
IBM e326m Performance for HPC

Douglas M. Pase
IBM xSeries Performance Development and Analysis

3039 Cornwallis Rd.
Research Triangle Park, NC 27709-2195

pase@us.ibm.com

Abstract
In this paper we examine the performance of single- and dual-core versions of the IBM®
eServer™ 326m (e326m) server. Our analysis includes memory bandwidth and latency, floating-
point vector performance, performance of the SPEC® CPU2000 speed and rate benchmarks, and
both uni- and bidirectional traffic over the PCI-Express I/O slot using a high-speed InfiniBand™
adapter from Voltaire® with an MPI benchmark. In this paper we find that the processor-memory
complex performs well. The PCI-Express slot also performs well under most loads, but high-
bandwidth bidirectional traffic suffers somewhat with dual-core processors because of the single-
threaded nature of device drivers and the lower clock speeds supported by dual-core processors.

1. Introduction
The IBM eServer 326m is the next generation of the two-processor Opteron system. It supports
two processor sockets, two hot-swap SCSI or two IDE disk drives and up to 16GB of main
memory in a rack-optimized 1U chassis.1 The e326m supports improved electronics, including an
improved I/O subsystem, an eight-lane PCI-Express slot and faster processors.

The e326 has an architecture that is similar to most two-socket system architectures. Two AMD
Opteron processors are connected by a coherent HyperTransport™ link. Each processor has two
channels to memory. A north bridge is connected to the master CPU, and a south bridge is
connected to the north bridge. The south bridge provides access to low-performance I/O devices
such as USB ports. High-performance I/O is connected through the north bridge. The e326m has
two I/O buses, which support a combination of 133 MHz PCI-X and 8x PCI-Express. Figure 1
shows a high-level block diagram of the system.

The e326m supports both single- and dual-core Opteron processors. The single-core processors
use higher processor clock frequencies than the dual-core processors [1]. Thus single-core
processors are faster at single-threaded tasks such as executing device drivers, whereas dual-core
processors have greater throughput, as can be seen with highly parallel numerical calculations.

1. A “U” is a unit of length equivalent to 1.75 inches.

The e326m supports two single-core processor speeds – 2.6 GHz and 2.8 GHz. Four speeds of
dual-core processors are also supported, namely 1.8 GHz, 2.0 GHz, 2.2 GHz and 2.4 GHz.

With four channels to memory the e326m supports up to eight DIMMs, two per channel. Memory
must be attached to the master CPU, but attaching memory to the secondary processor is optional.
However, the best performance is obtained when all DIMM slots are populated with identical
memory. The reason is that all channels are needed for best performance, and because memory
addressing can be done more quickly when each processor has four ranks of memory. The e326m
supports DDR400 memory in 512MB, 1GB and 2GB sizes.

Figure 1. Block Diagram of the e326m

2. Memory Latency

2.1 Local and Remote Latency
The e326m, like all multiprocessor Opteron designs, is a shared-address, Non-Uniform Memory
Access (NUMA) design. The address space spans all memory within the system, so any processor
can store or retrieve data anywhere in memory, but memory that is directly attached to the
processor can be retrieved more rapidly than memory attached to the other processor. When a
reference misses both L1 and L2 cache, the memory subsystem must ask the other processor
whether it has the data in its cache. This is called a snoop request. The processor must respond
with the data, or with a message stating that it does not have the desired data. This is called a
snoop response. A reference to local memory requires a snoop request and response before data
gathered from local memory can be used. A reference to remote memory (memory attached to the
other processor) also requires a snoop request and response, but suffers from additional latency
when the data is transmitted over the HyperTransport link.

Measurements of local and remote latency are shown in Figure 2. The figure clearly shows
memory latency when the program data being used (also known as the working set) fits into L1
cache, L2 cache, or main memory. On the 2.2 GHz dual-core Opteron processor, L1 cache latency
is just under 1.4 nanoseconds (ns). L2 cache latency is about 6.7 ns. Latency to local memory is

OpteronOpteron

2 x USB
2 x ATA

PCI-X/
PCI-E

OpteronOpteron

S.BridgeS.Bridge

D
IM

M
 1

D
IM

M
 1

D
IM

M
 3

D
IM

M
 3

D
IM

M
 2

D
IM

M
 2

SCSI
2 x GbE

D
IM

M
 4

D
IM

M
 4

D
IM

M
 5

D
IM

M
 5

D
IM

M
 0

D
IM

M
 0

N.BridgeN.Bridge

Video
Audio

cHT

HT

D
IM

M
 6

D
IM

M
 6

D
IM

M
 7

D
IM

M
 7
2

just slightly over 61 ns. In our experiment we used DDR400 CL3 memory,1 and the time to fetch
data directly from the DIMMs can be calculated to be 35 ns.2 The remaining 26 ns is used to
recognize that data is not in cache, translate physical addresses into memory requests, and to
handle snoop requests and responses, which seems quite efficient.

The experiments in Figure 2 show several interesting things. First, local latencies are the same
whether a single core is operating with all other cores completely idle, or one core is operating per
socket. The same is true of remote references. It also shows cache latencies are the same whether
the data cached is local or remote.

Figure 2. Local and Remote Latencies for One and Two 2.2 GHz Processors

The next chart, Figure 3, shows the memory latencies for one, two and four process threads. From
this chart it is much easier to see that remote memory latency is a constant 26 ns longer than local
memory latency. This is approximately the time required to transfer one cache line across an 800
MHz HyperTransport link. Furthermore, it can be seen that adding a second active thread to a
dual-core processor impacts the memory latency only slightly, about 5 to 6 nanoseconds.

1. DDR400 memory accepts commands and addresses at 200 MHz. It sends and receives data at 400 MHz.
CAS is an abbreviation for Column Address Select, and CAS latency (CL) is the minimum time, in
command clocks, to receive the first data once the CAS command has been received. A CAS latency
value of 3 is typical of DDR400 memory available today.

2. Time to fetch the first data from memory can be computed as the command cycle time (5 ns) times the
CAS latency (3 command cycles), or 15 ns. A 64-byte cache line is fetched at 400 MHz in blocks of eight
bytes, requiring 20 ns, hence 35 ns total to fetch data from the DIMM.

0
10
20
30
40
50
60
70
80
90

100

10000 100000 1000000 10000000 100000000

Thread Memory Size (Bytes)

La
te

nc
y

(n
an

os
ec

on
ds

)

1P Local 2P Local 1P Remote 2P Remote
3

Figure 3. Local and Remote Memory Latencies for a 2.2 GHz Dual-Core System

2.2 Latency and Processor Frequency
As discussed in a previous section and elsewhere [2], Opteron processors use an integrated
memory controller. This feature is the key to understanding memory performance of Opteron
processor-based systems, and one principal effect of this feature is that memory performance is
dependent on the clock frequency of the processor. The integrated memory controller is driven by
the same clock as the processor core, so as the processor clock frequency increases, the memory
controller clock frequency increases along with it. This effect can be seen clearly in Figure 4.

Two other effects can also be seen from this figure. The first effect is that dual-core latency is
generally better than single-core latency, when compared by frequency. This is an interesting
result. It says that a 2.4 GHz dual-core processor has better memory latency than a 2.4 GHz
single-core processor. It suggests that AMD has enhanced the performance of the memory
controller for dual-core processors in order to address, at least partially, the additional memory
load the second core brings.

The second effect is that there is an exception to the first effect – for some unknown reason, the
2.2 GHz single-core processor has significantly better performance than the 2.2 GHz dual-core
processor. The data has been checked repeatedly and it is measured and recorded correctly. The
processor stepping levels were checked, as were the processors themselves. Memory, BIOS and
software configurations were also checked and no differences were found. It may be an anomaly
of the particular server the test was run on rather than a statement about 2.2 GHz processors in
general. This question is currently unresolved.

60.3 61.1
65.7

86.1 86.8
92.6

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

1P Local 2P Local 4P Local 1P Remote 2P Remote 4P Remote

La
te

nc
y

(n
s)
4

Figure 4. Local Memory Latency by Processor Frequency

2.3 Loaded and Unloaded Latency
Servers are designed to perform well under heavy workloads. Applications may have most of
their data in cache or registers, in which case the application is considered to be processor-core-
bound. In contrast, an application may have such a large working set that much of the data to be
referenced does not fall within cache and must be fetched from main memory. The experiments
presented so far consider only a single memory reference for each thread occurring at any given
moment. When a single thread repeatedly generates a single reference to memory within a
system, the latency of such a reference is often described as unloaded latency, because the
memory subsystem is not being taxed under a typical full server load. Each memory reference is
delayed only by the minimum latency of each subsystem, and not by other memory references
that may be competing for those subsystems.

Under normal use there may be many threads operating, and each thread may be generating
multiple concurrent memory read and write operations. Under these conditions a memory
reference may be delayed, not only by the hardware, but also by competition from other memory
references. Latency measurements under these circumstances is described as loaded latency,
because the server is operating under a full load.

Before we examine the effect of memory load on processor latency, we first examine the
conditions that can increase memory load. The key to understanding memory load is true
processor concurrency. Consider a typical time-sharing operating system such as Linux®. A
Linux server may run multiple applications at once. Each application executing within the system
consists of one or more threads. When a processor running under Linux finds itself idle for any
reason, it selects a thread that is ready to run, and executes its program for a period of time. For
that period, the processor executes that thread exclusively. When the time period expires, or the
thread gives up the processor voluntarily, the operating system selects another thread and the

40

50

60

70

80

90

100

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

P roce ssor Fre que ncy (GHz)

La
te

nc
y

(n
an

os
ec

on
ds

)

Local S ingle-Core Local Dual-Core Rem ote S ingle-Core Rem ote Dual-Core
5

cycle repeats. In this way the operating system creates the illusion that it is running all available
threads simultaneously.

The important point to recognize is that it is, in fact, an illusion. The operating system does not
actually run all threads concurrently, but serially in very small increments. At most one thread can
execute concurrently for each processor core within the system. Ten threads executing in a two-
core system create no greater memory load than two of the same threads alone.

A second point to recognize is that a single thread can create multiple concurrent references to
memory. Typically, references to scalar variables are loaded into cache and remain there, so they
don’t contribute significantly to the memory load. On the other hand, vector variables, such as
arrays of floating-point values, may easily be accessed in ways that step outside of cache and must
go to main memory. Memory loads are often high when many arrays are used together, or when
values in many parts of an array must be used together in a calculation.

In our experiments we use a pointer-chasing benchmark. A chain of pointers is set up to fill any
desired size of memory. Only one pointer is used per cache line, and the chain is followed
repeatedly until the elapsed time is significantly longer than the clock resolution, guaranteeing
that an accurate measurement has been made. One thread is executed per processor core. The load
is indicated by the number of pointer chains being chased concurrently by each thread. The results
are shown in Figure 5.

Figure 5. 2.2 GHz Dual-Processor Loaded Memory Latency

This figure reflects a two processor, dual-core system with one thread running on each of the four
processor cores. This translates to four threads, each with one, two, three or four outstanding
concurrent memory read operations. Stated differently, this reflects four, eight, twelve and sixteen
total references. The chart shows that as more local references are added, the average latency

56.5

86.3

116.6

145.8

78.0

116.5

151.9

201.3

0.0

50.0

100.0

150.0

200.0

250.0

1 2 3 4

Load per Thread

La
te

nc
y

(n
s)

Local Remote
6

grows by about 30 ns. In other words, as each processor adds two concurrent memory references,
one per core (or thread), the average latency of all local references increases by 30 ns.

Remote references are more variable, but the behavior appears to be similar. As remote references
are added, the average latency for all references grows by about 40 ns.

3. Memory Throughput
Detailed studies of e326 memory bandwidth have been reported in earlier papers [2][3], but
changes do occur as processor, memory and system technologies mature. To verify memory
throughput performance we ran the familiar Stream benchmark and recorded Triad throughput.

As one would expect, and as has been reported in other papers, bandwidth is best when all
memory channels are put to use, meaning threads are run on each processor. In previous reports
we described a noticeable difference in performance, about 10%, between single-core and dual-
core processor systems. That difference has diminished greatly, although a small advantage still
remains. This is shown in Figure 6.

Figure 6. Stream TRIAD Results by Processor Frequency

Figure 6 also shows how performance increases with processor clock frequency, due to the
integrated memory controller. In the previous system the top-speed bin dual-core processor
outperformed the top-speed bin single-core processor, even though the latter had a higher clock
frequency. It appears that is no longer the case. The best memory performance is achieved by the
top-speed single-core processor. Furthermore, memory performance does not improve when only
one core of a dual-core processor is used. Instead, performance drops by a little over 10%.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

P roce ssor G Hz

Tr
ia

d
M

B
/s

1P DC 2P DC 4P DC 1P S C 2P S C
7

4. CPU Performance
Processor performance is another area where few changes beyond incremental improvements in
technology are expected. The 2.8 GHz single-core and 2.4 GHz dual-core processors seem to
perform with no surprises.

The Linpack benchmark measures 64-bit floating-point vector performance, with long, easily
exploited vectors that fit within available cache [4]. This means memory performance is not a
factor. It also means Linpack performance is scalable with the processor clock frequency and the
number of vector units in the system. The 2.4 GHz dual-core processor offers the best
performance at just under 16 GF/s per system, as Figure 7 shows.

Figure 7. Linpack Performance

5. SPEC CPU2000 Performance
The SPEC CPU2000 benchmark is actually eight benchmarks packaged together [5]. It consists of
three independent dimensions that are used together to identify each benchmark. Those
dimensions are operation type (integer or floating-point), execution mode (speed or rate), and
compilation mode (base or peak). Each run of the benchmark uses a selection of applications
taken from the computer industry that reflect the intention of that benchmark. Each application is
run three times and given a score based on the median run time of those three runs. All of the
application scores are then combined to form a geometric mean, which becomes the benchmark
score. Eight different benchmark scores are possible, namely integer base speed, integer base rate,
integer peak speed, integer peak rate, floating-point base speed, and so on.

The integer benchmarks use 14 integer applications, and go by the name of CINT2000. Most of
the applications are highly cacheable, and overall, memory performance has little effect on
benchmark performance. The floating-point benchmarks use 12 floating-point applications that

0 .0

2 .0

4 .0

6 .0

8 .0

1 0 .0

1 2 .0

1 4 .0

1 6 .0

1 8 .0

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0

N

G
F/

s

2 .2 G H z S C 2 .4 G H z S C 2 .6 G H z S C 2 .8 G H z S C
1 .8 G H z D C 2 .0 G H z D C 2 .2 G H z D C 2 .4 G H z D C
8

generally have strong dependence on memory performance and floating-point performance,
although large caches can also have impact on the outcome. The floating-point benchmarks are
called CFP2000.

SPEC CPU2000 can be executed as either a speed benchmark or a rate benchmark. The speed
benchmarks execute a single copy of each application serially, using a single processor core, and
report the results. These results approximate the speed with which a single task can be completed.
Rate benchmarks execute multiple copies of each benchmark concurrently, usually one copy per
processor core. This approximates the system throughput under full load. Since servers are
designed to complete many tasks at once, sometimes sacrificing the speed of individual tasks, the
rate benchmarks are generally a more relevant measure of server performance.

The compilation mode is often the most misunderstood aspect of the SPEC CPU2000
benchmarks. The base and peak benchmarks differ only in what compiler optimization flags may
be used to compile the applications. Proper execution of the base benchmarks require that no
more than four optimization flags be used, and that all applications use the same optimization
flags. Peak results may use any number of flags and each application may be different. The base
results approximate an environment such as code development, where a developer wants some
combination of flags that works reasonably well, but is unwilling to fine-tune the compilation of
the application. In my opinion, base results do not reflect the performance of the system very well.
Rather, they reflect how well the compiler has packaged its optimization flags, and how well it
has implemented its general purpose optimization flags such as -O3.

Peak results are unconstrained in their number and choice of optimization flags, so the compiler is
free to take advantage of architectural features of the server. As a result, peak results more
accurately reflect the performance of the system. In this report only peak results are used.

5.1 Speed Results
As mentioned before, the CINT2000 benchmarks are highly cacheable. As a result, the speed
results are almost perfectly scalable with processor frequency. This is shown in Figure 8. This
high degree of cacheability makes the load on the memory subsystem light. It also means that
there is very little difference between the performance of a single-core processor and a single core
of a dual-core processor of the same frequency. This benchmark is processor-core-performance-
constrained; that is, other components of the system are not oversubscribed and therefore do not
limit benchmark performance.

The CFP2000 speed results are also nearly perfectly scalable with processor frequency, although
those applications are not cacheable nearly to the extent that CINT2000 is. They scale well,
nonetheless, because the memory subsystem is not oversubscribed for the processor frequency
range that is measured here. As the processor frequency climbs, the memory performance scales
more slowly than the processor performance does. In our experience with other processors, when
the memory subsystem becomes a bottleneck, the performance of this benchmark flattens out. No
such flattening occurs, as Figure 9 shows, because the memory subsystem is adequate for the load
being generated.
9

Figure 8. SPEC CINT2000 Performance by Processor Frequency

Figure 9. SPEC CFP2000 Performance by Processor Frequency

There is something interesting to be learned from comparing the single-core performance of
single- and dual-core processors. Comparing processors by frequency (e.g., 2.2 GHz single-core
against 2.2 GHz dual-core), we see that dual-core processors are slightly faster. This comparison
is shown in Figure 10. It is interesting to note that speed results are only slightly faster, around 2%
to 4%. Since memory throughput was about the same between processors, it seems unlikely that is

0

500

1000

1500

2000

2500

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Processor GHz

SP
EC

in
t2

00
0

Dual Core Single Core

0

500

1000

1500

2000

2500

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Processor GHz

SP
EC

fp
20

00

Dual Core Single Core
10

the reason for the difference here. Memory latency seems a more likely cause, but we don’t know
for sure.

The more obvious comparison is by speed bin rather than by frequency. The fastest single-core
processor clearly outperforms the fastest dual-core processor, by 12% in this case, because of its
higher clock speed. Single-core processors should always excel at speed tests.

Figure 10. Speed Comparison of Single- and Dual-Core Processors by Frequency

5.2 Rate Results
SPEC CPU2000 rate results are generally more relevant measures of server performance, because
this more closely approximates the environment in which servers are used. The rate benchmarks
measure system throughput for integer and floating-point workloads. Since dual-core processors
are designed for greater throughput, even at the expense of individual tasks, one would reasonably
expect better performance from dual-core processors. If there are any surprises, it is how well
dual-core processors do their job.

Figure 11 shows the CINT2000 rate benchmark. Scaling by processor frequency is almost
perfectly linear because of its high degree of cacheability. CFP2000 also shows a high degree of
scalability (Figure 12) even though it is much less cacheable, because the memory subsystem
scales with the number of processors in the system.

Figure 13 shows a difference in performance when the systems are compared by processor
frequency. It can be seen quite clearly from the chart that dual-core processors get nearly perfect
scores. Out of a possible 100% speed-up, they achieve an outstanding 94% on the CINT2000 rate
benchmark. Dual-core processors also do very well on CFP2000 rates, although the results are not
as dramatic as CINT2000. On CFP2000 they achieve 60% speed-up, which is very respectable.
This performance scaling appears to be limited by memory performance.

0 %

1 %

2 %

3 %

4 %

5 %

2 .0 2 .2 2 .4

P ro c e sso r G H z

S
pe

ed
 U

p
(D

C
/S

C
)

fp in t
11

Figure 14 shows a comparison of the top-speed processors of each type. This comparison is
probably more useful than a comparison by frequency. It allows people to see which processor
better matches their requirements based on what is available today. Based on the processor speeds
available today, the greatest speed-up one would expect is about 71%. The 2.4 GHz dual-core
system achieved about 68% speed-up over the 2.8 GHz single-core system on CINT2000 rates,
which shows the dual-core system is very good at this type of workload. Comparing the systems
with CFP2000 rates showed a 42% speed-up, which is still good.

Figure 11. SPEC CINT2000 Rate Performance by Processor Frequency

Figure 12. SPEC CFP2000 Rate Performance by Processor Frequency

0
10
20
30
40
50
60
70
80

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Processor GHz

SP
EC

in
t_

ra
te

20
00

Dual Core Single Core

0
10
20
30
40
50
60
70
80

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Processor GHz

SP
E

Cf
p_

ra
te

20
00

Dual Core Single Core
12

Figure 13. Throughput Comparison of Single- and Dual-Core Processors by Frequency

Figure 14. Throughput Comparison of Top-Speed Bin Single- and Dual-Core Processors

6. PCI-Express Performance
The e326m adds a new PCI-Express (PCI-E) slot to the system. This slot may be used for any type
of I/O, but it is most likely to be used for high-performance communication adapters such as
InfiniBand. Because we have no specialized hardware we can use to measure PCI-E performance
directly, we chose, instead, to measure it indirectly through the performance of an adapter in the

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

2 . 0 2 .2 2 .4

P ro c e sso r G H z

S
pe

ed
 U

p
(D

C/
SC

)

fp _ ra te in t_ ra te

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

2 .2 G H z D C /2 .6 G H z S C 2 .4 G H z D C /2 .8 G H z S C

P ro c e sso r G H z

S
pe

ed
 U

p
(D

C
/S

C)

fp _ ra t e in t_ ra te
13

slot. We used Voltaire HCA 400Ex InfiniBand adapters. This adapter performs well, and we have
measurements we can use for comparison using this adapter on a 3.6 GHz IBM eServer xSeries®
336 (x336) server. Tests on the e326m were performed using 2.2 GHz dual-core Opteron
processors.

The two tests we chose were unidirectional send/receive throughput, and bidirectional send/
receive throughput. In both cases we used the same adapters, operating system kernel, drivers,
and MPI stack, on both the e326m and on the x336. The performance of the unidirectional tests
are shown in Figure 15. The chart shows nearly identical performance between the two systems,
indicating an adequacy for this type of load.

The bidirectional performance, however, is not as good. Figure 16 shows that divergence of the
two systems becomes significant at around 8K bytes. Transmission of large messages ultimately
shows as much as 25% lower performance on the e326m than on the x336. The e326m has a much
slower clock speed, but its raw integer performance is lower by only 9%, so it isn’t clear why the
performance should be so much slower on the e326m.

Figure 15. Unidirectional (PingPong) Performance of 4x InfiniBand over PCI-Express

0

100

200

300

400

500

600

700

800

900

1000

1 10 100 1000 10000 100000 1000000 10000000

S iz e (Byte s)

Ba
nd

w
id

th
 (M

B/
s)

e326m x 336
14

Figure 16. Bidirectional (Sendrecv) Performance of 4x InfiniBand over PCI-Express

7. Conclusions
The e326m is a high-performance, rack optimized, Opteron processor-based server that supports
both PCI-X and PCI-E adapters. It also supports both single-core and dual-core processors in a
NUMA architecture. Unloaded local memory latencies range from a little under 50 ns to a little
below 75 ns, depending on the choice of processor, with dual-core processors having better
latencies than single-core processors, and higher-frequency processors having better latencies
than lower-frequency processors. Unloaded remote memory latencies add another 26 ns to the
local latency, which is precisely the time required to transmit a cache line over an 800 MHz
HyperTransport link. Loaded memory latency was tested on a dual-processor system with 2.2
GHz dual-core Opteron processors, running one thread on each processor core. Adding a memory
load to each of the threads added 30 ns to the average local memory latency and 40 ns to the
remote memory latency.

Memory throughput is essentially as we reported in earlier papers, with incremental improvement
due to higher frequencies and maturing technology. Best performance is obtained by populating
all DIMM slots with identical memory. Dual-core processors give slightly better throughput than
single-core processors of the same frequency, but the fastest single-core processors give better
throughput than the fastest dual-core processors.

Floating-point performance is faster with the faster processors in proportion to the faster clock
speeds. The 2.4 GHz dual-core processors are now able to achieve almost 16 GF/s on the Linpack
benchmark.

SPEC CPU2000 performance continues to scale well with CPU frequency. CINT2000 speed and
rate benchmarks both scale well because the benchmark is highly cacheable and measures

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 10 100 1000 10000 100000 1000000 10000000

S iz e (Byte s)

Ba
nd

w
id

th
 (M

B
/s

)

e326m x 336
15

primarily processor performance. CFP2000 speed and rate benchmarks also scale well, but do so
because the memory subsystem scales with the number of processors. The server has sufficient
memory bandwidth to support the load imposed by both benchmarks. Both CINT2000 and
CFP2000 speed benchmarks perform better on single-core processors, because of their higher
clock frequencies. Both rate benchmarks perform better on dual-core processors. Dual-core
processors obtain nearly perfect scaling with the number of cores on the CINT2000 rate
benchmark, achieving 94% of the second core. Dual-core processors achieve 60% of the second
core on the CFP2000 rate benchmark, which is still quite respectable.

PCI-Express performance was good relative to the x336 in most cases, but performance was down
in some cases. Unidirectional performance was almost identical to the x336 for all message sizes,
but bidirectional performance was up to 25% lower on very large messages. Small message sizes,
messages below 8KB, had nearly identical performance.

8. References
[1] Douglas M. Pase and Matthew Eckl, "A Comparison of Single-Core and Dual-Core Opteron
Processor Performance for HPC," ftp://ftp.software.ibm.com/eserver/benchmarks/
wp_Dual_Core_072505.pdf, IBM, July 2005.
[2] Douglas M. Pase and James Stephens, “Performance of Two-Way Opteron and Xeon Proces-
sor-Based Servers for Scientific and Technical Applications,” ftp://ftp.software.ibm.com/eserver/
benchmarks/wp_server_performance_030705.pdf, IBM, March 2005. Also published under 2005
LCI Conference, http://www.linuxclustersinstitute.org/Linux-HPC-Revolution/Archive/PDF05/
14-Pase_D.pdf.
[3] Douglas M. Pase, "Memory Performance of the IBM eServer 326 for HPC Workloads," http:/
/perform.raleigh.ibm.com:8090, IBM, May 2005.
[4] Douglas M. Pase, "Linpack HPL Performance on IBM eServer 326 and xSeries 336 Servers,"
ftp://ftp.software.ibm.com/eserver/benchmarks/wp_Linpack_072905.pdf, IBM, July 2005.
[5] SPEC CPU2000, http://www.spec.org/cpu2000/.
16

© IBM Corporation 2005

IBM Systems and Technology Group

Department MX5A

Research Triangle Park NC 27709

Produced in the USA.

12-05

All rights reserved.

IBM, the IBM logo, the eServer logo, eServer and xSeries are
trademarks or registered trademarks of IBM Corporation in the United
States and/or other countries.

Intel and Xeon are trademarks or registered trademarks of Intel
Corporation.

InfiniBand is a registered trademark of the InfiniBand Trade
Association.

Linux is a registered trademark of Linus Torvalds in the United States,
other countries, or both.

AMD and Opteron are trademarks or registered trademarks of
Advanced Micro Devices, Inc.

Other company, product, and service names may be trademarks or
service marks of others.

IBM reserves the right to change specifications or other product
information without notice. References in this publication to IBM
products or services do not imply that IBM intends to make them
available in all countries in which IBM operates. IBM PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do
not allow disclaimer of express or implied warranties in certain
transactions; therefore, this statement may not apply to you.

This publication may contain links to third party sites that are not
under the control of or maintained by IBM. Access to any such third
party site is at the user's own risk and IBM is not responsible for the
accuracy or reliability of any information, data, opinions, advice or
statements made on these sites. IBM provides these links merely as a
convenience and the inclusion of such links does not imply an
endorsement.
17

	Abstract
	1. Introduction
	2. Memory Latency
	3. Memory Throughput
	4. CPU Performance
	5. SPEC CPU2000 Performance
	6. PCI-Express Performance
	7. Conclusions
	8. References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

