
20 April 2007

The ClearSpeed
Accelerated DFT Library

Reference Manual
06-RM-1337 1.46.1.15

06-RM-1337-1.46.1.15

Conventions

1. Information and data contained in this document, together with the information contained in any and all associated ClearSpeed docu-
ments including without limitation, data sheets, application notes and the like ('Information') is provided in connection with ClearSpeed
products and is provided for information only. Quoted figures in the Information, which may be performance, size, cost, power and the
like are estimates based upon analysis and simulations of current designs and are liable to change.

2. Such Information does not constitute an offer of, or an invitation by or on behalf of ClearSpeed, or any ClearSpeed affiliate to supply any
product or provide any service to any party having access to this Information. Except as provided in ClearSpeed Terms and Conditions of
Sale for ClearSpeed products, ClearSpeed assumes no liability whatsoever.

3. ClearSpeed products are not intended for use, whether directly or indirectly, in any medical, life saving and/ or life sustaining systems or
applications.

4. The worldwide intellectual property rights in the Information and data contained therein is owned by ClearSpeed. No license whether
express or implied either by estoppel or otherwise to any intellectual property rights is granted by this document or otherwise. You may
not download, copy, adapt or distribute this Information except with the consent in writing of ClearSpeed.

5. The system vendor remains solely responsible for any and all design, functionality and terms of sale of any product which incorporates a
ClearSpeed product including without limitation, product liability, intellectual property infringement, warranty including conformance to
specification and or performance.

6. Any condition, warranty or other term which might but for this paragraph have effect between ClearSpeed and you or which would oth-
erwise be implied into or incorporated into the Information (including without limitation, the implied terms of satisfactory quality, mer-
chantability or fitness for purpose), whether by statute, common law or otherwise are hereby excluded.

7. ClearSpeed reserves the right to make changes to the Information or the data contained therein at any time without notice.

© Copyright ClearSpeed Technology plc 2006. All rights reserved.

Advance, ClearSpeed, ClearConnect and the ClearSpeed logo are trade marks or registered trade marks of ClearSpeed Technology plc. All
other brands and names are the property of their respective owners.

ClearSpeed Technology, Inc.
3031 Tisch Way, Suite 200
San Jose, CA 95128

Tel: 408-557-2067
Fax: 408-557-9054

Email: info@clearspeed.com
Web: www.clearspeed.com

ClearSpeed Technology plc
3110 Great Western Court

Hunts Ground Road
Bristol BS34 8HP
United Kingdom

Tel: +44 (0)117 317 2000
Fax: +44 (0)117 317 2002

Convention Description

commands This typeface means that the command must be entered exactly as shown in the text and the
[Return] or [Enter] key pressed.

Screen displays This typeface represents information as it appears on the screen and is generally enclosed within
a bounding box.

[Key] names Key names appear in the text written with brackets. For example [Return] or [F7]. If it is
necessary to press more than one simultaneously, the key names are linked with a plus (+) sign:
Press [Ctrl]+[Alt]+[Del]

Bold-face text Signal name, instruction or register name.
Selections made via the menu hierarchy of a software application.

Words in italicized type Italics emphasize a point, concept or denote new terms.

This symbol indicates important information or instructions.

info@pixelfusion.com
www.pixelfusion.com

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 3 06-RM-1337-1.46.1.15

Contents

1 Introduction

1.1 Requirements

1.2 Package contents

1.3 Patterns of use

1.4 Performance guidelines

1.5 Environment variables

1.6 User examples

2 Basic usage

2.1 Supported features

2.2 Data formats

2.3 Memory descriptors

2.4 Plans

2.5 Flags

3 ClearSpeed DFT Host Library
CSDFT_create_plan_1d, CSDFT_create_plan_2d, CSDFT_create_plan_3d — Create a 1,2 or 3D plan for

a DFT . 14

CSDFT_execute_dft — Synchronous Execution of a DFT . 16

CSDFT_free_plan — Free a DFT plan . 17

CSDFT_create_user_function — Create user function . 18

CSDFT_execute_user_function — Synchronous Execution of a user function 19

CSDFT_free_user_func — Frees a previously created user function. . 20

CSDFT_create_convolution_plan_2d — Create a 2D plan for a convolution operation 21

CSDFT_execute_convolution — Synchronous Execution of a convolution . 22

CSDFT_get_status — Returns the current status for the CSDft library . 23

CSDFT_return_error_message — Returns a string describing a status value of the CSDft library 25

CSDFT_get_null_descriptor — Return a special null memory descriptor . 26

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 4 06-RM-1337-1.46.1.15

CSDFT_malloc_host — Allocates a memory descriptor encapsulating a data buffer allocated on the host
27

CSDFT_memory_descriptor_to_system — Given a host based memory descriptor returns a pointer to a
buffer in system memory . 28

CSDFT_system_to_memory_descriptor — Returns a host based memory descriptor encapsulating user
provided source data. . 29

CSDFT_system_split_array_to_memory_descriptor — Creates a host based memory descriptor
encapsulating two user provided source data arrays . 30

CSDFT_processor_to_memory_descriptor — Returns a board based memory descriptor encapsulating
user provided source data. . 31

CSDFT_memory_descriptor_copy — Copies data encapsulated in a memory descriptor 32

CSDFT_free — Deallocates a memory descriptor created by the CSDft library 33

CSDFT_ilog2 — Returns the integer log to the base two value of the input CSDFT_bitreverse_1D_c —
 Returns a bitreversed version of the single precision input data CSDFT_bitreverse_1D_z —
 Returns a bitreversed version of the double precision input data
CSDFT_optimal_to_natural_2D_c — Transorms the input from board optimal order to natural
order for single precision data CSDFT_optimal_to_natural_2D_z — Transorms the input from
board optimal order to natural order for double precision data
CSDFT_natural_to_optimal_2D_c — Transorms the input from natural order to board optimal
order for single precision data CSDFT_natural_to_optimal_2D_z — Transorms the input from
natural order to board optimal order for double precision data . 34

CSDFT_get_symbol_value — Obtains the Board memory address of a specifed symbol (on the first device
of an Advance Board) . 36

CSDFT_get_csapi_handle — Obtains the CSAPI handle for the first instance of an Advance Board in a
system used by the CSDft library . 37

4 ClearSpeed DFT Board Library
CSDFT_create_plan_1d, CSDFT_create_plan_2d, CSDFT_create_plan_3d — Create a 1,2 or 3D plan for

a DFT . 39

CSDFT_execute_dft — Synchronous Execution of a DFT . 41

CSDFT_create_convolution_plan_1d, CSDFT_create_convolution_plan_2d — Create a 1D or 2D
plan for a convolution operation . 42

CSDFT_execute_convolution — Synchronous Execution of a convolution . 43

CSDFT_free_plan — Free a DFT plan . 44

CSDFT_get_status — Returns the current status for the CSDft library . 45

CSDFT_board_to_memory_descriptor — Returns a board based memory descriptor encapsulating user
provided source data. . 47

CSDFT_memory_descriptor_to_board — Given a board based memory descriptor returns a pointer to a
buffer in board memory . 48

CSDFT_free — Deallocates a memory descriptor created by the CSDft library 49

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 5 06-RM-1337-1.46.1.15

1 Introduction
The ClearSpeed Discrete Fourier Transform (CSDFT) library consists of two principle parts; a shared host library
with a set of default Advance Board CSX600 executables which the host library requires to function and a num-
ber of static libraries for the CSX600. The host library is linked and called by an application running on the host
computer in order to offload DFT operations to the Advance accelerator board(s). The static CSX600 board libraries
are designed to be linked into a user created CSX600 executable running on the CSX600 itself. Creating their own
CSX600 executable, allows users to extend the base functionality with their own routines and the host library can
access them by using the user created CSX600 executable instead of the default executables. The two versions of
the library have a common API and a number of functions in common. This manual has a section for each version
of the library.

1.1 Requirements
In addition to the ClearSpeed base package (for any of our supported platforms), the ClearSpeed Developer Pack-
age should also be installed in order to build the user examples included with the CSDFT library, which is itself
part of the base package.

1.2 Package contents
The contents of this rpm include the following files

include
 csdft.h <CSX600 processor include file>
include/csdft
 csdft.h <host include files>
 csdft_support.h
 cs_complex.h
lib
 libcsdft.so <shared host library - deprecated name>
 libcsxl_csdft.so <shared host library>
csa
 libfft_cs_codelet.csa <CSX600 processor static libraries>
 libfft_cs_processor.csa
 libfft_cs_twiddle.csa
 libfft_framework_gen.csa
csx
 fft_cs_processor_0.csx <CSX600 processor executables>
 fft_cs_processor_1.csx
examples/csdft
 <Miscellaneous examples>
doc/csdft
 LICENSE
 cdsft.pdf <Manual for currently supported CSDFT API routines>

1.3 Patterns of use
The ClearSpeed DFT Library consists of two similar APIs, one of which runs on the host and one on the processors
on a ClearSpeed Advance board.

The CSDFT host API, while providing a similar interface to that of the CSDFT Advance board API, has additional
heuristics which try and efficiently utilize both CSX600 processors on a board. To this end when a plan representing
more than one DFT is executed the host library will automatically try and load-balance the work between the
CSX600 processors. The host API is mostly intended to be the target for developers working to port existing host

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 6 06-RM-1337-1.46.1.15

based applications, which may already use one of the many third party DFT libraries available (such as FFTW, MKL
and ACML), to use the ClearSpeed Advance board.

The CSDFT board API is very similar to the host API but the mode of execution is different. Calls made to the
board API from within a Cn or assembly language program are run on the single CSX600 which made the call.

The CSDFT board API can also be thought of as an embedded version of the API. This means that any Cn or
assembly language program can call CSDFT routines. This also means that you can construct a .csx file which
uses the board CSDFT library but where the data operated on comes from the host, via the usual CSAPI calls,
without having to use the host CSDFT library. This means it is more suitable for users working to port full appli-
cations to run more or less entirely on the Advance board rather than simply trying to offload the DFT portions of
their application to the Advance board.

1.4 Performance guidelines
The current build of the CSDFT library running on a PCI-X Advance Board has particular performance characteris-
tics that should be understood before using the library.

For a PCI-X Advance board the performance observed on the host, up to a certain point, is typically limited by PCI-
X transfer speeds. This is due to the N log 2 N: N2 ration of compute to IO with 1D transforms in particular badly
bottlenecked. Above a certain size, which can be dependent on host CPU, chipset and interface (PCI-X/PCI-E) and
how many transforms are performed at a time, board side and host side performance do start to converge. For
straightforward transforms, peak performance per CSX600 of about 7 GFLOP/sec. for single precision and 3.6
GFLOP/sec. for double precision are possible.

If data is sent to a device and then multiple operations performed (such as a Forward or Backward DFT pairs),
before sending the data back to the host, then this is likely to give a much better overall performance as it can
optimize memory bandwidth more effectively. For example when a convolution is required, the provided convolu-
tion interface will give much better performance than using the standard forward and backward interfaces. This
is also true for user operations performed between DFTs, especially if they follow a similar pattern to a traditional
Forward DFT -> User Operation -> Backward DFT that the library currently supports.

1.5 Environment variables
There are three environment variables that can be set by a user which affect the behavior of the CSDFT host
library.

The first is CS_CSAPI_DEBUGGER, which will need to be enabled when debugging with csgdb (you will also need
to specify CS_CSAPI_DEBUGGER_ATTACH as well, please see the SDK documentation for further information
about csgdb environment variables). This environment variable affects which version of the board side executable
that the host library will search for and load (release vs. debug). In this case it will be the debug versions of either
the default CSDFT library CSX files or any user built CSX files. If they are not present then the library will signal
an error. Please note that the CSDFT Library package only contains release versions of the CSX600 executables
and static libraries.

Another environment variable that may be set is CS_FFT_CSX which is used when the user needs to override the
default board executable with one which contains their user routines. The environment variable needs a full path
to the relevant csx file and must include the root of the csx filename, but without any appended _0, _1 or _debug.
Be careful on Windows as the default installation location for ClearSpeed software is under the Program Files
directory which has a space in it. This can cause Windows to add “” to any command line completed by using the
[Tab] key and this will cause the host library to fail to locate the csx file. Please note the CS_CSAPI_DEBUGGER

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 7 06-RM-1337-1.46.1.15

and CS_CSAPI_DEBUGGER_ATTACH should only be used in conjunction with a user CSX600 executable being
defined by CS_FFT_CSX because of the lack of debug versions of the default CSX600 executables.

The last environment variable that you can set is CS_USE_SIM. When set this variable signals the host library that
rather than connecting to an Advance board, the library is actually connecting to one of ClearSpeed's software
simulators. The CSX executable can take some time to load (possibly minutes).

1.6 User examples
The CSDFT Library package includes a set of examples which demonstrate the basic principles of using the CSDFT
Library. They work both as an example of use and also a simple test that the package has been installed correctly
and the library is working. If you have not installed the SDK from the ClearSpeed Developers archive then the
examples which require user functions will not be built.

To build and test the examples (assuming all packages have been installed in the default location):

source /opt/clearspeed/csx600_m512_le/bin/bashrc
cd /opt/clearspeed/csx600_m512_le/examples/csdft/
make -s all test

If the ClearSpeed SDK is not installed then type:

make -s test INSTALLED_SDK=false

 You should see messages of the form:

**** 1D forward reverse single precision complex test passed

The tests are split into separate directories and there is also a single directory which builds a user CSX600 exe-
cutable file which some of the tests use (in the directory user_csx).

The tests include straightforward 1D, 2D and 3D, single and double precision plans as well as some 'user function'
plans

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 8 06-RM-1337-1.46.1.15

2 Basic usage
This section covers the basic features, in terms of transform sizes, types and data formats supported by the CSDFT
Library. It goes on to describe the basic operational model of the CSDT Library particularly the concepts behind
Memory Descriptors and Plans.

2.1 Supported features
The supported sizes of transforms are limited to powers of two from 128 to 8192 for 1D, square and non-square
powers of two from 128 to 2048 for 2D transforms, and 128 cubed for 3D transforms. The library provides support
for forward and backward transforms, in single and double precision, real (specifically real to complex and complex
to real) and complex floating point representation, with the data stored in either in interleaved (the default) or
split array storage formats (a single array is the default for real data).

The supported interfaces for 1D DFTs are:

• Power of two sizes from 128 to 8192

• Single and double precision

• Complex types

• Complex to complex (forward and backward)

• Interleaved

• Natural and optimal order (only optimal order supported by CSDFT board API see Chapter 2.4, Plans)

The supported interfaces for 2d transforms are:

• Power of two square and non-square sizes from 128 to 2048

• Single and double precision

• Real and complex types

• Complex to complex (forward and backward)

• Real to complex (forward)
• Complex to real (backward)

• Interleaved and split array inputs

• Natural and optimal order

The supported interfaces for 3d transforms are:

• Size 128 cubed only

• Single and double precision

• Complex types

• Complex to complex (forward and backward)

• Interleaved inputs

• Natural order only

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 9 06-RM-1337-1.46.1.15

2.2 Data formats
The two sample library data formats assumed are interleaved and split. In interleaved mode, real and imaginary
data values are next to each other in one contiguous piece of memory as shown in Figure 2.1.

Figure 2.1 Interleaved mode

In split mode, the memory descriptor is used to point to two separate memory blocks, one for real, the other for
imaginary data as shown in Figure 2.2.

Figure 2.2 Split mode

The CSDFT library provides platform-independent single and double-precision structures, FloatComplex and
DoubleComplex, which implement the interleaved memory layout. Developers may also use their own structures
to implement interleaved or split mode data layout. Alternatively, if using Fortran or a C99-compatible compiler,
developers may wish to use the complex data types built into these languages.

Data is also arranged in a row-major order (also known as ‘C’ format), which means that as you move through
adjoining memory locations, the last dimension’s index varies most quickly, and the first dimension’s index varies
most slowly.

Real

Img

Real

Img

Real

Img

Memory
Descriptor

Img

Img

Img

Img

Memory
Descriptor

Real

Real

Real

Real

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 10 06-RM-1337-1.46.1.15

2.3 Memory descriptors
The memory descriptor structure, CSDftMemoryDescriptor, provides an abstract datatype which can describe
memory on the host or board to the CSDFT API.

The memory descriptor is essentially an intelligent pointer. As well as a maintaining a pointer to the actual data,
the memory descriptor also contains the following information:

• How the memory was allocated (allocated as part of the memory descriptor or referenced);

• The location on the host or board;

• The size of the block(s) of memory described;

• Whether there is one contiguous block of memory or it is split into two (necessary for split
array inputs).

The memory descriptor may be used to describe input and outputs residing in memory for all DFT functions.

Through the use of these memory descriptors, developers do not need to concentrate on where data is being
stored (be it on the host or on the board) when executing plans with data described by these descriptors. All the
logic required to move the source data to the board to be executed on and where the destination is to be stored
is handled by the CSDFT Library.

The memory descriptor can be used to maximize library efficiency by ensuring that data is moved from the host
to the board, multiple operations performed on it and then returned to the host. Instead of moving the data from
the host to the board and back for each operation.

An example of the CSDftMemoryDescriptor is shown in the code fragment below:

//Declare memory descriptors to describe input and output data
CSDftMemoryDescriptor data_in;
CSDftMemoryDescriptor data_out;

// Declare other variables
int n=128, num_ffts=3;

//Create input and output data memory descriptors referencing memory on the host
data_in = CSDFT_system_to_memory_descriptor((void *) source_data_pointer,
 sizeof(DoubleComplex) * n * num_ffts);
data_out = CSDFT_system_to_memory_descriptor((void *) output_data_pointer,
 sizeof(DoubleComplex) * n * num_ffts);
//Create the plan
plan = CSDFT_create_plan_1d(...);

//Execute plan
status = CSDFT_execute_dft(plan, data_in, data_out);

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 11 06-RM-1337-1.46.1.15

2.4 Plans
The CSDFT library uses the concept of a plan to define a DFT before it is executed. A plan contains information
about:

• the direction

• the precision

• the data format

• whether data is complex or real
• whether data is natural or optimal

• the number of samples

• the scale factor to use

All but the last two in the list above are set by using flags. The required flags are ORed together and passed into
the “create plan” functions as an unsigned integer – a list of the flags with an explanation of their meaning is
provided in section 2.5, Flags, on page 12.

Data manipulated on the board and returned to the host can be in one of two formats, natural order (using the
CSDFT_NATURAL_ORDER flag) or a more optimal order (CSDFT_OPTIMAL_ORDER) used by the CSDFT library.
The default is natural order, though specifying this will incur a performance penalty on the board (This mode is
not supported directly for 1D on the board but uses the host to perform the transform from optimal to natural
order). Note that it is possible to work only in optimal order and to this end the library provides some support
routines to move data between these two data formats.

To achieve no apparent scaling in a forward DFT, the scale factor should be 1.0. In a backwards DFT however, the
scale factor should be 1/(nDIMENSION). For example, a 1D DFT of size 128 would have a scale factor of 1/128, while
a 2D DFT of size 128x128 would have a scale factor of 1/(128*128)

For example:

unsigned int flags;
CSDftPlan forward;
CSDftStatus status;

/* Create the flags for a forward, optimal, double and complex DFT */
flags = CSDFT_FORWARD | CSDFT_OPTIMAL_ORDER | CSDFT_DOUBLE | CSDFT_COMPLEX;

/* Create the 1D plan - 5 ffts each of size 128 */
forward = CSDFT_create_plan_1d(flags, 256, 5, 1.0);

/* Execute the plan */
status = CSDFT_execute_dft(forward, …);

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 12 06-RM-1337-1.46.1.15

2.5 Flags
A number of functions use flag parameters to provide information about the operation to be performed. These are
described in Table 2.1.

Flag Description Applicable

CSDFT_FORWARD Perform a forward DFT All

CSDFT_BACKWARD Perform a backward DFT All except convolution

CSDFT_NATURAL_ORDER For forward DFTs, set order of output to natural. For backward
DFTs, assume order to input is natural.

All except 1D board func-
tion

CSDFT_OPTIMAL_ORDER For forward DFTs, set order of output to optimal. For backward
DFTs, assume order to input is optimal.

All

CSDFT_SRC_SINGLE Source is a single precision floating point format All

CSDFT_SRC_DOUBLE Source is in double precision floating point format All

CSDFT_SRC_REAL Source is of real type (Only valid for a forward Real to Complex
forward transform)

Real to Complex forward
transform

CSDFT_SRC_COMPLEX Source is of complex type. This is the default All

CSDFT_SRC_INTERLEAVED Source is an interleaved array of data. This is the default. All

CSDFT_SRC_SPLIT_ARRAY Source is two arrays of data, one representing the real compo-
nent, the other imaginary. Only valid for complex data. Not valid
for optimal format data (for instance with a backward DFT).

All except optimal format
data and 1D DFT.

CSDFT_DST_SINGLE Destination is a single precision floating point format All

CSDFT_DST_DOUBLE Destination is a double precision floating point format All

CSDFT_DST_REAL Destination is of real type (Only valid for a Complex to Real back-
ward transform)

Complex to real backward
transform

CSDFT_DST_COMPLEX Destination is of complex type. This is the default All

CSDFT_DST_INTERLEAVED Destination is an interleaved array of data. This is the default All

CSDFT_DST_SPLIT_ARRAY Destination is two arrays of data, one representing the real com-
ponent, the other imaginary. Only valid for complex data. Not
valid for optimal format data (for instance with a backward DFT).

All except optimal format
data

CSDFT_SINGLE Source and destination are in single precision floating point format All

CSDFT_DOUBLE Source and destination are in double precision floating point for-
mat

All

CSDFT_REAL Source and destination are of real type All

CSDFT_COMPLEX Source and destination are of complex type. This is the default All

CSDFT_TRANSFORM_KERNEL The kernel will undergo a DFT before being multiplied with the
transformed source

Convolution

Table 2.1 Flag parameters

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 13 06-RM-1337-1.46.1.15

3 ClearSpeed DFT Host Library
This section documents the ClearSpeed DFT host interface.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 14 06-RM-1337-1.46.1.15

CSDFT_create_plan_1d, CSDFT_create_plan_2d, CSDFT_create_plan_3d — Create a 1,2 or
3D plan for a DFT

Synopsis

#include "csdft/csdft.h"
CSDftPlan CSDFT_create_plan_1d(CSDftFlags flags, unsigned int size, unsigned int
num_ffts, double scale);
CSDftPlan CSDFT_create_plan_2d(CSDftFlags flags, unsigned int size_x, unsigned int
size_y, unsigned int num_ffts, double scale);
CSDftPlan CSDFT_create_plan_3d(CSDftFlags flags, unsigned int size_x, unsigned int
size_y, unsigned int size_z, unsigned int num_ffts, double scale);

Description

These functions create plans for 1, 2 and 3 dimensional DFTs, which can then be executed using the
CSDFT_execute_dft routine.

This library supports:

1D DFT

• Power of two sizes from 128 to 8192

• Single and Double precision

• Complex to Complex (forward and backward)

• Interleaved

• Natural and Optimal order else

• Optimal

2D DFT

• Square and non square Power of two sizes from 128 to 2048

• Single and Double precision

• Real and Complex types:

• Complex to Complex (forward and backward)

• Real to Complex (forward)

• Complex to Real (backward)

• Interleaved and Split Array inputs

• Natural and Optimal order

3D DFT

• 128 cubed size only

• Single and Double precision

• Complex to Complex (forward and backward)

• Interleaved

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 15 06-RM-1337-1.46.1.15

• Natural order only

The complex data generated from a real to complex forward 2D DFT is a partial representation of the full complex
output. This is due to the symmetry of the resulting data. Only the first (n/2)+1 columns are represented; in
natural mode this means each row has only (n/2)+1 samples, with no padding at the end of the row. In optimal
mode, only the first (n/2)+1 columns are output. When doing a backward complex to real DFT, this half-complex
format is assumed.

It is possible to create multiple plans and relate them to multiple DFT computations.

The ClearSpeed DFT library performs the following forward 1D FFT:

Y[k]=Sum{j=0,n-1}(X[j]*exp(-2*pi*j*k*sqrt(-1)/n))

The ClearSpeed DFT library performs the following backward 1D DFT:

Y[k]=Sum{j=0,n-1}(X[j]*exp(2*pi*j*k*sqrt(-1)/n))

All the various configuration parameters related to a DFT are contained in a plan object in the CSDft API. A
descriptor is created by the following API calls for 1d, 2d and 3D versions of CSDFT_create_plan_<1D|2D|3D>.

Returns

This function returns a plan if there are no errors found in the supplied flags or parameters, otherwise it returns
NULL. If there is an error, then the global status will be set to indicate an error, which can be retrieved by using
CSDFT_get_status().

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 16 06-RM-1337-1.46.1.15

CSDFT_execute_dft — Synchronous Execution of a DFT

Synopsis

#include "csdft/csdft.h"
CSDftStatus CSDFT_execute_dft(const CSDftPlan plan, CSDftMemoryDescriptor source,
CSDftMemoryDescriptor destination);

Description

This function performs the DFT as described by the plan parameter, using data specified by the source and des-
tination memory descriptors. This function is a synchronous interface and will only return when the DFT has com-
pleted.

Returns

Returns a status code of CSDFT_NO_ERROR if the function is successful, CSDFT_INVALID_PLAN if the plan passed
as a parameter is not valid (such as the handle being NULL), CSDFT_INVALID_MEMORY_DESCRIPTOR if the han-
dles for the memory descriptors are invalid or CSDFT_BOARD_ERROR if the library cannot connect to an Advance
Card.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 17 06-RM-1337-1.46.1.15

CSDFT_free_plan — Free a DFT plan

Synopsis

 #include "csdft/csdft.h"
 CSDftStatus CSDFT_free_plan(CSDftPlan plan);

Description

This function frees up the previously created plan.

Returns

This function frees all associated resources for a plan and returns a CSDftStatus result of CSDFT_NO_ERROR or
CSDFT_INVALID_MEMORY_DESCRIPTOR if plan is a null pointer.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 18 06-RM-1337-1.46.1.15

CSDFT_create_user_function — Create user function

Synopsis

#include "csdft/csdft.h"
CSDftUserFunction CSDFT_create_user_function(const char *func, unsigned int
common_size, unsigned int block_size_src, unsigned int block_size_dst, unsigned int
num_blocks);

Description

This function creates a handle to a 'user function', which is in the ClearSpeed executable (CSX) on the ClearSpeed
Advance board. This function needs to be built into 2 CSX files (one for each chip) which the user has compiled.
These CSX files need to have been linked with the board CSDFT library. They need to be of the form name_0.csx
and name_1.csx. If debugging is necessary, then _debug should be added after the digit e.g. mycsx_0_debug.csx.
In order to load this CSX file the environment variable CS_FFT_CSX must be set to be the name part of the CSX
without the suffixes e.g. /home/csx/mycsx

The user function must be of the following format:

void funcname(CSDftMemoryDescriptor common, CSDftMemoryDescriptor in, CSDftMemoryDescriptor out);

This first parameter in CSDFT_create_user_function(), func, is the name of the function to be called in
the CSX executable on the board. block_size_src and block_size_dst are the size in bytes of the source
and the destination respectively, and num_blocks is the number of blocks in the source and destination.

The number of blocks indicates how many times the user function will be called. Each time, an amount of data
equal to block_size_src will be given to the user function, and an amount of data equal to block_size_dst
will be written to the destination. The common data parameter is broadcast once to each CSX600 running the user
function.

To actually execute the board function, CSDFT_execute_user_function() must be called.

/ *
To create a handle to a user function called myfunc
* /
CSDftUserFunction func;
/ *
Send 1Kb of data to myfunc() at a time; repeat 10 times.
* /
func = CSDFT_create_user_function("myfunc", 0, 1024, 1024, 10);

Returns

This function returns a CSDftUserFunction if there are no errors, other it returns NULL. If there is an error, the
global status will be set to indicate an error and can be retrieved by using CSDDFT_get_status().

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 19 06-RM-1337-1.46.1.15

CSDFT_execute_user_function — Synchronous Execution of a user function

Synopsis

#include "csdft/csdft.h"
CSDftStatus CSDFT_execute_user_function(CSDftUserFunction func,CSDftMemoryDescriptor
common, CSDftMemoryDescriptor in, CSDftMemoryDescriptor out, CSDftProcessorID processor
);
CSDftStatus CSDFT_execute_user_function(CSDftUserFunction func,CSDftMemoryDescriptor
common, CSDftMemoryDescriptor in, CSDftMemoryDescriptor out);

Description

This function executes a user function residing in a CSX executable on a ClearSpeed Advance Board. The first
parameter, func, is the handle to the user function, and is created using CSDFT_create_user_function().
in and out are memory descriptors describing the source and destination data locations respectively. common
is a memory descriptor pointing to data to be sent to all relevant chips on the Advance boards (i.e. will act like a
broadcast).

processor describes to which board and processor this data should be sent to. To choose a specific processor
on a specific board, CSDFT_BOARD_N should be ORed with CSDFT_PROCESSOR_M, where N is the board number
(starting at 0 and up to 6) and M is the processor number (starting at 0 and up to 3). Alternatively, developers
can choose to send data to any free processor in sequence - to do this, CSDFT_BOARD_SEQUENCE should be
ORed with CSDFT_PROCESSOR_SEQUENCE. If a specific processor is chosen, currently only one block of data
may be sent (i.e the num_blocks parameter of CSDFT_create_user_function() must be 1).

The input blocks of data will be read contiguously from the input descriptor and written to the output descriptor.

The input blocks of data will be taken contiguously from the input descriptor and written out to the output descrip-
tor.

/ *
To create a handle to a user function called myfunc
* /
CSDftUserFunction func;
/ *
Send 10Kb of data to myfunc(), 1Kb at a time.
* /
func = CSDFT_create_user_function("myfunc", 0, 1024, 1024, 10);
/ *
Execute the function, sending data to whichever processor is free
* /
CSDFT_execute_user_function(func, md_null, md_in, md_out, CSDFT_BOARD_SEQUENCE |
CSDFT_PROCESSOR_SEQUENCE)
To create a handle to a user function called myfunc
* /
CSDftUserFunction func;
/ /Send 1Kb of data to myfunc() at a time; repeat 10 times.
func = CSDFT_create_user_function("myfunc", 0, 1024, 1024, 10);

Returns

This function returns a CSDftUserFunction if there are no errors, other it returns NULL. If there is an error, the
status will be set to indicate an error.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 20 06-RM-1337-1.46.1.15

CSDFT_free_user_func — Frees a previously created user function.

Synopsis

#include "csdft/csdft.h"
CSDftStatus CSDFT_free_user_func(CSDftUserFunc handle) ;

Description

This function frees a previously created user function. If this function cannot free the user function, it returns
CSDFT_INVALID_USER_FUNCTION.

Returns

This function returns CSDFT_NO_ERROR or CSDFT_INVALID_USER_FUNCTION as required.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 21 06-RM-1337-1.46.1.15

CSDFT_create_convolution_plan_2d — Create a 2D plan for a convolution
operation

Synopsis

#include "csdft/csdft.h"
CSDftPlan CSDFT_create_convolution_plan_2d(CSDftFlags flags, unsigned int size_x,
unsigned int size_y, unsigned int num_ffts, double scale);

Description

Performing a convolution is similar to any other DFT - a plan should be created, specifying the correct flags and
then executed. As usual, flags are ORed together - however one flag of specific note is
CSDFT_TRANSFORM_KERNEL. If set, the kernel will undergo a DFT before being convolved with the transformed
source. Otherwise, the kernel with be convolved "as is" with the transformed source. By default, the kernel is
assumed to not need to be pre-transformed, and, in this implementation, the kernel is assumed to be the result
of a single DFT. Therefore, the same kernel will be reused if num_ffts is greater than 1.

To perform a convolution with no apparent scaling, the scale parameter should be 1/(size*size). For example,
scale would be 1/(512*512) when performing a 512x512 DFT.

The complex data generated from a real to complex forward 2D DFT is a partial representation of the full complex
output. This is due to the symmetry of the resulting data. Only the first (n/2)+1 columns are represented; in
natural mode this means each row has only (n/2)+1 samples, with no padding at the end of the row. In optimal
mode, only the first n/2+1 columns are output. When performing a backward complex to real DFT, this half-com-
plex format is assumed. The kernel MUST be in optimal order when performing convolutions.

Returns

This function returns a plan if there are no errors found in the supplied flags or parameters, otherwise it returns
NULL. If there is an error, then the global status will be set to indicate an error, which can be retrieved by using
CSDFT_get_status().

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 22 06-RM-1337-1.46.1.15

CSDFT_execute_convolution — Synchronous Execution of a convolution

Synopsis

#include "csdft/csdft.h"
CSDftStatus CSDFT_execute_convolution(const CSDftPlan plan, CSDftMemoryDescriptor
kernel, CSDftMemoryDescriptor source, CSDftMemoryDescriptor destination) ;

Description

This function uses memory descriptors to specify the memory locations of the kernel, source and destination data.
A memory descriptor is an opaque data structure which represents data, both in host and board space. More
information on this structure is available in the Introduction section.

If the convolution is performed correctly and no errors occur, the solution with be in the memory space referenced
by the destination memory descriptors.

Returns

Returns a status code of CSDFT_NO_ERROR if the function is successful, CSDFT_INVALID_PLAN if the plan passed
as a parameter is not valid (such as the handle being NULL), CSDFT_INVALID_MEMORY_DESCRIPTOR if the han-
dles for the memory descriptors are invalid or CSDFT_BOARD_ERROR if the library cannot connect to an Advance
Board.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 23 06-RM-1337-1.46.1.15

CSDFT_get_status — Returns the current status for the CSDft library

Synopsis

#include "csdft/csdft.h"
CSDftStatus CSDFT_get_status(void);

Description

This function returns the current status code for the CSDft library. Specifically it returns the status code of the last
executed CSDft library function. All Memory Descriptor, Plan and Execute functions will either set the global status
code or return their status code as a return value as their prototype dictates.

The following are the valid status codes which will be returned or set by CSDft library functions.

• CSDFT_NO_ERROR No current error detected.

• CSDFT_INVALID_MEMORY_DESCRIPTOR When set by one of the Execute functions or one of the memory
manipulation functions this code indicates that one of the pointer parameters to the function were NULL.

• CSDFT_MEMORY_ALLOCATION_ERROR When set by one of the Memory Descriptor functions that allocate
memory this code indicates that a memory allocation error has been encountered either on the host or on
the Advance board.

• CSDFT_BOARD_ERROR This code can be set as a result of the CSDft library not being able to find an
Advance board to connect to. If there is definetly a board present in the computer, typing "csreset -v" into
your command prompt should identify or fix the problem. Alternatively, this error is set due to an internal,
unrecoverable error on the board or in the driver.

• CSDFT_INVALID_BOARD This code is returned when an operation is adjudged to be sent to a board that
does not exist.

• CSDFT_INVALID_PROCESSOR This code is returned when an operation is adjudged to be sent to a proces-
sor that does not exist on a board that does exist.

• CSDFT_INVALID_PLAN When set by one of the planner functions this code indicates that one or more of
the flags of a requested DFT was invalid. When returned by one of the execute functions it indicates that
the plan was somehow invalid or not defined (NULL).

• CSDFT_INVALID_SYMBOL Set as a result of one of the User Planner functions not finding the symbol in the
loaded CSX file on the Advance board. Usually this is the result of the wrong path being set in the
CS_FFT_CSX environment variable.

• CSDFT_INVALID_SIZE Set as a result of an unsupported size being specified as part of the plan. This is
most likely the result of a size being set that is not currently supported by the CSDFT library (currently a
power of 2).

• CSDFT_INVALID_FLAG Set as a result of incompatible options being chosen when creating a plan. An
example of this is chosing different source and destination formats.

• CSDFT_INVALID_PARAMETER Set as a result of incompatible parameters being specified when calling a
function.

• CSDFT_INVALID_USER_FUNCTION Set as a result of an invalid user function handle being specified when
calling a function. An example of this is passing a null handle to CSDFT_execute_user_function().

This function can be used to test for reasons behind unexpected behaviour and when used in conjunction with
the CSDFT_return_error_message() can provide textual messages for the user at runtime.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 24 06-RM-1337-1.46.1.15

Returns

This function returns a status of CSDFT_NO_ERROR if has been no error in the last performed function, otherwise
it returns another of the listed status codes.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 25 06-RM-1337-1.46.1.15

CSDFT_return_error_message — Returns a string describing a status value of the
CSDft library

Synopsis

#include "csdft/csdft.h"
const char* CSDFT_return_error_message(CSDftStatus status);

Description

This function returns a string representing a textual description of the the current status code for the CSDft library.

The following are the status strings returned by the routine.

• "No error" Corresponds to the CSDFT_NO_ERROR status code.

• "Error: Allocating memory" Corresponds to the CSDFT_MEMORY_ALLOCATION status code.

• "Error: Invalid plan" Corresponds to the CSDFT_INVALID_PLAN status code.

• "Error: Invalid symbol" Corresponds to the CSDFT_INVALID_SYMBOL status code.

• "Error: Board not found or unrecoverable" Corresponds to the CSDFT_BOARD_ERROR status code.

• "Error: Invalid board" Corresponds to the CSDFT_INVALID_BOARD status code.

• "Error: Invalid flag" Corresponds to the CSDFT_INVALID_FLAG status code.

• "Error: Invalid size" Corresponds to the CSDFT_INVALID_SIZE status code.

• "Error: Invalid processor" Corresponds to the CSDFT_INVALID_PROCESSOR status code.

• "Error: Invalid memory descriptor" Corresponds to the CSDFT_INVALID_MEMORY_DESCRIPTOR status
code.

Returns

This function returns a const char * string which corresponds to the status code used as an argument.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 26 06-RM-1337-1.46.1.15

CSDFT_get_null_descriptor — Return a special null memory descriptor

Synopsis

#include "csdft/csdft.h"
CSDftMemoryDescriptor CSDFT_get_null_descriptor(void) ;

Description

This function returns a null memory descriptor which is a special type of memory descriptor that indicates to a
routine to which it is passed that the parameter is deliberately set to null. This helps with parameter error checking
for the library.

For example, a null memory descriptor may be used when executing a user function, when one of the parameter
sizes is zero.

Returns

This function returns a handle to a CSDftMemoryDescriptor on success and a NULL handle on failure as well as
setting the global status code to CSDFT_NO_ERROR or CSDFT_MEMORY_ALLOCATION_ERROR as required.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 27 06-RM-1337-1.46.1.15

CSDFT_malloc_host — Allocates a memory descriptor encapsulating a data
buffer allocated on the host

Synopsis

#include "csdft/csdft.h"
CSDftMemoryDescriptor CSDFT_malloc_host(unsigned int size_in_bytes) ;

Description

This function returns a CSDftMemoryDescriptor, where the data buffer is allocated on the host by the routine. The
parameter is the size in bytes of the buffer required. If the function cannot allocate memory for the buffer for any
reason it returns a NULL handle and sets the global status code to be CSDFT_MEMORY_ALLOCATION_ERROR. In
order to safely access the buffer in the case where the CSDFT_malloc_host() function has created the buffer,
you should use the CSDFT_memory_descriptor_to_system() call to provide a pointer to the buffer.

Returns

This function returns a handle to a CSDftMemoryDescriptor on success and a NULL handle on failure as well as
setting the global status code to CSDFT_NO_ERROR or CSDFT_MEMORY_ALLOCATION_ERROR as required.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 28 06-RM-1337-1.46.1.15

CSDFT_memory_descriptor_to_system — Given a host based memory descriptor
returns a pointer to a buffer in system memory

Synopsis

#include "csdft/csdft.h"
void * CSDFT_memory_descriptor_to_system(CSDftMemoryDescriptor handle) ;

Description

This function returns a void * pointer to the data buffer that is encapsulated by the CSDftMemoryDescriptor. The
parameter is a handle to a CSDftMemoryDescriptor. If the function cannot return a valid pointer to system allocated
data, for example if a board based memory descriptor was passed in, then it returns a NULL pointer and sets the
global status code to be CSDFT_MEMORY_ERROR.

Returns

This function returns a pointer to system allocated data on success and a NULL pointer on failure as well as setting
the global status code to CSDFT_NO_ERROR or CSDFT_INVALID_MEMORY_DESCRIPTOR as required.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 29 06-RM-1337-1.46.1.15

CSDFT_system_to_memory_descriptor — Returns a host based memory descriptor
encapsulating user provided source data.

Synopsis

#include "csdft/csdft.h"
CSDftMemoryDescriptor CSDFT_system_to_memory_descriptor(void * source_data, unsigned
int size_in_bytes) ;

Description

This function returns a CSDftMemoryDescriptor where the data buffer was pre-allocated on the host. The param-
eters are: a pointer to the array of data already allocated on the host and the size in bytes of the buffer. If the
function cannot for some reason create a Memory Descriptor it returns a NULL handle and sets the global status
code to be CSDFT_MEMORY_ERROR.

Returns

This function returns a handle to a CSDftMemoryDescriptor on success and a NULL handle on failure as well as
setting the global status code to CSDFT_NO_ERROR or CSDFT_MEMORY_ALLOCATION_ERROR as required.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 30 06-RM-1337-1.46.1.15

CSDFT_system_split_array_to_memory_descriptor — Creates a host based memory
descriptor encapsulating two user provided source data arrays

Synopsis

#include "csdft/csdft.h"
CSDftMemoryDescriptor CSDFT_system_split_array_to_memory_descriptor(void *
source_data_real, void * source_data_imag, unsigned int size_in_bytes)

Description

This function returns a CSDftMemoryDescriptor encapsulating the seperate real and imaginary data buffers which
are pre-allocated on the host. The parameters are: two pointers to arrays of data already allocated on the host
(representing real and imaginary parts) and the size in bytes of the data. If the function cannot for some reason
create a Memory Descriptor it returns a NULL handle and sets the global status code to be
CSDFT_MEMORY_ALLOCATION_ERROR.

Returns

This function returns a handle to a CSDftMemoryDescriptor on success and a NULL handle on failure as well as
setting the global status code to CSDFT_NO_ERROR or CSDFT_MEMORY_ALLOCATION_ERROR as required.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 31 06-RM-1337-1.46.1.15

CSDFT_processor_to_memory_descriptor — Returns a board based memory
descriptor encapsulating user provided source data.

Synopsis

#include "csdft.h"
CSDftMemoryDescriptor CSDFT_processor_to_memory_descriptor(unsigned int source_data,
unsigned int size_in_bytes, unsigned int board_instance,unsigned int
processor_instance) ;

Description

This function returns a CSDftMemoryDescriptor where the data buffer was pre-allocated on the board. The param-
eters are: a pointer to the array of data already allocated on the board, the size in bytes of the buffer, the board
number (if only one board is in use, this will be 0) and the processor the memory should be allocated on. If the
function cannot for some reason create a Memory Descriptor it returns a NULL handle and sets the global status
code to be CSDFT_MEMORY_ALLOCATION_ERROR.

Returns

This function returns a handle to a CSDftMemoryDescriptor on success and a NULL handle on failure as well as
setting the global status code to CSDFT_NO_ERROR or CSDFT_MEMORY_ALLOCATION_ERROR as required.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 32 06-RM-1337-1.46.1.15

CSDFT_memory_descriptor_copy — Copies data encapsulated in a memory
descriptor

Synopsis

#include "csdft/csdft.h"
CSDFTStatus CSDFT_memory_descriptor_copy(CSDftMemoryDescriptor source,
CSDftMemoryDescriptor destination, unsigned int size_in_bytes);

Description

This function copies the size_in_bytes amount of data from the memory descriptor source to the memory
descriptor destination. If destination is not the same or bigger size as size_in_bytes, a memory
descriptor error will be returned. This function is especially useful when copying to and from the board, as the
function will ensure previous operations have completed.

Returns

This function returns a CSDFTStatus code.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 33 06-RM-1337-1.46.1.15

CSDFT_free — Deallocates a memory descriptor created by the CSDft library

Synopsis

#include "csdft/csdft.h"
CSDftStatus CSDFT_free(CSDftMemoryDescriptor handle) ;

Description

This function deallocates a memory descriptor created by one of a number of routines provided by the CSDft
library. The function is passed a handle to a CSDftMemoryDescriptor and returns a CSDftStatus code indicating
sucess or failure. In the case of the Memory Descriptor object being deallocated without any problems this will be
CSDFT_NO_ERROR and in the case where there was a problem, such as trying to deallocate an already freed
object, the status code will be CSDFT_MEMORY_ERROR.

Returns

This function returns a status of CSDFT_NO_ERROR or CSDFT_MEMORY_ERROR.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 34 06-RM-1337-1.46.1.15

CSDFT_ilog2 — Returns the integer log to the base two value of the input
CSDFT_bitreverse_1D_c — Returns a bitreversed version of the single precision
input data CSDFT_bitreverse_1D_z — Returns a bitreversed version of the double
precision input data CSDFT_optimal_to_natural_2D_c — Transorms the input from
board optimal order to natural order for single precision data
CSDFT_optimal_to_natural_2D_z — Transorms the input from board optimal order
to natural order for double precision data CSDFT_natural_to_optimal_2D_c —
Transorms the input from natural order to board optimal order for single
precision data CSDFT_natural_to_optimal_2D_z — Transorms the input from
natural order to board optimal order for double precision data

Synopsis

#include "csdft/csdft_support.h"
unsigned int CSDFT_ilog2 (unsigned int n) ;
CSDftStatus CSDFT_bitreverse_1D_c (void *data,
 unsigned int x_size,
 unsigned int number_of_arrays) ;
CSDftStatus CSDFT_bitreverse_1D_z (void *data,
 unsigned int x_size,
 unsigned int number_of_arrays) ;
CSDftStatus CSDFT_optimal_to_natural_2D_c(void *data,
 unsigned int x_size,
 unsigned int y_size,
 unsigned int number_of_arrays) ;
CSDftStatus CSDFT_optimal_to_natural_2D_z(void *data,
 unsigned int x_size,
 unsigned int y_size,
 unsigned int number_of_arrays) ;
CSDftStatus CSDFT_natural_to_optimal_2D_c(void *data,
 unsigned int x_size,
 unsigned int y_size,
 unsigned int number_of_arrays) ;
CSDftStatus CSDFT_natural_to_optimal_2D_z(void *data,
 unsigned int x_size,
 unsigned int y_size,
 unsigned int number_of_arrays) ;

Description

These functions perform bitreversal and conversion to and from natural and optimal board format for the input
data. Currently supports conversion only for 1D and 2D complex interleaved arrays.

For any dft there exists an optimal input or output.

• 1D forward output and 1D backward input:- values are in bit reversed order

• 2D forward output and 2D backward input:- values are in natural column major order, with the contents of
each column in bit reversed order. (i.e. column 0, column 1, column 2)

For the 1D bitreverse routines the x_size parameter represents the number of elements within each array, and the
number_of_arrays parameter describes the number of individual arrays of data to be operated upon.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 35 06-RM-1337-1.46.1.15

For the 2D routines, the x_size parameter represents the number of columns and the y_size parameter represents
the number of rows.

Returns

This function returns a status of CSDFT_NO_ERROR if has been no error in the last performed function, otherwise
it returns another of the library status codes.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 36 06-RM-1337-1.46.1.15

CSDFT_get_symbol_value — Obtains the Board memory address of a specifed
symbol (on the first device of an Advance Board)

Synopsis

#include "csdft/csdft.h"
CSDftStatus CSDFT_get_symbol_value(const char *symbol, unsigned int
*symbol_address,unsigned int board_instance, unsigned int processor_instance);

Description

This function is used to obtain the address of a symbol in a CSX file. This address is then used when creating a
memory descriptor on the board, using CSDFT_processor_to_memory_descriptor(). The parameters
are: symbol is the name of the symbol within the CSX executable, symbol_address is a pointer to an integer
which will be populated with the symbol address, board_instance is the board number (starting at 0), and
processor_instance is the processor number (again, starting at 0).

In the CSX executable on the Clearspeed Advance board:

double blank_fft[1024][1024][2];

In the host executable:

unsigned int address = 0;
CSDFTMemoryDescriptor mem_desc;
/ * Get the address of the symbol * /
CSDFT_get_symbol_value("blank_fft", &int,0,0);
/ * Allocate memory on board 0, processor 0 * /
mem_desc = CSDFT_processor_to_memory_descriptor(int, sizeof(Double)*1024*1024*2, 0,0);

Returns

This function returns a status of CSDFT_NO_ERROR if has been no error in the last performed function, otherwise
it returns another of the library status codes.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 37 06-RM-1337-1.46.1.15

CSDFT_get_csapi_handle — Obtains the CSAPI handle for the first instance of an
Advance Board in a system used by the CSDft library

Synopsis

#include "csdft/csdft_support.h"
CSDftStatus CSDFT_get_csapi_handle (struct CSAPIState **handle) ;
CSDftStatus CSDFT_get_csapi_handle_board(struct CSAPIState **handle,
 unsigned int board_instance) ;

Description

These functions allow the user to obtain a valid CSAPI handle to a particular Advance Board. These functions
should be used if the developer wishes to access the low level CSAPI (which is not recommended), and otherwise
should be avoided.

Returns

This function returns a status of CSDFT_NO_ERROR if has been no error in the last performed function, otherwise
it returns CSDFT_INVALID_BOARD.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 38 06-RM-1337-1.46.1.15

4 ClearSpeed DFT Board Library
This section documents the ClearSpeed DFT board-side interface.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 39 06-RM-1337-1.46.1.15

CSDFT_create_plan_1d, CSDFT_create_plan_2d, CSDFT_create_plan_3d — Create a 1,2 or
3D plan for a DFT

Synopsis

#include "csdft.h"
CSDftPlan CSDFT_create_plan_1d(CSDftFlags flags, unsigned int size, unsigned int
num_ffts, double scale);
CSDftPlan CSDFT_create_plan_2d(CSDftFlags flags, unsigned int size_x, unsigned int
size_y, unsigned int num_ffts, double scale);
CSDftPlan CSDFT_create_plan_3d(CSDftFlags flags, unsigned int size_x, unsigned int
size_y, unsigned int size_z, unsigned int num_ffts, double scale);

Description

These functions create plans for 1, 2 and 3 dimensional DFTs, which can then be executed using the
CSDFT_execute_dft routine.

This library supports:

1D DFT

• Power of two sizes from 128 to 8192

• Single and Double precision

• Complex to Complex (forward and backward)

• Interleaved

2D DFT

• Square and non square Power of two sizes from 128 to 2048

• Single and Double precision

• Real and Complex types:

• Complex to Complex (forward and backward)

• Real to Complex (forward)

• Complex to Real (backward)

• Interleaved and Split Array inputs

• Natural and Optimal order

3D DFT

• 128 cubed size only

• Single and Double precision

• Complex to Complex (forward and backward)

• Interleaved

• Natural order only

The complex data generated from a real to complex forward 2D DFT is a partial representation of the full complex
output. This is due to the symmetry of the resulting data. Only the first (n/2)+1 columns are represented; in

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 40 06-RM-1337-1.46.1.15

natural mode this means each row has only (n/2)+1 samples, with no padding at the end of the row. In optimal
mode, only the first (n/2)+1 columns are output. When doing a backward complex to real DFT, this half-complex
format is assumed.

It is possible to create multiple plans and relate them to multiple DFT computations.

The ClearSpeed DFT library performs the following forward 1D FFT:

Y[k]=Sum{j=0,n-1}(X[j]*exp(-2*pi*j*k*sqrt(-1)/n))

The ClearSpeed DFT library performs the following backward 1D DFT:

Y[k]=Sum{j=0,n-1}(X[j]*exp(2*pi*j*k*sqrt(-1)/n))

All the various configuration parameters related to a DFT are contained in a plan object in the CSDft API. A
descriptor is created by the following API calls for 1d, 2d and 3D versions of CSDFT_create_plan_<1D|2D|3D>.

Returns

This function returns a plan if there are no errors found in the supplied flags or parameters, otherwise it returns
NULL. If there is an error, then the global status will be set to indicate an error, which can be retrieved by using
CSDFT_get_status().

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 41 06-RM-1337-1.46.1.15

CSDFT_execute_dft — Synchronous Execution of a DFT

Synopsis

#include "csdft.h"
CSDftStatus CSDFT_execute_dft(const CSDftPlan plan, CSDftMemoryDescriptor source,
CSDftMemoryDescriptor destination);

Description

This function performs the DFT as described by the plan parameter, using data specified by the source and des-
tination data pointers. This function is a synchronous interface and will only return when the DFT has completed.

DFTs within the source and destination data are expected to be stored contiguously.

Returns

Returns a status code of CSDFT_NO_ERROR if the function is successful, CSDFT_INVALID_PLAN if the plan passed
as a parameter is not valid (such as the handle being NULL), CSDFT_INVALID_MEMORY_DESCRIPTOR if the han-
dles for the memory descriptors are invalid or CSDFT_BOARD_ERROR if the library cannot connect to an Advance
Card.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 42 06-RM-1337-1.46.1.15

CSDFT_create_convolution_plan_1d, CSDFT_create_convolution_plan_2d — Create a 1D
or 2D plan for a convolution operation

Synopsis

#include "csdft.h"
CSDftPlan CSDFT_create_convolution_plan_1d(CSDftFlags flags, unsigned int size,
unsigned int num_ffts,double scale);
CSDftPlan CSDFT_create_convolution_plan_2d(CSDftFlags flags, unsigned int size_x,
unsigned int size_y, unsigned int num_ffts, double scale);

Description

Performing a convolution is similar to any other DFT - a plan should be created, specifying the correct flags and
then executed. As usual, flags are ORed together - however one flag of specific note is
CSDFT_TRANSFORM_KERNEL. If set, the kernel will undergo a DFT before being convolved with the transformed
source. Otherwise, the kernel with be convolved "as is" with the transformed source. By default, the kernel is
assumed to not need to be pre-transformed, and, in this implementation, the kernel is assumed to be the result
of a single DFT. Therefore, the same kernel will be reused if num_ffts is greater than 1. The kernel must be
pretransformed when the convolution is on the board.

To perform a convolution with no apparent scaling, the scale parameter should be 1/n for both 1D and 2D, where
'n' is the size of the DFT to the power of the dimension. For example, scale would be 1/256 when performing a
1D dft with 256 samples and 1/(256*256) when performing a 256x256 2D.

The complex data generated from a real to complex forward 2D DFT is a partial representation of the full complex
output. This is due to the symmetry of the resulting data. Only the first (n/2)+1 columns are represented; in
natural mode this means each row has only (n/2)+1 samples, with no padding at the end of the row. In optimal
mode, only the first n/2+1 columns are output. When performing a backward complex to real DFT, this half-com-
plex format is assumed. The kernel MUST be in optimal order when performing convolutions.

Returns

This function returns a plan if there are no errors found in the supplied flags or parameters, otherwise it returns
NULL. If there is an error, then the global status will be set to indicate an error, which can be retrieved by using
CSDFT_get_status().

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 43 06-RM-1337-1.46.1.15

CSDFT_execute_convolution — Synchronous Execution of a convolution

Synopsis

#include "csdft.h"
CSDftStatus CSDFT_execute_convolution(const CSDftPlan plan, CSDftMemoryDescriptor
kernel, CSDftMemoryDescriptor source, CSDftMemoryDescriptor destination) ;

Description

This function uses memory descriptors to specify the memory locations of the kernel, source and destination data.
A memory descriptor is an opaque data structure which represents data, both in host and board space. More
information on this structure is available in the Introduction section.

If the convolution is performed correctly and no errors occur, the solution with be in the memory space referenced
by the destination memory descriptors.

Returns

Returns a status code of CSDFT_NO_ERROR if the function is successful, CSDFT_INVALID_PLAN if the plan passed
as a parameter is not valid (such as the handle being NULL), CSDFT_INVALID_MEMORY_DESCRIPTOR if the han-
dles for the memory descriptors are invalid or CSDFT_BOARD_ERROR if the library cannot connect to an Advance
Board.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 44 06-RM-1337-1.46.1.15

CSDFT_free_plan — Free a DFT plan

Synopsis

 #include "csdft.h"
 CSDftStatus CSDFT_free_plan(CSDftPlan plan);

Description

This function frees up the previously created plan.

Returns

This function frees all associated resources for a plan and returns a CSDftStatus result of CSDFT_NO_ERROR or
CSDFT_INVALID_MEMORY_DESCRIPTOR if plan is a null pointer.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 45 06-RM-1337-1.46.1.15

CSDFT_get_status — Returns the current status for the CSDft library

Synopsis

#include "csdft.h"
CSDftStatus CSDFT_get_status(void);

Description

This function returns the current status code for the CSDft library. Specifically it returns the status code of the last
executed CSDft library function. All Plan and Execute functions will either set the global status code or return their
status code as a return value as their prototype dictates.

The following are the valid status codes which will be returned or set by CSDft library functions.

• CSDFT_NO_ERROR No current error detected.

• CSDFT_INVALID_MEMORY_DESCRIPTOR When set by one of the Execute functions or one of the memory
manipulation functions this code indicates that one of the pointer parameters to the function were NULL.

• CSDFT_MEMORY_ALLOCATION_ERROR When set by one of the Memory Descriptor functions that allocate
memory this code indicates that a memory allocation error has been encountered either on the host or on
the Advance board.

• CSDFT_BOARD_ERROR This code can be set as a result of the CSDft library not being able to find an
Advance board to connect to. If there is definetly a board present in the computer, typing "csreset -v" into
your command prompt should identify or fix the problem. Alternatively, this error is set due to an internal,
unrecoverable error on the board or in the driver.

• CSDFT_INVALID_BOARD This code is returned when an operation is adjudged to be sent to a board that
does not exist.

• CSDFT_INVALID_PROCESSOR This code is returned when an operation is adjudged to be sent to a proces-
sor that does not exist on a board that does exist.

• CSDFT_INVALID_PLAN When set by one of the planner functions this code indicates that one or more of
the flags of a requested DFT was invalid. When returned by one of the execute functions it indicates that
the plan was somehow invalid or not defined (NULL).

• CSDFT_INVALID_SIZE Set as a result of an unsupported size being specified as part of the plan. This is
most likely the result of a size being set that is not currently supported by the CSDFT library (currently a
power of 2).

• CSDFT_INVALID_FLAG Set as a result of incompatible options being chosen when creating a plan. An
example of this is chosing different source and destination formats.

• CSDFT_INVALID_PARAMETER Set as a result of incompatible parameters being specified when calling a
function.

• CSDFT_INVALID_USER_FUNCTION Set as a result of an invalid user function handle being specified when
calling a function. An example of this is passing a null handle to CSDFT_execute_user_function().

This function can be used to test for reasons behind unexpected behaviour and when used in conjunction with
the CSDFT_return_error_message() can provide textual messages for the user at runtime.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 46 06-RM-1337-1.46.1.15

Returns

This function returns a status of CSDFT_NO_ERROR if has been no error in the last performed function, otherwise
it returns another of the listed status codes.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 47 06-RM-1337-1.46.1.15

CSDFT_board_to_memory_descriptor — Returns a board based memory descriptor
encapsulating user provided source data.

Synopsis

#include "csdft.h"
CSDftMemoryDescriptor CSDFT_board_to_memory_descriptor(void *source_data,unsigned int
size_in_bytes) ;

Description

This function returns a CSDftMemoryDescriptor where the data buffer was pre-allocated on the board. The param-
eters are: a pointer to the array of data already allocated on the host and the size in bytes of the buffer. If the
function cannot for some reason create a Memory Descriptor it returns a NULL handle and sets the global status
code to be CSDFT_MEMORY_ERROR.

Returns

This function returns a handle to a CSDftMemoryDescriptor on success and a NULL handle on failure as well as
setting the global status code to CSDFT_NO_ERROR or CSDFT_MEMORY_ERROR as required.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 48 06-RM-1337-1.46.1.15

CSDFT_memory_descriptor_to_board — Given a board based memory descriptor
returns a pointer to a buffer in board memory

Synopsis

#include "csdft.h"
void * CSDFT_memory_descriptor_to_board(CSDftMemoryDescriptor handle) ;

Description

This function returns a void * pointer to the data buffer that is encapsulated by the CSDftMemoryDescriptor. The
parameter is a handle to a CSDftMemoryDescriptor. If the function cannot for some reason return a valid pointer
to system allocated data then it returns a NULL pointer and sets the global status code to be
CSDFT_MEMORY_ERROR.

Returns

This function returns a pointer to system allocated data on success and a NULL pointer on failure as well as setting
the global status code to CSDFT_NO_ERROR or CSDFT_MEMORY_ERROR as required.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 49 06-RM-1337-1.46.1.15

CSDFT_free — Deallocates a memory descriptor created by the CSDft library

Synopsis

#include "csdft.h"
CSDftStatus CSDFT_free(CSDftMemoryDescriptor handle) ;

Description

This function deallocates a memory descriptor created by one of a number of routines provided by the CSDft
library. The function is passed a handle to a CSDftMemoryDescriptor and returns a CSDftStatus code indicating
sucess or failure. In the case of the Memory Descriptor object being deallocated without any problems this will be
CSDFT_NO_ERROR and in the case where there was a problem, such as trying to deallocate an already freed
object, the status code will be CSDFT_MEMORY_ERROR.

Returns

This function returns a status of CSDFT_NO_ERROR or CSDFT_MEMORY_ERROR.

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 50 06-RM-1337-1.46.1.15

Index

C
CSDFT_bitreverse_1D_c

Host . 34

CSDFT_bitreverse_1D_z
Host . 34

CSDFT_board_to_memory_descriptor
Board . 47

CSDFT_create_convolution_plan_1d 42

CSDFT_create_convolution_plan_2d
Board . 42
Host . 21

CSDFT_create_plan_1d
Board . 39
Host . 14

CSDFT_create_plan_2d
Board . 39
Host . 14

CSDFT_create_plan_3d
Board . 39
Host . 14

CSDFT_create_user_function
Host . 18

CSDFT_execute_convolution
Board . 43
Host . 22

CSDFT_execute_dft
Board . 41
Host . 16

CSDFT_execute_user_function
Host . 19

CSDFT_free
Board . 49
Host . 33

CSDFT_free_plan
Board . 44
Host . 17

CSDFT_free_user_func
Host . 20

CSDFT_get_csapi_handle
Host . 37

CSDFT_get_csapi_handle_board
Host . 37

CSDFT_get_null_descriptor
Host . 26

CSDFT_get_status
Board . 45
Host . 23

CSDFT_get_symbol_value
Host . 36

CSDFT_ilog2
Host . 34

CSDFT_malloc_host
Host . 27

CSDFT_memory_descriptor_copy
Host . 32

CSDFT_memory_descriptor_to_board
Board . 48

CSDFT_memory_descriptor_to_system
Host . 28

CSDFT_natural_to_optimal_2D_c
Host . 34

CSDFT_natural_to_optimal_2D_z
Host . 34

CSDFT_optimal_to_natural_2D_c
Host . 34

The ClearSpeed Accelerated DFT Library

© Copyright ClearSpeed Technology plc 2007 51 06-RM-1337-1.46.1.15

CSDFT_optimal_to_natural_2D_z
Host . 34

CSDFT_processor_to_memory_descriptor
Board . 31

CSDFT_return_error_message
Host . 25

CSDFT_system_split_array_to_memory_descriptor
Host . 30

CSDFT_system_to_memory_descriptor
Host . 29

	The ClearSpeed Accelerated DFT Library
	Contents
	1 Introduction
	1.1 Requirements
	1.2 Package contents
	1.3 Patterns of use
	1.4 Performance guidelines
	1.5 Environment variables
	1.6 User examples

	2 Basic usage
	2.1 Supported features
	2.2 Data formats
	Figure 2.1 Interleaved mode
	Figure 2.2 Split mode

	2.3 Memory descriptors
	2.4 Plans
	2.5 Flags
	Table 2.1 Flag parameters

	3 ClearSpeed DFT Host Library
	CSDFT_create_plan_1d, CSDFT_create_plan_2d, CSDFT_create_plan_3d - Create a 1,2 or 3D plan for a DFT
	CSDFT_execute_dft - Synchronous Execution of a DFT
	CSDFT_free_plan - Free a DFT plan
	CSDFT_create_user_function - Create user function
	CSDFT_execute_user_function - Synchronous Execution of a user function
	CSDFT_free_user_func - Frees a previously created user function.
	CSDFT_create_convolution_plan_2d - Create a 2D plan for a convolution operation
	CSDFT_execute_convolution - Synchronous Execution of a convolution
	CSDFT_get_status - Returns the current status for the CSDft library
	CSDFT_return_error_message - Returns a string describing a status value of the CSDft library
	CSDFT_get_null_descriptor - Return a special null memory descriptor
	CSDFT_malloc_host - Allocates a memory descriptor encapsulating a data buffer allocated on the host
	CSDFT_memory_descriptor_to_system - Given a host based memory descriptor returns a pointer to a buffer in system memory
	CSDFT_system_to_memory_descriptor - Returns a host based memory descriptor encapsulating user provided source data.
	CSDFT_system_split_array_to_memory_descriptor - Creates a host based memory descriptor encapsulating two user provided source data arrays
	CSDFT_processor_to_memory_descriptor - Returns a board based memory descriptor encapsulating user provided source data.
	CSDFT_memory_descriptor_copy - Copies data encapsulated in a memory descriptor
	CSDFT_free - Deallocates a memory descriptor created by the CSDft library
	CSDFT_ilog2 - Returns the integer log to the base two value of the input CSDFT_bitreverse_1D_c - Returns a bitreversed version of the single precision input data CSDFT_bitreverse_1D_z - Returns a bitreversed version of the double precision in...
	CSDFT_get_symbol_value - Obtains the Board memory address of a specifed symbol (on the first device of an Advance Board)
	CSDFT_get_csapi_handle - Obtains the CSAPI handle for the first instance of an Advance Board in a system used by the CSDft library

	4 ClearSpeed DFT Board Library
	CSDFT_create_plan_1d, CSDFT_create_plan_2d, CSDFT_create_plan_3d - Create a 1,2 or 3D plan for a DFT
	CSDFT_execute_dft - Synchronous Execution of a DFT
	CSDFT_create_convolution_plan_1d, CSDFT_create_convolution_plan_2d - Create a 1D or 2D plan for a convolution operation
	CSDFT_execute_convolution - Synchronous Execution of a convolution
	CSDFT_free_plan - Free a DFT plan
	CSDFT_get_status - Returns the current status for the CSDft library
	CSDFT_board_to_memory_descriptor - Returns a board based memory descriptor encapsulating user provided source data.
	CSDFT_memory_descriptor_to_board - Given a board based memory descriptor returns a pointer to a buffer in board memory
	CSDFT_free - Deallocates a memory descriptor created by the CSDft library

	Index
	C

