TME 10 Information/Management
Problem Service User's Guide
Version 1.1

TME 10 Information/Management

Problem Service User's Guide
Version 1.1

First Edition (April 1998)

Copyright Notice

Copyright © 1997, 1998 by Tivoli Systems, an IBM Company, including this documentation and all
software. A1l rights reserved. May only be used pursuant to a Tivoli Systems Software License Agreement
or Addendum for Tivoli Products to IBM Customer or License Agreement. No part of this publication may
be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any computer
language, in any form or by any means, electronic, mechanical, magnetic,optical, chemical, manual, or
otherwise, without prior written permission of Tivoli Systems. The document is not intended for
production and is furnished "as is" without warranty of any kind. A1l warranties on this document are
hereby disclaimed including the warranties of merchantability and fitness for a particular purpose.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication, or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Trademarks

The following product names are trademarks of Tivoli Systems or IBM Corporation:
IBM, Tivoli, Tivoli Management Environment, and TME 10.

Other company, product, and service names mentioned in this document may be trademarks or service
marks of their respective manufacturers.

Notice

References in this publication to Tivoli Systems or IBM products, programs, or services do not imply that
they will be available in all countries in which Tivoli Systems or IBM operates. Any reference to these
products, programs, or services is not intended to imply that only Tivoli Systems or IBM products,

programs, or services can be used. Subject to Tivoli Systems's or IBM's valid intellectual property or other
legally protectable right, any functionally equivalent product, program or service can be used instead of
the referenced product, program, or service. The evaluation and verification of operation in conjunction
with other products, except those expressly designated by Tivoli Systems or IBM, are the responsibility of
the user.

Tivoli Systems or IBM may have patents or pending patent applications covering subject matter described
in this document. The furnishing of this document does not give you any Ticense to these patents. You can
send license inquiries, in writing, to: IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, NY, 10594, USA.

Contents

Preface

Who Should Read This Guide Vi
Prerequisite and Related Documents Vi
What This Guide Contains viii
Typeface Conventions ix
Terminology iX
Contacting Customer Support iX

Understanding the Problem Service

Component
Problem Service Sessions 1-2
Problem Service Operations 1-4
Unlockinga Record 1-5
Lockinga Record 1-5
Deleting Records 1-6
Propagating Records 1-6
Retrieving Records, 1-7
Searchingfora Record 1-8
Transferring Records 1-8
Updating Records 1-9
Control Operations 1-10
Automated Operations 1-10
Problem Service Data Mappings 1-14

Problem Service Installation
Planning for Problem Service Installation 2-1

TME 10 Information/Management: Problem Service User's Guide iii

Contents

Information/Management Environment 2-2
HLAPI Client 2-2
Installation Requirements 2-3
Hardware Requirements 2-3
Disk Space Requirements 2-3
Software Requirements 2-3
Installing Problem Service 2-6
National Language Support (NLS) for Messages 2-6
REGSRV2 Program (Windows NT Only) 2-7

Planning for Problem Service Configuration

Basic HLAPI Concepts 3-1
HLAPI Transactions 3-2
HLAPI PDBs 3-2
HLAPI Data Views 3-3
HLAPI PALTs 3-4

Problem Service Configuration Process 3-4
Sample Configuration File 3-5
Process Steps 3-6

Customizing Your Problem Service
Configuration File

Customizing the HLAPI Session Information 4-1
HLAPI-Related Statements 4-1
HLAPI Session Statements 4-7

Customizing Problem Service General Settings 4-10

Customizing Problem Service Data Mappings 4-20
Mapping Your Application and Information/Management

Records 4-21
Sample Configuration File Descriptions 4-28
Mapping Records from Your Application to

Information/Management 4-33
Mapping Records from Information/Management to

Your Application 4-36

Completing Problem Service Configuration

Version 1.1

Contents

Preparing the HLAPI Data Views on MVS 5-1
Preparing PIDTs and PIPTs for Uncustomized Records 5-2
Preparing PIDTs and PIPTs for Customized Records .. 5-4

Customizing HLAPI Database Tables 5-4
Updating the Services File 5-8
AIX Workstation /etc/services File 5-8
Windows NT Workstation Services File 5-8

Running Problem Service

Starting Problem Service 6-1
Stopping Problem Service 6-1
Logging with Problem Service 6-2

Appendix A. Application Programming

Information
Copying the Samples and Files A-1
Compiling and Link Editing Your Code A-1
Interface Definition Language Data Types A-2
Coding Examples for Problem Service Operations A-3
Checkin A-3
Checkout A-4
Delete A-5
PiNg A-5
Propagate A-6
Retrieve A-7
Search A-7
Shutdown A-8
Transfer A-9
Update A-11
TME 10 Application Development Environment
Exceptions A-12
ExInfoGateway Exception, A-12
Examples of Gateway Exceptions A-13

Appendix B. Customizing User Exit Routines
for the Daemon

TME 10 Information/Management: Problem Service User's Guide %

Contents

Supported Data Conversions B-1
Truncation B-2
Convert One Character to Another Character B-2
Convert Specific Field Value to Another Value B-2
Date/Time Conversion B-2
Freeform Text B-3
Default Data B-3
Field Combining (Concatenation) B-3
Substring and Sub-Word B-3
Exit Routines B-4

Specifying User Exits for Conversions B-4
change B-5
fromiMDate, B-6
fromIMPriority B-6
fromIMTime B-6
nullDefault B-7
stripLeading B-7
subString B-7
toIMDate B-8
toIMTime B-8
translate B-9
translateWord B-9
WOrds B-9

Index

Vi

Version 1.1

Preface

The TME 10 Information/Management Problem Service User's Guide
describes the Problem Service component of Tivoli Management
Environment Information/Management (TME 10
Information/Management).

Who Should Read This Guide

This book is intended for multiple audiences: the programmer who is
developing an application that uses the Problem Service operations,
and the end user of that application.

Prerequisite and Related Documents

The following is a list of TME 10 and other related publications:

TME 10 Framework User's Guide

Tivoli Management Platform Reference Manual

TCP/IP for MVS Customization and Administration Guide
0S/390 Security Server (RACF) Security Administrator's Guide

The following is a list of Information/Management publications:

Information/Management Problem, Change, and Configuration
Management User's Guide

Information/Management Application Program Interface Guide
Information/Management Operation and Maintenance Reference
Information/Management Panel Modification Facility Guide and
Reference

TME 10 Information/Management: Problem Service User's Guide vii

Preface

Information/Management Planning and Installation Guide and
Reference
Information/Management Client Installation and User's Guide

What This Guide Contains

This book contains the following information:
m Chapter 1, Understanding the Problem Service Component

Describes TME 10 Information/Management Problem Service,
the application programming interface (API), and data mappings.

® Chapter 2, Problem Service Installation

Describes installation planning considerations, requirements, and
instructions.

n Chapter 3, Planning for Problem Service Configuration
Describes how to plan for Problem Service configuration.

® Chapter 4, Customizing Your Problem Service Configuration
File

Contains the instructions for customizing the configuration file.
m Chapter 5, Completing Problem Service Configuration

Describes the completion of Problem Service configuration,
including instructions for updating the services file.

® Chapter 6, Running Problem Service
Describes starting and stopping Problem Service.

B Appendix A, Appendix A, Application Programming
Information

This chapter is intended for the programmer who is writing an
application to work with Problem Service.

= Appendix B, Appendix B, Customizing User Exit Routines for
the Daemon

Describes customizing user exit routines.

viii Version 1.1

Preface

Typefac e Conventions

This guide usesseveraltypefaceconventionsor specialtermsand
actions.Theseconventionshavethe following meaning:

Bold Commandskeywords,file names,or other
informationthat you mustuseliterally appearin bold.
Namesof windows, dialogs,and othercontrolsalso
appearin bold.

Italics Variablesandvaluesthat you mustprovide appearin
italics.

Bold Italics New termsappeatin bold italics the first time they
areused.

Monospace Codeexamplesappearin amonospace font.

Terminology

Whenthe term MVS is usedin this book, it meansMVS/ESA or
0S/390,unlessotherwisestated.

Whenthe term HLAPI client is usedin this book, it meansHLAPI
client for AIX andHLAPI for Windows
NT client, unlessotherwisestated.

For a completeglossaryof TME 10 andrelatedterms,referto the
IBM NetworkingGlossay located on the Web at
http://Iwww.networking.ibm.com/nsg/nsgmain.htirhis Web page
enablesyou to searchfor termsandto downloadPortableDocument
Format(PDF) and PostScriptglossaryfiles.

Contacting Customer Support

We arevery interestedn hearingfrom you aboutyour experience
with the productsand documentatiornn the Tivoli Management
Environment.We welcomeyour suggestiongor improvements.

If you encountedifficulties with any TME 10 product,pleasecontact
your customersupportrepresentativel o assistyou, the TME 10

TME 10 Information/Management: Problem Service User's Guide (¢

Preface

Framework includes thersupport command. This command prompts
you for problem information, which can be E-mailed to your support
provider or saved to a text file. You can then print the saved file, and
fax the resulting TME Problem Report form to your support provider.
See theTME 10 Framework Reference Manuak additional

information about thevsupport command.

If you have comments or suggestions about the TME 10
documentation, please send E-mail to
USIB2HPD@VNET.IBM.COM.

Version 1.1

Understanding the Problem
Service Component

The Problem Service component provides distributed helpdesk
applications with an interface to the Information/Management
database on MVS so that both products can be part of the same
distributed networking environment. Information/Management enables
applications on remote environments to connect to the
Information/Management system on MVS and to access the
Information/Management database.

Problem Service consists of the following components:

. TME 10-related functions that install the Problem Service object
and operations into the TME 10 database

n Daemon-related functions: the executable Problem Service
daemon and user exits

. Sample files that provide coding examples for the Problem
Service operations, configuration file, MVS tables, and
high-level application program interface (HLAPI) profile

® Files needed to compile and link-edit an application that will use
Problem Service operations

Conceptually, Problem Service provides:
B Session management with Information/Management

® A set of application programming interfaces (APIs) that enable
you to interact with an Information/Management database

TME 10 Information/Management: Problem Service User's Guide 1-1

991AJ8S Wa|qo.d Bulpuelsiapun

® A data mapping facility that enables you to define data
manipulations

Problem Service Sessions

The sessions provided by Problem Service are determined by what
you specify in the Problem Service configuration file. These sessions
provide an application access through the HLAPI to an
Information/Management database. There are three types of sessions
available:

" Outbound
" Reverse
" Monitor

Multiple outbound sessions can be specified in the configuration file,
but only one reverse session and one monitor session are permitted.
Figure 1 on page 1-3 shows an overview of Problem Service
sessions, including an interface with an application and an
Information/Management database.

Version 1.1

Problem Service Sessions

PROBLEM SERVICE

Request
> MVS/ESA
Router
A
P |
P Transaction Outbound HLAPI N M
L |« »| Session |« > g A
| o N
C A
R G
A Outbound HLAPI Mg
T Session < »| A
| T M
(0] E
N . ! N
Notify Monitor HLAPI O T
< Session |+ > N

Figure 1. Problem Service Sessions Example

With this example, only three sessions were specified in the
configuration file: one monitor session and two outbound sessions. A
reverse session was not defined.

When the monitor session (polling daemon) detects a change in a
database record that was assigned to or created by the application, it
notifies the application.

The two outbound sessions are used for Problem Service operations
initiated by the application. When the application requests an
operation, Problem Service routes the request to the first available
outbound session. A transaction interface is established and Problem
Service performs the operation requested.

TME 10 Information/Management: Problem Service User's Guide 1-3

991AJ8S Wa|qo.d Bulpuelsiapun

Problem Service Operations

Problem Service Operations

Problem Service enables you to use your applications to share
information in Information/Management database records. The
following operations, using outbound sessions, enable you to
exchange information between your applications and
Information/Management databases:

Checkin
Checkout
Delete
Propagate
Retrieve
Search
Transfer
Update

The following are Problem Service control operations:

= Ping
n Shutdown

The following are Problem Service automated operations:

" Reverse assignment
" Monitor

The operations provided by Problem Service are affected by the
availability of the network connection between the Problem Service
daemons and Information/Management. If the network connection is
unavailable, you cannot perform or complete some Problem Service
operations. You can resume them when the connection becomes
available.

Furthermore, the data fields handled by your application can differ in
meaning and format from the data fields in Information/Management
records. To ensure data integrity when these records are interchanged
between your application and Information/Management, Problem
Service provides customizable data mappings to map your application
record fields to Information/Management record fields and vice versa.

Version 1.1

Problem Service Operations

To maintain data integrity, avoid multiple update access to the same
record. Use the Problem Service record locking capability to ensure
that your application keeps others from updating a record that you
want to update.

A description of each Problem Service operation follows. Each
description contains a prototype statement for the operation in the
form of:

Response Operation Input

where Input consists of

991AJ8S Wa|qo.d Bulpuelsiapun

(in datatype datavalue)

For example code fragments that show how to use the operations, see
“Coding Examples for Problem Service Operations” on page A-3.

Unlocking a Record
The checkin operation unlocks a specified record in the
Information/Management database by checking it in. The prototype
statement for checkin is:

void checkin (in string rnid);

Where:
void Indicates that there are no returned values.
rnid Is a 1 to 8-character string that is the record

number of the record to be checked in to
Information/Management.

Locking a Record
The checkout operation locks a specified record in the
Information/Management database by checking it out. The prototype
statement for checkout is:

void checkout (in string rnid);
Where:

void Indicates that there are no returned values.

TME 10 Information/Management: Problem Service User's Guide 1-5

Problem Service Operations

rnid Is a 1 to 8-character string that is the record
number of the record to be checked out of
Information/Management.

Deleting Records

The delete operation deletes a specified record in
Information/Management. The prototype statement for delete is:

void delete (in string rnid);

Where:
void Indicates that there are no returned values.
rnid Is a 1 to 8-character string that is the record

number of the record to be deleted from
Information/Management.

Propagating Records

The propagate operation creates a copy of the record in the
Information/Management database. When created in checked-out
status, the Information/Management staff can only view the record to
see any updates you make.

You can make this record a read-only copy by supplying the
checkout indication data field or hardcoding the checkout indicator in
the Problem Service configuration file data mappings for propagate.

The prototype statement for propagate is:

string propagate (in GWAttrList keyvaluepairs, in string recordtypevalue);

Where:

string Is the Information/Management record number
returned when the operation has successfully
completed.

keyvaluepairs Is a sequence of name value pairs consisting of

name and data values.

Version 1.1

Problem Service Operations

recordtypevalue Is the name of the record type that corresponds
to the configuration file mapping section
identified by the RecordTypeValue statement.

The record is assumed to exist if a record numiyed)(is passed as
one of the name value pairs. The field that containgrtitkeis
determined by the ForeignIMRNIDField configuration file statement.
In this case, the propagate operation attempts to update the existing
Information/Management record.

Your application can pass only changed data or it can pass all record
data. The InputJustChangedData statement in the Problem Service
configuration file defines the selected behavior to Problem Service.

When you pass all data and use data mapping, Problem Service
attempts to delete all NULL data fields from the
Information/Management record. When you pass only changed values
and you want to delete an Information/Management field, pass NULL
as the data.

Retrieving Records
The retrieve operation retrieves a specific Information/Management
record. The prototype statement for retrieve is:

GWAttrList retrieve (in string rnid, in string recordtypevalue);

Where:

GWAttrList Is an Information/Management record in a
sequence of name value pairs returned in
response to the retrieve operation.

rnid Is a 1 to 8-character string that is the record
number of the record to be retrieved from
Information/Management.

recordtypevalue Is the name of the record type that corresponds

to the configuration file mapping section
identified by the RecordTypeValue statement.

TME 10 Information/Management: Problem Service User's Guide 1-7

991AJ8S Wa|qo.d Bulpuelsiapun

Problem Service Operations

Searching for a Record

The search operation returns a list of Information/Management
records that match the specified search criteria. The prototype
statement for search is:

SearchResultList search (in GWAttrList keyvaluepairs, in string recordtypevalue);
Where:

SearchResultList Is a sequence of elements that match the search
criteria of the search operation. Each element
contains thenid and a data value, which is
typically the data abstract, for each
Information/Management record. The
AssociatedDataField statement in the Problem
Service configuration file determines the
Information/Management data field that is
returned in the name value pair. The number of
matches is limited to the value of the
SearchHits statement in the Problem Service
configuration file.

keyvaluepairs Is the sequence of name value pairs consisting
of name and data values which specify the
criteria to be used for the search operation.

recordtypevalue Is the name of the record type that corresponds
to the configuration file mapping section
identified with the RecordTypeValue statement.

Transferring Records

The transfer operation creates a record in the
Information/Management database that can be viewed and updated by
the Information/Management staff. The prototype statement for
transfer is:

string transfer (in GWAttrList keyvaluepairs, in string recordtypevalue);

Where:

Version 1.1

Problem Service Operations

string Is the Information/Management record number
returned when the operation has successfully
completed.

keyvaluepairs Is a sequence of name value pairs consisting of

name and data values. Tired can be

specified as one of the name/value pairs or it
can be assigned by Information/Management.
When Information/Management assigns the
rnid, it is always an 8-character numeric string.

recordtypevalue Is the name of the record type that corresponds
to the configuration file mapping section
identified by the RecordTypeValue statement.

Updating Records
The update operation updates the specified Information/Management
record. The prototype statement for update is:

void update (in GWAttrList keyvaluepairs, in string recordtypevalue);

Where:

void Indicates there are no returned values.

keyvaluepairs Is the sequence of name value pairs that consist
of name and data values. One of the name
value pairs must contain anid. The field that
contains thenid is determined by the
ForeignIMRNIDField configuration file
statement.

recordtypevalue Is the name of the record type that corresponds

to the configuration file mapping section
identified by the RecordTypeValue statement.

Your application can pass only changed data or it can pass all record
data. The InputJustChangedData statement in the Problem Service
configuration file defines the selected behavior to Problem Service.

If you pass all data and use data mapping, Problem Service attempts
to delete all NULL data fields from the Information/Management

TME 10 Information/Management: Problem Service User's Guide 1-9

991AJ8S Wa|qo.d Bulpuelsiapun

Problem Service Operations

record. When you pass only changed values and you want to delete
an Information/Management field, pass NULL as the data.

Control Operations

Here are the descriptions for the control operations (ping and
shutdown) provided by Problem Service.

Pinging for Status

Ping is used by your application to obtain the status of the Problem
Service daemons. The prototype statement for ping is:

PingResult ping ();

The operation returnBingResult which indicates the running status
of Problem Service. If Problem Service is not running, an exception
is thrown.

Shutting Down Problem Service

Shutdown closes the Problem Service and its associated child
daemons. This is a hard shutdown, and does not ensure that all
transactions are completed. The prototype statement for shutdown is:

void shutdown ();

No values are returned.

Automated Operations

The remaining operations provided by Problem Service are automated
operations. You tailor the Problem Service configuration file to
customize the behavior of the operations. There can only be one
session specified for each automated operation in the configuration
file: one reverse session and one monitor session.

Reverse Assignment Operation

Reverse assignment allows records created in
Information/Management to be used and assigned in the local
database. You might want to transfer the responsibility of specific
Information/Management records to your application's staff or have
your staff share the responsibility for those records with the
Information/Management staff. Periodically, reverse assignment

1-10

Version 1.1

Problem Service Operations

automatically queries the Information/Management database and
identifies records that meet specific search criteria.

The record is still owned by Information/Management and the record
can be updated by the Information/Management staff. When you
update a reverse assigned record, the record should be checked-out
and retrieved from the Information/Management database before it is
updated.

Reverse assigned records can be monitored for changes. See “Monito
Operation” on page 1-12 for more information on monitoring.

Tailoring: You tailor the Problem Service configuration file to
customize the behavior of this operation by specifying:

" The time interval between each activation of the reverse
assignment operation.

® The search criteria to use when querying the
Information/Management database.

n The executable to be invoked when search matches are found.

Activating: The reverse assignment automated operation is
activated at the end of each time interval. If the network connection
to Information/Management is not available at activation time, the
reverse assignment operation is not performed for that activation.

If the network connection is available at activation time, reverse
assignment queries the Information/Management database according
to the specified search criteria. When it queries the database, it
considers all records except those that have already been transferred
or reverse assigned by your application's system. The number of
search matches is limited to the SearchHits configuration file value.

Record Processing: For each record that is identified in the
Information/Management database, the executable identified by the
RACallApp statement is run on the system identified by the
ForeignHost statement. These statements and their values can be
found in your configuration file.

The record number, record type, and the reverse assignment
GatewaylD (R5atewaylD are passed to the executable, which

TME 10 Information/Management: Problem Service User's Guide 1-11

991A18S Wa|qo.d Bulpuelsiapun

Problem Service Operations

performs the processing of the Information/Management record. This
processing could include:

1.
2.
3.

5.

Checking out the record.
Retrieving the record.

Performing application-specific actions (for example, creating a
record in the application's database).

Updating the Information/Management record to add the
gateway ID to mark the record as being reverse assigned by this
Problem Service. This enables the monitor operation on the
record.

Note: This step prevents the reverse assignment operation from
repeatedly processing the same record.

Checking in the record.

Monitor Operation
Problem Service provides an automated monitor operation that
periodically queries the Information/Management database to identify
records that have been transferred or reverse assigned by your
application and that have been recently updated in
Information/Management.

Tailoring: You tailor the Problem Service configuration file to
specify:

The time interval between each activation of the monitor
operation.

The executable to be invoked when search hits are found.

Activating: The monitor operation is activated at the end of each
time interval. If the network connection to Information/Management
is not available at activation time, the monitor operation is not
performed for that activation.

The monitor operation affects only the records that have been
identified as being reverse assigned or transferred by your
application's system. The records processed by Problem Service
contain a gateway identifier, specified in the Problem Service

1-12

Version 1.1

Problem Service Operations

configuration file, that associates them with your application's system
that is running Problem Service.

Note: This assumes that the transfer data mappings include the

The monitor operation selects only records that were last changed by

Problem Service identifier and that you updated reverse
assigned records with the Problem Service identifier.

a different user. All records last changed by your application through
a Problem Service instance will be marked as being changed last by
the gateway identifier value.

You must update the Information/Management record or the monitor
will always find the same record on the next monitor iteration. If you
do not have data to change, you can use a field returned by the
retrieve operation as the data to use for the update.

Record Processing: For each record that the monitor finds in the
Information/Management database that matches the search criteria, the
executable identified by the MonCallApp statement is run on the
system identified by the ForeignHost statement. These statements and
their values are in your configuration file.

991AJ8S Wa|qo.d Bulpuelsiapun

The record number and record type are passed to the executable. The
number of search matches is limited to the SearchHits configuration
file value. The executable processes the Information/Management
record, which could include:

1.
2.
3.

Checking out the record.
Retrieving the record.

Performing an application-specific function (for example,
updating a record in the application's database).

Updating the Information/Management record to mark the record
as being last altered by this instance of Problem Service.

Note: This step prevents the monitor operation from repeatedly
processing the same record.

Checking in the record.

TME 10 Information/Management: Problem Service User's Guide 1-13

Problem Service Data Mappings

Problem Service Data Mappings

When a propagate or transfer operation copies a record to
Information/Management, it uses the data you pass to it as input for
the Information/Management record fields. Correspondingly, when
you retrieve an Information/Management record, it uses the data in
the Information/Management record fields as input. However, the
record fields in your application's data might differ in number, name,
meaning, and format from the Information/Management record fields.
You must define how these record contents are mapped from one
database to the other.

The Problem Service data mappings consist of mapping rules,
specified in the Problem Service configuration file, that the Problem
Service operations apply when manipulating records. You can
customize the data mappings for each operation to specify:

® Which of your data fields and Information/Management record
fields are processed for various operations.

® The association between your data fields and
Information/Management record fields that have similar
meaning.

® The conversion mechanism to use to transform the field data
from your format to the Information/Management record format
and from the Information/Management record format to your
application's data format.

You can disable all data mapping by specifying
PerformDataMapping=no in the configuration file. When data mapping
is disabled, you work with only Information/Management field names
and Information/Management format data.

1-14 Version 1.1

Problem Service Installation

This chapterexplainshow to planfor andinstall ProblemService.
Follow thesestepsto install and configure ProblemService:

1. Ensurethatthe prerequisitesoftwareis installed,configured,and
operationalon your workstationand on the MVS host.

2. Install ProblemServiceon your workstation.

Note: The ProblemServicedaemon(AIX) or the
WindowsNT servicemustbe installedon a Tivoli
ManagemenRegion(TMR) server.

3. ConfigureProblemServiceon your workstation(see
“Customizing Your ProblemServiceConfigurationFile” on
page 4-1).

Note: Work with the Information/Managemerdystem
administratorto completethe ProblemService
configuration.

Planning for Problem Service Installation

The following sectionsdescribehow ProblemServicefits into the
Information/Managemergnvironmentand providesyou with an
overview of the Information/Managemergetupthatis necessaryor
operatingProblemsService.

TME 10 Information/Management: Problem Service User's Guide 2-1

uolre|jelsu| 991AI8S Wa|qoid

Planning for Problem Service Installation

Information/Management Environment

To perform its operations, Problem Service uses the
Information/Management HLAPI to remotely access the
Information/Management database records from the workstation
environment.

The Information/Management HLAPI that is part of the MVS
Information/Management product is a transaction-based application
programming interface (API). It enables applications in remote
environments to establish HLAPI working sessions with the host
Information/Management system to manipulate database records.

For an overview of the Information/Management product and
features, refer to thinformation/Management Planning and
Installation Guide and Reference

HLAPI Client

In the workstation environment, Information/Management provides an
HLAPI client that establishes communication links with the
Information/Management system on MVS. This feature of
Information/Management is made up of two interfaces: a requester
and a client. Both interfaces must be installed and configured in the
workstation environment.

Requester Interface

The requester interface provides the communication link to the
Information/Management system on MVS. Either TCP/IP or advanced
program-to-program communication (APPC) is used, depending on
the platform used.

Client Interface

The client interface must reside on the Problem Service workstation.
It provides Problem Service with the interface to the
Information/Management HLAPI.

For more information on setting up the HLAPI client/server
environment, refer to thmformation/Management Client Installation
and User's Guide

Version 1.1

Installation Requirements

Installatio n Requirements

To install and configure ProblemServiceon your workstation,you
needthe hardware storage and softwarelisted in the following
sections.

Hardwar e Requirements
The ProblemServiceoption hasno unique hardwarerequirements.

Disk Space Requirements
In additionto your workstation'sotherrequirementsthe free disk
spacerequiredfor ProblemServiceis shownin Table 1.

Table 1. Free Disk Spa@ Requirements

Problem Service Disk Space
AlX 12 MB
WindowsNT 7 MB

Softwar e Requirements
The installationand operationof ProblemServicerequiressoftware
on both MVS andthe workstation.

MVS Host
To useProblemService,you musthaveInformation/Management
Version 6.3 or laterinstalledand operationalon an MVS host. Refer
to the Information/Managmen®lanningand Installation Guideand
Referencdor moreinformation.

The Information/ManagemertiLAPI and eithera remote
environmentserver(RES) or multiclient remoteenvironmentserver
(MRES) mustbe setup on the Information/Managemergystemon
MVS that ownsthe databasehat your ProblemServicemustaccess.

Referto the Information/ManagemerPlanning and Installation Guide
and Referenceaandto the Information/ManagemerClient Installation

TME 10 Information/Management: Problem Service User's Guide 2-3

uolre|jelsu| 991AI8S Wa|qoid

Installation Requirements

and User's Guidédor information on the Information/Management
environment setup for remote HLAPI applications.

AIX Workstation

The following software is required for the installation, operation, and
maintenance of Problem Service:

N AIX Version 4 Release 1

n Information/Management, Version 6.3 or later, HLAPI Client for
AIX feature and associated software prerequisites

® Tivoli Management Environment 3.1

Note: When writing an application to use Problem Service,
you also need the TME 10 Application Development
Environment.

For instructions on how to install and configure the HLAPI Client for
AlX, refer to thelnformation/Management Client Installation and
User's Guidelnstall and configure both the requester and the client
interface components on the AIX workstation.

Note: The client interface must reside on the same workstation
where Problem Service is to be installed.

After you install and configure the HLAPI Client for AlX, record the
name and location of the database profile you configure. You need
this information for configuring Problem Service. If you did not
change the name and location of this file, you can find it in the
{usr/Ipp/idbhlapi/examples directory. The default name is

idbdb.pro. You can also customize and use the example HLAPI
profile gateway.prf supplied with Problem Service.

Windows NT Workstation

The following software is required for the installation, operation, and
maintenance of Problem Service:

" Windows NT 4.0

n Information/Management, Version 6.3 or later, HLAPI for
Windows NT Client feature and associated software
prerequisites

Version 1.1

Installation Requirements

» Tivoli ManagemenEnvironment3.1

Note: Whenwriting an applicationto useProblemService,
you alsoneedTME 10 Application Development
Environment.

For instructionson how to install and configurethe HLAPI for
WindowsNT Client, refer to the Information/ManagemerClient
Installationand User'sGuide Instal and configure both the requester
andthe client interfacecomponent®n the Windows NT workstation
whereProblemServiceis to be installed.

After you install and configurethe HLAPI for WindowsNT Client,
recordthe nameandlocation of the databaseprofile you configure.
You needthis informationfor configuring ProblemService.If you
did not changethe nameand locationof this file, you canfind it in
the c:\infoapi\sample directory. The defaultnameis database.pro
You canalso customizeand usethe exampleHLAPI profile
gateway.prf suppliedwith ProblemService.

TME 10 Information/Management: Problem Service User's Guide 2-5

uolre|jelsu| 991AI8S Wa|qoid

Installation Requirements

Installing Problem Service

Beforeinstalling ProblemService,ensurethat the HLAPI client can
communicatawith Information/Managementn MVS.

Someof the commandghat you are requestedo usein this section
requireyou to be in the TME 10 environmentFor AlX,
enteringthe TME 10 environments typically doneby invoking the
setup_env.shshell scriptin the sessiorbeingused.For Windows
NT, enteringthe TME 10 environments typically doneby running
the setup_env.cmdcommandfile.

Usethe TME 10 desktopto install ProblemServiceon your TMR
serverby clicking on Desktop — Install — Install Product. To
ensurethat the installationcompletedsuccessfully enterthe following
commandfrom the TME 10 environmento obtainthe objectID
(OID) of the object:

wlookup -r InfoMgtGW -a

The Info_GW instanceis displayed Jabeledwith the OID. Your
applicationusesthe OID of the Info_ GW instanceto invoke Problem
Serviceoperations.

National Language Support (NLS) for Messages
After installing ProblemService,the messageatalogresidesin the
/msg_cat/Cdirectoryunderthe TME 10 install tree.For AlX
this directory needsto be part of your NLSPATH.

2-6 Version 1.1

Installing Problem Service

AIX Workstations
For catalog files to reside in your NLSPATH, issue ¢kport
LANG=C command after you have entered the TME 10
environment. When thbl*.cat files reside in the NLSPATH, the
messages issued by the daemon resolve correctly.

Windows NT Workstations
LOCPATH points to the directories used to convert data between
different code sets. For example, you can set the LOCPATH variable

by specifying:
LOCPATH=C: \INFOAPI\LOCALE

The LOCPATH variable must be set in the system environment
variables on the TMR server where Problem Service is installed. You
must be logged on as an administrator to update system environment
variables.

REGSRV2 Program (Windows NT Only)
Problem Service is automatically registered as a Windows NT service
as part of the installation process. If it should fail for any reason, or
if you need to register or unregister Problem Service, information on
running REGSRV?2 is provided here. You can change the drive letter
and directory path if necessary.

TME 10 Information/Management: Problem Service User's Guide 2-7

uolre|jelsu| 991AI8S Wa|qoid

Installing Problem Service

To install Problem Service (gw_nxd) as a Windows NT service, use
the REGSRV2 program. The format is:

REGSRV2 x app_name
Where:

X
Is | to install the service or D to delete the service.

app_name
Is the full application path name of the program, when the
Windows NT service is being installed. If the full application
path name contains a blank, enclose it in quotes. For example:

REGSRV2 I "C:\Program Files\GW_NXD.EXE"

The app_nameparameter is not needed when deleting the
Windows NT service. For example:

REGSRVZ D

Note: You must be logged on as an administrator to install the
Windows NT service.

Version 1.1

Planning for Problem Service
Configuration

This chapter provides a general overview of some basic
Information/Management concepts and the process for configuring
Problem Service.

Basic HLAPI Concepts

The Problem Service configuration requires you to be familiar with
the following HLAPI-related concepts:

] HLAPI transactions

® The input and control Parameter Data Block (PDB), used for
HLAPI transactions

" HLAPI data views that consist of either:

e Program interface data tables (PIDTs) and program
interface pattern tables (PIPTSs)

. Data model records

n Program interface alias table (PALT)

This section provides introductory information about these concepts.

For a more detailed description, refer to thisrmation/Management
Application Program Interface Guide

TME 10 Information/Management: Problem Service User's Guide 3-1

uoneinbiyuo) loj Buluue|d

Basic HLAPI Concepts

HLAPI Transactions
HLAPI is a transaction-based application program interface. Problem
Service uses HLAPI transactions to establish sessions with the
Information/Management system and to manipulate its database
records.

In particular, to perform the Problem Service operations as described
in “Problem Service Operations” on page 1-4, Problem Service uses
the HLAPI transactions:

checkin
checkout
create
inquiry
retrieve
update

For example, the Problem Service propagate and transfer operations
use the HLAPI create transaction to create a corresponding record in
the Information/Management database. The propagate operation also
uses an implicit checkout on the create transaction to lock the record
in the Information/Management database. This protects the
propagated record from being updated by the
Information/Management staff or other users and allows only the
application that propagated the record to update it.

HLAPI PDBs
The HLAPI PDBs contain parameters that control the operating
characteristics of the HLAPI sessions that Problem Service uses to
connect to the Information/Management system and to manipulate the
records in the database. Problem Service uses these PDBs for the
HLAPI transactions.

3-2 Version 1.1

Basic HLAPI Concepts

HLAPI Data Views
HLAPI uses data views to define the Information/Management record
fields that an application can access using the HLAPI transactions.
These views can be PIDTs and PIPTs or data model (data view, data
attribute, and data validation) records.

In an Information/Management database that is not customized,
PIDTs and associated PIPTs define the base Information/Management
records. You can customize these PIDTs and PIPTs to define
additional user-defined fields in the Information/Management records
that you want your application to manipulate. You could also build
data model records that define your fields.

Each HLAPI transaction has a separate PIDT that is also associated
with a specific Information/Management record type. For example,
the HLAPI create transaction has a separate PIDT that defines the
fields that can be used when creating a record in the
Information/Management database.

If you use data model records, the data view record can apply to
multiple record transactions. For example, you can use the same data
view for HLAPI create, update, or retrieve transactions.

Structured and Prefix Word Indexes
The PIDT or data attributes identify specific fields within an
Information/Management record using Information/Management
structured word(s-word) andprefix word (p-word) indexes. An
s-word index is represented by an S, followed by 4 hexadecimal
characters. An example of an s-word indeg6g5C. A p-word index
is represented by a P, followed by 4 hexadecimal characters. An
example of a p-word index iB028A.

P-Words
You should be familiar with p-words and their uses. A p-word
consists of a keyword that performs searches on fields in
Information/Management database records. It can be associated to on
or several s-word indexes. A p-word can be up to 6 characters long
and must include the slash (/) or underscore (_) character as the last
character. An example of a p-wordABTH/.

uoneinbiyuo) f®) Buluue|d

TME 10 Information/Management: Problem Service User's Guide 3-3

Basic HLAPI Concepts

To specify Information/Management fields that HLAPI recognizes in
the Problem Service configuration file, you can use indexes, alias
names, and in some cases, p-words. For simplicity, the sample
Problem Service configuration file uses s-word indexes instead of
alias names.

HLAPI PALTs

Problem

The PALT enables applications to specify alias hames for PIDTS,
p-words, p-word indexes, and s-word indexes. In a PALT, you can
specify default values for the Information/Management record fields.
That is, you can specify default response data values for
Information/Management record fields for which your application
does not provide a response value.

You can define an alias name for a field, and use the alias name
instead of using an s-word or a p-word index to identify the field. An
alias name can as long as 32 characters. For example, you could
define and use an alias nameSoATUS instead of using the s-word
index of SOBEE.

Service Configuration Process

Problem Service configuration is a multistep process that must be
done to enable Problem Service operations. This process also
involves customizing the Information/Management system.

Note: Work with the Information/Management administrator to
complete the Problem Service configuration process.

The following sample files are provided by Problem Service for the
configuration process:

= A sample configuration file that you customize for your
application's environment to use Problem Service.

® A sample set of Information/Management-specific files to assist
you in customizing the tables that define the
Information/Management record fields. Problem Service
accesses these record fields when performing HLAPI
transactions on the records.

Version 1.1

Problem Service Configuration Process

Sample Configuration File
A configuration file used by Problem Service controls various aspects
of how Problem Service operates in your application's system and
environment. It is a root-owned file and access to it is usually
restricted to your application's administrator.

The sample configuration filelmygc.cfg is provided with Problem
Service, but it must be customized before use. Aihmgygc.cfg file is
made up of a series of statements that are grouped into three main
parts:

1. Information/Management HLAPI session information
2. Problem Service general settings
3. Data mappings

This file is located in the
$INST_DIR/SINTERP/InfoMgt/InfoGateway directory.

Customizing Statements
To customize the sample configuration file statements, edit the file
and modify the statements as required. Knowledge of the
Information/Management HLAPI and how it is used by remote
applications is a prerequisite for editing and modifying the
statements. Refer to theformation/Management Application
Program Interface Guidéor a description of the HLAPI. References
to other Information/Management manuals are indicated when
necessary.

The sample file has already been partially customized for you with
suggested values that suit any application's system. You only need to
customize a few statements in it that are related to your specific
application's environment.

Customize the required values in the sample file that have been
pre-filled with question mark (?) characters. After you are familiar
with this file, you can customize any of the remaining statements.

TME 10 Information/Management: Problem Service User's Guide 3-5

uoneinbiyuo) loj Buluue|d

Problem Service Configuration Process

General Syntax Rules
The general syntax to follow when modifying the configuration file is
the following:

® Each statement in the configuration file must end with a
semicolon. If the statement spans more than one line, only the
last line in the statement should end with a semicolon.

. Comments can appear on any line in the file but must be
preceded with double slash (//) characters.

Process Steps

To configure Problem Service, perform the following tasks:

1. Customize the Problem Service sample configuration file:

a.

Customize the Information/Management HLAPI
information that Problem Service uses when establishing
sessions with Information/Management. See “Customizing
the HLAPI Session Information” on page 4-1 for
instructions.

Customize the general Problem Service settings required
for Problem Service operations. See “Customizing Problem
Service General Settings” on page 4-10 for instructions.

Customize the data mappings that Problem Service applies
when transferring records back and forth between your
applications and the Information/Management database.
See “Customizing Problem Service Data Mappings” on
page 4-20 for instructions.

2. Prepare the HLAPI data views on MVS. See “Preparing the
HLAPI Data Views on MVS” on page 5-1 for instructions.

3. Update the Services file. See “Updating the Services File” on
page 5-8 for instructions.

You can customize the Problem Service configuration file at any time
to modify existing settings. If your applications and Problem Service
are running:

1. Stop your applications.

Version 1.1

Problem Service Configuration Process

Stop Problem Service.
Modify the Problem Service configuration file.

4. Start Problem Service for the new configuration settings to take
effect.

5. Start your applications

TME 10 Information/Management: Problem Service User's Guide 3-7

uoneinbiyuo) loj Buluue|d

3-8

Version 1.1

Customizing Your Problem
Service Configuration File

This chapter explains how to plan for and configure the Problem
Service option.

Customizing the HLAPI Session Information

The configuration file contains a series of HLAPI-related statements
that correspond to the HLAPI control PDB parameters. Problem
Service uses these PDB parameters when establishing HLAPI
sessions with Information/Management and when performing
transactions on records in the Information/Management database.
These statement values are used for all sessions started between
Problem Service and Information/Management.

The configuration file also contains HLAPI session statements that
determine the number and the characteristics of the sessions that
Problem Service will establish.

HLAPI-Related Statements
Figure 2 on page 4-2 shows the HLAPI-related statements in the
sample configuration file.

TME 10 Information/Management: Problem Service User's Guide 4-1

3|14 uoneunbipuod InoA Buiziwoisn)

Customizing the HLAPI Session Information

// HLAPI-Related Statements
SessionMember="BLGSES??";

TableCount=5;
APIMsgOption="B";
HLIMsgOption="B";
SpoolInterval=0;
TimeoutInterval=120;
DatabaseID="5";
DefaultOption="NONE";
DefaultDataStorageSize=1024;
SeparatorCharacter=",";
BypassPanel="N0";
ReplaceFreeFormText=yes;

Figure 2. HLAPI-Related Statements in the Sample Configuration File

Customize the statements that appear in bold characters. These
statements are required and are specific to your application's system.
Ask your Information/Management program administrator to provide
you with these required values.

Table 2 on page 4-3 gives you a brief description of the
HLAPI-related statements. As each of these statements corresponds to
a specific parameter of the HLAPI control PDB, the correspondence
with these parameters is also included in the table.

For more detailed descriptions of these parameters and the values
they can assume, refer to thidormation/Management Application
Program Interface Guide

4-2

Version 1.1

Customizing the HLAPI Session Information

Table 2 (Page 1 of 5). HLAPI Related-Statements for Sessions

Statement
PDB Parameter Description
SessionMember This is a required statement. It specifies

the name of the Information/Management
session-parameters member to be used for
sessions with the HLAPI client.

SESSION_MEMBER

The name can be up to 8 characters long,
beginning with the character string
BLGSES. It must match the name of the
session member that the
Information/Management administrator
defines in MVS.

PrivilegeClass This is a required statement. It specifies
PRIVILEGE_CLASS the Ieve.l of authprity granted to users for
performing certain operations on the
Information/Management database. Your
Problem Service application is considered
an Information/Management user.

This value must match the name of the
privilege class that the
Information/Management administrator
assigns to your Problem Service
application. The value can be 1 to 8
characters long.

TableCount This is an optional statement. It specifies
TABLE COUNT the number of Infor_matlon/Management

- tables that can be in storage during the
session.

The value ranges from 0 to 256.

The default value is 0. The suggested
value for Problem Service is 5.

TME 10 Information/Management: Problem Service User's Guide 4-3

3|14 uoneInbiyuo)D INOA Bulziwoisn)

Customizing the HLAPI Session Information

Table 2 (Page 2 of 5). HLAPI Related-Statements for Sessions

Statement

PDB Parameter

Description

APIMsgOption
APIMSG_OPTION

This is an optional statement. It specifies
the destination of the low level applicatio
program interface (LLAPI) logging
messages.

=

The valid values are P, C, or B. P
indicates that LLAPI writes messages to
the APIPRINT data set, and C indicates
that the LLAPI messages will be put in
message PDBs.

The default value is B, which indicates
that LLAPI will perform both P and C.

This statement is used only if the
Spoolinterval statement is specified and
has a non-zero value.

HLIMsgOption
HLIMSG_OPTION

This is an optional statement. It specifies
the destination of the HLAPI logging
messages.

The valid values are P, C, or B. P
indicates that HLAPI writes messages to
the HLAPILOG data set, and C indicates
that HLAPI puts the messages in the
message PDBs.

The default value is B, which indicates
that HLAPI will perform both P and C.

This statement is used only if the
Spoolinterval statement is specified and
has a non-zero value.

4-4

Version 1.1

Customizing the HLAPI Session Information

Table 2 (Page 3 of 5). HLAPI Related-Statements for Sessions

Statement

PDB Parameter

Description

Spoolinterval
SPOOL_INTERVAL

This is an optional statement. It specifies
the time interval, in minutes, for HLAPI
and LLAPI logging in MVS.

The value ranges from 0 to 1440. The
default value is 0, meaning that message
are not logged. In this case, the values i
HLIMsgOption and APIMsgOption are
ignored.

%)

Timeoutinterval
TIMEOUT _INTERVAL

This is an optional statement. It specifies
the number of seconds that a database
transaction can run before a timeout cau
HLAPI to terminate the session.

The value ranges from 0 to 300, but if yg
specify a value between 0 and 45, the
interval is set to 45 seconds.

The default value is 300 seconds. The
suggested value is 120.

5E€S

DatabaselD
DATABASE_ID

This is an optional statement. It specifies
the name or ID number of the database
that your application accesses during the
session. For Information/Management

records that can be created or updated, the

database ID is 5; do not change this valy

The default value is 5.

e.

TME 10 Information/Management:

Problem Service User's Guide 4-5

3|14 uoneInbiyuo)D INOA Bulziwoisn)

Customizing the HLAPI Session Information

Table 2 (Page 4 of 5). HLAPI Related-Statements for Sessions

Statement
PDB Parameter Description
DefaultOption This is an optional statement. It specifies

which Information/Management record
fields are candidates for default data

response processing by HLAPI during the
session.

DEFAULT_OPTION

The valid values are:

= REQUIRED
. ALL
= NONE

The default value is NONE.
DefaultDataStorageSize This is an optional statement. It specifies
DEFAULT DATA STORAGE_SIZE the additional storage, in bytes, that

HLAPI uses to hold the default response
data.

The default value is 1024.

SeparatorCharacter This is an optional statement. It specifies
SEPARATOR CHARACTER the separator character thgt HLAPI uses [to

- process response data. This character is
used by HLAPI to separate the data items
in a record field, if the field contains a lis
of data items.

The default value is the comma.

BypassPanel This is an optional statement. It is used
globally for all Information/Management
BYPASS_PANEL_PROCESSING API sessions that this Problem Service
starts. Only used on the API initialization
transaction; applies for all of the
transactions the gateway performs.

The default value is NO.

4-6 Version 1.1

Customizing the HLAPI Session Information

Table 2 (Page 5 of 5). HLAPI Related-Statements for Sessions

Statement
PDB Parameter Description
ReplaceFreeformText This is an optional statement. It is used

REPLACE_TEXT_DATA

globally for the Information/Management
API sessions that this Problem Service
starts. It is used on an update transaction
or a propagate transaction when
propagating a record that has already been
propagated (results in an update of the
Information/Management record). If it has
a value of yes, the update uses the
REPLACE_TEXT_DATA
Information/Management HLAPI control
PDB with a value of YES. This indicates
that new freeform text being supplied wit
the update replaces existing freeform tex
of the same type in the record being
updated. Problem Service does not specify
the REPLACE_FREEFORM_TEXT PDB
if ReplaceFreeformText has a value of
NO.

The default value is YES.

=

HLAPI Session Statements

The other HLAPI statements that you must customize in the
configuration file are the HLAPI session statements. These statements
determine:

The number of sessions that Problem Service will establish with
the Information/Management HLAPI to perform Problem
Service operations on the Information/Management database.

The characteristics of the physical connection to the MVS host
where Information/Management resides.

The type of Problem Service operation for which Problem
Service will use each session

TME 10 Information/Management: Problem Service User's Guide 4-7

3|14 uoneInbiyuo)D INOA Bulziwoisn)

Customizing the HLAPI Session Information

The number of sessions is determined by the number of Session
statements specified in the configuration file.

The following example shows the session statements as they appear
in the Problem Service sample configuration file. Customize the
keywords in bold characters.

// Session statements

Session Transaction=outbound
DatabaseProfile="/usr/1pp/idbhlapi/examples/idbdb.pro"

Session Transaction=outbound
DatabaseProfile="/usr/1pp/idbhlapi/examples/idbdb.pro"

Session Transaction=reverse
DatabaseProfile="/usr/1pp/idbhlapi/examples/idbdb.pro"

Session Transaction=monitor
DatabaseProfile="/usr/1pp/idbhlapi/examples/idbdb.pro"

Each session statement has four keywords: Transaction,
DatabaseProfile, UserID, and Password.

Transaction
This keyword specifies the type of Problem Service operations
for which the session will be used.

The values are:
monitor Indicates monitor operations.

outbound Indicates that the session will be used for all
operations except monitor and reverse assignment.

reverse Indicates reverse assignment operations.

You can specify only one session statement for each of the
monitor and reverse assignment operations. You can specify up
to 30 session statements for outbound operations. A separate
daemon is started for each session.

You should specify at least one session for each type of
transaction to obtain full Problem Service functionality.
Otherwise, the Problem Service operation corresponding to an

4-8

Version 1.1

Customizing the HLAPI Session Information

unspecifiediransactiorwill not be performed.For example,
whenyou do not specifythe reversetransactionin any of the
sessionstatementsProblemServicedoesnot performreverse
assignmenbperations.

DatabaseProfile
The nameof the databaserofile that you configuredfor the
HLAPI client.

The databaserofile determineghe connectioncharacteristics
for the sessionlf you are using the defaultdatabaserofile
from the HLAPI client installation,use:

n For AlIX:
/usr/1pp/idbhlapi/examples/idbdb.pro
n For Windows NT:

x:\infoapi\sample\database.pro

wherex is the drive on which the HLAPI client was
installed.

If you are usinga different databaserofile, you mustspecify
the pathand nameof thatfile.

Note: Omit the path specificationif the databaserofile
residesin the currentworking directory for Problem
Service.

Referto the Information/ManagemaerClient Installation and
Users Guidefor moreinformationon the databaserofile usage
and specification.

UserlD
A userlID assignedor the MVS logon for the session.

This userID is assignedo you by the MVS administratorand it
musthavethe necessanauthorizationgo accesshe
Information/ManagemerdatabaseUserID correspondsgo the
SECURITY_ID parametein the HLAPI control PDB usedfor
establishinghe session.

TME 10 Information/Management: Problem Service User's Guide 4-9

3|14 uoneInbiyuo)D INOA Bulziwoisn)

Customizing the HLAPI Session Information

Password
The password assigned for the MVS logon for the session.

This parameter corresponds to the PASSWORD parameter in
the HLAPI control PDB used for establishing the session.

The sessions you customize can share a single physical connection to
the MVS system or can use separate physical connections. If you
specify the same values for UserlD, Password, and DatabaseProfile in
all the session statements, the sessions will share a single physical
connection. Only one HLAPI transaction can be performed at a time
over each physical connection.

If your organization intends to use Problem Service operations
extensively, you can improve performance by forcing separate
physical connections for some sessions. One way of doing this is by
specifying different UserID and Password values for those sessions.

Refer to thenformation/Management Client Installation and User's
Guidefor information about other ways to force separate physical
connections.

Customizing Problem Service General
Settings

The statements in the second part of the configuration file define
general settings that control the operating characteristics of Problem
Service. Figure 3 on page 4-11 provides partially customized
statements as they appear in the sample configuration file. You must
customize the statements that appear in bold characters. If any of the
remaining customized statements do not suit your application's system
requirements, modify them.

4-10 Version 1.1

Customizing Problem Service General Settings

// Problem Service General Settings

ReverseAssignInterval=60;
MonitorInterval=60;
InfoGatewayService="infogateway";

RACal1APP="rassign";
MonCallApp="moninfo";
UnconditionalShutdownWait=10;
GatewayIDField="S1260";
GatewayIDPrefix="GWID/";
ConvertToUppercase=yes;
MaximumHits=1000;
MaxTextRetrievelines=20;
IMPatternValidation=yes;
IMRNIDField="SOCCF";
IMCheckoutField="S14EF";
AssociatedDataField="SOEOF';
RetrieveBeforeUpdate=no;
SessionRetryInterval=10;
SessionRetryLimit=10;
InputJustChangedData=no;
PerformDataMapping=yes;

Figure 3. Problem Service General Settings Statements in the Sample Configuration
File

The following list gives a description of the statements in this part of
the configuration file and explains how to customize them.

GatewayID (Required)
Defines the unique identifier for a Problem Service instance. It
can be 1 to 8 characters long.

GatewaylID corresponds to the APPLICATION_ID parameter in
the HLAPI control PDBs. The ID you specify must be an
eligible user ID defined in the same privilege class that you use
in the PrivilegeClassstatement in the configuration file.

Problem Service uses the GatewaylD value for two main
purposes:

® To identify itself as an eligible Information/Management
user, so that it can perform database record transactions
during the HLAPI sessions with Information/Management.

TME 10 Information/Management: Problem Service User's Guide 4-11

3|14 uoneInbiyuo)D INOA Bulziwoisn)

Customizing Problem Service General Settings

The same GatewaylD value is used for all the HLAPI
sessions it establishes with Information/Management.

B To identify all the Information/Management records that it
processes so that they can later be associated to this
particular Problem Service application. The GatewayID
value is stored in a field present in all
Information/Management records it processes. It also stores
a prefix character, along with the GatewaylID value, to
indicate the operation performed on each of these records:

Prefix Definition

P Propagated
T Transferred
R Reverse assigned

When you customize the data mappings in the configuration

file, specify the GatewayID value and prefix character in the
propagate and transfer data mappings. For the records that your
application reverse assigns, it must update the
Information/Management record's GatewayIDField with a
reverse assignment gateway ID@&ewaylD. This keeps your
application from being notified of the same
Information/Management records over and over again.

The Problem Service monitor operation uses this GatewayID
value to identify all the records transferred and reverse assigned
by this particular Problem Service.

Note: In an Information/Management environment where more
than one Problem Service or instance is present, you
must make sure that the GatewaylD is unique for each
Problem Service. Otherwise, Problem Service operations
will produce unpredictable results.

It is recommended that you use the GatewaylD value as the
checkout indicator value when customizing the data mappings
for the propagate operation. This causes an automatic check-out
of the records that are propagated by your application and
enables you to update these records.

4-12

Version 1.1

Customizing Problem Service General Settings

Note: After you are assigned a GatewaylD value, you should
not change it. However, if such a need arises, in
addition to changing the value in the GatewaylD
statement, you must change all the occurrences of the
GatewaylID value in the rest of the Problem Service
configuration file. Otherwise, unpredictable results will
occur.

Furthermore, if you change the GatewayID value, all the records
in Information/Management that were previously processed by
Problem Service will contain the old GatewayID value.

ReverseAssigninterval (Optional)
Specifies the time interval, in minutes, that Problem Service
waits between each activation of the reverse assignment
operation.

The value ranges from 0 to 999999.
The default value is 60 minutes.

Monitorinterval (Optional)
Specifies the time interval, in minutes, that Problem Service
waits between each activation of the monitor operation.

The value ranges from 0 to 999999.
The default value is 60 minutes.

InfoGatewayService (Required)
Specifies the service name of the TCP/IP port used by Problem
Service.

The sample configuration file provides the InfoGatewayService
service name, which must lifogateway Define this service
name in the services file, and assign it an available TCP/IP port
number.

ForeignHost (Required)
Specifies the name of the host that holds the executables
specified by the RACallApp and MonCallApp statements in the
configuration file.

TME 10 Information/Management: Problem Service User's Guide 4-13

3|14 uoneunbipuod InoA Buiziwoisn)

Customizing Problem Service General Settings

To determine the host name for AlX, issue llostname AlX
command from the AIX command line on the system that holds
the executables.

To determine the hostname for a Windows NT system, on the
Windows NT desktop seledy Computer — Control

Panel= Network— Protocols— TCP/IP Protocol—
Properties— DNS.

RACallApp (Optional)

Specifies the name of the executable to be invoked whenever
the reverse assignment operation finds a search match in the
Information/Management database. The host name of the system
where the executable resides is specified by the ForeignHost
statement.

This executable should be written to accept three parameters:
the Information/Management record ID, its record type, and the
reverse assignment gateway ID to be used to update the
Information/Management record when the application accepts
the record.

MonCallApp (Optional)

Specifies the name of the executable to be invoked whenever
the monitor operation finds a record in the
Information/Management database that belongs to this
application's gateway ID and has been updated by
Information/Management or another application. The host hame
of the system where the executable resides is specified by the
ForeignHost statement.

This executable should be written to accept two parameters: the
Information/Management record ID and its record type.

UnconditionalShutdownWait (Optional)

Specifies the number of seconds that Problem Service waits
before sending unconditional shut down signals to terminate
unclosed subprocesses, after having previously attempted to shut
down those processes.

The value range is 5 to 300 seconds.

4-14

Version 1.1

Customizing Problem Service General Settings

The default value is 10 seconds.

GatewaylIDField (Required)
Specifies the index or alias name of an
Information/Management record field that will hold the
GatewaylD value. Problem Service needs such a field to store
the GatewaylID value and prefix character for all the records it
propagates and transfers. For reverse assigns, you must store|th
GatewaylD value in this field.

Problem Service defines a new field in Information/Management
records to hold the GatewayID value. The sample configuration
file defines this new field with s-word index S1260. The
Problem Service installation provides the HLAPI PIDTs and
PIPTs that define this new field in Information/Management
records. The HLAPI create, retrieve, and update PIDTs or data
views for records must contain this field. See “Preparing the
HLAPI Data Views on MVS” on page 5-1 for instructions on
how to use the PIDTs and PIPTs provided.

3|14 uoneinfiyuo)d INoA Buiziwoisn)

You can use the suggested and defined
Information/Management field or use another field (either an
existing one or another user-defined field) to hold the
GatewaylD value. If you choose to use another
Information/Management field, customize the create, update, and
retrieve PIDTs and PIPTs or your data model records in the
Information/Management system on MVS to include this field.
See “Preparing the HLAPI Data Views on MVS” on page 5-1

for information on customizing PIDTs and PIPTs.

GatewayIDPrefix (Required)
Specifies the p-word that is associated with the
Information/Management GatewaylD field. It is used for
searching the Information/Management database for the records
processed by Problem Service.

A p-word can contain up to 6 characters, where the last
character must be a slash (/) or an underscore ().

The suggested value provided in the sample configuration file is
GWID/.

TME 10 Information/Management: Problem Service User's Guide 4-15

Customizing Problem Service General Settings

ConvertToUppercase (Optional)
Specifies whether or not to convert to uppercase characters all
field data, except for freeform text data, that Problem Service
stores in the Information/Management database.

The possible values are:

yes Indicates that the data will be converted to uppercase
characters.

no Indicates that the data will not be converted.
The default value is yes.

MaximumHits (Optional)
Corresponds to the NUMBER_OF_HITS parameter of the
HLAPI control PDB. It is used for the HLAPI inquiry
transaction on Information/Management records. It specifies the
maximum number of matches to be returned from a search. It
applies to the Problem Service monitor, reverse assignment, and
search operations.

The value ranges from 0 to 9999. The value 0 is treated as if
the MaximumHits statement has not been specified.

The default value is 500. The suggested value for Problem
Service is 1000.

MaxTextRetrieveLines (Optional)
Corresponds to the TEXT_UNITS parameter of the HLAPI
control PDB. It specifies the maximum number of lines that can
be retrieved for each freeform text field of an
Information/Management record.

The value ranges from 1 to 9999.

The default value is 1000. The suggested value for Problem
Service is 20.

IMPatternValidation (Optional)
Specifies whether or not HLAPI should perform pattern
validation on the input data fields for the records that Problem
Service creates or updates in the Information/Management
database.

4-16 Version 1.1

Customizing Problem Service General Settings

The possible values are:

yes Indicates that pattern validation will be performed.

no Indicates that pattern validation will not be performed.
The default value is yes.

IMRNIDField (Required)
Specifies the index or alias name of the
Information/Management record field that holds the record
number identifier for the Information/Management record.

For Information/Management records, the s-word index for the
default RNID field is SOCCF.

IMCheckoutField (Required)
Specifies the index or alias name of the
Information/Management record field that is used as the
indicator that the record is locked or checked out in
Information/Management.

The Information/Management records already contain a field
that Information/Management uses to indicate that records are
checked out. The s-word index of this field is S14EF, which
you must specify for this statement.

The PIDTs and PIPTs provided by the Problem Service
installation contain this field. HLAPI created PIDTs or data
views for database records must contain this field so that
Problem Service can use this field for propagated records. See
“Preparing the HLAPI Data Views on MVS” on page 5-1 for
instructions on how to use the PIDTs and PIPTs provided.

Note: Specify this field in the propagate data mappings, in the
third part of the Problem Service configuration file, so
that Problem Service automatically checks out
propagated records.

AssociatedDataField (Required)
Specifies the index or alias of the Information/Management field
that is to be returned for matches on the search operation.

TME 10 Information/Management: Problem Service User's Guide 4-17

3|14 uoneunbipuod InoA Buiziwoisn)

Customizing Problem Service General Settings

RetrieveBeforeUpdate (Optional)
Specifies whether Problem Service needs to perform special
processing before updating a record in the
Information/Management database. This statement is applicable
when you are using record fields that contain an
Information/Management List Processor list of data items. It
also affects how Problem Service handles the deletion of null
fields when updating the Information/Management record.

The possible values are:

yes Indicates that Problem Service will first retrieve the record
fields from the Information/Management database and then
update them.

Note: The retrieve is not performed if data mapping is
disabled.

no Indicates that Problem Service will update the record
fields directly, without retrieving them.

The default value is yes. The suggested value for Problem
Service is no.

If the record is retrieved before the update, Problem Service can
verify the fields that are already null and does not need to
perform extra delete processing to delete their contents. If the
record is not retrieved, Problem Service attempts to delete the
field contents even if the fields are already empty. This has an
impact on performance if the record contains a large number of
empty fields.

When updating an Information/Management List Processor list
with a shortened list, you can specjfgsto ensure the
Information/Management field is updated correctly. If you
specify no, you must explicitly delete unwanted list entries by
using the HLAPI separator character.

SessionRetryInterval (Required)
Specifies the time interval, in minutes, that Problem Service will
delay between attempts to start a session that has stopped for
some reason other than being shut down.

4-18 Version 1.1

Customizing Problem Service General Settings

The maximum value for the interval is 30 minutes.

SessionRetryLimit (Required)
Specifies the number of times that Problem Service will attempt
to restart a stopped session.

The maximum value for the number of retries is 10. A value of
0 directs Problem Service not to attempt session restarts.

Note: It is recommended that you initially set this value to
zero (0). After Problem Service is installed and
configured, a higher value can be set.

InputJustChangedData (Optional)
Specifies whether the caller will provide all data for a record or
just the changed (delta) data. This is important when performing
an Information/Management update (updating or propagating) to
an existing record.

yes Problem Service attempts to delete from the
Information/Management record null fields passed by
the caller. Special list processor field processing is
not performed. The caller must ensure that existing
entries in a list to be updated are deleted if
necessary. This is important when passing a
parameter list that has fewer entries than the current
list it is updating.

no Problem Service attempts to delete
Information/Management fields that are defined in
your data mappings, but were not passed by your
application or hardcoded in the data mappings.

The default value is no.

PerformDataMapping (Optional)
The possible values are:

yes The data mapping function of the gateway is used.

TME 10 Information/Management: Problem Service User's Guide 4-19

3|14 uoneunbipuod InoA Buiziwoisn)

Customizing Problem Service General Settings

no Data mapping is not performed; all data is in
Information/Management format. If updating an
Information/Management record, optional record
retrieval and null field deletion is not performed,
unless you are only passing changed (delta) data.

The default value is yes.

Customizing Problem Service Data
Mappings

The main purpose of the third part of the configuration file is to
define the data mappings that will be applied during Problem Service
operations and Information/Management transactions that share data
between Information/Management and your application's records. If
you are an end user of Problem Service, refer to your application's
documentation for help in mapping records to
Information/Management.

This part of the configuration file also contains statements that define
the data required by the Information/Management HLAPI transactions
as well as statements that enable you to customize the search criteria
for the reverse assignment operation. You must complete the
customization of this part of the configuration file before you can use
Problem Service.

The data mappings in the sample configuration file have been
customized to best fit a sample application's requirements and to find
the best match between the Information/Management database fields
and the application's record fields. The mappings are based on
uncustomized Information/Management records. If they have been
customized, the data mappings need to be adjusted accordingly. You
can disable Problem Service data mapping by specifying:

PerformDataMapping=no

4-20

Version 1.1

Customizing Problem Service Data Mappings

Mapping Your Application and

Information/Management Records
Fields within mapped records that are contained in the
Information/Management record and your application's record will be
mapped. Remember that the mappings in the sample configuration
file are based on uncustomized Information/Management records.
You can configure the mapping to:

® Alter a mapped-to Information/Management record field.
= Add a new mapped-to Information/Management record field.
= Remove a mapped-to Information/Management record field.

Information/Management list processor and multiple response fields
are supported. List processor fields contain from 1 to 19274 entries.
An example is a name field that allows a first and last name
separated by a blank. Most Information/Management fields are single
response fields.

HLAPI requires that lists and multiple responses for a field be

entered as separate strings with each response separated by a
separator character (default is a comma). The data for these fields
must be passed to Problem Service containing these separator
characters or must be manipulated by data mappings to include them.
For example, the data can be separated by blanks when passed to
Problem Service and the mappings can convert these blanks into the
separator character.

The default mappings supplied in the sample configuration file do not
contain list processor fields. The only Information/Management fields
that are multiple response fields are those customized by the user.

See “Supported Data Conversions” on page B-1 for information on
converting data and for a list of the data conversions supplied with
Problem Service.

TME 10 Information/Management: Problem Service User's Guide 4-21

3|14 uoneunbipuod InoA Buiziwoisn)

Customizing Problem Service Data Mappings

Setting Up the Data Mapping Rules

Fields can be mapped between your application's records and

Information/Management records. Using mapping statements in the
configuration file, data is mapped to produce a collection of data that
has Information/Management data keys and Information/Management
format.

For transactions, such as propagate and transfer, that put a record into

the Information/Management database, a mapping statement with a
hardcoded gateway ID (with prefix) should be included. The prefix
indicates whether the Information/Management record has been
propagated or transferred.

Prefix Definition
P Record has been propagated.
T Record has been transferred.

In the default mappings, the gateway ID is identified by the
Information/Management s-word index S1260.

Table 3 shows the uncustomized Information/Management record
fields to which the sample application record fields are mapped by
the Problem Service samples.

Table 3 (Page 1 of 3). Uncustomized Information/Management and Sample Application Recprd
Fields and Their Attributes
Uncustomized Information/Management Field | Sample Application Field
Name Index Attributes Name Attributes
Assignee S0B9C 11 alphanumeric Organization | 30 characters,
department characters including varchar
@, %, & or/
Assignee SOB5A 1-15 alphanumeric | Assignee 90 characters,
name characters including varchar
@, %, & or/
Current SOBE7 1-2 numeric Priority 1 digit (1, 2, 3, 4,
priority 5) or None
(required)
4-22 Version 1.1

Customizing Problem Service Data Mappings

Table 3 (Page 2 of 3). Uncustomized Information/Management and Sample Application Rec

Fields and Their Attributes

ord

Uncustomized Information/Management Field

Sample Application Field

Name Index Attributes Name Attributes
Date/Time SOC3E Date: external date | StartDate MM/DD/YY (YY)
opened or format; Time: hh:mm:ss (a|p)
S0C74 external time format
Description SOEOF 1-45 freeform (not
abstract (string) mapped)
Description SOEO1 Freeform text Description 240 characters,
text freeform text
Gateway ID | S1260 1-8 alphanumeric (not
characters including| mapped)
@, %, & or/
Problem SOBEE INITIAL OPEN Status Approved Closed
status CLOSED Open Working
Pending Rejected
Complete
Problem S0C09 1-8 alphameric TroubleCode | Length is 40, data
type characters including| (hierarchy can include'."
@, $, & or/ classifying
the problem)
Record ID SOCCF | 1-8 alphanumeric rnid 30 characters,
characters including varchar
@, %, & or/
Reported by | SOB59 1-15 alphanumeric | Originator 90 characters,
characters including varchar
@, %, & or/
Status text SOEO02 Freeform text Detail 1000 characters,
freeform text
Tracked by SO0B5C 1-15 alphanumeric | Modifier 90 characters (first,

characters including
@, %, & or/

middle, last)

TME 10 Information/Management:

Problem Service User's Guide

4-23

3|14 uoneInbiyuo)D INOA Bulziwoisn)

Customizing Problem Service Data Mappings

Table 3 (Page 3 of 3). Uncustomized Information/Management and Sample Application Recprd

Fields and Their Attributes

Uncustomized Information/Management Field | Sample Application Field

Name Index Attributes Name Attributes
Vendor SOF52 8 numeric TicketNum 8 numeric
PMR

number

Mapping Fields to Problem Service Operations

Not all fields are mapped for each operation being performed. In the
configuration file, specify the fields that are to be mapped for each
operation by using transactions statements. They enable fields to be
mapped to one or more Problem Service operations. Different fields
can be mapped to different operations.

Data mapping statements specified before the first occurrence of a
transactions statement apply to all operations. Otherwise, the data
mapping statements apply only to the operations specified by the
most recent transactions statement. For example:

Transactions=propagate,transfer,update;
SOB5A(15)<<translate(Assignee,", ","//");

In this example, the data mapping statement following the
transactions statement applies to the Problem Service operations:
propagate, transfer, and update.

Multiple transactions statements can be specified. When multiple
transactions statements are specified with the same keyword, the
mapping definitions for each occurrence are grouped together for that
operation; the last occurrence does not override previous occurrences.

4-24

Version 1.1

Customizing Problem Service Data Mappings

Understanding the Syntax of Data Mapping Statements
Data mapping statements identify the data to be mapped, how to
transform the data, and where to put the data. The direction of the
mapping is indicated by double less than symbed3 6r double
greater than symbols-%):

<< Specifies that the mapping applies to data flowing from your
application's database to the Information/Management database.
The target of the mapping is the operand to the left okthe

>> Specifies that the mapping applies to data flowing from the
Information/Management database to your application's
database. The target of the mapping is the operand to the right
of the >>.

The mapping target operand is a field name, suffixed by a length
enclosed in parentheses. Field names appearing to the left of the
or >> are assumed to be Information/Management field names, and
field names appearing to the right of the or >> are assumed to be
your application's field names. An Information/Management field
name can be one of the following:

B An alias name as defined in a program alias table (PALT).

m An S followed by an s-word index as defined in the PIDT field
PIDTSYMB.

® A P followed by a prefix index as defined in the PIDT field
PIDTSYMB.

The source for the mapping is a combination of literal strings, field
names, and user exit specifications. Data associated with source field
names, and data returned from user exit calls, is substituted by the
mapping facility. User exits are specified as user exit name, followed
by a comma delimited argument list enclosed in parentheses. Each of
these arguments can be a combination of integers, literal strings, field
names, and user exit specifications. See “Supported Data
Conversions” on page B-1 for information on data conversions and
user exits.

The syntax for a mapping into an Information/Management field is as
follows:

TME 10 Information/Management: Problem Service User's Guide 4-25

3|14 uoneunbipuod InoA Buiziwoisn)

Customizing Problem Service Data Mappings

IMFieldName(length) << Titeral_string ;
subroutineName(parml, parm2, ...)
your_application's_FieldName
[combination of the above]

Whereparmn can be:

integer

Titeral_string
your_application's_FieldName
subroutineName (parml, parm2, ...)

The following is an example of a mapping into your application's
field:

literal_string >> your_application's_FieldName(length);
subroutineName(parml, parm2, ...)
IMFieldName

[combination of the above]

Whereparmn can be:

integer

Titeral_string

IMFieldName

subroutineName (parml, parm2, ...)

Syntax Examples: The following are some examples of data
mappings in both directions:

u SOEOF<<"This is a description abstract.";

For appropriate transaction types (for example, transfer), the

Information/Management field defined in the PIDT as SOEOF is

assigned the valugnis is a description abstract.
u SOE02>>detail (1000);

For appropriate transaction types (for example, retrieve), the
data in the Information/Management field defined in the PIDT
as SOEOQ2 is assigned to your application's field named detail.
The target field is truncated or padded with blanks to 1000
bytes.

L] "@"SOB59>>0riginator;

4-26

Version 1.1

Customizing Problem Service Data Mappings

For appropriate transaction types (for example, retrieve), an @
is added as a prefix to the data in the Information/Management
field defined in the PIDT as SOB59. The result of this operation
is then assigned to your application's field named Originator.

Changing the Data Mapping Rules
You can change data mappings rules by adding, modifying, or
deleting mapping statements in the configuration file.

Adding a Field: When a new field is added, a new mapping
statement must be added to the configuration file if the field is to be
shared with Information/Management. All necessary conversions must
be specified here. The Information/Management PIDTs and PIPTs
must be rebuilt or data model records modified to allow Problem
Service to process the new field in Information/Management.

Changing a Field: If a field in your application's record is
changed, it might be necessary to change the mapping statements by:

® Converting it in a different way
= Mapping it into a different Information/Management field
® Changing the operating characteristics of Problem Service

Information/Management PIDTs and PIPTs might have to be rebuilt
to allow the Information/Management HLAPI to correctly validate

data sent by Problem Service. Keep the Problem Service and
Information/Management data models as similar as possible to
minimize the data conversions needed to share data between the two
databases.

Removing a Field: When a field in your application's record is
removed, check the configuration file to ensure that there are no
mapping statements mapping Information/Management fields into the
removed field. If there are, these mapping statements need to be
removed from the configuration file.

TME 10 Information/Management: Problem Service User's Guide 4-27

3|14 uoneunbipuod InoA Buiziwoisn)

Customizing Problem Service Data Mappings

Sample Configuration File Descriptions
In the sample configuration file, values have been included that you
need not change for a basic configuration. It assumes that
Information/Management records have not been customized. Values
that youmust provide are clearly indicated by bold characters or
guestion mark (?) characters in the following descriptions.

Data mappings should be defined for all fields that are to be shared
between your application and Information/Management records.

Defining Specific Record Types
The part of the configuration file shown in Figure 4 on page 4-29
contains statements needed by the Information/Management HLAPI.
The statement descriptions are:

4-28 Version 1.1

Customizing Problem Service Data Mappings

//**
//

// Define information to use for specific record types including data

// required by the Information/Management HLAPI and data mappings for

// data sharing between the Tocal application and Information/Management.

//

//**

//**
//

// Record Type: Helpdeskapp

//

// Define information for a Helpdeskapp record. Helpdeskapp

// records map to Information/Management records.

//

//**

RecordType

[mmm e e e e
// String that identifies the record type.

[= e s
RecordTypeValue="Helpdeskapp"

[mmm e e e

// Key of field in helpdesk record that contains the

// Information/Management RNID.

[/ = mm e s
ForeignIMRNIDField="rnid"

S
// Key of field (PIDTSYMB value or alias name) that contains the identifier
// of the helpdesk record - only used by Reverse Assignment and Monitor.

N —
IMForeignRNIDField="S0OF52"

Figure 4. Sample Configuration File Record Type Statements

RecordTypeValue="Helpdeskapp"
The string that identifies the record type. Identify the record
type as the appropriate record type for your application.

ForeignIMRNIDField= "rnid "
The name of the field in your application record that contains
the Information/Management identifier.

TME 10 Information/Management: Problem Service User's Guide 4-29

3|14 uoneInbiyuo)D INOA Bulziwoisn)

Customizing Problem Service Data Mappings

IMForeignRNIDField= "SOF52'
The Information/Management field (PIDTSYMB value or alias
name) that contains the identifier of your application record.
This is only used by the reverse assignment and monitor
operations.

Another value that can be defined, but which has not been included
in the sample configuration file, is:

AliasTable
This defines the value for the Information/Management HLAPI
control PDB ALIAS_TABLE. When this statement is specified,
the ALIAS_TABLE control PDB is specified for all
Information/Management HLAPI create, update, retrieve, and
inquiry transactions performed for this record type.

Defining API PIDT Names
The required Information/Management APl PIDT names are specified
by the following configuration file statements:

CreateDataView="P:BLMYGPC"
UpdateDataView="P:BLMYGPU"
DisplayDataView="P:BLMYGPR"
SearchDataView="P:BLGYPRI";

They specify the set of Information/Management PIDTs or data view
record names to be used with the record type field value (see the
RecordTypeValue keyword). These statements can be specified more
than one time in the configuration file, but are locally mutually
inclusive (all must appear wherever one appears). These statements
must immediately follow a RecordTypeValue statement.

The data value for these PIDT statements must begin with a P:, or a
D:. P: indicates that the rest of the value is a PIDT name (for
example, P:BLGYPRC). D: indicates that the rest of the value is a
data view record ID.

CreateDataView="P:BLMYGPC "
This is the name of the Problem Service sample PIDT that
creates Information/Management records.

4-30 Version 1.1

Customizing Problem Service Data Mappings

UpdateDataView="P:BLMYGPU "
This is the name of the Problem Service sample PIDT that
updates Information/Management records.

DisplayDataView="P:BLMYGPR "
This is the name of the Problem Service sample PIDT that
retrieves Information/Management records.

SearchDataView='P:BLGYPRI "
This is the name of the Problem Service sample inquiry PIDT
table used in Information/Management.

3|14 uoneunbipuod InoA Buiziwoisn)

Defining Freeform Text Fields
The following sample configuration file statement defines the
Information/Management fields that are freeform text together with
their associated line widths:

IMText Width=60 Fields="SOE®1", "SOEG2";

In the example, the Information/Management fields SOEO1 and
SOEO02 are freeform text fields with a line width of 60 characters.

The application's record text is broken up into segments using the
width value with each segment becoming a line of text in the
Information/Management record. The Problem Service transfer,
propagate, and update operations use the value specified for width to
break up the application's input data into Information/Management
freeform text lines of this width. The retrieve operation uses the
maximum width for the record type as the width to retrieve, and this
value then becomes the value of the Information/Management HLAPI
control PDB TEXT_UNITS.

Information/Management freeform text lines are truncated or padded
with blanks to the width specified.

Defining the ReverseArguments Statement
One or more structured or freeform search arguments can be specified
for the reverse assignment operation. If no arguments are specified,
reverse assignment will not be performed. The following is a sample
configuration file ReverseArguments statement:

TME 10 Information/Management: Problem Service User's Guide 4-31

Customizing Problem Service Data Mappings

becomes:
ReverseArguments SOB5A="SMITH";

This means that all records with the field SOB5A containing the value
SMITH will be reverse assigned. This is an example of a structured
search argument. If a search argument is specified by itself, without
an associated field name, it is a freeform search.

If more than one search argument is specified, all conditions must be
satisfied for the record to be reverse assigned. Arguments can include
a Boolean operator as the first character (valid operators are those
allowed by the Information/Management HLAPI for freeform search
arguments). In the following example, all records for which the

SOB5A field contains SMITH and not reported by JONES will be
reverse assigned.

ReverseArguments SOB5A="SMITH" "&PERS/JONES";

Reverse assignment can act against records transferred by other
gateways, but not against records transferred by this gateway. When a
transferred record is reverse assigned, the originating Problem Service
stops monitoring it for changes. Reverse assignment does not act
against records reverse assigned by another gateway. It checks the
value in the GatewaylD field. It also ignores records that have been
checked out.

ReverseArguments constructs the total search argument using the
following information:

= ReverseArguments structured arguments

» Predefined arguments (for example, not transferred by this
gateway)

= ReverseArguments freeform arguments

4-32 Version 1.1

Customizing Problem Service Data Mappings

Mapping Records from Your Application to

Information/Management
The mappings as shown in Figure 5 are defined for the Problem
Service propagate, transfer, and update operations as specified in the
transactions statement. Your application's data is mapped to
Information/Management data through the use of user exits. For
information, on these user exits, refer to “Specifying User Exits for
Conversions” on page B-4.

Transactions=propagate,transfer,update;
SOB5A(15)<<translate(Assignee,", ","//");
SOBIC(11)<<translate(Organization,", ","//");
SOB5C(15)<<translate(Modifier,", ","//");
SOBE7<<change(Priority, "None","");
SOC3E<<toIMDate(words(StartDate,1,1));
S0C74<<toIMTime(words (StartDate,2));
SOBEE<<translateWord(Status,"Approved","OPEN",

"Pending","OPEN",
"Working","OPEN",
"Complete","CLOSED",
"Rejected","CLOSED");
S0C09(8)<<translate(TroubleCode,".","/");
SOB59(15)<<nullDefault(translate(Originator,", ","//"),
"Helpdeskapp") ;

Figure 5. Propagate, Transfer, and Update Operations Mappings

Where:

SOB5A(15k<translate(Assignee, ","/I");
All commas and spaces found within the value in the
application'sAssigneefield are converted to slashes and the
value is truncated to 15 characters.

SO0B9C(11k<translate(Organization,", ","//");
All commas and spaces found within the value in the
application'sOrganization field are converted to slashes and the
value is truncated to 11 characters.

SOB5C(15k<translate(Modifier, ", ","//"™);
All commas and spaces found within the value in the
application'sModifier field are converted to slashes and the
value is truncated to 15 characters.

TME 10 Information/Management: Problem Service User's Guide 4-33

3|14 uoneInbiyuo)D INOA Bulziwoisn)

Customizing Problem Service Data Mappings

SOBE7%<<change(Priority,"None","");
When the application'Briority field contains the value None,
this is converted to a null string.

SO0C3E<<tolMDate(words(StartDate,1,1));
This converts the first value (date) in the application's
StartDate field from the format mm/dd/yyyy to the format
mm/ddlyy.

SO0C74<tolMTime(words(StartDate, 2));
This converts the second value (time) in the application's
StartDate field from the format hh:mm:ss am or hh:mm:ss pm
to the format hh:mm, by dropping the seconds.

SOBEE<<translateWord(Status,"Approved","OPEN",
"Pending","OPEN", "Working ","OPEN",
"Complete","CLOSED", "Rejected',"CLOSED");

® |f the value in the applicationStatus field is Approved,
Pending or Working, convert it toOPEN.

m |f the value in the applicationStatus field is Complete
or Rejected convert it toCLOSED.

S0CO09(8k<translate(TroubleCode"." ,"/");
All periods found within the value in the application's
TroubleCode field are converted to slashes and the value is
truncated to 8 characters.

S0B59(15x<nullDefault(translate(Originator, ", ","//"),
"Helpdeskapp");
All commas and spaces found within the value in your
application'sOriginator field are converted to slashes and the
value is truncated to 15 characters. If the Originator field is
empty, a value of Helpdeskapp is mapped.

The following mappings are defined for propagate and transfer as
specified in the transactions statement. No conversions are performed
on the application's fields before being mapped.

4-34

Version 1.1

Customizing Problem Service Data Mappings

Transactions=propagate,transfer;
SOEOQl<<Description;
00EQ2<<Detail;
SOF52<<TicketNum;

Figure 6. Propagate and Transfer Transaction Mappings

The following mappings are defined for propagate as specified in the
transactions statement.

Transactions=propagate;
SOEOQF<<"PROPAGATED RECORD FROM HELPDESKAPP";

// 7?2227 = GatewayID. Indicates this record was propagated
// by this gateway.

3|14 uoneInbiyuo)D INOA Bulziwoisn)

Figure 7. Propagate Transaction Mappings

Where:

SOEOR<"PROPAGATED RECORD FROM HELPDESKAPP ",
"PROPAGATED RECORD FROM HELPDESKAPRs
hardcoded into the Information/Management field.

checked out, propagated records can only be updated by this
gateway.

The following mappings are defined for the transfer operation as
specified in the transactions statement. In this case no conversions are
made before the mappings.

Transactions=transfer;
SOEOF<<"TRANSFERRED RECORD FROM HELPDESKAPP";

Figure 8. Transfer Transaction Mappings

TME 10 Information/Management: Problem Service User's Guide 4-35

Customizing Problem Service Data Mappings

Where:

SOEOR<"TRANSFERRED RECORD FROM HELPDESKAPP™",
"TRANSFERRED RECORD FROM HELPDESKAPRs
hardcoded into the Information/Management field.

Indicates that the record was transferred by the gateway
identified by the GatewaylID value specified in substitution for

Mapping Records from Information/Management to

Your Application
The following mappings are defined for the Retrieve transaction as
specified in the transactions statement. Information/Management data
is mapped to your application's data.

Transactions=retrieve;
translateWord(change(nullDefault(SOB5A, "None"),"//",", ","/",","),

"NONE", "None")>>Assignee;
SOEO1>>Description(240);
translateWord(translate(nullDefault(SOB9C,"None"),"/"," "),

"ORGANIZATIO", "Organization",

"NONE", "None")>>0rganization;
nullDefault(stripLeading(fromIMPriority(SOBE7),"0"),"None")>>Priority;
translateWord(change(S0OB59,"//",", ","/",", "),

"NONE", "None")>>0riginator;
translateWord(SOBEE,"INITIAL","Open",

"OPEN","Open", "CLOSED","Closed")>>Status;
translateWord(change(null1Default(SOB5C, "None"),"//",", ","/",", "),

"NONE", "None")>>Modifier;
translateWord(nul1Default(S0CO9,"Unknown"),

"APPLICAT","Applications", "HARDWARE","Hardware",

"NETWORKS", "Networks", "SOFTWARE","Software",

"UNKNOWN", "Unknown") >> TroubleCode;
SOE02>>Detail (1000);

SOCA9>>Resource;
fromIMDate(SOC3E)" "translateWord(SOC74,"","","x",SOC74":00")>>StartDate;
SOCCF>>rnid;

Figure 9. Retrieve Transaction Mappings

Where;

4-36 Version 1.1

Customizing Problem Service Data Mappings

translateWord(change(nullDefault(SOB5A)'None"),
e, "NONE","None")>>Assignee;
When theSOB5A field is empty, a value ofNone' is mapped.
If its value is"NONE", it is converted td'Non€", and all
slashes are converted to commas, before being mapped into the
application'sAssigneefield.

SOEO®>Description(240);
The first 240 characters of the Information/Managen8
field are mapped into the applicatiogscription field.

translateWord(translate(nullDefault(SOB9C,"None"),"/"," ™),
"ORGANIZATIO ","Organization","NONE","None")
>>Q0rganization;
When theSOB9Cfield is empty, a value ofNone' is mapped.
"ORGANIZATIO" is converted td'Organizatiori and
"NONE" is converted td'None'. All slashes are converted to
spaces before being mapped into the applicatiorganization
field.

nullDefault(stripLeading(fromIMPriority(SOBE7), "0"),"None")
>>Priority;
When the value in th80BE7field is between 0 and 5, it
remains unaltered. Otherwise a value'dt is mapped. Leading
zeros are removed and if the field is empty, the vaNiene' is
mapped into the applicatioriority field.

translateWord(change(soB59y/",", ","/",", "),
"NONE","None")>>Originator;
If the value of theS0B59field is "NONE", it is converted to
"None". All slashes are converted to commas before being
mapped into the application@riginator field.

translateWord(SOBEE,"INITIAL ","Open", "OPEN","Open",
"CLOSED","Closed")>>Status;
The value "INITIAL" in the Information/ManagemeSOBEE
field is changed to "Open", the value "OPEN" to "Open", and
the value "CLOSED" to "Closed" before being mapped into the
application'sStatus field.

TME 10 Information/Management: Problem Service User's Guide 4-37

3|14 uoneunbipuod InoA Buiziwoisn)

Customizing Problem Service Data Mappings

translateWord(change(nullDefault(SOB5CYNone"), "//™,",","/",

"), "NONE","Non€e") >>Modifier;

When theSOB5Cfield is empty, a value of "None" is mapped.
If its value is "NONE", it is converted to "None". All slashes
are converted to commas before being mapped into the
application'sModifier field.

translateWord(nullDefault(SOC09,"Unknown"),

"APPLICAT","Applications",

"HARDWARE","Hardware", "NETWORKS","Networks",
"SOFTWARE","Software", "UNKNOWN","Unknown")
>>TroubleCode;

When there is a null value in the Information/Management
S0CO09field, it is replaced with the hardcoded value of
"Unknown". All occurrences of "APPLICAT" in the field are
replaced by "Applications”, "HARDWARE" is replaced with
"Hardware, "NETWORKS" with "Networks", "SOFTWARE"
with "Software", and "UNKNOWN" with "Unknown".

SOE02>Detail(1000);

The first 1000 characters of the Information/Managens€it02
field are mapped into the applicatiobstail field

SO0CA9>->Resource;

The value in theSOCA9 field is mapped directly into the
application'sResourcefield without being converted.

fromIMDate(SOC3E)" "translateWord(SOC74;"",

n et S0C74':00")>>StartDate;

When the Information/Management time fiel0OC79 is

empty, it remains empty. Otherwise, seconds are added (:00) to
the time already specified in hours and minutes (hh:mm). The
Information/Management date fiel&{C3E is converted to
mm/dd/yyyy format, and the time is appended to it before it is
mapped into the applicationStartDate field.

SOCCPR>>rnid;

The value in thesOCCF field is mapped directly into the
application'srnid field without being converted.

4-38

Version 1.1

Completing Problem Service
Configuration

This chapter explains how to complete the configuration of Problem
Service.

Preparing the HLAPI Data Views on MVS

To define all the Information/Management record fields that Problem
Service needs to access when performing the Problem Service
operations, you need new HLAPI PIDTs and PIPTs or
Information/Management data model records.

The HLAPI PIDTs that you need for the database records are create,
update, and retrieve. Problem Service requires two fields to be
defined in the HLAPI PIDTs or the data model's data view records:

® The create, update, and retrieve PIDTs or data view records
must contain the Information/Management field that you specify
in the GatewaylIDField statement in the Problem Service
configuration file. This field must be present in all
Information/Management records processed by Problem Service.

Note: The field specified in the GatewaylIDField statement, in
the Problem Service sample configuration file, is a new
Information/Management record field. It has been
defined in the provided PIDTs with
Information/Management s-word index S1260 and
p-word index PO4EOQ.

TME 10 Information/Management: Problem Service User's Guide 5-1

uoneanbiyuod aylr Bunsjdwo)d

Preparing the HLAPI Data Views on MVS

® The create PIDT or data view record must also contain the
Information/Management field specified in the IMCheckoutField
statement in the Problem Service configuration. This is
necessary for the propagate operation to always check out the
propagated records.

How to proceed to prepare the new HLAPI PIDTs and PIPTs
depends on whether the Information/Management records you are
using with Problem Service are:

B Uncustomized (See “Preparing PIDTs and PIPTs for
Uncustomized Records” for instructions on how to prepare the
HLAPI tables.)

m Customized (See “Preparing PIDTs and PIPTs for Customized
Records” on page 5-4 for information to assist you in preparing
the HLAPI tables.)

To prepare the HLAPI tables on MVS you need the assistance of the
Information/Management administrator.

Preparing PIDTs and PIPTs for Uncustomized Records

The Problem Service installation provides you with new PIDTs and
PIPTs. These PIDTs and PIPTs have been customized and built to
reflect the Information/Management field specifications used in the
sample Problem Service configuration file and that match the
uncustomized Information/Management record fields. They contain
the fields of uncustomized Information/Management records as well
as the two Information/Management fields required by Problem
Service (GatewaylIDField and IMCheckoutField).

The files containing these PIDTs and PIPTs are listed in Table 4 on
page 5-3. These files are stored in the
/$INST_DIR/../include/$INTERP/InfoMgt/InfoGateway directory
unless you specified a different directory for header files during the
installation of Problem Service.

5-2

Version 1.1

Preparing the HLAPI Data Views on MVS

Table 4. Information/Management PIDTs and PIPTs Shipped with Problem
Service for Uncustomized Records
File
Filename Description Format
BLMYGPC Create PIDT Binary
BLMYGPCP Create PIPT Binary
BLMYGPR Retrieve PIDT Binary
BLMYGPRP Retrieve PIPT Binary
BLMYGPU Update PIDT Binary
BLMYGPUP Update PIPT Binary

To use the provided HLAPI tables you need the assistance of the
Information/Management administrator on MVS.

You must put these PIDTs and PIPTs in a report format table data
set. This data set is a partitioned data set (PDS) on MVS with a
record format of fixed block, a record length of 80, and a block size
of 6160. For more information about defining a report format table
data set, refer to thaformation/Management Planning and
Installation Guide and Reference

To transfer the PIDTs and PIPTs to MVS, you can use, for example,
the File Transfer Protocoftp command) method if your workstation
has a TCP/IP link to the MVS host. After establishing an ftp
connection to the MVS host, issue the subcomntgpel binary to
ensure that the tables are transferred in binary format. Ugatthe
subcommand to store the tables in the PDS.

The PIDT and PIPT data sets must be allocated to the DDNAME that
is associated with the Information/Management report format tables

or referenced in the Information/Management session member used to
initialize the API session.

uoneanbiyuod aylr Bunsjdwo)d

For more information on how Information/Management uses PIDTs
and PIPTs, refer to theformation/Management Application Program
Interface Guide

TME 10 Information/Management: Problem Service User's Guide 5-3

Preparing the HLAPI Data Views on MVS

Preparing PIDTs and PIPTs for Customized Records

Use the MVS system where Information/Management is running to
create new PIDTs and PIPTs. Customizing these tables requires
experience with the Information/Management product and knowledge
of how records are customized in Information/Management. If you do
not have experience with this product, you need the direct assistance
of the Information/Management administrator to customize these
tables on MVS. The Information/Management administrator will also
have the necessary information about the characteristics of the fields
of the customized records in Information/Management.

Customizing HLAPI Database Tables

This section provides you with a general overview on how:

® To customize the HLAPI tables

= To configure Information/Management

® To use data model records instead of PIDTs and PIPTs

Information/Management provides you with an MVS utility, called
BLGUTS, that you use to build each customized PIDT and
corresponding PIPT in Information/Management. The BLGUTS8 utility
requires the following input:

® |nput statements that specify the record fields for the PIDT.

» Information/Management assisted entry panels (in offloaded
format using utility BLGUTG6F) for the fields specified in the
PIDT.

» Information/Management dictionary entries defining the
characteristics of the fields specified in the PIDT.

Note: For more information on assisted entry panels and the
Information/Management dictionary, refer to the
Information/Management Panel Maodification Facility
Guide and Reference

The BLGUTS utility generates PIDTs and PIPTs that HLAPI uses for
your application. For detailed descriptions on customizing HLAPI
tables, configuring Information/Management, using data model

5-4

Version 1.1

Preparing the HLAPI Data Views on MVS

records, and the BLGUTS8 utility, refer to the
Information/Management Application Program Interface Guide

The Problem Service installation provides you with sample files,
which you can use as examples when you are preparing the input
required by the BLGUTS8 utility to build your customized HLAPI
tables. These files are stored in the
/S$INST_DIR/../include/$INTERP/InfoMgt/InfoGateway directory
unless you specified a different directory for header files during the
installation of Problem Service.

This section describes how you can use the provided sample files
during the customization process. The sample files are listed in
Table 5.

Table 5 (Page 1 of 2). Information/Management Sample Files To Use When Building Custonhﬂzed

PIDTs and PIPTs

Filename

Description File Format

BLMYGPCS

Sample file providing an example of the input ASCII
statements for the create PIDT for
uncustomized database records. These
statements include specifications for the
Problem Service required fields (the
Information/Management fields specified in
the GatewaylIDField and IMCheckoutField
statements in the sample Problem Service
configuration file).

BLMYGPRS

Sample file providing an example of the inpyt ASCII
statements for the retrieve PIDT for
uncustomized database records. These
statements include the specification for the
Problem Service required field (the
Information/Management field specified in the
GatewaylDField statement in the sample
Problem Service configuration file).

1%

TME 10 Information/Management: Problem Service User's Guide 5-5

uoneanbiyuod aylr Bunsjdwo)d

Preparing the HLAPI Data Views on MVS

Table 5 (Page 2 of 2). Information/Management Sample Files To Use When Building Custoized
PIDTs and PIPTs

Filename Description File Format

BLMYGPUS Sample file providing an example of the input ASCII
statements for the update PIDT for
uncustomized Information/Management
records. The statements include the
specification for the Problem Service required
field (the Information/Management field
specified in the GatewaylIDField statement in
the sample Problem Service configuration
file).

BLMYGGID Sample assisted entry panel in offloaded Binary
format. It defines the characteristics of the
field specified in the GatewayIDField

statement in the Problem Service configuratipn
file.

BLMYDICT Partial Information/Management dictionary Binary
that defines a dictionary entry for the
GatewaylDField using s-word index S1260
and p-word index PO4EO.

The following guidelines describe how you can use the sample files
when you are preparing the input for the BLGUTS8 utility:

= When you are preparing the PIDT input statements for the
various database record PIDTs, include the input statements to
specify the two fields required by Problem Service. Use the
sample filesBLMYGPCS, BLMYGPUS, andBLMYGPRS to
see how to specify the information for these fields. Table 5 on
page 5-5 provides a description of the contents of these files.

= When you are preparing the assisted entry panels for the fields
in the PIDTSs, you also need to provide an assisted entry panel
for the field specified in the GatewayIDField statement in the
Problem Service configuration file.

If you are using this field as specified in the sample
configuration file, you can use the sample assisted entry panel

5-6 Version 1.1

Preparing the HLAPI Data Views on MVS

provided in fileBLMYGGID . If you specified a different field,
you need to define an assisted entry panel for that field.

If you want to use the sample assisted entry panel:

e Transfer theBLMYGGID file to the
Information/Management system on MVS and place it in
the Information/Management panel PDS that will be used
by the BLGUTS8 utility.

e Ensure that the input statements of the PIDTs you are
creating associate this panel to the GatewaylDField
statement.

= When you are preparing the Information/Management
dictionary, remember to include a dictionary entry for the field
specified in the GatewaylIDField statement in the Problem
Service configuration file.

When you use this field as specified in the sample configuration
file, you can use the partial Information/Management dictionary
provided in theBLMYDICT file. The Information/Management
product provides a utility called BLGUTS5 that enables you to
load a partial dictionary into the Information/Management
dictionary.

To use thaBLMYDICT file:

1. Transfer thBLMYDICT file to the
Information/Management system on MVS and place it in a
data set that can be used by the BLGUT5 utility.

2. Use the BLGUTS uitility to load this partial dictionary into
the Information/Management dictionary that will be used
by the BLGUTS8 utility. For information on how to use the
BLGUTS utility refer to thelnformation/Management
Operation and Maintenance Reference

TME 10 Information/Management: Problem Service User's Guide 5-7

uoneanbiyuod aylr Bunsjdwo)d

Updating the Services File

Updating the Services File

After you completethe customizatiorof the ProblemService
configurationfile, updatethe servicesfile on your workstationto
reflect the settingsyou specifiedin the configurationfile.

AIX Workstation /etc/services File

In the /etc/servicesfile, definethe entry for the servicenameyou
specifiedin the InfoGatewayServicastatementnd associatean
availableTCP/IP port numberfor this servicename.

For example,if you customizedhe statementvith the following
servicename:

InfoGatewayService="infogateway";

The entry in the /etc/servicesfile would be asfollows:

infogateway 1453/tcp

Selecta TCP/IP port number(for example, 1453 for the service
namethatis uniqgueandavailableon your system.

Windows NT Workstation Services File

In your IP servicesfile, definethe entry for the servicenameyou
specifiedin the InfoGatewayServicatatementind associatean
availableTCP/IP port numberfor this servicename.

For example,if you customizedthe statementvith the following
servicename:

InfoGatewayService="infogateway";
The entryin the servicesfile would be asfollows:
infogateway 1453/tcp

Selecta TCP/IP port number(for example, 1453 for the service
namethatis uniqueandavailableon your system.

5-8

Version 1.1

Running Problem Service

Starting

ProblemServicecan be startedafter installationand configurationis
complete,and HLAPI hasbeeninvoked successfully.

Problem Service

For AIX, ProblemServiceis startedby runningthe

gw_nxd executabldile. Otherdaemonsessionsre automatically
startedby the baseprocessaccordingto what was specifiedfor the
sessionstatementsn the ProblemServiceconfigurationfile.

You canstartWindowsNT systemservicesby openingthe control
panelfolder and double-clickingon the servicesicon. The nameuwiill
be displayedin the servicedlist asTME 10 INFO Gateway. Click on this
name,thenclick on the startbutton.

You muststart ProblemServicefrom an administratoruserID in the
Tivoli ManagemenRegion(TMR) whereProblemServiceis
installedto usereverseassignmenand monitor operations.

Stopping Problem Service

For AIX, usethe shutdown ProblemServicefunction or

locatethe procesdD of the main ProblemServiceprocessanduse
thekill commandto stopthe daemon.The main processwill stopthe
subprocesses$:or more information on the shutdownfunction, refer
to “Shutdown” on page A-8.

TME 10 Information/Management: Problem Service User's Guide 6-1

99IAI8S Wa|qo.id Buluuny

Stopping Problem Service

You can stop Windows NT system services by opening the control
panel folder and double-clicking on the services icon. The name will
be displayed in the services list & 10 INFO Gateway. Click on this
name, then click on the stop button.

Logging with Problem Service

Problem Service has the ability to write error, trace, and

informational messages to a log file. There are several characteristics
of the logging function that can be customized. A list of these, along
with their default values, are:

Log name This is the name of the log file. The default log file
name used is infogw.log and is created in the current
directory.

Log size This is the maximum size of the log file. The default
log size is set to 250000 bytes. Upon reaching this
size the current active log is archived and a new log
file is started. One archived backup log is maintained
and uses the name of the log file with .bak
concatenated to the end. If the default log name is
used, the backup file would have the name
infogw.log.bak.

Archiving takes place by removing the existing
backup file and then renaming the current active log
file to the backup name. The new log file is then
created.

Log state This is the state of the logger (ON or OFF). The
logger is ON by default.

Log level This is the level of logging to be performed. The
logger has three levels of logging:

Level 1 Only messages listed as errors are written
to the log file

Level 2 Error messages plus trace messages are
written to the log file

6-2 Version 1.1

Logging with Problem Service

Level 3 Error, trace, and informational messages
are written to the log file

The log level is set to level 3 by default, which causes
all messages to be logged.

The logging characteristics can be customized by setting and
exporting the following environment variables:

GWLOGNAME Specifies the name of the log file.

GWLOGSIZE Specifies the maximum size of the log file in
bytes. The smallest value that can be specified
is 5000 bytes. A smaller value results in 5000
bytes being used as the maximum size.

GWLOGSTATE Specifies the state of the logger. The logger is
disabled if the value of this variable is set to
OFF. Other values cause the logger to be ON.

GWLOGLEVEL Sets the level of logging. The valid values are
1, 2, or 3. A value less than 1 causes 1 to be
used as the level and a value more than 3
causes 3 to be used as the level.

The environment variables must be exported from a parent session of
the one used by Problem Service.

Each output to the log file will contain the following information:
Date Time PID MessagelD MessageText

An example output to the log is:

01/10/97 16:32:35 18454 APAGMO34I Process configuration file blymgc.cfg.
01/10/97 16:32:38 3610 APAGTO03I Gateway Reverse Assignment process started
01/10/97 16:32:38 3610 APAGT028I Connect to Information/Management

This log file, along with the HLAPI client log and the HLAPI client
probe log, can be useful in identifying and locating problems.
Information about the two HLAPI client log files can be found in the
Information/Management Client Installation and User's Guide

TME 10 Information/Management: Problem Service User's Guide 6-3

99IAI8S Wa|qo.id Buluuny

Logging with Problem Service

Version 1.1

Appendix A. Application
Programming Information

This appendix is for the programmer who is developing an
application that will invoke the Problem Service operations. Refer to
the TME 10 Application Development Environment (TME 10 ADE)
publications for more information about developing an application in
the TME environment.

Copying the Samples and Files

Copy the samples and files you need to compile calls to the APIs.
m Create a test directory (exampleome/userid/tivtes).
® Change directory to the new test directory.

B Copy the files into the new test directory. The files are in
$INST_DIR/../include/$INTERP/InfoMgt/InfoGateway unless
you specified a different directory for header files during the
installation of Problem Service.

Compiling and Link Editing Your Code

Compile and link edit your code with the Problem Service APIs.
® Change to your test directory.
» Edit the Makefile for your setup:

e ChangeTOP (directory where TME 10 is installed)

TME 10 Information/Management: Problem Service User's Guide A-1

9Juslajoy

Compiling and Link Editing Your Code

ChangeHERE (your testdirectory)

For WindowsNT only, changeTOOLROOT (your
compilerdirectory)

Changereferencedo tester,tester.ciandtester.oto the
appropriatenamesfor your applicationif you havewritten
your own programthat usesthe ProblemService
operations.

Changethe compilercommandsand librariesto thosefor
your compiler. For AlX the sampleMakefile

usesthe xIC compilerandthe IBMcset libraries. For
Windows NT, the sampletester.makusesthe IBM
VisualAgefor C++ for Windows compiler.

" For AIX workstations,enterin -s
/home/userid/tivtest tivoli to setup a symboliclink usedby
the makeprogramto find the files you copied.

® Compileandlink edit your program.The sampleC program,

tester.c,usesthe gnu make (gmake)program.For AIX

workstationsente gmake test to compileandlink the
tester.cprogramusingthe gnu makeprogram.For Windows NT
workstationsentermake -f tester.mak tester.exe to compile
andlink the tester.cprogramusing the gnu makeprogram.

Referto the TME 10 Application DevelopmentEnvironment
publicationsfor more informationaboutcreatingan applicationin the
TME 10 environment.

Interface Definition Language Data Types

The following are the interfacedefinition language(IDL) datatypes
usedby the ProblemServiceAPI:

string

Null terminatedcharacteistring

unsignedlong 32 bit integer

sequence A onedimensionalarray of elementsThe Common

ObjectRequesBroker Architecture(CORBA)
specificationdefinesthe sequencealatatype for
operationghat acceptor returna setof data

A-2

Version 1.1

Interface Definition Language Data Types

structures. TME 10 provides a library of functions
for manipulating sequences.

Following is an example of a sequence that can be
used in coding Problem Service operations:
struct GWAttr {

string name; // name of data field
string value; // value of data field

}s
typedef sequence <GWAttr>GWAttrList;

The GWAUtrList sequence contains a list of elements
that represent a record. Each element has a name and
value. The name identifies the data field name and

the value contains the value associated with the data
field.

Coding Examples for Problem Service
Operations

The following code fragments demonstrate how to code the Problem
Service operations in an application program. For more detail and to
see each example in context, refer to the Bash shell script examples
in the samplefile and the C code examples in tiester.cfile that

are shipped with Problem Service.

Checkin

Script example:

0ID="wlookup -r InfoMgtGW Info_GW®
idlcall $0ID InfoGW::checkin \"00000311\"

C example:

TME 10 Information/Management: Problem Service User's Guide A-3

9Juslajoy

Coding Examples for Problem Service Operations

/***/

/* Variables */
/***/
Environment ev;

Object oid = OBJECT_NIL;

/***/
/* Get the object id */
/***/
oid = dir_lookup_instance("InfoMgtGW", "Info GW");

/***/
/* Perform the transaction */
/***/

t_InfoGW_checkin(oid, &ev, Trans_none, "00000311");

Checkout
Script example:

0ID="wlookup -r InfoMgtGW Info_GW®

idlcall $0ID InfoGW::checkout \"00000311\"

C example:
/***/
/* Variables */
/***/
Environment ev;
Object oid = OBJECT_NIL;

/***/
/* Get the object id */
/***/
oid = dir_lookup_instance("InfoMgtGW", "Info_GW");

/***/
/* Perform the transaction */
/***/

t_InfoGW_checkout(oid, &ev, Trans_none, "00000311");

Version 1.1

Coding Examples for Problem Service Operations

Delete
Script example:

0ID="wlookup -r InfoMgtGW Info_GW®
idlcall $0ID InfoGW::delete \"00000311\"

C example:
/***/
/* Variables */
/***/
Environment ev;
Object oid = OBJECT_NIL;

/***/

/* Get the object id x/

/***/

oid = dir_lookup_instance("InfoMgtGW", "Info GW");

/***/

/* Perform transaction */
/***/

t_InfoGW_delete(oid, &ev, Trans_none, "00000311");

Ping
Script example:

0ID="wlookup -r InfoMgtGW Info_GW®
idlcall $0ID InfoGW::ping

C example:
/***/
/* Variables */
/***/
Environment ev;

Object oid = OBJECT NIL;

/***/

/* Get the object id */

/***/
oid = dir_lookup_instance("InfoMgtGW", "Info_GW");
/***/

/* Perform transaction */
/***/

t_InfoGW_ping(oid, &ev, Trans_none);

TME 10 Information/Management: Problem Service User's Guide A-5

9Juslajoy

Coding Examples for Problem Service Operations

Propagate
Script example:

0ID="wlookup -r InfoMgtGW Info_GW®
RNID1="1idlcall $0ID InfoGW::propagate { 2 \

{\"Originator\"\"Smith,Bi11\"}\
{\"Status\"\"Pending\"}} \"Helpdeskapp\"~

C example:

/***/

/* Variables */
/***/

Environment ev;

Object oid = OBJECT_NIL;
GWAttrList gwattrlist;
GWAttr tmpattr;

char * rnid;

/***/

/* Get the object id */
/***/

oid = dir_lookup_instance("InfoMgtGW", "Info_GW");
/***/

/* Initialize the sequence of name value pairs */
/***/
seq_init((sequence_t *) &gwattrlist);
/**/
/* Set the element values and append them to the sequence */
/**/
tmpattr.name ml_ex_strdup("Originator");

tmpattr.value = ml_ex_strdup("Smith,Bi11");

seq_add((sequence_t *)&gwattrlist,&tmpattr,sizeof(GWAttr));
tmpattr.name = ml_ex_strdup("Status");

&tmpattr.value = ml_ex_strdup("Pending");

seq_add((sequence_t *)&gwattrlist,&tmpattr,sizeof(GWAttr));
/***/
/* Perform the transaction and save the record id */
/***/
rnid=t_InfoGW_propagate(oid,&ev,Trans_none,&gwattrlist,"Helpdeskapp");
/***/
/* Free the input sequence's buffer */
/***/
seq_free_buffer((sequence_t *) &gwattrlist);

Version 1.1

Coding Examples for Problem Service Operations

Retrieve
Script example:

0ID="wlookup -r InfoMgtGW Info_GW®
RESULT="1id1call $0ID InfoGW::retrieve \"00000311\"\"Helpdeskapp\""

C example:

/***/

/* Variables */
/***/

Environment ev;
Object oid = OBJECT_NIL;
GWAttrList myrec;

/***/

/* Get the object id */
/***/

oid = dir_lookup_instance("InfoMgtGW", "Info_GW");
/**/

/* Perform the transaction */
/**/

myrec=t_InfoGW_retrieve(oid,&ev,Trans_none,"00000311","Helpdeskapp");

Search
Script example:
0ID="wlookup -r InfoMgtGW Info_GW®
RESULT2="1id1call $0ID InfoGW::search { 2 \

{\"Originator\"\"Smith,Bi11\"}
{\"Status\"\"Pending\"}} \"Helpdeskapp\"~

C example:

TME 10 Information/Management: Problem Service User's Guide A-7

9Juslajoy

Coding Examples for Problem Service Operations

Shutdown

/***/

/* Variables */
/***/

Environment ev;

Object oid = OBJECT_NIL;
GWAttrList gwattrlist;
GWAttr tmpattr;

SearchResultList mysearchlist;

/***/
/* Get the object id */
/***/
oid = dir_lookup_instance("InfoMgtGW", "Info_GW");
/**/
/* Initialize the sequence of name value pairs */
/**/
seq_init((sequence t *) &gwattrlist);
/**/
/* Set the element values and append them to the sequence */
/**/
tmpattr.name ml_ex_strdup("Originator");
tmpattr.value = ml_ex_strdup("Smith,Bi11");
seq_add((sequence_t *)&gwattrlist, &tmpattr, sizeof (GWAttr));
tmpattr.name ml_ex_strdup("Status");
tmpattr.value = ml_ex_strdup("Pending");
seq_add((sequence_t *)&gwattrlist, &tmpattr, sizeof(GWAttr));
/**/
/* Perform the transaction */
/**/
mysearchlist = t_InfoGW_search(oid, &ev, Trans_none,
&gwattrlist, "Helpdeskapp");
/**/
/* Free the input sequence's buffer */
/**/

seq_free buffer((sequence t *) &gwattrlist);

Script example:

0ID="wlookup -r InfoMgtGW Info GW~
id1call $0ID InfoGW::shutdown

C

example:

Version 1.1

Coding Examples for Problem Service Operations

/***/

/* Variables */
/***/
Environment ev;

Object oid = OBJECT_NIL;

/***/
/* Get the object id */
/***/
oid = dir_lookup_instance("InfoMgtGW", "Info GW");

/***/

/* Perform transaction */
/***/

t_InfoGW_shutdown(oid, &ev, Trans_none);

Transfer
Script example:
0ID="wlookup -r InfoMgtGW Info GW"
RNID="1d1call $0ID InfoGW::transfer { 2 \

{\"Originator\"\"Smith,Bi11\"} \
{\"Status\"\"Pending\"}} \Helpdeskapp\"~

C example:

TME 10 Information/Management: Problem Service User's Guide A-9

9Juslajoy

Coding Examples for Problem Service Operations

/***/

/* Variables */
/***/

Environment ev;

Object oid = OBJECT_NIL;
GWAttrList gwattrlist;
GWAttr tmpattr;

char * rnid;

/***/

/* Get the object id */
/***/

oid = dir_lookup_instance("InfoMgtGW", "Info GW");
/**/
/* Initialize the sequence of name value pairs */
/**/
seq_init((sequence_t *) &gwattrlist);
/**/
/* Set the element values and append them to the sequence. */
/**/
tmpattr.name = ml_ex_strdup("Originator");

tmpattr.value = ml_ex_strdup("Smith,Bi11");

seq_add((sequence_t *) &gwattrlist, &tmpattr, sizeof (GWAttr));
tmpattr.name = ml_ex_strdup("Status");

tmpattr.value = ml_ex_strdup("Pending");

seq_add((sequence t *) &gwattrlist, &tmpattr, sizeof(GWAttr));
/**/
/* Perform the transaction and save the record id */
/**/
rnid=t_InfoGW_transfer(oid,&ev,Trans none, &gwattrlist,"Helpdeskapp");
/**/

/* Free the input sequence's buffer */
/**/

seq_free_buffer((sequence_t *) &gwattrlist);

A-10 Version 1.1

Coding Examples for Problem Service Operations

Update

Script example:

0ID="wlookup -r InfoMgtGW Info_GW®

idlcall $0ID InfoGW::update { 2 \
{\"Status\"\"Closed\"}
{\"rnid\"\"311\"}} \"Helpdeskapp\"

C example:

/***/

/* Variables */
/***/

Environment ev;

Object oid = OBJECT_NIL;
GWAttrList gwattrlist;
GWAttr tmpattr;

/***/

/* Get the object id */
/***/

oid = dir_lookup_instance("InfoMgtGW", "Info_GW");
/**/
/* Initialize the sequence of name value pairs */
/**/
seq_init((sequence_t *) &gwattrlist);
/**/
/* Set the element values and append them to the sequence. */
/**/
tmpattr.name = ml_ex_strdup("Status");

tmpattr.value = ml_ex_strdup("Closed");

seq_add((sequence t *) &gwattrlist,&tmpattr,sizeof (GWAttr));
tmpattr.name = ml_ex_strdup("rnid");

tmpattr.value = ml_ex_strdup("00000311");

seq_add((sequence_t *) &gwattrlist,&tmpattr,sizeof (GWAttr));
/**/
/* Perform the transaction */
/**/
t_InfoGW_update(oid, &ev, Trans none, &gwattrlist, "Helpdeskapp");
/**/
/* Free the input sequence's buffer */
/**/
seq_free buffer((sequence t *) &gwattrlist);

TME 10 Information/Management: Problem Service User's Guide A-11

9Juslajoy

TME 10 Application Development Environment Exceptions

TME 10 Application Development
Environment Exceptions

TME 10 ADE exceptions are used to return error information to your
application. Problem Service defines the ExInfoGateway exception.
Refer to the TME 10 Application Development Environment
documentation for more information on these exceptions.

ExInfoGateway Exception
The following data is inherited from ExException:

string type_name
Name of exception type

string catalog
Name of message catalog

long key Message catalog key

string default_message
Default message, when the message catalog is unavailable

long stamp
Date stamp

Msgcontext Msg_context
Context of exception raised

The following are ExInfoGateway data:

string message
Name of G+ exception

HICAReturnCode
Information/Management API return code

HICAReasonCode
Information/Management API reason code

A-12 Version 1.1

TME 10 Application Development Environment Exceptions

Examples of Gateway Exceptions

Try {
t_InfoGW_checkout(oid, &ev, Trans_none,recordID);
}

Catch(ExInfoGateway,ex){//catches Gateway exceptions and
//any exceptions derived from

//ExInfoGateway
}

Catch(ExException,ex){ //catches ExExceptions and any
//exceptions derived from ExException

}
CatchA11() { //catches all exceptions

}

TME 10 Information/Management: Problem Service User's Guide

A-13

9Juslajoy

A-14 Version 1.1

Appendix B. Customizing User
Exit Routines for the Daemon

Problem Service assumes that all data is character data. Some data
conversions, such as the truncation of data, are supported. Problem
Service does not know the Information/Management database record
structure, and the Information/Management HLAPI does not
automatically convert data, so you must define how truncations and
other conversions are to be performed.

Some types of mapping syntax enable you to define fields and rules
for mappings for each type of transaction. The mapping rule for a
particular field can be different for different transactions.

Supported Data Conversions

Here is a list of the mapping conversions that are supported, followed
by a description of each listed item:

® Truncation

m Convert one character to another character
m Convert specific field value to another value
® Date/time conversion

» Freeform text

u Default data

® Field combining (concatenation)

TME 10 Information/Management: Problem Service User's Guide B-1

9Juslajoy

Supported Data Conversions

® Substring and sub-word

n Exit routines

Truncation
Data can be truncated to a specified length. For example, assignee in
an application's record is 90 characters, while assignee in an
Information/Management database record is only 15 characters, so
you can choose to truncate after the first 15 characters.

Convert One Character to Another Character
An application's field could contain blanks and commas while the
corresponding Information/Management field might allow only one
word and not allow commas. The blanks and commas in the field are
converted to a specified character that you can choose.

The Information/Management record field may allow multiple words
(for example, first and last name). In this case, the blanks and
commas would be converted to a specified separator character. This
allows the HLAPI client to indicate that the data contains multiple
words (separator character separates each word).

Convert Specific Field Value to Another Value
An application's field might allow hardcoded values that are different
from the corresponding Information/Management problem fields.
Each value that does not match is converted to a specified value.

Date/Time Conversion
An application's time stamp can be a combination of date and time.
The date part and the time part are put into the
Information/Management record's respective date field and time field.
Information/Management enables you to choose which external date
and time formats to use (exit routine is used to convert from internal
to external and vice versa).

The HLAPI client accepts dates and times in external format (this
could be different for each Information/Management site). Problem
Service allows the specification of a C exit routine to convert the

B-2 Version 1.1

Supported Data Conversions

application's record date/time into dates and times to be given to
Information/Management.

Note: This means that a C compiler is a prerequisite if you want to
use your own user exits.

The date and time conversion exit can manipulate the date and time
to support time zone differences between Information/Management
and your applications.

Freeform Text
An application's freeform textual field is converted to
Information/Management freeform text. An application's text data
might be just a stream of characters with no indications of new lines.
In this case, specify the length of the corresponding
Information/Management text line so that your application's text can
be split into Information/Management text lines. When returning
freeform text, the text lines can be converted to a data stream before
being given to your application.

Default Data
You can specify hardcoded data for a field, either on an unconditional

basis or only if the source data field is empty.

Field Combining (Concatenation)
You can combine multiple fields into one target field. For example,
several of your application's fields might map into just one
Information/Management field.

Substring and Sub-Word

You can choose to map only a part of a field into the target field.

TME 10 Information/Management: Problem Service User's Guide B-3

9Juslajoy

Supported Data Conversions

Exit Routines
An exit routine can be specified to perform whatever conversions you
choose. This exit routine must be written in the C programming
language.

Specifying User Exits for Conversions

You can specify exit routines to perform data conversions. These can
be routines you write yourself or those provided by Problem Service.

If you want to write your own exit routine, code it as shown in the
following example:

char* main(int argumentCount, const char ** argumentArrayPointer);

To ensure that control returns to the mapping facility after the
invocation of a user exit, it must be linked with the entry point as
main and not a compiler-generated routine. Refer to the link options
of the compiler you are using for instructions.

Copy the newly created user exit routine to the directory where the
gw_nxd daemon executable exists, so that Problem Service can use it.

Several user exits to perform data conversions are provided. The first
argument for all of the exits data, and is either absent, a field

name, a literal string, or another subroutine specification. This is also
true for any other argument requiring a string.

Table 6 on page B-5 is a list of the supplied user exits. Each user
exit with examples of use is described following the table.

B-4 Version 1.1

Specifying User Exits for Conversions

change

Table 6. Supplied User Exits

User Exit Description
change Returns specified string changes.
fromIMDate Converts a date format year value.

fromIMPriority

Maps priority values.

fromIMTime

Converts a military time format.

nullDefault

Returns a specified value when the targe
is null.

stripLeading

Strips leading characters.

subString Returns a specified substring.

toIMDate Converts a date format year value.

toIMTime Converts a time format to military time
format.

translate Returns a specified character translation.

translateWord

Returns a specified word translation.

words

Returns a specified substring.

This user exit returns specified string changes of the tdegat The

format is:

change(data, sourceWordl, targetWordl,
sourceWord2, targetWord2, ...)

The string given byourceWordlwhere found withirdata, is
changed to the string given bgrgetWord1 It then changes the
string given bysourceWord2where found in the result of the first
operation, to the string given hgrgetWord2 This continues until all
source strings have been processed. If the last matching target string
is missing, it defaults to null.

For example, ifieldNameis abcdefghijkimthen:

TME 10 Information/Management:

Problem Service User's Guide

—t

9Juslajoy

Specifying User Exits for Conversions

change(fieldName,"abc","def","def","ghi") returns "ghighighijkim"
change("abcdefghijkim","def") returns "abcghijklm"

fromIMDate

This user exit converts yy date format to gyyydate format. The
format is:

fromIMDate (IMDate)

A date in the formatm/dd/yy is converted tonm/dd/yyyy, where year
characters 50 through 99 represent the years 1950 through 1999 and
year characters 00 through 49 represent the years 2000 through 2049.

For example,
fromIMDate("12/05/49") returns "12/05/2049"

fromIMPriority

This user exit maps priority values. The format is:
fromIMPriority (IMPriority)

It maps values 6 through 99 to 5, while not altering values 0 through
5.

For example,

fromIMPriority("21") returns "5"
fromIMPriority("0") returns "0"

fromIMTime

This user exit converts a military time format. The format is:
fromIMTime (IMTime)

The military time format ohh:mm is converted to a time in the format
hh:mm:ss am or hh:mm:ss pm, by adding a seconds field of 00 and am
or pm.

For example,
fromIMTime("13:34") returns "01:34:00 pm"

Version 1.1

Specifying User Exits for Conversions

nullDefault
This user exit returns a specified value when the target is null. The
format is:

nullDefault(data, defaultValue)

The valuedefaultValueis returned whemlata is null. Otherwise, the
value fordatais returned.

For example, ifieldNameis abc then:

nullDefault(fieldName,"default") returns "abc"
nullDefault(,fieldName) returns "abc"
nullDefault(,) returns ""

stripLeading
This user exit strips the leading characters from the tdagat The
format is:

stripLeading(data, stripCharacters)

For example, ifieldNameis 0000200then:

stripLeading(fieldName,"0") returns "200"
stripLeading(fieldName) returns "0000200"
stripLeading("000000","0") returns ""

stripLeading("wordwordzz","word") returns "zz

subString
This user exit returns a specified substring of the tatgtt The
formats are:
subString(data, startPosition)

subString(data, startPosition, length)
subString(data, startPosition, length, padCharacter)

Where:

startPosition Starting index position of the substring. If the index is
beyond the end of the string, the function returns a
null string.

length The length of the substring. If the substring extends
beyond the end of the string, the substring is padded
with the character given by thipadCharacter

TME 10 Information/Management: Problem Service User's Guide B-7

9Juslajoy

Specifying User Exits for Conversions

argument. If length is not specified, the substring
goes from the starting position to the end of the
string.

padCharacter The character to use as padding if the substring
extends beyond the end of the string. The default pad
character is a single space.

For example, ifieldNameis abcdefthen:

substr(fieldName,2,3) returns "bcd"
substr(fieldName,4,5) returns "def "
substr(substr("abcdef",2,3),2,1) returns "c"
substr("abcdef",7,1) returns " "

toIMDate

This user exit converts wyy date format to gy date format. The
format is:

toIMDate(foreignDate)

A date in the formatm/dd/yyyy is converted tomm/dd/yy, where year
characters 50 through 99 represent the years 1950 through 1999 and
year characters 00 through 49 represent the years 2000 through 2049.

For example,
toIMDate("01/31/1950") returns "01/31/50"

toIMTime

This user exit converts a time format to military time format. The
format is:

toIMTime(foreignTime)

A time in the formahh:mm:ss am or hh:mm:ss pm is changed to
military time hh:mm, by dropping the seconds.

For example,
toIMTime("12:34:56 am") returns "00:34"

Version 1.1

Specifying User Exits for Conversions

translate
This user exit returns a specified character translation of the target
data The format is:

translate(data, inputCharacters, outputCharacters)

The characters given bgputCharacterswhere found withirdata,
are changed to the characters giverobiputCharactersif not
specified,outputCharacterglefaults to spaces.

For example, ifieldNameis a,b,c,dthen:

translate(fieldName,","," ") returns "a b ¢ d"
translate("a,b,c,d",fieldName) returns " "

translateWord
This user exit returns a specified word translation of the taiaget
The format is:

translateWord(data, sourceWordl, targetWordl,
sourceWord2, targetWord2, ...)

The string given byourceWordNs changed to the string given by
targetWordN if found within data If the last matching target is
missing, it defaults to null. IourceWordlis *, any result fodata is
a match.

For example, ifieldNameis word then:

translateWord(fieldName,fieldName,"bird") returns "bird"
translateWord("word", "word") returns ""

words
This user exit returns a specified substring of the tatgtt The
format is:

words (data, firstWord)
words (data, firstWord, numberOfWords)

It begins with the word in the word index position givenfiostWord
(words are separated by spaces). If the index giveirdiword is

not valid, the function returns a null string. TimemberOfWords
argument can be used to specify how many words to include in the
substring. If thenumberOfWordsargument is not specified, all the

TME 10 Information/Management: Problem Service User's Guide B-9

9Juslajoy

Specifying User Exits for Conversions

words to the end of the string are included in the substring. The
substring contains all the word separators (spaces) that are included in
the original string.

For example, ifieldNameis a b ¢ dthen:

words (fieldName,2,1) returns "b"
words (subString(fieldName,3,3),2,2) returns "c"
words("a b ¢ d",5,1) returns ""

B-10

Version 1.1

Index

A

advanced program-to-program
communication (APPC) 2-2
alias names 3-4
APPC 2-2
assigning
TCP/IP port number 5-8
TCP/IP service name 5-8

B
BLGUTS utility 5-4
bimygc.cfg 3-5

C

checkin operation 1-5
checkout operation 1-5
coding examples A-3
compiling and link editing your
code A-1
configuration file
customizing
data mappings 4-20
general settings 4-10

HLAPI session information 4-1

configuration file(continued)
name and location 3-5
sample 3-5
configuration planning
overview 3-1
process steps 3-6
sample configuration file 3-5
contacting customer support ix
conventions, typeface ix
conversions
specifying user exits B-4
supported data B-1
copying the samples and files A-1
customer support, contacting ix
customizing
configuration file 3-5
data mappings 4-20
HLAPI database tables 5-4
HLAPI session information
HLAPI-related statements 4-1
session statements 4-7

D

data conversions B-1

TME 10 Information/Management:

Problem Service User's Guide Index-1

data mappings
customizing 4-20
fields
attributes 4-22
comparison 4-22
mapped by operation 4-24
overview 1-14
syntax 4-25
data views, HLAPI 3-3, 5-1
database tables, HLAPI 5-4
DatabaseProfile
specification 4-9
usage 4-9
delete operation 1-6
disk space requirements 2-3
documents, related vii

E

environment setup 2-2
exceptions

example A-13

ExInfoGateway A-12

TME 10 ADE A-12
ExInfoGateway exception A-12

F

field
attributes 4-22
comparison 4-22

H

hardware requirements 2-3

high-level application program interface

(HLAPI) 2-2
HLAPI
client interface
for AIX 2-4

HLAPI (continued)

client interfaceg(continued)
for Windows NT 2-5
overview 2-2

concepts 3-1

data views 3-3, 5-1

database tables 5-4

description 2-2

PDB 3-2, 4-2

PIDT 3-3,5-1

PIPT 3-3,5-1

transactions 3-2

identifying record fields 3-3
IDL language data types A-2
Information/Management HLAPI 2-2
installation
planning 2-1
requirements
disk space 2-3
hardware 2-3
software 2-3
your application
compiling and link editing A-1
copying the samples and
files A-1

L
LOCPATH 2-7
logging with Problem Service 6-2

M

monitor operation 1-12

Index-2

Version 1.1

N

NLS for messages 2-6
NLSPATH 2-7

O

operations, Problem Service
checkin 1-5
checkout 1-5
coding examples A-3
delete 1-6
monitor 1-12
overview 1-4
ping 1-10
propagate 1-6
retrieve 1-7
reverse assignment 1-10
search 1-8
shutdown 1-10
transfer 1-8
update 1-9

P

p-word index 3-3
parameter data block 3-2, 4-2
PDB 3-2, 4-2
PIDT 3-3, 5-1
ping operation 1-10
PIPT 3-3,5-1
planning

configuration 3-1

installation 2-1
prefix word (p-word) index 3-3
prerequisite documents vii
program interface data table 3-3
program interface pattern table 3-3

propagate operation 1-6

R

REGSRV2 2-7

related documents vii

retrieve operation 1-7

reverse assignment operation 1-10

S

s-word index 3-3
search operation 1-8
separator character 4-6
services file, updating 5-8
session statements 4-7
sessions, Problem Service
customizing 4-7
overview 1-2
shutdown operation 1-10
software requirements
AIX workstation 2-4
MVS host 2-3

Windows NT workstation 2-4
specifying user exits B-4
starting Problem Service 6-1
stopping Problem Service 6-1
structured word (s-word) index 3-3
syntax, data mapping 4-25

T
TCP/IP
port number 5-8
service name 5-8
transactions 3-2
transfer operation 1-8

TME 10 Information/Management:

Problem Service User's Guide Index-3

U

update operation 1-9
user exits B-5

Index-4 Version 1.1

