
17 April 2007

CSX600 Runtime
Software User Guide

User Guide
06-UG-1345 1.20.2.11

 06-UG-1345-1.20.2.11

Conventions

1. Information and data contained in this document, together with the information contained in any and all associated ClearSpeed docu-
ments including without limitation, data sheets, application notes and the like ('Information') is provided in connection with ClearSpeed
products and is provided for information only. Quoted figures in the Information, which may be performance, size, cost, power and the
like are estimates based upon analysis and simulations of current designs and are liable to change.

2. Such Information does not constitute an offer of, or an invitation by or on behalf of ClearSpeed, or any ClearSpeed affiliate to supply any
product or provide any service to any party having access to this Information. Except as provided in ClearSpeed Terms and Conditions of
Sale for ClearSpeed products, ClearSpeed assumes no liability whatsoever.

3. ClearSpeed products are not intended for use, whether directly or indirectly, in any medical, life saving and/ or life sustaining systems or
applications.

4. The worldwide intellectual property rights in the Information and data contained therein is owned by ClearSpeed. No license whether
express or implied either by estoppel or otherwise to any intellectual property rights is granted by this document or otherwise. You may
not download, copy, adapt or distribute this Information except with the consent in writing of ClearSpeed.

5. The system vendor remains solely responsible for any and all design, functionality and terms of sale of any product which incorporates a
ClearSpeed product including without limitation, product liability, intellectual property infringement, warranty including conformance to
specification and or performance.

6. Any condition, warranty or other term which might but for this paragraph have effect between ClearSpeed and you or which would other-
wise be implied into or incorporated into the Information (including without limitation, the implied terms of satisfactory quality, mer-
chantability or fitness for purpose), whether by statute, common law or otherwise are hereby excluded.

7. ClearSpeed reserves the right to make changes to the Information or the data contained therein at any time without notice.

© Copyright ClearSpeed Technology plc 2006. All rights reserved.

Advance, ClearSpeed, ClearConnect and the ClearSpeed logo are trade marks or registered trade marks of ClearSpeed Technology plc. All
other brands and names are the property of their respective owners.

ClearSpeed Technology, Inc.
3031 Tisch Way, Suite 200
San Jose, CA 95128

Tel: 408-557-2067
Fax: 408-557-9054

Email: info@clearspeed.com
Web: www.clearspeed.com

ClearSpeed Technology plc
3110 Great Western Court

Hunts Ground Road
Bristol BS34 8HP
United Kingdom

Tel: +44 (0)117 317 2000
Fax: +44 (0)117 317 2002

Convention Description

commands This typeface means that the command must be entered exactly as shown in the text and the
[Return] or [Enter] key pressed.

Screen displays This typeface represents information as it appears on the screen.

[Key] names Key names appear in the text written with brackets. For example [Return] or [F7]. If it is
necessary to press more than one simultaneously, the key names are linked with a plus (+) sign:
Press [Ctrl]+[Alt]+[Del]

Bold-face text Signal names, instructions and register names are displayed in bold.
Selections made via the menu hierarchy of a software application.

Words in italicized type Italics emphasize a point, concept or denote new terms.

This symbol indicates important information or instructions.

info@pixelfusion.com
www.pixelfusion.com

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 3 06-UG-1345-1.20.2.11

Contents

1 Introduction

2 Running code
2.1 csrun . 8

2.1.1 Invoking csrun . 8

2.1.2 Command line options . 8

2.2 csreset . 10

2.2.1 When to use csreset . 10

2.2.2 Invoking csreset . 10

2.2.3 Command line options . 10

Examples . 11

2.2.4 Recovering the board . 12

3 Debugger Reference
3.1 New commands and features . 13

3.2 Invoking the debugger . 13

3.2.1 Using the debugger with a host application . 13

3.3 Commands . 14

3.3.1 Connect command and options . 14

3.3.2 Loading code . 15

3.3.3 Executing code . 16

3.3.4 Mono debugging . 16

Reading mono registers – regs command . 16

Writing mono registers – regs command . 17

Reading mono memory – x command . 17

Examples of using the x command . 17

Disassemble command . 18

Breakpoints . 18

Symbolic debug . 19

3.3.5 Poly debugging . 19

Reading poly registers – peregs command . 19

Reading poly memory – pex command . 20

Examples of the pex command . 20

Viewing the enable state . 21

Displaying the PE mac status info . 22

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 4 06-UG-1345-1.20.2.11

Displaying the PE fpadd status . 22

Displaying the PE fpmul status . 22

Symbolic debug . 22

3.3.6 Hardware threads . 23

3.3.7 System register viewer . 25

Getting help in csgdb . 26

Listing system register information . 26

Viewing the information about a register group . 27

Listing the information about a specific register . 28

Displaying system register values . 28

Displaying the values of a register group . 29

Displaying the value of an individual register . 29

Returning a register value to a GDB variable . 29

Writing to registers . 29

3.3.8 TSC semaphore viewer . 30

Getting help in csgdb . 30

Displaying semaphore information . 30

Listing information for all semaphores with a current value . 31

Listing semaphore information for an individual semaphore . 31

Displaying only the values of semaphores . 31

Displaying only the nonzero status of the semaphores . 32

Displaying the interrupt enable status of the semaphores . 33

Displaying the overflow status of the semaphores . 34

Displaying the current thread / semaphore usage . 35

3.4 Registers . 35

3.5 Using DDD . 36

4 Host interface library
4.1 CSX600 driver library . 37

4.2 Linking host applications with CSAPI . 37

4.2.1 Linux . 37

4.2.2 Microsoft Windows . 38

4.3 Using CSAPI . 39

4.3.1 Building programs . 39

4.3.2 Connection and initialization . 39

Access control . 40

Initialization . 40

4.3.3 Obtaining information . 40

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 5 06-UG-1345-1.20.2.11

4.3.4 Loading and running a program . 40

Loading CSX programs . 40

Running the CSX program . 41

4.3.5 Unloading a program and disconnecting . 41

Example application . 41

4.3.6 Events . 42

4.3.7 Semaphores . 43

4.3.8 Symbols . 43

4.3.9 Memory allocation . 43

Memory allocation . 44

Static allocation . 44

Host side dynamic allocation . 45

CSX program dynamic allocation (malloc) . 46

4.3.10Memory and register access . 46

Memory access . 46

Asynchronous transfers . 46

Register access . 47

4.4 Example of host and CSX code cooperation . 48

4.5 ClearSpeed host application programming interface (CSAPI) . 50

4.5.1 Common parameters . 50

4.5.2 Error codes . 51

4.5.3 Initialization and maintenance functions . 53

4.5.4 Program setup . 55

4.5.5 Processor control . 57

4.5.6 Accessing registers . 59

4.5.7 Accessing mono memory and registers . 62

4.5.8 Endian functions . 67

4.5.9 Thread functions . 68

4.5.10Semaphore handling . 70

4.5.11Callback functions . 72

4.5.12Memory allocation using CSAPI functions . 73

4.5.13Utility functions . 78

4.6 Calling CSAPI routines . 80

4.6.1 Functions that can called before connecting to the board . 80

Functions that do not communicate with the board . 80

4.6.2 Functions that should not be called when not connected . 80

4.7 Access control . 81

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 6 06-UG-1345-1.20.2.11

4.7.1 The lock file . 81

4.8 DMA issues . 81

5 Diagnostic software reference
5.1 Diagnostic tests using Perl . 83

5.1.1 Full diagnostic tests for Windows XP . 83

5.1.2 Full diagnostic tests for Linux . 83

5.1.3 What to do if the tests fail . 84

5.2 Mandelbrot demonstration . 84

5.2.1 How to run the Mandelbrot demonstration in Windows XP . 84

5.2.2 How to run the Mandelbrot demonstration in Linux . 84

6 Kernel level driver
6.1 Overview . 85

6.2 Module loading and unloading . 86

6.3 Device opening, closing and mmap . 88

6.4 Interrupt handling . 88

6.5 DMA ioctls . 89

6.6 Miscellaneous . 91

6.6.1 Class interface . 91

6.6.2 /proc interface . 92

6.6.3 Moving functionality into kernel driver . 92

6.6.4 Resources. . 93

7 Bibliography

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 7 06-UG-1345-1.20.2.11

1 Introduction
This document describes the components that make up the CSX600 runtime package. These are:

• Stand-alone host tools to reset the Advance board and to load and run programs on the boards. See chap-
ter 2, Running code, on page 8.

• A standard source code debugger, csgdb, is provided to allow debugging of applications running on the
Advance board. See chapter 3, Debugger Reference, on page 13.

• A set of diagnostic tools are provided with the runtime and driver software. These can be used to verify
the correct installation of hardware and drivers and also to generate diagnostic information if problems are
found. See chapter 5, Diagnostic software reference, on page 83.

• The host application programming interface and libraries used by a user application on the host to control
and communicate with the CSX600 processor. See chapter 4, Host interface library, on page 37.

• A kernel level driver is installed at boot time on the host operating system and provides a very low level
interface to the CSX600 processor. See chapter 6, Kernel level driver, on page 85.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 8 06-UG-1345-1.20.2.11

2 Running code
To run compiled code on the CSX600 processor or a simulator, a program needs to be run on the host computer
to load the code and start it running. As part of the runtime software, a simple host program called csrun is
provided. This will boot the CSX processor(s), load and run the specified CSX executable and then provide host
services such as I/O.

Before code is run on the CSX600 processor, it needs to be reset. The command csreset (see page 10) can be
used to reset one or all of the CSX600 processors in a system.

Note: You should ensure that applications are properly terminated because a background process connected to
the board will prevent other applications from connecting to it. If a program using the Advance board is terminated
abnormally, it is possible that it may continue to run in the background. Further attempts to use the board will fail
to connect, giving the process ID of the process still using the board. This process must be terminated before the
Advance board can be used by another program.

2.1 csrun
csrun is a simple system loader that enables executables to be run without the need to create a host application.

2.1.1 Invoking csrun
The command line for csrun is:

csrun [option]* filename

Where the filename parameter is the executable .csx file name. csrun will search the paths specified in the
CSPATH environment variable to find the executable.

Note: To run the program fred.csx in the current directory, the directory must be specified (as ‘.’ or an absolute
path). For example:

csrun ./fred.csx (on Linux)

csrun .\fred.csx (on Windows)

2.1.2 Command line options
The csrun command line options are summarized in Table 2.1.

Long name Short
name

Valid values Description

--chip -c integer Select which chip to run on (0 or 1). Default: 0.

--help -h Displays information on command line usage.

--host name or address Connect to a simulator on a remote host. Default: localhost.

--instance -i integer Select a board or a simulator instance (0,1,2,...). Default: any available.

Table 2.1 csrun command line options summary

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 9 06-UG-1345-1.20.2.11

-c chip-id
--chip chip-id
Selects the chip on which to run the code. Chip numbering starts with 0 for the first chip on a board. The default
if not specified is 0, the first chip.

-h
--help
Displays information on command line usage.

--host name | address
If the simulator is running on a different host, this option must be used to inform csrun where the connection
should be made.

-i number
--instance number
Specifies which board or instance of the simulator to connect to. Instance numbers start from 0. The default, if
not specified, is 0 which connects to the next available board or simulator.

-s
--sim
Specifies that csrun should connect to a simulator rather than search for hardware.

-v
--verbose
Displays more information from csrun.

-V
--version
Displays version information. This includes the overall software release version (the “distribution” version) and the
specific build of csrun.

Example

To run an executable on the second chip on the third board, use a command of the form:

csrun -i 2 -c 1 executable_name.csx

In order to load an executable that is not on the current CSPATH environment path, a full path name can be spec-
ified, for example:

csrun /home/fred/csx/fred.csx

--sim -s Connect to a simulator rather than hardware.

--verbose -v Switch on verbose output.

--version -V Display version information.

Long name Short
name

Valid values Description

Table 2.1 csrun command line options summary

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 10 06-UG-1345-1.20.2.11

2.2 csreset
csreset provides a means of resetting the CSX600 processor. At a system level csreset configures the bus and
gets the CCBRs so you can do memory transfers to both MTAPs. csreset also initializes the DDR memory. It
configures the appropriate 96 PEs for each MTAP, taking redundancy into account. It loads the microcode and sets
up the PE number in PE memory. It also clears the DDR memory, which is necessary to avoid spurious ECC errors.

2.2.1 When to use csreset
You need to run csreset on each board after a hardware reset, specifically after a system boot. After this initial
boot, csreset should only be run if a program goes wrong and hangs or if the setup is destroyed. For example,
if the code trashes the PE number.

Note: If csreset is unable to reset the board, run the script recover_board as described in 2.2.4, Recovering
the board, on page 12. It is important that you then rerun csreset after this.

Under normal circumstances, resetting should only be needed once, at system or simulator startup, when all chips
on the boards installed in the system are reset. csreset also provides a finer level of control over which boards,
or chips on a board, are to be reset.

2.2.2 Invoking csreset
The command line for csreset is:

csreset [option]*

2.2.3 Command line options
The csreset command line options are summarized in Table 2.2.

Long name Short
name

Valid values Description

--all -A Reset all boards.

--chip -c integer Select a given chip.

--help -h Displays information on command line usage.

--host name or address Connect to a simulator on a remote host.

--instance -i integer Select a board or a simulator instance.

--no-reset Connect but do not reset processors.

--sim -s Connect to a simulator rather than hardware.

--verbose -v Prints out detailed information on the screen about
the board and chips.

--version -V Display version information.

Table 2.2 csreset command line options summary

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 11 06-UG-1345-1.20.2.11

-A
--all
Resets all the boards in the system. The -A option has no effect if the -i option is used.

-c chip
--chip chip
Selects the chip to reset. Chip numbering starts with 0 for the first chip on a board. If the -c option is not used,
all chips on the specified boards will be reset.

-h
--help
Displays information on command line usage.

--host name | address
If the simulator is running on a remote host, this option must be used to inform csreset where the connection
should be made.

-i number
--instance number
Specifies which board or instance of the simulator to connect to. Instance numbers start from 0. The default, if
not specified, is 0 which connects to the next available board or simulator.

--no-reset
Causes csreset to connect to the specified board or simulator but not perform a reset. This can be useful with
the --verbose option to get information about a board without resetting it.

-s
--sim
Specifies that csreset should connect to a simulator rather than search for hardware.

--verbose
Gives detailed information about the FPGA version, the temperature (°C) of the boards, the board’s serial number, the final
board test date, the installed memory type and the MTAP fuses.

Examples

Resetting all boards:

csreset -A

Resetting all chips on the second board (instance 1):

cserest -i 1 -A

Resetting all simulated boards:

csreset --sim -A

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 12 06-UG-1345-1.20.2.11

2.2.4 Recovering the board
This release includes a script for resetting the Advance board when csreset fails to do so. This does a ‘hard’
reset of the processors. This functionality will be incorporated into csreset in a future release.

Before using the reset script (recover_board), gather any diagnostic or debugging information as all state infor-
mation will be lost by the hard reset. For example, make a note of the output from csreset -v.

Before running the script, make sure you have set up your environment. In Linux, source the bashrc file (usually
present in /opt/clearspeed/csx600_m512_le/bin). In Windows, start a command prompt using the short-
cut from the ClearSpeed start menu item.

If you have more than one board, set the environment variable LLDINST to the instance number of the board to
be recovered.

For example, to reset the first board in Linux, enter:

export LLDINST=0

The same variable is set in Windows by using the command:

set LLDINST=0

To run the script:

1. Type the command: recover_board

The message Board recovery utility is displayed on the screen.

2. Press either [Return] to continue or [CTRL]+[C] to exit.

If you press [Return], the following will appear on the screen:
Starting...
25%
50%
75%
DONE

Board recovery attempted.

3. Rerun csreset as described in 2.2.2, Invoking csreset, on page 10.

This procedure can be repeated with different values of LLDINST to reset each board in the system. Remember
to ‘unset’ the environment variable after this.

To unset the variable in Linux, enter:

unset LLDINST

To unset the variable in Windows, use the command:

set LLDINST=

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 13 06-UG-1345-1.20.2.11

3 Debugger Reference
This chapter describes the changes made to the standard GDB command set to allow debugging of the CSX archi-
tecture.

csgdb is a port of the GNU open source debugger GDB to support the CSX family of microprocessors. It has been
extended to provide support for the Cn language and the data-parallel architecture of the CSX processors.

The aim in porting GNU GDB to support the CSX architecture is to utilize as much of the standard functionality
provided and change only what is required to allow access to novel features of CSX processors. The standard GDB
reference manual Debugging with GDB [2] is provided with the SDK. This is a comprehensive document that
explains how to use all of the standard features of the debugger.

3.1 New commands and features
The following new commands have been added to the debugger:

• connect command (see Connect command and options, on page 14).

• linked instructions (see Disassemble command, on page 18).

• peregs command (see Reading poly registers – peregs command, on page 19).

• pex command (see Reading poly memory – pex command, on page 20).

• whatis command displays information about poly values (see Symbolic debug, on page 22).

• sysreg command (see System register viewer, on page 25).

• semaphores command (see TSC semaphore viewer, on page 30).

In addition to these new commands, it is now also possible to display the enable state (see Viewing the enable
state, on page 21).

3.2 Invoking the debugger
When debugging a “stand-alone” application that runs entirely on the CSX600, use the following command to start
the debugger from the command line:

csgdb [executable-file]

The name of the executable file to be debugged can be passed on the command line.

The debugger initializes, prints a copyright notice and then displays a command prompt: (gdb).

3.2.1 Using the debugger with a host application
When the code running on the CSX600 is loaded and used by an application running on the host, use the following
method to allow both the host application and the debugger to connect to the CSX code:

1. Set the environment variables CS_CSAPI_DEBUGGER=1 and CS_CSAPI_DEBUGGER_ATTACH=1.

Setting CS_CSAPI_DEBUGGER initializes the debug interface inside the host application.

Setting CS_CSAPI_DEBUGGER_ATTACH allows the user to attach to the device before the host application
executes any code, and set a breakpoint.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 14 06-UG-1345-1.20.2.11

2. Start the host application and note the port number displayed by the host application. The full path of the
file loaded is also displayed by the host application.

3. In another window, start the debugger with a command line of the form:
csgdb csx_file_name port_number

or:
ddd --debugger csgdb csx_file_name port_number

where port_number is the value that was displayed by the host application.

4. Set a breakpoint in the CSX code where you want to stop.

5. Press [Run] in ddd, or use the r command in csgdb.

6. Press a key in the host application window to allow it to continue.

3.3 Commands
The following sections provide an overview of the debugger commands with a detailed description of the new
features for the CSX architecture. For clarity, irrelevant output from csgdb has been omitted from the following
examples. Where necessary, these omissions are marked with ellipses (...).

3.3.1 Connect command and options
csgdb is a cross-debugger, that is, it runs on a host machine and debugs a program running on another system
(the CSX processor). The connect command has been added to allow you to specify and initialize the connection
between csgdb and the remote device. This connection must be made before any code can be executed within
the debugger environment.

The connect command is executed from the csgdb prompt:

(gdb) connect
0x80000000 in ?? ()
(gdb)

When connected, csgdb shows the current program counter (PC) value and the symbolic information associated
with that location.

There are a number of options to the connect command. These are the same as those used with csrun.

Long name Short
name

Valid values Description

--chip -c integer Select a given chip.

--host name or address Connect to a specified host.

--instance -i integer Select a board or a simulator instance.

--mode -m direct or
attach

Select the mode of operation.

--sim -s Connect to a simulator rather than hard-
ware.

Table 3.1 Connect options summary

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 15 06-UG-1345-1.20.2.11

-c chip-id
--chip chip-id
Selects the chip to connect to. Note that chip numbering starts with 1, as opposed to instancing, which is zero
based. The default is 1.

--host name | address
If the daemon is running on a different host (that is, not the localhost), use this option to inform csgdb where
the connection should be made.

-i number
--instance number
Specifies which instance of the board or the simulator to connect to. Instancing is 0 based. The default is 0.

-m direct | attach
--mode attach | attach
Specifies which mode csgdb should use to access the device. The default mode is direct. By specifying attach
the device can be accessed via the debug interface built into CSAPI host applications.

-s
--sim
Specifies that csgdb should connect to a simulator rather than search for hardware.

3.3.2 Loading code
The executable code to be debugged needs to be loaded into the target device. This can be done in two ways:

• If the executable file name has been passed to the debugger on the command line, it can be loaded by
using the load command with no arguments:
csgdb cfitest.csx
...
(gdb) connect
0x80000000 in __FRAME_BEGIN_MONO__ ()
(gdb) load
(gdb)

• The executable file name can also be provided as an argument to the load command:
csgdb
...
(gdb) connect
0x80000000 in ?? ()
(gdb) load /csxtests/cfitest.csx
(gdb)

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 16 06-UG-1345-1.20.2.11

3.3.3 Executing code
Once code is loaded you can start the code executing. The continue command, c, starts the code from the entry
point and runs until the program terminates:

csgdb
...
(gdb) connect
0x80000000 in ?? ()
(gdb) load /csxtests/cfitest.csx
(gdb) c
Continuing.

Mtap 0 has terminated.
Program exited normally.
(gdb)

The code can also be single stepped at the instruction or source code statement level by using the stepi or step
commands. Subroutine branches can be stepped over at the instruction or source code level by using the nexti
or next command.

The command run performs the equivalent of a load followed by continue and is very useful for starting or
restarting program execution.

3.3.4 Mono debugging
csgdb supports the debugging of mono code at both the instruction and source code level. The standard GDB
commands documented in Debugging with GDB [2] are all available for use when debugging mono code.

Reading mono registers – regs command

The regs command is used for reading mono registers and takes a size parameter to allow the registers to be
viewed as 2, 4 or 8-byte values. The register size is optional. If not supplied, it defaults to 2 bytes.

For example, to display mono registers as 4-byte values:

(gdb) regs 4
pc 0x8001380c
ret 0x80013898
pred 0x0035
0m4 0x80000000
4m4 0x0
8m4 0x0
12m4 0x0
...
56m4 0x0
60m4 0x80013898
(gdb)

The three other registers (pc, ret and pred) are provided whenever the mono registers are displayed. These
correspond to the program counter, the function return address and the predicates register.

Individual registers can be specified within the GDB command language by using register names displayed by the
regs or peregs command. The register names must be preceded by a $. The register names correspond to the
names in the assembler syntax for registers, without the colon (:). That is, 0:m4 becomes $0m4 in the debugger
command language syntax.

For a detailed description of the assembly mapping, refer to Registers, on page 35.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 17 06-UG-1345-1.20.2.11

For example:

(gdb) p/x $16m4
$1 = 0x8001380c
(gdb) p/x $ret+8
$2 = 0x800138a0
(gdb)

For further information on the GDB command language variables, see Debugging with GDB [2].

Writing mono registers – regs command

The debugger supports the setting of values into mono registers via the command language. This is done using
the following syntax:

(gdb) set $16m4=0x11223344
(gdb) p/x $16m4
$1 = 0x11223344
(gdb) set $16m2=0x8899
(gdb) p/x $16m4
$2 = 0x11228899

The values are written to the device on a restart such as a step or continue. Currently only mono registers can be
written.

Reading mono memory – x command

The standard GDB x command is used to read mono memory and can be used to display a variety of formats.

Examples of using the x command

Displaying 3 words from address 0x80000000:

(gdb) x/3w 0x80000000
0x80000000 <__FRAME_BEGIN_MONO__>: 0x00000000 0x80013898 0x00000000
(gdb)

Displaying 10 bytes from the current PC:

(gdb) x/10b $pc
0x8001380c <main+20>: 0x00 0x00 0x80 0x30 0x00 0x00 0x80 0x30
0x80013814 <main+28>: 0x0a 0x00
(gdb)

The symbolic register names can be passed to this command and also symbolic information from the code.

Displaying 10 bytes from main():

(gdb) x/10b main
0x800137f8 <main>: 0x00 0x00 0xa0 0x11 0x80 0x79 0x78 0x88
0x80013800 <main+8>: 0x80 0x59
(gdb)

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 18 06-UG-1345-1.20.2.11

The x command can also be used to list instructions in the following way:

(gdb) x/11i main
0x800137f8 <main>: st 0:m4 16:m4
0x800137fc <main+4>: mono.result.get 60:m2 Return_Lo
0x80013800 <main+8>: mono.result.get 62:m2 Return_Hi
0x80013804 <main+12>: st 0:m4 60:m4 0x4
0x80013808 <main+16>: st 4:m2 8:p4
0x8001380c <main+20>: nop.poly
0x80013810 <main+24>: nop.poly
0x80013814 <main+28>: mono.immed 0xa \
0x80013818 <main+32>: mov 0:p2 mono_immediate /
0x8001381c <main+36>: mono.immed 0x0 \
0x80013820 <main+40>: mov 2:p2 mono_immediate /
(gdb)

Disassemble command

The x command can be used to display a number of instructions but the disassemble command can be used
to display the assembler instructions for a whole function.

For example, to disassemble the whole of the function main():

(gdb) disassemble main
Dump of assembler code for function main:
0x800137f8 <main+0>: st 0:m4 16:m4
0x800137fc <main+4>: mono.result.get 60:m2 Return_Lo
0x80013800 <main+8>: mono.result.get 62:m2 Return_Hi
0x80013804 <main+12>: st 0:m4 60:m4 0x4
0x80013808 <main+16>: st 4:m2 8:p4
...
0x80013858 <main+96>: ld 16:m4 0:m4
0x8001385c <main+100>: ld 60:m4 0:m4 0x4
0x80013860 <main+104>: j.lo 60:m2 \
0x80013864 <main+108>: j.hi 62:m2 /
End of assembler dump.
(gdb)

The > marks at the end of a pair of lines denote linked instructions. When you set a breakpoint on the second
half of the linked pair, the debugger automatically moves it back one instruction. When you attempt to single step
over the first part of a linked instruction, the debugger does not return until all parts of the sequence have been
executed.

Breakpoints

Breakpoints are used to stop execution of code at a particular point of interest. GDB has good support for various
different kinds of breakpoints and these are well documented in Debugging with GDB [2].

As you have full symbolic debug you can set a breakpoint on a function call. For example:

(gdb) b main
Breakpoint 1 at 0x8001380c: file cfitest.cn, line 27.
(gdb) c
Continuing.
Breakpoint 1, main () at cfitest.cn:27
27 poly int value = 10;
(gdb)

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 19 06-UG-1345-1.20.2.11

Breakpoints can also be set on a specific address in the code, as shown below:

Breakpoint 1, main () at cfitest.cn:27
27 poly int value = 10;
(gdb) x/4i $pc
0x8001380c <main+20>: nop.poly
0x80013810 <main+24>: nop.poly
0x80013814 <main+28>: mono.immed 0xa \
0x80013818 <main+32>: mov 0:p2 mono_immediate /
(gdb) b *0x80013814
Breakpoint 2 at 0x80013814: file cfitest.cn, line 27.
(gdb) c
Continuing.
Breakpoint 2, 0x80013814 in main () at cfitest.cn:27
27 poly int value = 10;
(gdb)

Symbolic debug

Full symbolic debug of functions and variables is available for mono types. Objects can be viewed using the stan-
dard commands described in Debugging with GDB [2].

The most common way of viewing symbolic data is with the print (or p) command.

For example, printing a mono integer variable:

Breakpoint 1, main () at csgdb_example.cn:22
22 mono_int++;
(gdb) print mono_int
$1 = 1
(gdb)

Printing a mono array and an array element:

Breakpoint 1, main () at csgdb_example.cn:22
22 mono_int++;
(gdb) p mono_int_array
$1 = {1000, 1001, 1002, 1003}
(gdb) p mono_int_array[3]
$2 = 1003
(gdb)

3.3.5 Poly debugging
csgdb has been extended to provide support for the poly multiplicity specifier in the Cn language and to allow
visibility of the processing elements (PEs) in the CSX architecture. As with mono data, Debugging with GDB [2]
provides the majority of the command descriptions for debugging poly code but there are some additional com-
mands which are documented here.

Reading poly registers – peregs command

This command is the poly equivalent of the regs command.

The peregs command is used for reading poly registers and takes a size parameter to allow the registers to be
viewed as 1, 2, 4 or 8-byte values. The register size is optional. If not supplied, it defaults to 1 byte.

Also, the poly registers are special as they encapsulate the value from all of the PEs in a single register value. If
the value is the same across the whole array, the value is only printed once but the debugger informs you how
many times the value repeats.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 20 06-UG-1345-1.20.2.11

For example, displaying poly registers as 4-bytes values:

(gdb) peregs 4
0p4 {0x34 <repeats 96 times>}
4p4 {0x34 <repeats 96 times>}
8p4 {0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe,
0xf, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c,
0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a,
0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38,
0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46,
0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x53, 0x54,
0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60, 0x61, 0x62,
0x63, 0x64, 0x65, 0x66, 0x67}
...
116p4 {0xdeaddddd <repeats 96 times>}
120p4 {0xdeadeeee <repeats 96 times>}
124p4 {0xdeadffff <repeats 96 times>}
(gdb)

As with the regs command the register names are available in the command language. The poly registers are
accessed from the command line with the name preceded by a $, as shown below:

(gdb) print/d $8p4
$3 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95}
(gdb)

The poly registers can also be indexed to view the value on an individual PE. In this example, the values of register
8 on PEs 10 and 84 are displayed:

(gdb) print/d $8p4[10]
$4 = 10
(gdb) print/d $8p4[84]
$5 = 84
(gdb)

Reading poly memory – pex command

This command is the poly equivalent of the standard x command.

The pex command is used to display memory across a range of PEs using the same formats available with the x
command. Symbolic names can also be passed to the pex command.

Examples of the pex command

Printing a word in decimal from the address 0x28 on PEs 0 to 20:

(gdb) pex/dw 0x28 0..20
(PE 0) 0x28 <__FRAME_BEGIN_POLY__+40>: 1000
(PE 1) 0x28 <__FRAME_BEGIN_POLY__+40>: 1001
(PE 2) 0x28 <__FRAME_BEGIN_POLY__+40>: 1002
...
(PE 18) 0x28 <__FRAME_BEGIN_POLY__+40>: 1018
(PE 19) 0x28 <__FRAME_BEGIN_POLY__+40>: 1019
(PE 20) 0x28 <__FRAME_BEGIN_POLY__+40>: 1020
(gdb)

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 21 06-UG-1345-1.20.2.11

Printing 4 bytes from address &poly_int_array on PEs 50 to 75:

(gdb) pex/4b &poly_int_array 50..75
(PE 50) 0x28 <__FRAME_BEGIN_POLY__+40>: 0x1a 0x04 0x00 0x00
(PE 51) 0x28 <__FRAME_BEGIN_POLY__+40>: 0x1b 0x04 0x00 0x00
(PE 52) 0x28 <__FRAME_BEGIN_POLY__+40>: 0x1c 0x04 0x00 0x00
...
(PE 73) 0x28 <__FRAME_BEGIN_POLY__+40>: 0x31 0x04 0x00 0x00
(PE 74) 0x28 <__FRAME_BEGIN_POLY__+40>: 0x32 0x04 0x00 0x00
(PE 75) 0x28 <__FRAME_BEGIN_POLY__+40>: 0x33 0x04 0x00 0x00
(gdb)

Viewing the enable state

When debugging applications that use poly conditional code, it is useful to see the enable state of the PEs. In
csgdb, the enable state is mapped into a register name $enable. This register can be viewed using the standard
print command.

Displaying the PE enable state info

Printing the enable state at main, where all PEs are enabled:

Breakpoint 1, main () at csgdb_example.cn:4
4 mono int mono_int = 0;
(gdb) p/x $enable
$1 = {0xff <repeats 96 times>}
(gdb)

Printing the enable state inside a poly conditional:

Breakpoint 2, main () at csgdb_example.cn:23
23 mono_int++;
(gdb) p/x $enable
$2 = {0xfe <repeats 48 times>, 0xff <repeats 48 times>}
(gdb)

Printing the enable state as binary to see all eight levels within each PE:

(gdb) p/t $enable
$3 = {11111110 <repeats 48 times>, 11111111 <repeats 48 times>}
(gdb)

Printing a simplified view of the enable state can be done as follows with + denoting enabled and - denoting dis-
abled:

Breakpoint 4, main () at simple.cn:8
8 X = 10;
(gdb) p $enabled
$1 = '-' <repeats 49 times>, '+' <repeats 47 times>
(gdb)

The number of enabled PEs can be displayed by doing the following:

(gdb) p $numenb
$3 = 47

In a similar fashion, the total number of PEs can be retrieved:

(gdb) p $numpes
$4 = 96

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 22 06-UG-1345-1.20.2.11

The number of disabled PEs can be worked out using the command language:

(gdb) p $numpes-$numenb
$5 = 49

Displaying the PE mac status info

This is done by viewing the following command language variable:

(gdb) p/x $status
$6 = {0xc9 <repeats 48 times>, 0xd2, 0xc2 <repeats 47 times>}
(gdb) p/t $status
$7 = {11001001 <repeats 48 times>, 11010010, 11000010 <repeats 47 times>}
(gdb)

Displaying the PE fpadd status

The fpadd status is displayed by viewing the following command language variable:

(gdb) p/x $fpadd
$8 = {0xc0 <repeats 96 times>}
(gdb) p/t $fpadd
$9 = {11000000 <repeats 96 times>}

Displaying the PE fpmul status

To see the current fpmul status, issue the following command:

(gdb) p/x $fpmul
$10 = {0xc2 <repeats 96 times>}
(gdb) p/t $fpmul
$11 = {11000010 <repeats 96 times>}

Symbolic debug

Full symbolic debug of variables is available for poly types. Objects can be viewed using the standard commands
described in the GDB reference value. Poly variables are special inside the debugger as they are expanded to dis-
play the value on every PE.

For example, displaying the value of a poly integer produces the following result:

(gdb) p poly_int
$4 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95}
(gdb)

The value of the variable poly_int from each PE is displayed.

A poly array produces similar results with the array values displayed from each PE. For example, to display a four
element poly integer array.

(gdb) p poly_int_array
$2 = {{1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012,
1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026,
1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040,
1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054,
1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068,

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 23 06-UG-1345-1.20.2.11

1069, 1070, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082,
1083, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1092, 1093, 1094, 1095}, {2000,
2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020, 2022, 2024, 2026, 2028,
2030, 2032, 2034, 2036, 2038, 2040, 2042, 2044, 2046, 2048, 2050, 2052, 2054, 2056,
2058, 2060, 2062, 2064, 2066, 2068, 2070, 2072, 2074, 2076, 2078, 2080, 2082, 2084,
2086, 2088, 2090, 2092, 2094, 2096, 2098, 2100, 2102, 2104, 2106, 2108, 2110, 2112,
2114, 2116, 2118, 2120, 2122, 2124, 2126, 2128, 2130, 2132, 2134, 2136, 2138, 2140,
2142, 2144, 2146, 2148, 2150, 2152, 2154, 2156, 2158, 2160, 2162, 2164, 2166, 2168,
2170, 2172, 2174, 2176, 2178, 2180, 2182, 2184, 2186, 2188, 2190}, {3000, 3003, 3006,
3009, 3012, 3015, 3018, 3021, 3024, 3027, 3030, 3033, 3036, 3039, 3042, 3045, 3048,
3051, 3054, 3057, 3060, 3063, 3066, 3069, 3072, 3075, 3078, 3081, 3084, 3087, 3090,
3093, 3096, 3099, 3102, 3105, 3108, 3111, 3114, 3117, 3120, 3123, 3126, 3129, 3132,
3135, 3138, 3141, 3144, 3147, 3150, 3153, 3156, 3159, 3162, 3165, 3168, 3171, 3174,
3177, 3180, 3183, 3186, 3189, 3192, 3195, 3198, 3201, 3204, 3207, 3210, 3213, 3216,
3219, 3222, 3225, 3228, 3231, 3234, 3237, 3240, 3243, 3246, 3249, 3252, 3255, 3258,
3261, 3264, 3267, 3270, 3273, 3276, 3279, 3282, 3285}, {4000, 4004, 4008, 4012, 4016,
4020, 4024, 4028, 4032, 4036, 4040, 4044, 4048, 4052, 4056, 4060, 4064, 4068, 4072,
4076, 4080, 4084, 4088, 4092, 4096, 4100, 4104, 4108, 4112, 4116, 4120, 4124, 4128,
4132, 4136, 4140, 4144, 4148, 4152, 4156, 4160, 4164, 4168, 4172, 4176, 4180, 4184,
4188, 4192, 4196, 4200, 4204, 4208, 4212, 4216, 4220, 4224, 4228, 4232, 4236, 4240,
4244, 4248, 4252, 4256, 4260, 4264, 4268, 4272, 4276, 4280, 4284, 4288, 4292, 4296,
4300, 4304, 4308, 4312, 4316, 4320, 4324, 4328, 4332, 4336, 4340, 4344, 4348, 4352,
4356, 4360, 4364, 4368, 4372, 4376, 4380}}
(gdb)

An individual array element can be viewed as follows:

(gdb) p poly_int_array[2]
$4 = {3000, 3003, 3006, 3009, 3012, 3015, 3018, 3021, 3024, 3027, 3030, 3033, 3036,
3039, 3042, 3045, 3048, 3051, 3054, 3057, 3060, 3063, 3066, 3069,3072, 3075, 3078,
3081, 3084, 3087, 3090, 3093, 3096, 3099, 3102, 3105, 3108, 3111, 3114, 3117, 3120,
3123, 3126, 3129, 3132, 3135, 3138, 3141, 3144, 3147, 3150, 3153, 3156, 3159, 3162,
3165, 3168, 3171, 3174, 3177, 3180, 3183, 3186, 3189, 3192, 3195, 3198, 3201, 3204,
3207, 3210, 3213, 3216, 3219, 3222, 3225, 3228, 3231, 3234, 3237, 3240, 3243, 3246,
3249, 3252, 3255, 3258, 3261, 3264, 3267, 3270, 3273, 3276, 3279, 3282, 3285}
(gdb)

The symbolic names of poly variables can also be passed to the pex command. It uses the address of the variable
and displays the data accordingly.

The standard GDB whatis command displays the type and multiplicity of a variable:

(gdb) whatis poly_int_array
type = poly int [4]<96 PEs>
(gdb)

The information <96 PEs> describes how many elements the variable is visible over and the type displays the
poly keyword.

3.3.6 Hardware threads
csgdb has extended the threading support in GDB to allow it to debug the threads supported by the hardware.
After loading an application with multiple threads the debugger can see the state of all threads in the system.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 24 06-UG-1345-1.20.2.11

The state of the threads can be seen by using the info threads command:

(gdb) info threads
* 8 Software Thread 7 0x02003b18 in _start7 ()
 7 Software Thread 6 _start6 () at thread_test.is:68
 6 Software Thread 5 _start5 () at thread_test.is:87
 5 Software Thread 4 _start4 () at thread_test.is:102
 4 Software Thread 3 _start3 () at thread_test.is:117
 3 Software Thread 2 _start2 () at thread_test.is:132
 2 Software Thread 1 _start1 () at thread_test.is:147
 1 Software Thread 0 _start () at thread_test.is:162
0x02003b18 in _start7 ()
(gdb)

The currently executing thread is marked with *.

Each thread has an identifier assigned to it by csgdb and these are used to select which thread to view. The
software thread number is displayed after the GDB identifier. In the example above, the currently executing thread
has the GDB identifier 8 and is software thread 7.

The thread command is used to select a thread.

(gdb) (gdb) thread 2
[Switching to thread 2 (Software Thread 1)]#0 _start1 () at thread_test.is:147
147 sem.wait SEM_SIG6
(gdb) list
142 sem.wait SEM_THREAD_FINISH
143
144_start1::
145.global _start1
146
147 sem.wait SEM_SIG6
148 mov 32:m2, 0
149_testloop6::
150.global _testloop6
151 j.ifn 32:m2, _testloop6
(gdb)

All following commands are applied to the currently selected thread unless otherwise specified. For example, com-
mands can be executed on all threads in the following way:

(gdb) thread apply all x/i $pc

Thread 8 (Software Thread 7):
0x2003b18 <_start7>:sem.put 77 4

Thread 7 (Software Thread 6):
0x200312c <_start6>:mov 16:m2 0x20

Thread 6 (Software Thread 5):
0x200317c <_start5>:sem.select 36

Thread 5 (Software Thread 4):
0x20031b0 <_start4>:sem.select 37

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 25 06-UG-1345-1.20.2.11

Thread 4 (Software Thread 3):
0x20031e4 <_start3>:sem.select 38

Thread 3 (Software Thread 2):
0x2003218 <_start2>:sem.select 39

Thread 2 (Software Thread 1):
0x200324c <_start1>:sem.select 3A

Thread 1 (Software Thread 0):
0x2003280 <_start>:sem.select 3B
#0 0x02003b18 in _start7 ()

You can change the view of whether csgdb displays the software or hardware mapping of the threads.To view the
hardware mapping, use the command:

set print cs_hardware_thread_view on

When any of the thread commands are used with this option set, the debugger displays the hardware thread iden-
tifiers.

(gdb) info threads
* 8 Hardware Thread 0 0x02003b18 in _start7 ()
 7 Hardware Thread 1 _start6 () at thread_test.is:68
 6 Hardware Thread 2 _start5 () at thread_test.is:87
 5 Hardware Thread 3 _start4 () at thread_test.is:102
 4 Hardware Thread 4 _start3 () at thread_test.is:117
 3 Hardware Thread 5 _start2 () at thread_test.is:132
 2 Hardware Thread 6 _start1 () at thread_test.is:147
 1 Hardware Thread 7 _start () at thread_test.is:162
0x02003b18 in _start7 ()

To disable this mode and to view the software mapping, use the command:

set print cs_hardware_thread_view off

3.3.7 System register viewer
The debugger lets you view the system register present in the CSX600 device. The values and fields contained
within them are presented in a form that can be clearly understood. To display this information, use the command
sysreg which has been added to csgdb.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 26 06-UG-1345-1.20.2.11

Getting help in csgdb

The sysreg command has limited online help which can be accessed with the help argument to sysreg.

(gdb) sysreg help

***** MTAP system register viewer help *****

Command Arguments Description
------- --------- -----------
list {reg group} | {reg full name} List system register information

display {reg group} | {reg full name} Display system register values
 | {address}

set {reg full name} | {address} {value} Write to system registers
 {reg full name} | {bitfield}{value}

return {reg full name} | {address} {var} Return register value to csgdb variable

(gdb)

Note: Chip select bits are not applied when an immediate address is specified.

The help option lists the other available options to the command and the arguments that go with them.

Listing system register information

The list option lets you view the information about the register groups, registers contained within the groups
and the bit field information for individual registers. For example, to get a list of all registers groups use the list
option with no arguments.

(gdb) sysreg list

System register group list :

Group Name

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 27 06-UG-1345-1.20.2.11

CCBRS
CCBRS_P0
CCBRS_P1
ISU
ISU_GIU
ISU_GSU
ISU_IG
LMI
LMI_DMA
LMI_DMA_AEU
LMI_LMICOM
LMI_LMIRIF
LMI_LMISRV
MTAP
MTAP_AC
MTAP_AC_DB
MTAP_AC_DB_CM
MTAP_AC_IT
MTAP_AC_MS
MTAP_GPIOC0
MTAP_GPIOC0_GPIOC
MTAP_GPIOE0
MTAP_GPIOE0_GPIOE
MTAP_TSC
MTAP_TSC_ICACHE
MTAP_TSC_ICACHE_IBUFFER
MTAP_TSC_LSU
MTAP_TSC_SCHED
MTAP_TSC_SEM
MTAP_TSC_TP
MTAP_TSC_TP_DP
MTAP_TSC_TP_TPREG
SYS

(gdb)

This command lists all the available register groups that are visible to the debugger.

Viewing the information about a register group

You can view the register groups themselves by passing the name of the group along with the list argument.
The register group names are displayed when you use the list argument on its own.

For example, to display the contents of the MTAP_TSC_SCHED group, enter the following command:

(gdb) sysreg list MTAP_TSC_SCHED

System register list for group MTAP_TSC_SCHED :

Register Name

CONTROL
STATUS
SWITCH_THREAD

(gdb)

This lists the register names that are contained within the group.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 28 06-UG-1345-1.20.2.11

Listing the information about a specific register

The list option also lets you display information about a specific register and by passing the full register name
(in the format group_name) along with the list argument.

For example, to view the information for the STATUS register of the MTAP_TSC_SCHED group:

(gdb) sysreg list MTAP_TSC_SCHED STATUS

System register definition

Name : STATUS
Group : MTAP_TSC_SCHED
Description : Status of each thread
Reset Value : 255
Address : 0x102

Bit Fields

Name : READY
First : 0
Last : 7
Width : 8

Name : THREAD
First : 16
Last : 18
Width : 3

Name : YIELD
First : 8
Last : 15
Width : 8

(gdb)

This command lists the definition and bit field information for the requested register.

Displaying system register values

As well as displaying the information regarding the make up of each of the groups and registers, it is possible to
display the values contained within them. The values can be displayed at a group level or also at an individual
register level to allow the bit-field values to be displayed. This is done by using the display argument to the
sysreg command.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 29 06-UG-1345-1.20.2.11

Displaying the values of a register group

The values of all registers contained within a register group can be displayed using the display argument with
a valid register group name. For example:

(gdb) sysreg display MTAP_TSC_SCHED

System register display for group MTAP_TSC_SCHED :

Register Name Value
------------- -----
CONTROL 0x8
STATUS 0x70000
SWITCH_THREAD 0x7

(gdb)

Displaying the value of an individual register

The value of a register can be displayed by passing a valid register name or hex address with the display argu-
ment. For example:

(gdb) sysreg display MTAP_TSC_SCHED STATUS

System register display for MTAP_TSC_SCHED_STATUS :

Value : 0x70000 0b00000000000001110000000000000000

Bit Fields Value
---------- -----
READY 0x0
THREAD 0x7
YIELD 0x0

(gdb)

Returning a register value to a GDB variable

The return option lets you store the value of a register in a GDB variable for use in a script.

The following example prints the value of register MTAP_TSC_TPREG_REGISTER_R1 through the GDB variable
$regval:

(gdb) sysreg return MTAP_TSC_TPREG_REGISTER_R1 regval
(gdb) print $regval

Writing to registers

The set option lets you write values to system registers.

Full register names or hex addresses can be specified. As well as writing to whole registers, valid bit field names
can be specified when only part of a register requires writing to.

(gdb) set MTAP_TSC_TPREG_REGISTER_R1 123
(gdb) set 06700A84 123

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 30 06-UG-1345-1.20.2.11

3.3.8 TSC semaphore viewer
When synchronizing code between the TSC and the host processor of separate threads within the TSC, sema-
phores are used. The debugger lets you list the information about the semaphores of the TSC it is connected to.
The command, semaphores, has been added to csgdb to let you view the semaphore information. The command
can also be shortened to sem and the command language takes care of extending the name.

Getting help in csgdb

The semaphores command has limited online help which can be accessed with the help argument to sema-
phores.

(gdb) sem help

***** TSC semaphore viewer help *****

Use help {command} for more detailed command specific instruction.

Command Arguments Description
------- --------- -----------
display {semaphore} | all | allval Display all semaphore information
value {semaphore} | all | allval Display the current semaphore value(s)
nonzero {semaphore} | all | allnon Display the current nonzero status(s)
interrupt {semaphore} | all | allint Display the current interrupt enable
status(s)
overflow {semaphore} | all | allovr Display the current overflow status
thread {thread} | all Display the current thread / semaphore use

(gdb)

Displaying semaphore information

Using the semaphores command with the display option lists all information about a particular set of sema-
phores. The arguments to this command can be an individual semaphore, all semaphores or all semaphores which
currently have a value. Use the all argument to list the information. For example, to display information about
all TSC semaphores:

(gdb) sem display all

Semaphore Value NonZero Interrupt Overflow
--------- ----- ------- --------- --------
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
...
...
...
123 0 0 0 0
124 0 0 0 0
125 0 0 0 0
126 0 0 0 0
127 0 0 1 0

There are 128 semaphores and this command lists all the information about all of them.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 31 06-UG-1345-1.20.2.11

Listing information for all semaphores with a current value

The semaphores command with the display argument can be used to list information about only those sema-
phores with a value. This is done by passing the allval argument to the command.

(gdb) sem display allval

Semaphore Value NonZero Interrupt Overflow
--------- ----- ------- --------- --------
30 3 1 0 0
34 2 1 0 0
36 1 1 0 0
39 4 1 0 0
45 1 1 0 0
55 2 1 0 0
56 1 1 0 0
68 1 1 0 0
119 4 1 0 0

Listing semaphore information for an individual semaphore

To limit the information displayed, the debugger can list information for an individual semaphore. This is done by
passing the semaphore number to the semaphores display command.

(gdb) sem display 34

Semaphore Value NonZero Interrupt Overflow
--------- ----- ------- --------- --------
34 2 1 0 0

Displaying only the values of semaphores

The following examples show the use of the value argument to the semaphores command. Use the options as
follows:

• all displays the current value of all semaphores.

• allval displays the values for the semaphores which have a value greater than 0.

• A semaphore number displays the information for just that numbered semaphore.

(gdb) sem value all

Semaphore Value
--------- -----
0 0
1 0
2 0
3 0
4 0
...
...
...
123 0
124 0
125 0
126 0
127 0

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 32 06-UG-1345-1.20.2.11

(gdb) sem value allval

Semaphore Value
--------- -----
30 3
34 2
36 1
39 4
45 1
55 2
56 1
68 1
119 4

(gdb) sem value 30

Semaphore Value
--------- -----
30 3

Displaying only the nonzero status of the semaphores

The debugger can list the nonzero status of each of the semaphores. This is done by passing the nonzero option
to the semaphores command. The arguments that work with the nonzero option are:

• all to list the nonzero fields for all semaphores.

• allnon to list just those with values in the nonzero field.

• An individual semaphore number.

(gdb) sem nonzero all

Semaphore NonZero
--------- -------
0 1
1 1
2 1
3 1
4 1
...
...
...
123 1
124 1
125 1
126 1
127 0

(gdb) sem nonzero allnon

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 33 06-UG-1345-1.20.2.11

Semaphore NonZero
--------- -------
0 1
1 1
2 1
3 1
4 1
...
...
...
122 1
123 1
124 1
125 1
126 1

(gdb) sem nonzero 125

Semaphore NonZero
--------- -------
125 1

Displaying the interrupt enable status of the semaphores

It is possible to list the interrupt enable status of each of the semaphores. This is done by passing the interrupt
option to the semaphores command. The arguments that work with the nonzero option are:

• all to list the interrupt fields for all semaphores.

• allint to list just those with values in the interrupt field.

• An individual semaphore number.
(gdb) sem interrupt all

Semaphore Interrupt
--------- ---------
0 0
1 0
2 0
3 0
4 0
...
...
...
123 0
124 0
125 0
126 0
127 1

(gdb) sem interrupt allint

Semaphore Interrupt
--------- ---------
127 1

(gdb) sem interrupt 120

Semaphore Interrupt
--------- ---------
120 0

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 34 06-UG-1345-1.20.2.11

Displaying the overflow status of the semaphores

The debugger can display the overflow status of each of the semaphores. This is done by passing the overflow
option to the semaphores command. The arguments that work with the overflow option are:

• all to list the overflow fields for all semaphores.

• allovr to list just those with values in the overflow field.

• An individual semaphore number.

(gdb) sem overflow all

Semaphore Overflow
--------- --------
0 0
1 0
2 0
3 0
4 0
...
...
...
123 0
124 0
125 0
126 0
127 0

(gdb) sem overflow allovr

Semaphore Overflow
--------- --------
10 1
18 1
123 1

(gdb) sem overflow 20

Semaphore Overflow
--------- --------
20 0

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 35 06-UG-1345-1.20.2.11

Displaying the current thread / semaphore usage

It is also possible to view the semaphore usage for the TSC threads so that you can see which semaphore number
is currently selected. This is done using the thread argument to the semaphores command. The thread argu-
ment takes sub options of either all or a semaphore number to specify what to display.

(gdb) sem thread all

Thread Semaphore
------ ---------
0 10
1 23
2 43
3 101
4 102
5 32
6 22
7 25

(gdb) sem thread 1

Thread Semaphore
------ ---------
1 23

(gdb) sem thread 2

Thread Semaphore
------ ---------
2 43

3.4 Registers
Table 3.2 shows the register mapping for the debugger and assembly language.

Debugger register name Assembler register name Description

$pc n/a Program counter

$pred n/a Predicates register

$pestat n/a Full PE status register

$ret n/a Return register

$status n/a Nonfloating point PE status

$enable n/a Enable state (all levels)

$fpadd n/a PE floating point add status

$fpmul n/a PE floating point mul status

$enabled n/a PE enabled register

$numenb n/a Number of enabled PE’s

$numpes n/a Number of PE’s

$0m2 ... $62m2 0:m2 ... 62:m2 2 byte mono registers

Table 3.2 Debugger to Assembly Language Register Mapping

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 36 06-UG-1345-1.20.2.11

3.5 Using DDD
As csgdb is a port of the GDB debugger for the CSX architecture, it is possible to use the standard Linux DDD
graphical user interface (GUI). This is not provided as part of the SDK but can be used if installed. The DDD GUI
comes as standard on most Linux systems. For Windows, you need to have the cygwin tools installed.

You can start DDD by using csgdb as follows:

> ddd –debugger csgdb [executable-file]

Once it has been started you must connect csgdb to the target as described in the section Connect command
and options, on page 14.

After this you can set a breakpoint and select [Run] in DDD. You can then debug the application using the GUI
front end.

$0m4 ... $60m4 0:m4 ... 60:m4 4 byte mono registers

$0m8 ... $56m2 0:m8 ... 56:m8 8 byte mono registers

$0p1 ... $127p1 0:p1 ... 127:p1 1 byte poly registers

$0p2 ... $126p2 0:p2 ... 126:p2 2 byte poly registers

$0p4 ... $124p4 0:p4 ... 124:p4 4 byte poly registers

$0p8 ... $120p8 0:p8 ... 120:p8 8 byte poly registers

$0p16 ... $112p16 0:p16 ... 112:p16 4 byte poly vector registers

$0p32 ... $96p32 0:p32 ... 96:p32 8 byte poly vector registers

Debugger register name Assembler register name Description

Table 3.2 Debugger to Assembly Language Register Mapping

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 37 06-UG-1345-1.20.2.11

4 Host interface library
This chapter describes the CSX600 driver library and the ClearSpeed Application Programming Interface (CSAPI)
functions.

To load code onto a CSX600 processor and communicate with it, a host program must use the CSAPI.

A set of host driver libraries is provided to allow host applications to communicate with and control the installed
Advance boards via the CSAPI. The user-level libraries make use of a kernel-level driver to provide a complete
driver for the Advance boards.

4.1 CSX600 driver library
The driver library provides an API known as CSAPI which is available for C and C++ programs using the header
file csapi.h. The library consists of a set of dynamic shared libraries. The driver libraries are provided as .dll
files on Windows or .so files on Linux

To identify the Advance boards and in some instances the individual processor on the board, most of the CSAPI
functions take a state pointer which describes the board and, if necessary, the processor. To use the CSAPI inter-
face, a CSAPI_new call must be made to build and return this state variable.

The library is thread safe. It is safe for concurrent threads to access the library but this is only guaranteed if the
same CSAPIState instance is used. The CSAPI library uses host semaphores and other concurrency objects to
provide concurrent but safe access to the Advance boards.

4.2 Linking host applications with CSAPI
The runtime only requires one library to link against. The other libraries are loaded dynamically. The only library
that needs to be linked statically for the runtime is:

• In Linux: libcleard_stud_lib.a

• In Windows XP: cleard_stub_lib.lib

The following instructions explain how to setup the environment so you can compile and run a simple CSAPI pro-
gram in on a Linux or Microsoft Windows XP operating system.

4.2.1 Linux
The following describes how to link the host application with csapi on a Linux operating system.

Before you start to build programs using CSAPI, it is vital to set up the environment by sourcing bashrc. When
you have done this, compile and link a simple CSAPI program as follows:

gcc -I $CSHOME/include/cs_api -L $CSHOME/lib simple.c -lcleard_stub_lib -ldl

The -ldl option links in the dynamic loader library (libdl.a) which allows the stublib to load the relevant
functional libraries. The correct runtime library is selected, based on a number of dynamic environmental factors,
such as, whether the debugger is used.

The dynamically loaded libraries are located via the environment variable LD_LIBRARY_PATH which is set by the
bashrc script. No other libraries need to be loaded for CSAPI functionality.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 38 06-UG-1345-1.20.2.11

4.2.2 Microsoft Windows
The following describes how to use Microsoft Visual Studio to build host side applications.

To build CSAPI programs on Windows using Visual Studio, you need to setup a Visual Studio Project, specifying
the library path and runtime library under the Linker options.

The ClearSpeed runtime supports Visual Studio 2005. If you use an unsupported version of Visual Studio, you may
get an error message about corrupt debug information when linking the application.

The recommended way to use Visual Studio is to setup the environment using the setup_env.bat script and
then invoke Visual Studio with the option /useenv. This will use the appropriate environment setup.

Note: Currently you need to add the CSAPI INCLUDE directory to the INCLUDE path.

It is also possible to set the Project environment from within Visual Studio but this is generally not as convenient
as using the environment set by the ClearSpeed script.

To use Visual Studio to build csapi programs, do the following in a DOS shell:

1. Setup the environment using the ClearSpeed Script as follows:

a. Execute setup_env within the ClearSpeed install directory:
setup_en

b. Add the INCLUDE directory as follows:
set INCLUDE=%CSHOME%\include;%INCLUDE

3. Invoke VC++ with this environment:
msdev /useenv

4. Setup the development project as described in Table 4.1.

3. Add the source file:

 Use File->Add to add a C/C++ file to the project

You should now be able to compile and run a simple program using CSAPI.

Task Steps

Select a new project Select Win32 Console Application as an example.

Set Project settings: static library location 1. Specify the location of the static component of the runtime
library, that is, the file cleard_stub_lib.lib.

2. Select Project->Settings and select the Link tab.

3. Add %CSHOME%\lib to the "Additional library path".

4. Add the file cleard_stub_lib.lib to the list of library
modules.

Set Project type 1. Select Project->Settings and select the C/C++ tab
and the category Code Generation.

2. Select the MultiThreaded option. This is needed as the
runtime is built as a multithreaded application

Table 4.1 Setting up the development project

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 39 06-UG-1345-1.20.2.11

4.3 Using CSAPI

An accelerated application consists of two parts: the code running on the host processor (the host program) and
the code running on the CSX600 processors on one or more Advance boards (the CSX program). The CSX code
may be a library that accelerates standard functions, such as CSXL, or custom code that accelerates the main func-
tions in your application.

4.3.1 Building programs
It is recommended that your host application checks it is using a compatible version of the CSAPI. It can do this
by checking the value of CSAPI_HEADER_VERSION_MAJOR defined in the csapi.h header file. This will confirm
that the CSAPI functions have the expected parameters. It should also check the value of
CSAPI_HEADER_VERSION_MINOR to confirm that the CSAPI functions behave as expected.

If the major version is not the expected value, the program will not compile.

If the major version matches but the minor version is different, the application will build but you will need to do
extra testing to ensure that any changes in the CSAPI behavior do not affect your program.

4.3.2 Connection and initialization
Most CSAPI functions require a CSAPIState object to be passed as a parameter. This is created by calling the
CSAPI_new function. Therefore, you must call CSAPI_new before using the rest of the CSAPI functions.

The one exception to this is CSAPI_version. You can call this without a CSAPIState when requesting the inter-
face, runtime package or build versions. The interface version is the same as the
CSAPI_HEADER_VERSION_MAJOR/MINOR defined above. The runtime package version will be the version of the
distribution against which the user application has been linked, and the build version gives the build time of this
distribution.

The CSAPI_new function loads the CSAPI library and provides a CSAPIState object that is used by the other
CSAPI functions. You must statically link your code against the CSAPI stub library, libcleard_stub_lib.a or
cleard_stub_lib.lib, which will then load the dynamically linked CSAPI library at runtime. This library con-
tains the CSAPI functions called by the host. If the ClearSpeed debugger, csgdb, is used, a different dynamically
linked library will automatically be loaded to provide function tracing to the debug and trace tools.

After calling CSAPI_new, you can call CSAPI_num_cards passing the CSAPIState object, to obtain the number
of Advance boards installed in the system. You can then make further calls to CSAPI_new, depending on the num-
ber of boards or simulators that you want to use. One CSAPIState object must be created for each board or
simulator used by the host application.

You can then connect each CSAPIState object to a board or simulator using the CSAPI_connect function. You
must check the return code to ensure that the connection was successful. If the return code is not equal to
DRVErrno_success, you can pass it to the CSAPI_get_error_string function, which will fill a provided char
array with an error string corresponding to the return code. If the CSAPI_connect function failed because the
board or simulator was already in use, the error string will contain the user name and process ID currently con-
nected to the board or simulator.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 40 06-UG-1345-1.20.2.11

Access control

Access to boards and simulators is controlled using entries in a lock file called cs_lock_file.txt. On Linux
systems, this file is stored in the /var/lock/clearspeed directory. On Windows systems, it is stored in the
installation directory. Entries are added during connection and removed during disconnection. Entries include the
host application's process ID, which is used by other applications to confirm that the process connected to the
board or simulator is still running.

Initialization

Once connected you can call CSAPI_reset on each of the processors (see Obtaining information 4.3.3 for infor-
mation on how to determine the number of processors). This avoids the need to run csreset before the appli-
cation is run, but a call to CSAPI_reset will add a small delay to the initialization of the application.

You can call the CSAPI_set_system_param function after the connection and modify the configuration of the
board and driver. This function is provided for debugging purposes and is not needed in normal use. Some of the
parameters require the board to be reset after they have been configured, so you may need to call CSAPI_reset
again after reconfiguration.

4.3.3 Obtaining information
Once a CSAPIState object has been created and connected to a board, you can call various CSAPI functions to
obtain information about the processors on the board:

• CSAPI_version can be called to obtain the processor, firmware and kernel driver versions.

• CSAPI_num_processors can be called to determine the number of processors on the board.

• CSAPI_num_pes can be called to determine the number of processing elements on each processor.

• CSAPI_num_semaphores can be called to determine the total number of TSC semaphores on each pro-
cessor.

• CSAPI_num_threads can be called to determine the total number of threads on each processor.

• CSAPI_endianness can be called to determine the endianness of each processor.

4.3.4 Loading and running a program
This section describes how to load and run a CSX program.

Loading CSX programs

The CSAPI_load function loads a CSX program from a .csx file on to the board. If both processors are used,
you can choose to load either two statically linked .csx files (one per processor) or a single dynamically linked
.csx (which is relocated for each processor by the loader).

Before each program is loaded, CSAPI_load will initialize the processor so that it is ready to run. This involves
halting the processor, clearing the caches and semaphores, and running the bootstrap to reinitialize the PEs.

If the CSX program was linked statically, the .csx file will contain the address at which the program will be loaded.
If the program was linked dynamically, it will be loaded to an available address on the board.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 41 06-UG-1345-1.20.2.11

You can load multiple dynamically linked CSX programs at the same time. After each program is loaded, call
CSAPI_get_last_loaded_handle to obtain a DRVProcess handle for the program. You can then use this
handle with the functions CSAPI_run_process and CSAPI_get_symbol_value_loaded.

If the program was linked statically, it is assumed that there is only one program loaded on the board. In this case,
you can call the CSAPI_run and CSAPI_get_symbol_value functions without needing a process handle.

It is not possible to load a statically linked CSX program if the memory allocation functions have been used (see
4.3.9, Memory allocation, on page 43). The CSAPI_load function will return an error indicating that a dynamic
allocation of memory has already been made.

Running the CSX program

Once a CSX program has been loaded, you can run it by calling either CSAPI_run or CSAPI_run_process,
depending on whether the program was statically or dynamically linked. The CSX program will then run until either
CSAPI_halt is called or it terminates. The host program can wait for the CSX program to terminate by calling
CSAPI_wait_on_terminate. When this function returns, check the return code to ensure the CSX program
terminated successfully. You can get the exit code for the CSX program by calling CSAPI_get_return_value.

You can call CSAPI_run and CSAPI_run_process multiple times after a CSX program has been loaded. How-
ever, it should be noted that static variables in the CSX program will only be initialized when the program is loaded.
The static variables will retain their values between runs, and should be explicitly reinitialized in the CSX code
where necessary. Local variables and dynamically allocated memory are not preserved between runs so their val-
ues will not be retained (see the Memory allocation section below).

The CSAPI_start and CSAPI_halt functions are provided for debugging and are not needed in normal use. It
should be noted that calling these functions is reference counted, so the processor will only be started when
CSAPI_start has been called the same number of times as CSAPI_halt.

4.3.5 Unloading a program and disconnecting
If the CSX program was linked dynamically, you can unload it by calling CSAPI_unload with the DRVProcess
handle that was obtained when it was loaded. This will release the resources being used by the CSX program so
that another program can be loaded in its place.

When you no longer require a board, you can delete the CSAPIState for the board by calling CSAPI_delete.
This will disconnect from the board and destroy the state object. All programs loaded on the board and all memory
allocations on the board will be discarded. When the last CSAPIState object has been deleted, CSAPI_delete
will unload the cleard library.

Always call CSAPI_delete before exiting your host application so that the board can be put in a low-power state
and the next application can connect cleanly. If you terminate the host application without calling CSAPI_delete,
the processors on the board may continue running. This means that the next application will need to call
CSAPI_reset so that the processors stop and reinitialize. Furthermore, the next application will take longer to
connect while the driver processes the stale entry left in the lock file and checks that the previous application is
no longer running.

Example application

The following code will:

1. Create a CSAPI state object.

2. Connect to a board.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 42 06-UG-1345-1.20.2.11

3. Reset processor zero.

4. Load and run a CSX program.

5. Wait for the CSX program to finish and obtain the exit code.
void main()
{
 DRVErrno return_code;
 struct CSAPIState *s;
 int csx_exit_code;
 unsigned int proc_inx = 0;

 s = CSAPI_new(CM_Direct);

 return_code = CSAPI_connect(s , NULL , CSAPI_INSTANCE_ANY);

 return_code = CSAPI_reset(s , proc_inx , 0);

 return_code = CSAPI_load(s , proc_inx , CSX_FILE_NAME);

 return_code = CSAPI_run(s , proc_inx);

 return_code = CSAPI_wait_on_terminate(s , proc_inx);

 return_code = CSAPI_get_return_value(s , proc_inx , &csx_exit_code);

 CSAPI_delete(s);
}

The return code from each CSAPI call is not checked in this simple example. For a more complete example, look
at the Mandelbrot source code provided as part of the runtime installation.

4.3.6 Events

If you want the host application to respond to an event, you need to register a callback for the event. You also
need to call the CSAPI_register_application function before registering any callbacks.

The current callback function can be obtained by calling CSAPI_get_callback. Your callback function can be
registered by calling CSAPI_register_callback. Your callback function should call the original callback func-
tion before starting or when it has finished. This allows multiple callback functions to be chained together on a
particular event.

Events are identified by numbers, which are defined in the csapi.h header file. The following events are defined:

1. Break - Triggered when the CSX program hits a break point.

2. Terminate - Triggered when the CSX program terminates.

3. Print - Triggered by a call to printf from the board.

4. Stack overflow - Triggered if the call stack in the CSX program overflows.

5. Semaphore nonzero - Triggered when a TSC semaphore is signalled.

6. Semaphore overflow - Triggered when a TSC semaphore overflows because it was signalled too many
times.

7. Malloc - Triggered by a call to malloc in the CSX program.

Registering callbacks is not necessary for normal use, so you do not usually need to call
CSAPI_register_application, CSAPI_get_callback or CSAPI_register_callback.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 43 06-UG-1345-1.20.2.11

4.3.7 Semaphores
The CSAPI library includes semaphore functions to signal and wait on TSC semaphores. These semaphores are
typically used to signal between the host program and the CSX program. The CSAPI_semaphore_wait function
blocks the host application until the specified semaphore on the specified processor is signalled. The
CSAPI_semaphore_signal function signals the specified semaphore on the specified processor (which the CSX
program can wait on).

You must register semaphores that the host will wait on before using them, by calling the
CSAPI_register_semaphore function. The host can only wait on semaphores that have been registered. Call-
ing CSAPI_semaphore_signal on a semaphore that has been registered will return the error code
DRVErrno_semaphore_registered. Calling CSAPI_semaphore_wait on a semaphore that has not been
registered will return the error code DRVErrno_semaphore_not_registered. The CSX program must not
wait on a semaphore that has been registered for use by the host.

4.3.8 Symbols

Symbols are typically global variables or entry points in the CSX program loaded on the board. The
CSAPI_get_symbol_value and CSAPI_get_symbol_value_loaded functions return the address of the
symbol on the board (for statically and dynamically linked CSX code, respectively). This address could be the start
of a fixed-size array or a single variable, for example. The host program can read from or write to this address,
and this provides a basic method for the host to transfer data to or from the board.

If you loaded a statically linked CSX program, you should call the CSAPI_get_symbol_value function with the
name of the appropriate .csx file. The .csx file will contain the fixed address at which the symbol is located.

If you loaded a dynamically linked CSX program, you should call the CSAPI_get_symbol_value_loaded func-
tion with the DRVProcess handle for the program. This will allow the relocated address of the symbol to be deter-
mined.

If the symbol is a pointer to memory that has not yet been allocated, you can give it a value by calling the CSAPI
memory allocation functions described in 4.3.9, Memory allocation, on page 43. This avoids the need to allocate
memory and write the result to a symbol using several CSAPI calls.

4.3.9 Memory allocation
The CSAPI memory allocation functions currently only allocate memory from the DRAM attached to each processor.
The embedded SRAM is not managed by the driver. Dynamically linked CSX programs will only be loaded to the
DRAM memory.

Both CSX processors on the Advance board can access all of the memory on the board. Each processor can access
its own DRAM and the DRAM attached to the other processor. However, accessing DRAM attached to another pro-
cessor adds latency and will increase bus contention if both processors frequently access each other's DRAM.
Therefore, when using the CSAPI allocation functions, you should allocate memory in the address space of the
processor that will access the memory most frequently.

Memory can only be allocated from the DRAM attached to a single processor. If there is not enough memory avail-
able, the allocation functions will return error rather than try to use the DRAM attached to the other processor.

You can use the CSAPI_get_free_mem function to obtain the total available DRAM memory on the specified
processor. This will take account of any dynamically linked CSX programs that have been loaded and any memory
allocations that have been made. The total available DRAM memory is a summation of all the available memory
blocks. This is not necessarily the same as the largest amount of memory that can successfully be allocated.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 44 06-UG-1345-1.20.2.11

The CSAPI allocation functions cannot be used once a statically linked program has been loaded on to the board.
The allocation functions will return an error indicating that a statically linked program has already been loaded.

Memory allocation

Memory can be allocated in three ways:

• CSX programs containing static arrays can be loaded on to the board. These static arrays will be contained
within the memory allocated for the loaded program.

• The CSAPI memory allocation functions can be called before you run the CSX program. These allocations
are termed shared memory as they can be used by both the host and the board.
Note: This memory is not truly shared memory; it is not directly accessible by both the host and the CSX
processors. However, the address of the allocated memory is made available to both the host program and
the CSX program.

• The Cn memory allocation function malloc can be called by the CSX program. These allocations are
termed runtime memory as they will automatically be released when the CSX program terminates. By
default, these memory allocations are only visible to the CSX program. However, the address of the alloca-
tion can be obtained by the host program if necessary.

Static allocation

CSX program allocations and CSAPI memory allocations are made from the lowest available address. When the
CSX program starts running, the stack is placed on top of the allocated memory blocks, where it can grow upwards
(see Figure 4.1 on page 45). Memory allocated in the CSX program using malloc, is made at the highest available
address. The size of the stack is checked when the allocation is made to ensure the allocation does not collide
with the stack.

Figure 4.1 shows the memory map for one processor. The relative locations of CSX programs, 'shared' memory
allocations, runtime memory allocations and the program call stack are also shown.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 45 06-UG-1345-1.20.2.11

Figure 4.1 Memory map

Host side dynamic allocation

Host side allocations of 'shared' memory are made with the functions CSAPI_allocate_shared_memory and
CSAPI_allocate_static_shared_memory. The first of these will find the lowest available address with the
required available space. The second function will allocate memory at the specified address if possible. This can
be useful for debug and testing, but you should normally use the CSAPI_allocate_shared_memory function.

The CSAPI allocation functions also pass the address of the allocated memory to a symbol (global variable) in the
most recently loaded CSX program. This avoids the need to call CSAPI_get_symbol_value and
CSAPI_write_mono_memory to pass the address of the allocated memory to the CSX program. This is the pre-
ferred method for memory allocation where the size of the memory required can be determined before the CSX
program starts running. The allocation will persist after the CSX program has terminated and will be available to
the host program until it is explicitly released (using CSAPI_free).

The CSAPI allocation functions cannot be used once a statically linked CSX program has been loaded. They will
return an error indicating that a statically linked program has already been loaded.

Memory allocated with the CSAPI allocation functions can be released by calling CSAPI_free. You must call this
when the memory region is no longer required. The only other way to release the memory is to destroy the state
by calling CSAPI_delete.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 46 06-UG-1345-1.20.2.11

CSX program dynamic allocation (malloc)

When the size of the memory block required can only be determined by the CSX program, it can be allocated by
calling malloc on the board. You can obtain the address of the allocated memory in the host program by storing
it in a global variable in the CSX program and then calling CSAPI_get_symbol_value. If the memory is used
to return results to the host, the host program should read the data before the CSX program terminates. This could
be controlled by using a pair of semaphores: the CSX program would signal one to tell the host that the data is
ready to be read from the memory. Then the host would signal the other when it has finished, allowing the CSX
program to terminate. When the CSX program terminates any memory allocated by malloc will be released.

When the CSX program calls malloc, an event is sent to the host program where the memory allocations are
managed. The host returns an available address of the required size or larger and this address is used by malloc.
Calling free in the CSX program will allow malloc to reuse the memory without needing to return to the host—
the host does not need to be informed of the memory release because memory can only be allocated by calling
malloc when the CSX program is running.

This means that there will be a small delay when malloc needs to go to the host for more memory. You can
minimize the effect of this by keeping the number of calls to malloc to a minimum and ensuring that each call
requests the total memory that will be required, rather than making multiple calls for small amounts of memory.
Calling malloc and then free in a loop will not have a significant performance impact as only the first call to
malloc will need to go to the host for memory. Subsequent calls will simply reallocate the memory that has just
been released.

4.3.10 Memory and register access

Memory access

CSAPI_read_mono_memory and CSAPI_write_mono_memory are the basic functions for transferring data
between a host program and memory on the board (mono memory). The address on the board is usually obtained
from a CSAPI memory allocation or a call to CSAPI_get_symbol_value. You would use the latter when the
symbol is a static array in the CSX program or a pointer containing an address returned by malloc.

The CSAPI_read_mono_memory and CSAPI_write_mono_memory functions will flush the data cache to
ensure cache coherency and halt the processor while the data is being transferred. Halting the processor avoids
any performance impact due to the processor accessing DRAM at the same time as the data is transferred to or
from the host. Halting the processor will cause a delay in the CSX program while the data is being transferred.
You can avoid this by using CSAPI_read_mono_memory_raw and CSAPI_write_mono_memory_raw. These
functions do not flush the data cache or halt the processor. These should be used when you know that the CSX
processor will not be accessing the DRAM while the data is transferred.

Asynchronous transfers

The above four mono memory functions will block until the data transfer has completed. Blocking the main host
thread can be avoided by calling the memory transfer functions in separate host threads, allowing the main host
application to continue during the transfer. CSAPI also provides two asynchronous memory transfer functions that
allow one read operation and one write operation to be carried out in the background. The asynchronous transfers
are started by calling CSAPI_read_mono_memory_async or CSAPI_write_mono_memory_async. These
functions will return immediately, and a second call to the same function will block until one of the associated
acknowledgement functions has been called. Therefore, a single-threaded application must acknowledge each
asynchronous transfer before starting another in the same direction, and a multithreaded application must ensure
that each asynchronous transfer will be acknowledged as soon as possible to avoid delaying the next asynchronous
transfer.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 47 06-UG-1345-1.20.2.11

There are four functions to acknowledge when an asynchronous transfer has completed. The first two,
CSAPI_read_mono_memory_async_wait and CSAPI_write_mono_memory_async_wait, will block until
the corresponding read or write operation has completed. When these functions return, another call to
CSAPI_read_mono_memory_async or CSAPI_write_mono_memory_async can be made without blocking.

Two further functions are provided for polling the status of the asynchronous transfer. These are
CSAPI_read_mono_memory_async_poll and CSAPI_write_mono_memory_async_poll. These func-
tions return immediately and return a value to indicate the status of the transfer. The first time these functions
are called after the transfer has completed, they will indicate that the transfer has completed. Calling the functions
again after this will indicate that the transfer has not completed until another transfer has started and completed.

Register access

The following functions are used to access control registers in the processors:

• CSAPI_read_control_register

• CSAPI_write_control_register

• CSAPI_read_control_register_raw

• CSAPI_write_control_register_raw

These functions are provided for advanced debugging and are not needed in normal use. The 'raw' functions use
an absolute register address. The other functions calculate the register address for the specified processor.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 48 06-UG-1345-1.20.2.11

4.4 Example of host and CSX code cooperation
A simple example of both the host and the CSX600 processor assembly code is presented below. It shows how to
designate an area of mono memory and synchronize host and board processing.

Note: this example does not include as much error checking as a real program would require to make it robust.
After every statement of the form status = CSAPI... the returned value should be checked to ensure it is
equal to DRVErrno_success, or to report an error if it is not.

.section .mono.bss

_SHARED_MEMORY_::
.fill 16,1,0 // reserve 16 bytes as the data transfer buffer
.global _SHARED_MEMORY_ // make it visible globally

.section .text

.LL_loop_start::
sem.wait _SEM_DATA_IN_READY_
....
load data from _SHARED_MEMORY_ and process
....
sem.sig _SEM_PROCESSING_COMPLETE_

j .LL_loop_start // go back and wait for the next batch

The corresponding user application code could look like this:

// payload, that corresponds in size to the _SHARED_MEMORY_ above
struct MyPayload
{

int a;
int b;
int c;
int d;

};

#define PROC1 0

main()
{

DRVErrno status;
struct MyPayload pl;
unsigned int shared_memory; // this is the address on the CSX600 processor

// create a state object
struct CSAPIState * state = CSAPI_new(CM_Direct);

// connect to the hardware instance 0
status = CSAPI_connect(state, 0, 0);

if (status == DRVErrno_success)
{

// NOTE: for simplicity the status checking will be omitted
// from this example

// obtain the shared memory address using the helper function
status = CSAPI_get_symbol_value(state ,

 ”/home/mh/simple.csx”,
 ”_SHARED_MEMORY_”,
 &shared_memory);

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 49 06-UG-1345-1.20.2.11

status = CSAPI_register_application(state , PROC1);
status = CSAPI_load(state, PROC1, ”/home/mh/simple.csx”);
status = CSAPI_register_semaphore (state, PROC1, _SEM_PROCESSING_COMPLETE_);
status = CSAPI_run(state, PROC1);

while (... there is data to process ...)
{

// prepare the data
pl.a = 1; pl.b = 2; ...

// copy the data onto the card side
status = CSAPI_write_mono_memory(

state,
 PROC1,

shared_memory,
sizeof(MyPayload),
(void*)(&pl));

// signal the start semaphore
status = CSAPI_semaphore_signal(state, PROC1, _SEM_DATA_IN_READY_);

// wait for results
// in case of multi-threaded applications
// something useful could be done during the wait
// for single threaded applications, the explicit polling/do
// something useful loop could be implemented

status = CSAPI_semaphore_wait(state, PROC1, _SEM_PROCESSING_COMPLETE_);

// consume the data after processing, assuming here, that
// the shared memory is used both for receiving and sending
// data

status = CSAPI_read_mono_memory(
state,
PROC1,
shared_memory,
sizeof(MyPayload),
(void*)(&pl));

}
}
return 0;

}

Note: For simplicity, the code above does not use double-buffering which is the recommended method for effi-
ciently interleaving compute and memory transfer operations.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 50 06-UG-1345-1.20.2.11

4.5 ClearSpeed host application programming interface (CSAPI)
This section describes the CSAPI.

The state of the API is held in a structure called CSAPIState. Before it can be used it has to be correctly initial-
ized. After use it has to be disposed off. Most of the functions return a DRVErrno code to indicate success or
failure. The return values are described in 4.5.2, Error codes, on page 51. All the structures, constants and func-
tion prototypes are declared in the csapi_errno.h and csapi.h header files.

4.5.1 Common parameters
Many of the functions have a set of common parameters, which are described in this section. The remaining
parameters are described for each function.

Figure 4.2 shows the timeline for driver interactions.

Parameter struct CSAPIState *s

Description A pointer to an API state structure. A new instance of this structure is created
and initialized by a call to the CSAPI_new() function.

Table 4.2 CSAPI state structure

Parameter unsigned int proc_inx

Description A processor index.

Table 4.3 Processor index

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 51 06-UG-1345-1.20.2.11

Figure 4.2 Timeline for driver interactions

4.5.2 Error codes
Error codes, listed in Table 4.4, are defined in csapi_errno.h. An error string can be obtained by using the
CSAPI_get_error_string function.

DRVErrno Description

success (= 0) Operation succeeded.

error (= 1) Returned on a generic error condition. Usually the API calls return a
more specific error code as defined below.

address_in_use Failed to connect to given host.

bad_csapi_arg An invalid argument was passed to a CSAPI function.

bad_csapi_state CSAPIState *s parameter is invalid.

Table 4.4 Error codes

register application

load code from CSX file

run code processing loop

write data to mono memory

signal to start processing

- read data

- process datawait for the data to be processed
prepare next batch while waiting - write results

signal data ready

read results from mono memory

delete API instance

APIHost Driver CSX

with semaphore
synchronization

create API instance
Time

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 52 06-UG-1345-1.20.2.11

bad_inet_address An invalid inet address was given.

dynamic_allocation Failed to load statically linked program. Already loaded dynamically.

cannot_allocate_event Cannot allocate event.

cannot_connect Cannot connect.

cannot_open_file The specified file cannot be opened. There may be various reasons for
this: the volume is not mounted, network connection failure, and so on.

connection_broken The connection to the driver has been broken.

failed_to_create_thread Internal error with thread management.

failed_to_find_memory_block Trying to delete with an invalid pointer or with a pointer that has already
been deleted.

failed_to_load_function Internal error when loading function.

failed_to_lock_mutex Failed to lock mutex.

failed_to_unlock_mutex Failed to unlock mutex.

failed_to_signal_semaphore Internal error with thread management.

failed_while_waiting_for_semaphore Internal error with thread management.

FPGA_upgrade_required FPGA upgrade required.

invalid_proc_inx proc_inx parameter is invalid.

kernel_max_app_count_exceeded The maximum number of connecting user applications has already been
reached. No more connections can be accepted.

kernel_que Kernel que.

loaded_statically Failed to allocated dynamically. Already loaded statically linked pro-
gram.

loaded_dynamically CSX program is dynamically linked. Use dynamic version of this func-
tion.

no_symbol The requested symbol was not found in the CSX executable.

not_connected The application is not connected to a board. Either CSAPI_connect
has not been called or it was not successful.

not_enough_blocks Unable to allocate memory block as internal limit has been reached.

not_enough_memory Unable to allocate memory on the board as there is not a large enough
gap for the requested size.

not_loaded The program is not loaded

permission_denied The operation could not be performed on the specified processor as an
application has not been loaded or registered on that processor.

program_running Cannot allocate memory while program is running.

semaphore_not_registered Semaphore has not been registered for host to work on.

semaphore_number_out_of_bounds The specified semaphore number is out of range.

semaphore_registered Semaphore has been registered for host to work on.

socket Socket error.

DRVErrno Description

Table 4.4 Error codes

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 53 06-UG-1345-1.20.2.11

4.5.3 Initialization and maintenance functions
The CSAPI functions used for initialization and maintenance are described in Table 4.5 to Table 4.8.

Function struct CSAPIState* CSAPI_new(

 enum CSAPIMode mode);

Description Loads the dynamic library for the selected mode and creates a new instance of the API state.

A pointer to the API state structure is passed as a parameter to all of the CSAPI functions.

Parameters mode: Use CM_Direct unless attaching the debugger or using tracing.

Returns A pointer to a newly-created and initialized instance of the API state structure.

Table 4.5 struct CSAPIState* CSAPI_new

Function void CSAPI_delete(

 struct CSAPIState* const s);

Description Unloads the dynamic library and destroys the instance of the API state. It is not possible

to call any CSAPI function with this state once it has been passed to CSAPI_delete.

Parameters s: State created by CSAPI_new. Will be destroyed by this function.

Returns Nothing.

Table 4.6 void CSAPI_delete

Function DRVErrno CSAPI_connect(

 struct CSAPIState* const s,

 const char* host_or_addr,

 unsigned int instance);

Description Connects to the driver either locally or on the specified host. Connect should be called once for each
CSAPIState created with CSAPI_new. Disconnect by deleting the state with CSAPI_delete.

Parameters s: State created by CSAPI_new

host_or_addr: Host on which the simulator is running or NULL for local hardware. For the host name, use
either localhost, DNS name or IP address N.N.N.N.

instance: Instance number for hardware or simulator, starting from zero. Use CSAPI_INSTANCE_ANY to
connect to any hardware available

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_failed_to_create_thread

DRVErrno_lldclient_error,

DRVErrno_error

Table 4.7 DRVErrno CSAPI_connect

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 54 06-UG-1345-1.20.2.11

Function DRVErrno CSAPI_reset(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int flags);

Description Resets the processor specified by proc_inx. This includes resetting the DMA, GSU and PIO engine, stopping
and setting up the TSC and setting up the system endianness and instruction cache. The hardware sema-
phores and interrupts are then initialized and the bootstrap code is run to set up the microcode.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to be reset: 0 or 1

flags: Use CSAPIFlags_FULL_SYSTEM_RESET to reset CCBR, CCIs, DDRs and bus monitor

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_not_connected

DRVErrno_error

Table 4.8 DRVErrno CSAPI_reset

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 55 06-UG-1345-1.20.2.11

4.5.4 Program setup
The CSAPI functions used for program setup are described in Table 4.9 to Table 4.12.

Function DRVErrno CSAPI_register_application(

 struct CSAPIState* const s,

 unsigned int proc_inx);

Description Each connecting application needs to register itself with the driver. This tells the driver that the processor is
active and tells the processor where to send its events.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to register application for: 0 or 1

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_not_connected,

DRVErrno_kernel_max_app_count_exceeded

Table 4.9 DRVErrno CSAPI_register_application

Function DRVErrno CSAPI_load(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 const char* prog_name);

Description Loads the executable code from a .csx file onto a specified processor.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to load application to: 0 or 1.

prog_name: Specifies the path to the CSX executable, which is relative to the CSPATH environment variable.
If the program is in the local directory, ./ must be used or be in CSPATH

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg,

DRVErrno_not_connected

DRVErrno_cannot_open_file

DRVErrno_error

Table 4.10 DRVErrno CSAPI_load

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 56 06-UG-1345-1.20.2.11

Function DRVErrno CSAPI_get_last_loaded_handle(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 struct DRVProcess** process);

Description Sets process to contain the pointer to the previously loaded executable.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to get last process pointer for: 0 or 1.

process: Pointer to value to be given a pointer to the last loaded process on the processor

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg,

DRVErrno_not_connected

DRVErrno_connection_broken

Table 4.11 DRVErrno CSAPI_get_last_loaded_handle

Function DRVErrno CSAPI_unload(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 struct DRVProcess* process);

Description Unloads the specified process from the specified processor.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to unload application from: 0 or 1.

process: Pointer to the process to be unloaded

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg

DRVErrno_error

Table 4.12 DRVErrno CSAPI_unload

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 57 06-UG-1345-1.20.2.11

4.5.5 Processor control
The CSAPI functions used for controlling the processor are described in Table 4.13 to Table 4.18.

Function DRVErrno CSAPI_run(

 struct CSAPIState* const s,

 unsigned int proc_inx);

Description Executes a program loaded onto the given processor.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to start (continue) running: 0 or 1.

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_not_connected

DRVErrno_error

Table 4.13 DRVErrno CSAPI_run

Function DRVErrno CSAPI_run_process(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 struct DRVProcess* process);

Description Executes the specified process on the processor it has been loaded on

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to start (continue) running: 0 or 1.

process: Pointer to the process to execute

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg,

DRVErrno_not_connected

DRVErrno_error

Table 4.14 DRVErrno CSAPI_run_process

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 58 06-UG-1345-1.20.2.11

Function DRVErrno CSAPI_halt(

 struct CSAPIState* const s,

 unsigned int proc_inx);

Description Halts the execution of a program running on the specified processor.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to stop running: 0 or 1.

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_not_connected,

DRVErrno_permission_denied

DRVErrno_error

Table 4.15 DRVErrno CSAPI_halt

Function DRVErrno CSAPI_start(

 struct CSAPIState* const s,

 unsigned int proc_inx);

Description Starts the execution of a halted program.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to start (restart) running: 0 or 1.

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_not_connected

DRVErrno_error

Table 4.16 DRVErrno CSAPI_start

Function DRVErrno CSAPI_wait_on_terminate(

 struct CSAPIState* const s,

 unsigned int proc_inx);

Description Awaits the termination signal from the program running on the given processor.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to wait on for termination: 0 or 1.

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

Table 4.17 DRVErrno CSAPI_wait_on_terminate

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 59 06-UG-1345-1.20.2.11

4.5.6 Accessing registers
The CSAPI functions used for accessing the registers are described in Table 4.19 to Table 4.22.

Function DRVErrno CSAPI_get_return_value(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 int* const return_value);

Description Obtains the return status of the CSX application which has just terminated. This should be called after
CSAPI_wait_on_terminate. If the function is not successful, return_value is undefined.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to get return value from: 0 or 1.

return_value: Pointer to value to be given the return value from the terminated CSX program

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg

Table 4.18 DRVErrno CSAPI_get_return_value

Function DRVErrno CSAPI_write_control_register(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int reg_addr,

 unsigned int value);

Description Writes the given value to a control register at address reg_addr in the processor specified by proc_inx.
Use of this function requires detailed knowledge of the architecture and the function of the control registers.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to write control register on: 0 or 1.

reg_addr: Address of control register to write to.

value: New value to be written to the control register.

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_not_connected

DRVErrno_error

Table 4.19 DRVErrno CSAPI_write_control_register

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 60 06-UG-1345-1.20.2.11

Function DRVErrno CSAPI_write_control_register_raw(

 struct CSAPIState* const s,

 unsigned int reg_addr,

 unsigned int value);

Description Same as CSAPI_write_control_register, except that the reg_addr must be shifted for the appropri-
ate processor index before calling this function. This allows for a more efficient implementation.

Parameters s: State created by CSAPI_new

reg_addr: Address of control register to write to

value: New value to be written to the control register

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_not_connected

DRVErrno_error

Table 4.20 DRVErrno CSAPI_write_control_register_raw

Function DRVErrno CSAPI_read_control_register(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int reg_addr,

 unsigned int* const value);

Description Reads the control register at address reg_addr from the processor specified by proc_inx into the memory
location pointed to by value. If the function is not successful, the value is undefined. Use of this function
requires detailed knowledge of the architecture and the function of the control registers.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to read control register on: 0 or 1.

reg_addr: Address of control register to read from

value: Pointer to memory to be given the value read from the control register

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg,

DRVErrno_not_connected

DRVErrno_error

Table 4.21 DRVErrno CSAPI_read_control_register

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 61 06-UG-1345-1.20.2.11

Function DRVErrno CSAPI_read_control_register_raw(

 struct CSAPIState* const s,

 unsigned int reg_addr,

 unsigned int* const value);

Description Same as CSAPI_read_control_register, except that the reg_addr must be shifted for the appropriate
processor index before calling this function. This allows for a more efficient implementation.

Parameters s: State created by CSAPI_new

reg_addr: Address of control register to read from

value: Pointer to memory to be given the value read from the control register

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_bad_csapi_arg

DRVErrno_not_connected

DRVErrno_error

Table 4.22 DRVErrno CSAPI_read_control_register_raw

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 62 06-UG-1345-1.20.2.11

4.5.7 Accessing mono memory and registers
The CSAPI functions used for accessing mono memory and registers are described in Table 4.23 to Table 4.32. Use
of the register access functions requires detailed knowledge of the architecture and the function of the control registers.

Function DRVErrno CSAPI_write_mono_memory(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int address,

 unsigned int size,

 const void* data_in);

Description Copies data from a buffer on the host pointed to by data_in, to a location in mono memory (DRAM) on the
board given by address. The size is specified in bytes. The processor specified by proc_inx is halted and the
data cache is flushed during the transfer. The appropriate processor for the mono memory address should be
used.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to halt while writing to DRAM memory: 0 or 1.

address: Address of mono memory (DRAM on the board) to start writing to

size: Number of bytes to copy from data_in (on host) to address (on the board)

data_in: Address on host to start copying data from

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg,

DRVErrno_not_connected

DRVErrno_error

Table 4.23 DRVErrno CSAPI_write_mono_memory

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 63 06-UG-1345-1.20.2.11

Function DRVErrno CSAPI_write_mono_memory_raw(

 struct CSAPIState* const s,

 unsigned int address,

 unsigned int size,

 const void* data_in);

Description Same as CSAPI_write_mono_memory, except that the processor is not halted and the data cache is not
flushed. This may cause the transfer to take longer, but allows the processor to continue during the transfer.

Parameters s: State created by CSAPI_new

address: Address of mono memory (DRAM on the board) to start reading from

size: Number of bytes to copy from address (on the board) to data_out (on host)

data_out: Pre-allocated address on host to start copying data to

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_bad_csapi_arg

DRVErrno_not_connected

DRVErrno_error

Table 4.24 DRVErrno CSAPI_write_mono_memory_raw

Function DRVErrno CSAPI_read_mono_memory(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int address,

 unsigned int size,

 void* const data_out);

Description Copies data from a location in mono memory (DRAM) on the board given by address, to a pre-allocated buffer
on the host pointed to by data_out. The size is specified in bytes. The processor specified by proc_inx is halted
and the data cache is flushed during the transfer. The appropriate processor for the mono memory address
should be used. The data_out buffer must be allocated on the host before calling this function.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to halt while reading from DRAM memory: 0 or 1.

address: Address of mono memory (DRAM on the board) to start reading from

size: Number of bytes to copy from address (on the board) to data_out (on host)

data_out: Pre-allocated address on host to start copying data to

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg,

DRVErrno_not_connected

DRVErrno_error

Table 4.25 DRVErrno CSAPI_read_mono_memory

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 64 06-UG-1345-1.20.2.11

Function DRVErrno CSAPI_read_mono_memory_raw(

 struct CSAPIState* const s,

 unsigned int address,

 unsigned int size,

 void* const data_out);

Description Same as CSAPI_read_mono_memory, except that the processor is not halted and the data cache is not
flushed. This may cause the transfer to take longer, but allows the processor to continue during the transfer.

Parameters s: State created by CSAPI_new

address: Address of mono memory (DRAM on the board) to start reading from

size: Number of bytes to copy from address (on the board) to data_out (on host)

data_out: Pre-allocated address on host to start copying data to

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_bad_csapi_arg

DRVErrno_not_connected

DRVErrno_error

Table 4.26 DRVErrno CSAPI_read_mono_memory_raw

Function DRVErrno CSAPI_write_mono_memory_async(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int address,

 unsigned int size,

 const void* data_in);

Description Starts the CSAPI_write_mono_memory function in a separate thread and returns immediately. The host is
then free to continue in the current thread. The host can check when the transfer has completed by using the
CSAPI_write_mono_memory_async_poll function, or it can wait for the transfer to complete by using
the blocking CSAPI_write_mono_memory_async_wait function.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to halt while writing to DRAM memory: 0 or 1.

address: Address of mono memory (DRAM on the board) to start writing to

size: Number of bytes to copy from data_in (on host) to address (on the board)

data_in: Address on host to start copying data from

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg,

DRVErrno_failed_to_signal_semaphore

DRVErrno_failed_while_waiting_for_semaphore

Table 4.27 DRVErrno CSAPI_write_mono_memory_async

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 65 06-UG-1345-1.20.2.11

Function DRVErrno CSAPI_write_mono_memory_async_wait(

 struct CSAPIState* const s);

Description Allows the host to wait for the completion of an asynchronous transfer started by
CSAPI_write_mono_memory_async. The wait will only return once the transfer has completed or if there
is an error. The return status should be checked to ensure that the transfer completed successfully.

Parameters s: State created by CSAPI_new

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_failed_while_waiting_for_semaphore,

DRVErrno_failed_to_signal_semaphore

Table 4.28 DRVErrno CSAPI_write_mono_memory_async_wait

Function DRVErrno CSAPI_write_mono_memory_async_poll(

 struct CSAPIState* const s,

 unsigned int* const completed);

Description Allows the host to check the status of an asynchronous transfer started by
CSAPI_write_mono_memory_async. The status is passed back using the completed parameter. The
return status should be checked to ensure that a valid status was obtained.

Parameters s: State created by CSAPI_new

completed: Pointer to value to be given the status of the transfer in progress

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_bad_csapi_arg

DRVErrno_failed_while_waiting_for_semaphore

Table 4.29 DRVErrno CSAPI_write_mono_memory_async_poll

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 66 06-UG-1345-1.20.2.11

Function DRVErrno CSAPI_read_mono_memory_async(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int address,

 unsigned int size,

 void* const data_out);

Description Starts the CSAPI_read_mono_memory function in a separate thread and returns immediately. The host is
then free to continue in the current thread. The host can check when the transfer has completed by using the
CSAPI_read_mono_memory_async_poll function, or it can wait for the transfer to complete by using the
blocking CSAPI_read_mono_memory_async_wait function.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to halt while reading from DRAM memory: 0 or 1.

address: Address of mono memory (DRAM on the board) to start reading from

size: Number of bytes to copy from address (on the board) to data_out (on host)

data_out: Pre-allocated address on host to start copying data to

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg,

DRVErrno_failed_to_signal_semaphore

DRVErrno_failed_while_waiting_for_semaphore

Table 4.30 DRVErrno CSAPI_read_mono_memory_async

Function DRVErrno CSAPI_read_mono_memory_async_wait(

 struct CSAPIState* const s);

Description Allows the host to wait for the completion of an asynchronous transfer started by
CSAPI_read_mono_memory_async. The wait will only return once the transfer has completed or if there
is an error. The return status should be checked to ensure that the transfer completed successfully.

Parameters s: State created by CSAPI_new

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_failed_while_waiting_for_semaphore,

DRVErrno_failed_to_signal_semaphore

Table 4.31 DRVErrno CSAPI_read_mono_memory_async_wait

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 67 06-UG-1345-1.20.2.11

4.5.8 Endian functions
The CSAPI endian functions are described in Table 4.33 to Table 4.34.

Function DRVErrno CSAPI_read_mono_memory_async_poll(

 struct CSAPIState* const s,

 unsigned int* const completed);

Description Allows the host to check the status of an asynchronous transfer started by
CSAPI_read_mono_memory_async. The status is passed back using the completed parameter. The return
status should be checked to ensure that a valid status was obtained.

Parameters s: State created by CSAPI_new

completed: Pointer to value to be given the status of the transfer in progress

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_bad_csapi_arg

DRVErrno_failed_while_waiting_for_semaphore

Table 4.32 DRVErrno CSAPI_read_mono_memory_async_poll

Function DRVErrno CSAPI_buffer_to_native_endian(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 void* out,

 const void* in,

 int size);

Description Copies and converts data from the endianness used by the processor proc_inx in the current connection to
the native host endianness. The number of bytes to copy and convert from in to out is set by the size param-
eter.

Parameters s: State created by CSAPI_new. Required to ensure the dynamic CSAPI library is loaded

proc_inx: Index of processor to convert endianness from: 0 or 1.

out: Pointer to memory to write out going data to, in native host endianness

in: Pointer to memory to read incoming data from, in the selected processor endianness

size: Number of bytes to copy and convert

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg,

DRVErrno_not_connected

Table 4.33 DRVErrno CSAPI_buffer_to_native_endian

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 68 06-UG-1345-1.20.2.11

4.5.9 Thread functions
The thread functions are described in Table 4.35 to Table 4.36.

Function DRVErrno CSAPI_endianness(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int* const endian);

Description Gets the current endianness of the specified processor on the current board.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor get endianness of: 0 or 1.

endian: Pointer to value to be given the current endianness of the specified processor on the current board.
Value will be set to either CS_LITTLE_ENDIAN or CS_BIG_ENDIAN

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg

Table 4.34 DRVErrno CSAPI_endianness

Function DRVErrno CSAPI_set_thread(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int thread_id,

 unsigned int* const old_thread_id);

Description Switches to the specified thread on specified processor, identified by thread ID. The previous thread ID is
returned in old_thread_id so that we can switch back to it if necessary.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to set thread on: 0 or 1.

thread_id: ID of thread to switch to on processor

old_thread_id: Pointer to value to be given the ID of thread that was running on processor

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg,

DRVErrno_not_connected

DRVErrno_permission_denied

DRVErrno_error

Table 4.35 DRVErrno CSAPI_set_thread

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 69 06-UG-1345-1.20.2.11

Function DRVErrno CSAPI_num_threads(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int* const num_of_threads);

Description Provides the total number of threads supported by the specified processor. Note this will include threads used
by the debugger or other system applications.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to count threads on: 0 or 1.

num_of_threads: Pointer to value to be given the number of threads supported by the processor

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg

Table 4.36 DRVErrno CSAPI_num_threads

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 70 06-UG-1345-1.20.2.11

4.5.10 Semaphore handling
The CSAPI functions used for handling semaphore are described in Table 4.37 to Table 4.40.

Function DRVErrno CSAPI_register_semaphore(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int sem_number);

Description Registers that the host is intending to wait on the specified semaphore number on the specified processor.
Registration must be performed only on semaphores that the host will be waiting on. A race condition will be
created if the host signals, or the board processor waits on, a registered semaphore.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to register semaphore on: 0 or 1.

sem_number: Semphore number to register on processor

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_not_connected

DRVErrno_semaphore_number_out_of_bounds

DRVErrno_error

Table 4.37 DRVErrno CSAPI_register_semaphore

Function DRVErrno CSAPI_semaphore_wait(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int sem_number);

Description Allows the host to wait on the specified semaphore on the specified processor. The semaphore must be reg-
istered before it can be waited upon.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor wait for semaphore on: 0 or 1.

sem_number: Semaphore number to wait on

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_failed_while_waiting_for_semaphore,

DRVErrno_semaphore_number_out_of_bounds

Table 4.38 DRVErrno CSAPI_semaphore_wait

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 71 06-UG-1345-1.20.2.11

Function DRVErrno CSAPI_semaphore_signal(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int sem_number);

Description Signals the specified semaphore on the specified processor. The semaphore must be NOT be registered if it
is going to be signalled by the host.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to signal semaphore on: 0 or 1.

sem_number: Semaphore number to signal

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_not_connected

DRVErrno_error

Table 4.39 DRVErrno CSAPI_semaphore_signal

Function DRVErrno CSAPI_num_semaphores(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int* const num_of_semaphores);

Description Provides the total number of semaphores supported by the specified processor. Note this will include system
semaphores, and semaphores used by the debugger and asynchronous memory read / write functions.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to count semaphore on: 0 or 1.

num_of_semaphores: Pointer to value to be given the number of semaphores supported

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg

Table 4.40 DRVErrno CSAPI_num_semaphores

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 72 06-UG-1345-1.20.2.11

4.5.11 Callback functions
The CSAPI functions for callback are described in Table 4.41 to Table 4.42.

Function DRVErrno CSAPI_get_callback(

 struct CSAPIState* const s,

 unsigned int event,

 CSAPI_EventFnPtr* const event_cb_out);

Description Gets the function call back registered with CSAPI_register_callback for the specified event. Typically
used to check see if a call back is registered, or to chain user call back functions.

Parameters s: State created by CSAPI_new

event: Event to trigger the call back function

event_cb_out: Pointer to value to be given the call back Function pointer

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_bad_csapi_arg

DRVErrno_error

Table 4.41 DRVErrno CSAPI_get_callback

Function DRVErrno CSAPI_register_callback(

 struct CSAPIState* const s,

 unsigned int event,

 CSAPI_EventFnPtr event_cb,

 void* user_data);

Description Registers a user call back function for an event signalled by the board. When the event occurs the event call
back function will be called with the state, event data and a pointer to specified user data.

Parameters s: State created by CSAPI_new

event: Event to trigger the call back function

event_cb: Function pointer to an event handler on the host. See definition at top of file

user_data: Pointer to user data to be passed to the event handler on the host

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_bad_csapi_arg

DRVErrno_error

Table 4.42 DRVErrno CSAPI_register_callback

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 73 06-UG-1345-1.20.2.11

4.5.12 Memory allocation using CSAPI functions
The CSAPI functions for allocating mono memory (DRAM) are described in Table 4.43 to Table 4.48. The main pur-
pose of these functions is to allocate space for the heap on the CSX600 processor. Currently, the allocation functions only allo-
cate from the DRAM subset of mono memory attached to the processors on the board.

Function DRVErrno CSAPI_get_free_mem(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int mem_inx,

 unsigned int* const size_out);

Description Returns the total amount of mono memory (DRAM) free for allocation and local to the specified processor.
Processors can see mono memory on other processors but will not access this as efficiently as local memory.
Memory allocation and releasing can only be done when the processor is not running.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to get free memory on: 0 or 1.

mem_inx: Index of memory. Currently unused as free space can only be used for mono memory

size_out: Pointer to variable used to return the amount of free memory local to the processor

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg,

DRVErrno_program_running

Table 4.43 DRVErrno CSAPI_get_free_mem

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 74 06-UG-1345-1.20.2.11

Function DRVErrno CSAPI_allocate_shared_memory(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int mem_inx,

 unsigned int size,

 unsigned int alignment,

 const char* symbol_name,

 unsigned int* const mem_ptr_out);

Description Allocates mono memory (DRAM) local to the specified processor for use by both the CSX program and the
host. An alignment can be specified for the allocation. The allocated address will be assigned to the variable
specified by symbol_name in the current CSX program. The same address will be returned in the
mem_ptr_out parameter. Processors can see mono memory on other processors but will not access this as
efficiently as local memory. Memory allocation and releasing can only be done when the processor is not run-
ning.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to allocate shared memory on: 0 or 1.

mem_inx: Index of memory. Currently unused as only mono memory can be allocated

size: Number of contiguous bytes to attempt to allocate in the free space

alignment: Bytes to align allocated memory to on the board

symbol_name: Name of static global variable in the CSX program to be given the allocated address. If this
is NULL then the address is not passed to the CSX program.

mem_ptr_out: Pointer to value to be given the address of the allocated memory on the processor

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg

DRVErrno_program_running,

DRVErrno_no_symbol

DRVErrno_cannot_open_file

DRVErrno_not_enough_blocks

DRVErrno_not_enough_memory

DRVErrno_error

Table 4.44 DRVErrno CSAPI_allocate_shared_memory

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 75 06-UG-1345-1.20.2.11

Function DRVErrno CSAPI_allocate_static_shared_memory(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int mem_inx,

 unsigned int mem_ptr_in,

 unsigned int size,

 const char* symbol_name);

Description Allocates mono memory (DRAM) local to the specified processor at the address specified by mem_ptr_in.
This is the same as CSAPI_allocate_shared_memory, except that it attempts to allocate a block of mem-
ory of the requested size at the specified address. It returns an error if a large enough area of

contiguous memory is not available at that address. This can be useful for supporting programs where the
addresses of the data arrays are hard coded in the CSX program. Processors can see mono memory on other
processors but will not access this as efficiently as local memory. Memory allocation and releasing can only
be done when the processor is not running.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to allocate static shared memory on: 0 or 1.

mem_inx: Index of memory. Currently unused as only mono memory can be allocated

mem_ptr_in: Desired address of the allocated memory on the processor

size: Number of bytes to attempt to allocate at the mem_ptr_in address

symbol_name: Name of static global variable in the CSX program to be given the allocated address. If this
is NULL then the address is not passed to the CSX program.

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg

DRVErrno_program_running,

DRVErrno_no_symbol

DRVErrno_cannot_open_file

DRVErrno_not_enough_blocks

DRVErrno_address_in_use

DRVErrno_error

Table 4.45 DRVErrno CSAPI_allocate_static_shared_memory

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 76 06-UG-1345-1.20.2.11

Function DRVErrno CSAPI_free(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int mem_ptr);

Description Releases previously allocated memory local to the specified processor at the address given by mem_ptr. This
memory on the board is then available to be allocated by CSAPI_allocate_shared_memory. Only mem-
ory allocated by CSAPI_allocate_shared_memory can be freed. Processors can see mono memory on
other processors but will not access this as efficiently as local memory. Memory allocation and releasing can
only be done when the processor is not running.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to release allocated memory on: 0 or 1.

mem_ptr: Address of the allocated memory that is to be released.

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_program_running,

DRVErrno_failed_to_find_memory_block

Table 4.46 DRVErrno CSAPI_free

Function DRVErrno CSAPI_get_symbol_value(

 struct CSAPIState* const s,

 const char* prog_name,

 const char* symbol_name,

 unsigned int* const symbol_value_out);

Description Returns the value of the symbol symbol_name in the given CSX program. This is typically the address of the
corresponding static variable in the program. The address can then be used with the
CSAPI_read_mono_memory and CSAPI_write_mono_memory functions to access the contents of the
memory on the board pointed to by the variable.

Parameters s: State created by CSAPI_new

prog_name: Name of the CSX program that declares the symbol

symbol_name: Name of the symbol to obtain the value for (typically a static variable)

symbol_value_out: On success this is set to the value associated with symbol_name. (typically the
address of a static variable given by symbol_name)

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_bad_csapi_arg

DRVErrno_no_symbol

DRVErrno_cannot_open_file,

DRVErrno_error

Table 4.47 DRVErrno CSAPI_get_symbol_value

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 77 06-UG-1345-1.20.2.11

Function DRVErrno CSAPI_get_symbol_value_loaded(

 struct CSAPIState* const s,

 struct DRVProcess* process,

 const char* symbol_name,

 unsigned int* const symbol_value_out);

Description Returns the symbol value as loaded in the given process. This will include any relocations that have been
applied

Parameters s: State created by CSAPI_new

process: Pointer to the process containing the given symbol

symbol_name: Name of the symbol to obtain the value for (typically a static variable)

symbol_value_out: On success this is set to the value associated with symbol_name (typically the
address of a static variable given by symbol_name)

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_bad_csapi_arg

DRVErrno_no_symbol

Table 4.48 DRVErrno CSAPI_get_symbol_value_loaded

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 78 06-UG-1345-1.20.2.11

4.5.13 Utility functions
The CSAPI utility functions are described in Table 4.49 to Table 4.53.

Function DRVErrno CSAPI_set_system_param(

 struct CSAPIState* const s,

 enum CSAPISystemParameters what,

 unsigned int vi,

 const char* vs);

Description Sets the specified system parameter (using the CSAPISystemParameters enumeration) to a value given to
either the vi or vs parameter as appropriate. See the CSAPISystemParameters enumeration to see which
parameters use which input variable. The user documentation should be referred to for valid combinations of
system parameters.

Parameters s: State created by CSAPI_new

what: Name of parameter to be set, defined by an enumeration at the top of this file

vi: Integer value to set the parameter with (if applicable)

vs: String value to set the parameter with (if applicable)

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_bad_csapi_arg

DRVErrno_error

Table 4.49 DRVErrno CSAPI_set_system_param

Function DRVErrno CSAPI_num_cards(

 struct CSAPIState* const s,

 unsigned int* const num_of_cards);

Description Provides the number of boards in the current system. Note that this does not include simulators. It is still
necessary to call CSAPI_new before this function to load the library of functions. It is valid to create a
CSAPIState with CSAPI_new, call this function and then delete the state with CSAPI_delete.

Parameters s: State created by CSAPI_new. Required to ensure the dynamic CSAPI library is loaded

num_of_cards: Pointer to value to be given the number of boards in the current system

Returns DRVErrno_success

DRVErrno_bad_csapi_arg

DRVErrno_lldclient_error

Table 4.50 DRVErrno CSAPI_num_cards

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 79 06-UG-1345-1.20.2.11

Function DRVErrno CSAPI_num_processors(

 struct CSAPIState* const s,

 unsigned int* const num_of_processors);

Description Returns the number of processors on the board we are connected to.

Parameters s: State created by CSAPI_new

num_of_processors: Pointer to value to be given the number of processors

Returns DRVErrno_bad_csapi_state

DRVErrno_bad_csapi_arg

Table 4.51 DRVErrno CSAPI_num_processors

Function DRVErrno CSAPI_num_pes(

 struct CSAPIState* const s,

 unsigned int proc_inx,

 unsigned int* const num_of_pes);

Description Returns the number of processing elements on the specified processor on the board we are connected to.

Parameters s: State created by CSAPI_new

proc_inx: Index of processor to get count of processing elements on: 0 or 1.

num_of_pes: Pointer to value to be given the number of processing elements

Returns DRVErrno_success

DRVErrno_bad_csapi_state

DRVErrno_invalid_proc_inx

DRVErrno_bad_csapi_arg

Table 4.52 DRVErrno CSAPI_num_pes

Function DRVErrno CSAPI_get_error_string(

 struct CSAPIState* const s,

DRVErrno error_code,

 char* const error_string,

 const int max_string_length);

Description This function decodes an error_code and copies a short description of the error to the provided char buffer.
The string will be truncated at max_string_length if necessary to avoid over-running the provided buffer.

Parameters s: State created by CSAPI_new. Required to ensure the dynamic CSAPI library is loaded

error_code: Error code to get the string for. Must be of type DRVErrno

error_string: Pointer to pre-allocated buffer to receive error string

max_string_length: Length of pre-allocated buffer to receive error string

Returns DRVErrno_success

DRVErrno_bad_csapi_arg

Table 4.53 DRVErrno CSAPI_get_error_string

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 80 06-UG-1345-1.20.2.11

4.6 Calling CSAPI routines
Some CSAPI functions require a connection to the board before they can be called and others do not. If the board
is in use by another user, you will not have a connection to the board. You will only be able to call functions that
do not require a connection. These can be identified by looking at the return codes—if they do not return the "not
connected" error, they can be called before connecting to a board.

4.6.1 Functions that can called before connecting to the board
The following functions can be called before a connection to a board is established:

CSAPI_new
CSAPI_delete
CSAPI_connect

The following functions are not currently related to board connection and can be called at any time:

CSAPI_num_boards
CSAPI_get_error_string

In short, the five functions outlined in this section are safe to be called when the board is in use by another user
(new, delete, connect, num_boards and get_error_string).

Functions that do not communicate with the board

The following functions do not actually communicate with a board, so they can be called without being connected:

CSAPI_get_free_semaphores
CSAPI_allocate_shared_semaphore
CSAPI_allocate_static_shared_semaphore
CSAPI_free_semaphore
CSAPI_get_free_memory
[CSAPI_allocate_shared_memory]
[CSAPI_allocate_static_shared_memory]
CSAPI_free_memory
CSAPI_num_processors
CSAPI_num_pes
CSAPI_unload
CSAPI_endianness
CSAPI_set_system_param
CSAPI_num_threads
CSAPI_get_callback
CSAPI_register_callback

Note: The functions CSAPI_allocate_shared_memory and CSAPI_allocate_static_shared_memory
are only in this category if the CSX program symbol name parameter is NULL, in which case the address of the
allocated memory is not passed to the CSX program.

Note: When you have multiple board types, they should not be called when not connected.

4.6.2 Functions that should not be called when not connected
The following functions do not actually communicate with the board, but they will not return until a connection
has been established. They should not be called when not connected:

CSAPI_wait_on_terminate
CSAPI_get_return_value

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 81 06-UG-1345-1.20.2.11

Lastly, the current design allows these functions to be called when not connected, but when programs are loaded
dynamically they should not be called when no longer connected:

CSAPI_get_symbol_value
CSAPI_get_symbol_value_loaded

4.7 Access control
Access control prevents concurrent access to Advance boards. The access control is not intended to be 100%
secure—it is intentionally made open, with a plain text lock file that can be edited and deleted. The locking mech-
anism is most easily disabled by removing the write privilege from the lock file parent folder.

4.7.1 The lock file
The lock file, which must be writable, is created in /var/lock/clearspeed/ on Linux. Under Windows the lock
file is created in the installation directory (typically C:\Program Files\clearspeed\csx600_m512_le).

The lock file, cs_lock_file.txt, is created if it does not already exist. If it cannot be created, the following
warning will be printed:

Warning: Not using lock file. Check rw permissions for /var/lock/clearspeed/
cs_lock_file.txt.

The lock file contains the following header block:

Lock file for the ClearSpeed driver. Each entry starts with an asterisk.
White space is ignored. Entries are Type, Instance, UserID, PID, Lock Time.
All entries present in this file are considered locked.

If the first line is 0, the file is not currently being modified. When the file is accessed the 0 is changed to a random
number then the file is read. When the file is updated this number is first checked to ensure nothing has changed
since the file was read, and after the changes have been written it is changed back to 0. If the line stays as the
same non-zero value for too long, it is considered stale and is ignored.

The header block of information text is fixed and is regenerated each time the file is written. The lock-file entries
follow this. Each entry consists of five lines following an asterisk. The following is an example for the entry for a
board (2), instance 0, locked by user ‘tims’ running process ID 18830 at time 1134472924. The last line shows
the time in text, but this is not read by the software.

Resource 1 *
2
0
tims
18830
1134472924
Locked by tims on Tue Dec 13 11:22:04 2006

All text from the time entry on line 5 to the next asterisk is ignored. So, if a board or simulator is locked, it has an
entry in the lock file. If it is not locked, it does not have an entry in the lock file. The process ID is used to check
that the process that locked the board is still running and allows stale entries in the lock file to be identified.

4.8 DMA issues
The Advance board uses Direct Memory Access (DMA) to perform data transfer with the host and by default DMA
is used to transfer all but the smallest pieces of data. Data is normally transferred directly to and from the user
buffers passed to the CSAPI_read_mono_memory and CSAPI_write_mono_memory functions, no intermedi-

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 82 06-UG-1345-1.20.2.11

ate buffering should be used if at all possible. This implies that, depending on host architecture characteristics, it
is safer to align the host data buffers on a system page boundary. For x86 and x86-64 the page size is 4 KB. The
reason for this is that the entire system page needs to be operated on while the DMA transfer is proceeding and
reads and writes into a page that includes either the start or end of the DMA buffer may cause obscure and difficult
to track problems due to race conditions between DMA operations and host memory traffic.

Also, for PCI_X, the DMA engine can only transfer data that is at least 8-byte aligned on both the host machine
and the Advance board. For PCIe, it is 4-byte aligned.

If the transfer does not satisfy these constraints, a slower data transfer mechanism will be used. The slower data
transfer mechanism is typically one hundredth the speed of DMA, so should not normally be used.

DMA on some chip sets can cause problems and it is possible to disable DMA. If the environment variable
CS_DISABLE_DMA is set, DMA will not be used. This may be useful in diagnosing problems. The variable is set
as follows:

export CS_DISABLE_DMA=1 (on Linux/bash)

set CS_DISABLE_DMA=1 (on Windows)

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 83 06-UG-1345-1.20.2.11

5 Diagnostic software reference
This chapter describes the commands relating to the board diagnostic operations. The board diagnostic software
is a package installed on the host operating system and includes two diagnostic tools:

• Diagnostic tests using Perl

• A Mandelbrot demonstration

The Mandelbrot demonstration is a quick way of checking that the board has been installed correctly. However, to
run a full set of tests, you must use the Perl-based diagnostic tests.

The following sections give the instructions for running these tests on both Windows XP and Linux, as appropriate.

5.1 Diagnostic tests using Perl
The diagnostic tests, which are run using Perl, enable you to check that all the parts of the board are working
properly. For example, the tests check the CSX600 processors, the memory, and the performance of the DMA
transfers.

You should always run these tests:

• After you have installed the boards.

• If you experience a specific problem when using the board.

To run the full tests, you must have the Perl interpreter installed on your machine. Linux machines usually have
Perl already installed. For a ready-to-install distribution of Perl for Windows refer to ActivePerl at:

http://www.activestate.com

5.1.1 Full diagnostic tests for Windows XP
To run the diagnostic tests:

1. Double-click the desktop shortcut csx600_m512_le to open the command window.

2. In the new window, run the following commands:

perl -S run_tests.pl

Note: Some of the tests may take several minutes to run to completion. If you need to interrupt this process, press
[Ctrl]+[C].

5.1.2 Full diagnostic tests for Linux
To run the diagnostic tests:

1. Go to a Linux directory where you have writing privileges, for example:

cd /tmp
source /opt/clearspeed/csx600_m512_le/bin/bashrc

2. Run the program:

perl run_tests.pl

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 84 06-UG-1345-1.20.2.11

Note: Some of these tests may take several minutes to run to completion. If you need to interrupt this process,
press [Ctrl]+[C].

5.1.3 What to do if the tests fail
If any of the tests fail, it is possible that the board is not plugged in correctly. We recommend that you reinstall
the board and run the tests again.

If the tests fail to detect the board and all the tests fail, you may not have installed the driver correctly. We rec-
ommend you reinstall the drivers as described in the installation instructions on: http://support.clearspeed.com/.

If the board and drivers are installed correctly but some of the tests still fail, refer to the troubleshooting guide in
the Advance Accelerator Board User Guide to help you solve the problem.

5.2 Mandelbrot demonstration
The Mandelbrot set is a type of infinitely complex mathematical object known as a fractal. It can be run to check
that the board or boards have been installed correctly. This test is successful when it displays a Mandelbrot set.
This program is based in part on the work of the FLTK project (www.fltk.org).

5.2.1 How to run the Mandelbrot demonstration in Windows XP
To run the Mandelbrot demonstration:

3. Double-click the desktop shortcut csx600_m512_le created by the installation. This opens a command
window.

4. Reset all the boards, by entering the following command in the new window:

csreset -Av

5. Run the Mandelbrot demo:

app_mandelbrot

Running app_mandelbrot causes a window to appear which zooms in and out of a Mandelbrot set. If
this does not happen, please run the full diagnostic tests described below.

6. Press [Esc] to exit from the Mandelbrot program.

5.2.2 How to run the Mandelbrot demonstration in Linux

To run the Mandelbrot program:

1. Reset the board:

source /opt/clearspeed/csx600_m512_le/bin/bashrc
csreset -Av

2. Run the Mandelbrot demo:

./app_mandelbrot

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 85 06-UG-1345-1.20.2.11

6 Kernel level driver
This chapter is of interest to anyone who wants to understand what the kernel driver does. It is a particularly good
source of information for people who want to modify the kernel driver so that it can be embedded in the kernel
source code.

This chapter describes the various parts of the kernel driver by looking at the main stages the driver goes through:

1. Module loading and unloading

2. Device opening, closing and mmap

3. Interrupt handling

4. DMA ioctls

The driver source code is referred to so it is useful to have this source available.

Many of the terms used in this documentation can be found in Linux Device Drivers, Third Edition [3].

6.1 Overview
The ClearSpeed Linux driver is a Linux kernel module which provides the lowest level functionality to connect to
an Advance board via the PCI. The driver is provided in source form under the terms of the GNU General Public
License (GPL) in the following three files:

• csx_driver.h

A header file that contains the definitions common to the user side of the driver and the kernel side. Spe-
cifically it defines the ioctls the kernel driver provides.

• csx_driver.c

The source code of the driver.

• Makefile

The makefile for the driver. The driver uses the kBuild mechanism for module building.

The kernel driver acts like a Linux char device, providing the standard functionality that these devices provide:

• open

• close

• mmap and so on.

The driver is also a PCI driver and uses the standard PCI subsystem API to register callbacks and so on. In addition,
the driver provides a set of ioctls to implement the extra functionality the Advance board needs specifically for
scatter-gather DMA operations.

The driver uses the get_user_pages() functionality available only in the 2.6 based kernels to implement the
DMA operations hence the driver cannot be used in 2.4 based kernels where a different mechanism is used.

Note: The get_user_pages functionality became stable after the 2.6.7 release of the kernel and again the
driver cannot be used with kernels before this release. get_user_pages is heavily used by InfiniBand drivers
and these drivers first encountered the get_user_pages problems.

The ClearSpeed driver consists of two parts:

• A user-space driver which is provided in a shared library.

• The kernel driver which is provided as a kernel module.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 86 06-UG-1345-1.20.2.11

An unusual feature of the ClearSpeed driver is that the kernel module contains few dependencies on the architec-
ture of the ClearSpeed system on the PCI board. Most of the functionality that a standard driver might provide
such as handling interrupts is provided by the user-space driver rather than by the kernel side driver.

For each Advance board on a system, the driver dynamically generates two /dev (and /sys/class) entries. For
example, if two PCI Advance boards are discovered, four /dev/ entries will be created by the driver. The "control
device" (csx_ctl) (/dev/csxnc) maps in the control and configuration spaces of the device and the main asyn-
chronous PCI interrupt signal. The "memory device" (csx_mem) (/dev/csxnm) maps the memory space on the
device and handles the DMA interrupt. This two device paradigm will be encountered throughout the driver where
operations are performed on the control/memory device pair.

In general, the style of the driver is to provide a teardown function which is the exact opposite of the creation
function where resources are released in the exact reverse order of their allocation. This document describes the
module operating as an "out-of-tree" module, that is, not compiled into the kernel. Once the driver is accepted
into the Linux driver tree we hope to provide an in-tree driver.

6.2 Module loading and unloading
The driver provides module load and unload functions via csx_init and csx_exit. csx_init obtains a block
of device numbers for the attached PCI boards and initialize the /sys/class hierarchy for udev and user use.
csx_init also registers the device with the PCI subsystem via a call to pci_register_driver(). See Linux
Device Drivers, Third Edition [3] for details on the PCI subsystem. The driver registers its callback function
(csx_probe) to be called when a PCI device with the specified <Vendor id,Device id> pair is found.

At this point, the driver has not created any /dev entries or /sys/class entries, this only happens when the PCI
subsystem detects a device with the specified <Vendor id,Device id> pair, not at module load time. However, with-
out PCI hotplugging, device detection follows shortly after the kernel is booted and this step is described next.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 87 06-UG-1345-1.20.2.11

The PCI callback function csx_probe is called for each ClearSpeed device found and the steps taken for each
device are summarized in Table 6.1.

A side effect of Step 3 is that the udev daemon is called with an ADD device request. Similarly, if the remove
function (csx_remove) is called, udev is called with a REMOVE request. Since the driver presents two devices,
a pair of ADD requests is issued to udev (matched by a pair of REMOVE requests on release). udev will scan the
/sys/class structure for changes and carry out operations such as setting permissions and setting device sym-
bolic links. The current driver system does not make full use of udev. This is due to differences in the udev setup
on various systems and due to bugs in udev. Instead, the installation script performs the device permission set-
tings. One bug in particular caused udev to momentarily add a device and then remove it.

However, udev could be used for permission settings and the relevant rules could be added to the udev rule set
on a specific machine. A rule like the following would correctly set the device permissions:

KERNEL=="csx",MODE="0666"

Steps Substeps

1. The device is enabled as a PCI device and as a
bus master.

2. The control device (/dev/csxnc) is created. Setup of the control device is carried out by the function
csx_setup_ctl and consists of:

a. Establishing a kernel map for the PCI control
memory space (BAR0). This is used by the kernel
driver to mask interrupts, read various control reg-
isters and other control operations. The mapping
is built via ioremap_nocache().

b. Initializing the interrupt queue.
c. Creating the /dev device entry.

3. The memory device (/dev/csxnm) is created. The memory device is similar to the control device setup with
the following differences:

• No kernel mapping is built for the memory aperture
(BAR2). This is not needed by the kernel and would
be wasteful of kernel resources. This behavior can be
changed via the CS_NOMAPMEM macro.

• Coherent DMA space is allocated for the DMA
descriptors via dma_alloc_coherent(). This
space is used for DMA descriptors while DMA is in
flight. The driver specifies the devices PCI address
features via a call to dma_set_mask to indicate that
the device is 64 bit DMA capable. Note that the
default is to have only 32 bit capable PCI devices and
without this call the kernel will build bounce buffers
for DMA transfers.

At this stage, coherent DMA mappings can be allocated for
contiguous DMA buffers used as bounce buffers. This can be
used as an alternative to scatter-gather and is enabled via
the CSX_BOUNCE macro.

4. The interrupt handler is registered.

Table 6.1 Steps taken by csx_probe

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 88 06-UG-1345-1.20.2.11

Once this step is complete, the device is ready for use.

6.3 Device opening, closing and mmap
The device pair for a physical PCI device present a standard set of char device operations defined in
csx_ctl_flops for the control device and csx_mem_fops for the memory device. The operations provided are:

• open/release

Standard device open via file descriptor. Note that unusually perhaps, the driver does not impose any
access control on open. This functionality is provided in the user-land driver. Any per-connection data
structures are allocated (freed).

• poll

Poll is used to wait for an interrupt from the device. The poll on the control device is the asynchronous PCI
interrupt wait. The poll on the memory device is the synchronous DMA complete interrupt.The functional-
ity is implemented by adding the caller to an interrupt queue which the actual interrupt handler will
release. This model allows the user-land device driver to wait simultaneously on DMA interrupts and PCI
interrupts in separate threads.

• read/write

Read and write provide control register reads and writes for the Advance board via the kernel's mapping of
the control aperture space. These are not in fact used by the current user-land driver, instead a mapped
address space is used. However, these operations can be used if a strict sequentiality is needed by the
driver or if aperture mapping is not available.

They are also useful in driver bring up.

The memory device has read and write operations as well as llseek. This provides a nonmemory-mapped
interface to the memory on the Advance board. Seek moves to a position within the aperture and read or
write is then used to access a number of bytes at this offset. These operations are not currently used and
the memory mapped interface is used instead.

• mmap

Both the control and memory devices provide mmap operations. They are used to provide user-space
mappings of the control and data apertures respectively. The data aperture mapping is in fact much
smaller than the full data address range available and the aperture acts more like an address window.

This windowing functionality is not provided by the kernel driver but rather by the user-land driver. The
mapping is built by io_remap_page_range in earlier 2.6 kernels and remap_pfn_range in later ker-
nels.

The driver marks the mapping as being for IO with no caching.

The mmap operation is used by the user-land driver via the mmap() system call on the appropriate open
file descriptor.

6.4 Interrupt handling
All interrupts from the device are routed to csx_intr_handler. This uses the kernel control mapping to examine
the device to determine if the interrupt is PCI or DMA. A thread waiting on these interrupt queues will be woken
up. The driver must also acknowledge the interrupt to avoid it being refired once the kernel is left. This acknowl-
edgement is handled differently for the two interrupt sources.

For PCI interrupts, the interrupt mask is closed but the interrupt itself is not cleared. Interrupt clearing is handled
in the user-land driver. PCI interrupt clearing is too complex to be handled in the kernel.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 89 06-UG-1345-1.20.2.11

For DMA interrupts, the interrupt is acknowledged by the kernel by the usual technique of writing back the inter-
rupt source bits. The interrupt mask is not changed by the kernel driver.

Note: The kernel driver uses kernel memory write flushing macros to ensure that these interrupt operations are
flushed before leaving the kernel.

6.5 DMA ioctls
The DMA engine on the PCI device is programmed by the user-land driver to perform scatter-gather DMA to and
from the Advance board. The approach taken is to do as much as possible in the user-land driver and obtain the
necessary kernel functionality via ioctls on the memory device.

The model called "zero-copy user-space access" DMA allows DMA directly on user data avoiding any bounce buffer
copying. For further information, see get_user_pages usage [4]. Using a bounce buffer can loose 30% of DMA
performance.

DMA data buffers use so-called scatter-gather mappings which are a subset of "streaming DMA" mappings which
are efficient but have a stringent set of rules concerning their coherency. The DMA descriptors use a "coherent
DMA" mapping. The kernel driver uses the scatter-gather coherency functions to mark the buffers as being coher-
ent for the device or coherent for the host. For a general description of DMA mapping, see KernelSourceTree/
Documentation/DMA-mapping.txt (replacing KernelSourceTree by the location of downloaded kernel
sources).

In outline, a DMA operation to transfer a single (virtual address) contiguous buffer from host memory to or from
the ClearSpeed device is as follows:

 Obtain physical page address mapping for user buffer: Lock_data_buffer
 Construct Descriptor set and program DMA engine
 Fire DMA: Fire_DMA
 Poll on memory device
 Unlock_data_buffer

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 90 06-UG-1345-1.20.2.11

The kernel driver provides a pair of resources for DMA to allow for concurrency between buffer mapping for trans-
fer #N and the actual DMA transfer for transfer #(N-1). This allows for the overlap between DMA preparation func-
tions and DMA traffic as shown in Figure 6.1.

Figure 6.1 DMA concurrency

Thus, only the initial setup and final teardown operations are not overlapped with DMA.

Kernel ioctls require unique numbers and a set of macros are provided by the kernel to help build the necessary
unique numbers and to help characterize the ioctl use. For the ClearSpeed ioctl set, use the prefix 0xC5 as the
"IOCTL MAGIC" number.

The user-land driver interfaces to the kernel ioctls via a library that provides a function for each ioctl. These wrap-
per functions collect the ioctl parameters into a struct specific to the ioctl and pass this struct to the kernel trap.
A full specification of ioctl functionality, parameter types, return codes and so on is given in this header file. See
csx_driver.h for more information.

Each ioctl has a checking step in the kernel where all the parameters are validated before the ioctl is executed.
This is not described in this document as the intent should be clear from the source code.

The ioctls provided for DMA support are the following:

csx_lock_buffer_for_dma
This ioctl takes the user data buffer and locks the physical page set for the buffer into memory in preparation for
DMA. get_user_pages() is used to pin the pages to physical addresses and to obtain the physical page
addresses. If the virtual buffer has not been accessed and hence does not have any physical addresses, this step
can require the kernel to generate the physical addresses. This can be a slow operation but this latency can be
alleviated by overlapping the buffer lock and unlock with a DMA transfer.

The second step is to generate the "scatter-gather" list which provides the PCI bus addresses as needed for DMA.
This is carried out by the call to dma_map_sg(). This allows the kernel to perform any architecture specific oper-
ations necessary for memory DMA. Note that get_user_pages() returns the number of full pages mapped (or
pinned). This will include any partial pages mapped due to nonpage-aligned user buffers. Mapping to the scatter-
gather set can result in a different page count such as:

pages_pinned by get_user_pages>= pages_mapped by dma_map_sg

lock_buffer 1

fire dma lock_buffer 2

free 1, fire2 lock_buffer 3

free n-1, fire n

free n

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 91 06-UG-1345-1.20.2.11

The kernel driver has to retain this distinction in order to properly free the resources in the matching unlock_dma
ioctl.

Note: Physical memory addresses are not suitable for DMA and the addresses returned by the dma_map_sg func-
tion must be used. For example, some 32 bit machines remap the PCI address space beyond the 4 GB boundary
and on these machines, PCI addresses can be 33 bits in length.

The set of PCI bus addresses for the transfer are returned to the user-land driver where they are used to program
the card DMA engine.

csx_unlock_data_buffer
This reverses the lock buffer operation undoing the DMA scatter-gather list mapping and undoing
get_user_pages. As many others have noted, it is strange that the kernel does not provide a
put_user_pages function to undo the effect of get_user_pages. Instead, page_cache_release is called
on each pinned page. Note again the distinction between the pages mapped for the dma_unmap_sg call and the
pinned set as returned by get_user_pages.

These two locking functions also use the DMA synch calls to mark the physical pages for coherency. On a write to
device operation, csx_lock_buffer_for_dma calls dma_sync_sg_for_device. On a read from device
operation, csx_unlock_data_buffer calls dma_sync_for_cpu.

copy_to_desc_buffer
The kernel driver reserves DMA coherent space for the DMA descriptors used by the DMA engine. The user-land
driver constructs the descriptor set based on the mapped page information from the buffer lock functions and this
ioctl copies the user descriptor set into this DMA coherent space. This is generally safer than using user locked
space for DMA descriptors.

csx_fire_dma
This is an ioctl to finally fire the DMA by setting the valid bit in the DMA engine. An ioctl ensures that all the nec-
essary memory and control flush operations have taken place.

csx_copy_and_fire
This ioctl combines the descriptor copy and DMA fire into a single ioctl call for efficiency.

csx_get_page_size
This is used to provide the user space with the running kernel's physical page size. This is needed on systems like
Itanium where the page size can vary.

6.6 Miscellaneous

6.6.1 Class interface
The device driver provides a pair of class device interfaces for the /sys/class hierarchy. The principal reason
for this is to provide the structure needed by udev but the system allows for arbitrary information to be provided.
The function csx_show_status gives an example of what can be provided. This displays the version number of
the FPGA and driver build time for instance. This structure can be extended to allow the driver to provide extra
information to the user space.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 92 06-UG-1345-1.20.2.11

6.6.2 /proc interface
Later versions of the kernel driver also provide a /proc interface for displaying performance information via
/proc/driver/csxn. At the moment this is only experimental.

6.6.3 Moving functionality into kernel driver
The split between user land operations and kernel side operations means that the kernel driver ends up knowing
little about the device and for performance reasons alone it is worth considering moving some functionality into
the kernel. For example, some of the interrupt handling could be moved into the kernel driver. However, there is
a feature of the method to access the devices control space which makes this very difficult. Most control informa-
tion on the csx device is available via the PVCI bus.

To access this bus, the following operations are needed:

1. A write to an address register

2. A read or write to obtain the result.

This makes PVCI accesses nonatomic thus making it impossible for the kernel to access the PCVI space safely.

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 93 06-UG-1345-1.20.2.11

6.6.4 Resources.
The resources are described in Table 6.2

Resource Description

csx.ko Kernel module driver.

/dev/csxNc, /dev/csxNm Control and Memory devices for the N'th CSX
device on the PCI bus. Note that N is NOT the slot
number but an arbitrary discovery order.

/sys/class/csxctl/csxNc devclass entry for N'th card control device. This
directory contains the status file for presenting
user information.

/sys/class/csxmem/csxNm devclass entry for Nth card memory device.

Table 6.2

CSX600 Runtime Software User Guide

© Copyright ClearSpeed Technology plc 2007 94 06-UG-1345-1.20.2.11

7 Bibliography
[1] GNU Manuals Online

http://www.gnu.org/manual/

[2] Debugging with GDB
Richard Stallman, Roland Pesch, Stan Shebs, et al.
ISBN 1-882114-77-9
Free Software Foundation, Inc.

[3] Linux Device Drivers, Third Edition
Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman
ISBN 0-596-00590-3
O’Reilly Media, Inc.

[4] get_user_pages usage
 http://lwn.net/Articles/28548/
 Note that lwn.net is a useful resource for kernel information.

[5] Advance X620 Accelerator Board User Guide
Document Number: 06-UG-1302
ClearSpeed Technology

[6] Advance e620 Accelerator Board User Guide
Document Number: 06-UG-1443
ClearSpeed Technology

http://www.gnu.org/manual/

	CSX600 Runtime Software User Guide
	Contents
	1 Introduction
	2 Running code
	2.1 csrun
	2.1.1 Invoking csrun
	2.1.2 Command line options
	Table 2.1 csrun command line options summary

	2.2 csreset
	2.2.1 When to use csreset
	2.2.2 Invoking csreset
	2.2.3 Command line options
	Table 2.2 csreset command line options summary
	Examples

	2.2.4 Recovering the board

	3 Debugger Reference
	3.1 New commands and features
	3.2 Invoking the debugger
	3.2.1 Using the debugger with a host application

	3.3 Commands
	3.3.1 Connect command and options
	Table 3.1 Connect options summary

	3.3.2 Loading code
	3.3.3 Executing code
	3.3.4 Mono debugging
	Reading mono registers - regs command
	Writing mono registers - regs command
	Reading mono memory - x command
	Disassemble command
	Breakpoints
	Symbolic debug

	3.3.5 Poly debugging
	Reading poly registers - peregs command
	Reading poly memory - pex command
	Viewing the enable state
	Displaying the PE mac status info
	Displaying the PE fpadd status
	Displaying the PE fpmul status
	Symbolic debug

	3.3.6 Hardware threads
	3.3.7 System register viewer
	Getting help in csgdb
	Listing system register information
	Viewing the information about a register group
	Listing the information about a specific register
	Displaying system register values
	Displaying the values of a register group
	Displaying the value of an individual register
	Returning a register value to a GDB variable
	Writing to registers

	3.3.8 TSC semaphore viewer
	Getting help in csgdb
	Displaying semaphore information
	Listing information for all semaphores with a current value
	Listing semaphore information for an individual semaphore
	Displaying only the values of semaphores
	Displaying only the nonzero status of the semaphores
	Displaying the interrupt enable status of the semaphores
	Displaying the overflow status of the semaphores
	Displaying the current thread / semaphore usage

	3.4 Registers
	Table 3.2 Debugger to Assembly Language Register Mapping

	3.5 Using DDD

	4 Host interface library
	4.1 CSX600 driver library
	4.2 Linking host applications with CSAPI
	4.2.1 Linux
	4.2.2 Microsoft Windows
	Table 4.1 Setting up the development project

	4.3 Using CSAPI
	4.3.1 Building programs
	4.3.2 Connection and initialization
	Access control
	Initialization

	4.3.3 Obtaining information
	4.3.4 Loading and running a program
	Loading CSX programs
	Running the CSX program

	4.3.5 Unloading a program and disconnecting
	Example application

	4.3.6 Events
	4.3.7 Semaphores
	4.3.8 Symbols
	4.3.9 Memory allocation
	Memory allocation
	Static allocation
	Figure 4.1 Memory map
	Host side dynamic allocation
	CSX program dynamic allocation (malloc)

	4.3.10 Memory and register access
	Memory access
	Asynchronous transfers
	Register access

	4.4 Example of host and CSX code cooperation
	4.5 ClearSpeed host application programming interface (CSAPI)
	4.5.1 Common parameters
	Table 4.2 CSAPI state structure
	Table 4.3 Processor index
	Figure 4.2 Timeline for driver interactions

	4.5.2 Error codes
	Table 4.4 Error codes

	4.5.3 Initialization and maintenance functions
	Table 4.5 struct CSAPIState* CSAPI_new
	Table 4.6 void CSAPI_delete
	Table 4.7 DRVErrno CSAPI_connect
	Table 4.8 DRVErrno CSAPI_reset

	4.5.4 Program setup
	Table 4.9 DRVErrno CSAPI_register_application
	Table 4.10 DRVErrno CSAPI_load
	Table 4.11 DRVErrno CSAPI_get_last_loaded_handle
	Table 4.12 DRVErrno CSAPI_unload

	4.5.5 Processor control
	Table 4.13 DRVErrno CSAPI_run
	Table 4.14 DRVErrno CSAPI_run_process
	Table 4.15 DRVErrno CSAPI_halt
	Table 4.16 DRVErrno CSAPI_start
	Table 4.17 DRVErrno CSAPI_wait_on_terminate
	Table 4.18 DRVErrno CSAPI_get_return_value

	4.5.6 Accessing registers
	Table 4.19 DRVErrno CSAPI_write_control_register
	Table 4.20 DRVErrno CSAPI_write_control_register_raw
	Table 4.21 DRVErrno CSAPI_read_control_register
	Table 4.22 DRVErrno CSAPI_read_control_register_raw

	4.5.7 Accessing mono memory and registers
	Table 4.23 DRVErrno CSAPI_write_mono_memory
	Table 4.24 DRVErrno CSAPI_write_mono_memory_raw
	Table 4.25 DRVErrno CSAPI_read_mono_memory
	Table 4.26 DRVErrno CSAPI_read_mono_memory_raw
	Table 4.27 DRVErrno CSAPI_write_mono_memory_async
	Table 4.28 DRVErrno CSAPI_write_mono_memory_async_wait
	Table 4.29 DRVErrno CSAPI_write_mono_memory_async_poll
	Table 4.30 DRVErrno CSAPI_read_mono_memory_async
	Table 4.31 DRVErrno CSAPI_read_mono_memory_async_wait
	Table 4.32 DRVErrno CSAPI_read_mono_memory_async_poll

	4.5.8 Endian functions
	Table 4.33 DRVErrno CSAPI_buffer_to_native_endian
	Table 4.34 DRVErrno CSAPI_endianness

	4.5.9 Thread functions
	Table 4.35 DRVErrno CSAPI_set_thread
	Table 4.36 DRVErrno CSAPI_num_threads

	4.5.10 Semaphore handling
	Table 4.37 DRVErrno CSAPI_register_semaphore
	Table 4.38 DRVErrno CSAPI_semaphore_wait
	Table 4.39 DRVErrno CSAPI_semaphore_signal
	Table 4.40 DRVErrno CSAPI_num_semaphores

	4.5.11 Callback functions
	Table 4.41 DRVErrno CSAPI_get_callback
	Table 4.42 DRVErrno CSAPI_register_callback

	4.5.12 Memory allocation using CSAPI functions
	Table 4.43 DRVErrno CSAPI_get_free_mem
	Table 4.44 DRVErrno CSAPI_allocate_shared_memory
	Table 4.45 DRVErrno CSAPI_allocate_static_shared_memory
	Table 4.46 DRVErrno CSAPI_free
	Table 4.47 DRVErrno CSAPI_get_symbol_value
	Table 4.48 DRVErrno CSAPI_get_symbol_value_loaded

	4.5.13 Utility functions
	Table 4.49 DRVErrno CSAPI_set_system_param
	Table 4.50 DRVErrno CSAPI_num_cards
	Table 4.51 DRVErrno CSAPI_num_processors
	Table 4.52 DRVErrno CSAPI_num_pes
	Table 4.53 DRVErrno CSAPI_get_error_string

	4.6 Calling CSAPI routines
	4.6.1 Functions that can called before connecting to the board
	Functions that do not communicate with the board

	4.6.2 Functions that should not be called when not connected

	4.7 Access control
	4.7.1 The lock file

	4.8 DMA issues

	5 Diagnostic software reference
	5.1 Diagnostic tests using Perl
	5.1.1 Full diagnostic tests for Windows XP
	5.1.2 Full diagnostic tests for Linux
	5.1.3 What to do if the tests fail

	5.2 Mandelbrot demonstration
	5.2.1 How to run the Mandelbrot demonstration in Windows XP
	5.2.2 How to run the Mandelbrot demonstration in Linux

	6 Kernel level driver
	6.1 Overview
	6.2 Module loading and unloading
	Table 6.1 Steps taken by csx_probe

	6.3 Device opening, closing and mmap
	6.4 Interrupt handling
	6.5 DMA ioctls
	Figure 6.1 DMA concurrency

	6.6 Miscellaneous
	6.6.1 Class interface
	6.6.2 /proc interface
	6.6.3 Moving functionality into kernel driver
	6.6.4 Resources.
	Table 6.2

	7 Bibliography

