
White Paper
IBM Software Information Management

Scaling strategies for
mission-critical discovery
and navigation applications

2 Scaling strategies for mission-critical discovery and navigation applications

In the majority of enterprises, no one application contains
all of the data business users need to access on a daily
basis. For example, email is the main medium for business
communication today, but it requires storage that often rivals
or exceeds the amount of disk space used for user files and
directories. CRM systems are the backbone of the sales,
marketing and customer support teams and contain a wealth
of business-critical information. Financial and operational
data is located in ERP and BI applications, databases and
other data repositories.

All of this data is growing 60-80 percent annually, according
to various industry analyst estimates—and shows no signs of
diminishing. New content is created every minute, yet old
content is rarely purged, resulting in terabytes of data for large,
information-intensive environments. Providing unified access
to this massive amount of content for users to easily discover
and navigate information is an absolute requirement, but
finding a solution that can not only securely crawl and index
all data repositories, but also quickly scale to handle the sheer
amount of data is a necessity as well. This whitepaper discusses
scaling strategies for building flexible, high performance and
high availability solutions for mission-critical discovery and
navigation applications.

Contents

 3 What is scalable discovery and navigation?

 4 What are the challenges for scalable discovery
and navigation solutions?

 5 Distributed indexes: A foundation for scalable discovery
and navigation

 7 Index deployment scenarios for scalable discovery
and navigation

 11 Conclusion

 11 Selection and deployment checklist

Software 3

Using an index largely eliminates the need to re-retrieve
remote information at query time, and therefore increases
the performance of your application. However, because
indexing requires significant amounts of information
access, retrieval and data processing, the process of index
creation can be very slow. The implemention of an index
needs to consider issues such as size, index location, lookup
performance and updating.

•	 Scalable discovery and navigation is the term we are using to
describe a solution that can handle growth, increasing
demand, and increasing user expectations as both its user
community and the amount of data that it provides access to
continues to grow. Scalable enterprise information
navigation and discovery solutions must therefore provide
flexible mechanisms for handling growth-related issues such
as the following:

 – Increasing system load and number of queries—the
front-end work of accepting and pre-processing
queries and the back-end work of prioritizing and
combining results are relatively quick operations.
However, within the discovery engine, each query
requires the engine to access and scan the appropriate
index(es) for matching information.

 – Increasing amounts of information that users want or need
to access—as the amount of information that you want
to be able to navigate increases, the size of the index
associated with that information also grows.

 – Updates to existing indexes without interrupting service—
in most cases, the enterprise data that your users want
to discover and navigate is changing, expanding or
both. The engine behind your solution must be able to
quickly and easily index new content while delivering
uninterrupted discovery and navigation capabilities.

What is scalable discovery
and navigation?
Enterprise discovery and navigation applications generally
provide the ability to query and retrieve results from
existing search applications (known as meta-search), the
ability to examine online information and process it so that
specific information can be located quickly and the ability
to combine search results from any number of these types
of sources into a unified, prioritized set of search results
(known as federated search). The basic tasks within a good
enterprise discovery and navigation solution are the following:

•	 Query processing, translation and response—your discovery and
navigation solution must provide a mechanism for enabling a
user to enter their query, which is typically either composed
of simple text strings or combinations of terms that use
relational keywords or symbols such as AND, OR,
WITHIN, and so on. For complex queries, the application
must be able to convert your query into the specific syntax
required by any other applications that it retrieves results
from in order to submit that query to those other
applications. Finally, your discovery and navigation
application must be able to combine, prioritize and display
the results returned by your query in a user-friendly fashion.

•	 Crawling sources of enterprise information and retrieving their
content—your discovery and navigation solution must be
able to contact all of the sources of information that you
want your users to be able to navigate, retrieve their content
and related metadata such as access control lists, and return
that information to the discovery and navigation engine for
subsequent processing.

•	 Indexing the information retrieved by crawling—your
discovery and navigation solution must be able to build an
index for the information retrieved by the crawling process.
Indexing the data for which you want to provide access is
the first step toward improving navigation performance,
increasing query throughput by caching the content that
you are navigating in a fast, easily-accessed local index.

4 Scaling strategies for mission-critical discovery and navigation applications

Eliminating downtime
Making sure that your discovery and navigation solution is
always available to your users is probably the highest priority.
As more users come to depend on a discovery and navigation
solution, its availability requirements also rise. Most users can
tolerate some performance problems, but they will not
tolerate downtime.

One of the first steps toward high availability for any system
application is to remove single points of failure, such as having
single systems that house both a discovery and navigation
engine and the index(es) it uses. Redundancy and replication
are two specific techniques that help guarantee high
availability. Redundancy typically refers to providing multiple
instances of a specific server process, while replication typically
refers to maintaining multiple copies of a software resource.
However, simply having multiple systems and copies of a
resource is only part of a solution to potential problems. To
make the most of redundancy and replication, your solution
must provide both monitoring and failover support, so that
problems in existing hardware and software are quickly
detected and automatically cause other resources to be
activated and used.

Delivering up-to-date information
As the amount of information that you want to locate through
an enterprise discovery and navigation solution grows,
identifying and indexing both new data and changes to existing
data can be a complex problem. If changes to the data require
complete re-indexing of that data, your discovery and
navigation engine could spend most of its life simply doing
index creation and recreation. It is therefore important that a
scalable solution creates an index that can easily be updated
without being recreated.

What are the challenges for scalable
discovery and navigation solutions?
As the name imples, scalable enterprise discovery and navigation
must be able to continuously provide a high-performance
solution as both the amount of information that it provides
access to and the number of users that depend on that
discovery and navigation technology increase.

The issues listed at the end of the previous section are specific,
performance-related scenarios. However, a successful and
scalable enterprise discovery and navigation solution must be
able to address both performance and higher-level issues such
as redundancy, failover, update, and manageability to guarantee
its usability and availability.

Delivering a high performance solution
Though users may initially accept some performance and
responsiveness problems in an enterprise discovery and
navigation solution, the appearance of performance problems
is always cause for alarm. The number of users who rely on
an enterprise discovery and navigation solution and the
amount of enterprise data that can be located through that
system rarely decrease.

As discussed at the end of the previous section, performance
problems can arise at a number of different points in the
enterprise discovery and navigation process, all related to
increasing demands on the system. While popularity is usually
a good thing, continuously increasing demands on the solution
can hamper its usability for everyone. Unless your solution
provides built-in mechanisms to address to the performance
problems associated with indexing large amounts of data and
accessing large index files, the usability of the solution will
continue to degrade as the amount of data that you want to
search index and your usage increases.

Software 5

In addition to being incremental, index updates should also be
transactional, which means that they either succeed completely
or make no changes to the index. This preserves the integrity of
your index during the update process, provides an opportunity
to resume indexing at a given point without redoing the entire
indexing process and also protects the index against problems
related to system outages or failures.

Providing a flexible, manageable solution
A key to addressing items such as availability and performance
problems is automation, where an enterprise discovery and
navigation solution itself automatically probes and monitors
associated systems, and automatically adjusts system
characteristics such as load and fail-over sequences. Similarly,
system administrators must have the ability to easily obtain
information about the status of the applications and resources
associated with a discovery and navigation solution. Providing
easy access to configuration and status information makes it
easy to identify and address problems as they emerge, rather
than after they have become crises.

Being able to identify emerging problems is only truly useful
if your solution provides a fast, easy-to-use mechanism for
interacting with and reconfiguring its underlying technologies.
For example, the amount of disk space and memory available
on each specific system is always finite. As the storage
requirements for an index approach the amount of disk space
available on the system where it is stored, you need be able to
head off any associated performance or usability problems. In
the short term, you can simply add additional disk space to a
specific system, but this typically requires downtime. In the
long term, it is much more useful to have an administrative
interface that enables you to dynamically manage your
index(es) and the general configuration of your solution.

This could enable you to easily move an index from one system
to another that has additional memory or storage space and
reconfigure the application to use that index, all without
interrupting its availability.

A scalable discovery and navigation solution must provide
flexible ways of augmenting and expanding your existing
resources, as well as tailoring the configuration of your
application to its hardware execution environment. The ability
to add additional systems and their associated resources
(processing power, memory, disk space, etc.) to your search
infrastructure gives you a flexible and scalable solution that you
can reconfigure on the fly to improve performance or address
emerging problems. Ideally, your solution must provide
interactive administrative support for a wide range of
performance parameters, such as index size, location, pinning
an index in memory, and so on.

Distributed indexes: A foundation for
scalable discovery and navigation
As the amount of data that you want to be able to navigate
grows, so does the size of the index for that data. Users often
report that the size of an index is approximately one-third of
the size of the data that you want to be able to navigate, but
this ratio can be much worse depending on the type of
information that you are indexing. Index access time, lookup
performance, and storage requirements are therefore very
important issues for evaluating any discovery and navigation
engine. These types of issues become critical in a solution that
is crucial to your business.

6 Scaling strategies for mission-critical discovery and navigation applications

Depending on the type of system on which the index is stored,
scanning large index files can be slow simply due to their size.
Similarly, the use of index files that are larger than the amount
of memory available on a machine can compound index access
time issues. When the size of an index expands beyond the
amount of physical memory on the machine that is accessing
the index, performance can suffer both due to the time
required for swapping and the time required for the disk I/O
associated with reading new portions of the index into
memory. This can cause performance problems on both the
system where the discovery and navigation engine is running
and on the storage devices where the index is stored.

As businesses and users increase their use of and dependence
on discovery and navigation capabilities, the index used by a
specific solution becomes more obvious as a potential single
point of both failure and performance problems. If an index is
somehow corrupted due to disk problems, the system through
which an index is accessed fails, or the storage on which the
index is stored fills up or goes offline, your discovery and
navigation capabilities grind to a halt.

Replication solves system load problems by
distributing query load across multiple
systems, each containing an identical index.

To provide a successful scalable solution, index access,
availability, and the index(es) themselves must be scalable.
Scalable indexing solutions fall into two functional classes:
segmentation, which divides an index across multiple systems
to solve performance and storage problems, and replication,
which maintains an identical copy of indexes across multiple
machines (also known as mirroring). Replication solves system
load problems by distributing query load across multiple
systems, each containing an identical index. It also guarantees

higher discovery and navigation system availability by
eliminating a single system and single index as a potential point
of failure. Both segmented and replicated indexes are examples
of what is commonly referred to as a distributed index.

Modern enterprise discovery and navigation solutions use
distributed indexes to solve most of the performance, index
size and index availability problems associated with the
increasing demands of rampant data growth.

A distributed index that is split into multiple segments on
multiple systems can eliminate many performance problems by
enabling the size of the index segment stored on each machine
to match the amount of physical available memory on that
system. Using index segments in this way eliminates swapping
and provides higher performance by eliminating the need to go
to disk to access any portion of the index. Index segmentation
also has the added benefit of substantially reducing individual
system storage requirements by enabling you to distribute
those requirements across multiple systems.

A distributed index that is replicated across multiple machines
can eliminate most availability problems because an application
can fail over to another machine if the index on one system (or
the system itself) is unavailable. Replication can even be
integrated with system load analysis to support load-balancing
across multiple machines that store the same index(es).

Replication and segmentation are not mutually exclusive
approaches to index maintenance. As discussed in the next
section, the IBM® InfoSphere™ Watson Explorer is an
enterprise information discovery and navigation solution that
enables these approaches to be used separately or together to
maximize the performance, reliability and availability of your
enterprise discovery applications.

Software 7

Index deployment scenarios for scalable
discovery and navigation
The ability to replicate entire indexes across multiple systems
and the ability to divide indexes into multiple segments help
satisfy many of the critical requirements of an always-available
enterprise discovery and navigation application. Solutions that
take advantage of these capabilities can easily handle increasing
loads without sacrificing performance, provide continuous
service to enterprise users and can extend discovery and
navigation capabilities to constantly increasing amounts of
information.

How each site distributes its index files is largely dependent on
the number of computer systems available to your discovery
and navigation infrastructure and the memory, storage and
performance characteristics of each. General infrastructure
support systems, such as uninterruptible power supplies,
backup systems and the load and other processes running on
existing servers will also have an impact on how you deploy
discovery and navigation collection indexes and the engines
that use them.

The next few sections illustrate some of the more common
ways in which replicated and segmented indexes are used to
provide scalable enterprise discovery and navigation solutions.
All of these configurations are supported in the latest generation
of Watson Explorer and can easily be configured using its
graphical administrative interface.

Replicating an index for availability and load balancing
As discussed earlier, performance and availability are
among the most common concerns when developing and
deploying a scalable enterprise discovery and navigation
solution. Configuring a second system to host a mirror of the
index for a collection is probably the most common scenario
when initially deploying a discovery and navigation solution, as
shown in Figure 1, “Replicating a Single Index.”

Maintaining a replica of an index increases availability by
protecting against outages resulting from the failure of a single
system. Replication also reduces the load on a single server by
distributing query load across all servers that host a replica of
an index. In high-availability environments, replicating a single
index can also be used to allow you to do hardware repairs or
single-user system administration of any of the systems on
which an index is replicated without scheduling downtime. Any
of these systems that contain an index or a replica of that index
can be taken down for administrative purposes without
disrupting the availability of your solution.

Host 1
Original Index

Host 2
Part 1 of Original Index

Host 3
Part 2 of Original Index

Segmenting a Single Index

Figure 1: Maintaining a replica of an index increases availability by protecting
against outages resulting from the failure of a single system.

8 Scaling strategies for mission-critical discovery and navigation applications

Replicating a Single Index

Host 1
Original Index

Host 2
Copy of Original Index

Host 3
Copy of Original Index

Figure 2: Segmenting an index is the process of dividing that index into
multiple parts which are stored on different servers.

Segmenting an index for higher performance
Segmenting an index is the process of dividing that index
into multiple parts which are stored on different servers.
Index segmentation provides a number of performance
improvements for enterprise discovery and navigation
solutions. Figure 2, “Segmenting a Single Index” shows
a simple segmentation setup.

The most significant performance improvement associated with
index segmentation comes from the fact that index lookups are
done most quickly if an index fits into the amount of physical
memory that is available on the system where it is stored. When
the size of an index expands beyond the amount of physical
memory on the machine that is accessing the index, performance
can suffer both due to the time required for swapping and the
time required for the disk I/O associated with reading new
portions of the index into memory. Segmenting an index
therefore enables an administrator to divide the index files for
a discovery and navigation solution into segments that match
the amount of memory available on each system, providing
higher overall performance. Segmenting an index across
multiple hosts also provides a level of built-in load balancing,
because queries targeted for specific portions of the index will
be directed to the host(s) that contain that portion of the index.
Distributing the query load in this way can improve the overall
performance of your solution.

Software 9

Replicating Multiple Indexes for Availability and Administration

Host 2
Index 2

Host 3
Index 3

Host 1
Index 1

Host 1
Index 1

Host 2
Index 2

Host 3
Index 3

Host 4
Copy of Index 1
Copy of Index 2
Copy of Index 3

Figure 3: As with replicating a single index across two or more hosts, replicating the indexes for multiple collections to a single host can help ensure availability in
the event of hardware problems.

Replicating multiple indexes to a single host
As with replicating a single index across two or more hosts,
replicating the indexes for multiple discovery and navigation
collections to a single host can help ensure availability in the
event of hardware problems. Figure 3, “Replicating Multiple
Indexes for Availability and Administration” illustrates this
type of replication.

The advantage of replicating multiple indexes to a single host is
that this provides increased availability guarantees without
requiring as much hardware as single-host/single-index replication
does. The downside of this approach is that hosting multiple

indexes on a single host will probably not provide the performance
benefits that singlehost/single-index can. It is likely that a single
host will not have enough memory to keep all of them in core, and
the host will therefore need to swap different indexes in and out of
memory depending upon use requirements.

As with any use of replication, replicating multiple indexes to a
single host can also provide opportunities for hardware repairs
or single-user system administration, without scheduling
system downtime. As long as some system that contains an
index or a replica of that index is available, your discovery and
navigation system is available.

10 Scaling strategies for mission-critical discovery and navigation applications

Combining segmentation and replication
Segmenting an index can provide performance improvements
by splitting that index into chunks that are small enough to fit
in system memory and therefore support the fastest possible
lookups. Replicating an index supports higher availability by
providing multiple locations for an index so that the failure of
a single system does not make the index unavailable.

The example in Figure 4, “Using Replication and
Segmentation Together” shows a single index for a single
collection that has been split into three segments, all of which
are then replicated across three different hosts.

The advantage of this sort of configuration is that it provides
both performance improvements and redundancy. When all
three hosts are available, all three hosts are used, load-balancing
occurs across all three hosts, and the segmentation of the index
can provide performance benefits. Should any one of these
hosts become unavailable, either due to hardware failure or
regular maintenance requirements, the complete index is still
available on two other hosts, and load-balancing will still occur
across the remaining hosts. Even if two hosts become
unavailable, the complete index is still available on a single
machine ensuring zero downtime.

Using Replication and Segmentation Together

Host 1
Index

Host 1
Part 1 of Index
Part 2 of Index
Part 3 of Index

Host 2
Part 1 of Index
Part 2 of Index
Part 3 of Index

Host 3
Part 1 of Index
Part 2 of Index
Part 3 of Index

Figure 4: A single index for a single collection that has been split into three segments, all of which are then replicated across three different hosts.

Software 11

Conclusion
There are many challenges in designing for maximum scalability
in mission-critical discovery and navigation applications. As
outlined in this whitepaper, the use of distributed indexes can
address each of these challenges by improving performance,
satisfying availability requirements and providing administrative
flexibility as the amount of data increases throughout the
organization and new resources are deployed within your
infrastructure. Meeting all these needs—without incurring any
penalty for downtime—ensures that your solution can support
the most demanding mission-critical applications.

For information about IBM Watson Explorer, which provides
a flexible solution to the search engine security requirements
discussed in this paper, see http://ibm.co/1lBpw8p.

Selection and deployment checklist
So how should organizations proceed when selecting and
deploying an enterprise discovery and navigation? Here are
the index-related issues to consider:

•	 Quantify the availability requirements for your enterprise
discovery and navigation solution, based on how important
the application is to your users and your business. If no
downtime is acceptable, then your solution must either
support distributed indexes or you must prepare to physically
replicate the system that is running your discovery and
navigation solution and the storage that it uses. You must
also select a monitoring solution that is flexible enough to
probe both the health of your hardware and the state of your
solution so that it can fail over whenever necessary.

•	 Identify the type and size of the online information that your
solution must index, and use this as a metric for estimating
the amount of disk space required. (If you are indexing
multiple information sources and the types of data vary, you
can use 30 percent as an initial number.) Make sure that the
systems on which you plan to run your solution have
sufficient space to store that index. If they do not, you must
factor in the cost of additional storage, which can be
anything from simple physical disks, to a RAID solution,
to a high-availability Storage Area Network (SAN).

•	 Identify the amount of memory that is available on the
system(s) on which you will be running your enterprise
discovery and navigation solution and compare that to the
estimated index size. If the index size is far greater than the
amount of available memory, you will need to select a
solution with index segmentation capabilities or suffer a
performance penalty.

•	 Quantify the relative amount of daily change to the online
information that your enterprise discovery and navigation
solution must index. Determine whether you need a solution
that can incrementally update an index, or whether your
needs can be met by a solution that only offers scheduled
updates.

•	 Test before you buy! Do not buy a product on paper; test it
in a real environment to see if it can handle all of your
indexing, performance and availability requirements.
Experiment with different combinations of replication and
segmentation, and pay great attention to the ease of
configuration, the likelihood of committing configuration
errors and the expertise of the vendor’s support staff.

•	 Choose a scalable solution. Do not purchase an enterprise
discovery and navigation solution that only satisfies your
current requirements, because it will be unable to grow to
satisfy new requirements and additional sources of
information. Choose a solution that can scale to the level
that you may require in three, five, or even 10 years.

•	 Select a reliable solution that is easy to get up and running.
Enterprise discovery and navigation solutions that provide
built-in support for high availability enable you to focus on
developing your custom applications rather than on
developing infrastructure.

•	 Test before you launch. Verify that the application matches
your performance expectations and requirements. Before
deploying your solution throughout your organization,
dedicate a small group of users to query the solution
simultaneously to verify both performance and load-
balancing.

•	 Monitor the use and the performance of the application and
adjust where its index(es) are stored to improve its performance
and eliminate any potential single points of failure.

http://ibm.co/1lBpw8p

IMW14643-USEN-02

© Copyright IBM Corporation 2014

IBM Corporation
Software Group
Route 100
Somers, NY 10589

Produced in the United States of America
April 2014

IBM, the IBM logo, ibm.com and InfoSphere are trademarks of
International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml.

This document is current as of the initial date of publication and may be
changed by IBM at any time. Not all offerings are available in every
country in which IBM operates.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED
“AS IS” WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING WITHOUT ANY WARRANTIES OF MERCHANT-
ABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY
WARRANTY OR CONDITION OF NON-INFRINGEMENT. IBM
products are warranted according to the terms and conditions of the
agreements under which they are provided.

Please Recycle

http://www.ibm.com/legal/copytrade.shtml

