entitlement” and of “Time Slicing” — concepts we'll be getting into shortly -
each virtual processor is guaranteed that it will soon have its opportunity to be attached to a core,
alowing its task(s) to execute, for at least a short while.

The Shared-Processor Pool

Any SMP system has a specified number of physical cores; thisisthe number of cores (capacity) in your
system’s hardware. Of these physical cores, potentially fewer are “licensed” (activated) for use by any
partitions.

Of these activated cores, al dedicated-processor partitions are assigned the number of these activated

cores based on their configuration. Once the dedicated-partition cores have been accounted for, the
remainder of the SMP' s licensed cores are added to the “ shar ed-processor pool”. The shared-processor

POWERY Logical Partitions 10
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pool will be used to allocate resources for shared-processor partitions when they are activated. For
example, in the previous section’ s figure above, the shared-processor pool is a 16-core subset of a
potentially larger system; the pool’ s cores here happen to reside on just two of the SMP s chips. Any one
of this shared-processor pool’s cores can be the temporary home for any active shared-processor

partition’ s virtual processor.

(Please do not confuse the terms “ activated” — an attribute of a physical core - and * active” —an
attribute of a virtual processor. An *“ active” virtual processor is one upon which a task has been
dispatched and has been made available to the hypervisor for assignment to a core.)

Altogether the shared-processor pool’ s cores represent a maximum amount of compute capacity, just like
the compute capacity that is available from the cores owned by any dedicated-processor partition. There
is no more compute capacity. And it isthis set of coresthat are used by all of the virtual processors of all
of the shared-processor partitions. The full set of active virtual processors over al these partitions can
reasonably be configured to exceed — even far exceed — the number of coresin the shared-processor pool.
But all of these are sharing only this maximum compute capacity.

Performance Tip: Since the shared-processor partitions all together normally use only the
cores of the shared-processor pool, thereis no value in a shared partition having more virtual
processors than the number of coresin this pool. Asyou will see, the virtual Processor count
should normally be considerably less than this maximum but large enough to handle peak
loads.

Y ou can see a sample of this effect in the following figure. Here the hypervisor is aware of many more
active virtual processors than there are cores in the shared-processor pool. In thisfigure, each color
represents the virtual processors of a different shared-processor partition. The green hexagons are tasks,
with up to four per virtual processor.

o M G «® HaFH™
HalfH FHe H o
QQ@ ( B @ _ @ Dispatchable Active
e :,:r, o Virtual Processors
® = assigned to cores by hypervisor.
e @ Executing Tasks within Virtual Processors on
O ] a 6-Core Shared Processor Pool

Figure4 — Shared Processor Pool

Aswe described earlier, each partition’s Task Dispatcher has a*“hopper” of dispatchable tasks which get
assigned to cores/virtual processors. The hypervisor uses the same concept to manage a hopper of active
virtual processors; the hypervisor takes some or all of the active virtual processorsin the hopper and
assigns them the cores of the shared-processor pool. Just as the Task Dispatcher’ s hopper may have far
more dispatchable tasks than there are avail able processor threads, the number of active virtual processors
in the hypervisor’ s hopper can also far exceed the number of cores available in the shared-processor pool.
Just as the Task Dispatcher needsto provide fairnessin allowing all those dispatchabl e tasks to have their
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opportunity to execute, the hypervisor must similarly ensure fair use by allowing the currently active set
of virtual processorsto each have their opportunity to execute. (The inactive virtual processors are also
like waiting tasks in that neither is contending for processor resources - neither type is considered to be

“in the hopper” — at that moment.)

Recall aso that within a partition, you can provide some control over fair use of the processors by tasks.
Within a partition, fairness provided by a partition’s Task Dispatcher is partly based on each task’s
“priority” to execute; for IBM i thisisjust job priority (e.g., SBMJOB’s JOBPTY parameter). Job
priority in this context aids the Task Dispatcher in determining which of the dispatchabl e tasks ought to
next be assigned to a processor.

Fairness as calculated by the hypervisor (when determining which virtual processor to next assignto a
core) ensures that each active virtual processor gets allocated its share of processor cycles. Hypervisor-
provided fairnessis at least partly afunction of each partition’s “entitlement” to use the shared-processor
pool’s entitled capacity. Partitions, though, can also have an attribute of priority, a value which you can
set, and which we will describe shortly. We're next, though, going to look at the notion of entitlement.

Restating the performance note earlier, notice in the figure above that one of these partitions (in purple)
has 9 virtual processors contending for only 6 coresin the shared-processor pool. Sincethereisonly the
compute capacity of six cores available there, only ever a maximum of 6 virtual processors from this
partition will be able to concurrently execute. So having more virtual processors than cores in the shared-
processor pool is always considered amistake. In addition, notice that even these 6 virtual processors
will occasionally —if not often - need to compete with the active virtual processors of the other partitions
for the pool’s cores.

Partition Compute Capacity / Entitlement

Entitlement helpsto provide fair usage of the compute capacity of the shared-processor pool. There
might be alot of compute capacity in that processor pool, but you may have alot of partitions—and
within each of these, alot of virtual processors - sharing it. So what is entitlement really and what do you
need to know to set it up correctly? Let’s start with concepts that you already know.

The compute capacity available within a dedicated-processor partition is proportional to the number of
cores available to that partition; more cores means more compute capacity. Since the dedicated

partition’ s virtual processors aretied to particular sets of cores for relatively long periods, compute
capacity is defined there in terms of integer numbers of cores. Each dedicated-processor partition’s Task
Dispatcher ensures fair and efficient use of this compute capacity by appropriate assignment of tasks over
its “processors’ (ak.a, itscore sSMT hardware threads). Y ou can see such compute capacity limitsin
the dedicated-processor partitionsin the figure below. For example here, dedicated-processor Partitions
A and B have the compute capacity of three cores each, Partition C islimited to two cores. Again,
compute capacity hereisfixed per an integer number of cores. Each partition’s Task Dispatcher’s
“hopper” assigns itstask (green hexagons) to the SMT4 cores.

As aside observation, you might also notice that Partitions A-C are not here consuming al of their
available compute capacity, even though all cores are being used; here only one or two of each core’s
SMT threads are being used, meaning that there is still more compute capacity for when more tasks
become dispatchable. This observation isimportant later.

Similarly, the entire compute capacity of the shared-processor poal is only as large as the integer number
of coresin this pool; this, in turn, can be no larger than the number of coresin the SMP. It follows that
the hypervisor perceives all of the pool’ s compute capacity as being consumed if there is an active virtual

POWERY Logical Partitions 12
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processor assigned to all of the pool’s cores. Picture this shared pool core count as representing the
maximum compute capacity available for use by all of the shared-processor partition’s virtual processors,
no matter the number of active virtual processors.

So, finally, each partition’s entitled capacity can be thought of asa fraction of thetotal compute
capacity of this shared-processor pool. If you add them all up, their total entitled capacity can be no
greater than the compute capacity of this pool. Unlike dedicated-processor partitions compute capacity
being defined as an integer number of cores, shared-processor partition entitled capacity can be stated
with much finer granularity.

Shared Processor Partitions

A
< 'r
"% %, %{: 74’6

Dedicated-Processor Partitions

_QM -
Dispatchable
Dlspatchable OQ \O 4 9 \ ;‘ W @ 'pl'asks
Tasks
Partlt_lon A Partition B Partition C : B ] Inactive

Virtual Processors

\@0@@@00
SaERPHE %

Dispatchable
Active
Virtual Processors

PR e R RS

FH%® HeFHERE o

Executing Tasks on 8 Cores
Of 3 Dedicate-processor partitions

Executing Tasks within Virtual Processors on
8 Cores of the Shared Processor Pool

Figure5— Partition Comparison

To further explain the reason for entitlement, recall that each partition has an integer number of virtual
processors. Asin thefollowing figure, it is completely possible — but not necessarily often advised —for
any shared-processor partition to have avirtual processor count equal to the number of coresin the
shared-processor pool. If such apartition became very active with alarge number of dispatchable tasks, it
is possible for such a partition to be temporarily using al of the coresin the pool. It can, for that moment,
be using al of the compute capacity that is available in the pool. It follows that when this happens, none
of the other partition’ s virtual processors are getting to execute. Of course, when there are other active
virtual processors the hypervisor can and does have the virtual processors take turns using the pool’s
cores.

Without this notion of “Entitlement”, the hypervisor would make a best guess attempt at ensuring fairness
amongst all of the partition’s active virtual processors. Without this advice from a system administrator,
the partition(s) with the most active virtual processors could consume the most compute capacity,
independent of the number of tasks per virtual processor.
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| HE|m @le 4
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-~ Virtual Processors

assigned to cores by hypervisor.

Executing Tasks within 8 Virtual Processors
of the same shared-processor partition
oh a 6-Core Shared Processor Pool

,.
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Figure 6 — Dispatching Active Virtual Processors

Thisiswhere Entitlement comesin. Entitlement isyour means of providing advice to the hypervisor
concerning fair use. For each partition you can configure the portion of this entire shared pool’ s compute
capacity that partition ought to be allowed to consume. This portion, its Entitlement, stated in terms of
fractional core counts (e.g., 2.2 cores of 16 in the poal), is the entitled capacity of a shared-processor
partition.

The sum of all the shared-processor partition’s Entitlement can not be configured to be more than the
compute capacity represented by the cores in the shared-processor pool. These partitions can have many
more virtual processors, but the overall compute capacity available is limited by the shared pool’ s core
count. Asyou will be seeing, for Capped partitions, this Entitlement represents the maximum compute
capacity —alimit - that a partition’ s virtual processors are allowed to consume; for Uncapped partitions,
this value also represents a guaranteed compute capacity if needed, not necessarily alimit.
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Performance Tip: Estimating Entitlement and Virtual Processor Values

What do you really need for entitlement values? First, entitlement represents desired
capacity; capacity only indirectly represents responsetime. Further, every workload is
different; IBM i publishes capacity in terms of CPW Ratings based on a particular multi-job
database OL TP workload which uses the SMT4 threads and all cores of a partition. It does so
for anumber of different dedicated-processor partition sizes for a number of different
systems. Still with these caveats, and more to be discussed, you can estimate the initial
capacity of a shared-processor partition.

We assume here that you know your needed capacity, again in terms of CPW rating.

1. What isthe capacity of your shared-processor pool in terms of CPW rating? Find a
CPW rating for asimilar system with a dedicated-processor partition size at or above
your shared-processor pool size. Assume —for now - alinear relationship to roughly
calculate your shared pool’s capacity. Example: Given 12 cores in shared-processor
pool, a 16-core CPW rating of 120K.... 90K = (12/16)* 120K

2. How much capacity does your partition need (as a CPW rating)? Let’s assume 18K.

3. Minimum Entitled capacity required in terms of fractional cores ....

2.4 cores = 18K * 12 cores/ 90K

In order to determine the partition’s virtual processor count to use this 2.4 cores of capacity,
this partition will need to round this value to the next larger integer. In this case, this partition
would require 3 virtual processors. Asyou will see, more virtual processors could be used by
an Uncapped shared-processor partition, but whether 3 or more, these virtual processors
would only see more than 2.4 cores of capacity when there remains more capacity in the
shared-processor pool.

Thisisan initia starting point. You’'ll be adjusting this as you learn more and per your needs.

Utility CoD

Assume that your system has been configured for partition capacity to handle most processing needs.
However, there may be peak processing demand periods which require additional processing power
beyond the configured capacity. Uncapped partitions provide this function for licensed/activated
processor cores.

Suppose that you only want to pay to license these additional processor cores when they are needed.
Utility CoD provides this support. The extra capacity isin the form of inactive processor units located in
the shared-processor pool. When the processor cores are required to handle peak processing, they are put
into service. They are available for use by uncapped partitions. This addition processor cores become
inactive when the workload returnsto its normal level.

For more information on Utility CoD see the following IBM Redpaper:

http://www.redbooks.ibm.com/redpaper/pdf s/redp4416.pdf
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Multiple Shared-Processor Pools (MSPP)

The Multiple Shared-Processor Pools (M SPP) function provides the capability for processors resources to
be alocated to more than a single specifically configured shared-processor pool. A subset of the shared-
processor partitions may be allocated to a given shared-processor pool and the remainder of the shared-
processor partitions can be allocated to one or more other shared-processor pool(s). Systems can
currently support up to 64 shared-processor pools. Each of these shared-processor pools may be
configured individually to support its shared-processor partitions. The total capacity used at any point
cannot exceed the pool maximum.

An advantage of MSPP is that shared-processor partitions may be grouped together under a given shared-
processor pool and processing capacity can be controlled across all these partitions. The total capacity of
that shared-processor pool can be shared among them. If these partitions are running the same software
then this function can be useful for software capacity license management. Within this shared processor
pool al the virtual servers can be uncapped, allowing them flexibility within the license boundary set by
the MSPP.

The Measurement and Use of Entitled Capacity

The previous section outlined the concept of Entitlement. This section outlines how the hypervisor keeps
track of each partition’s consumption of its entitled capacity and what that means to the performance
characteristics of shared-processor partitions.

The hypervisor uses each partition’s Entitlement in its job of ensuring fair use of the shared-pool’ s cores.
Thereal trick comes from how the hypervisor keeps track of each partition’s compute capacity
consumption, and then how the hypervisor managesit. This has some interesting side effects which we'll
be looking at soon.

Whenever a shared-processor partition’s virtual processor is assigned to a core, the hypervisor views that
virtual processor as consuming some portion of the partition’s entitled capacity. A virtual processor that
isassigned to acoreis also consuming the entire compute capacity of that core; if acoreisused by a
virtual processor, the core is simply not available for use by any other. So compute capacity consumption
is measured merely asthat period of timethat a partition’svirtual processor isattached to a core.

[ Technical Note: The hypervisor’s measure of compute capacity consumed by virtual processors has
nothing at all to do with what the virtual processor is actually doing. It isnot a function of the number of
tasks (up to four on a POWERY core) that are dispatched to that virtual processor. Asa result, CPU
utilization — a synonym of compute capacity consumption - as measured by the hypervisor can be very
different and typically higher than CPU utilization as measured by the partition. The hypervisor is
measuring whether or not a core is being used, period. The partitions themselves are often measuring
CPU utilization based on how much compute capacity remains within its SMT-based cores; here a coreis
perceived as 100% utilized only if all four of POWER7's SMT threads are executing tasks. Both
approaches are valid forms of measuring compute capacity consumed; they are just different. We'll
comment more on this later.]

The hypervisor tracks each partition’s entitled capacity consumption within time slices. When a
partition’s virtual processors reach their entitled capacity limit within atime slice, it is possible that the
hypervisor will have that partition temporarily cease execution. For example, consider the following
figure showing the execution of two partitions, both with the entitled capacity of 1 core. The upper
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partition has 1 virtual processor, the lower partition has 4. We'll have all of these virtual processors as
continuously active. Even continuously active, the 1 VP partition with its 1-core entitled capacity (i.e.,
the uppermost partition) will never reach its entitled capacity limit and so will continue to execute. The
lower partition, though, consumes its entitled capacity four times faster and, as aresult, also only has
virtual processors executing for ¥4 of the time.

1-core Entitlement with 1 VP vs. 4 VP
1 VP A

I X Core not used

N
4 VP ‘:\\\\
| O

Virtual Processor executing on core

Figure7—1Virtual Processor vs. 4 Virtual Processors

Asyou can seg, the point at which the hypervisor perceives a partition’s entitled capacity as having been
consumed is important. It can mean that the partition’s virtual processors will temporarily lose their
opportunity to execute for a short while. This alows other partitions' active virtual processors their
opportunity on acore. Entitlement helps with fair use of processing resources. Entitlement means that
every partition is guaranteed at least its “entitled” portion of the shared-processor pool’ s compute
capacity. Remember that the sum of the Entitlement over all of the shared-processor partitionsis no
larger than the number of coresin the shared-processor pool. Thereis no guarantee of when or where
each virtual processor gets to execute, only together a partition’ s virtual processors will be ensured that
partition’s entitled capacity.

The hypervisor measures entitled capacity consumption within time slices of well defined lengths (e.g.,
default 10 milliseconds. A later section further discussesthisvalue.). If, in onetime slice, a partition has
exceeded its entitled capacity and so has lost its right to use any core of the shared poal, its virtual
processors get another opportunity to execute in the next time slice. Indeed, a virtual processor still
executing (i.e., without having exceeded that partition’s entitled capacity) at the end of one time slice, can
continue executing to at least its entitled capacity limit in the next time dice.

As an example, a partition specified with the entitlement of ¥ core and having 1 virtual processor will be
guaranteed the right to execute for atotal time of at least for 5 millisecondsin each 10 millisecond time
dlice. Thiscan befor acontinuous 5 milliseconds or many short bursts totaling 5 milliseconds. It does
not matter to the hypervisor, but it might matter to response time of other active virtual processors waiting
for acore.
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1 VP per Partition

2 VPs per Partition
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Figure8—1 Virtual Processor per Partition vs. 2 Virtual Processors per Partition

The figure above shows two cases of three partitions (each in a different color), together using atwo-core
(called Core 1 and Core 2) shared-processor pool. Timeis progressing from left to right and divided into
10 millisecond time slices. Each of these shared-processor partitions also has a different value for
Entitlement, but — for any given partition — that entitled capacity is the same in both cases shown.

e Inthe upper case, each of three partitions was assigned one virtual processor. Let'saso have these
virtual processors continuously active (i.e., with one or more tasks dispatched there) and so intending
to use all of the partition’s entitled capacity. In most cases, these virtual processors cease their
execution when they reach their entitled capacity limit in atime slice. When they don't, they may
continue executing with the next time slice again until their entitled capacity limit is reached.

¢ Inthelower of the two cases, with entitled capacity asin thefirst case, al three partitions now have
two virtual processors. Unlike the first case where we have the virtual processors largely
continuously active, in this case we'll have each virtual processor as active for only short snippets of
time. These virtual processors are deactivating at different times, often because the tasks dispatched
there themselves pause their execution (e.g., page fault, lock conflict). But in thisfigure, even these
virtual processors — executing only momentarily — are together still consuming the partition’s entitled
capacity and may cease execution if that entitled capacity limit is exceeded in atime slice. Note also
in this example that all of the entitled capacity of this 2-core shared-processor pool is being
consumed.

The point: Whether executing for extended periods of time —asin the first case — or for short bursts of

time — asin the second case —if a partition reachesits entitled capacity limit, these partition’s virtual

processor may temporarily cease their execution. The now available cores then become available for use
by waiting virtual processors of partitions which have not yet reached their entitled capacity limit.

We want you to picture just how dynamic this environment can be. Whether virtual processors are active

and attached to cores for long periods or active for very short snippets of time and so rapidly switching on

and off cores, the hypervisor is handling the fair use of afixed resource, the entitled capacity of the

number of coresin the shared-processor pool. Remember the notion of the hypervisor’s “hopper” of

virtual processors, shown again below? At times, the hopper might ...

e Beempty or have fewer active virtual processors than coresin the shared-processor pool. (The next
virtual processor becoming active can then be immediately assigned to a core.)

¢ Have anumber of active virtual processors equal to the number of core in the shared-processor pool.

¢ Have more (or even far more) virtual processors than there are cores in the shared-processor pool.

e Havevirtual processors for partitions which have reached their entitled capacity limit, and so which
might temporarily not be in contention for the shared-pool’ s cores.
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Figure 9 — Dispatchable Active Virtual Processorsand Executing Tasks

Performance Tip: Shared-processor partitions can be an efficient use of processing capacity.
This dynamic environment can make good use of the shared-processor pool’s capacity. But
be aware that configuring too many active virtual processors can cause queuing-related
response time and throughput (capacity) variability compared to dedicated-processor
partitions.

Having, at least occasionally, some excess number of active virtual processors versus the size of the
shared-processor pool isnot unreasonable. Even if the total static number of virtual processors over all
partitions is much larger than the number of coresin the shared-processor pool, when cores are available
(because most of these virtual processors happened to be inactive), the oversubscription allows the cores
to be used as subsets of partitions become more active. But keep in mind that there is similarity between
what happens in the following two quite different cases:

1. Anexcessive number of active virtual processors of shared-processor partitions competing for cores
and

2. An excessive number of tasks contending for the SMT hardware threads of a dedicated-processor
partition (i.e., the definition of 100% utilization).

In either case, some tasks are going to wait, and the more tasks — or virtual processors - there are, the
longer the wait. Either of these types of waits are a component of response time. But thisiswhere the
hypervisor’s fairness policy comesin. With each shared-processor partition having some entitled
capacity, each partition’s virtual processors — and the tasks assigned there - are guaranteed at least that
amount of compute capacity. Thetrick isto define each partition’s entitled capacity to ensure good
response time while at the same time allowing the resources of the shared-processor pool to be frequently
utilized.

[Technical Note: Shnce the OS Task Dispatcher chooses which tasks to dispatch based on a notion of task
priority, often the Task Dispatcher has a better idea of which tasks ought to execute than the hypervisor.
(The hypervisor is dispatching virtual processors, not tasks.) Configuring your shared-processor
partition with too many virtual processors has a way of defeating the intent of task priority. Task priority
aids in deciding which dispatchable task is actually dispatched. If, because there are many virtual
processors, every task can immediately get dispatched onto a partition’s virtual processor(s), dispatch
priority provides no value. Instead, tasks of all priorities might find themselves waiting for their virtual
processor to be assigned to a core.]
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There s, though, aside from Entitlement, away to influence the “fairness’ relating to the choice of which
virtual processor gets assigned next to acore. This additional means s called the Uncapped partition’s
“weight”, avalue set in the partition’ s profile. Inwhat follows, |et’s assume that the remaining active
virtual processors are all from partitions already above their entitled capacity limit. (If in this set, one
virtual processor becomes active and it is still below itslimit, it gets immediate use of a core.) Without
entitlement being an issue, given equal weighting, the hypervisor would normally tend to randomly select
which virtual processor ought to be attached to the next available core. The partition’s weighting factor
alows you to increase the odds for rapid assignment to a core for some partitions versus others. Thisis
done by assigning each partition — viaits profile - aweighting factor between 0 and 255 with 128 being
the default. The greater the weight, the greater the odds of this partition’ s virtual processor(s) - versus
others with lesser weight - being assigned to acore. (A partition’sweight can be changed “on the fly” by
using DLPAR. Otherwise, when the partition’s profile is again activated, a change of the weight takes
affect.)

@ rchhmcl51b: Manage Profiles - Mozilla Firefox: IBM Edition enli=] ﬁ

= ibm.com | https://rchhmcl51b.rch

and.ibm.com/hmc/wcl/Tcba2

erties: tarvos @ tarvos @ tarvose-8203-E4A-SN1041FBO - tarvos |
Logical

: Host
General | Processors | Memory | /0 Xfu’;ﬁirs E?:ﬁterrollmn Settings = Ethernet Eﬂgged OptiConnect ‘

Adapters
(LHEA]
Detailed below are the current processing settings for this partition profile.
Processing mode
Dedicated
Q) shared
Processing units

Total managed system processing units : 4,00

Minimum processing units : lo.1
Desired processing units : fo.1
Maximum processing units : lo.1

Shared processor pool:

=

DefaultPool (0)

Virtual processors

Minimum processing units required for each virtual processor : 0.10
Minimum virtual processors : |J..0 I

Desired virtual processors : |J. 0

Maximum virtual processors : |1.0

Sharing mode

Jt.lncapped Weight E

Processor compatibility mode: default -

oK Cancel Help

Figure 10 —Weight Value

Note: A partition that is capped and a partition that is uncapped with aweight of 0 are functionally
identical. In terms of performance, you get exactly the same result (utilization can only go up to the
partition's entitled capacity, not higher), but weighting can be changed from within the partition in
workload-managed L PAR groups, whereas capped/uncapped state cannot. If partition capping is an area
you would like to change from within a partition using workload management software in the future, an
uncapped partition with aweight of 0 should be selected. The HMC is dynamically able to change a
partition from capped to uncapped, and to change the weight.
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Performance Tip: A partition’s Entitled Capacity still remains your primary means of
controlling a partition’s performance. The partition’s weight gets used to dlightly help its
response time; in a busy shared-processor pool, Partition A’s higher weight versus Partition B
allows Partition A’ s virtual processors to tend to be sooner assigned to a next available core.

But, given aset of virtual processors from uncapped partitions al already exceeding their
entitled capacity, this also has the side effect of influencing how much extratime Partition A
—with its higher weight —is allowed to use a core (versus Partition B with alower weight).
The next section talks to Capped versus Uncapped partitions.

Uncapped and Capped Partitions

In the previous section we spoke of the consumption and measurement of each partition’s entitled
capacity. We observed that any partition’s virtua processors, having consumed their entitled capacity,
may be forced to temporarily cease their execution. It also observed that any other partition’s active
virtual processors, each waiting for an available core, can then begin execution on these now available
Cores.

Let’'s suppose that often there was no such contention. Let’s assume each partition reaches its entitled
capacity limit when there are also no waiting virtual processors. Having reached its entitled capacity,
should that partition cease its execution temporarily anyway or should it continue to execute, at least until
thereis contention? That is the basic difference between Capped and Uncapped shared-processor
partitions.

Y ou can see this in the following figures showing consumption of a4-core shared-processor pool. A set
of 6 partitions (A-F), all with entitled capacity of 2/3 of a core, are consuming some or all of their entitled
capacity. We have here arranged for Partitions A and B to twice reach their entitled capacity limit (see
periods starting at 10:31 and 10:33). Even so, as seen in the first figure of al Capped partitions, the
available compute capacity of the 4-core pool is not ever being fully utilized. In the second figure,
Partitions C-F remain Capped and execute as in the first figure, but we have altered Partitions A and B to
be Uncapped. When Partitions A and B reached the entitled capacity, rather than ceasing execution,
because the shared pool still has compute capacity remaining when needed, Partition A and B’ s virtual
processors continue executing, equally consuming —when needed — the remaining compute capacity of
the 4-core shared-processor pool.

POWERY Logical Partitions 21



STG Cross Platform Systems Performance

Sum of Partition’s Capacity Consumed {Capped)
4.00 -
2 35
& 300 : : F
| JhY E— — :
' : : : Partition F
3 20 : | — - .
£ 15/ & : _ H : Partition E
a 7 : . Partition D
g 1.00 - ;
O 050 Part.mon c
0.00 Eartft\on i
artition
o o o o o o o o o o o o o o o
S T S R N NP SN S S T I .
F ST EFFT T T
Time
Sum of Partition’s Capacity Consumed {(Uncapped)
4.00 -
£ 350 -
g_ 300 — : | N A
it 250 S - — — - ' W .
T 200 — 3 = — i . Partition F
g 150 : : - : = Partition E
£ 100 ' ; ' Partition D
8 050 : : Partition C
0:00: A R L | |wPaiiin B
O O Q O (n (2 ) & o o o o o o o Partition A
S S N -, S L A S L | N N ~ S | S
. S S S S S - Y . . . G o
I I I L
Time

Figure 11 — Sum of Partition’s Capacity Consumed

Stating it again, the difference between Uncapped and Capped partitions relates primarily to what
happens when a partition’s entitled capacity limit is reached. Stated most simply, the difference is that

A Capped partition’ s virtual processors together cease their execution when the entitled capacity
limit isreached. Even if there are unused cores in the shared-processor pool, once the compute
capacity consumed reaches the entitled capacity, processing for that partition ceases until the next
time slice boundary. The Capped partition’s entitlement providesa limit on consumable
compute capacity. Other shared-processor partitions can be assured that any Capped partition will
use no more than this compute capacity.

Uncapped partitions virtual processors can continue execution past their entitled capacity limit, but
only if thereis still available compute capacity in the shared-processor pool. Aswith Capped
partitions, if shared pool compute capacity is not available, all or some of the virtual processors of
Uncapped partitions will also cease their execution when the entitled capacity isreached. The
Uncapped partition’s entitlement can also be considered a limit, but it is also a guar antee of
some minimum consumable compute capacity when needed. Said differently, if the Uncapped
partition needs this compute capacity, it is guaranteed its entitled capacity, even if other partitions
have active virtual processors also waiting for cores. But when the shared-processor pool has unused
compute capacity, Uncapped partitions are allowed to consumeit. (Unlike Capped where the limit is
the entitled capacity, the actual maximum compute capacity limit for Uncapped partitionsis instead
represented by the number of virtual processors when there is no contention.)
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So in the second of the preceding figures where Partitions A and B have become Uncapped partitions, the
Capped partition’ s compute capacity limits, which would have been imposed on these partitions starting
at times 10:31 and 10:33, are as Uncapped partition not really limits. AsUncapped partitions, Partitions
A and B are allowed to consume whatever compute capacity remainsin the shared-processor pool. But
before doing so, these and the other partitions are allowed to consume compute capacity up to their
entitled capacity.

A Financial Note: Before going on to discuss best performance practices, let’ sfirst observe that there
are some financial aspectsto using Capped versus Uncapped partitions. Theserelateto IBM i OS
licensing. These aspects might best be stated asin the following:

o For dedicated-processor partitions, the number of licensesis equal to the desired number of
configured cores.

e For Capped shared-processor partitions, the number of licenses equals the total of the desired number
of processing units—their overall Entitlement - configured rounded up to the next whole number.
Thistotal includes al Capped partitions. Notice that thistotal can not exceed the number of coresin
the shared-processor pool, but it can be less. Such partitions can have more virtual processors than
the number of cores defined by this entitled capacity, but the maximum compute capacity they can
useis still limited by this pool size aswell.

e For Uncapped shared-processor partitions, the number of licenses equals the maximum number of
virtual processors configured, but only up to the limit of the number of coresin the shared-processor
pool. Each partition can have alot of virtual processors, but the compute capacity that they together
can consume (over multiple or all shared-processor partitions) is no more than what is availablein the
shared-processor pool.

e Asstated earlier MSPP function may be used to control software licensing capacity across multiple
shared-processor partitions.

For On/Off Capacity on Demand (CoD), there are no additional licensing charges associated with a
temporary processor activation. (Recall that the number of coresin the shared-processor pool isequal to
the number of activated cores less the number of dedicated-processor partition cores.)

We had outlined in the previous section how each partition’s entitled capacity is measured. To review:

e The shared-processor pool has only the compute capacity defined by the pool’ s core count.

o Every shared-processor partition has an entitled capacity. The total compute capacity over all
shared-processor partitionsis less than or equal to the compute capacity available in the shared-
processor pool.

e Each virtual processor’s compute capacity consumption is represented by the amount of time that the
virtual processor is assigned to acore. If multiple of a shared-processor partition’s virtual processors
are attached to cores at the same time, the rate of compute capacity consumption is proportional of the
number of such virtual processors (i.e., three concurrently executing virtual processors are consuming
compute capacity at 3X the rate of just one).

e Compute capacity is accounted for within the notion of atime dlice. It is effectively reset in the next
time slice. Within such time slices, some — or potentially all — partitions measured compute capacity
consumption may reach their partition’s entitled capacity.

Y ou aso know that Capped partition’s virtual processors cease their execution within atime slice

when/if the compute capacity limit is reached, making its cores available at that moment.

Capped / Uncapped Summary

Y ou can now also see the basic philosophy differences behind dedicated-processor and shared-processor
partitions.
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e Dedicated-processor partitions allow having afixed compute capacity always available. With
these, a set amount of compute capacity is reserved such that, if thereisa*processor” available when
atask become dispatchable, that task is guaranteed near immediate access to that processor. Again,
dedicated-processor partitions effectively reserve some amount of a system’s compute capacity to
have ensured this. And this assurance of immediate execution —with minimal processor queuing
effects— can be very important. This, of course, assumes that there are enough cores defined to such
partitions to minimize such queuing delays.

e Shared-processor partitions maximize the usage of the compute capacity available in a pool of
processor cores, a pool which might include the entire system’s cores. But, as with any highly used
resource, a core might not always be available when needed. And that meansthereis a potential for
additional queuing delays during processing, with each virtual processor needing to wait for a short
while for its opportunity to execute. Said differently, shared-processor partitions are trading off the
opportunity to increase the usage of your available compute capacity (i.e., cores are used more often)
for occasionally longer processing response times. Aswith adding cores to each dedicated-processor
partition, adding more cores in the one shared-processor pool can improve response time for the
shared-processor partitions.

0 Capped Partitions: Aswith Dedicate-processor partitions, capped partitions have afixed
compute capacity and no more. Unlike dedicated-processor partitions, this compute capacity
can be provided in terms of fractions of a core' s compute capacity. Too small a compute
capacity for the work required, and too few virtual processors for the number of tasks can
result in both task and virtual processor queuing delays to occur.

0 Uncapped Partitions. It ispossible for such partitions to perceive compute capacity up to
the total that is available to the number of virtual processorsin the partition, potentially well
above the entitled capacity. But, because of shared-pool contention and because of the
opportunity for fractional core Entitlement, it is also possible that such partitions will be
allowed only the compute capacity implied by the partition’s Entitlement. This difference
can be considerable and might be perceivable as a difference in response time.

Performance Tip: It is not unreasonable for an Uncapped partition to have more virtual
processors than suggested by its entitlement. When cores are available in the shared-
processor pool, this allows this partition to consume that capacity, thereby improving the
response time perceived by the partition’s users.  But the capacity implied by the number of
virtual processorsis not the guaranteed capacity. The Uncapped partition’s entitled capacity
isitsonly guarantee. When the shared-processor pool gets busy supporting the virtual
processors of other partitions, the lower entitled capacity — and so its potentialy perceptibly
slower response time —is what will be perceived by the partition’s users.

Dedicated-Donate

Thus far we have showed that the maximum compute capacity available to all shared-processor partitions
isequal to the sum of all entitlements; this total compute capacity can be available to even asingle
uncapped partition if that partition has an equal number of virtual processors. True enough, but thereisa
way that the number of cores in the shared-processor pool can occasionally grow above even this compute
capacity limit.

Recall first that the size of the shared-process pool is normally equal to the number of activated cores | eft

over after the dedicated-processor partitions are assigned their cores.  Growing the compute capacity of
the shared-processor pool means borrowing available compute capacity from one or more of these
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dedicated-processor partitions. Such dedicated-processor partitions can be configured — see figure below
- to donate their temporarily unused cores to the shared-processor pool. This, in turn, can decrease the
contention of active virtual processors for cores, and, with that, decrease virtual processor queuing delays.
Compute capacity, otherwise thought of as tightly tied to dedicated-processor partitions, can —when the
circumstances are right — be made available to shared-processor partitions.

Note that temporarily unused cores are being donated when available and, more to the point, only donated
when a dedicated-processor partition perceives some of its cores aslikely to remain unused. Even when
average CPU utilization of such dedicated donating partitionsis relatively low, all of its cores might
nonethel ess be used. Having even one task on every dedicated partition’s core —recalling that on
POWERY there can be four —isall it takes for every coreto be busy. But if one or more cores are
tending not to be used for awhile, even for short periods of time, such cores can be donated for temporary
—and occasionally longer term - use by a shared-processor partition’ s virtual processor.

[Technical note: When the donating partition again needs its core, the partition can request its use and
get it quickly. But returning ownership to the owning partition does add some additional time over that of
simply dispatching a newly dispatchable task to a still available (i.e. un-donated) core. The point is that
there can be a typically minor response time impact on the dedicated-donating partition.]

All it takes to define dedicated-processor partition as one willing to donate its coresisto flag it asin the
following example HMC window .... Check under Processor Sharing “Allow when partition is active.”

@ rchhmc20: Properties - Mozilla Firefox: IBM Edition [ =Hl=N X
QM https://rchhmc20.rchland.ibm.com/hmc/wcl/T42f1

General | Hardware | Virtual Adapters = Settings = Other

Processors | Memory = I/O

Processing Units

Minimum: 1
Assigned: 32
Maximum: 32

Processor Sharing
[] Allow when partition is inactive.
Allow when partition is active.

Processor Compatibility Mode
Compatibility mode: POWER7

oK | Cancel | Help |

Done 3 BB

Figure 12 — Partition Sharing

Interesting, but of lesser use, is the other flag “ Allow when partition isinactive”. When that flag
is set, this dedicated-processor partition’s cores are added to the shared-processor pool when this
partition is shut down. These same cores are often restored when the partition is again activated.
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DLPAR and the Desired/Minimum/Maximum Processor Settings

For dedicated-processor partitions, the hypervisor attempts to give each partition exactly the number of
physical cores specified as the “desired” number of processing units within the partition’s profile. Failing
there, the hypervisor chooses a number between the “ desired” number and the “minimum” number.
Either way, while the partition is active, you can request a change in the number of the currently active
cores used by a dedicated-processor partition viathe DLPAR (Dynamic Logical PARtition) function and
have it quickly take effect. You can also, of course, alter the profile, but such changes take effect at a
later time as you will see.

To use DLPAR to increase the core count for a dedicated-processor partition, the active partition being
altered must know ahead of time to expect the increase. Providing this pre-knowledge is the purpose of
the “maximum” processing unit setting on the partition profile. When the partition is activated, each
partition allocates internal resources — virtual processors - up to this maximum, but only the hypervisor-
selected number (often the specified “desired” core count) of virtual processors are actually allowed to be
assigned to cores.  For example, if “maximum” is4 and “desired” is 2, a dedicated-processor partition
will only be assigned two physical coresto use. When the DLPAR operation requests an increase by two
to be changed to four active virtual processors, the partition begins using the other two of what it had
previously perceived as inactive virtual processors, resulting in all four virtual processors bound to
physical cores if these additional cores were available.

[Technical Note: If DLPAR s used to alter the assigned number, the change isimmediately reported to
PHYP which also immediately initiates the activation/deactivation in the partition. If the virtual
processor count is changed via the profile - altering “ desired” and saving the profile - the change takes
effect with the next explicit activation with that profile. A DLPAR operation does not alter the partition’s
profile]
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e

Add/Remove Processor Resources: z1311p1
You may add or remove processing resources from the partition by chanaging th
amount assigned to the partition.

Available system processors: 0
Available system processors (with 1
releasable amount from other

partitions):

Minimum d Maximum
Processors: 1 13 =
5250 CPW O 0 0
(percent):

Optimal 5250 CPW Range for 15 processing units is 0.0 - 100.0 | Recalculate

Options

Timeout (minutes): |5

Detail level: 1 j

oK | Cancel | Help |

[z 1 »

Figure 13-DLPAR
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We had previously commented on how a dedi cated-processor partition’ s virtual processors have some
strong level of persistence to particular cores. Here you can see that even for dedicated-processor
partitions this persistence can change; the number and location of a partition’s cores can be changed fairly
easily. When you choose to decrease the number assigned, the number of virtual processors remain, but
fewer of them remain active and assigned to dedicated cores. For example, when decreasing from 4 core
to 2, what had been four active virtual processors assigned to cores still remains four virtual processors,
but only two of them will be used and be assigned to cores.

These changes in the number of dedicated-processor cores can also result in changes to the locations of
the cores being used. With other partitions also changing their core counts, the locations of the cores
assigned to any one of them can change quite abit. Asyou will see shortly, though, the location of which
cores are selected for these purposes matters to performance. (Thiswill be discussed in the section
“POWERT7’'s Nodal Topology”.)

DL PAR provides shared-processor partitions asimilar capability, but with some considerable differences.
Y ou can see some of them in the following HM C window of a DL PAR operation on a shared-processor
partition:

Add/Remove Processor Resources: z1714p1

You may add or remove processing resources from the partition by changing the
amount assigned to the partition.

Available system processing units: 28.0
Available system processing units 28.0
(with releasable amount from other
partitions):

Minimum Assigned Maximum
Pracessing 0.05 2.5 8.0
units:
Virtual 1 4 8
processors:
5250 CPW O i) 0
(percent):

Optimal 5250 CPW Range for 4.0 processing units is 0.0 - 100.0 | Recalculate

Uncapped Weight: [12g

Options

Timeout (minutes): |5

Detail level: 1 j

B

OK | Cancel | Help |

Figure 14 — DLPAR with Shared-Processor Partition

e Aswith dedicated-processor partitions, there are a*“maximum” number of virtual processors
understood to be potentially used in some future. Each partition’s OS needs to know this number to
internally represent their potential future use. But this or some lower number (i.e., often “desired” but
potentially down to “minimum”) are the number that are actually being used. It isthis number of
virtual processors to which the OS assigns tasks, making them active, and which then can be assigned
to the shared-processor pool’ s cores. For dedicated-processor partitions, the virtual processor count
also designates the entitled capacity of the partition, because the partition is entitled to full-time use
of the associated physical processor core. For shared-processor partitions, the virtual processor count
does not define entitled capacity precisely; it only designates the range in which the entitled capacity
may vary.
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So, for shared-processor partitions, DLPAR also allows for the partition’ s entitled capacity — here stated
in terms of fractional Processing units—to be modified. Here, again, entitled capacity is stated as being
within a profile’ s predefined bounds of a minimum and maximum compute capacity. Here, too, the total
entitled capacity over al shared-process partitions can not exceed the compute capacity represented by
the cores associated with the shared-processor pool.

[ Technical Notes:

e Increasing a shared-processor partition’svirtual processor count alone might occasionally help with
response time, but more often the constraint is entitled capacity. A virtual processor count increase
might provide more opportunity for execution parallelism, but it might also only mean that the
compute capacity “ limit” isreached sooner. The exception isthe case of an uncapped partition
where thereis sufficient unused capacity in the shared-processor pool to satisfy the demands created
by additional virtual processors.

e Increasing the virtual processor count can increase how quickly the entitled capacity limit is reached,
but we' Il see later that the partition’s Task Dispatcher — rather than assigning tasks over all virtual
processors - attempts to assign dispatchable task fewer than this maximum number of virtual
processors; the lower processor count chosen is one more in line with the partition’s entitled
capacity. The Task Dispatcher can later use all available cores when workload increases. This
difference in assigning tasks means an earlier increase in the use of the SVIT capabilities of a core —
and so fewer virtual processors - than would be the case for dedicated-processor partitions.

e Recall that the size (and so location) of the shared-processor pool is essentially that set of activated
cores which are not part of any dedicated-processor partition. As DLPAR changes are made to
increase or decrease the size of any dedicated-processor partitions, the size —and so compute
capacity — of the shared-processor pool changes aswell. Partition location will be discussed later in
the section on POWER7’s Nodal Topology.]

Task Dispatching and the Measure(s) of Consumed Compute Capacity

Y ou know that the hypervisor is responsible for ensuring, over al of the shared-processor partitions, that
their virtual processors get fair use of the often fewer number of cores of the shared-processor pool. In
fact, that has been atheme of a number of the preceding sections. This section stays with that theme and
discusses two subtly related concepts associated with the measure and presentation of consumed compute
capacity. They relateto:

1. Thedifferent ways that the partition’s OS and the hypervisor measure CPU utilization, and

2. The notion of maximum compute capacity consumption for Capped and Uncapped virtual processors.

The way that the partitions themselves measure consumed compute capacity (i.e., CPU utilization) is

different than the way that the hypervisor measures consumed compute capacity.

e Hypervisor Compute Capacity M easurement: The hypervisor’s means of measuring consumed
compute capacity of a shared-processor partition is determined merely by how much wall clock time
any of the partition’s virtual processors had been assigned to acore. Thisisindependent of the
number of tasks —whether on POWERY 1, 2, 3, or 4 tasks — that are actually attached to any virtual
processor. A virtual processor executing on behalf of even just one task —one SMT hardware thread
—isstill considered afully utilized core for purposes of tracking a partition’s consumption of its
entitled capacity. Since no other virtual processor can execute on a core already used by avirtua
processor, no matter the number of tasks also assigned there, that core is perceived by the hypervisor
as being fully used.

e Partition Compute Capacity M easurement: The reason for SMT on POWER processorsisto
provide more compute capacity than can normally be used by a single task executing on acore. (See
“SMT” in glossary for more.) On POWERY processors with four SMT hardware threads per core,
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that means that each unused hardware thread within any core or virtual processor aso represents
some amount of still available compute capacity. For that reason a partition can only present itself as
at 100% utilization — meaning that there is no additional compute capacity - if every SMT hardware
thread of every coreisused over aperiod. Said differently, if even one SMT thread within the
partition’ s cores/virtual processors had momentarily gone unused during some period, CPU
utilization will be presented as less than 100%, this because the unused thread(s) represents still
available compute capacity. Interestingly, because of this effect, on POWERY? if all of a dedicated-
processor partition’s virtual processors were executing throughout a measurement period on behalf of
only one task each, that partition would be presenting itself as roughly 60% CPU utilization; that isa
representation of just how much compute capacity remainsin a core for up to three more tasks.

Note: The OS provides controls over the SMT mode of the partition’s virtual processors. The
preceding discussion assumed SMT4 mode. When ST mode is used, the partition’s processor
utilization measurement is essentially the same as the Hypervisor’s.

It isthe hypervisor’s means of measuring compute capacity — not the partition’s means — that is used by
the hypervisor for enforcing entitlement limits and fair use of the shared-processor pool.

But, asyou will be seeing, thisdifference resultsin the OS Task Dispatcher using different
algorithmsfor dedicated-processor ver sus a shared-processor partitions. Thisdifferencein task
dispatching algorithmsisintentional and is a function of the different purposes of these partition types.
There is a detectable difference in the performance characteristics of individual tasks executing in one
type versus the other. We are going to attempt to explain this effect in the remainder of this section.

Asyou know, whether Capped or Uncapped, each shared-processor partition has an entitled capacity. For
Capped partitions this entitlement represents a compute capacity limit; the partition’ s virtual processors
cease executing at thislimit within each time slice. For Uncapped, the entitled capacity isalso a
guarantee that some minimum compute capacity is available if needed, but virtual processors can also
continue executing past this limit.

Even so, Uncapped partitions also have an additional compute capacity limit; an Uncapped partition can
perceive no more compute capacity than is available in the concurrent execution of all of itsvirtual
processors. Said differently, a shared-processor partition with a given number of virtual processors
continuously executing has available to it no more compute capacity than is available in that number of
cores.

With these notions in mind, when a Capped partition reaches its entitled capacity within atime slice, the
hypervisor clearly considers that partition to have reached its 100% compute capacity limit. The partition
is Capped, it reached its entitled capacity limit, and it ceased executing; that is the definition of
consuming 100% of its compute capacity as seen by the hypervisor. But the Capped partition itself sees
things differently from the inside. The partition will present itself as having consumed 100% of its
compute capacity at this same moment only if every SMT hardware thread of all of its virtual processors
were a so used whenever itsvirtual processors were using acore. If even one SMT hardware thread was
not used when the partition’ s virtual processors were executing, the Capped partition would present itself
as still having available compute capacity. The point isthat even though thereis compute capacity
available as seen by the partition, no mor e throughput will be produced for this Capped partition
until the next time dlice.

This same definition — of 100% utilization — can also be applied to Uncapped partitions, but only up to a
point. That is, at the point in time when the Uncapped partition’ s entitled capacity limit is reached, if
every hardware thread had been constantly used, the partition’s OS would also consider this as being
100% CPU utilization. But since an Uncapped partition’s processing is allowed — but not guaranteed - to
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continue past this entitled capacity point, the measured CPU utilization of this partition is also allowed to
continue, even well above 100% (which is reported at the entitled capacity point).

For example, let’s define an Uncapped partition as having an entitled capacity of 1 core and 4 virtual
processors. Let’salso keep all of the SMT hardware threads of al four virtual processors busy executing
tasks (totaling 16 on POWERY?7) throughout some measurement period. This being the case, the partition
is able to consume 4 times as much compute capacity as wasimplied by that partition’s entitled capacity.
Since 100% means executing for only the entitled capacity of 1 core (say, executing with only ever one
virtual processor), executing continually with four virtual processors (i.e., at maximum compute capacity)
also means that this partition’s OS is measuring itself as executing at 400% utilization.

As another example, asin the top portion of the following figure, suppose we have the same partition (1-
core compute capacity, four virtual processors) but now Capped. Further, instead of having 16 tasks, let's
only have 4. Let’s place the 4 tasks onto only one of the four virtual processors and keep the tasks
executing continuously; only the one of the four virtual processorsis active. Because of the one-core
entitled capacity for this Capped partition, thisfully utilized virtual processor can continue executing.
Again, because of the one-core compute capacity of this partition, this Capped partition would be
perceived by the hypervisor within each time slice as consuming all of its compute capacity (and no

more) and so would also be perceived by the OS as at 100% utilization.
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Figure 15— Virtual Processor Task Dispatching

Next, asin the lower portion of the previousfigure, let’ s take exactly the same Capped partition and the
same number of tasks (4), but thistime let’s spread the tasks in such away that there is one task per
virtual processor. (Thisiswhat would be done for dedicated-processor partitions to provide best
individual task performance.) Just aswith the previous case, we would liketo keep all four virtual
processors continuously executing on behalf of their one task. However, we can’t because of the one-
core entitled capacity limit — as measured by the hypervisor —is reached four times faster than in the
upper case. There are four virtual processor executing — one each over four cores - and the hypervisor
measures compute capacity based on core usage. With the partition’s 1-core compute capacity limit
being reached four times faster, these virtual processors will get to execute for only ¥4 of each time slice.

Four tasks on one virtual processor were here allowed to continually execute. Four tasks with one each
on four virtual processors were only allowed to execute ¥ of the time. If al tasks here were individually
executing at the same speed, the upper case would seem to produce four times as much throughput.
However, asyou'll seein the next section, tasks sharing a core individually execute somewhat slower
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than when executing alone on a core, but not four times slower. So, for shared-processor partitions, it
seems clear enough that we are ahead of the game of producing more throughput if tasks were not spread
—spreading is often used with dedicated-processor partitions — and were instead dispatched to fewer than
the available number virtual processors. We'll be going over this notion more in alater section after we
look more at SMT-based performance effects.

We have now seen SMT effects show up a number of times. So let’ s take a bit more complete look at
SMT asit relates to processor virtualization in the next section.

Simultaneous Multi-Threading (SMT) Considerations

SMT in POWERY and preceding processor designsis not really capable of being virtualized. In
POWERY7, each virtual processor gets up to four SMT hardware threads. (For POWERS and POWERG,
the number of hardware threads per coreistwo.) It isthe entire physical corethat isvirtualized, not the
number of hardware threads within it. But asyou have already seen, virtualized or not, some of SMT’s
effects do show through. We'll be looking at more effects shortly.

The unit of processing that a virtual processor perceivesisthat of an entire core, each core with
POWER7' sfour SMT hardware threads. Even for shared-processor partitions, the hypervisor assigns an
active virtual processor with its four hardware threads as a unit to a core. This also means that, whether
that virtual processor was supporting one or multiple tasks when active, these tasks are dispatched to a
core by the hypervisor as a single unit.

Thereason that SMT existsin the first place is that there is far more compute capacity in a core than can
typically be used by the instruction stream of a single task; it typically takes multiple independent
instruction streams (i.e., multiple tasks) on a core to consume that compute capacity. One reason for this
isthat when one task’ s instruction stream does not happen to find the data it needs in the core’ s cache,
that processor must take time to access the data from slower resources, as for example memory DIMMs.
These accesses can take awhile (typically many 100s of processor cycles, with these accesses done
frequently) and during all that time the compute capacity represented by the massive fine-grained
instruction parallelism that is a processor core is effectively going unused. So, why not allow one or
more other task’ s independent instruction streams to execute on that core in the mean time? By doing so
the core continues to stay busy while another part of the system is concurrently handling the cache
miss(es). This, in anut shell, isthe concept of SMT.

It happensthat it is not only during such cache misses that the multiple instruction streams are executing.
With SMT, all of the tasks dispatched to that core really are concurrently executing their instruction
streams through the processors pipes even when none of them happen to be delayed on the likes of a
cache miss. You can find alink to more on SMT in the glossary entry on SMT.

The effect of al thisisthat SMT provides more compute capacity per core —on POWER7 using SMT4,
thisisroughly 1.6 to 2 times more - to concurrently execute four dispatchable tasks as compared to a
similar processor core which happens to only support a single task per core.

SMT, though, is not really like having a separate core for every task. Unlike tasks each executing alone
onindividual cores, in SMT the instruction streams of multiple tasksreally ar e using the common
resources of asingle core. And, often enough, one such task needs to wait until the core’ s shared resource
isagain available. The near linear scaling assumed from having additional coresis not available when
adding additional tasks to the same core via SMT. Because the multiple instruction streams are sharing
the core’ s resources (cache, pipes, TLB, store queues, what have you), when these instruction streams
conflict on some common resource, one of the threads needs to wait; the wait is often little more than a
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processor cycle or two, but the waits are frequent. The high level result of al of thisisthat as one, then
two, then more tasks are assigned to a core, each of the individual tasks do get to execute, but they each
also appear to slow down. So, yes, SMT provides more compute capacity, but it does so while slowing
the execution speed of theindividual tasks that it is supporting. Thisisall quite normal, being just a
characteristic of SMT. And, yes, the tasks may execute slower, but without SM T’ s additional
“processors’, the alternative is that they may need to simply wait their turn to execute. Thisis normal,
but also important to virtualization as we will see next.

The OS' Task Dispatcher is aware of these SMT effects. The Task Dispatcher’s answer to this effect isto
spread dispatchabl e tasks over the available cores of dedicated-processor partitions. Four dispatchable
tasks over four cores often means one task per core; each getting full use of that core. Doing so—as
opposed to 2-to-4 tasks per core - allows each task to execute faster, freeing up that * processor” for
subsequent tasks sooner. Of course, as the workload increases, this same partition starts to have more
tasks per core, up to POWER7' sfour. But, because of this faster single-task execution, such spreading is
the right thing to do for dedicated-processor partitions. This effect is possible partly because this
dedicated-processor partition has a fixed compute capacity always available to it.

This spreading, though, is not necessarily appropriate for shared-processor partitions. The reason for the
difference stems from the quite reasonabl e over-subscription of the total number of active virtual
processors — well over the shared-processor pool’ s core count - AND because of the way that the
hypervisor measures the consumption of a partition’s compute capacity. Thisiswhy we are discussing
SMT here in the context of a virtualization discussion.

To explain, suppose that a 16-core shared-processor pool is being shared equally by 16 partitions
(entitlement = 1 core/partition), and each partition has four virtual processors. Overall, the result is 64
virtual processors equally sharing the shared-processor pool’s 16 cores. If all 64 virtual processors are
concurrently active, the hypervisor will allow each virtual processor to execute only ¥4 (i.e., 16 cores/64
VPs) of each 10 msec time dlice. Thisistrue whether each virtual processor was executing on behalf of
one task, two, three or four tasks. So, in the extreme, let’s have each virtual processor support just one
task. For thissingle-task per virtual processor case, each is able to execute faster alone on its own core
rather than with three other tasks (let’ s say, by 2X). Whatever the benefit of executing alone, each of
these virtual processors is nonetheless only executing at this full speed for only % of thetime. When
executing, the individual tasks were executing faster, but they simply are not executing enough to make
up the difference in throughput. Thisisnot a particularly good trade-off. Because of this shared-pool
contention, executing tasks alone actually resulted in their producing about half the throughput possible
for these same tasks in a 4-core dedicated-processor partition. We can do better.

Shared-processor partitions exist to allow higher consumption of the entire shared-processor pool’s
compute capacity. But POWER7' s SMT-based cores with only one or two tasks per virtual processor
leaves a considerable fraction of the pool’ s compute capacity is not being used; the cores might all be
used, but individually each core still has alot more compute capacity available because of SMT. To
allow more use of the pool’ s compute capacity, and decrease the number of virtual processors contending
for it, you'll notice next that there is value in dispatching the same number of tasks on to fewer virtual
processors.

So alternatively, the OS Task Dispatcher - knowing that its partition is part of a shared-processor pool -
has the option of having different task dispatching algorithms, one for dedicated-processor, and another
for shared-processor partitions. Knowing that there may be too many virtual processors competing for
the available cores, rather than automatically spreading dispatchable tasks over the partition’ s virtual
processors, the Task Dispatcher can alternatively first dispatch the same number of tasks onto fewer
virtual processors, using the virtual processor’'s SMT capabilities sooner. When applied to many
partitions, the result is fewer virtual processors competing for the cores of the shared-processor pool.
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With more tasks per virtual processor compute capacity consumption is actually increased and overall
throughput grows.

With thisin mind, using the example of the same 16 4-virtual processor partitions mentioned above, let’s
instead picture each OS Task Dispatcher as using first just two of its four virtual processors, dispatching
its four tasks as two tasks per virtual processor. Thisisinstead of one task each on four virtual
processors.

4 Active Virtual Processors 2 Active / 2 Inactive Virtual Processors
Task Task Task Task Task Task -—- -—
Task || Task
—>

Figure 16 —Virtual Processor Tasks

Now with half (i.e., 32 active virtual processors, rather than 64) of the virtual processors contending for
the cores, each virtual processor gets to execute for %2 of each 10 msec time dlice (i.e., 32 VPs over 16
cores), rather than ¥ of the time. With two tasks per core, each task is executing only dightly slower than
it would alone on a core, but each is now also executing twice as long per time slice. Roughly speaking,
with this approach, each task perceives only dightly less than twice as much performance as compared to
the previously mentioned (i.e., spread-based) dispatch algorithm. And, given that all partitions are doing
this, al partitions are similarly being benefitted by the lower contention for cores. More of the system’'s
compute capacity is being used and tasks effectively execute faster. What a deal!

On IBM i, the decision of when to start doubling up like thisis a function of the partition’s entitlement. If
apartition is entitled to one core’ s compute capacity or less, consolidating onto fewer virtual processors
can happen amost immediately. If the partition’s entitlement is — say — two units, tasks may be spread
across two virtual processors before moving onto more tasks per virtual processor. Once these two virtual
processors are completely used, additional virtual processors will be activated and assigned tasks. So,
using Entitlement, you can influence the previously mentioned behavior.

Asyou can see, you can have avirtual processor count well in excess of the partition’s entitled capacity,
but the number of virtual processorsin excess of the entitlement will tend not to be used until the number
of dispatchable tasks grows high enough that they are needed. In the mean time, you’ll have each of the
tasks perceiving the SMT performance effects outlined earlier. Once again, there is benefit from keeping
the partition’ s entitled capacity and virtual processor count relatively close.

So why did we so verbosely tell you about this difference? It stems largely from the difference
in philosophy between dedicated- and shared-processor partitions. Shared-processor partitions
exist to maximize the use of the compute capacity of the shared-processor pool (which can be an
entire system), potentially at the cost of the performance of individual tasks. Shared-processor
partitions are designed to increase the oversubscription of the compute capacity of the shared-
processor pool in order to maximize the compute capacity of that processing resource. Although
the total entitled capacity over each shared-processor partition can not be more than the compute
capacity of the shared-processor pool, the number of active virtual processors concurrently
contending for those cores can far exceed the pools core count. Thisisaway of decreasing that
contention of having an excessive number of virtual processors over afewer number of cores.
But thereis atrade-off. In adedicated-processor partition, the same number of tasks would
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typically be spread over the partition’s cores with the result being fewer tasks per core. For
shared-processor partitions, more tasks are assigned earlier to individual virtual processors than
would ordinarily be the case for dedicated-processor partitions. Asaresult, with more tasks per
core, it is also true that the tasks might execute individually slower in a shared-processor
partition than in a dedicated-processor partition. Thisisthe natural trade-off which results
from the intent to maximize the system’s compute capacity with a shar ed-processor
partition.

Performance Tip: The Task Dispatcher’s algorithm for dispatching tasks in dedicated-
processor partitions is different than that of shared-processor partitions. For dedicated-
processor partitions, task dispatching focuses more on individual task performance. For
shared-processor partitions, it is attempting to assist in the maximum capacity consumption of
the shared-processor pool and so can trade off individual task performance.

iDoctor and CPU Utilization

We pause hereto take alook at how an IBM i tool called iDoctor presents CPU utilization.

To help explain, we use a simple workload which ramps up its throughput over the run. Starting with a
set of eight threads executing essentially the same instruction stream, the workload adds another three
threads every minute. Each thread is executing with roughly a 25% duty cycle; out of every % second, a
given thread attempts to randomly executing for about 25% of thetime. Asaresult of this duty cycle, on
an 8-core P7+ with SMT4, in this test throughput reaches a maximum at about 150 threads. This
continues until the CPU utilization is very nearly at a maximum. Each of the threads track their
“transactions’ so we can present increasing throughput over time.

Y ou can see the expected effects of SMT4 on both compute capacity and response time in the following
graph of this ramp-up workload. At first, as the thread count increases, most threads are executing alone
on one of the eight cores. Throughput increases quickly as aresult. Astwo, then three, then four tasks
are executing on a core, throughput increases more slowly.
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Figure 17 —-SMT4 and CPU utilization

Also notice that the workload itself is measuring CPU utilization. Aswe would want, the measured CPU
utilization is tracking often perfectly, at other times very well, with the throughput being measured for
thisworkload. Aswe described earlier, thisform of CPU utilization is attempting to measure the
percentage of each core's compute capacity being consumed by thisworkload. (This synthetic workload
uses Ml instruction MATRMD option 0x26 to calculate CPU utilization.)

We next present iDoctor’ s view of this same partition during the same period of time.

In the following figure, the blue line near the top represents CPU utilization in the same way as the
workload was measuring CPU utilization. Asin the above figure, as more threads are added — three more
every minute, CPU utilization increases at first quickly and then more slowly, in an attempt to represent
the remaining compute capacity of this 8-core partition. (It isimportant in the following to keep in mind
that thisis an 8-core SM T4 partition.)
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Dispatched CPU Breakdown and CPU Queuing
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Figure 18 -Dispatched CPU Breakdown and Queuing with Dedicated Processor Partition
So let’s next look at the red, yellow, and green regions of this graph.

Starting with green (representing CPU queuing), keep in mind that in this 8-core SMT4 partition there are
32 “processors’. By the end of the run, there are about 150 threads active, albeit for roughly 25% of the
time. Even—say — half way in to the run, there could be — but typically far fewer — 75 threads contending
for the “processors’. Whenever thereis even one thread waiting its turn to use a processor, the amount
of timethat it (and others) are waiting is represented here by “CPU Queuing”. Natice also that since CPU
utilization is not at 100% until the end of the run, there are also periods of time when one or more
“processors’ are available.

Next, looking very closely, you might notice that the red region — Dispatched CPU Active tracks very
closely with the measure of CPU utilization. In this representation, Dispatched CPU active corresponds
to the partition’s view of capacity used, as described earlier. Itisjust presented herein terms of time
(seconds). Looking at the rightmost red bar, the vaue in seconds happens to be 466.4 seconds. That bar
happens to also represent 60.25 seconds and is occurring when CPU utilization was measured as being
96.8%. Eight coresfully utilized — with four threads each - would have a“ Dispatched CPU Active” value
of 482 seconds (8 cores * 60.25 seconds); this represents 100% CPU utilization. So the value 466.4
represents 96.8% (466.4 seconds / 482 seconds rounded up). Any one of the red bars would produce the
same results being equal to CPU utilization.

So we have red (Dispatch CPU Active) representing CPU utilization in terms of processing seconds. We
have green (CPU Queueing) representing how much time some threads are waiting for a*“processor” on
this system during this synthetic workload. So what is yellow (Dispatched CPU Waiting)?
Mathematically, it is the difference between the sum of the task dispatch time, that is, the time that tasks
are assigned to athread of avirtual processor, less the sum of the entitlement charged to the tasks, which
is represented by the Dispatch CPU active. Thus, the sum of the Dispatch CPU Active (red) and Dispatch
CPU Waiting (yellow) isthe sum of the task dispatch time. This sum is depicted as the peaks of the
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yellow and labeled “ Processor wall clock time usage”, where in this context “Processor” means “Virtual
Processor Thread”.

The Dispatch CPU Waiting technically is not awaiting time as it imputes both virtual processor delays
and SMT effects. Inthat sense, it's abit of amisnomer, but it really does have meaning and can be
useful. For the yellow region, it isinstructive to notice that as CPU increases from left to right the red
bars are also adecreasing fraction of the value of the corresponding yellow bars. The causeisrelated to
the fact early on the workload there are few enough active threads that, when a coreis active, thereis also
typically only one thread per core. Well later in the ramp-up workload, there are three and often four
threads per core, and the processing capacity is being charged to the dispatched tasks accordingly.

We next make a minor change in our environment. We switch to an uncapped shared-processor partition,
till with 8 virtual processors, but with 6 cores of entitled capacity. The shared-processor pool is 16
cores, sufficient to allow all eight virtual processorsto continually execute. With our partition and
exactly the same ramp-up workload as above executing aone in this pool, we produced the following Job

Watcher graph.
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Figure 19 — Dispatched CPU Breakdown and Queuing with Uncapped Shar ed-Processor Partition

Go back and compare this graph with that produced for the 8-core dedicated-processor partition. With
nothing else competing for these cores, the graph is essentially the same, except for one big difference.
Check the right hand axis; CPU utilization presented as percent is higher. It is stated relative to the
partition’s 6 cores of entitled capacity. But now also notice that the scale of the left hand axis— CPU
utilization in seconds — is the same, and so is the shape of the bar graphs. Since each of this shared-
processor partition’s eight virtual processors are effectively tied to a core — just like a dedicated-processor
partition — the workload is ramping up and using the cores and its compute capacity in essentially the
same way.
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As afurther variation, we take the same ramp-up workload and the same uncapped shared-processor
partition (i.e., 8 virtual processors with 6 cores of entitled capacity within a 12-core shared-processor
pool) and replicate it in a second partition. Job Watcher’s view of one of these partitionsis shown asin
the following figure.
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Figure 20 — Dispatched CPU Breakdown and Queuing with 2 Active Uncapped Shared-Processor Partitions

There are only 12 cores in the shared-processor pool. With both partitions executing essentially the same
thing, at some point —in fact, for most to the run — these cores are also equally sharing the pool with a
maximum of 6 cores per partition; this even though each partition also has 8 virtual processors. Unlike
the previous case that was capable of keeping all eight virtual processors busy and attached to a core, here
six coresislikely to be the maximum.

Y ou can also see thisin the CPU utilization curve. The value 100% means that al four SMT threads of
all entitled —six — cores are being used. [As seen in the previous graph, you can get 100% through other
means as well.

In comparing this graph to the previous, notice the difference in scale of the left-hand y-axis. Perhaps
even without this observation, you will notice that the contribution due to CPU Queuing islarger in the
latter curve. The same amount of work was being requested in both cases, but in the former it was getting
handled by 8 virtual processors on 8 cores. Here, with the other partition equally busy, this samework is
being requested to be handled by 8 virtual processors on 6 cores. Of course, the compute capacity of six
cores — and so the possible throughput — is less than that of eight cores.
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POWER7’s Nodal Topology

In this section we are going to shift gears. We studied the meaning and control of the compute capacity
of your partitioned system. Here we will be looking at how to improve the compute capacity of that same
system by decreasing the latency of your program’ s storage accesses.

The POWERY7 system design is based on chips having up to eight processor cores per chip. Each of these
chips also contains one or two memory controllers, enabling some amount of memory to be directly

attached to each of these processor chips. This unit —a processor chip with its cores, cache, and locally
attached memory - represents the basic building block for till larger systems.

______ Fower Bus
Memory Coprocessors 10 SMP
Controllers Controllers| Fabric

Figure21 - POWER7 System Design
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The following figure shows examples of two different POWER7-based system topol ogies using these
building blocks, units that we also call Nodes (and so the reason for this section’stitle). Green represents
the memory DIMMSs, blue blocks processor chips; larger blue sub-blocks within these are memory
controllers, SMP fabric controllers, and 1/0 controllers on each processor chip.

=/l Tk | | [ NE=2=
— |C rel; H |C reF %
& T
S/ [otrse | [ $obs] NEES b RY] [cbre | =2
e MR i | Gorps] = =S=\1EEAWNEEA ==
1+*I
) |C re}a ¢o esl = Cdre orps )
=\ T [GRE  [ERNor
.3
o= |C reI; |C re}a _::"_
=\izmfliEna/==

Figure 22 - POWER7 System T opology
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Asaresult of this building block approach (and the memory controller(s) per processor chip), every
additional chip aso provides still more bandwidth to memory; that much bandwidth is a nice feature
which provides the benefit of more rapid access time to memory.

As required by any application’s storage model, every byte of memory anywhere can be accessible from
any processor core throughout such systems. It does not matter whether the memory islocal to the chip
of some reference core or attached to another chip. Similarly, areference core can access the contents of
cache associated with any corein this system. Both of these attributes are what define a cache-coher ent
Symmetric Multi-Processor (SMP), an attribute generally expected by most operating systems and
programs executing within it.

In SMPs with topologies similar to POWER?7, from the point of view of areference core, the memory
attached to the chip containing this reference core is more rapidly accessed than memory which is
attached to another chip in the same SMP. The memory accesstimeis called memory latency, and this
latency varies depending on the relative location of the data being accessed. Similarly, the content of the
cache anywhere on areference core' s chip is accessed much more rapidly than cache residing on some
other processor chip.

This characteristic of differing storage access latenciesisthe primary attribute of a cache coherent Non-
Uniform Memory Access-based (ccNUMA) topology. The best performance — and maximum compute
capacity, the fewest cycles per instruction - is achieved when a coreis close to the data that it is accessing.

Fortunately, the hypervisor and the partition’ s operating systems know about this difference in storage
access |atencies and do what they can to increase the probability of local memory access. The
performance effect is improved response time and system compute capacity.

At its most simple, the rules to achieve this best performance are to
1. Put thework (atask) closeto whereits datais most likely to reside and to
2. Put the datainto the memory closest to the core that is typically accessing it.
3. Arrange for tasks sharing the same data to execute on cores close to each other.

So why did we bring this up in adiscussion on processor LPAR? Remember what parameters you set
when describing the resources of each partition. Y ou described

1. the number of cores (or fractional entitled capacity),

2. theamount of memory, and

3. for shared-processor partitions, the number of virtual processors.

There is not one word here — nor do we want there to be - about just where each partition’ s resources
ought to reside in such aNUMA-based SMP. The hypervisor — knowing the physical topology of the
system - takes what you describe and attempts to package those partition resources in a manner which, if
not ideal, produces acceptable and repeatable performance. At its most simple, the partition’s preferred
cores are intended to be packaged close to the partition’s physical memory.

Thisworks smoothly in theory. The hypervisor takes the attributes you have specified for all partitions
and attempts to package the partition’ s resource cleanly across the nodal hardware resources you saw
above. Some sizes of partition memory and — for dedicated-processor partitions — core counts, are more
easily ideally packaged together than others. To explain, now having seen the earlier NUMA-topol ogy
figures, suppose that you have four dedicated-processor partitions with an equal number of cores and
memory. Where would you want each of those partitions to reside? Y ou would want each partition to
have their cores (and their cache) on chips close to each other and have their memory attached to such

chips. Easy.
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But in the real world, partition resources might have first been defined without any knowledge of the
hardware’ s nodal resource organization. If the physical hardware of these systems had just been a set of
processor cores and separately a bunch of memory, packaging of partitions resources would be a non-
issue. Therewould be no need to know about nodal performance effects. But the topology ishodal and if
best performance - and use of its maximum compute capacity - is desired, partition resource definition
should take this nodal topology into account.

Picture yourself, for example, trying to fit — say - luggage into one large container; this luggage might fit
exactly right and with all space used. Now try fitting the same pieces into multiple smaller containers,
perhaps containers of different sizes, but all together providing the same volume. That’sthe job being
asked of the hypervisor. The hypervisor will succeed because your containers would have fit into the
single large container, but the hypervisor might need to cut them up into smaller pieces to correspond to
your systems nodal resource boundaries. And, often, that isjust fine, if not ideal. Occasionally, though,
partition and system compute capacity is better when packaging is“nice”. We will be defining “nice”
below.

Even with partition resource definitions that were not NUMA-aware, the hypervisor will package all of
your partitions. Because both memory and core resources as defined must be packaged, some partitions
might find their:

e cores spread across chips because of their memory needs and

e memory spread across multiple chips because of their compute capacity needs.

Indeed, the inefficient packaging of one partition can influence the packaging of others.

So, now that you know that these systems are based on a NUMA topology, you might instead consider
the possibility of choosing each partition’ s resource sizes to fit better, both individually and in groups.
Once adjusted, we then still allow the hypervisor to find the efficient ways to package these. We'll be
looking at some examples shortly.

Asyou would now expect, there exists a hypervisor algorithm to place each partition’s memory and
cores. The hypervisor knows of the desire for preferred placement of each partition’s resources and
knows of the physical resources of the target system. But before we go into the details, consider afew
more items.

Although alterable, the core and memory locations are going to be quite static for dedicated-processor
partitions. To minimize memory latency, we want the partition’s memory close to its cores and the
partition’s cores close its memory. So given astatic list of partitions and their desired resources,

o If the partition’s core count can fit within some chip and the (remaining) memory behind that chipis
sufficient to meet the partition’s needs, that particular chip is going to be a good location for this
partition.

¢ If the core count needs to span multiple chips, the hypervisor is going to try to arrange for there to be
some proportional amount of the partition’s memory behind those same chips as well.

o If the partition’s core count could fit within asingle chip but the required memory can’t fit behind
that chip, the memory placement will be allowed to reside behind multiple chips, so the partition’s
cores will attempt to be assigned from within those same chips.

All partitions want to follow these same rules, but after each partition has been assigned its required

resources, it is going to consume some specific cores and memory, leaving the remainder for other

partitions. It'sabit like fitting together a multi-dimension puzzle (asin the following figure). But in this
puzzle, the pieces might be capable of being adjusted subtly to provide a more preferable packaging for

all the pieces.

POWERY Logical Partitions 41



STG Cross Platform Systems Performance

128 GBytes 8 Cores 8 Cores 128 GBytes
7 = Y @ N
el
G B |A|IDB D D
-
G ! - I A k _/
r N s e D
In
7 i n”
G € ——1r=<| E F
L
i
T
/ A K A [ i
128 GBytes 8 Cores 8 Cores 128 GBytes

Figure 23— Partition Layout

The operating systems of the resulting dedicated-processor partitions are made aware of this placement.
As aresult each can further attempt to manage memory affinity for the work being executed. That is, OS
kernels of these partitions have afair anount of NUMA-awareness aswell. |If a partition happensto find
itself with cores and memory residing on multiple chips, the partition’s OS can arrange for

o thework to be close to where its data resides and

o the datato be placed where the work normally wants to execute.

To enablethison IBM i, each task is assigned a chip (a Node) upon which are the processor cores where
the task would prefer to be dispatched; this preferred chip iscaled a“Home Node”. When the task has a
need for memory, the location of that allocated memory is best assigned from the task’ s Home Node.
Similarly, if aset of jobs or aset of threads — say in amulti-threaded process — has had its memory
assigned from some chip, the entire set of threads may perform best when allocated to cores on the chip
attached to the memory.

For shared-processor partitions, the partition’s physical memory location isrelatively static. The defined
size of memory for these partitions tends to be assigned to as few nodes as possible. It tends to anchor
those partitions; we still want the partition’s work to be executing close to where the partition’s data will
reside. Unlike dedicated-processor partitions, the shared-processor partition’s virtual processors are not
tied to specific cores; the partition’ s virtual processors can potentially execute on any core of the shared-
processor pool. (The shared-processor pool consists of any activated core not used by a dedicated-
processor partition.) Still, to maximize the desired locality to memory, the hypervisor makes an effort to
ensure that a shared-processor partition’s virtual processors get assigned even temporarily to shared-pool
cores close to the partition’s memory.

To enable that, the hypervisor assigns each virtual processor of each partition a“Preferred Node” 1D
based partly on the partition’s memory location(s). When the hypervisor assigns virtual processorsto
cores, the Preferred Node expresses the virtual processor’s preference for the node’s cores. Additionally,
this nodal preference gets used by the partition’s Task Dispatcher for dispatching tasks per their own
Home Node ID. Recall that, as asimilar concept, a dedicated-processor partition’s OS - knowing the
nodal location of its cores - assigns tasks Home Node I Ds, these representing the preferred set of cores on
which each task wants to be dispatched. Using this Preferred Node 1D, the Task Dispatcher knows also a
nodal location of the virtual processorsit will beusing. AnIBM i’stask with its Home Node ID is used
to select avirtual processor with a matching Preferred Node ID which is then used by the hypervisor to
select a core to which to assign the virtual processor. There is no absolute guarantee that a shared-
processor partition’s virtual processor will be assigned a core of its preferred node, but with few enough
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active virtual processors contending for those cores, the hypervisor can often succeed. When successful,
it allowsfor the preferred local access to the partition’s memory.

Affinity Groups

The notion of Affinity Groups provides you some additional control over partition placement for
advanced users.

Starting with a system on which no partitions had been activated, as each partition isfirst activated, the
hypervisor places that partition’s cores and memory resources. The next partition to be activated is
placed on remaining core and memory resources in a manner perceived as best for that partition, and so
on. The hypervisor will use its algorithms to decide the placement of each of these partitions, and often
this approach is fine. Choosing the right order — along with the right resources for each partition —isa
way of controlling the placement of these resources, partition by partition.

Y ou can, though, gain some additional control over just where each partition is packaged by grouping
together the resources of sets of partitions. Unlike more traditional controls provided by — say — the
HMC, thistool is provided starting with the PowerVM Firmware 730 viaan HMC CLI (Command Line
Interface) command. This command is CHSY SCFG and here its purposeisto tie a set of partitions
together into one or more groups for purposes of partition placement. The groups so defined effectively
identify those partitions which will be activated together at frame reboot time.

For example, suppose your system consists of 16-core drawers. Suppose further that you have a set of
partitions A, B, and C that together could use all of the core and memory resources of a single drawer and
you want it that way. So you define these partitions as a single group, thereby also guaranteeing that
other partitions and other partition’s affinity groups will be packaged in other drawers. You don't
necessarily know where in the single drawer Partitions A, B, and C are going to be packaged, but you do
know that they’ll be packaged together. Given this constraint on A, B, and C, the hypervisor will then
attempt to package these in what the hypervisor perceives as best placement within that single drawer.

The command’ s format (actually provided as a single line) — executed for each partitionin agroup - isas
follows:

chsyscfg -r prof
-m <syst em nane>
-i “name=<profil e_nane>,
| par _nanme=<partition_nanme>,
affinity _group_id=<group_id>"

The“group_id" isany number between 1 and 255. (A group_id=none removes a partition from the
group.) During frame reboot, as the hypervisor places partitions, it starts with the highest numbered
Group 1D (e.g., 255) and worksitsway down. The “—r prof” is merely saying that the resource involved
is partition profiles; this command is executed with the same group_id for each partition A, B, and C.

Y ou can find more on this command at
http://www.redbooks.ibm.com/redbooks/pdf s/s9248000.pdf
or

http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp?topic=/iphcx_p5/chsyscfg.htm

or to learn about HMC commands in genera at
http://publib.boul der.ibm.com/inf ocenter/powersys/v3rimb5/index.jsp?topi c=/p7edm/p7edm Kkickoff.htm
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Affinity Groups provide an advanced function for experienced users or those who plan to use them with
IBM guidance. See the POWERY Virtualization Best Practices Guide for more details:

POWERY Virtualization Best Practices Guide

TurboCore in POWER7’s Nodal Topology

Much of this paper has been written assuming there are always eight physical cores on POWER7' s chips.
This might simplify packaging of some partitions. But the hypervisor’s partition packaging must also
take into account that there are POWER7 systems with fewer physical cores per chip. Some systems also
have three, four, or six cores per chip. Still others have 8 physical cores— and their caches - per chip but
can be changed to allocate just 4 of them. Thislast 4-core chip is associated with “ TurboCore” mode
which provides a higher frequency and more cache per core.

To understand TurboCore, first understand that these chips need to be able to be cooled. Eight coreson a
chip can produce alot of heat. The amount of heat they produce increases faster than the increase in
frequency; alinear increase in frequency resultsin afaster increase in heat produced. Asaresult, thereis
amaximum frequency allowed for 8-core chips based on the system’ s capability to cool them. Four
active cores per chip, though, produce less heat than eight. Since a system with 8-core chips at their
nominal frequency is capable of being cooled, and 4-core chips at that same frequency produce less heat,
the 4-core TurboCore mode' s cores can be run at a higher frequency at till be cooled.

Further, TurboCore is a system mode based on a system otherwise physically capable of having al eight
cores and each core’ s caches active. TurboCore mode has only four cores executing instructions, but the
cache of all eight cores remain active. Because the contents of an active core’s L3 caches can be written
into the now unused core’ s L3 caches— anotion called Lateral Cast Out - these chips effectively have
twice as much L3 cache for use by the active cores. (For comparison, actual 4-core chips only have their
own L3 cache.)

Higher frequency and more cache can, of course, mean better performance.

In this context of NUMA, though, there are some additional items worth observing.....

e Noticethat an 8-core partition, for example, could be packaged completely within an 8-core chip.
With TurboCore' s four physical cores per chip, that means such a partition resides on at least two
chips. So we have abit of atrade-off here. For this 8-core partition, on one hand we have
TurboCore€' s higher frequency, larger cache state, and the extra memory controllers of multiple
chips (providing more bandwidth), but this gets traded off for some increased latency to aremote
chip’s memory and cache. If this partition could instead have been packaged on one chip, we
would instead have strictly local accessto memory and cache. Additionally, because of lateral
cast-out, at lower utilization with only afew of the eight cores busy executing on the chip (with
the remainder temporarily idl€e), we also have the perception of alarger on-chip cache as well
without TurboCore.

e The proportion of memory size per core effectively doubles going from 8 cores per chip to
TurboCore' s 4. With twice as much memory per core attached to each chip, the assignment of
partitions within an 8-core-based system will be different than for a 4-core-based system. So the
hypervisor needs to know this ahead of the point in time where it begins packaging partitions.
From a partition resource placement point of view, a TurboCore-based system can look quite
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different from an 8-core chip-based system, so ensure that the system had been powered up in
TurboCore mode prior to activating any of the partitions. It isimportant to also take your intent
to use TurboCore into account as you define each partition’s memory and core resources.

You can see arelated effect for still larger partitions. For example, a 16-core partition residing on two
chipsin asingle 16-core drawer becomes with TurboCore a 16-core partition residing on the four chips of
two drawers.

Thisis not necessarily critical for all environments, but in the context of what we have been discussing
here, it should be taken into account. Depending on usage, some of the benefits of TurboCore's higher
frequency can become offset by an increased probability of access to remote memory and cache. For
more on these trade-offs, refer to the TurboCore link in the Glossary.

Processor Licensing and Activation in a Nodal Topology

So far we have been assuming that all of the system’s physical cores and memory will be used. It
happens, though, that both cores and memory need to be activated and then licensed for use before being
used. A system can have fewer licensed cores than activated cores and fewer activated cores than
physical cores. (Some systems have all cores activated at the time of purchase.

The order of core activation has evolved across hypervisor releases. Early releases of the hypervisor
activated the specified number of coresin what was called “ core order”; how ever the cores were
numbered, that was the order in which the cores were activated. Y ou can see this core ordering in the
following figure of atwo-drawer / 2-chip per drawer system. Only the (18 in red) core-order activated
cores became the cores subsequently usable as the licensed partition’s cores.  The remaining cores (12 in
black) were simply not used.

Figure 24 — Partition Resour ce Packaging

This approach did not always help in producing the most preferred packaging of partition resources. Core
order also meant that the cores licensed for use were packed forward. This, in turn, meant that the
memory to be used would also be packed forward, this done to have partition memory close to the
partition’s cores. Thisrather restricted the hypervisor’s options for packaging, occasionally producing
situations where there were partition cores having no local memory and partition memory where there
were no local cores.
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More recent hypervisor versions have altered the algorithm for determining which cores become
activated. Thisalgorithm first determines the preferred location of each dedicated-processor partition’s
cores and all partition type's memory. Once the dedicated-processor cores and preferred locations of the
shared-processor partition’s virtual processors have been identified, it is these that are first activated and
licensed for use by the operating systems. Asyou have seen before, this newer algorithm is attempting to
increase the probability that a storage access request can be satisfied by cache or memory close to the core
making the request.

Note, though, that once the desired number of cores are activated, it is these particular cores that remain
activated as partition resources change over time. More can, of course, be activated (if available).
More on activating of system resources can be found at:
http://www-03.ibm.com/systems/power/hardware/cod/

The Theory and Practice of Controlling Partition Placement

Y ou have seen that partition placement in these NUMA-based systems is important for having
performance-optimized partitions. So, now, just how does one go about controlling the positioning of
partition resources?

We start by defining the term “Activation”. Activation of a partition is the act of allowing the partition to
know that you really do intend to use the resources defined within a partition’s profile. Y ou can have
created many partition profiles, but only some of them might get activated. It isonly when a profile gets
activated that physical system resources are assigned. In doing so, the system tracks the relationship
between the activated profiles and the assigned resources. Thisistrue even

o after DLPAR (which does not actually alter the profile),

¢ when the partition is suspended — perhaps temporarily.

This partition resource information is maintained in a non-volatile storage registry within the system.
Again, independent of al of the possible profiles, the system maintains aregistry of the physical

resources used by all of the currently activated partitions.

Let’sthen start with a clean date in that registry (i.e. when asystemisfirst delivered to a customer). The
first step for most customers should be an initialize operation which deletes the IBM supplied al resource
partition. Deleting this partition clears out the registry of defined partitions. Aseach partition is defined
by the customer and activated, the hypervisor places the partition’s required resources in away which the
hypervisor perceives as being best for that partition. The next partition to be activated is similarly placed,
but using the core and memory resources that remain. As each is activated, its detailed resource
information is preserved in thisregistry. Thisistrue for both dedicated-processor and shared-processor
partitions.

Recall that thisinitial activation of partitions and the placement of cores together have the effect of also
defining the locations of some or all of the “activated” cores. After the dedicated-processor partitions
cores are placed, the remaining number of cores that can be activated are assigned to the shared-processor
pool. Some systems come with all cores aready “activated”; others are activated by utilizing CUaD.
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Performance Tip: This process of activating and placing partitions proceeds for as many
partitions as you specify. The order of partition activation - starting with an empty registry -
has a lot to do with the way that the partitions are placed. So choose an order of activation of
partitions and groups which provides each next partition its best placement from the
remaining resources, realizing that this partition is removing resources available for
subsequent partitions. Think of it abit like a puzzle, perhaps adjusting the puzzle piece sizes
to alow them all to fit better during thisinitial process.

An observation to keep in mind here is that, once partitions are so activated, the system now has arecord
of al of theseinitsregistry. Later, starting from thisinitial/registered state you may be making
subsequent changes. Next we look at afew of these changes:

A System “Reboot” ... Now with the registered knowledge of all of these activated partitions, let's
assume that you need to reboot the entire system. “Reboot” here means having power cycled the CEC —
powering off and then powering on the CEC — and, when that is compl ete, the partitions can be
reactivated; the registry persists. If the partition’s profile had specified auto-activation, the mere process
of power cycling will result in their reactivation. But what this step isreally al about isthat the
hypervisor will (re)define the location of all of the partitions that it knows about via the resource size
description in the non-volatile registry (not the state as currently defined in the profiles). Because the
registry describes multiple partitions' resource requirements, the hypervisor can find best placement for
these partitions together, rather than one after the other. That is, before the partitions are actually
activated during (and perhaps after) this reboot, the hypervisor has recal culated the location of their
resources. Placement will be in the following order:

1. Dedicated-processor partition, typically largest to smallest.

2. Shared-processor partitions, memory and fractional entitlement for each virtual processor.

With such reboot, given the registry-based knowledge of al of the partitions, the partitions will residein
what the hypervisor perceives as a preferred placement for all of them.

If, during this reboot process, a profile of areactivated partition is subsequently found to have been
changed since the partition was previously activated (i.e., the partition’s profile and registry descriptions
are different), and recalling that the partition’ s resource locations have aready been assigned per the
registry,

o If apartition’s profile defines fewer cores or entitled capacity than the number assigned per the
registry, the hypervisor will choose to use a subset of the already allocated core of this partition.
The ones chosen will be those perceived as the best packaging for this partition. The remainder
will be freed up for other use, perhaps as part of the shared-processor pool.

e |f the partition’s profile specifies more cores, the hypervisor will attempt to first find an available
(previoudly activated) core on a chip close to the partition’s memory and place the new core(s)
there. Failing there, it chooses some core(s), ideally on a chip in the same package, but it could
be any activated core in the CEC.

o If the partition’s profile specifies more memory, the hypervisor will attempt to alocate memory
from behind a chip where the partition has a core at the moment. Failing there, it could be any
available memory in the CEC.

¢ If both memory and cores are added, the same rules as above are attempted, but, if thisis
unsuccessful, the hypervisor will attempt to alocate the additional core(s) and memory together
from the same chip(s). The partitions perform best when the cores have local access to memory.

The registry will be updated per the changes.

[ Technical Note: Note that the powering on or off of a partition will not cause resources to be reassigned
unlessthe profileis also altered.]
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A New Profile Created and Activated ... Suppose you have a system with partition resources
aready up and running and their state is known in the registry. Y ou are about to add a new partition,
memory for certain, but also cores for dedicated-processor partitions and virtual processors with their
fractional entitled capacity for shared-processor partitions. Clearly, at the time that the profileis saved,
the hypervisor knows nothing about this partition; it’s just one or potentially many partition descriptions.
Subsequent activation of this partition, though, requires the hypervisor to fit the new partition’s resource
reguirements into available memory and core resources.

Aswith any newly activated partition, the hypervisor also wants to place this partition in a manner ideal
for this partition. The only resource locations available are those which are not currently being used (or
for shared-processor partition’ s virtual processors, “preferred”) by other previously registered partitions.
Notice we said “previously registered” partitions here. A previously registered Partition A may or may
not be currently active at the time that the new Partition B is activated. If Partition A did happen to be
suspended at this moment, the hypervisor - on the assumption that Partition A might be subsequently
reactivated - attempts to place Partition B in still available memory and cores. Failing — at least partially
—there, Partition B will consume the assigned resources of the now inactive Partition A and the registry
will be updated as such.

Dynamic LPAR ... Suppose you have a partition up and running, and having previously created a
profile which allows its memory, core and/or entitled capacity resources to be increased or decreased.
Let’ s have this partition be nicely packaged asis. Using the HMC’'s DLPAR controls, we are now going
to alter the size of the partition’s resources. Aswe described in previous sections, requesting a decrease
of resources is often the cessation of the use of previously alocated resources, leaving the chosen
resources as unused right where they are. A request for an increase means finding alocation for the
resource, ideally close by the core and memory resources already owned by the partition. But aready
used resources of thisand any other partition will remain where they are.

Here, as with the resource changes described previously, the results might produce a partition which
remains nicely packaged, but then again it might not.

Notice also that the resources freed by this partition might become used by a next DLPAR of this or some
other partition. If thisnext DLPAR were by the same partition and was to request an increase in some
resource and the partition had been previously nicely packaged, thisis the best possible outcome; the
partition may well reuse the resources that it had previously freed. Appropriate ordering of DLPAR
operations with thisin mind can help here. But notice that another partition’s DLPAR will succeed if the
needed resources exists anywhere in the CEC.

Partition Deletion ... If apartition is deleted, the memory and core resources become available for use
by some other partition. When anew partition is subsequently activated, because this deleted partition’s
resource were explicitly freed, the hypervisor now has the option of using this now freed resource along
with any still unused memory and cores.

The Easy Button: Dynamic Platform Optimizer

We have shown the value of influencing the location of your partition’s resources. We have aso shown
that partition resources sizes may change over time, so their location can aswell. After anumber of such
changes, any partition’s alocated resources can become rather fragmented. In fact, for some types of
changes, the overall opportunity for better partition placement improves, but the system is not yet able to
take advantage of it. You could re-1PL your entire system - with the result being better overall partition
placement - but that is not something you would often want to do. A better solution is an “Easy Button”;
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thisisaway to tell the system “I know that the partition resources have become rather fragmented and |
want this system cleaned up; and allow the partitions to keep running while thisisworking.” That is what
the Dynamic Platform Optimizer (DPO) was designed for.

DPO support, first available in Firmware level 760, reorganizes all the partition resource locationsin a
manner more efficient for both the individual partitions and the compute capacity of the system asa
whole.

For example, consider the following two figures of a 4-chip, 32-core system with identical partition
specifications in both, each partition’s core and memory represented by a single color; the first partition’s
resources are rather fragmented, the second with its resources having become more nicely packaged:

Fragmented System
8-core Processor Chips

Wermory 1 >< Z hWermory
Dikids v 4 Dikitds

2=

8-core Processor Chips

F Y
A 4

Well-Packaged System
8-core Processor Chips

Memory + >< 4+ Memory
DIkds 3 4 DIkids

F 3

8-core Processor Chips

Figure 25— Partition Fragmentation

In the fragmented system we see colored partitions with

e Partition cores and memory and cores residing on (or behind) more chips than necessary,
e Partition cores residing on chips where none of the partition's memory resides,

e Partition memory residing behind chips where none of the partition’s coresreside.
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The well-packaged system shows exactly the same partitions with exactly the same resources after the
system has been optimized. The size of the partitions resources did not change here, only the resource
locations. Indeed, one partition —in green - was found to not require a change in location.

During this example’s optimization process, all memory available to each partition continues to be
available; only itsresource locations change. Part of the reason that thisis possibleis that this system had
some amount of memory (i.e., in units of “Logical Memory Blocks’, LMBS) not assigned to any partition.
Much like a disk defragmentation, the contents of each LMB is copied — page by page - to an available
location where the pages are subsequently made accessible again. The speed of this conversion is partly a
function of the amount of memory available — memory not assigned to any partition - on each node prior
to the operation. More available memory means fewer copy steps needed to achieve the desired
packaging. For that matter, the ease by which an “ideal” partition layout can be accomplished isaso
partly afunction of the amount of unallocated memory on each node, both before and after the operation.
If need be, the hypervisor will temporarily use unlicensed memory in support of this operation.

Thefollowing are a few observations concerning its use:

e Thisoperation can beinitiated viathe HMC' s command language interface (i.e., an HMC CLI
operation OPTMEM). Details on these commands will be provided later.

e Thereisameans to abort the operation prior to its completion.

e  Subsets of partitions can be included in and excluded from this operation.

e Two “optimization scores’ are available (also available viaan HMC CLI):

1. A vaue describing the relative fragmentation of the system’ s resources.
2. A vauerdative to the first which describes the packaging state which could occur after an
optimization operation.

o DPOonfirmware level 760 requires a no-charge license code; subsequent firmware releases no
longer require alicense code. Systems that ship with firmware level 760 or later will have the VET
code installed during manufacturing. Usersinstalling this firmware will need to acquire the code
from IBM.

Upon completion of the operation, for each partition repackaged, the partition’s OS isinformed of the
changes. With this naotification, each IBM i partition begins an autonomic process of re-optimizing the
location of the work and the data that it is accessing to be consistent with the new nodal topology seen by
this partition. 'Y ou might have noticed that in the second figure above, every partition’s core and memory
resources was able to have been localized to individua chips; when thisis the case, each IBM i partition
changes, essentialy allowing it to do nothing to manage the nodal topology of its partition since it isno
longer multi-nodal. (Although preferable for smaller partitions, this might not be typical for an actual
customer environment.)

Performance Tip: To take full advantage of the DPO feature, we recommend IBM i
partitions be running at or post release 7.1 MF56058.

Since the contents of individual physical pages are being moved from one location to another, the time
reguired to complete such operations can berather long. Thisis afunction of

e the number of LMBs that need to be moved,

o the number of timesthose LMBs are moved, and

o the compute capacity availableto doit.

The hypervisor is executing this operation using processors cycles otherwise not used by the partitions.
Asaresult, it is prudent to attempt such operations when processor resources are most available.
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Such partition reorganization uses the size of the partition resources as they exist on the system when the

operation isinitiated, not as they might be preferred as stated in a currently saved profile. (Thisisalso

true when executing afull system reboot. Y ou might recall that DLPAR operations similarly use the

partition’s current resource sizes, not the contents of the active profile.) If the intent isto have the post-

optimized partitions also represent the state of the partition profiles, either first

o Use DLPAR’sresource specification to reflect the currently saved state of the profile, or

o Deactivate and then reactivate a selected partition profile to pick up the changes reflected in the
profile. (A simple restart/reboot of a partition is not enough to see a changed profile for that
partition.)

Notice that, it is not necessarily prudent to attempt to “defragment” a single partition unless there are
enough processor core and memory resources available on some node or node group to contain that
partition.

The following represents a quick synopsis of the HMC CLI commands involved:
Ismemopt —-m <system_name> -0 currscore

reports the current affinity score for the entire server. The score is a number in the range of
0-100 with 0 being poor affinity and 100 being perfect affinity.

Ismemopt —-m <system_name> -0 calcscor e

reports the potential score that could be achieved by optimizing the system with DPO.
optmem —m <system_name> -o start —t affinity

starts the optimization for al partitions on the entire server.
Ismemopt —-m <system name>

displays the status of the optimization as it progresses.

optmem —m <system_name> -0 stop
ends an optimization before it has completed all the movement of processor and memory.
This can result in affinity being well less optimized for some partitions that were not
completed.

Ismemopt —-m <system name>
displays the status of the most recently requested optimization. If oneis currently in
progress, it displays an estimate of percentage completed.

The HMC command line interface provides help text for these commands. There you can aso find
options to explicitly request which partitions should take part in such optimization (“requested
partitions’), aswell as how to protect partitions from being included (“ protected partitions’).

Here are afew performance observations concerning the actual use of this function:

e Pageswithin LMBs are being copied from one location in physical memory to another. While this
process is occurring, the very same page(s) might be actively being accessed. At the very least, the
page(s) can't be allowed to change during this process. Thisislike a page having been purged from
memory and then having to be paged back in again (but considerably faster); the page is temporarily
not accessible by any application. This dlight delay in having access to these pages might be
frequently perceived, but each is unavailable for avery short period of time.

o Aswith many hypervisor-driven functions, the hypervisor uses otherwise unused processor cycles.
Any core (or SMT hardware thread of a core) not being used by apartition is eligible for use by the
hypervisor for this purpose. When such unused compute capacity exists, the compute capacity being
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actively used by the partitionsis not really impacted. Soit islargely only when this function needsto
be executed AND most cores are being used by partitions that a partition’ s performance might be
observed as degraded (and/or that the DPO operation takes too long).

e Given acore (or more) isin use for thisfunction and a partition then needs a processor, as
with many hypervisor functions, there might be a slight delay before the hypervisor can
return control to apartition. At the very least, a page being copied — having been made
temporarily non-accessible — needs be again made available before the hypervisor frees up
that processor.

Hypervisor Memory Requirements

It is natural to picture all of asystem’s memory as being consumed the partitions themselves. Normally
we would like to be able to add up all of the memory requirements of all the active partitions and have
that be close to the system’s memory size. That mental model, though, ignores an important consumer of
system memory, the hypervisor itself. Unfortunately, thereis no easy rule of thumb for definitively
knowing what the hypervisor’s memory needs might be.

In fact, there is an optional high reliability capability on some systems wherein all of the hypervisor’'s
data objects are automatically replicated in different portions of physical memory when written. This
provides higher availability in the event of memory failures. This, of course, adds to the hypervisor’'s
memory requirements.

So, for now, keep in mind that the hypervisor requires some portion of the memory behind each chip and
add an adjustment of about 10% of each chip’s memory as potentially being consumed by the hypervisor.
For more information see the IBM system planning tool:

http://www.ibm.com/systems/support/tool s/systempl anningtool/

to estimate the amount of memory that will be reserved by the hypervisor.

[ Technical Note: It isthe hypervisor’s memory which contains the structure(s) used for virtual-to-real
address trandation by each partition. It is called the Hardware Page Table (HPT), and having one per
partition is what keeps the partition’s use of physical memory isolated from each other. It happens that
the size of thistable tends to be proportional to the size of the maximum memory specified for a
partition.]

Simple (or not so simple) DIMM Placement

Y ou might have noticed that we have been assuming throughout this document that there are memory
DIMMs installed behind each of the processor chips. We have also implied that there is equal memory
behind each chip. Although much preferred for performance, neither is strictly required from a functional
point of view.

Y ou also know now that for performance reasons we want the hypervisor to place each of the partition’s
cores where its memory resides and to place the memory where the coresreside. Similarly, each
partition’s Task Dispatcher does not really want to place tasks onto cores where the partition has no
memory. Thisisanimportant point. If aprocessor chip does not happen to have memory, the partitions
then also prefer not to use that set of their cores that happen to reside there; the cores can get used (and do
at higher utilization), but the partition then incurs an additional cost to access memory. Assuch, we
recommend ensuring that all processor chips have memory intheir DIMM dlotsif thereis any current or
future need for partitions to use the cores of those chips.
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It happens that, by not having first considered the nodal aspects of these systems, it is actually quite easy
to accidentally have processor chips lacking memory. For example, if you thought in terms wherein these
systems are really just N number of cores somehow connected to M amount of memory, you would also
believe that memory in one DIMM slot is as good as any other. (Y ou know now that that is not the case.)
So with such amental model, a set of memory DIMMSs get ordered; their total size was chosen to dightly
exceed the memory needs of all your partitions. In doing so, aDIMM density was also chosen. The size
and the density together effectively defined the number of DIMMsto beinstalled. With DIMM dlot
plugging rulesthat call for all DIMM slats behind chips to be filled before going onto a next, once we
have exhausted the purchased DIMMs, we find that we have simply left some chips with al DIMMs slots
empty. We have chips, with cores potentially assigned to partitions, which have no local memory.

The system can be quite functional just like this; to be just functional, DIMM-less chips are acceptable.
But you also know that performance is better when you avoid having chips with active cores lacking
locally attached DIMMs. Soif your partition’s core and memory resources are intended to span all of the
chips of your system, you should also attempt to ensure that the system aso has enough DIMMs installed
to allow every chip with active cores to have locally attached memory.

Perhaps, for quite reasonable reasons, the amount of memory had been purchased and installed with
memory pricing aprimary consideration. Notice, though, that even memory is licensed on some systems,
being paid for as needed. And, as with activated/licensed cores, the hypervisor can first define where it
wants each partition’s memory to reside and then activate just that memory for use.

The remaining unused — but nonethel ess physically available memory — also remains unlicensed.

As aresult, by having more physical memory than needs to be licensed:

1. thehypervisor has more flexibility concerning where to place each partition’s memory,

2. the memory placement allows more flexibility concerning where to place the licensed cores, and

3. only thelicensed memory is*“paid for”,

4. Until moreis needed, this allows each partition’s additional - previously unlicensed - memory to be
potentially allocated closer to the partition’s current memory.

Performance Tip: To improve the ease of partition resource alocation — thisincluding initial
placement, DLPAR, and DPO — and so to improve system and partition performance, having
true balance of memory behind all processor chips and potentially having more physical
memory than is really needed is recommended.

NUMA and Dynamic LPAR

Aswe had shown earlier, DLPAR (Dynamic LPAR) is about altering — without a partition IPL —one or
more of the following resources:

e The number of coresin a dedicated-processor partition

e The number of virtual processorsin ashared-processor partition

e Theamount of memory for any partition, and

e A number of other partition parameters (like partition weight, for example).

For some of these, al you needed to have done is describe their maximum and minimum values and then
later request the change. For example, if you wanted to have allowed for an increase in the number of
cores or virtual processors, the partition’s OS would have had to have been configured as part of its 1PL
to set up itsinternal structures to allow for more processorsto later be activated.
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Y ou now know that, before such a DL PAR-enabled change, the partition had some number of cores and
some amount of memory residing somewhere in your NUMA-based system. Idedly, the core and
memory locations were also nicely packaged there. And the partitions themselves knew, for each node,
how much of the partition’s memory and cores resides there.

Starting from thisrelatively static state, let’s consider a DLPAR change affecting the number of cores.
Let'salso start by making this DLPAR change challenging by assuming that every physical core of the
system is already licensed and being accounted for within the set of dedicated-processor partitions. In
order for Partition A to increase its core count, Partition B and/or others had to have first deactivated
some of theirs. It isthese coresthat are to become activated within Partition A. So, physically, just
where are those cores? And, just asimportant, where are they relative to the physical memory of the
source and target partitions? These additional cores can certainly be made to be functional within
Partition A, but from a performance point of view their location will also matter.

Suppose, next, that the number of licensed coresis fewer than the number of physical cores. The cores
that are at first licensed are also cores being used by the partitions. The coresthat are not licensed are
essentially just unassigned cores.

Cores

Inactive

Figure 26 — Partition Layout with I nactive Cores

Let’s now have Partition B drop three cores and have Partition A increase its core count by three asin the
following figures (Partition A isin blue, Partition B in green). Prior to the 760 firmware, Partition A
would have picked up the cores freed up by Partition B.

Cores

Inactive

Figure 27 — Partition Layout with I nactive Cores after Processor DLPAR

Starting with 760 firmware, the location of the licensed cores changes to allow the transition to be as
shown in the first and third of the following figures, allowing Partition A’s new coresto be closer to its
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existing core’s cache and memory. The existence of the inactive cores allowed Partition A to remain
packaged in a single chip.

Cores Cores

Inactive

Figure 28 — Partition Layout with I nactive Coreswith Transition

The Shared-Processor Pool Trade-offs and the Time Slice

We have previously described how the hypervisor tracks the compute capacity consumed by the virtual
processors of shared-processor partitions within time slices defaulting to 10 millisecondsin length. This
default time slice value can be changed. This section isto provide some guidance as to just what you are
influencing when adjusting thistime dlice value.

We have noted that these systems have a complex cache and storage topology. Thisdesign isintended to
allow the core(s) to access the data and instruction streams quickly. Indeed, each core has three levels of
cache of various size and speeds, the smallest — L1 data and instruction caches - also being the fastest.
Cache works to speed task execution time and increase system compute capacity by maintaining the most
recently accessed datain the core's caches. Of course, when the needed datais not in the core’ s cache,
processing takes longer while ablock of datais accessed from elsewhere —local or remote memory for
example, in the system.

Each task — and so each virtual processor — tends to accessit own data. For example, the task’s program
stack, although used by alot of different routines, isreally just repeatedly using the same storage. There
is astate that tends to get brought into the cache — each as a distinct cache fill —and then reused.

It isworth noting that, for all of our discussion concerning NUMA effects, the notion of cache has away
of making the relative location — whether local or remote - of each partition’s and each task’s memory
irrelevant. If even remote data can persist in a core's cache, it does not tend to matter as much that it took
longer to get there.

A dedicated-processor partition’s task —and all of its state - can execute on a core indefinitely aslong as
other tasks don’t require the use of that “processor” to provide the perception of progressfor all. A
Capped shared-processor partition’ s virtual processor (and so the tasks there) can continue to execute
indefinitely if its partition’s compute capacity limit is never reached; no matter the number of virtual
processors defined, if a capped partition with 1-core entitlement is only using one virtual processor, that
virtual processor can execute non-stop. Similarly, an Uncapped partition’s virtual processors need not
cease execution if there is continually available coresin the shared-processor pool. These are al good
things from the point of view of a cache and the associated tasks' performance. Your task really does
want to stay on a processor for aslong as possible just so that its data working set can remain in the core's
cache.
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Tasks may want to stay where they are placed -- executing as quickly as their cached state allows them to.
But you have seen that contention by the many virtual processors for afewer number of coresin the
shared-processor pool forces virtual processors to cease executing where they are and permits another
virtual processor to takeits place. The new virtual processor’s state, though, is not necessarily in that
core’ scache. That state may be in memory or in the cache of another core of the shared-processor pool
where the virtual processor had last executed. Asthat virtual processor (re)starts executing whereitis, its
working state is pulled into the new core’ s cache (and aging out the state of the preceding virtual
processor). Thistakestime. Thisisacompletely normal characteristic of cache(s) and cache
management.

Thisis“norma” but from a performance point of view, it is not an optimal characteristic. Upon
(re)starting execution, each new task, each new virtual processor incurs this cost of loading its state into
the core’'s cache from wherever that state currently resides. These arejust alot of individual cachefills,
each onetaking time. And, athough there is no well defined moment when it’s over, you can think of
each of these periods as taking awhile, with the effect being that the work is not executing as quickly as it
would have if such priming were not required. Again, the task executes fastest with the dataalready in
the core’ s cache; when atask incurs all the cache fills to restore that state, processing slows down and
compute capacity is reduced.

If the rate at which this virtual-processor switching occurs (and so reloading of cache) is minimal, the
effect on performance isaso minimal. But asthisrate of switching grows, it also has away of reducing
the total system’ s available compute capacity. Just to provide a mental model of the possible effect,
picture the next switch out as occurring shortly after the priming period has ended; this resultsin alot of
cachefillsand alot less work getting done.

This effect of restoring cache state is known by IBM’s Workload Estimator Tool (WLE). In someideal
with no such switching (a dedicated-processor partition with a certain number of cores, for example),
some number of coresis presented to you as having some set amount of compute capacity. Shared-
processor partitions are known to have some lesser compute capacity due to this effect. Thisreduction
can become a quite measurable fraction of the total compute capacity of the system. WLE presentsthis
differenceto you. But it isimportant to understand that thisis an estimate based on measured
experimentation; it can be better or worse.
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Performance Tips: Thetrick to decreasing this shared-processor capacity reduction isto
decrease the probability of such virtual processor switching. One way isto decrease the
contention of virtual processors for cores in the shared-processor pool. There are a number of
waysto do this:

1. Limit the number of virtual processors contending for the cores of the shared-processor
pool. If all active, they are all going to get their time on a core based on their partition’s
entitled capacity. You can do this by decreasing each partition’ s virtual processorsto be
closer to the entitled capacity. Asyou know, doing so trades off the opportunity for
uncapped partitions to grow significantly to use unused capacity in the shared-processor
pool (when available). With knowledge of when contention islikely, you can also use
DLPAR to adjust the number of active virtual processors.

2. Useof “dedicated-donate” wherein the dedicated partitions allow their cores to
temporarily join the shared pool when not being used by their owning partition. Doing so
has the effect of increasing the capacity of the shared-processor pool, thereby decreasing
the rate of virtual processor switching due to exceeding entitlement.

3. Alter the default length of time representing the hypervisor’s time slice (10 msec). Recent
versions of the hypervisor alow for changing the time slice value to 50 milliseconds on
some system models. This can be set through ASM (Advanced System Management) and
needs to be used with care. Using alonger value could result in virtual processors
executing for an extended period of time, but once a partition had reached its entitlement
[imit, it might not be until well into the next — now longer - time slice that that virtual
processor’ s tasks get to execute again. Although tasks execute faster when executing, this
lesstimely use of a processor may show through as longer 1/0 latencies, for example.

It is also worth noting that time dicing is not the only reason a virtual processor moves from core to core.
All that is needed is for avirtual processor to be temporarily deactivated and then soon thereafter
reactivated. A virtual processor becomes inactive merely because all of the tasks assigned to avirtual
processor have themselves entered await state. For example, if the last or only one of the tasks il
attached to avirtual processor happens to incur a page fault and requiresa DASD /0 read, that task
enters await state pending the completion of the needed page read. This, in turn, deactivates the virtual
processor. But just as with the completion of the DASD page read making atask in a dedicated-processor
partition dispatchable and so attached to a core, such a newly dispatched task needs to be associated with
avirtual processor of a shared-processor partition to once again begin actual execution. Thismight, in
turn, require the re-activation of that virtual processor. Since there is no guarantee that the core used
previoudly by that virtual processor isthe same as the core newly used, the task’ s cache state might need
to be moved between cores. Additionally, as mentioned above, if alonger time-slice value than the
default is used, this re-activation might be delayed while other virtual processors continue their execution.

Shared-processor partitions exist largely to maximize the use of the compute capacity available

in the cores of the shared-processor pool. The pool’s compute capacity, though, is not really a
constant; it can be improved with prudent use of the cache in the cores of this pool.
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Summary

In this paper we have shown you the primary POWERY logical partition abstractions and ways to
control your virtualized partitions. Y ou should now be able to better understand these concepts
and apply them to your system. Using these concepts you can build and maintain a virtualized
configuration with the best possible performance.
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Glossary

Access Latency: Thisrefersto the length of time needed for aLoad or a Store instruction to
accessitsdata. 1n as much as most storage operations outside of the processor core proper
access the remainder of the storage architecture using cache-line sized blocks (128 bytes), this
also refersto the length of time to complete a cache fill of areferenced block, no matter where it
resides in storage.

Activated: Each SMP system has a set of physical and functional cores. Of these, all or some
of these cores are purchased for subsequent use by partitions. It isthese cores that are activated.

Affinity Group: Thisisameans of identifying partitions whose memory and processor
resources should be assigned together to alocation in the SMP. The reason for such grouping
stems from the NUMA topology of these SMPs. Partitions of the same group tend to be
assigned to the same book or drawer or even socket, based on the needed resources.

Capped: Thisisan attribute of a shared-processor partition relating to the use of its entitled
capacity. Once —within each time slice — a partition’ s virtual processors have consumed their
entitled capacity, the hypervisor cease their execution.

Core: The hardware entity which does the actual execution of instructionsin a program.
POWERY cores can support up to four tasks, each concurrently executing their own program.

Dedicated-Donate: Thisisan unofficial term for the capability whereby a dedicated-processor
partition alowsitsidle cores to be temporarily available in the shared-processor pool.

DIMM: Dual In-line Memory Module. Think of this as aunit of physical memory that can be
purchased and plugged into a slot for connection to the processor chips. Some DIMMs have
additional buffering for performance.

Dispatchable: One of many states in which atask can exist. Dispatchable meansthat atask is
no longer “Waiting” for some software resource, that it can instead begin executing on a
processor. If a“processor” is available when atask becomes dispatchable, that task can begin
execution immediately. If not, it waits enqueued for a next processor to become available.

DLPAR: Dynamic Logical Partition. Thisrefersto aset of operations for requesting and then
immediately executing changes to the resources of a partition. Rather than changing a partition’s
profile explicitly and then activating a partition per that profile, DLPAR allows an already active
partition to alter some resources within predefined constraints and have the changes quickly take
effect.

DPO: Dynamic Partition Optimizer. A hypervisor component which reorganizes the locations
of one or more partition’s processor and memory resources to provide better performance for the
affected partitions and the SMP system as awhole.
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Entitled Capacity: Entitled Capacity is a partition’s guaranteed compute capacity (for uncapped
partitions) or maximum compute capacity (for capped partitions). See Entitlement.

Entitlement: Entitlement isthe amount of compute capacity (physical cores allocation) to
which the partition is guaranteed. Entitlement is used in the fair use allocation of the compute
capacity of the shared-processor pool’s cores. Entitlement is a partition’s maximum (for capped
partitions) or guaranteed (for uncapped partitions) compute capacity. The Entitlement of a
partition does not change automatically when the compute capacity of a shared-processor
partition changes (e.g. DLPAR).

Job Priority: An attribute of an IBM i Job (and tasks/threads within it) which is used to control
job scheduling. The IBM i task dispatcher uses job priority as the main criteriato determine the
next task to be dispatched to anewly available SMT Processor Thread when the OS scheduler is
over-committed (when there are a set of tasks ready to execute).

Home Node: AnIBM i concept in which tasks are assigned a Home Node as an attribute. This
provides each task a preference for that set of core within a“Node”, on POWERY typically a
processor chip. Virtual Processors of shared-processor partitions are similarly provided a Home
Node, alowing the OS to match up each task’s Home Node ID with that of the virtual processor.
This, in turn, allows the task some assurance that the core on which it is executing is close to it
the memory where its data often resides.

Hypervisor: Processor virtualization implies the support of multiple OS instances — partitions —
using the same SMP. Efficient and fair use of the SMP' s resources, as well asisolation of each
of the partitions, requires a highly trusted level of code for managing the partition’s use of the
SMP sresources.

Lateral-Cast Out: A POWERY capability associated with hardware cache management. Asthe
data blocks are aged out of a core’ s L3 cache, that same data can be written into the L3 cache of
amore idle core on the same processor chip. Thisincreases the length of time that a data block
can remain in cache. Without Lateral-Cast Out, the data block would have either been merely
removed from the cache or —if changed — written back to main storage. Along with its slightly
high core frequency, TurboCore relies on Lateral-Cast Out to effectively increase the amount of
cache per POWERY core.

Licensed: For dedicated-processor partitions, that number cores paid for use by that partition.
Licensing of partitions defined as shared-processor partitions is more complex and is described
elsewhere in this document. The total number of licensed cores can be fewer than the number of
activated cores which can, in turn, be fewer than the number of physical coresin the SMP.
Subsets of the available physical memory can similarly be licensed for use.

M SPP: Multiple Shared-Partition Pools. This function provides the capability for processors
resources to be allocated to more than a single specifically configured shared-processor pool. A
subset of the shared-processor partitions may be allocated to a given shared-processor pool and
the remainder of the shared-processor partitions can be allocated to one or more other shared-
processor pool(s). MSPP technology provides a mechanism to define pools of processors
supporting different licensed software. Within this shared processor pool all the virtual servers
can be uncapped, allowing them flexibility within the license boundary set by the M SPP.
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NUMA: Non-Uniform Memory Access. Also ccNUMA. Cache-Coherent NUMA.

Asthe name implies, from the point of view of some reference core, the latency to access the contents of
some memory is faster than to other memory. This effect falls out naturally from systems with multiple
processor chips— each having multiple cores — and each chip having some amount of system memory
directly attached to each chip. It ispossible for a partition with resources residing completely on asingle
chip of amulti-chip system to not perceive this effect.

The POWERY processors support ccNUMA. Any core of the NUMA SMP can access the contents of all
memory and any core’ s cache; the hardware-supported cache coherency allows most software to execute
as though the cache did not exist.

OS:. Operating System. Thisisthat set of software which abstracts the SMP’ s hardware and 10
for higher levels of software. With LPAR support, this abstraction is further enabled by the
hypervisor. A “partition” is aso thought of as an OS instance.

Partition Weighting: A relative partition attribute — set viathe HMC — which influences the
hypervisor’s decision of which of a set of virtual processors ought to be assigned to a next available core.
Under some circumstances, uncapped partitions with greater weight increase their probability of being
dispatched to a core versus virtual processors of partitions with lower weight.

Processor: A now largely generic term representing the entity used to execute atask’s
instruction stream. When referring to the hardware, the currently preferred termis®“Core’. See
also “Virtual Processor”.

Processor Thread: Thisis an abstraction representing that resource to which atask is assigned
to by an OS' Task Dispatcher within an SMT-capable core. Prior to SMT, thiswould simply
have been called a Processor. See SMT below.

Processing Units. A compute capacity metric that is used in defining the entitled capacity of a
partition. For shared-processor partitionsis stated in terms of the compute capacity of a core. It can take
on values with precision stated in terms of hundredths of the compute capacity of one or multiple cores.

Reserve Capacity: Unallocated activated cores — those that are not assigned to dedicated
partitions nor included in the total shared processor entitlement allocation. This reserve capacity
may be used for uncapped processing needs.

Shared-Processor Partition: A partition whose virtual processors contend for use of the cores
of the shared-processor pool. Asaresult, each of their virtual processors can be assigned
temporarily to any one of these cores. Thisflexibility also allows for these partitions to be
limited to compute capacity which is arbitrary fractions of compute capacity otherwise available
in some integer number of cores.

Shared-Processor Pool: The set of an SMP's active cores which are not associated with any
dedicated-processor partition. Any of these cores can be used to execute the thread(s) of any
Shared-Processor Partition’s active virtual processors.

SMP: Symmetric Multi-Processor. A set of processor cores, each typically supporting the same

instruction set architecture, with access to acommon memory represented by a single real
address space. All cores, using this single real address space, have access to the contents of all
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of the memory. The corestypically have caches holding the contents of this memory and which
are managed by SMP hardware in a cache-coherent fashion; this cache-coherency allows most
software to execute as though the cache was not present.

SMT: Simultaneous Multi-Threading. The hardware capability in which the instruction streams
of multiple tasks can be executed concurrently on the same core. Moreon SMT can be found at:
http://www-03.ibm.com/systems/resources/pwrsysperf SMT40nP7.pdf

Task: An operating system concept describing a piece of work. Think of this most simply as
describing the location of the instruction stream to be executed next, along with processor
register state to be used by that instruction stream. It isthisinstruction stream address and this
register state which gets loaded onto an SMT hardware thread by the OS” Task Dispatcher upon
“Task Switch In” and which is saved in memory as the task is switched out.

Task Dispatcher: The operating system component which assigns tasks to virtual processors.
On POWERT7-based systems, the virtual processor supports up to four tasks.

TurboCore: A capability in which fewer than the available physical cores of a POWER?7 chip
are enabled, thereby decreasing the chips power consumption. Asaresult, the active core’s
frequency can beincreased. Further, the cache of the unused cores remains available, allowing
it to be used by the active cores. Both can improve the performance of such individual cores.
More on TurboCore can be found at:

http://www-03.ibm.com/systems/resources/systems i _pwrsysperf turbocore.pdf

Time Slice: A period of time within which the hypervisor tracks the usage of each shared-
processor partition’s usage of its entitled capacity. It defaultsto 10 milliseconds. In the event
that a partition’s entitled capacity is exceeded within atime slice, the partition’s virtual
processor(s) might cease execution until the next time slice boundary.

Uncapped: Thisisan attribute of a shared-processor partition relating to the use of its entitled
capacity. Once —within each time slice — that an uncapped Partition A’ s virtual processors have
reached their entitled capacity, AND if there are active virtual processors of other partitions
which have not reached their compute capacity limit, the hypervisor ceases the execution of one
or more of Partition A’svirtual processors. Partition A’svirtual processors can continue
executing even if its entitled capacity has been exceeded if there are then unused cores in the
shared-processor pool.

Utility Capacity on Demand (CoD): A licensing solution to allow assignment of inactive
processors to the shared-processor pool on atemporary, as-needed basis. The extra capacity is
activated and paid for only when the peak workload requires extra processing power. Thisextra
capacity is available for use by uncapped partitions.

Virtual Processor: An abstracted processor core. The view that an OS' Task Dispatcher has of
aprocessor core in amulti-partition system. In asingle-partition system, often one without a
hypervisor, the OS Task Dispatcher can be thought of as assigning tasks to physical cores rather
than to Virtual Processors.
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