
Performance Analysis
April 2007

Linux Networking Scalability
on High-Performance Scalable
Servers

By Barry Arndt
IBM Systems and Technology Group

®

Linux Networking Scalability on High-Performance Scalable Servers
Page 2

Contents
Introduction ...3
Systems Configurations...3
Test Methodology ...4
Performance and Scalability Results..5

“Out of the Box” Configuration..5
“Out of the Box” Configuration with numactl ..9
Ethernet SMP IRQ Affinitization ...13
Ethernet SMP IRQ Affinitization with numactl ..18
Ethernet Bonding..22

Additional Information..27

Linux Networking Scalability on High-Performance Scalable Servers
Page 3

Introduction

Much has already been written about networking performance, optimization, and tuning on a variety of
hardware, platforms, and operating systems under various workloads. The proliferation of high-
performance scalable servers (such as the IBM® eServer™ xSeries® x460 and the IBM System x™ 3950)
has added a new level of complexity to networking and system performance. For instance, scalable
servers whose capacity can be increased by adding full chassis (or nodes) add networking scalability
across multi-node systems as a significant ingredient in overall system performance. This paper
examines and demonstrates Linux® networking scalability on a multi-node, high-performance system as
it utilizes system board gigabit Ethernet adapters from 1 to 4 nodes. In addition, the paper describes and
demonstrates problematic networking scalability situations and gives tips on how to avoid them.

Systems Configurations

For this paper, the system under test (SUT) is a 4-node IBM eServer xSeries 460 running SUSE Linux
Enterprise Server 10 for AMD64 and EM64T (x86-64). Each of the nodes has the configuration shown in
the following table.

System IBM eServer xSeries 460
CPU 4 x 64-bit Intel® Xeon® Processor 7040 3.0 GHz
Memory 32 GB (8 x 1 GB DIMMs distributed on 4 memory cards)

Ethernet Adapters Broadcom 5704 10/100/1000 dual Ethernet/ on system board/ 64-bit 266
MHz PCI-X 2.0

Network Driver tg3 c3.49
Network Type 1 Gigabit Ethernet
Threading Hyper-Threading Technology™

The drivers for all test scenarios are IBM System p5™ 550 systems, each with two Intel Dual-Port
Ethernet adapters, running Red Hat Enterprise Linux 4 Update 4. The 4-node bonding test also includes a
2-node IBM eServer xSeries 460 running SUSE Linux Enterprise Server 10 for AMD64 and EM64T (x86-
64). The SUT and drivers are networked through a Cisco Catalyst 3750G-24TS switch.

Linux Networking Scalability on High-Performance Scalable Servers
Page 4

Test Methodology

The netperf benchmark, specifically the unidirectional stream (TCP_STREAM) test, was chosen for the
scalability-demonstration workload for a variety of reasons, including its simplicity, measurability, stability
on Linux, widespread acceptance, and ability to accurately measure (among others) bulk data transfer
performance. It is a basic client-server model benchmark and contains two corresponding executables,
netperf and netserver. The simple TCP_STREAM test times the transfer of data from the netperf
system to the netserver system to measure how fast one system can send data and how fast the other
can receive it. Upon execution, netperf establishes a control connection (via TCP) to the remote system.
That connection is used to pass configuration information and results between systems. A separate
connection is used for measurement, during which the control session remains without traffic (other than
that required by some TCP options).

In all of the tests outlined in this paper, network throughput and CPU utilization were measured while the
IBM eServer xSeries 460 performed either network sends (netperf), network receives (netserver), or
both simultaneously (bidirectional). The throughput between client and server was tracked on the client
send side and is reported in this paper as it was recorded by the netperf benchmark. Each full test run for
each environment consisted of 3-minute stream tests for each of 15 send message sizes ranging from 64
bytes to 256K bytes. That range includes message sizes of 1460 bytes and 1480 bytes so that their total
packet sizes closely bound the default maximum transmit unit (MTU) size of 1500, after which Linux
breaks messages into smaller packets to be sent on the network. CPU utilization was measured on the
SUT and is reported in this paper as it was recorded by the sar utility (from the sysstat package) as the
system average for the duration of the netperf test. All CPU and interrupt behavior information was also
derived from the sar data.

Configurations and parameters were modified to affect behavior in the scalability demonstration.
Enabling and disabling them in various combinations caused differing results. The SMP IRQ Affinity
bitmask, /proc/irq/nnn/smp_affinity, can be set to designate which CPUs are permitted to process specific
interrupts. Linux sets them to default values at initialization time. A daemon called irqbalance can be
started to dynamically distribute hardware interrupts across processors. If enabled, it iteratively alters the
smp_affinity bitmasks to perform the balancing. The numactl program can be used to bind specific
processes to CPUs and/or memory on specific nodes. Linux network bonding provides a variety of
methods for aggregating multiple network interfaces into a single logical interface, and may be an
attractive network administration feature for use on multi-node servers.

Linux Networking Scalability on High-Performance Scalable Servers
Page 5

Performance and Scalability Results

 “Out of the Box” Configuration

The “out of the box” tests were run with no software configuration changes. In this environment, the
irqbalance daemon is started by default during Linux initialization. SMP IRQ affinity was not changed,
and numactl and bonding were not used.

The first of the netserver scalability tests utilized a single instance of netserver on each of the two
system board Ethernet adapters on the first node of the SUT. Each instance of netserver listened on a
dedicated port and IP address, and each Ethernet adapter’s IP address was on a separate subnet to
ensure dedicated traffic. The remote drivers ran corresponding instances of netperf to provide stream
traffic in a one-to-one mapping of remote netperf instances to SUT netserver instances. The full test
run measured network stream throughput and system CPU utilization for 15 different send message sizes
for 3 minutes per message size.

The second netserver scalability test utilized all four system board Ethernet adapters on the first two
nodes, and the third test utilized all eight system board Ethernet adapters on all four nodes. The number
of SUT netserver instances and remote netperf instances were increased accordingly for each test.

Figure 1 shows the network stream throughput and CPU utilization for the netserver scalability test runs
while utilizing the system board Ethernet adapters on 1, 2 and 4 nodes of the SUT. The throughput shown
is the sum throughput of all utilized Ethernet adapters for each test run, and CPU utilization shown is the
system average for the duration of the each test run.

Figure 1. netserver on SUT in “out of the box” configuration

Linux Networking Scalability on High-Performance Scalable Servers
Page 6

Next, netperf scalability tests were run just like the netserver scalability tests, except that netperf was
run on the SUT while netserver was run on the remote systems.

Figure 2 shows the network stream throughput and CPU utilization for the netperf scalability test runs
while utilizing the system board Ethernet adapters on 1, 2 and 4 nodes of the SUT. The throughput shown
is the sum throughput of all utilized Ethernet adapters for each test run, and CPU utilization shown is the
system average for the duration of the each test run.

Figure 2. netperf on SUT in “out of the box” configuration

Linux Networking Scalability on High-Performance Scalable Servers
Page 7

Finally, bidirectional scalability tests were run similar to the previous netserver and netperf tests.
However, in this case, only the first system board Ethernet adapter of any node was utilized, and by one
instance of netperf, along with one instance of netserver. Restated, there were two benchmark
instances, one netperf and one netserver, per Ethernet adapter, and only one Ethernet adapter per
node was utilized. Each corresponding remote instance of netperf or netserver ran on its own
Ethernet adapter to ensure fullest possible traffic to and from the SUT.

Figure 3 shows the network stream throughput and CPU utilization for the bidirectional scalability test
runs while utilizing the system board Ethernet adapters on 1, 2 and 4 nodes of the SUT. The throughput
shown is the sum throughput of all utilized Ethernet adapters for each test run, and CPU utilization shown
is the system average for the duration of the each test run.

Figure 3. netperf and netserver (bidirectional) on SUT in “out of the box” configuration

Throughput scaling from 2 adapters/1 node to 4 adapters/2 nodes was computed for each send message
size. For the netserver scalability tests, those values range from 1.647 for smaller message sizes to 1.944
for larger message sizes. The average for all those values is 1.918. Similarly, CPU utilization scaling from
2 adapters/1 node to 4 adapters/2 nodes was computed for each send message size. For the netserver
scalability tests, those values range from 2.770 to 1.623. The average for all of those values in this
environment is 2.417.

Throughput and CPU utilization scaling from 4 adapters/2 nodes to 8 adapters/4 nodes was also
computed for each message size. These throughput scaling values range from 1.666 to 1.900 with an
average of 1.847. The CPU utilization scaling values range from 2.599 to 1.884 with an average of 2.386.

The average throughput scaling from 2 adapters/1 node to 8 adapters/4 nodes over all send message
sizes is 3.542. The average CPU utilization scaling from 2 adapters/1 node to 8 adapters/4 nodes over all
send message sizes is 5.755.

Linux Networking Scalability on High-Performance Scalable Servers
Page 8

The scaling computations were made and averaged for the netserver, netperf, and bidirectional tests and
are shown in the following table.

SUT
Scalability
Test

Average
Throughput
Scaling from
1 to 2 Nodes

Average
Throughput
Scaling from
2 to 4 Nodes

Average
Throughput
Scaling from
1 to 4 Nodes

Avg. CPU
Utilization
Scaling
from 1 to 2
Nodes

Avg. CPU
Utilization
Scaling
from 2 to 4
Nodes

Avg. CPU
Utilization
Scaling
from 1 to 4
Nodes

netserver 1.918 1.847 3.542 2.417 2.386 5.755
netperf 1.940 1.732 3.371 3.109 2.537 7.973
bidirectional 1.888 1.892 3.569 2.368 2.274 5.413

Since SMP IRQ Affinitization was not used in this suite of tests, all Ethernet interrupts were processed on
CPUs designated by default /proc/irq/nnn/smp_affinity values that were altered by irqbalance at
initialization. Sar data, which display such things as CPU utilization and interrupts per system CPU, show
that all network interrupts were processed on CPUs on the first node regardless of whether or not the
Ethernet adapter resided on any other node. This introduced unnecessary node hop latency. Shown
below is a subset of sar data from the netserver scalability tests with netserver running on all Ethernet
adapters on all four nodes. This collection of data is from the 8K message size test and is representative
of all tests in this environment. The values are all averages over the course of the 3-minute run.

CPU %user %nice %system %iowait %steal %idle
 0 4.50 0.00 70.18 0.00 0.00 25.32
 1 1.89 0.00 88.54 0.00 0.00 9.57
 2 1.68 0.00 70.54 0.00 0.00 27.77
 3 0.66 0.00 4.81 0.00 0.00 94.53
 4 1.90 0.00 80.43 0.00 0.00 17.67
 5 2.44 0.00 82.38 0.00 0.00 15.18
 6 1.79 0.00 70.55 0.00 0.00 27.66
 7 0.55 0.00 5.40 0.00 0.00 94.04
 8 3.91 0.00 67.36 0.00 0.00 28.73
 9 1.66 0.00 82.23 0.00 0.00 16.11
10 0.21 0.00 4.37 0.00 0.00 95.43
11 0.35 0.00 5.53 0.00 0.00 94.12
12 0.13 0.00 1.97 0.00 0.00 97.90
13 0.10 0.00 1.88 0.00 0.00 98.03
14 0.09 0.00 2.14 0.09 0.00 97.68
15 0.07 0.00 1.86 0.89 0.00 97.18
 .
 . (unlisted values are 0 or near 0)
 .

 eth0 eth1 eth2 eth3 eth4 eth5 eth6 eth7
CPU i177/s i185/s i193/s i201/s i209/s i217/s i225/s i233/s

 0 17542.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 1 0.00 0.00 0.00 0.00 0.00 19515.86 0.00 0.00
 2 0.00 0.00 0.00 18612.58 0.00 0.00 0.00 0.00
 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 4 0.00 0.00 0.00 0.00 18816.80 0.00 0.00 0.00
 5 0.00 0.00 18545.74 0.00 0.00 0.00 0.00 0.00
 6 0.00 0.00 0.00 0.00 0.00 0.00 18609.16 0.00
 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 8 0.00 17506.10 0.00 0.00 0.00 0.00 0.00 0.00
 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18606.14
 .
 . (unlisted values are 0 or near 0)
 .

Even though throughput scaling was not particularly poor in this environment, CPU scaling drops off
considerably as the number of nodes with utilized Ethernet adapters increases. The increasing CPU
utilization is attributed to unnecessary node hops for interrupts being taken on Ethernet adapters on non-
primary nodes but being processed on CPUs on the primary node. Data collected in other environments
will show that total throughput in this environment suffered as well.

Linux Networking Scalability on High-Performance Scalable Servers
Page 9

“Out of the Box” Configuration with numactl

The scalability tests and test methodology used in this environment are the same as in the “out of the
box” configuration. The difference in environments is that this one used numactl to bind the netperf
and/or netserver applications on the SUT to CPUs and memory on the appropriate nodes. Those
bindings ensured that the applications would run on CPUs on the same nodes as the Ethernet adapters
they were using. numactl is invoked as follows:

numactl --cpubind=node --preferred=node netserver

where cpubind=node specifies the node whose CPU should execute the process, and preferred=node
specifies the node where memory for the process should be allocated. If the memory cannot be allocated
on that node, it will be allocated on another node’s memory.

The netserver, netperf, and bidirectional scalability tests were run and data were collected in the same
way as in the “out of the box” configuration.

Figure 4 shows the network stream throughput and CPU utilization for the netserver scalability test runs
while utilizing the system board Ethernet adapters on 1, 2 and 4 nodes of the SUT. The throughput shown
is the sum throughput of all utilized Ethernet adapters for each test run, and CPU utilization shown is the
system average for the duration of the each test run.

Figure 4. netserver on SUT in “out of the box” configuration with numactl

Linux Networking Scalability on High-Performance Scalable Servers
Page 10

The netperf scalability tests were run just as they were in the previous environment. Figure 5 shows the
network stream throughput and CPU utilization for the netperf scalability test runs while utilizing the
system board Ethernet adapters on 1, 2 and 4 nodes of the SUT. The throughput shown is the sum
throughput of all utilized Ethernet adapters for each test run, and CPU utilization shown is the system
average for the duration of the each test run.

Figure 5. netperf on SUT in “out of the box” configuration with numactl

Linux Networking Scalability on High-Performance Scalable Servers
Page 11

The bidirectional scalability tests were run just as they were in the previous environment. Figure 6 shows
the network stream throughput and CPU utilization for the bidirectional scalability test runs while utilizing
the system board Ethernet adapters on 1, 2 and 4 nodes of the SUT. The throughput shown is the sum
throughput of all utilized Ethernet adapters for each test run, and CPU utilization shown is the system
average for the duration of the each test run.

Figure 6. netperf and netserver (bidirectional) on SUT in “out of the box” configuration with numactl

Similar to the “out of the box” tests, the scaling computations were made and averaged for the netserver,
netperf, and bidirectional tests when scaling from using Ethernet adapters on 1 to 2 nodes, 2 to 4 nodes,
and 1 to 4 nodes. The results for this environment are shown in the following table.

SUT
Scalability
Test

Average
Throughput
Scaling from
1 to 2 Nodes

Average
Throughput
Scaling from
2 to 4 Nodes

Average
Throughput
Scaling from
1 to 4 Nodes

Avg. CPU
Utilization
Scaling
from 1 to 2
Nodes

Avg. CPU
Utilization
Scaling
from 2 to 4
Nodes

Avg. CPU
Utilization
Scaling
from 1 to 4
Nodes

netserver 1.900 1.763 3.362 3.860 2.639 10.332

netperf 1.923 1.807 3.466 3.555 2.056 7.268

bidirectional 1.859 1.807 3.365 3.371 2.288 7.831

As in the previous tests, since SMP IRQ Affinitization was not used in this suite of tests, all Ethernet
interrupts were processed on CPUs designated by default /proc/irq/nnn/smp_affinity values that were
altered by irqbalance. Sar data show that all interrupts were processed on CPUs on the first node
regardless of whether or not the Ethernet adapter resided on any other node, even if the application was
bound by numactl to CPUs and memory on the node of its utilized Ethernet adapter. In fact, binding
netperf and/or netserver to CPUs on the node local to its utilized ethernet adapter while that
adapter’s interrupts were processed on a different node caused a significant increase in overall CPU
utilization.

Linux Networking Scalability on High-Performance Scalable Servers
Page 12

Shown below is a subset of sar data from the netserver scalability tests with netserver running on all
Ethernet adapters on all four nodes. This collection of data is from the 8K message size test and is
representative of all tests in this environment. The values are all averages over the course of the 3-minute
run.

CPU %user %nice %system %iowait %steal %idle
 0 3.48 0.00 79.71 0.00 0.00 16.81
 1 0.03 0.00 73.55 0.00 0.00 26.42
 2 0.02 0.00 67.80 0.00 0.00 32.18
 3 0.09 0.00 0.08 0.00 0.00 99.83
 4 0.00 0.00 73.59 0.00 0.00 26.41
 5 0.03 0.00 73.14 0.00 0.00 26.83
 6 0.01 0.00 62.52 0.00 0.00 37.47
 7 0.04 0.00 0.07 0.00 0.00 99.89
 8 3.80 0.00 71.70 0.00 0.00 24.51
 9 0.02 0.00 68.80 0.00 0.00 31.19
 .
17 0.69 0.00 92.92 0.00 0.00 6.39
18 0.01 0.00 0.00 0.00 0.00 99.99
19 0.75 0.00 92.90 0.00 0.00 6.36
 .
32 0.77 0.00 93.60 0.00 0.00 5.63
 .
43 0.80 0.00 93.57 0.00 0.00 5.63
 .
49 0.76 0.00 92.91 0.00 0.00 6.34
 .
63 0.35 0.00 93.31 0.00 0.00 6.35

 eth0 eth1 eth2 eth3 eth4 eth5 eth6 eth7
CPU i177/s i185/s i193/s i201/s i209/s i217/s i225/s i233/s

0 16990.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 11568.49 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 13777.11 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 10657.14 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 10653.40 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 13474.30 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 16630.13 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12092.25
.
. (unlisted values are 0 or near 0)
.

Processing network interrupts on nodes remote to where the Ethernet adapter resides is certainly not
optimal. In that environment, binding network applications with numactl to nodes where the Ethernet
adapters reside makes matters worse. Throughput, CPU utilization, and overall scaling suffer as is
indicated by the data collected in this and the previous environment.

Linux Networking Scalability on High-Performance Scalable Servers
Page 13

Ethernet SMP IRQ Affinitization

The scalability tests and test methodology used in this environment are the same as in the “out of the
box” configuration. The difference in environments is that this one had the interrupt processing for each
Ethernet adapter bound to a CPU on the node in which the adapter resides. Also, irqbalance was not
used in this configuration.

Binding interrupt processing to a CPU or group of CPUs (affinitizing) is done by manipulating the
smp_affinity bitmask for a given interrupt number. This bitmask represents which CPUs should process a
given interrupt. When affinitizing interrupts, the irqbalance daemon should be terminated first or it will
iteratively alter the smp_affinity value. If that happens, affinitization will be nullified, and interrupt
processing for an Ethernet adapter may not take place on the intended CPU. In fact, interrupt processing
for an Ethernet adapter on one node could switch to a CPU on another node. To terminate irqbalance,
issue:

killproc –TERM /usr/sbin/irqbalance

and remove it from boot initialization scripts.

To bind an interrupt to a CPU or group of CPUs, first determine which CPUs should process the interrupt
and lay out the bitmask accordingly. The rightmost bit of the mask is set for CPU0, the next for CPU1, and
so on. Multiple bits can be set to indicate a group of CPUs. Then set the bitmask value appropriately by
invoking the following command:

echo bitmask > /proc/irq/IRQ_number/smp_affinity

For example, to bind processing of IRQ number 177 to CPUs 4 through 7 (bitmask 11110000), issue:

echo f0 > /proc/irq/177/smp_affinity

Note that in this study, when setting smp_affinity to a bitmask of more than one CPU, the observed
behavior was that the networking interrupts were always processed on the first CPU indicated in the
bitmask. If two interrupts’ bitmasks had the same first bit set, then both interrupts were processed on the
same CPU indicated by the first set bit. For example, when two Ethernet adapter interrupts both had
smp_affinity bitmask of 0000ffff, both were processed on CPU0. Thus, at this point, it may not be wise to
overlap smp_affinity bitmasks among Ethernet adapter interrupts unless the intent is to have them
processed on the same CPU.

The smp_affinity bitmask values for this test were set as follows:

first ethernet adapter on first node: 00000000,000000f0
second ethernet adapter on first node: 00000000,0000f000
first ethernet adapter on second node: 00000000,00f00000
second ethernet adapter on second node: 00000000,f0000000
first ethernet adapter on third node: 000000f0,00000000
second ethernet adapter on third node: 0000f000,00000000
first ethernet adapter on fourth node: 00f00000,00000000
second ethernet adapter on fourth node: f0000000,00000000

Those settings ensured that each Ethernet adapter had its interrupts processed on a CPU on the node on
which the adapter resided. CPU 0 was intentionally left free of networking interrupts since it is typically
heavily used in many workloads.

Linux Networking Scalability on High-Performance Scalable Servers
Page 14

The netserver, netperf, and bidirectional scalability tests were run, and data were collected in the same
way as in the “out of the box” configuration. Figure 7 shows the network stream throughput and CPU
utilization for the netserver scalability test runs while utilizing the system board Ethernet adapters on 1, 2
and 4 nodes of the SUT. The throughput shown is the sum throughput of all utilized Ethernet adapters for
each test run, and CPU utilization shown is the system average for the duration of the each test run.

Figure 7. netserver on SUT with Ethernet SMP IRQ affinity, no irqbalance

Linux Networking Scalability on High-Performance Scalable Servers
Page 15

The netperf scalability tests were run just as they were in the previous environment. Figure 8 shows the
network stream throughput and CPU utilization for the netperf scalability test runs while utilizing the
system board Ethernet adapters on 1, 2 and 4 nodes of the SUT. The throughput shown is the sum
throughput of all utilized Ethernet adapters for each test run, and CPU utilization shown is the system
average for the duration of the each test run.

Figure 8. netperf on SUT with Ethernet SMP IRQ affinity, no irqbalance

Linux Networking Scalability on High-Performance Scalable Servers
Page 16

The bidirectional scalability tests were run just as they were in the previous environment. Figure 9 shows
the network stream throughput and CPU utilization for the bidirectional netserver scalability test runs
while utilizing the system board Ethernet adapters on 1, 2 and 4 nodes of the SUT. The throughput shown
is the sum throughput of all utilized Ethernet adapters for each test run, and CPU utilization shown is the
system average for the duration of the each test run.

Figure 9. netperf and netserver (bidirectional) on SUT with Ethernet SMP IRQ affinity, no irqbalance

Similar to the “out of the box” tests, the scaling computations were made and averaged for the netserver,
netperf, and bidirectional tests from 1 to 2 nodes, 2 to 4 nodes, and 1 to 8 nodes. The results for this
environment are shown in the following table.

SUT
Scalability
Test

Average
Throughput
Scaling from
1 to 2 Nodes

Average
Throughput
Scaling from
2 to 4 Nodes

Average
Throughput
Scaling from
1 to 4 Nodes

Avg. CPU
Utilization
Scaling
from 1 to 2
Nodes

Avg. CPU
Utilization
Scaling
from 2 to 4
Nodes

Avg. CPU
Utilization
Scaling
from 1 to 4
Nodes

netserver 1.990 1.941 3.861 2.011 2.035 4.095

netperf 2.002 1.770 3.542 2.042 1.961 4.005

bidirectional 1.971 1.968 3.874 2.241 1.990 4.456

Linux Networking Scalability on High-Performance Scalable Servers
Page 17

Shown below is a subset of sar data from the netserver scalability tests with netserver running on all
Ethernet adapters on all four nodes. This collection of data is from the 8K message size test and is
representative of all tests in this environment. The values are all averages over the course of the 3-minute
run. The data show that all interrupts were processed nicely on the CPUs to which they were bound via
SMP IRQ affinitization.

CPU %user %nice %system %iowait %steal %idle
 0 0.05 0.00 0.05 0.00 0.00 99.90
 .
 4 2.22 0.00 49.21 0.00 0.00 48.57
 .
12 2.21 0.00 49.27 0.02 0.00 48.51
 .
20 2.25 0.00 51.59 0.00 0.00 46.17
 .
28 2.23 0.00 51.47 0.00 0.00 46.29
 .
36 2.86 0.00 56.06 0.00 0.00 41.08
 .
44 2.29 0.00 51.87 0.00 0.00 45.84
 .
52 2.69 0.00 55.28 0.00 0.00 42.02
 .
60 2.66 0.00 55.35 0.00 0.00 41.98
 .
 . (unlisted values are 0 or near 0)
 .

 eth0 eth1 eth2 eth3 eth4 eth5 eth6 eth7
CPU i177/s i185/s i193/s i201/s i209/s i217/s i225/s i233/s

 4 15969.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 .
12 0.00 15959.40 0.00 0.00 0.00 0.00 0.00 0.00
 .
20 0.00 0.00 15721.47 0.00 0.00 0.00 0.00 0.00
 .
28 0.00 0.00 0.00 15693.93 0.00 0.00 0.00 0.00
 .
36 0.00 0.00 0.00 0.00 16000.84 0.00 0.00 0.00
 .
44 0.00 0.00 0.00 0.00 0.00 15981.13 0.00 0.00
 .
52 0.00 0.00 0.00 0.00 0.00 0.00 15855.95 0.00
 .
60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15700.12
 .
 . (unlisted values are 0 or near 0)
 .

Affinitizing Ethernet adapter interrupt processing to CPUs on their nodes (coupled with terminating
irqbalance) greatly reduced CPU utilization increasing throughput and improving both throughput and
CPU utilization scalability.

Linux Networking Scalability on High-Performance Scalable Servers
Page 18

Ethernet SMP IRQ Affinitization with numactl

The scalability tests and test methodology used in this environment are the same as that used in the “out
of the box” configuration. This test environment combined the features of the last two tests described in
this paper. SMP IRQ affinity was enabled with the same bitmasks as in the last test, irqbalance was
disabled, and numactl was used to bind netperf and/or netserver on the SUT to CPUs and memory
on the appropriate nodes. Those numactl bindings ensured that the instances of the applications would
run on CPUs on the same nodes as the Ethernet adapters they were using as well as use the memory on
those nodes.

The netserver, netperf, and bidirectional scalability tests were run, and data were collected in the same
way as in the “out of the box” configuration. Figure 10 shows the network stream throughput and CPU
utilization for the netserver scalability test runs while utilizing the system board Ethernet adapters on 1, 2
and 4 nodes of the SUT. The throughput shown is the sum throughput of all utilized Ethernet adapters for
each test run, and CPU utilization shown is the system average for the duration of the each test run.

Figure 10. netserver on SUT with Ethernet SMP IRQ affinity and numactl, no irqbalance

Linux Networking Scalability on High-Performance Scalable Servers
Page 19

The netperf scalability tests were run just as they were in the previous environment. Figure 11 shows the
network stream throughput and CPU utilization for the netperf scalability test runs while utilizing the
system board Ethernet adapters on 1, 2 and 4 nodes of the SUT. The throughput shown is the sum
throughput of all utilized Ethernet adapters for each test run, and CPU utilization shown is the system
average for the duration of the each test run.

Figure 11. netperf on SUT with Ethernet SMP IRQ affinity and numactl, no irqbalance

Linux Networking Scalability on High-Performance Scalable Servers
Page 20

The bidirectional scalability tests were run just as they were in the previous environment. Figure 12 shows
the network stream throughput and CPU utilization for the bidirectional scalability test runs while utilizing
the system board Ethernet adapters on 1, 2 and 4 nodes of the SUT. The throughput shown is the sum
throughput of all utilized Ethernet adapters for each test run, and CPU utilization shown is the system
average for the duration of the each test run.

Figure 12. netperf and netserver (bidirectional) on SUT with Ethernet SMP IRQ affinity and numactl, no
irqbalance

Similar to the “out of the box” tests, the scaling computations were made and averaged for the netserver,
netperf, and bidirectional tests when scaling from using Ethernet adapters on 1 to 2 nodes, 2 to 4 nodes,
and 1 to 4 nodes. The results for this environment are shown in the following table.

SUT
Scalability
Test

Average
Throughput
Scaling from
1 to 2 Nodes

Average
Throughput
Scaling from
2 to 4 Nodes

Average
Throughput
Scaling from
1 to 4 Nodes

Avg. CPU
Utilization
Scaling
from 1 to 2
Nodes

Avg. CPU
Utilization
Scaling
from 2 to 4
Nodes

Avg. CPU
Utilization
Scaling
from 1 to 4
Nodes

netserver 1.999 1.945 3.888 2.076 2.081 4.324
netperf 2.002 1.762 3.527 2.038 2.064 4.206
bidirectional 1.993 1.935 3.858 2.016 1.960 3.953

Linux Networking Scalability on High-Performance Scalable Servers
Page 21

Shown below is subset of sar data from the netserver scalability tests with netserver running on all
Ethernet adapters on all four nodes. This collection of data is from the 8K message size test and is
representative of all tests in this environment. The values are all averages over the course of the 3-minute
run. The data show that all interrupts were processed on the CPUs to which they were bound via
affinitization.

CPU %user %nice %system %iowait %steal %idle

 4 2.25 0.00 49.29 0.03 0.00 48.43
 .
12 2.61 0.00 51.82 0.00 0.00 45.58
 .
20 2.25 0.00 51.84 0.00 0.00 45.91
 .
28 2.85 0.00 57.43 0.00 0.00 39.72
 .
36 2.06 0.00 50.21 0.00 0.00 47.72
 .
44 2.04 0.00 53.34 0.00 0.00 44.62
 .
52 2.03 0.00 52.34 0.00 0.00 45.62
 .
60 2.28 0.00 54.28 0.00 0.00 43.44
 .
 . (unlisted values are 0 or near 0)
 .

 eth0 eth1 eth2 eth3 eth4 eth5 eth6 eth7
CPU i177/s i185/s i193/s i201/s i209/s i217/s i225/s i233/s

 4 15962.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 .
12 0.00 15660.56 0.00 0.00 0.00 0.00 0.00 0.00
 .
20 0.00 0.00 15690.78 0.00 0.00 0.00 0.00 0.00
 .
28 0.00 0.00 0.00 15696.00 0.00 0.00 0.00 0.00
 .
36 0.00 0.00 0.00 0.00 15726.10 0.00 0.00 0.00
 .
44 0.00 0.00 0.00 0.00 0.00 15574.72 0.00 0.00
 .
52 0.00 0.00 0.00 0.00 0.00 0.00 15682.12 0.00
 .
60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15700.46
 .
 . (unlisted values are 0 or near 0)
 .

As was shown in the previous tests, affinitizing Ethernet adapter interrupt processing to CPUs on their
nodes (coupled with terminating irqbalance) greatly reduced CPU utilization while increasing
throughput and scalability. Further, using numactl to bind the networking application to a CPU and
memory on the same node as the Ethernet adapter it is using provides a slight benefit in throughput, CPU
utilization, and scalability.

Linux Networking Scalability on High-Performance Scalable Servers
Page 22

Ethernet Bonding

Having one IP address for some or all of the Ethernet adapters in a large multi-node system can be
beneficial for system administrators and network administration. Bonding is a feature included with Linux
that, as stated earlier, provides a variety of methods for aggregating multiple network interfaces into a
single logical interface. The bonding driver and supporting utility ifenslave are included with most Linux
distributions. The driver is highly configurable and has six bonding policies to balance traffic across
bonded interfaces. These policies include balance-rr (round-robin), adaptive-backup, balance-xor,
broadcast, 802.3ad, balance-tlb (transmit load balancing), and balance-alb (adaptive load balancing).
The study presented here concentrated on the balance-alb policy, sometimes called “mode 6,” because it
is easy to set up, requires no additional hardware or switch configuration, and balances the load of both
sends and receives across the bonded interfaces.

To set up bonding on the SUT, the following steps were performed:

1. Load the bonding module with adaptive load balancing (mode 6) and updelay (milliseconds to wait after
link recovery before enabling a slave):

 modprobe bonding mode=6 updelay=200

2. Configure the bond interface and bring it up:

 ifconfig bond0 ip_address netmask netmask broadcast bcast

3. Attach all interfaces for bonding to the bond interface:

 ifenslave bond0 eth0 eth1 eth2 eth3

To demonstrate bonding performance and scalability, the netserver scalability tests were run with
irqbalance disabled and Ethernet SMP IRQ affinity set appropriately as in the last test. The Ethernet
adapters being utilized were bonded into one interface with one IP address, and each remote instance of
netperf on the drivers sent messages to the IP address of the bonded interface.

Linux Networking Scalability on High-Performance Scalable Servers
Page 23

The netserver scalability tests were run, and data were collected in the same way as in the “out of the
box” configuration except that only one Ethernet adapter per node was utilized. Figure 13 shows the
network stream throughput and CPU utilization for the netserver scalability test runs while utilizing the
bonded first system board Ethernet adapters on 1, 2 and 4 nodes of the SUT. The throughput shown is
the sum throughput of all utilized Ethernet adapters for each test run, and CPU utilization shown is the
system average for the duration of the each test run.

Figure 13. netserver on SUT with Ethernet SMP IRQ affinity, no irqbalance, bonded interfaces

Similar to the “out of the box” tests, the scaling computations were made and averaged for the netserver,
netperf, and bidirectional tests when scaling from using the first Ethernet adapters on 1 to 2 nodes, 2 to 4
nodes, and 1 to 4 nodes. The results for this environment are shown in the following table.

SUT
Scalability
Test

Average
Throughput
Scaling from 1
to 2 Nodes

Average
Throughput
Scaling from 2
to 4 Nodes

Average
Throughput
Scaling from 1
to 4 Nodes

Avg. CPU
Utilization
Scaling
from 1 to 2
Nodes

Avg. CPU
Utilization
Scaling
from 2 to 4
Nodes

Avg. CPU
Utilization
Scaling
from 1 to 4
Nodes

netserver 1.879 1.926 3.624 2.771 2.335 6.486

Linux Networking Scalability on High-Performance Scalable Servers
Page 24

Shown below is a subset of sar data from the netserver scalability tests with netserver running on the
bonded interface, which is the aggregate of the first system board Ethernet adapter on each of the four
nodes. This collection of data is from the 8K message size test and is representative of all tests in this
environment. The values are all averages over the course of the 3-minute run. The data show that all
interrupts were processed nicely on the CPUs to which they were bound.

CPU %user %nice %system %iowait %steal %idle

 4 2.02 0.00 72.32 0.00 0.00 25.67
 .
20 2.37 0.00 77.83 0.00 0.00 19.80
 .
36 1.72 0.00 74.71 0.00 0.00 23.57
 .
52 1.62 0.00 78.48 0.00 0.00 19.89
 .
 . (unlisted values are 0 or near 0)
 .

 eth0 eth1 eth2 eth3 eth4 eth5 eth6 eth7
CPU i177/s i185/s i193/s i201/s i209/s i217/s i225/s i233/s

 4 16353.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 .
20 0.00 0.00 15693.97 0.00 0.00 0.00 0.00 0.00
 .
36 0.00 0.00 0.00 0.00 15386.92 0.00 0.00 0.00
 .
52 0.00 0.00 0.00 0.00 0.00 0.00 15570.74 0.00
 .
 . (unlisted values are 0 or near 0)
 .

Linux Networking Scalability on High-Performance Scalable Servers
Page 25

The following graphs show a comparison of the netserver scalability tests when utilizing 2 adapters (1 on
each of the first 2 nodes) and 4 adapters (1 on each of all 4 nodes) with and without bonding. The
throughput shown is the sum throughput of all utilized Ethernet adapters for each test run, and CPU
utilization shown is the system average for the duration of the each test run.

Figure 14. netserver on SUT with Ethernet SMP IRQ affinity, no irqbalance, with and without bonding

While there is some overhead associated with Ethernet bonding, the tests described above show that
networking over bonded Ethernet interfaces scales well and performs well relative to networking over
Ethernet interfaces that are not bonded. The administrative benefits and potential for networking
application simplification enabled by bonding may outweigh its performance costs.

Linux Networking Scalability on High-Performance Scalable Servers
Page 26

Conclusions

When using multiple network adapters across nodes of a high-performance scalable server, the default
Linux “out of the box” configuration may not be the best for optimal performance and scalability. In the
environment described in this paper, the default Ethernet adapter interrupt processing took place on
CPUs on the first node regardless of the node where the adapter actually resided. This behavior
degraded networking throughput, CPU utilization, and overall networking performance and scalability.
The improper configuration unnecessarily increases CPU utilization, which negatively impacts overall
system performance.

For best networking performance and scalability, ensure that Ethernet adapter interrupts are processed
on CPUs on the adapters’ local nodes. Binding interrupt processing to appropriate CPUs (affinitizing) can
be accomplished by first terminating irqbalance, removing it from initialization scripts, properly
enabling SMP IRQ affinitization, and placing affinitization configuration in the boot initialization scripts.
Affinitizing without first terminating irqbalance nullifies affinitizing. When SMP IRQ affinity has been
successfully configured, then, if possible, bind the networking applications to the processors that are on
the local nodes of the Ethernet adapters being used.

Ethernet bonding is a useful feature in Linux that provides a variety of methods for aggregating multiple
network interfaces into a single logical interface. The relatively low overhead cost may far outweigh the
administrative benefits for network organization.

The test results presented in this paper show overall Linux networking scalability to be quite good when
Ethernet adapters are used across nodes on a properly configured IBM eServer xSeries x460 system.
Average throughput scaling over multiple send message sizes is up to 1.999 when moving from utilizing 2
Ethernet adapters on 1 node to 4 adapters on 2 nodes, and is up to 1.945 when moving from utilizing 4
Ethernet adapters on 2 nodes to 8 adapters on 4 nodes. The corresponding average CPU utilization
scaling is 2.076 when moving from utilizing 2 Ethernet adapters on 1 node to 4 adapters on 2 nodes, and
is 2.081 when moving from utilizing 4 Ethernet adapters on 2 nodes to 8 adapters on 4 nodes.

Linux Networking Scalability on High-Performance Scalable Servers
Page 27

Additional Information

IBM System x
x86 servers for Windows and Linux
Product details, data sheets, papers, and more.
http://www-03.ibm.com/systems/x/index.html

Tuning IBM System x Servers for Performance
IBM Redbooks®
http://www.redbooks.ibm.com/abstracts/sg245287.html

netperf Homepage
http://www.netperf.org/

SYSSTAT Utilities Homepage
http://perso.orange.fr/sebastien.godard/

IRQBALANCE Homepage
handholding your interrupts for power and performance
http://www.irqbalance.org/

Bonding - LinuxNet
http://linux-net.osdl.org/index.php/Bonding

Linux Networking Scalability on High-Performance Scalable Servers
Page 28

 © IBM Corporation 2007

IBM Systems and Technology Group
3039 Cornwallis Road
Research Triangle Park, NC 27709

Produced in the USA
04-07
All rights reserved

Warranty Information: For a copy of applicable product warranties, write
to: Warranty Information, P.O. Box 12195, RTP, NC 27709, Attn: Dept.
JDJA/B203. IBM makes no representation or warranty regarding third-
party products or services including those designated as ServerProven
or ClusterProven.

IBM, the IBM logo, eServer, xSeries, System x, System p, IBM
Redbooks and BladeCenter are trademarks of the International
Business Machines Corporation in the United States and/or other
countries. For a complete list of IBM Trademarks, see
www.ibm.com/legal/copytrade.shtml.
Intel, Xeon and Hyper-Threading Technology are trademarks or
registered trademarks of Intel Corporation.
Linux is a registered trademark of Linux Torvalds in the United States,
other countries, or both.
Microsoft and Windows are registered trademarks of Microsoft
Corporation.

All other products may be trademarks or registered trademarks of their
respective companies.

Information about non-IBM products is obtained from the manufacturers
of those products or their published announcements. IBM has not
tested those products and cannot confirm the performance,
compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed
to the suppliers of those products.

Performance is based on measurements using industry standard or
IBM benchmarks in a controlled environment. The actual throughput
that any user will experience will vary depending upon considerations
such as the amount of multiprogramming in the user's job stream, the
I/O configuration, the storage configuration, and the workload
processed. Therefore, no assurance can be given that an individual
user will achieve performance levels equivalent to those stated here.

IBM reserves the right to change specifications or other product
information without notice. References in this publication to IBM
products or services do not imply that IBM intends to make them
available in all countries in which IBM operates. IBM PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions; therefore, this
statement may not apply to you.

