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GigaHertz and CPWs 

“It depends”, often preceded by a sigh.  Ask any processor performance guru a general question 

about how fast something can be done on a computer and that, as often as not, is the answer you 

get.  So what’s going through their mind as they say this?  Or imagine you are at your local 

personal computer retail location considering the laptop to buy for your college-bound student.  

What’s the first statistic that you see?  Very likely, the processor frequency.  Higher is better 

right?  And they charge for it too.  But what is processor frequency really?  And what does 

processor frequency really mean to the real overall performance of your system?  That, as it 

relates to the main processor complex1, is the purpose of this paper.  We’re going to talk here 

about what really constitutes the performance of a computer system. 

 

A few definitions first ...  

 Frequency ...  MegaHertz (MHz), a.k.a., Millions of Cycles Per Second.  GigaHertz (GHz), 

1000s of Megahertz.  For example, ranges of frequencies for a few PowerPC systems 

include: 

  POWER5 ... 1.9 to 2.3 GHz 

  POWER6 ... 4.2 to 5 GHz 

  POWER7 ... 3 to 4.1 GHz 

 Cycle Time ... This is mathematical inverse of frequency.  For many recent processors, this 

can often be expressed in some fraction of nanoseconds/cycle.  A 4 GHz processor has a ¼ 

nanosecond cycle time. 

 

Did you know, though, as the frequency was doubled from POWER5+ (2.3 GHz) to POWER6 

(4.7 GHz) the CPW-based capacity of the system increased 30-40%?  It is also true that even 

though POWER7’s frequencies are less than those of POWER6, corresponding core-to-core 

CPW capacity of POWER7 is again considerably higher than that of POWER6.  Have no doubt 

that the frequency of a processor is important, but processor frequency is only one of the many 

tools that processor designers have available to them to provide the required performance. 

 

So let’s now take some time to look under the hood and see how the pieces, when put together, 

really affect the performance of your workloads. 

 

Processor Instruction Sets and Pipe Lines 

You probably have some recollection that the PowerPC architecture on which IBM i runs is a 

Load/Store-based RISC-style architecture.  Your line of code in a high-level language is being 

converted to one or more of these PowerPC instructions by the compiler.  The processor 

frequency is often thought of as the rate at which the processor executes these instructions.  

That’s a handy shorthand, but this mind set is largely incorrect.  The processor frequency does 

dictate the rate at which a lot of work is done on the processor core.  Other parts of the system 

run completely asynchronously to that of a core.  So let’s start by looking at the relationship 

between frequency and instruction execution on most processor cores. 

                                                           
1
This is the processor chips, caches, memory controllers, memory DIMMs, and the busses interconnecting it all into 

a single cache-coherent SMP. 
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Although you might expect otherwise from a RISC instruction, PowerPC instructions do not 

execute from beginning to end within the span of one cycle.  Cycle times are so fast that only a 

portion of the instruction - say the actual addition of data - takes one cycle.  Each instruction 

actually executes in a number of stages, each stage taking one cycle.  Every processor 

implementation is different but if you are thinking roughly 5-10 stages to fully execute an 

instruction that’s about right.  I can say roughly because, except for some cases with branching 

instructions, the number of stages does not significantly contribute to performance.  And the 

reason for this?  In many cases, within any given cycle, it is possible that each stage is executing 

some portion of a different instruction; it is entirely possible for instructions to enter the first of 

these stages - also often called a “pipe” - and another to leave the last of a pipe’s stages every 

cycle.  This is where the idea that an instruction is executing every cycle comes from; even 

though instructions take multiple cycles to execute, one can exit a “pipe” every cycle. 

 

Clearly, if data and instruction stream are available to the processor’s pipes, the faster the cycle 

time, the faster that instructions appear to execute.  And to be available to the pipes, the data and 

instruction stream must reside in the processor core’s L1 cache(s); this is something that we’ll be 

looking at shortly. 

 

As a bit of a side note, partly because there are various classes of instructions, there are multiple 

processor pipes, allowing instructions to also execute in parallel.  On  recent PowerPC processor 

cores, there are two pipes for arithmetic instructions, another two pipes for instructions which 

access storage, one for branch instructions, and other pipes for longer running instructions such 

as those associated with floating-point instructions.  Due to these multiple pipes, with the right 

mix of instructions, it is entirely possible to be executing (and completing) instructions at a rate 

of five instructions per processor cycle; having a different instruction executing in every stage of 

every pipe is the ideal.  A PowerPC POWER6 processor running at 5 GHz and executing at this 

ideal rate would allow for 

 

 5 X 103 Million Cycles per Second * 5 Instructions/Cycle = 25,000 MIPS2 

 

for each processor core.  This ideal happens occasionally for short bursts, but hardly ever for any 

extended periods of time.  Typical programs are such that it is more likely that the instructions 

are only capable of being executed at a much lower rate.  Much more typical for commercial 

applications is a rate in the neighborhood of 5 cycles/instruction (or worse), rather than this 5 

instructions/cycle.  Why this is the case and why performance does not always scale up with 

cycle time - and from there the meaning of CPWs - is the purpose of the remainder of this paper.  

And, interestingly, you have some control over this difference.  So, yes, cycle time is important, 

but so is the way that the program dictates the instructions and data that the processor perceives.    

So what’s causing this less-than-efficient use of the processor cores(s).  First, there are periods of 

time within which a processor really is executing at this ideal rate.  But there are also periods of 

time within which conditions are such that instruction stream execution in one or more pipes 

                                                           
2
MIPS ... Millions of Instructions Per Second.  Also humorously defined by the performance community as 

Misleading Indicator of Performance. 
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(and perhaps all pipes) is delayed, often for short periods, occasionally for very long periods of 

time.  We’ll be taking a look at a few of these scenarios. 

 

Simple Pipe Line Delays 

The short delays in instruction stream execution come largely from the program logic specifying 

the instruction stream itself.  The compiler understands the processor pipeline characteristics and 

so attempts to lay out instructions to run most efficiently.  But the compiler must also produce 

correct code, following the intent of the program and - just as important - following the 

requirements of the programming language used.  The logic of the program creates dependencies 

between instructions; when these occur these dependent instructions can not be executed in 

parallel.  For some types of dependencies, there are also delay bubbles of one or more cycles 

between instructions.   Although the compiler is always looking for the opportunity to execute 

multiple instructions per cycle, often the program logic and the language requirements don’t 

allow the compiler to produce this parallelism.  For example, consider the following very simple 

snippet of code: 

 

  If (A == (B+1))  D = C + 1; 

 

Although it would be nice to execute the comparison of A and B+1 and the increment of C all at 

the same time, the compiler only allows access of C after any code which finds that A is equal to 

B+1.  The processor needs to first be told to produce B+1, to later execute the comparison, and 

only then can it conditionally access the variable C in storage.  And then only after C is accessed 

can C+1 be calculated, which is subsequently stored into D.  Even though multiple pipes exist in 

the hardware, the hardware simply cannot allow these dependent steps to execute in parallel.  

Further, the hardware is often such that dependencies like these create very short delays between 

them.  There are many types of such delays.   For all of the compiler’s efforts, with the compiler 

often being successful, these delays nonetheless happen very frequently throughout the code. 

 

Another example of a pipeline delay comes from “mispredicted branches”.  The hardware 

guesses the direction of most conditional branches with a high degree of success.  This is done 

well ahead of actually knowing the direction.  When it does know, the direction of the 

instructions being fetched may need to change away from the direction predicted; the 

instructions along the wrong path are already partially in process working through the earlier 

stages of the pipe (which is what you would want with correct prediction).  As a result, these 

wrong instructions are all thrown away and the pipe starts all over again.  If you are thinking that 

this delay is roughly ten cycles, you are about right. 

 

There are many other types of such pipeline delays.  Certainly, a faster cycle time allows for the 

next instruction(s) to be executed sooner after handling such delays, but neither is the processor 

making much progress through the instruction stream during these delays. 

 

Storage Access Delays 
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The next types of delays occur when accessing storage.  For many years now, processor cycle 

times have improved at rates well ahead of main storage access latencies.  What had3 taken just a 

few processor cycles to access the contents of main storage has become many hundreds of 

cycles.  This is not because main storage access latencies have become longer - indeed they have 

actually become shorter - it is because the processors proper (also called the “core”) have 

become faster at a faster rate.  It may take less time to access main storage today but, as a result 

faster cycle times, it also takes more cycles.  For example, in the time that the processor must 

wait for a single memory access, a processor is capable of executing many hundreds of 

instructions.  In order to minimize this effect, processor designers long ago had introduced the 

notion of cache, a relatively small memory close to the processor cores with access speeds at or 

approaching the processor’s cycle time.  Without cache, the processors would only execute a 

small handful of instructions at processor frequency and then wait for the hundreds of cycles to 

fetch the next instructions and data out of main storage.  Clearly, without cache the very rapid 

cycle time of the processor becomes nearly irrelevant.  Cache, though, only acts as a filter; some 

memory accesses do occur, at the very least to prime the cache with data or instructions.   

Programs, BTW, are normally completely unaware of the hardware’s cache. 

 

Because of the relatively fast frequency of recent processors, these recent processors are 

designed with a rather - and ever more - complex cache topologies.   They have a small on-core 

cache for instructions and another for data, both of which can be accessed at very nearly the 

cycle time of the core;  these are called the L1 Data and L1 Instruction caches.  From here each 

new design introduces various other forms and sizes of Level 2 and Level 3 caches, each level 

being larger and slower than the previous.   

 

Although it makes one’s head hurt to think like this, it is nonetheless true that the processor cores 

do not ever really access main storage; the core accesses the data and instructions in its cache.  If 

what the core wants is not there in the cache, the cache control initiates something called a 

“cache fill” that can take a while. So let’s look at this next.   

 

All levels of the cache work with a common sized block of storage 128 bytes in size.  In the 

event that data or instruction stream is not found in the many 128-byte blocks of the L1 cache(s), 

the core then checks the L2 cache; succeeding there, the core pulls 128 bytes (a cache line) from 

the L2 into the L1 cache.  Such block-size cache fills succeed in speeding performance because 

there is a spatial locality to most storage accesses; an access of one byte in a storage block is 

very likely to be followed soon by a subsequent access of other bytes in the same storage block. 

 

Again, it takes only a handful of cycles to fill a 128-byte block into an L1 cache, often with the 

instruction stream execution delayed until complete.  If an L1 cache access also misses on the L2 

cache, there is a still larger L3 cache from which the needed data might be able to be filled.  The 

L3 cache increases the probability that data is found in some cache, but it takes considerably 

longer to find it there.  Although this L3 cache access introduces a larger delay, it is still 

considerably shorter than the amount of time needed to access main storage.   

 

                                                           
3
Read this as “quite a few processor designs ago”.  
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You can largely think of any L1 cache miss as ceasing the execution of this particular instruction 

stream until the associated cache fill is complete; instruction execution is delayed due to cache 

misses.  Focusing only on a single chip, this delay, which is short for misses satisfied by a local 

L2 cache, gets increasingly longer as the data is satisfied from the L2 cache of the neighboring 

core, the L3 cache associated with the chip, and then from the main storage hung on this chip. 

 

Although the L1 cache access latencies - the actual time, not cycles - are certainly a function of 

the cycle time of the processor (in fact the cycle time itself might be defined by this latency), 

accesses of main storage proper naturally take a certain amount of time, a time period 

independent of the current cycle time of the processor core.  The time period might be defined in 

terms of the nominal cycle time, but for much of the access the core’s cycle time does not matter. 

 

Let’s look at this a tad differently.  Suppose that after executing 100 instructions at a rate of - say 

- one cycle per instruction, the 100th instruction incurs an L1 cache miss.  To keep it simple, 

let’s say that the associated cache fill takes exactly 100 cycles to complete.  The delay of that 

one instruction halved the average rate that instructions are executing to.  What would have 

taken 100 cycles without the cache miss takes 200 cycles with it.  If instead that cache miss had 

taken - say - 400 cycles, the same 100 instructions now take 500 cycles; the rate of instruction 

execution is down to one fifth or 5 cycles per instruction.  If you wanted to speed this up, where 

would you spend your time?  The problem starts with the number of misses.  If your application 

were to access one byte in each of 128 128-byte blocks of storage (each incurring a cache miss), 

wouldn’t the performance of your application have been far better off if all 128 bytes being 

accessed had been in contiguous storage and incurred a single cache miss?  Again, whether you 

access a single byte or 128, the hardware is still going to fill the cache with a 128-byte block of 

storage; the application may as well go along for the ride. 

 

Again the fewer the 128-byte blocks of storage that need to be pulled into the L1 cache(s), the 

faster the instruction stream is executed.  If there are relatively long periods of time where 

instruction stream and data are found in the L1 cache (as compared to the time spent waiting to 

fill the L1 cache), the average number of cycles per instruction executed during that period can 

become quite small.  But even with L2 cache hits, if the L1 miss rate is rather high, the frequent 

need to access the L2 also slows down instruction processing noticeably, but certainly less so 

than if these same accesses were from memory. 

 

And now to the point of all of the above discussion.... 

 

Don't think of cache misses as being somehow a tragic event.  Cache misses happen and often 

frequently.  Cache hits happen as well, hopefully far more frequently; the locality of data 

references assumed by the hardware’s cache design often works very well.  When data is found 

in the L1 cache(s), the instruction stream executes at the rapid rates mentioned earlier.  The more 

instructions that can be executed without incurring a cache miss, that faster that work will 

complete.  And some workloads really do have far lower rates of cache misses than others.  The 

performance of these workloads will improve at rates more closely proportional to that of the 

processor frequency improvements.  Here the faster the core’s cycle time, the faster the workload 

completes.  Those workloads that are more prone to cache misses - especially those requiring 

access outside of the local L1(s), L2, and L3 - improve with cycle time, but not nearly as much.   
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So, it depends.  Depending on the workload, cycle time matters and sometimes it does not matter 

as much.  In the section on SMT, we’ll see a way that makes cycle time matter more. 

 

Perhaps obvious by now, an application design which is observant of the cache design is also one 

which will execute faster, consuming less of the processing capacity of the system.  And when it 

does, its performance becomes increasingly a function of the cycle time.   It’s worth noting that, 

whether the application is accessing one byte or more bytes, whether it is accessing data or 

instruction stream, if that byte is not in the L1 cache, the processor cores will be filling the cache 

with 128 byte blocks found on a 128-byte boundary. 

 

A Side Glance at SMT 

We’ll be looking at SMP (Symmetric Multiprocessing) and multi-core/multi-chip computing 

shortly, but we are going to pause and consider SMT (Simultaneous Multithreading) here.  OK, 

so now you have the picture of a valuable processor core, happily burning through a set of 

instructions at some outrageously rapid rate.  And then it stops, and it waits; the next instruction 

to execute is sitting somewhere in far away main storage and the core can’t continue execution 

until the needed instruction stream is available in the L1 cache.  And your task waits, all the 

while you are being charged (at least conceptually) with the use of that processor because your 

task is dispatched to this processor core.  Scads of compute capacity is effectively going to 

waste.   

In the meantime why can’t this processor core be executing the instruction stream of one or more 

other dispatchable tasks?  It can and it’s done via SMT4.  During the times that one task is unable 

to be executing instructions, another task can be, and it can do so on the same core using the 

same pipes.  Interestingly, SMT’s capabilities do not stop there.  Each core has multiple pipes 

and it takes multiple stages for any given instruction to execute.  And even without cache misses, 

hardly any instruction stream of a single task consumes all of these stages of all of these pipes.  If 

one task doesn’t use it all, this means that there is more compute capacity in a core available for 

consumption by the execution of instructions of other tasks.  On the POWER5/POWER6 

processors, the cores allowed two such hardware threads of execution; POWER7 - enabled partly 

by its enhanced cache design - drives this number up to four. 

 

So essentially, SMT allows more of the capacity of each core to be used.  There is fewer cycles 

going unused.  It seems to follow that the more SMT drives up capacity utilization, the more that 

the cycle time of the core matters to the execution speed.  As we’ve seen, the cycle time of a core 

executing a single task’s instruction stream may or may not strongly dictate the throughput being 

produced by that task.  As more task’s instruction streams are added - and there is less wasted 

capacity - the total throughput of all the tasks increasingly becomes a function of the cycle time.    

But for the performance of individual tasks having to share a core with others, there is a bit of a 

dark side.   Let’s suppose there is an environment in which a core is executing the instruction 

stream of multiple tasks, and each task can successfully execute its instructions while the other is 

waiting on a cache miss.  Then each task is essentially executing alone, seeing the full benefit of 

                                                           
4
Some of you may recall that this same notion was supported on a PowerPC processor design a while ago as 

something called Hardware Multi-Threading (HMT).   SMT proper was first implemented on POWER5 processors. 
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the core.   But more often the instruction streams also get in each other’s way to varying extents, 

decreasing the benefit.  For examples, within the core’s pipes, each pipe’s stage(s) can only be 

used by one instruction at a time; another task wanting to use the same pipe stage at the same 

time much wait for a moment.  All the instruction streams are sharing the same single L1 caches; 

they are bound to be overlaying 128-byte blocks of another task’s data with their own.  The point 

is that - unlike executing tasks on different cores - since the instruction streams are sharing the 

many resources of a core, the are bound to get in each other’s way.  As a result, although core 

capacity usage can increase significantly with SMT, the execution speed of the individual 

instruction streams slow some as well.  There is more capacity available at higher system 

utilization because of SMT, but during this same period each task’s individual throughput slows 

as well. 

 

The Translation Lookaside Buffer 

While we are still discussing individual cores, let’s take a look at something that typically gets 

ignored, the performance of virtual address translation.  It is a major factor in limiting the benefit 

of improved cycle time on processor scalability.  What follows is a bit esoteric, so reader beware.  

Are you sure now that you don’t want to skip to the next section?  OK, I’m duly impressed.  

Here goes!   

 

You probably recall from your days in college that your application’s nice contiguous address 

space is not so nice and contiguous when it comes to how it resides in main storage.  You knew 

that some main storage manager in the OS’ kernel handled it for you and that was the end of it.  

Well, it also matters to the processor and therefore to performance.  The processor manages a 

structure within each core - typically called a TLB (Translation Lookaside Buffer) - which maps 

your view of an address space onto the physical address necessary to actually access main 

storage.  When your application executes an instruction to access a variable, that instruction is 

using your view of the address space.  The hardware, when executing that instruction, checks the 

TLB to see whether it knows of your address and, when it does, returns the corresponding main 

storage address - also called a “real address” - of your data.   

 

The key concept to know here is that only a very few “pages” of all of main storage are mapped 

within this TLB at any given moment.  The TLB is effectively a short term cache of recently 

accessed address mappings.  So, as with cache misses, it is possible to have a TLB miss when an 

instruction uses an effective address which the TLB is incapable of translating to a real address.  

On processors used by IBM i, a TLB miss then ceases instruction execution while the hardware 

accesses a very large table in main storage where many times more pages are mapped.  Upon 

successful translation of an address through this table, the TLB is updated, allowing the 

instruction incurring the TLB miss to continue; hopefully, many subsequent instructions can use 

this newly updated information in the TLB. 

 

Interesting right?  But what’s the point?  An instruction which should not have been delayed at 

all if the address translation had succeeded instead took a lot more time; perhaps as much as one 

or more main storage accesses, many hundreds of cycles away.  And, as with cache misses, 

instruction stream execution of that thread effectively ceases during this entire time. 
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Again, as with cache misses, this sort of thing is happening all the time.  It is therefore worth 

noting that if some application - or large number of instructions within this application - is 

accessing only a relatively few number of pages, the probability of a TLB miss is very small. 

Here, TLB miss delays can be largely irrelevant.  On the other hand, if a large number of pages 

are being accessed in a short period of time, it is possible that the single biggest contribution to 

the time required for an application might be these TLB miss delays.  And, per this paper, these 

might not scale with cycle time.   

 

The SMP Fabric 

On POWER5 and POWER6 processors, the basic building block for constructing larger systems 

consists of a processor chip, each with two processor cores, the core’s L1 and L2 cache, a 

separate L3 cache; each chip supports a memory controller for some number of memory 

DIMMs.  POWER7 has some significant differences in core and cache topology, but the one 

glaring difference is that each chip is designed to support eight such cores.  These are all 

effectively what is called “multi-core” computer chips; POWER7 is just more so. 

 

All of these grow systems to still more cores by using these chips - and their attached memory - 

as the basic building blocks and replicating them to whatever size system is needed.  Where 

POWER5 and POWER6 can grow to 64-way using 32 such chips, POWER7 systems can grow 

to 256-way using the same number.  We call the hardware interface between these chips creating 

the single SMP the “fabric”. 

 

These are all cache-coherent SMP systems; the contents of all main storage and all cache in the 

entire complex is accessible from any processor core.  All memory is accessible, all cache is 

coherent.   

 

Allow me a moment to quickly define the term “coherent cache” since it is key to understanding 

the performance effects of an SMP fabric.  From an application’s point of view, the application is 

simply accessing the contents of main storage.  But the processor cores know that they are really 

accessing the contents of the cache.  And changes that the application makes to what it considers 

to be main storage can actually continue to reside in its processor’s cache indefinitely; only much 

later does the change make its way out to main storage.  Further, the contents of the same block 

of main storage can reside within the cache(s) of multiple processor cores, both on the same and 

different chips.  A coherent cache is one where hardware largely hides the fact that cache exists 

at all from the software.  This coherency management requires control traffic both within and 

between the chips.  It also often means that data is copied (or moved) by hardware from a cache 

line on one core to a cache line of another core.  For example, if a core of Chip S incurs a cache 

miss on some data access and the data happens to still reside in the cache of a core of Chip T, the 

hardware will find the needed data, read it out of Chip T’s cache, and transfer it across the inter-

chip SMP fabric to the core on Chip S; this is all without first going to the data’s real location in 

memory.  Doing this efficiently is, of course, very important to performance. 

 

The distributed approach used for both main storage and cache - that of having main storage and 

cache associated with each chip - allows for massive bandwidth as well as allowing many 

accesses to have no performance impact on similar accesses done by other chips.  But it also 

comes at a performance cost.  A core’s access latency of a local access - a cache fill satisfied 
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from the cache or main storage nearby (local) to the core - is done faster than a similar access of 

cache or memory associated with another chip.  Indeed, typically, the further away - the more 

chips the access must traverse - the longer the access.  The contents of all cache and memory 

might be accessible from all cores, it’s just that the time it takes to do so is dependent on 

location. This is a limited instance of a CC-NUMA architecture, Cache-Coherent NonUniform 

Memory Access. 

 

Percentage difference of a local vs. remote memory access is a few tens of percent longer for the 

remote memory access.  Since what could have been a considerably faster local cache access can 

also become a remote cache access, the amount of additional time required for the inter-chip 

communication over the SMP fabric considerably increases the relative percentage difference 

between local and remote cache accesses.  The percentage differences differ between each of the 

POWER5 - POWER7 systems as well.   

 

This all may appear to be generally bad news for performance.  It is not.  It is only bad if the 

yardstick for comparing performance is of an application running on a single chip and getting 

much if not all of its data and instruction stream from the cache on or associated with that chip.  

Certainly that happens and it happens even for short bursts when data and instruction stream 

aren’t obviously easily cached.  But even remote accesses as mentioned above are “fast” - 

occurring in small fractions of a microsecond - just not as fast as strictly local sub-nanosecond 

accesses.  Most applications are a mix of the various forms of - and various latencies of - 

memory accesses.  It’s all fast.  But appropriate management - management largely provided 

automatically by IBM i - of an application can increase its probability of local accesses, 

decreasing its overall execution time, and increasing the remaining capacity of the system.  If 

you or your application can further change the balance toward more local accesses, performance 

- and the capacity of the entire system - will improve.  Indeed, IBM i provides a number of 

controls that allow some control of the NUMA characteristics of such systems and includes tools 

to change this balance.  It is worth noting also that this balance can change through cache 

optimization techniques as well, a subject a bit too long for sufficient discussion here. 

 

Of course, it is not just IBM i that is aware of the way that the hardware really works.  The 

hypervisor is aware as well.  Although the user interface provided to define partitions treats any 

processor or allocation of main storage as being as good as any other, as you can see it is not and 

the hypervisor knows it.  The user interface allows partitions to simply define the amount of 

capacity that a partition ought to have in terms of the capacity available from a single core.  The 

user interface allows partitions to define their memory requirements in terms of contiguous 

memory blocks ranging in size from 16 to 256 Mbytes.  But the hypervisor then takes these firm 

requirements and attempts to allocate the partition its processor cores from as few chips as 

possible and to allocate its required main storage nearby these cores.  Often it succeeds 

completely.  Occasionally, it is considerably less than successful.  Indeed, as changes to the 

partition’s capacity and storage requirements change, this locality degrades.  It follows that - 

being aware that the memory model is not flat - all cores and memory are not equal; taking this 

into account when defining partitions is likely to also increase available system capacity.   

 

Getting back to the point of this article - that of to what extent cycle time matters - as with the 

memory accesses, much of the path of both of the local and remote accesses is outside of the 
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realm of an individual core and its cycle time.  Even the remote cache accesses might be only 

minimally dependent on the cycle time of a core.  Much of the time spent on such inter-chip 

accesses is a function of the speed and remaining bandwidth of the links between the chips as 

well as the number of links required to support such an access.  The speed of the links, of course, 

matter and to a greater extent the cycle time of each core, but these are quite different concepts. 

 

Back to GigaHertz and CPWs 

It may appear that we have gone far afield from the issue of scaling per cycle time.  But 

everything that is being discussed here is reality.  This is how the system works.  Applications 

don’t know anything about, but are definitely affected by these effects.  The only real issue is 

how often some off-core operation may occur.  An application that is able to stay on a processor 

core and avoid the usual delays between instructions will indeed see the full benefit of a rapid 

cycle time.  At the other extreme are those sets of applications which are spending most of their 

time merely waiting, executing a relatively smaller set of instructions between such delays.  All 

possible uses of a computing system occur out there somewhere.   You’ve been believing that the 

use of your system is similar to CPW, and it may well be; that’s partly the CPW workload’s 

intent.  So what of CPW?  And how does it compare to your uses in general? 

 

CPW is a synthetic workload based at least conceptually upon database transaction processing.  

It consists of a very large number of virtual users - each represented by a job/task - each 

randomly requesting that transactions be executed against the contents of a large handful of large 

database tables.  From a processor utilization point of view, you can think of each of many 

individual job/tasks as waking after a short wait, and executing on a processor once or some 

number of times for short bursts of time.  There is no strong relationship between a job/task and 

any one processor or chip in the system.  The database tables and the associated indexes are 

considerably larger than the size of memory; the intent is that some transactions will require one 

or more reads of the database from the disk, this implying a fair amount of I/O DMA read and 

write operations.  It’s also worth noting that each short burst of time that such a task is using a 

processor, it is working with data and instruction streams which must ultimately reside in a cache 

in order actually be processed. 

 

For any given system, the number of users and random think time for each user, the number of 

disk drives, the amount of memory, and a number of other parameters are chosen to allow the 

entire workload to consume an average of roughly 70% of the total compute capacity of the 

system.  But this 70% is not always exactly 70%; this is an average of 70% of processing 

capacity over the entire workload.  Within periods of seconds, it does tend to also stay around 

70%, but it represents about all possible uses (or non-usage) of a processor.  There are periods of 

time where dispatchable tasks are queued up waiting for any available processor; this is an 

instantaneous utilization of 100%.  There are periods of time where there are no dispatchable 

tasks (0% utilization) or no dispatchable tasks assigned to any particular SMT-capable core.  

There are also periods of time when cores are executing on only one of its possible two SMT 

hardware threads.  Every possible state that a core or its SMT hardware threads could be at will 

likely occur in a short period of time within CPW. 
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On average, the CPU utilization within CPW is such that over 80% of the time is spent within 

code associated with i5/OS’ kernel; much of the remainder is within higher levels of i5/OS 

(XPF).  The application proper is written in C and COBOL, but that is not really pertinent since 

only a small percent of the whole system capacity is actually spent within the application code.  I 

won’t take you through the details, but this kernel componentry uses the processors in a lot of 

ways as well.  Some components tend to be more compute intensive, touching very little distinct 

data, but execute a lot of instructions in doing so, and so tend to heavily use the core’s pipes.  

Other components tend to touch data which is shared heavily between tasks, resulting in data 

flowing between processor caches frequently.  Still other i5/OS components simply touch a lot of 

data while executing fewer instructions; these components tend to fill the cache from main 

storage.  Although there is some tendency to access local memory, these components are also 

likely to be accessing the contents of memory remote from the core doing the access.  I should 

add that, with paging of data out of and into main storage (that is to/from disk), a fair amount of 

I/O code is executed with an associated amount of DMAing of data into and out of main storage.  

The bottom line is, within CPW, about every possible use of the processor will be occurring 

within a very short period of time.  It is intentionally using all processor cores, all SMT states, all 

forms of address translation, cache accesses of all kinds, and processor and DMA accesses of all 

of memory.  CPW intentionally stresses much of the entire system.  It is by no means a set of 

tasks which are bound to a core (and its SMT threads) which access only the data and instruction 

stream held within that core’s cache (and TLB). 

 

A Near Conclusion 

So what of GigaHertz and CPWs?  You’ve read through an awful lot to now roughly answer that 

question yourself.  As you’ve seen, performance of some part of the computing system is very 

sensitive to cycle time.  This is primarily in the scope of the cores and its pipes.  Usage of other 

components, like main storage access and SMP fabric, take whatever time it takes them to 

complete; we just happen to measure this time in “cycles”.  You’ve also seen that the topology of 

the system matters to performance.   A faster cycle time matters where cycle time matters, but 

not throughout the entire system. 

 

IBM, of course, publishes CPW ratings for each system supporting IBM i.  You’ve seen that 

these systems scale up roughly per the number of processors in that system and you’ve seen that 

there is a nonlinear relationship between CPW ratings and cycle times.  A doubling of the 

frequency does not necessarily translate to a doubling in the system’s CPW rating.  Nor would a 

decrease in the frequency always result in a proportional decrease in the CPW rating.  There are 

a lot of other characteristics which also impact CPW ratings such as cache size, cache topology, 

TLB size, main storage speed, and instruction execution characteristics.   Their interrelationships 

and relative usage also matter.  Each system configuration is different.  As with cycle time, any 

given application will use these characteristics to greater or lesser extents than does CPW.  Every 

application is different than CPW.   Fortunately, enough applications use the system and its 

processors, cache, and main storage in a manner which is sufficiently similar to CPW that the 

scalability characteristics of CPW have some general applicability elsewhere as well.  Indeed, 

we’ve considered it serendipitous that CPW’s design allows it to be so. 
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But what about your use?  Will it scale per CPW?  Some do not; some are close enough.  It all 

depends.  Hopefully this overview of a cache-coherent SMP system supported by IBM i has 

provided you with enough information to know.  

 

... As An Assignment Left for the Interested Student 

POWER6’s cycle time is considerably faster than that of POWER5.  Although processor cycle 

time is certainly important, you’ve now seen that a system’s performance is much more than just 

its cycle time.  Most applications use so much more - and so are influenced by - the full 

characteristics of a cache-coherent SMP system.  For this same reason, you know why CPWs - 

for example - do not scale up linearly with cycle time.  So, dear student, here’s your question.....  

Suppose that the cycle time did not improve, indeed it became something less.  And in doing so 

energy consumption was decreased.  And suppose that system capacity - represented by CPW - 

was improved through other means, more cores, more SMT, or lower cache coherency overhead 

being examples.  What would that mean to you? 

 

Energy Management 

A lot can be written on this subject alone, so here let’s stick to the basics.  It is a true statement 

that, for a given processor design and technology, if you were to linearly increase the processor 

frequency, the amount of energy expended to execute instructions using the frequency increases 

at a much higher rate.  For this reason, a lower frequency is used as a tool to save energy in a 

computer system.  Frequency can be dropped by some fixed amount below the processor’s 

nominal, saving some energy certainly, but lowering the system’s compute capacity by some 

non-proportional amount as well.  For this reason, systems also offer dynamic frequency 

adjustment; when the compute capacity is needed, the system adjusts the processor cycle time 

upward to it maximum; the nominal capacity is there if you need it.  When the capacity is not 

needed, the frequency can be adjusted downward to some minimum.  And, if our claim about 

frequency is correct, the amount of capacity available at the minimum frequency can be higher 

than the relative frequency drop implies.  (Of course, that is hard to measure because the 

frequency dynamically increases as capacity demands increase.) 

 

The POWER7 Processor Design 

It is also true that POWER7’s nominal frequencies are lower than corresponding POWER6 

systems.  But for a large class of workloads, the average capacity of POWER7 systems is 

considerably higher than POWER6.  It almost goes without saying that, when comparing the 

capacity of the same number of POWER7 chips to POWER6 chips, the capacity available on 

POWER7 far exceeds that of POWER6 (i.e., an 8-core POWER7 provides more capacity than a 

2-core POWER6, over and above the POWER7’s core-to-core performance advantage). 

 

So if the frequency of POWER7 core is less than that of a POWER6 core, where is the additional 

capacity coming from.  As a very quick overview of the differences we find: 
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1. POWER7 supports 4-way SMT and POWER6 supports 2-way SMT, allowing the 

execution of twice as many thread’s instruction streams per core. 

2. POWER7’s cache topology has a number of advantages including a much faster L2 

cache and more on-chip cache available for cache line cast-outs. 

3. POWER7’s core support out of order instruction execution, POWER6 executes 

instructions largely in order. 

4. POWER7’s eight cores per chip ensures that as many as eight SMP cores can support 

a coherent cache across cores without needing to cross chip boundaries (i.e., data 

sharing across the cache of multiple cores is done more efficiently). 

 

Essentially, POWER7 provides proof of what has been discussed through this long paper; 

frequency, although important, is only a component of what enables performance in a 

computer system. 
 

As frequency improves in the future, and it will but at a lower than historical rate, that higher 

frequency will provide its part in improving the performance of future systems. 
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