
The launch of DB2 on June 7, 1983, marked the birth of relational database as a cornerstone for 
the enterprise; 30 years later, DB2 for z/OS is still the undisputed leader in the RDBMS market 
and the envy of its competitors when it comes to total system availability, scalability, security, 
reliability, and cost effectiveness. A majority of Fortune 500® companies, including the world’s 
top banks, retailers, and insurance providers, store mission-critical operational data in IBM® 
System z® and DB2® for z/OS®.

Why? It seems everyone offers a marketing bundle “just like the mainframe,” and while some of 
these solutions have some basic capabilities, DB2 for z/OS and System z continue to lead the 
way with fresh capabilities to handle rapidly changing, diverse, and unpredictable workloads while 
maximizing resource utilization and investment.

During 2013, IBM will celebrate the 30th anniversary of DB2 with customers, business partners, 
users, employees, and DB2 fans all around the world. We announced DB2 11 Early Support 
Program in October 2012, and we expect General Availability to follow shortly.

This book is packed with rich information to help you manage your IT business systems. 
Don Haderle, the father of DB2, shares with us the history and growth of DB2, and customer 
testimonials highlight DB2 memories and milestones. Next, John Campbell provides a detailed 
overview on the planning stage of migrating to IBM DB2 10, and finally Terry Purcell provides a 
technical overview of the business benefits of IBM DB2 for z/OS Optimizer.

We hope you enjoy this new book. Find out why DB2 is still growing after 30 years and how it is 
helping our customers to reduce costs and grow.

Surekha Parekh
World-Wide Marketing Program Director for DB2 for z/OS
http://www.facebook.com/IBMDB2forzOS

MC Press Online, LLC
3695 W. Quail Heights Court
Boise, ID 83703-3861

Price: $17.95 US/$19.95 CAN

IB
M

 D
B

2
: T

h
e
 P

ast, P
re

se
n
t &

 F
u
tu

re

5144

IBM DB2: The Past,  
Present & Future





MC Press Online, LLC
Boise, ID 83703

John Campbell

Don Haderle

Surekha Parekh

Terry Purcell



IBM DB2: The Past, Present and Future: 30 Years of Superior Innovation
John Campbell, Don Haderle, Surekha Parekh, and Terry Purcell

First Edition
First Printing—October 2012

© 2012 IBM. All rights reserved.

Every attempt has been made to provide correct information. However, the publisher and 
the author do not guarantee the accuracy of the book and do not assume responsibility for 
information included in or omitted from it.

“The History and Growth of IBM’s DB2” is reprinted, with permission, from IEEE 
Annals of the History of Computing 34, no. 3 (July–September 2012). © 2012 IEEE. 
Personal use of this material is permitted. Permission from IEEE must be obtained for all 
other uses, in any current or future media, including reprinting/republishing this material 
for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in 
other works.

The following terms are trademarks or registered trademarks of International Business 
Machines Corporation in the United States, other countries, or both: IBM, AS/400, 
CICS, DB2, DB2 Connect, Distributed Relational Database Architecture, DRDA, IBM 
Watson, IMS, Informix, InfoSphere, MVS, OMEGAMON, OS/390, QMF, Smarter 
Banking, Smarter Commerce, Smarter Planet, System/390, System z, System z9, Tivoli, 
WebSphere, z10, zEnterprise, and z/OS. Netezza is a registered trademark of IBM 
International Group B.V., an IBM Company.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States 
and other countries. Linux is a registered trademark of Linus Torvalds in the United 
States, other countries, or both. Microsoft and Windows are trademarks of Microsoft 
Corporation in the United States, other countries, or both. UNIX is a registered trademark 
of The Open Group in the United States and other countries. Java and all Java-based 
trademarks and logos are trademarks or registered trademarks of Oracle and/or its 
affiliates. Other company, product, or service names may be trademarks or service marks 
of others.

Printed in Canada. All rights reserved. This publication is protected by copyright, and 
permission must be obtained from the publisher prior to any prohibited reproduction, 
storage in a retrieval system, or transmission in any form or by any means, electronic, 
mechanical, photocopying, recording, or likewise.

MC Press offers excellent discounts on this book when ordered in quantity for bulk 
purchases or special sales.

MC Press Online, LLC, 3695 W Quail Heights Court, Boise, ID 83703-3861 USA
Customer Service: Toll Free: (877) 226-5394; cust.srv@mcpressonline.com

Permissions and Special Orders: mcbooks@mcpressonline.com

ISBN: 978-1-58347-378-8



About the Authors

John Campbell (campbelj@uk.ibm.com) is an IBM® 
Distinguished Engineer reporting to the Director for  
z/OS® Development at the IBM Silicon Valley Lab. He has 
extensive experience of DB2® in terms of systems, database, 
and applications design. John specializes in design for high 
performance and data sharing. He is one of IBM’s foremost 
authorities for implementing high-end database/transaction-
processing applications.

Don Haderle (donhaderle@yahoo.com) joined IBM in 1968 as a 
software developer and retired in 2005 as the software executive 
operating as Chief Technology Officer (CTO) for Information 
Management. He currently advises a couple of venture 
capitalists, sits on the technical advisory board for a number of 
companies (Aerospike, Palamida, Boardwalktech), and consults 
independently.

Don is the father of commercial high-performance, industrial-
strength relational database systems. For more than two decades, 

spanning 1977–1998, he was the technical leader and chief architect of DB2, IBM’s 
premier database management system. Haderle led DB2’s overall architecture and 
development, making key personal contributions to and holding fundamental patents 
in all key elements, including logging primitives, memory management, transaction 
fail-save and recovery techniques, query processing, data integrity, sorting, and 
indexing. Beyond his personal engineering contributions, as IBM CTO for Information 
Management, Haderle collaborated with researchers to establish and incubate new 
product directions for the information management industry, including federated DB, 
information integration (structured and unstructured data), and business document 
content management.

Don was appointed IBM Fellow in 1989 and Vice President of Advanced Technology 
in 1991 with a worldwide team of researchers and developers. In 2000, he was appointed 
ACM Fellow in recognition of his impact on database technology. In 2008, Don was 
elected to the National Academy of Engineering for his contributions to the management 
of high-performance relational databases and leadership in founding the relational 
database-management industry.

Don is a graduate of UC Berkeley, with a BA in Economics 1967.

About the Authors   •  iii



Surekha Parekh (surekhaparekh@uk.ibm.com) is IBM’s World-
Wide Marketing Program Director for DB2 for z/OS and also leads 
the Social Media Strategy for Information Management on System 
z. She is responsible for market strategy and planning of DB2 on 
System z® and building social media communities for Informa-
tion Management System z. Based in Warwick, United Kingdom, 
Surekha is a passionate marketer with proven results. She has over 
25 years of business experience, and she is also passionate about 
Information Management. Surekha represents IBM on the IDUG 
committee. IDUG is an independent DB2 user group with more 
than 16,000 members in more than 100 countries.

Terry Purcell (tpurcel@us.ibm.com) is a Senior Technical Staff 
Member with the IBM Silicon Valley Lab, where he is lead 
designer for the DB2 for z/OS Optimizer. Terry has two decades 
of experience with DB2 in database administration and application 
development as a customer, consultant, and DB2 developer.

iv  •  IBM DB2: The Past, Present, & Future



Table of Contents   •  v

Contents

About the Authors ...........................................................................................................iii

Foreword by Don Haderle..............................................................................................vii

Introduction by Surekha Parekh ....................................................................................ix

30 Years of Innovation ....................................................................................................xi

The Vision of DB2 .........................................................................................................xix

The History and Growth of IBM’s DB2

by Donald J. Haderle and Cynthia M. Saracco ..........................................................1

Abstract .......................................................................................................................1

Database Management in the 1970s ............................................................................2

The DB2 Decision for Mainframe ..............................................................................2

Stage 1: Development and Delivery of DB2 Version 1 ..............................................3

Stage 2: “Ready for Prime Time”................................................................................8

Stage 3: Availability, Performance, and Distributed Databases ................................ 11

Stage 4: Sysplex and Open Systems .........................................................................13

Summary ...................................................................................................................15

Planning for IBM DB2 10 for z/OS Upgrade

by John Campbell .....................................................................................................21

Highlights of the Beta Program Testing ...................................................................22

Performance and Scalability .....................................................................................25

Availability................................................................................................................41

Other Issues ..............................................................................................................43

Incompatible Changes ..............................................................................................45

Migration and Planning Considerations ...................................................................46

Items Planned for Post-GA Delivery ........................................................................59

When Should You Migrate to DB2 10 for z/OS? .....................................................62

Summary ...................................................................................................................63



vi  •  IBM DB2: The Past, Present, & Future

DB2 10 for z/OS Query Optimization Update

by Terry Purcell ........................................................................................................65

Access Path Management .........................................................................................66

DB2 10 Takes Plan Management to the Next Level .................................................70

Predicate Processing and Runtime Optimizations ....................................................76

Sort Performance Enhancements ..............................................................................89

New Choices for the Query Optimizer .....................................................................90

Improving Parallelism Efficiency and Removing Limitations .................................95

Improving the Inputs to the Query Optimizer ..........................................................99

Summary .................................................................................................................103

DB2 10 for z/OS Case Study: Bankdata and JN Data ..............................................104



Foreword   •  vii

Foreword

Parents never know how their children will turn out. But if they turn out well, then we 
take credit for it. DB2 for z/OS, which will be 30 years old in 2013, has turned out well, 
and though I’d like to think it was all because of the parents, the facts are different. First 
let me assert that DB2 for z/OS is heavily used by enterprises worldwide to perform 
database functions for core business transactions and analytics—others can provide 
the statistics to back this assertion. The question is why this is so for a 30-year-old 
technology, when a few years is a lifetime in our business. I attribute it to six critical 
factors:

1. Great foundation: IBM Research pioneered the relational data model, and the 
System R project provided the core technology for DB2 for z/OS. The partnership 
between research and development was solidified with the development of the Data 
Base Technology Institute (DBTI) led by Pat Selinger, which linked up research and 
development personnel to solve tough technology problems.

2. Customers: DB2’s success depends on its customers’ success. In the 1970s, databases 
served a single application. Because hardware was so expensive and slow, the 
database had to be handcrafted for each application. But this led to a proliferation of 
data, giving rise to the notion of “data independence,” which allowed a database to 
be shared by many applications. The key notion was anticipating the unanticipated. 
The challenge was making the technology perform well and at acceptable costs. DB2 
partnered with customers to drive this notion for 30 years.

3. Integration with the Z-ecosystem: DB2 lives within the Z environment and is 
critically dependent on it for hardware, application development tools, transaction 
management, storage management, system management, network management, 
business intelligence tools, and so much more. Integration with all of the parts of that 
ecosystem and leveraging its capabilities provides a compelling, holistic service.

4. Partnership with practitioners and partners: Customer executives buy DB2, 
but database administrators make it work. The journey of DB2 has been a close 
partnership with practitioners led by customer advisory councils, the International 
DB2 Users Group (IDUG), SHARE/GUIDE, and close personal relationships.

5. Evolving DB2 as the world changes: The mainframe has evolved into a multi-core 
Sysplex, and DB2 evolved its architecture to support a data sharing environment. DB2 
has evolved with distributed database processing, the Internet, SOA, Java, Big Data, 
and every change that the industry has made. The recent delivery of the zEC12 DB2 
Analytics Accelerator, which is a joint effort between System Z, DB2, and Netezza® 
to serve Big Data with near-real time analysis, continues this leadership in innovation.



6. Technologists: DB2 has been blessed with great innovators. Namik Hrle and Guogen 
Zhang, who led the innovation of the Analytics Accelerator, join a long list of 
talented technologists who have made DB2 respond to the next challenge and delight 
customers.

Happy Birthday!
Don Haderle—Father of DB2

viii  •  IBM DB2: The Past, Present, & Future



Introduction   •  ix

Introduction

We hope you enjoy our new book. This book has been launched to celebrate the 30th 
anniversary of DB2. Many of you will remember that the first release of DB2 was 
launched on June 7, 1983—marking the birth of relational database. At the time of 
launch, there were many skeptics about the relational database. Thirty years later, the 
relational database market continues to grow stronger and stronger, and according to 
analysts at IDC it is expected reach over $41 billion by 2016 (source: “RDBMS Steam-
rolls into 2016 on BI, Big Data Expectations,” Information Management, August 20, 
2012; http://www.information-management.com/news/rdbms-steamrolls-into-2016-on- 
bi-big-data-expectations-10023040-1.html).

 The book is divided into two sections. The first section celebrates our anniversary 
and thanks our customers, business partners, and users for their commitment and loyalty. 
DB2 customers, Business Partners, and IBMers discuss important milestones, share 
memories, tell us what makes DB2 so great, and let us know why they think DB2 is still 
around and growing three decades later. IBM’s leaders share their thoughts about the 
strengths and future of DB2.

 The next section begins with an article by Don Haderle and Cynthia Saracco about 
the history and birth of DB2. Don and Cynthia talk about the development and delivery 
of DB2 Version 1 and the success of the database.

 The remainder of the book is packed with business value, describing performance 
enhancements and cost-saving measures, and it is full of rich hints and tips. The object-
ive is to help our customers to upgrade to the latest version of DB2 so that they can start 
reaping the performance and CPU savings that many of our early adopters are experi-
encing. John Campbell, IBM Distinguished Engineer, has updated his DB2 10 for z/OS 
upgrade planning paper, adding experiences and lessons learnt that have been gained 
from customers and covering key secrets to ensure a successful upgrade. This is followed 
by an excellent paper from Terry Purcell, an IBM expert on query performance and DB2 
Optimizer. Terry understands the key customer pains, such as “reducing total cost of 
ownership” while maintaining stability and reliability, and his paper discusses how DB10 
addresses these issues.

 I would like to thank Don Haderle, Cynthia Saracco, John Campbell, and Terry 
Purcell for their contributions to this fantastic book. Without these experts, there would 
not be a book.

 We would also like to thank all our customers, partners, IBMers, and the extended 
DB2 community for your continued support and loyalty, and we invite you to join our 
virtual communities (see URLs below) so that you can keep in touch with our DB2 
experts, developers, and extended IBM community. These communities are available 

http://www.information-management.com/news/rdbms-steamrolls-into-2016-on-bi-big-data-expectations-10023040-1.html


x  •  IBM DB2: The Past, Present, & Future

24x7 with over 7,000 members. They are a great way to meet like-minded individuals, 
have fun, and at the same time grow and develop your skills.

 Throughout 2013, IBM will be hosting several DB2 seminars, conferences, and 
events around the world to celebrate DB2’s 30th anniversary with our fans. Information 
about these events will be shared via the 30th Anniversary Facebook Fan Page (http://
www.facebook.com/IBMDB2forzOS).

 I hope you enjoy the book. Please do not hesitate to contact me directly if I can be  
of help to you in any way.

Surekha Parekh
World-Wide Marketing Program Director
IBM DB2 for z/OS
October 2012

Useful URLs

The World of DB2 for z/OS
http://db2forzos.ning.com

IBM Website
http://www-01.ibm.com/software/data/db2/zos/family

DB2 10 for z/OS
http://www.ibm.com/software/data/db2/db210

YouTube
http://www.youtube.com/user/IBMDB2forzOS

Surekha Parekh’s DB2 Blog
http://surekhaparekh.wordpress.com

LinkedIn Group
http://www.linkedin.com/groups?gid=2821100

Twitter
http://twitter.com/IBMDB2

International DB2 Community
http://www.idug.org



30 Years of Innovation   •  xi

30 Years of Innovation

DB2 customers discuss important milestones, what makes 
DB2 so great, and why DB2 is still around today

Manuel Gómez Burriel,  
Spanish Confederation of Savings Banks (CECA)
DB2 Version 3 partition independence for utilities changed  
the way and strategy for how historical information was managed  
. . . and it is still working right today. I also remember Roger 
Miller speaking at SpDUG in 2010 . . . it was a milestone for  
the Spanish community.

DB2 is the most appropriate relational database management 
system (RDBMS) for the z/OS platform, capable of running any 

data management application—whether transactional or data warehousing or whatever. 
Because of the evolution of new versions and new appliance add-ons, DB2 has had, and 
will continue to have, a long journey in the IT world.

About Manuel Gómez Burriel
Manuel Gómez Burriel is DBA Manager at the Spanish Confederation of Savings Banks 
(CECA). Being involved in DBA tasks for more than 26 years, he has had to face differ-
ent DBMS flavors: IMS™, DB2, and others. IMS was Manuel’s first approach to a 
DBMS, and it has accompanied him for his whole working life with total loyalty and 
fidelity. “We recently celebrated our silver wedding,” says Manuel. “But then, DB2 
arrived with new ideas, concepts, and attractive enhancements and functionalities. Now 
we were a triangle. . .and, as many of you know, triangles are not good in the relationship 
fields. But we were able to coexist, taking advantage of the best of everyone; and we have 
lived happily ever after.”

Frank Petersen, JN Data A/S
In the history of DB2, I would like to draw two things forward: 
First, around 1987, Provinsbanken in Denmark announced that 
they moved their core banking system to DB2. The whole world 
watched and went to huge presentations at the Provinsbanken site 
to see with their own eyes. Suddenly, the community could see 
that DB2 meant serious business, and the reputation of “too slow” 
and “too unreliable” disappeared almost overnight. The second 
thing was the arrival of DB2 data sharing in Version 4 around 

1995. This masterpiece of design set the cornerstone of the scalability in DB2 that has 
made it possible to get to the point where we are now.



xii  •  IBM DB2: The Past, Present, & Future

Why is DB2 great and still around? In my opinion, there are two important aspects: First, 
DB2 has always had a very lively and enthusiastic user community. Many users consider 
DB2 as more than “just work” and are delivering a huge voluntary effort to improve 
the product and its usage across all installations. Second, IBM has been very clever in 
delivering the right functionality at the right time. We know all the major disciplines: 
performance, reliability, and scalability. And we sort of take them for granted. However, 
as users we must understand that the product we get today was designed three to four 
years ago, so it is very important that the designers have a very good feeling for what the 
market will need three to five years forward from a given point. This understanding of the 
market comes partly as a result of IBM’s huge involvement in the community, but also 
the other way ’round: as a result of the user community’s huge involvement in the DB2 
evolution. So, in my opinion, it is a sort of yin and yang between the community and 
IBM that has made the difference.

About Frank Petersen
Frank Petersen has worked as a systems programmer in large installations since 1978 and 
has been involved in every DB2 release since Version 1, working with the technical side 
of almost every aspect of DB2. Besides DB2 on z/OS, Frank has worked with DB2 LUW 
and also has a broad insight into “modern” things like Web development, .Net, Java, and 
more. Frank has been a speaker at many events organized by IBM, GSE, and IDUG. He 
has received IDUG’s Best Speaker Award numerous times and therefore is a member of 
IDUG’s Speaker Hall of Fame.

Jan Tielemans, KBC Global Services NV
The most remarkable DB2 milestone for me was the introduction 
of DB2 data sharing!

What makes DB2 so great, and the reason it is still around today, is 
its nearly “unlimited” possibilities. DB2 keeps growing in function 
and features according to the market/customer needs. . .and 
the great technical support and user group community that exist 
around this great product.

About Jan Tielemans
Jan Tielemans has worked with DB2 since V1.2, as a DB2 system engineer and as a 
senior technical specialist for DB2 products for many years at Platinum Technology and 
BMC Software. He is currently employed at KBC Global Services, working as a senior 
system engineer on the DB2 team. Jan’s areas of expertise include DB2 performance and 
tuning, data sharing, and Parallel Sysplex. Jan’s current position is Mainframe Resource 
Manager. He is also chairman of the Belgium IMS/DB2 GSE workgroup.



30 Years of Innovation   •  xiii

Dave Beulke, Dave Beulke & Associates
I have worked with DB2 since Version 1.2 for z/OS and with DB2 
LUW since it was OS/2 Extended Edition. Working with the DB2 
family over the years has been great because of the performance, 
integrity, and scalability of the database and the quality of the IBM 
developers and management behind it.

I remember being in the beta program for the first DB2 data 
sharing release, DB2 Version 4 for z/OS. I realized then that 
working with DB2’s unlimited scalability, there are no limits to 

the business solutions that can be built, and the only limitation was my imagination. DB2 
continues to lead the database management system (DBMS) industry because it embra-
ces change and expands its horizons, enabling all kinds of new data types, analytics, and 
optimization techniques for the best performance and availability on the market.

About Dave Beulke
Dave Beulke is an internationally recognized consultant, author and teacher known for 
his strategic expertise in database performance, data warehouses, and Internet applica-
tions. He provides data management strategies, architectures, advanced designs, and 
systems consulting. Dave is currently a member of the IBM DB2 Gold Consultant 
program, an IBM Champion, coauthor of past IBM z/OS DB2 DBA certification and 
business intelligence certification exams, past president of IDUG, and former instructor 
for The Data Warehouse Institute (TDWI). He writes a weekly blog at www.davebeulke.
com. Dave helps his clients improve their strategic direction, designs innovative 
solutions, dramatically improves performance, and reduces CPU demand, saving clients 
millions within their mainframe, UNIX®, and Microsoft® Windows® environments.

Cuneyt Goksu, VBT
The implementation of packages in DB2 V2.3 was a great 
milestone; it changed plan management from design and 
operational points. Online reorg and data sharing implementations 
provided superior availability to applications. The story of stored 
procedures from WLM managed to native SQL changed the whole 
picture of application design. Each and every day, customers are 
moving more business logic inside the DB2 engine.

DB2 for z/OS is the golden standard of RDBMSs. It’s designed 
to execute mixed workloads, operate 24x7 with high performance, and provide great 
scalability design options. Over the years, its functions and features have been enhanced 
according to industry trends, needs, and hardware enhancements. z/OS and LUW 
versions are getting closer from a functional and design point of view. For each and 
every type of application or business segment that requires superior DBMS support, DB2 
provides it at every level—from DB2 Express-C to DB2 for z/OS.



xiv  •  IBM DB2: The Past, Present, & Future

DB2 is still around because data is a business’s most valuable asset, and DB2 is the best 
DBMS engine in the world for keeping data secure and serving it 24x7. It is still around 
because it is used not only for legacy OLTP and decision-support applications but also for 
GIS, business and predictive analysis, big data implementations, and more.

About Cuneyt Goksu
Cuneyt Goksu is Principal Information Management Consultant at VBT. He has worked 
with DB2 for more than 20 years. Since 2001, Cuneyt has worked as a DB2 SME 
and consultant focused on DB2 installation and migration, subsystem and application 
performance and tuning, security health checks, infrastructure design reviews, data and 
application modeling, data sharing implementations, modernization and database migra-
tions, integration and federation projects, DB2 tool implementations, and DB2 training. 
A certified IBM solutions expert, Cuneyt holds many IBM Information Management 
Technical and Sales certifications. He has been an active member of the IDUG commun-
ity since 2003 and is currently a member of IDUG BOD and leader of the Turkish DB2 
User Group. Cuneyt is an IBM Information Champion, an IBM DB2 Gold Consultant,  
an Authorized DB2 Training Partner, and a member of IBM Academic Initiative Program. 
He holds an MBA and an MS in computer science.

Sheryl Larsen, Sheryl M. Larsen, Inc.
I graduated college in 1994, and at my first job DB2 V1 fell into 
my lap. SQL performance consulting has been a passion of mine 
ever since. I love showing off the advanced technology of the 
optimizer and SQL features that can handle the most complex of 
business questions. My clients are moving more and more data 
and applications to DB2, not less and less, due to the sophistica-
tion and synergy of DB2 with the hardware it runs on. Appliances 
are the future of DB2 in the Data Explosion world, with DB2 

seamlessly integrating with Netezza today and with many more appliances to come.

About Sheryl Larsen
Sheryl M. Larsen is an internationally recognized researcher, consultant, and lecturer 
specializing in DB2. She owns Sheryl M. Larsen, Inc. (www.smlsql.com), a firm special-
izing in advanced DB2 consulting and education. Sheryl is known for her extensive 
expertise in SQL, and her firm performs detailed DB2 performance reviews for many 
clients worldwide. Sheryl has more than 25 years’ experience in DB2, has published 
many articles, and is coauthor of DB2 Answers! (Osborne/McGraw-Hill, 1999). She is an 
IBM Champion, an IDUG Hall of Fame Speaker, and a longtime member of IBM’s DB2 
Gold Consultants Program.



30 Years of Innovation   •  xv

Daniel Luksetich, Independent Consultant
I can remember transforming from my third day on the job in 1990 
when I accidentally dropped a production database to a DBA and 
application architect responsible for the creation of a very large 
DB2 database that routinely processed over 100 million trans-
actions a day in 2004. I’m still excited about designing production 
DB2 tables that can process between 13,000 and 20,000 inserts  
per second!

Having worked with other RDBMSs, I can testify with confi-
dence that DB2 is by far the most secure, stable, and tunable database engine available. 
The flexibility of the database designs that are capable in DB2 lends itself to spectacular 
performance regardless of the database size, content, or workload!

About Daniel Luksetich
Daniel L. Luksetich is an independent consultant who has worked with DB2 since 1990 
and has been involved in many large implementations of DB2 in the United States and 
Europe. Dan works every day on some of the largest and most complex DB2 implemen-
tations in the world. He is a certified DB2 DBA, system administrator, and application 
developer and has worked on the teams that have developed the DB2 for z/OS certifica-
tion exams. He is the author of several DB2-related articles as well as coauthor of DB2 
9 for z/OS Database Administration: Certification Study Guide (MC Press, 2007) and 
DB2 10 for z/OS Database Administration: Certification Study Guide (MC Press, 2012). 
Dan is a frequent speaker at IDUG conferences in the United States and Europe, as well 
as at the IBM IOD annual conference in Las Vegas. He also volunteers as a member of 
IDUG’s Content Committee.

Cristian Molaro, Independent DB2 Consultant
Back when we migrated to DB2 Version 6, we DBAs suspected 
that users were quickly justifying a lot of small incidents by 
blaming the “new DB2 version.” When we moved to DB2 7, we 
announced the availability of the new version two weeks after the 
actual migration. Nobody reported a DB2-related issue in between. 
After the public notification, things suddenly, and suspiciously, 
started to fail because of the “new DB2 version.” This was one 

case where we had to deal more with human expectations than with DB2 itself.

A very mature, 30 years young, state-of-the-art database management system is what 
makes DB2 so great and is the reason it is still around today. I could not ask for more in 
terms of keeping, exploiting, and protecting my most critical assets: enterprise informa-
tion. During its years, DB2 has followed and defined the industry trends that set the rules 



xvi  •  IBM DB2: The Past, Present, & Future

of today’s business game. DB2 for z/OS provides the ideal foundation to help you design 
and implement systems that are both secure and open, and it is ideally suited to answer 
today’s enterprise challenges.

About Cristian Molaro
Cristian Molaro is an independent DB2 specialist and an IBM Gold Consultant. He was 
recognized as an IBM Champion in 2009, 2010, 2011, and 2012. Cristian’s main activ-
ity is linked to DB2 for z/OS administration and performance. He has presented papers 
at several international conferences and local user groups in Europe and North America 
and is coauthor of six IBM Redbooks related to DB2, including the recent Optimizing 
DB2 Queries with IBM DB2 Analytics Accelerator for z/OS. Cristian is part of the IDUG 
EMEA Conference Planning Committee, where he works as the Marketing Team Leader. 
He is also Chairman of the DB2 LUW User Group BeLux and was recognized by IBM as 
“Top” EMEA Consultant at IDUG’s 2011 EMEA DB2 Tech Conference.

Zeljen Stanic, CA, Inc.
The milestone I remember the most is in DB2 V2.3 when packages 
were introduced. Working with the plans within CICS® was not 
an easy task. With the introduction of packages, the DBA’s job 
became much more productive.

Enterprises are storing ever-increasing amounts of data that must 
be accessible around-the-clock. Downtime or delayed process-
ing due to performance bottlenecks can cause more than a loss of 
productivity—it can mean losing customers. In today’s business 

environment, organizations must ensure optimal performance for their databases and 
applications, and that’s the reason why they have used DB2 as their preferred database 
for almost 30 years.

About Zeljen Stanic
Zeljen Stanic is a member of the DB management team at CA EMEA Technical Sales 
– Mainframe Center of Competence. He has been in IT more than 29 years, working in 
different positions including programmer, developer, and DBA for SQL/DS, DB2, and 
IMS. He has worked with SQL/DS since 1983 and with DB2 since 1989. Zeljen joined 
Platinum Technology in 1995 as a consultant for DB2 and DB2 tools. Following CA’s 
acquisition of Platinum in 1999, he joined CA, where he supports DBM solutions and 
other mainframe solutions and works with DB2 customers in Austria, Croatia, the Czech 
Republic, Finland, Germany, Greece, Holland, Kuwait, Poland, Qatar, Russia, Saudi 
Arabia, Slovakia, Slovenia, Spain, and Turkey. Zeljen has spoken to numerous DB2 user 
groups and DB2 conferences and represents CA at EMEA IDUG CPC. He founded the 
SQLAdria Regional User Group in 1994.



30 Years of Innovation   •  xvii

Kurt Struyf, Suadasoft
One of the most memorable milestones of DB2 for z/OS is the 
introduction of data sharing in Version 4. It makes DB2 scalable 
beyond the reach of any other relational database. DB2 for z/OS 
will be around for a long time because it’s extremely reliable, 
cutting edge, and dollar-for-dollar cheaper than its competitors.

About Kurt Struyf
Kurt Struyf is an independent DB2 consultant and IBM Champion. 
He has over 15 years of experience with DB2 for z/OS as (system) 

DBA. Besides his consultancy missions, Kurt teaches a wide range of DB2 classes all 
over the world and presents at several main conferences (IDUG, IOD, SQLAdria, to 
name a few). He is a member of the IDUG content committee. He works for Suadasoft in 
Luxembourg.

Julian Stuhler, Triton Consulting
Two key milestones stick in my mind. The first is the introduc-
tion of packages in V2.3—a fantastic enhancement that opened 
up many new possibilities for managing multiple versions of DB2 
applications and provided the basis for my very first user group 
presentation. The second was when DB2 V5 first became avail-
able: I remember having a conversation with the great Roger 
Miller, who admitted that DB2 had finally become so complex and 
capable that he could no longer know and understand the internals 

for every part of it. If even he was struggling, I had no chance, and that meant I could 
relax and be content with focusing on a few specific areas.

There are many reasons why DB2 continues to be so successful 30 years after it was first 
introduced, but I think two are especially important. First, DB2 was the result of genuine-
ly innovative research and a forward-thinking, robust design that provided an incredibly 
solid foundation for the future. Perhaps even more important, the product has proven time 
and time again that it can rapidly evolve to meet the changing needs of its users. There 
are countless examples of this, including the original transition from BI/decision-support 
workloads to OLTP (and now back again), addressing extreme scalability requirements 
with the introduction of data sharing in V4, becoming an “object relational” database 
in V6, and embracing XML in DB2 9. Every time there is a fundamental change in the 
requirements for an enterprise data store, DB2 has been there to provide a robust, well-
engineered solution.

About Julian Stuhler
Julian Stuhler has been involved with DB2 for z/OS for more than 26 years and has 



xviii  •  IBM DB2: The Past, Present, & Future

worked with every release from V1R2 to DB2 10, first as a developer and later as a DBA, 
systems programmer, and consultant. He still has a pristine set of V1R3 manuals which 
he intends to re-read someday. Julian is an IBM Gold Consultant, an IBM Champion, and 
past president of the International DB2 Users Group (IDUG). Julian wanted to name his 
firstborn after the product, but fortunately his wife intervened.

Steve Thomas, BMC Software
The most important milestone for me in the development of DB2 
has been the introduction of data sharing back in Version 4 toward 
the end of 1995. It took a few releases for this to become well 
established and used by more than the largest of customers, but  
in my mind it was the key feature that led us toward the high-
availability and high-throughput system we all benefit from  
using today.

From my own perspective, the key factor in the success of DB2 
is that DB2 is the database of choice on the platform of choice, zEnterprise®. No other 
combination can approach the performance, throughput, and availability that DB2 for 
z/OS provides—if you want proof, just look at what the world’s leading companies 
overwhelmingly use for their strategic systems. When you add to this the availability of 
almost all the same features in the distributed platform version of DB2, the continual and 
sustained development of world-leading features such as XML, and the backing of IBM, 
then the selection of a database for any new enterprise business application should be a 
simple one.

About Steve Thomas
Steve Thomas is a Principal Consultant at BMC Software, based in the United Kingdom. 
He has worked with DB2 since Version 1.3 in 1989 and has been an IBM Champion for 
Information Management since 2009. A well-known speaker, Steve has presented on a 
wide range of topics at events across Europe. He has been a member of the IDUG EMEA 
Conference Planning Committee for the past seven years and also helps organize the U.K. 
local DB2 Regional User Group.



The Vision of DB2   •  xix

The Vision of DB2

IBM’s DB2 leaders share their thoughts 
about the strengths and future of DB2

Curt Cotner, IBM Fellow, Vice President 
and Chief Technology Officer for Database Servers
Technology, and the IT industry itself, has changed signifi-
cantly over the past 30 years, and despite all those changes DB2 
continues to be a critical element of the IT fabric in most large 
enterprises. People often ask what we did in DB2 to remain 
relevant over such a long period of time. In my mind, the single 
biggest thing we did was to establish a culture in our development 
team that ensures that our technical leaders are deeply engaged 

with the DB2 customer community. Unlike some of our competitors, the key designers 
of DB2 are all well known by our customers. They travel to meet you at conferences and 
come for on-site visits at your company’s place of business. Many of you have worked 
with the DB2 designers one-on-one to work out solutions to the technology challenges 
you face, and often these end up as product enhancements in the next release of DB2. 
Many of our customers can personally identify multiple features in DB2 that they had a 
hand in designing. It is this tight interrelationship with our customers that allows DB2 
to meet your data storage needs, and without your help in this area we would not have 
enjoyed this longevity.

I’d really like to take this opportunity to thank all of you for taking the time to work 
closely with us on these issues. It has been the single most important factor in making 
DB2 a successful and long-lived product.

About Curt Cotner
Curt Cotner is an IBM Fellow and a member of the IBM Academy of Technology. He is 
the Chief Technology Officer for the DB2 family and Informix® IDS database servers 
and has both management and technology oversight responsibility for all the client 
software offerings used with DB2 and IDS. This includes the client runtime APIs (JDBC, 
.NET, CLI, pureQuery, etc.) and the application development and administration tools 
offerings (IBM Data Studio). Prior to taking his current assignment, Curt was the chief 
architect for the DB2 for z/OS development team.



xx  •  IBM DB2: The Past, Present, & Future

Jeff Josten, Distinguished Engineer, 
DB2 for z/OS Development
DB2 is still a vital product after 30 years mainly because of an 
extremely loyal and enthusiastic user community coupled with a 
highly skilled and experienced development team that listens and 
responds to customers. Another critical aspect to DB2’s longevity 
that a lot of people probably don’t appreciate is that the architec-
tural foundations of the product are rock solid, and this allows us 
as the development team to easily (in most cases) extend DB2’s 

capabilities to meet our customers’ quickly evolving requirements. For this, we owe a big 
debt of gratitude to our product’s creators, who had the foresight to understand that long-
lasting software must be easily maintainable and extendable. DB2 continues to succeed 
because it has adapted over the years to rapidly changing technology and requirements, 
and it is very well positioned to continue in this mode for years to come.

About Jeff Josten
Jeff Josten is an IBM Distinguished Engineer and lead architect for DB2 for z/OS. He 
has worked in the DB2 Development organization at the IBM Silicon Valley Lab since 
1985. Although he now covers all areas of DB2, his main areas of interest in the past have 
included data sharing, performance, availability, and recovery. Jeff owns several patents 
in the area of database technology and is a frequent speaker at DB2 user group meetings.

Ruiping Li, Senior Software Engineer  
in DB2 for z/OS Development
Clients around the world rely on DB2 for z/OS for its exceptional 
reliability, availability, serviceability, and security. It takes many 
talented and passionate professionals from all over the world to 
develop this product, and I am proud to have been a part of this 
team during the past decade. IBM continues to actively invest in 
DB2 with each release to improve performance, reduce cost, and 
introduce new capabilities, such as the new exciting product, IBM 

DB2 Analytics Accelerator. IBM DB2 Analytics Accelerator combines the strengths of 
both System z and Netezza systems, significantly reducing the CPU cost on System z, 
bringing lightning-fast performance to data-intensive and complex DB2 queries, and 
making DB2 the market leader for both OLTP and OLAP workloads. DB2 has been a 
successful product for 30 years, and I believe it will continue its success in the coming 
decades and continue to play an essential role in the changing the world of Information 
Management.



The Vision of DB2   •  xxi

About Ruiping Li
Ruiping Li is a Senior Software Engineer in DB2 for z/OS Development at IBM’s Silicon 
Valley Lab. She is currently a key designer for DB2 query acceleration support for the 
IBM DB2 Analytics Accelerator. Over the past decade, Ruiping has designed and imple-
mented several key enhancements in DB2 for z/OS, such as optimistic locking support, 
timestamp with time zone support, pureXML index exploitation, index on expression, 
materialized query tables (MQTs), and multiple CCSID enhancements. Ruiping joined 
IBM in 2001 after graduating from Purdue University with a master’s degree in computer 
science.

Dr. Pat Selinger, IBM Fellow and “The Mother of DB2”
More than three decades ago, as we built the research prototype 
that became the foundation for DB2, we were determined to prove 
that the relational databases were usable and could perform well. 
Wow! Did IBM ever prove that! DB2 has become a dynasty, with 
the world’s leading performance, flexibility, and reliability. With 
its ability to enable ever richer types of data and support not only 
high-performance transactions but also deep analytics and data 
mining, DB2 provides the capabilities that are critical for Smarter 

Commerce®, Smarter Banking®, Smarter Manufacturing, Smarter Distribution, and the 
whole broad range of capabilities our customers need to build a Smarter Planet®.

About Pat Selinger
Dr. Pat Selinger is a world-renowned pioneer in relational database management and 
inventor of the technique of cost-based query optimization that has been adopted by 
nearly all relational database vendors and is now taught in virtually every university 
database course. She was a key member of the original System R team that created the 
first relational database research prototype. She established and led IBM’s Database 
Technology Institute, considered one of the most successful examples of a fast technol-
ogy pipeline from research to development, and personally has technical contributions 
in the areas of database optimization, data parallelism, distributed data, and unstructured 
data management. Dr. Selinger, now retired and consulting at IBM, was appointed an 
IBM Fellow (IBM’s top technical honor) in 1994 and prior to her retirement held the 
position of IBM Vice President of Information Management Architecture and Technol-
ogy. She is an ACM Fellow, a member of the National Academy of Engineering, and a 
Fellow of the American Academy of Arts and Sciences. Dr. Selinger has published more 
than 40 refereed papers, has received the ACM Systems Software Award for her work 
on System R, and has received the SIGMOD Innovation Award, the highest ACM award 
given in the area of data management. She is now a project consultant for IBM.



xxii  •  IBM DB2: The Past, Present, & Future

Kate Tennant, Senior Manager 
of DB2 for z/OS Query Technology Development
I started with IBM in 1982. Since DB2 had not yet been 
announced, IBM was rather secretive about the project before I 
joined. All I knew was that I would be working on a pretty import-
ant software project for IBM. It sounded intriguing, and I thought 
it would be fun and exciting. Soon I learned that the project was 
DB2, and one year later it was announced to the world. I felt lucky 
and privileged to participate in the celebrations, since there were 

so many smart and talented people who had been working on the project for many years 
already. Now, 30 years later, DB2 is one of the most important and successful software 
products ever. Every day in the DB2 organization is still fun and exciting, and I still feel 
lucky and privileged to work with so many smart and talented people. I think it is safe to 
say that I won’t last another 30 years in IBM, but I am sure that DB2 will still be here, 
managing the world’s most important data and continuing to help make our world a 
“Smarter Planet.”

About Kate Riley Tennant
Kate Riley Tennant is Senior Manager of DB2 for z/OS Query Technology Development. 
She leads a worldwide team of over 80 software engineers who are developing and servi-
cing key components for DB2 for z/OS. Kate joined IBM in 1982 after graduating from 
California State Polytechnic University, Pomona, with a bachelor’s degree in computer 
science and a minor in mathematics. She became a manager at IBM in 1987 and has 
managed many different teams at IBM’s Silicon Valley Laboratory.



The History and Growth of IBM’s DB2
by Donald J. Haderle, retired IBM Fellow and principal at Haderle 

Consulting, LLC, and Cynthia M. Saracco, IBM senior solution architect

Abstract
IBM’s Database 2 (DB2®) relational database management system (DBMS) shipped 
in the early 1980s1 and drove billions of dollars of revenue to IBM and other firms 
within its first decade. The product spawned a wealth of add-on tools, shaped the future 
of mainframe computing, and provided independent software vendors with a strong, 
reliable, and scalable platform for mission-critical applications. Today, DB2 spans 
multiple operating systems and is widely deployed across a broad spectrum of industries. 
In this paper, we explore the beginnings of DB2 and trace its rise to prominence.

 While relational DBMS technology now represents a strong IBM business, it was 
hardly a sure bet in the 1970s and early 1980s. Indeed, the widespread deployment 
that DB2 enjoys today masks the many challenges of its formative years. Chief among 
these was building a viable product based on unproven technology while demonstrating 
tangible value to IBM’s hardware-oriented business.

 In this article, we explore the early years of mainframe DB2. The first two sections 
discuss database computing in the 1970s and the state of IBM and its customer base at 
that time, setting the context that led to IBM’s subsequent decision to form a distinct 
DB2 development group. In the next three sections, we examine how DB2 evolved into 
a commercial offering that ultimately influenced enterprise computing around the globe. 
In doing so, we explore three stages in the evolution of mainframe DB2 during its first 
15 years, when Don Haderle served as DB2’s chief software architect and later the chief 
technology officer of IBM Information Management. In the final section, we briefly 
discuss DB2 beyond that time and the development of DB2 for open systems, but we 
won’t do those topics complete justice.

© 2012 IEEE. Reprinted, with permission, from IEEE Annals of the History of Computing 34, no. 3 (July–
September 2012). Personal use of this material is permitted. Permission from IEEE must be obtained for all 
other uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse  
of any copyrighted component of this work in other works.



2  •  IBM DB2: The Past, Present, & Future

Database Management in the 1970s
Early DBMSs, such as IBM’s Information Management System (IMS™) and Cullinet’s 
Integrated Database Management System (IDMS), supported bill of materials (BOM), 
material resource planning (MRP), and other applications critical to business processes in 
manufacturing, finance, retail, and other industries. These products featured hierarchical 
or network data models and provided both database and transaction management servi-
ces. However, database schema changes required rewriting application programs, and 
programmers had to understand the complex principles of concurrency and consistency—
advanced thoughts at the time. As a result, application upgrades were often complicated 
and time-consuming.

 In 1969, E.F. Codd introduced the relational data model2, and various research proto-
types (such as UC Berkeley’s Ingres3, IBM’s System R4, and IBM’s Peterlee Relational 
Test Vehicle5) explored support of this model. In particular, System R introduced the 
Structured Query Language (SQL)6 in 1976 and proved the potential of relational DBMS 
technology for online transaction processing. (Pratt & Whitney demonstrated its usage 
in 1977. However, database management standards didn’t exist in the 1970s, and this 
limited adoption of DBMS offerings.)

 Midrange computers from Digital Equipment Corp. (DEC) and IBM supported small 
and medium businesses in the 1970s, as well as departmental functions within large 
businesses. However, mainframes provided the power that large businesses needed for 
core operations. Midrange and mainframe platforms used different hardware technolo-
gies, yielding distinct cost attributes and processing capabilities. IDMS and IMS DL/1 
were only available on mainframes. In 1979, Oracle Corp. introduced a relational DBMS 
on DEC based on information IBM published about System R. Similarly, IBM delivered 
a relational DBMS for System/38 in 1980.7 Both addressed the midrange market for 
query processing (decision support), not On Line Transaction Processing.

 Batch processing was the most popular execution model on mainframes in the 1970s. 
Firms stored data in files, and concurrent read/write access from multiple applications 
wasn’t supported. DBMSs evolved partly to address this, but programming was complex. 
In 1980, Frost and Sullivan reported that fewer than 25 percent of enterprises used a 
DBMS.8

The DB2 Decision for Mainframe
With that industry backdrop, let’s turn to what was happening in IBM during this time. 
IBM derived most of its revenue and profit from mainframe hardware, including periph-
erals. DBMS customers used more storage and processing capacity than others, so 
IBM sought to drive greater DBMS adoption. However, IBM depended on independent 
software vendors to support the latest IBM hardware. These vendors often delayed doing 
so until the new hardware enjoyed a strong installation base. This slowed hardware sales. 
As a result, IBM’s storage division funded the Eagle project in 1976 to develop advanced 
DBMS and transaction systems.



The History and Growth of IBM s̓ DB2   •  3

 By then, IBM’s IMS and Customer Information Control System (CICS®) had 
a proven track record of contributing to IBM’s mainframe sales and exploiting IBM 
hardware. However, both were first released on S/360 in 1969, and they needed enhance-
ments to keep pace with evolving customer concerns.

 The Eagle team focused on three fronts: (1) merging the different transaction models 
offered by IMS and CICS, (2) overhauling low-level infrastructure services for logging, 
memory management, transaction management, and the like, and (3) building a higher-
level software layer that could accommodate multiple data models, including flat file, 
relational, hierarchical, and network models.9 Unfortunately, technical leaders estimated 
that it would take a decade or so to upgrade IMS and CICS with Eagle technology; 
support for new data models would come even later. IBM business leaders found that 
timeline unacceptable.

 At the time, IBM had three distinct operating systems for the mainframe, each  
targeting different customer needs. VM (Virtual Machine) served decision support  
and experimentation in enterprises, DOS/VSE (Disk Operating System/Virtual Storage 
Extended) served small businesses, and MVS™ (Multiple Virtual Storage) served 
medium and large businesses’ needs. Bob Jolls, who managed the Advanced Database 
department for the VM and DOS/VSE operating systems, had to find a way to deliver 
Eagle technology to customers earlier. Firms working with the System R prototype on 
VM lobbied for a fully supported product. In 1979, Jolls concluded that IBM could 
deliver the System R prototype on VM and VSE within two years, and this led to IBM’s 
release of SQL/DS in 1981. Later that year, Jolls also decided to similarly provide System 
R’s capability on MVS, after which the MVS offering would add DL/1 on top of this 
same storage infrastructure, enabling programmers to access the same database via SQL 
or DL/1. Eagle’s objectives of merging the IMS and CICS transaction models and enhan-
cing their infrastructures were left to the IMS and CICS development teams to resolve.

 The stage was set for DB2. IBM established the DB2 development team in San Jose, 
California, where local expertise in MVS access methods, programming languages, and 
database management technology (e.g., IMS) was abundant and the Eagle team was 
located. A number of Eagle members joined the DB2 team, although some Eagle staff 
departed for competing firms before DB2’s first release. During this time, many IBM 
researchers, such as Codd, continued to work separately on advanced projects. Their 
efforts are the subject of another article in this journal (IEEE Annals of the History of 
Computing 34, no. 3, July–September 2012).

Stage 1: Development and Delivery of DB2 Version 1
Development of the first version of DB2 began in earnest in 1980 and continued through 
its limited availability in 1983 until its general availability in 1985. During this time, 
Haderle and his cohorts met with many customers who clamored for solutions that  
would help them rapidly satisfy business needs.10 Customers lamented the complexity 



4  •  IBM DB2: The Past, Present, & Future

of managing their existing data centers, the lack of skills, and the increasing backlog of 
business requirements. After seeing System R, they seized on the relative ease of creating 
new databases and applications, particularly for data analysis and report generation.

Staffing and priorities
The DB2 team needed to provide strong integration with the hardware, operating system, 
application programming languages, and transaction systems of MVS to dramatically 
reduce the time to develop and deploy new databases and applications and to achieve 
respectable cost/performance. Leading this effort were Marilyn Bohl, the develop-
ment manager; Don Haderle (IBM Fellow, 1989), the overall technical leader; and Bob 
Jackson, the technical lead for DB2’s integration with MVS. Bohl had served as a team 
lead in CICS, a manager in IMS, and a second-level manager of IBM’s sorts and assem-
bler products. Haderle had a decade of experience developing applications, operating 
systems, file systems, compilers, and security systems. Jackson had spearheaded MVS 
I/O subsystem development in the early 1970s. The photograph below depicts these three 
DB2 leaders in the early 1980s.

A host of experts in CICS, IMS, COBOL, FORTRAN, and other technologies joined 
DB2, which consisted of several hundred people. John Nauman managed query process-
ing development and Josephine Cheng (IBM Fellow, 2000) led query optimization; Dick 
Crus led the database manager11; Bob Gumaer and Jim Teng created the buffer manager12; 
Jay Yothers led application binding; Akira Shibamiya led performance; Roger Reinsch led 
the subsystem team; and Earl Jenner with Cliff Mellow developed the log based recovery 

Marilyn Bohl, Don Haderle, and Bob Jackson led DB2 Version 1 development.



The History and Growth of IBM s̓ DB2   •  5

mechanisms. Roger Miller joined DB2 from Fireman’s Fund Insurance, bringing a critical 
customer perspective. (For three decades, he served as the DB2 customer ombudsman.) 
IBM Vice President J. (Jack) D. Kuehler served as DB2’s executive sponsor.

 Like the cobbler’s children, the DB2 team was starved for compute time during 
the early days. Network wiring limitations at the site restricted the number of available 
terminals, and mainframes were expensive. The team couldn’t afford a dedicated MVS 
machine. Yothers built an MVS emulator for VM so the team could test its software 
during the day. Native MVS testing occurred after hours or on weekends when others 
weren’t using the system. DB2 developers shared 30 terminals, forcing the team to 
operate on all shifts.

 System R’s Relational Data System (RDS) served as the basis for DB2’s query 
processing engine. However, DB2 developers rewrote the code into PL/S13 and hosted 
it atop the Eagle storage engine, which handled storage, buffering, serialization, 
consistency, and durability on the foundation of an extended MVS operating system.14

Performance challenges
Haderle and Shibamiya created a performance model for the initial DB2 design and 
projected that DB2’s processor consumption would be 3 to 4 times that of DL/1, 10 times 
that of IMS FastPath, and more than 10 times that of native file managers. These differ-
entials were significant. Processor and storage costs comprised the majority of mainframe 
expenses at the time, and customers monitored such costs closely.

 With considerable effort, the DB2 team reasoned that it might be able to close the 
gap by a factor of 2 to 3. Continual hardware improvements over time would diminish the 
importance of processor cost relative to the overall cost of computing.

 Unfortunately, the forecasted cost performance gap proved true.15 The first version of 
DB2 was more expensive to use and less robust than IMS DL/1 or CICS File Control for 
mission critical applications. Customers begrudgingly accepted this added expense only 
for occasionally used applications or new applications that needed to be deployed quickly.

Key strengths
Fortunately, in 1983 an Austrian customer validated that developing and deploying 
solutions with DB2 was more than 10 times faster than existing technology. This was 
DB2’s key strength at the outset. Three factors enabled DB2 to dramatically improve 
application development, database administration, and system administration:

1. IMS and CICS required firms to shut down their transaction systems to define or 
alter a data model as well as to create or alter an application’s database requests. 
In most cases, such work was done on weekends when the operational system 
was not used. With DB2, this work could be done online without impacting 
existing operations. This reduced development and test efforts by several factors.



6  •  IBM DB2: The Past, Present, & Future

2. SQL syntax was consistent across programming languages and interactive use. 
Programming language preprocessors extracted the SQL statement and replaced 
it with a CALL to DB2 with proper binding to language structures, allowing 
programmers to perceive SQL as an extension of COBOL, FORTRAN, and 
PL/1. Programmers could test SQL interactively before embedding it in their 
application.

3. A DB2 database could be accessed from any application environment within the 
MVS ecosystem, allowing data to be shared across applications in CICS, IMS, 
TSO, and batch. This was novel (other DBMSs had more limited connectivity) 
and made DB2 databases as available to applications as the file system.

Early applications and usage patterns
The killer application for DB2 was QMF™ (Query Management Facility)16, IBM’s query 
and report writer. In the early to mid-1980s, business users rarely accessed data direct-
ly—the tools were too difficult for anyone but technical staff (IT professionals) to use. 
Instead, users submitted requirements to IT, and programmers manually coded the logic 
necessary to obtain the desired data. Such logic was typically written in RPG, COBOL, or 
a similar programming language, although 4GL tools (such as Ramis, Nomad, and Focus) 
were sometimes used. Generating new reports was a large part of the application demand 
facing IT leaders, and QMF responded to this.

 QMF allowed IT professionals to construct queries and reports interactively. And it 
provided a scripting language for building reports from sets of queries. IT created and saved 
such scripts, making them available to business users for interactive or scheduled execution. 
IT typically scheduled scripts to run periodically (perhaps every night or at the end of every 
quarter) so that timely reports would available for the business. This delighted business 
users, who began to demand more. Early DB2 systems had thousands of QMF scripts.17

 During this period, DB2 applications and databases were simple. IT staff often 
ported existing batch applications, carrying over data structures with little change. This 
allowed application function to be brought online and data to be available for query-
ing. Unfortunately, applications generally retained existing record-level access based on 
primary or secondary key values. Joining or filtering data was done within applications 
rather than by DB2. This led to horrible performance, as the processor cost for retriev-
ing lots of unnecessary columns was enormous. Retraining programmers to use database 
joins and retrieve only the columns they needed was a significant effort. After all, appli-
cations previously retrieved the record with all of the fields into a memory data structure 
and passed that structure to all of its subprograms, so programmers had no idea exactly 
which fields the subprograms needed.

 Data was generally loaded in bulk through high-speed non-SQL programs. Batch 
programs took daily or weekly feeds from existing systems and updated DB2 so that the 
data could be queried and reports generated. At this time, the volume of data entering 



The History and Growth of IBM s̓ DB2   •  7

databases via online transactional applications was relatively small (just millions or 
billions of bytes, not the trillions that are now used).

Driving DB2 adoption
A 1982 paper by John Zachman18 helped set the stage for DB2 adoption, albeit indirectly 
(and perhaps unintentionally). At that time, basic business operations that needed to 
be treated as a logical unit—such as order processing, billing, and fulfillment—were 
supported by discrete applications that required their own copies of the same data, often 
in different formats. Forward-thinking IT organizations worried about the growing 
complexity of managing the data flows required to support such disparate applications, 
and this paper presented a compelling vision that DBMSs might help them cope with that 
complexity. Consequently, when IBM released DB2, some IT architects viewed DB2 as a 
way to improve data and application integration over the long term.

 From the outset, IBM understood that standardizing SQL was critical. Firms wanted 
alternatives provided by standardization; furthermore, national governments, includ-
ing the USA, Germany, and England, demanded it in their requisitions. In 1982, ANSI 
formed an X3H2 subgroup to standardize SQL,19 and the first version was adopted in 
1986. ISO adopted the initial SQL standard in 1987. This, coupled with embrace of the 
standard by IBM, Oracle, Teradata, Sybase, and others, led to its widespread usage.

Limited and general availability
DB2’s limited availability in 1983 brought the software to 40 to 60 customers. Senior 
IBM executives would permit DB2 to be generally available only when the early custom-
ers were delighted, but customers found glaring errors, especially with recovery and 
serviceability. For example, DB2 recorded data for recovery on dual logs. Although IBM 
emphasized the importance of those logs to customers, one early customer overwrote the 
logs before the data was synchronized, creating a recovery nightmare. Consequently, the 
DB2 team quickly developed facilities to recover from myriad situations.

 During DB2’s limited availability, IBM System/370 processors and MVS upgraded 
to 31-bit addressable memory,20 prompting significant DB2 enhancements and lengthy 
testing. As it turned out, DB2 desperately needed the additional memory, so the delay was 
a godsend. In 1985, IBM finally made DB2 generally available to MVS customers with 
a low-key product announcement,21 positioning it as a decision support offering. (IBM 
business leaders were concerned that DB2 would stretch the thin field force that was 
supporting IMS.) IMS DL/1 remained the high performance transactional offering and 
strove to keep its revenue stream intact.

 A number of IBM customers quickly realized DB2’s value. DB2 was not cost 
competitive for significant transaction processing vis-à-vis IMS DL/1, IDMS, Adabas,  
or Datacom/DB. But it leveraged firms’ existing investments in IMS, CICS, and MVS 
and helped IT respond to new business imperatives. DB2’s support for transactions, 
batch, and interactive models was critical.



8  •  IBM DB2: The Past, Present, & Future

 Meanwhile, Teradata debuted in 1984 with a highly parallel architecture running 
on microprocessors capable of handling significantly larger data volumes than DB2. 
Companies in banking and retail loaded detail records into Teradata for analysis and used 
DB2 to work with the summarized data. At the outset DB2 provided inter-query parallel-
ism—intra-query parallelism (using multiple processors to satisfy a single query) would 
not be supported until 1993. There were more pressing problems.

Stage 2: “Ready for Prime Time”
From 1985 through 1988, DB2 development focused on making the product ready 
to handle mission-critical workloads. This required dramatic reductions in processor 
consumption to improve cost and throughput. Also mandatory were concurrency, service-
ability, and manageability improvements as well as support for referential integrity.

 From 1986 to 1987, IBM released two DB2 upgrades and a performance modeling 
tool that sales personnel could use to forecast hardware requirements.22 However, the 
big news was Version 2. Delivered in 1988, it launched a new era for the product. As 
the headline of one trade journal noted, DB2 was finally “ready for prime time.” Getting 
there took some doing.

 In 1980, IBM envisioned SQL and DL/1 sharing data and slated this capability 
for the Version 1 Release 2 of DB2. But the DB2 team quickly realized that its DL/1 
performance would be unattractive to IMS customers. Furthermore, migration issues 
would be significant, as not every DL/1 function call would behave compatibly. Resolv-
ing these problems would have taken years and prevented the DB2 team from responding 
to other customer demands. Fortunately, early customers such as Boeing Computer Servi-
ces and Caterpillar helped IBM understand their needs and resolve the different roles that 
IMS and DB2 would play. As such, DB2 abandoned its strategy to support multiple data 
models and focused exclusively on relational technology.

 During Version 2 development, staffing changes continued to occur, with some DB2 
developers and IBM researchers departing for competing firms or establishing independ-
ent consultancies.23 As a result, Josephine Cheng became the DB2 query processing 
manager, and Yun Wang (IBM Fellow, 2005) became the query processing technical lead.

CPU cost correction
Reducing DB2’s processor consumption meant inspecting the most performance-sensitive 
code paths and tightening the code, which required changes in the operating system, 
the transaction managers,24 and DB2. Highly sensitive code paths were rewritten in 
Assembler Language to control the instruction sequence. The hardware team analyzed 
instruction streams and improved their pipeline process for DB2. DB2 needed to marshal 
columns and search arguments itself and the application, which was very expensive. 
Saving artifacts allowed reuse for subsequent executions.

 With all this work, DB2’s processor consumption was brought within 25 percent of 
DL/1’s by 1988. The gap between DB2 and other non-IBM DBMSs was even narrower. 



The History and Growth of IBM s̓ DB2   •  9

IMS FastPath provided a more constrained yet useful data model that delivered orders of 
magnitude better performance for target applications, and DL/1’s hierarchical model was 
still better suited for bill of materials and other applications.

 With DB2 Version 2, a 3090-600S mainframe with 256 MB of main memory could 
process 270 transactions per second at 87.7 percent processor utilization, providing a 120 
percent improvement in throughput over the prior release.25 Together with other features 
(such as referential integrity and increased reliability), this made customers feel safe 
deploying DB2 for On line Transaction Processing. From this point on, DB2 was used 
heavily for transaction processing.

Serviceability, reliability, and concurrency
Staff at Boeing Computing Services (BCS),26 particularly Walt Crush, helped the DB2 
team understand the imperative for greater levels of availability and reliability. Business 
units funded BCS and established service-level agreements that specified financial penal-
ties to BCS if they failed to meet availability targets. BCS database administrators were 
responsible for such service. They needed to be able to identify any problem violat-
ing the contract’s terms and take appropriate action, such as terminating the offending 
application(s), shifting workloads, and so on. The mandate was to keep the system avail-
able for the masses, sacrificing a few. Service-level agreements were common among 
MVS customers and heavily influenced DB2’s development efforts.

 Servicing SQL problems proved problematic. System R compiled queries, producing 
an executable program with embedded calls to low level database services. The compiler 
managed machine registers, limiting the addressability of the compiled code and data 
areas. If the limits were exceeded, the compiler would declare the statement to be “too 
complex” and the query would fail. With the complexity of SQL increasing, this had 
become a common event. Servicing bugs in the compiled code also proved troublesome, 
so the DB2 team redesigned the SQL runtime to generate interpretive instructions. While 
some had thought that the compiled query would run more efficiently, this wasn’t the 
case.

 Concurrency was also a major issue. DB2 locked data and index pages, which 
created hot spots and problems for small tables. An elegant solution would require years 
of effort, and the team needed stopgaps. In 1986, Irv Traiger, manager of the database 
department at IBM’s Almaden Research Center, proposed that research and development 
pool resources to jointly work on key issues. Thus, DBTI was formed. IBM’s Data Base 
Technology Institute (DBTI) stepped up to the challenge, providing advanced technology 
that drove DB2. Patricia Selinger (IBM Fellow, 1994) served as its manager and Joseph-
ine Cheng led development. Concurrency challenges emerged as an early area of focus. 
C. Mohan (IBM Fellow, 1997) spearheaded efforts in this area with ARIES,27 developing 
algorithms for fine grain concurrency and recovery. In 1988, DB2 Version 2 subset data 
and index pages (i.e., organized a 4k page into smaller units) for locking and recovery 



10  •  IBM DB2: The Past, Present, & Future

as a stopgap measure. It took until 1995 to implement the full technology, aggravated by 
changes in the IBM System/390® architecture, which we’ll discuss shortly.

 Benchmarks also influenced DB2 development efforts in this period and beyond. 
The team created internal benchmarks from customer experiences and used competi-
tive benchmarks (such as the Model 204 benchmark28) to investigate performance 
issues. Gordon Steindel and Craig Madison from the Great West Life (GWL) Insurance 
Company in Winnipeg, Ontario29 created a benchmark that proved important for DB2 
throughout the 1980s. This benchmark employed a wonderful set of queries that mirrored 
what IBM saw from its leading customers. GWL’s tests showed that DB2 excelled in 
transaction processing and Teradata excelled in query processing, so the DB2 team 
created many algorithms and techniques to improve its query processing, including skip 
sequential processing, hybrid join,30 and function pushdown. Haderle traveled frequently 
to the frozen tundra of Winnipeg in the late 1980s, where the GWL team graciously 
hosted him, benchmarked and critiqued DB2 technology upgrades, and introduced him to 
curling and other winter diversions.

Partnerships, press, and product positioning
Administering any DBMS in the 1980s required considerable skill. An application’s 
success depended on database administrators, who amassed considerable clout and 
influenced which DBMS would be used for an application. Administrators needed tools 
to manage DB2 and tune performance. IBM’s Norris van den Berg convinced software 
vendors such as BMC, Platinum, and Candle to develop tools for the nascent DB2 
product. IBM SHARE and GUIDE user groups created working sessions on DB2. In 
addition, independent DB2 user groups sprung up around the world, attracting adminis-
trators who swapped tips. In 1988, these groups formally united as the International DB2 
User Group, a non-profit organization that now hosts numerous conferences, workshops, 
and other activities.

 IBM sponsored various efforts to educate and promote DB2 technology to its sales 
force and customer base.31 At this time, IBM lacked a direct software sales force, and 
regional software specialists32 supported hardware sales teams.

 Trade journals kept DBMS news highly visible.33 Consulting agencies, such as Codd 
& Date and Database Associates, drove attention to relational DBMS technology in 
general and occasionally DB2 in particular.

 Application software vendors were important in 1988, but not nearly as important as 
they would be in another decade. Most large enterprises created their own applications. As 
such, the technology was focused on their needs. With DB2 making strides in mainframe 
shops, getting application vendors (e.g., SAP, Hogan) to port to DB2 was a bit easier.

 In 1988, if computing cost or transaction throughput was the customer impera-
tive, IBM promoted IMS DL/1 or FastPath.34 If response to business initiatives was the 
customer imperative, IBM promoted DB2.



The History and Growth of IBM s̓ DB2   •  11

 DB2’s competition for transactional work came primarily from pre-relational 
DBMSs (such as IDMS, Datacom/DB, and Adabas), which struggled during the late 
1980s. For example, Datacom/DB was a CODASYL DBMS with an added SQL layer, 
which Orrin Stevens later acknowledged to be a troublesome implementation.35 IDMS/R 
was also a CODASYL DBMS with an added SQL layer; its relational support was not 
very competitive and the product lacked the application productivity improvements 
that DB2 offered. Adabas was an inverted list DBMS with a SQL layer; it had a small 
presence in the United States with a larger one in Germany. CINCOM offered the SUPRA 
relational DBMS, which lacked SQL support until 1989. Oracle never attracted a large 
following on MVS.

 In 1985 IBM announced the 3090 series with 2-, 4-, and 6-way symmetric multi-
processors (SMPs), a significant departure from prior 1-, 2-, and 4-way processors. 
DB2’s threading model scaled well as the number of processors increased, and all shared 
services (such as memory management and locking) used fine grain serialization, which 
permitted any level of multiprogramming. By contrast, DB2’s primary mainframe 
competitors—IDMS and Datacom/DB—had a threading model that topped out at two 
processors. As a consequence, DB2 could generate a higher transaction rate on IBM’s 
latest processors. This and other improvements propelled DB2’s adoption.

 By 1989, half of the mainframe customers had DB2 installed. Furthermore, hardware 
sales driven by DB2, coupled with software sales of DB2 and related offerings, repaid 
IBM’s costs to develop DB2.36

 In 1989, Tandem delivered Nonstop SQL, which would become a formidable 
DB2 competitor until the mid-1990s. Midrange systems lacked the throughput offered 
by mainframes until the mid-1990s, so Oracle, Sybase, Informix®, and Ingres didn’t 
compete directly with mainframe DB2 until then.

 With the delivery of DB2 Version 2 in 1988, DB2 was primed for widespread 
deployment of On Line Transaction Processing applications with acceptable performance 
and cost coupled with tools to manage it. And the product bug rate was now tolerable. 
Decision support was widely used with increasing complexity of analysis and increasing 
database sizes (100 GB at this time).

Stage 3: Availability, Performance, and Distributed Databases
While reveling in the success of Version 2, the DB2 team still faced many challenges. 
From 1988 through 1991 (Version 3), DB2 continued to improve compute cost and 
throughput for transactions. It also dramatically improved performance for business  
intelligence workloads.

 Bala Iyer led the design of algorithms for data compression and sorting, working 
with the processor teams to process these functions efficiently. Storage costs plunged 
with hardware assisted data compression,37 and processing cost for sorts (integral in query 



12  •  IBM DB2: The Past, Present, & Future

processing) also improved significantly with processor assists.38 Yun Wang led improve-
ments to the DB2 query processor and Iyer led work with the hardware teams, creating 
many of the query processing algorithms that would distinguish DB2.

 In 1989 system availability became the top customer requirement. In the early 1980s, 
online systems were available for one or two shifts (16 hours) Monday through Satur-
day. Batch processing occurred on the remaining shift. On weekends, the system would 
be down for 12 to 24 hours for maintenance. By 1989, leading firms operated without 
downtime and needed 24x7 availability.

 Jim Teng led DB2’s effort on high availability over the next decade, working with 
the IBM storage group on hardware-related technical requirements. The DB2 recovery 
log was replicated locally and remote. Recovery scripts were created to restart DB2 on 
the takeover system.

 Version 3 of DB2 also delivered significant support for distributing computing. Work 
in this area began in 1987, when Jackson returned from the UK (where he had supported 
DB2’s launch in Europe) to lead DB2’s distributed database team with Curt Cotner (IBM 
Fellow, 2004), who had extensive experience building distributed applications. Client/
server computing was taking off, thanks to the growing popularity of PCs and other 
devices. IBM Research had been exploring distributed topologies through System R*,39 
an extension to System R. Screen scrapers were available in 1988, which allowed PCs 
and other devices to act as 3270 terminals and access QMF and other MVS applications. 
But one could not easily have an application residing on the external device access DB2 
on MVS.

 IBM needed to establish protocols so applications and databases on heterogeneous 
platforms could communicate. This required cooperation from various IBM product 
teams, including DB2 on MVS, SQL/DS on VM and VSE, and DB2 on AS/400®. IBM 
convened a cross-divisional team to create the Distributed Relational Database Archi-
tecture™ (DRDA®).40 DB2 implemented this in 1989,41 allowing applications on MVS 
to remotely access another DB2 database. By 1991, applications outside of MVS could 
remotely access DB2 databases—a full service client/server topology. While DRDA 
allowed remote applications to connect to databases with different SQL capability, 
the ANSI/ISO Remote Database Access (RDA) standard (which was ratified in 1993) 
emphasized application portability with a limited SQL capability. The majority of the 
applications developed for DB2 used DRDA to take advantage of advanced function in 
the target database.

 During this time, IBM’s overall software efforts were growing more complex. The 
firm was struggling to continue to deliver high quality, timely software products. Given 
IBM’s significant investments in software, this was no trivial matter. As a result, IBM 
formed a distinct software organization (Programming Systems) and appointed Earl 
Wheeler as its executive. DB2 and other select software offerings reported to this organ-



The History and Growth of IBM s̓ DB2   •  13

ization. However, hardware still drove IBM revenues, and the software division had to 
prove that it could meet the needs of IBM’s hardware business.

Stage 4: Sysplex and Open Systems
DB2’s exploitation of MVS hardware and software represented a large part of its value, 
and a cross-product Architecture Review Board (ARB) helped IBM achieve this. Led 
by Gary Ferdinand, the board included representatives from the broad MVS ecosystem, 
including processors, storage, IMS, CICS, and DB2. The board established blueprints that 
shaped joint initiatives, synchronized development plans, and coordinated delivery sched-
ules. After all, if the hardware improved but other components didn’t support it, then it 
had no value.

Data sharing
Through this board, one topic surfaced that shaped much of DB2’s development efforts in 
the early 1990s: supporting a massively parallel processing (MPP) mainframe. In 1986, 
IBM hardware experts led by Rick Baum projected that improved microprocessors and 
network interconnects would enable new platforms to compete against mainframes at a 
much lower cost during the next decade. Teradata, based on the Intel® x86 microproces-
sor, was an example of this. IBM began rebasing its mainframes on microprocessors. To 
scale effectively, multiple SMPs were linked to create a Massively Parallel Processor 
(MPP) topology that allowed data sharing; i.e., all data was accessible from any node in 
the MPP configuration. This configuration was dubbed the Sysplex, and it caused a major 
redesign of the DB2 kernel.

 C. Mohan, Inderpal Narang, Jeff Josten,42 and Jim Teng developed the necessary 
algorithms for DB2, working with other MVS experts (for complete attribution, see the 
IBM Systems Journal dedicated to the Sysplex43). Josten and Teng undertook the enormous 
effort to upgrade DB2—an effort that touched the very core of the product, including 
serialization, buffer management, and recovery. DB2 delivered Sysplex support in 1995.

 At the same time, Yun Wang led the transformation of DB2 query processing to 
support intra-query parallelism,44 which was critical for strong runtime performance of 
data-intensive queries. The approach was delivered in stages from 1993–1997, culmin-
ating with Sysplex query parallelism in Version 5. DB2’s improvements in this area 
enabled the product to support query processing of large databases (terabytes or more).

Portability and the IBM software business
During this time, IBM software management changed dramatically. Its Programming 
Systems division had demonstrated that it could improve product quality and adequately 
serve IBM’s hardware business. Lou Gerstner, then CEO, consolidated all software into a 
single Software Group run by Steve Mills, who convinced IBM to invest in software as a 
business. The new division continued to support IBM hardware but had its own revenue 
targets and maintained a dedicated software sales force. In time, this team would drive 
billions of dollars in IBM software revenues through relational DBMS sales.



14  •  IBM DB2: The Past, Present, & Future

 Independent software vendors such as Oracle, Informix, Ingres, and Sybase proved 
popular with customers on open systems platforms, competing and winning business 
away from IBM. However, once IBM perceived software as a distinct business oppor-
tunity, this opened the door for IBM to offer a relational DBMS on non-IBM platforms, 
including HP, Sun, and Microsoft® Windows®.

 To establish an IBM presence as quickly as possible, Janet Perna formed a dedicated 
“workstation” DBMS team in Toronto, Canada. This team partnered with IBM Research 
and the DB2 developers in California to deliver a respectable IBM alternative. (A separ-
ate organization in Rochester, Minnesota, built DB2 on AS/400. This offering, released in 
1988, evolved from IBM’s System/38, which also shipped with a relational DBMS.)

 IBM concluded that developing a common code base for DB2 across all platforms 
would be too expensive for existing products (DB2 on MVS, SQL/DS, and DB2 on 
AS/400) and hinder quick support for new platforms. Consequently, IBM developed 
DB2 for open systems on a new code base written largely in C. IBM ported this DB2 
code base to a variety of non-mainframe platforms, including OS/2, Windows, UNIX®, 
and Linux®, and integrated advanced technologies from research projects (such as 
Starburst45) into the engine. Developers and researchers continued their collaboration  
in subsequent releases, emphasizing scalability, performance, and other features.46

 IBM strove for functional consistency across its DB2 product suite, but customer 
priorities differ among mainframe and non-mainframe users. IBM formed a cross-product 
DBMS technical council to drive SQL consistency across its product line and minimize 
changes required for applications that needed to run against different DB2 offerings. 
For the most part, customers found this approach acceptable. IBM added various SQL 
extensions to its DB2 offerings during this time, including table expressions, outer joins, 
recursion, stored procedures, triggers, and other features to enhance query capabilities, 
comply with standards, and address customer demands. In addition, support for double-
byte characters allowed DB2 to host native text for many alphabets which exceeded 256 
characters (e.g., Chinese, Japanese, Korean).

 DB2 for Unix/Windows faced considerable competition when it was first released. 
Competitors had a foothold in many accounts, and they had a healthy suite of business 
partners and value-added resellers. Increasingly, sales of DBMS—and other—software 
were being driven through this indirect channel, and IBM’s Software Group formed a 
dedicated team to pursue alliances. IBM established partnerships with hardware vendors 
that competed with offerings produced by other IBM divisions. Customers’ preferences 
for “open systems” mandated this shift.

More growth opportunities
Data warehousing also emerged in the early and mid-1990s as a new direction for DB2. 
Query language extensions, improved autonomics, indexing enhancements, improved 
database scalability, and new query optimization techniques (such as new join methods) 



The History and Growth of IBM s̓ DB2   •  15

were among the technologies needed to address the demands of data warehouse 
customers running online analytical processing, business intelligence, and data mining 
workloads. IBM ultimately released its InfoSphere® Warehouse product suite, featuring 
DB2 as the underlying DBMS.

 Evolving customer workloads prompted further changes to the DB2 product suite 
over time. For example, IBM invested in DBMS tools to simplify DB2 application 
development, database management, and analytics. Another effort involved supporting 
database federation technology, which presents users with a single-site image of dispar-
ate and physically distributed data sources.47 Web-based computing drove support for 
Web service access to DB2 data as well as native support for XML data. The latter 
allows hierarchical structures to co-exist with tabular structures in the same database and 
provides “bilingual” query services through new support for the XQuery (XML Query).

Summary
Today, DB2 enjoys a wide installation base among enterprises throughout the world. 
The product suite, anchored by its flagship mainframe DBMS, drives billions of dollars 
in revenue to IBM annually and supports mission-critical applications for most major 
corporations around the world. However, its success wasn’t a given during its early days, 
as DB2 faced considerable business and technical challenges during its formative years. 
Ultimately, combined efforts from key IBM business leaders, developers, and researchers 
enabled IBM to overcome these challenges and deliver a popular suite of software offer-
ings based on relational DBMS technology.

Acknowledgments
The authors would like to thank those who provided materials or comments helpful to 
this article. In alphabetical order, Marilyn Bohl, Don Chamberlin, Burt Grad, Warren 
Lucas, Roger Miller, Norris van den Berg, and Mel Zimowski.



16  •  IBM DB2: The Past, Present, & Future

About the Authors

Donald J. Haderle is a retired IBM Fellow and former Chief 
Technology Office of IBM’s Information Management organ-
ization. He joined IBM in 1968 and later became the founding 
architect of DB2. He was appointed IBM Fellow in 1989, 
Association for Computer Machinery (ACM) Fellow in 2000 in 
recognition of his impact on database management technology, 
and elected to the National Academy of Engineering in 2008 for 
contributions to the management of high-performance relational 
databases and for his leadership in founding the relational 

database-management industry. He holds more than 50 patents and invention disclosures 
spanning a wide range of information management, transaction processing, distributed 
computing, and business intelligence technologies. After retiring from IBM in 2005, 
he founded Haderle Consulting LLC and served on advisory boards at several software 
firms, including Vertica Systems, Inc., Ants Software Inc., and newScale, Inc. Today, 
he continues to consult with venture capitalists, start-up companies, and a few mature 
businesses. He can be reached at donhaderle@yahoo.com.

Cynthia M. Saracco is a senior software solution architect at 
IBM’s Silicon Valley Laboratory who specializes in emerging 
technologies and information management. For more than a 
decade, she worked for Don Haderle on Information Management 
strategy issues spanning a diverse range of technologies, including 
business intelligence, spatial data, temporal data, object-oriented 
data management, database federation, XML data management, 
and database application development for the Web. Most recently, 
Ms. Saracco is focusing on Big Data and related technologies. She 
has 26 years of software industry experience, has written 3 books 

and more than 70 technical papers, and holds 7 patents. She can be reached at saracco@
us.ibm.com.



The History and Growth of IBM s̓ DB2   •  17

Notes
 1. “Relational Data Base Management System Announced for Large Enterprises,” IBM Press 
Release #ISG047 (June 1983).
 2. E.F. Codd, “A Relational Model of Data for Large Shared Data Banks,” Communications of the 
ACM 13, no. 6 (1970): 377–387.
 3. Michael Stonebraker, “Retrospection on a Database System,” ACM Transactions on Database 
Systems (TODS) 5, no. 2 (June 1980).
 4. D.D. Chamberlin, M.M. Astrahan, K.P. Eswaran, P.P. Griffiths, R.A. Lorie, J.W. Mehl, P. Reisner, 
and B.W. Wade, “SEQUEL 2: A Unified Approach to Data Definition, Manipulation, and Control,” IBM 
Journal of Research and Development 20, no. 6 (November 1976): 560–575.
 5. S.J.P. Todd, “The Peterlee Relational Test Vehicle: A System Overview,” IBM Systems Journal 15, 
no. 4 (1976): 285–308.
 6. Donald Chamberlin and Raymond Boyce invented SQL. For his efforts, Chamberlin was named 
IBM Fellow in 2003, ACM Fellow in 1994, IEEE Fellow in 2007, and CHM Fellow in 2009.
 7. In 1978, IBM announced S/38, which featured a relational DBMS. General availability occurred  
in 1980.
 8. Frost and Sullivan, Data Base Management Services Software Market, report #A747 (1979):  
208–213.
 9. Chris Date worked on Eagle’s development of the Unified Data Language (UDL), a single data 
language that would encompass all data models. Franco Putzolu from IBM Research worked with Dick 
Crus and others to extend System R’s data manager to support multiple data models. Don Haderle led  
the design for the overall subsystem.
 10. Even today, firms’ appetites appear to be insatiable. Chris Murphy, “IT is Too Darn Slow,” 
InformationWeek (Feb. 28, 2011).
 11. R.A. Crus, “Data Recovery in IBM Database 2,” IBM Systems Journal 23, no. 2 (1984).
 12. J.A. Teng, R.A. Gumaer, “Managing IBM Database 2 Buffers to Maximize Performance,”  
IBM Systems Journal 23, no. 2 (1984).
 13. DB2 was written in PL/S, a 3GL similar to PL/1 but with language constructs that allow system 
privileged requests (e.g., changing protect keys). By contrast, the System R prototype was written in PL/1.
 14. D.J. Haderle, R.D. Jackson, “IBM Database 2 Overview,” IBM Systems Journal 23, no. 2 (1984).
 15. Chris Loosley, “IBM Database 2 Performance Measurements,” InfoIMS 5, no. 1 (First Quarter 
1985).
 16. J.J. Sordi, “The Query Management Facility,” IBM Systems Journal 23, no. 2 (1984).
 17. James Boyle, William Ogden, Steven Uhlir, and Patricia Wilson, “QMF Usability: How It Really 
Happened,” Proceedings of IFIP INTERACT’84: Human-Computer Interaction (1984): 877–882.
 18. John Zachman, “Business Systems Planning and Business Information Control Study:  
A Comparison,” IBM Systems Journal 21, no. 1 (1982): 31–53.
 19. Leading IBM’s early participation in SQL standards efforts were Bob Engles (who wrote the first 
draft of the ANSI SQL standard submission) and Phil Shaw (who was IBM’s initial representative on the 
ANSI SQL committee). In later years, IBM’s key contributors to the SQL standards efforts included Hugh 
Darwen, Nelson Mattos, and Mel Zimowski.
 20. In 1985, IBM’s 3081 processor executed 5–10 MIPs (million instructions per second) with 32 MB 
of main memory. In 2011, IBM constructed IBM Watson™ to challenge in Jeopardy using 10 racks of 
IBM Power 750s with 2870 processor cores able to execute 80 TIPs (trillion instructions per second) with 
15 TB of main memory.
 21. “IBM Database 2 (DB2) Is Announced with Availability Planned for Third Quarter 1984,” IBM 
announcement letter #5740-XYR (1984). (General availability actually occurred in 1985.)
 22. Chris Loosely led this effort.
 23. John Naumann and others departed to Tandem; Jerry Baker, John Mortenson, and David Beech 
joined Oracle; and Marilyn Bohl moved to Digital Research. In addition, E.F. Codd and Chris Date 
formed a consulting company, as did Colin White and Chris Loosely.
 24. Bob Ojala and Fred Orosco streamlined the interfaces between IMS, CICS, and DB2.
 25. Dave Hauser and Akira Shibamiya. “Evolution of DB2 Performance,” InfoDB (Summer 1992).
 26. Jim Ruddy, who worked for the Boeing database team from 1978 to 1995, provided valuable 
insight. In 1995 he joined IBM DB2 development, where he helped to make life better for DB2 DBAs.



18  •  IBM DB2: The Past, Present, & Future

 27. C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz, “ARIES: a 
Transaction Recovery Method Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-
Ahead Logging,” ACM Transactions on Database Systems (TODS) 17, no. 1 (March 1992).
 28. P.E. O’Neil, “Model 204 Architecture and Performance,” High Performance Transaction Systems, 
Proceedings 1987, Springer-Verlag Lecture Notes in Computer Science 359 (1989): 40–59.
 29. Steindel and Madson published the benchmark in a paper in 1987. Neither they nor we have been 
able to resurrect a copy of that paper.
 30. Josephine M. Cheng, Donald J. Haderle, Richard Hedges, Balakrishna R. Iyer, Ted Messinger, C. 
Mohan, and Yun Wang, “An Efficient Hybrid Join Algorithm: A DB2 Prototype,” ICDE (1991): 171–180.
 31. In particular, Charles Bontempo of IBM’s Systems Research Institute taught database 
management courses to IBM’s best and brightest.
 32. Warren Lucas, one of IBM’s first software sales specialists, was instrumental in driving DB2  
into New York accounts and vital to DB2’s success.
 33. Controversy about compliance with E.F. Codd’s 12 rules for relational technology arose in 
the trade press, including Computerworld’s Oct. 14 and 21, 1985, issues. However, this had little impact 
on DB2 sales, as potential customers gave higher priority to serviceability, availability, performance, 
efficiency, and other areas.
 34. Vern Watts, one of the founding fathers of IMS, was an ardent DB2 supporter who helped IMS 
customers distinguish use cases for DL/1 versus DB2. He helped DB2 establish a foothold in many IMS 
accounts.
 35. Orrin Stevens, Jr., “The History of Datacom/DB,” IEEE Annals of the History of Computing 31, 
no. 4 (October–December 2009).
 36. As a humorous aside, the hardware divisions paid for DB2 development costs. Just as it was 
about to be cash positive, DB2 was moved into PRGS (software division), which then reaped the benefits. 
To this day, IBM hardware venture capitalists remind Haderle how the software division “stole” their 
investment. Ironically, sales from DB2 on z/OS® have since been underwriting other IBM software 
development projects for years.
 37. Balakrishna R. Iyer and David Wilhite, “Data Compression Support in Databases,” VLDB 
(1994): 695–704.
 38. Peter J. Varman, Balakrishna R. Iyer, and Donald J. Haderle, “Parallel Merging on Shared and 
Distributed Memory Computers,” PARBASE/Architectures (1990): 231–249.
 39. R. Williams, Dean Daniels, Laura M. Haas, George Lapis, Bruce G. Lindsay, Ng Pui, Ron 
Obermarck, Patricia G. Selinger, Adrian Walker, Paul F. Wilms, Robert A. Yost, “R*: An Overview  
of the Architecture,” International Conference on Data and Knowledge Bases–JCDKB (1982): 1–27.
 40. Roger Reinsch, “Distributed Database for SAA,” IBM Systems Journal 27, no. 3 (1988).
 41. George Zagelow managed this effort. The technical cross divisional lead was Roger Reinsch. 
DBTI contributed as well from IBM Research, particularly Pat Selinger and Bruce Lindsay.
 42. J.W. Josten, C. Mohan, I. Narang, and J. Z. Teng, “DB2’s Use of the Coupling Facility for  
Data Sharing,” IBM Systems Journal 36, no. 2 (1997).
 43. “S/390 Sysplex Cluster,” IBM Systems Journal 36, no. 2 (1997) contains nine articles providing  
an overview of the technology.
 44. Yun Wang, “DB2 Query Parallelism: Staging and Implementation,” VLDB (1995): 686–69.
 45. L.M. Haas, J.C. Freytag, G.M. Lohman, H. Pirahesh, “Extensible Query Processing in 
Starburst,” Proceedings of ACM SIGMOD (1989).
 46. Chaitanya K. Baru, Gilles Fecteau, Ambuj Goyal, Hui-I Hsiao, Anant Jhingran, Sriram 
Padmanabhan, and Walter G. Wilson. “An Overview of DB2 Parallel Edition,” SIGMOD Conference 
(1995): 460–462.
 47. Vanja Josifovski, Peter Schwarz, Laura Haas, and Eileen Lin, “Garlic: A New Flavor of 
Federated Query Processing for DB2,” Proceedings of the 2002 ACM SIGMOD International Conference 
on Management of Data (2002).



The History and Growth of IBM s̓ DB2   •  19

Bibliography
Baru, Chaitanya K., and Gilles Fecteau, Ambuj Goyal, Hui-I Hsiao, Anant Jhingran, Sriram Padmanabhan, 

Walter G. Wilson. “An Overview of DB2 Parallel Edition.” SIGMOD Conference (1995): 460–462.
Blasgen, M.W., et al. “System R: An Architectural Overview.” IBM Systems Journal 20, no. 1 (1981): 41–62.
Boyle, James, and William Ogden, Steven Uhlir, Patricia Wilson. “QMF Usability: How It Really Happened,” 

Proceedings of IFIP INTERACT ’84: Human-Computer Interaction (1984): 877–882.
Chamberlin, D.D., and M.M. Astrahan, K.P. Eswaran, P.P. Griffiths, R.A. Lorie, J.W. Mehl, P. Reisner, B.W. 

Wade. “SEQUEL 2: A Unified Approach to Data Definition, Manipulation, and Control.” IBM Journal of 
Research and Development 20, no. 6 (1976): 560–575.

Cheng, J.M., and C.R. Loosely, A. Shibamiya, P.S. Worthington. “IBM Database 2 Performance: Design, 
Implementation, and Tuning.” IBM Systems Journal 23, no. 2 (1984).

Cheng, Josephine M., and Donald J. Haderle, Richard Hedges, Balakrishna R. Iyer, Ted Messinger, C. Mohan, 
Yun Wang. “An Efficient Hybrid Join Algorithm: A DB2 Prototype.” ICDE 1991 (1991): 171–180.

Codd, E.F. “A Relational Model of Data for Large Shared Data Banks.” Communications of the ACM 13 6 
(1970): 377–387.

Codd, E.F. “Is Your DBMS Really Relational?” Computerworld (Oct. 14 and Oct. 24, 1985). (A summary of 
Codd’s 12 rules for relational technology can be found on Wikipedia.)

Codd, E.F. “Relational Database: A Practical Foundation for Productivity.” 1981 ACM Touring Lecture, 
Communications of the ACM 25, no. 2 (1982): 109–117.

Date, C.J. “An Introduction to the Unified Database Language (UDL).” Pro. 6th International Conference on 
Very Large Data Bases (1980).

Frost and Sullivan. Data Base Management Services Software Market. Report #A747 (1979): 208–213.
Gassner, Peter, and Guy M. Lohman, K. Bernhard Schiefer, Yun Wang. “Query Optimization in the IBM DB2 

Family.” IEEE Data Eng. Bull. 16, no. 4 (1993): 4–18.
Grad, Burton, moderator. “RDBMS Workshop: IBM.” Computer History Museum transcripts, CHM Reference 

number X4069.2077 (June 12, 2007).
Haas, L.M., and J.C. Freytag, G.M. Lohman, H. Pirahesh. “Extensible Query Processing in Starburst.” 

Proceedings of ACM SIGMOD (1989).
Haderle, D.J., and R.D. Jackson. “IBM Database 2 Overview.” IBM Systems Journal 23, no. 2 (1984).
Hauser, Dave, and Akira Shibamiya. “Evolution of DB2 Performance.” InfoDB (1982).
Iyer, Balakrishna R., and David Wilhite. “Data Compression Support in Databases.” VLDB (1994): 695–704.
Josifovski, Vanja, and Peter Schwarz, Laura Haas, Eileen Lin. “Garlic: A New Flavor of Federated Query 

Processing for DB2.” Proceedings of the 2002 ACM SIGMOD International Conference on Management 
of Data (2002).

Josten, J.W., and C. Mohan, I. Narang, J.Z. Teng. “DB2’s Use of the Coupling Facility for Data Sharing.” IBM 
Systems Journal 36, no. 2 (1997).

Kahn, S. “An overview of three relational data base products.” IBM Systems Journal 23, no. 2 (1984).
Lindsay, Bruce G. “A Retrospective of R*: A Distributed Database Management System.” Proceedings of the 

IEEE 75, no. 5 (1987): 668–673.
Loosley, Chris. “IBM Database 2 Performance Measurements.” InfoIMS 5, no. 1 (1985).
McJones, Paul, ed. “The 1995 SQL Reunion: People, Projects, and Politics.” SRC Technical Note 1997–108, 

Digital Systems Research Center (Aug. 20, 1997).
Mohan, C., and Donald J. Haderle, Yun Wang, Josephine M. Cheng. “Single Table Access Using Multiple 

Indexes: Optimization, Execution, and Concurrency Control Techniques.” EDBT (1990): 29–43.
Mohan, C., and H. Pirahesh, W.G. Tang, Y. Wang. “Parallelism in Relational Database Management Systems.” 

IBM Systems Journal 33, no. 2 (1994).
Mohan, C., and Hamid Pirahesh, W. Grace Tang, Yun Wang. “Parallelism in Relational Database Management 

Systems.” IBM Systems Journal 33, no. 2 (1994): 349–371.



20  •  IBM DB2: The Past, Present, & Future

Reinsch, Roger. “Distributed Database for SAA.” IBM Systems Journal 27, no. 3 (1988).
Sordi, J.J. “The Query Management Facility.” IBM Systems Journal 23, no. 2 (1984).
Stonebraker, Michael. “Retrospection on a Database System.” ACM Transactions on Database Systems (TODS) 

5, no. 2 (June 1980).
S/390 Sysplex Cluster special issue. IBM Systems Journal 36, no. 2 (1997).
Todd, S.J.P. “The Peterlee Relational Test Vehicle: A System Overview.” IBM Systems Journal 15, no. 4 (1976): 

285–308.
Varman, Peter J., and Balakrishna R. Iyer, Donald J. Haderle. “Parallel Merging on Shared and Distributed 

Memory Computers.” PARBASE/Architectures (1990): 231–249.
Wang, Yun. “DB2 Query Parallelism: Staging and Implementation.” VLDB (1995): 686–69.
Williams, R., and Dean Daniels, Laura M. Haas, George Lapis, Bruce G. Lindsay, Ng Pui, Ron Obermarck, 

Patricia G. Selinger, Adrian Walker, Paul F. Wilms, Robert A. Yost. “R*: An Overview of the 
Architecture.” International Conference on Data and Knowledge Bases–JCDKB (1982): 1–27.

Zachman, John. “Business Systems Planning and Business Information Control Study: A Comparison.” IBM 
Systems Journal 21, no. 1 (1982): 31–53.



Planning for IBM DB2 10 
for z/OS Upgrade

by John Campbell 
IBM Silicon Valley Lab

This paper focuses on the planning stage of migrating to IBM DB2 10 for z/OS. The 
key points of emphasis are:

99 Make sure everyone is educated as to what is needed to ensure project success.
99 Production of a detailed project plan, communicated to all involved, is crucial 

for success.
99 Some preparation can occur very early, in terms of understanding, obtaining, and 

installing the prerequisites.

 The release of DB2 10 for z/OS was announced on February 9, 2010, and the product 
began shipping on March 12, 2010. It was the largest beta test program in the history of 
DB2 for z/OS.

 The information in this paper is drawn from the lessons learned in cooperation with 
some of IBM’s largest customers, both during the beta program and during production 
deployment since DB2 10 for z/OS became generally available.

 Many of IBM’s largest customers were looking mainly for 31-bit virtual storage 
constraint relief in the DBM1 address space, as well as to exploit all the opportunities 
available for price/performance improvement. Other areas of interest included:

•9 Regression testing (Be sure to approach regression testing in the order in which 
you plan to move to production.)

•9 “Out-of-the-box” performance
•9 Additional performance improvements
•9 Scalability enhancements
•9 New functions such as Temporal Data and many others



22  •  IBM DB2: The Past, Present, & Future

Stages of migration
The primary stages of migration to a new version are:

1. Planning

 ◦ Early stages:
» Making the decision to migrate
» Determining what can be gained
» Planning for prerequisites
» Avoiding incompatibilities
» Planning performance and storage
» Assessing available resources

2. Migration
3. Implementation of the new improvements

 Needed application changes can be made over a longer period to make the migra-
tion process easier and less costly. Plans for monitoring virtual and real storage resource 
consumption, as well as performance, are necessary. An early health check, communica-
tion of the required changes, and staging of the work will make the project go much more 
smoothly.

Highlights of the Beta Program Testing
DB2 10 for z/OS delivers great value by reducing CPU resource consumption in most 
customer cases. IBM internal testing and early beta customer results revealed that, 
depending on the specific workload, many customers could achieve “out-of-the-box” 
DB2 CPU resource consumption savings of up to 10 percent for traditional online  
transaction processing (OLTP) workloads and up to 20 percent for specific new work-
loads (e.g., native SQL procedures), compared with running the same workloads on  
DB2 9 for z/OS or DB2 for z/OS Version 8.

 The objective of providing and proving generous, 31-bit virtual storage constraint 
relief in the DBM1 address space was achieved by the end of the program. This achieve-
ment is significant in terms of providing for the enhanced vertical scalability of an 
individual DB2 subsystem or DB2 member of a data sharing group. We are confident that 
customers can scale up, in practical terms, the number of active threads by 5 to 10 times 
to meet their demands.

 Further opportunities for price/performance improvement are made possible 
through the use of persistent threads running with packages bound with the BIND option 
RELEASE(DEALLOCATE). Examples of using persistent threads include protected ENTRY 
threads with Customer Information Control System (CICS®), Wait For Input (WFI) 
regions with Information Management System/Transaction Manager (IMS™/TM), and 
high-performance database access threads (DBATs) for incoming Distributed Data Facil-
ity (DDF) workloads.



Planning for IBM DB2 10 for z/OS Upgrade   •  23

 Another goal was to improve INSERT performance, particularly in the area of univer-
sal table spaces (UTSs). We wanted to ensure that insert performance for UTS was equal 
to, or better than, the classic table space types, such as segmented and partitioned. This 
goal was achieved in most cases.

 Hash access was good, provided we hit the smaller-than-expected “sweet spot.” 
Results for complex queries were also good.

 Provided users made a good choice for the size of the inline portion, the perform-
ance of inline large objects (LOBs) was also impressive. Support for inline LOB column 
values has the potential to save on performance by avoiding indexed access to the 
auxiliary table space. However, it is important to note that the value you choose for the 
inline LOB portion must ensure that most of the LOB column values are 100 percent 
inline in the base table space.

 In the area of latch contention reduction, we focused on the hot latches in DB2 10 
for z/OS in such a way that, once we solved the 31-bit virtual storage constraint issue in 
the DBM1 address space, enabling you to scale up 5 to 10 times in terms of threads, we 
wanted to be sure there were no secondary issues related to latch contention that would 
inhibit the vertical scalability of a single DB2 subsystem or DB2 member of a data 
sharing group.

 As the beta program progressed, the reliability of, and customer confidence in, DB2 
10 for z/OS greatly improved.

 Generally speaking, OLTP performance improvements achieved were as predicted. 
We were aiming for an aggressive target of 5 percent to 10 percent reduction in CPU 
resource consumption for most traditional OLTP workloads. During testing, several 
customers ran benchmarks showing that such reductions could be achieved. However, in 
cases where the transactions consisted of a few very simple SQL statements, the 5 percent 
to 10 percent target was not achieved. This is where the increase in package alloca-
tion cost outweighed the improvement in SQL runtime optimization. However, we did 
identify some steps that can be taken to improve this. We have delivered an Authorized 
Program Analysis Report (APAR) to reduce package allocation cost. It is also possible to 
mitigate this situation by making more use of persistent threads running such packages 
bound with the BIND option RELEASE(DEALLOCATE).

 Another issue was single-thread BIND/REBIND performance. Even in Conversion 
Mode (CM), the performance, in terms of CPU resource consumption and elapsed time, 
was degraded. One reason for this result was that in DB2 10 for z/OS, the default for 
access plan stability is EXTENDED. Also, DB2 10 for z/OS uses indexed access, even in 
CM, to access the respective DB2 catalog and directory tables.

 Another area where we had mixed results was SQL Data Definition Language 
(DDL) concurrency. We had hoped that by restructuring the DB2 catalog and directory 
to introduce row-level locking, remove hash link access, and more, we could improve 



24  •  IBM DB2: The Past, Present, & Future

concurrency when running parallel SQL DDL and parallel BIND/REBIND operations. The 
concurrency improvement was eventually achieved for parallel BIND/REBIND activity. 
Although it also helped in some cases with SQL DDL, most customers will still have to 
run SQL DDL activity single-threaded.

 The final issue was access path lockdown. Two new options in DB2 10 for z/OS, 
APREUSE and APCOMPARE, enable you to generate a new SQL runtime while in most 
cases keeping the old access paths. Unfortunately, there were some issues with the under-
lying OPTHINTS infrastructure inherited by DB2 10 for z/OS, which is used by APREUSE 
and APCOMPARE. The introduction of APREUSE and APCOMPARE was delayed until 
these issues were addressed. These features are now available in the service stream via 
APARs and are working very well in real customer environments; their use is strongly 
recommended.

 In general terms, the results of the beta program were mainly positive customer 
experiences, and we received good feedback about the program. A majority of custom-
ers in the beta program plan started to migrate to DB2 10 for z/OS in 2011. We observed 
incremental improvement in the program over what we experienced previously with the 
DB2 9 for z/OS and DB2 for z/OS Version 8 programs.

 There was really no “single voice” or message across the customer set. We saw 
significant variation in terms of customer commitment and achievement. A small subset 
of customers did a very good job on regression and new function testing and provided 
good feedback. Others, due to limited resources, were only able to provide limited quali-
fication about what they were going to do and what they were able to achieve.

 It is worth keeping in mind, for those who have never been involved in a Quality 
Partnership Program (QPP)/beta program, that it can be a challenge for customers to 
sustain the effort over a six-month period, due to competing business and technical prior-
ities as well as constraints on people, hardware resources, and time.

 By the end of the program, no customers were in true, business production. But  
we also need to appreciate that a QPP/beta program is not the same as an Early Support 
Program. We continue to develop and test the DB2 for z/OS product as the program 
progresses.

 One of the benefits of DB2 10 for z/OS is that it provides many opportunities for 
price/performance (cost reduction) improvements. It is a major theme of this release.  
In discussions with customers, these opportunities for price/performance improvement 
are most welcome.

 Also keep in mind that customers can be intimidated by some of the marketing 
“noise” about improved price/performance, often because of the raised expectation  
level of their respective CIOs. But in some cases, it is because when they run their  
own workloads, they do not see the anticipated improvements in reduced CPU resource 



Planning for IBM DB2 10 for z/OS Upgrade   •  25

consumption and improved elapsed time performance that they expected. Many custom-
ers saw big improvements for certain workloads, while for other workloads they saw 
little, if any, improvement.

 Also note that if you have small test workloads that are untypical of the total mixed 
workload running in production, this can skew expectations on savings—either positively 
or negatively. Once DB2 10 for z/OS is in production, the results with the full, mixed 
workload may differ. We found that some measurements and quotes were overly positive 
and should be ignored.

 A remaining question is: “How do you extrapolate from a small workload and project 
what the savings would be for the total, mixed workload in production?” Estimating with 
accuracy and high confidence is not practical, or possible, without proper benchmarking 
using a workload that truly represents production.

 Overall, most of the customer testing identified opportunities for price/performance 
(cost savings) improvements, which is the major theme of this release. Some customers 
reported big improvements in CPU resource consumption and elapsed time reduction for 
certain workloads, while others did not. Keep in mind that smaller workloads may skew 
expectations on savings.

Summary of results
The DB2 10 for z/OS beta program confirmed improvements in the following areas:

99 31-bit virtual storage constraint relief in the DBM1 address space
99 Insert performance
99 Hash access good when hitting the smaller-than-expected sweet spot
99 Complex queries
99 Inline LOBs for short large objects (“SLOBs”)
99 Latch contention reduction
99 Quality of problems and issues found
99 Reliability and confidence as program progressed

Performance and Scalability
One of the key lessons learned in the beta program was the need to plan on additional 
real storage resource consumption. A 10 percent to 30 percent increase of real storage 
resource consumption is a very rough estimate. For small systems with tiny buffer pools, 
the increase will be toward the high end of the range; for big systems with large buffer 
pools, it will be toward the low end of the range. It is important for customers to properly 
provision and monitor real storage resource consumption.

 This high-level guideline can be refined further to determine the additional require-
ment. Under DB2 9 for z/OS or DB2 for z/OS Version 8, collect IFCID 225 record data. 
Make sure the DB2 subsystem is properly warmed up so that virtual storage has been 
allocated to support normal DB2 operations. Extract the real and auxiliary storage usage 



26  •  IBM DB2: The Past, Present, & Future

(QW0225RL and QW0225AX, respectively) from IFCID 225 records, subtract out the 
VPSIZE for all the local buffer pools, and add 30 percent to the remainder. Next, add in 
the increased virtual storage needed for increases in the default size for the sort and row 
ID (RID) pools, and then add in the increased requirement for MAXSPACE (from 9 GB 
to typically 16 GB under DB2 10 for z/OS). Compare this new value against the original 
value from DB2 9 for z/OS or DB2 for z/OS Version 8. Note carefully that if there is a 
non-zero value for auxiliary storage (QW0255AX), there may be some double counting 
on memory usage, as slots in auxiliary storage are still owned by a DB2 subsystem even 
though the set of pages is paged back in later. The slots in auxiliary storage continue to 
be owned by a DB2 subsystem until they are reused by another subsystem/user or the 
subject DB2 subsystem is shut down.

 Many traditional OLTP workloads saw a 5 percent to 10 percent reduction in CPU 
resource consumption in CM mode after package REBIND under DB2 10 for z/OS (some 
more, some less). On the initial migration to DB2 10 for z/OS, most customers will 
not perform a mass REBIND of all plans and packages. So, before REBINDing plans and 
packages, you may see little or no reduction in CPU resource consumption.

 To maximize the price/performance benefits after migrating to CM:

1. REBIND your migrated packages and plans to generate the new optimized  
64-bit SQL runtime. This way, you avoid the overhead of converting the run-
time structures for migrated packages from earlier releases to look like the  
DB2 10 for z/OS runtime structures. Re-enable fast column (SPROC or  
SELECT Processing) processing, which would otherwise be disabled.

2. Take advantage of 1 MB size real storage page frames to reduce translation 
lookaside buffer (TLB) misses. The 1 MB size real storage page frames are 
available on the z10™ and z196 processors. The prerequisite for using them is 
to specify the long-term page fix option for your local buffer pools. Long-term 
page fix buffer pools, which were introduced in DB2 for z/OS Version 8, provide 
an opportunity to reduce CPU resource consumption by avoiding the repetitive 
cost of page fix and page free operations for each page involved in an I/O 
operation.

 The lesson is, be sure to use PGFIX=YES on your local buffer pools, provided there is 
sufficient real storage provisioned to fully back the requirement of the total normal DB2 
working set below and above the 2 GB bar, plus have some spare available real storage 
capacity for MAXSPACE so that dumps can be taken very quickly to avoid disrupting the 
logical partition (LPAR), which could lead to “sympathy sickness” around the rest of the 
data sharing group.

 In a few cases, customers saw less than 5 percent saving in CPU resource consump-
tion for traditional OLTP with very light transactions—“skinny” packages with a few 
simple SQL statements. This result is due partly to the increasing cost of package alloca-
tion, which overrides the benefit of the SQL runtime optimizations. APAR PM31614 



Planning for IBM DB2 10 for z/OS Upgrade   •  27

may solve this issue by improving package allocation performance. Another way to 
address this is to use persistent threads running packages bound with the BIND option 
RELEASE(DEALLOCATE), to amortize away the repetitive cost of package allocation/
deallocation per transaction.

 Regarding customers’ measurements, keep in mind that—unlike the DB2 Lab 
environment, where a dedicated environment is used—customer measurements are 
typically performed in a shared environment, and the measurement results are not always 
consistent and repeatable. There can be wide variation on measurement “noise” in 
customer measurements, especially regarding elapsed time performance.

 In most cases, customers were not running in a dedicated environment or at the scale/
size of true business production. Many customers ran a subset (maybe a high-volume 
subset) of the total production workload. Sometimes, they used a synthetic test workload 
to study specific enhancements.

 In cases where customers had very large savings that they were not able to repro-
duce, the numbers on CPU and elapsed time reductions were not trusted.

Recommendation

Customers should not spend anticipated price/performance (cost 
reduction) savings until they actually see the improvements in their own 
true business production environment.

Early results
Table 1.1 summarizes some of the beta program results reported by customers. Some of 
the additional savings were due to features such as using 1 MB size real storage page 
frames for selective buffer pools, enabling high-performance DBATs, and using the 
package BIND option RELEASE(DEALLOCATE). Another reason was the improvement in 
COMMIT processing for applications that commit frequently. We now perform parallel 
write I/O operations to the active log dataset pair even when rewriting a log control inter-
val (CI) that was partially filled and written out previously.

Workload Customer results
CICS online transactions Approximately 7% CPU reduction in DB2 10 CM after REBIND; 

additional reduction when 1 MB size real storage page frames were 
used for selective buffer pools

CICS online transactions Approximately 10% CPU reduction from DB2 9
CICS online transactions Approximately 5% CPU reduction from DB2 for z/OS V8
CICS online transactions 10+% CPU increase
Distributed concurrent insert 50% DB2 elapsed time reduction; 15% chargeable CPU reduction 

after enabling high-performance DBAT
Data sharing heavy concurrent insert 38% CPU reduction
Queries Average CPU reduction 28% from V8 to DB2 10 NFM
Batch Overall 20–25% CPU reduction after rebind packages

Table 1.1: Workload results reported by DB2 10 for z/OS beta program customers



28  •  IBM DB2: The Past, Present, & Future

 Now, let us discuss the use of the 1 MB size real storage page frames on the z10  
and z196 processors. The potential exists for reduced CPU resource consumption through 
fewer TLB misses; however, the local buffer pools must be defined as long-term page 
fixed (PGFIX=YES). This feature was introduced in DB2 for z/OS Version 8 to mitigate 
CPU regression and reduce CPU resource consumption for I/O-intensive buffer pools.

 Many customers are still reluctant to use the PGFIX=YES option because they are 
running too close to the edge on the usage of the amount of real storage provisioned on 
the LPAR and are in danger of paging to auxiliary (DASD) storage. They understand the 
value of PGFIX=YES, but the benefit may only apply for an hour or two each day. Another 
factor is that this decision is a long-term one; in most cases, implementing this buffer 
pool attribute requires a recycle of the DB2 subsystem to actually implement the change. 
A change to the subject attribute goes pending and is materialized when the buffer pool 
next goes through reallocation. It is also worth noting that there is a significant cost 
reduction for real storage on the z196 processor relative to the z10 processor. The cost 
saving is approximately 75 percent.

 Here are a few more things to remember about the use of 1 MB size real storage  
page frames on the z10 and z196 processors: The actual amount of memory that is 
allocated as 1 MB size real storage page frames is specified by the LFAREA parameter in 
the IEASYSnn parmlib member and is changeable only by IPL. You are partitioning out 
the total real storage provisioned between 4K size frames and 1 MB size frames. 1 MB 
size real storage page frames are non-pageable. If these page frames are overcommitted, 
DB2 10 for z/OS will start using 4K size real storage page frames.

 Do not be perturbed by z/OS issuing messages IRA120E (80 percent full) and 
IRA121E (95 percent full). These messages would appear to indicate a shortage in  
the large frame area (LFAREA). The ending “E” in the message identifiers actually  
means “eventual action” and not something that is actually wrong now. These  
messages are “informational” and do not indicate an “error” condition. The first  
message, “IRA120E – Large frame shortage,” is generated when the definition of the 
PGFIX=YES buffer pools overruns the 80 percent cushion for the large frame area. To 
avoid these messages, an installation would have to define the LFAREA to be 20 percent 
larger than the sum of the local buffer pools marked as long-term page fixed. This would 
waste real storage unnecessarily. Assuming the sum of all the local buffer pools marked 
as long-term page fixed was 15 GB, then to have a 20 percent cushion for 15 GB means 
the LFAREA must be defined at approximately 19 GB. But the extra 4 GB real storage is 
then wasted because no subsystem other than DB2 can use the large frame area. These 
messages will be upgraded to “informational” messages via APAR OA39941 in z/OS 
V2R1. In the meantime, the IRA120E (80 percent full) and IRA121E (95 percent full) 
messages should be tolerated.



Planning for IBM DB2 10 for z/OS Upgrade   •  29

Recommendation

Assuming you have provisioned sufficient real storage in production LPAR to 
fully back the total requirement of the DB2 working set size, plus you have 
some spare available real storage capacity for the MAXSPACE requirement 
so that dumps can be taken very quickly to avoid disrupting the LPAR (which 
could lead to sympathy sickness around the rest of the data sharing group):

1. Define all the local buffer pools as long-term page fixed (PGFIX=YES).
2. Sum up the total buffer pool storage requirement across all the local 

buffer pools defined as PGFIX=YES.
3. Reflect that value in the LFAREA specification. (You may want to add 

an additional 5 percent to 10 percent in size to allow for some growth 
and tuning.)

Note

Make sure you have applied critical preventative z/OS maintenance before 
using 1 MB size real storage page frames. One of the lessons learned in the 
beta program is that the 1 MB size real storage page frames are relatively 
new, and DB2 10 for z/OS is the first major subsystem to exploit them. We 
observed a reduction of up to 6 percent in CPU resource consumption by 
using the 1 MB size real storage page frames. This improvement is over and 
above the benefit of long-term page fix for local buffer pools first introduced 
in DB2 for z/OS Version 8. There is a customer requirement for a new 
parameter to be able to use PGFIX=YES independently from the use of 1 
MB size real storage page frames. This requirement will be addressed in a 
future release of DB2 for z/OS.

 The 31-bit virtual storage constraint relief (VSCR) in the DBM1 address space with 
a near-complete 64-bit SQL runtime is available immediately for use as soon as you go 
to CM. To accrue maximum benefit, you must REBIND static SQL plans and packages. 
We are confident that we have addressed the previous vertical-scalability issue on the 
limited number of active threads that a single DB2 subsystem could support, and we have 
achieved very good results. This support offers a “real-world” proposition of scaling up 
the number of active threads from, say, 500 active threads to 2,500–3,000 active threads 
or more per DB2 subsystem. The limiting factors now on the vertical scalability of a DB2 
subsystem (number of threads times average thread storage footprint) are most likely to 
be the amount of real storage provisioned on the LPAR, followed by extended system 
queue area/extended common service area (31-bit ESQA/ECSA) storage constraints and 
the active log write performance (output log buffer latch contention).

 Figure 1.1 shows three sets of customer measurements.



30  •  IBM DB2: The Past, Present, & Future

 The first measurement (shown in the left column of the figure) is the 31-bit virtual 
storage thread footprint of DB2 9 for z/OS.

 The middle column shows the virtual storage thread footprint of DB2 10 for z/OS 
in CM without the REBIND of static SQL plans and packages. The issue here is that the 
footprint actually increased, compared with DB2 9 for z/OS. Thankfully, this issue was 
identified during the beta program and was corrected ahead of GA of DB2 10 for z/OS.

 The third column shows that once you do the REBIND of static SQL plans and 
packages, the 31-bit virtual thread storage footprint decreases dramatically. This result 
illustrates the value of the 31-bit virtual storage constraint relief in the DBM1 address 
space with DB2 10 for z/OS.

 Figure 1.2 shows another group of customer measurements.

 Here, the first column is the DB2 9 for z/OS 31-bit thread storage footprint. The 
second column is the 31-bit thread storage footprint for DB2 10 for z/OS CM without the 
REBIND of static SQL plans and packages. In columns three and four, you can see that 
after the fix is applied (even without the REBIND), the 31-bit thread storage footprint is 
greatly reduced.

 With or without the REBIND of static SQL plans and packages, the 31-bit thread 
storage footprint in the DBM1 address space is reduced in DB2 10 for z/OS. However, to 
accrue maximum benefit in terms of 31-bit VSCR in the DBM1 address space, we strong-
ly recommend implementing a program to progressively rebind all static SQL plans and 

Figure 1.1: Initial DBM1 31-bit thread storage footprint customer measurements 
in DB2 9 for z/OS vs. DB2 10 for z/OS (corrected prior to General Availability [GA])



Planning for IBM DB2 10 for z/OS Upgrade   •  31

packages during the life of DB2 10 for z/OS. The program should start by rebinding the 
high-use packages, which represent a significant part of the total workload.

DBM1 virtual storage constraint relief with 64-bit SQL runtime
REBINDing static plans and packages maximizes the DBM1 31-bit VSCR and ensures we 
have a 64-bit SQL runtime. Not only does this step solve scalability issues, but it also can 
provide opportunities for further price/performance improvements—beyond the 5 percent 
to 10 percent.

 For example, prior to DB2 10 for z/OS, many customers have been heavily 
constrained on available, 31-bit virtual storage in the DBM1 address space and, as a 
result, on the number of active threads that can be supported in a single DB2 subsystem 
or DB2 member. They have had to make compromises, trading additional CPU resource 
consumption to reduce the 31-bit virtual storage footprint and be able to support more 
active threads in a single DB2 subsystem or DB2 member.

 This tradeoff involved reducing the number of persistent threads and restricting the 
use of packages bound with the BIND option RELEASE(DEALLOCATE) running on those 
threads. These tactics saved on 31-bit virtual storage resource consumption in the DBM1 
address space at the cost of incurring additional CPU resource consumption.

 With DB2 10 for z/OS, provided you have sufficient real storage provisioned on 
the LPAR over and above the 10 percent to 30 percent increased real storage resource 
consumption previously mentioned, you can use more persistent threads and make more 
use of packages bound with the BIND option RELEASE(DEALLOCATE) with the existing 

Figure 1.2. Initial DBM1 31-bit thread storage customer measurements 
in DB2 9 for z/OS vs. DB2 10 for z/OS (GA after fix applied)



32  •  IBM DB2: The Past, Present, & Future

persistent threads or increased number of persistent threads defined. This capability has 
the potential to reduce CPU resource consumption and further improve price/perform-
ance (cost reduction) beyond the previously mentioned 5 percent to 10 percent. However, 
it will increase real storage resource consumption above the expected 10 to 30 percent 
increase on the initial migration to DB2 10 for z/OS as discussed previously. This may 
require additional real storage to be provisioned on the LPAR.

 The next, and new, opportunity for price/performance improvement is with regard 
to Distributed Relational Database Architecture™ (DRDA) and DDF server workloads. 
In DB2 10 for z/OS, starting with CM there is the potential to reduce CPU resource 
consumption for DRDA transactions by using high-performance database access 
threads (high-performance DBATs). DB2 10 for z/OS provides the same opportunity 
for thread reuse with persistent threads running with packages bound with BIND option 
RELEASE(DEALLOCATE) that we have, for example, in CICS with protected ENTRY 
threads and/or by queuing on an unprotected ENTRY thread.

 To take advantage of this improvement, the first prerequisite is that at least one of the 
packages associated with the transaction must be bound with RELEASE(DEALLOCATE). 
The second prerequisite is to issue the MODIFY DDF PKGREL(BNDOPT) command so  
that the BIND option RELEASE(COMMIT|DEALLOCATE) is respected.

 After taking these steps, you will be able to achieve thread reuse for the same DDF 
connection. At the same time, DDF will start honoring the BIND option of RELEASE 
(DEALLOCATE). Before DB2 10 for z/OS, you could BIND the packages used by distrib-
uted workloads with the RELEASE(DEALLOCATE) option, but the availability of this 
option was a moot point because RELEASE(COMMIT) was always forced at execution  
time (in other words, the BIND option of RELEASE(DEALLOCATE) was not honored).

 Now, in DB2 10 for z/OS, we have the same possibility as with CICS and IMS/TM 
workloads—to have persistent threads, in this case with high-performance DBATs, and  
to have the BIND option of RELEASE(DEALLOCATE) honored.

 The recommendation is that before starting to use high-performance DBATs, 
you must plan on additional real storage resource consumption—beyond the previ-
ously discussed 10 percent to 30 percent increase, and you may have to provision 
additional real storage on the LPAR. Do not adopt a “one size fits all” strategy when 
using more persistent threads running with packages bound with the BIND option 
RELEASE(DEALLOCATE) with IMS/TM, CICS, or DDF workloads.

 Most installations cannot support making all threads persistent, with all the associat-
ed packages running on the threads bound with the BIND option RELEASE(DEALLOCATE), 
because of the potential for dramatic increase in the total real storage resource consump-
tion. Most installations simply cannot afford to use this option for all plans and packages. 



Planning for IBM DB2 10 for z/OS Upgrade   •  33

Installations should target persistent threads for thread reuse at high-volume simple 
transactions and couple them with the use of BIND option RELEASE(DEALLOCATE) for 
high-use packages with many SQL statements that are frequently executed. For example, 
take your Open Database Connectivity (ODBC) and Java Database Connectivity (JDBC) 
packages as used by distributed client applications and BIND them twice—into two 
different package collections: BIND them with RELEASE(DEALLOCATE) in one collection 
(e.g., NULLID2), and BIND them with RELEASE(COMMIT) in the other collection (e.g., 
NULLID).

 In this way, you can target the high-volume, web-based OLTP transaction workloads 
that would benefit most from the use of persistent threads running with packages bound 
with BIND option RELEASE(DEALLOCATE), and you can connect those applications to a 
data source that points to the collection (e.g., NULLID2) where the packages are bound 
with the BIND option RELEASE(DEALLOCATE). Packages bound with the BIND option 
RELEASE(DEALLOCATE) will be eligible to use high-performance DBATs and will be 
reused for the same connection. The remaining transaction and query workloads would 
connect to a data source that points to the collection (e.g., NULLID) where the packages 
are bound with RELEASE(COMMIT).

 The story is similar with CICS and IMS/TM. For CICS, you would choose to only 
protect ENTRY threads for high-volume transactions and couple that with the use of 
packages bound with the BIND option RELEASE(DEALLOCATE) for frequently executed 
packages. Allow the rest of the transactions to run as POOL threads. When a transaction 
runs on POOL threads, it is normally a moot point as to whether the packages running on 
the POOL thread are bound using the BIND option RELEASE(COMMIT|DEALLOCATE). 
There is normally no thread reuse in the pool, and BIND option RELEASE(DEALLOCATE) 
will bring no benefit unless thread reuse can be achieved.

 For DRDA workloads, do not overuse BIND option RELEASE(DEALLOCATE) on 
packages, because it will drive up the MAXDBAT requirement.

 Another point to remember with all of the DB2 attachment packages is that there is 
a tradeoff when you use persistent threads with packages with RELEASE(DEALLOCATE). 
Doing so will impact BIND/REBIND and SQL DDL concurrency. When you have a high-
volume transaction that justifies use of persistent threads running with packages bound 
with RELEASE(DEALLOCATE), then BIND/REBIND and DDL activity cannot break in.

 Many customers fail to see the benefit of thread reuse and avoiding the repetitive cost 
of thread create and thread terminate per transaction. Here is the explanation as it relates 
to CICS: If you are incurring the overhead of thread create and terminate, you cannot see 
the overhead in the DB2 accounting record. On the other hand, if you avoid the overhead 
of thread create and terminate, you also cannot see the overhead saved in the DB2 
accounting record.



34  •  IBM DB2: The Past, Present, & Future

 CICS uses the L8 TCB to process DB2 work, regardless of whether the application 
is running as thread safe or not. The CPU time associated with thread create and termin-
ate (or the avoidance thereof) shows up in the CICS System Management Facility (SMF) 
Record Type 110 record. Note that before the introduction of the Open Transaction 
Environment (OTE) in CICS, CICS did not even capture the cost of thread create and 
terminate in the SMF Record Type 110 record. The CPU cost of thread create and termin-
ate was not captured. Provided successful thread reuse is achieved, the benefit of running 
with packages on the thread bound with the BIND option RELEASE(DEALLOCATE) will 
show up in a reduction in the Class 2 TCB Time in the DB2 Accounting Record (SMF 
Record Type 101).

 For some customer installations, DB2 10 for z/OS also has the potential to reduce the 
number of DB2 members in a data sharing group. Some customers had to grow their DB2 
processing capacity horizontally due to the 31-bit virtual storage constraint in the DBM1 
address space by growing the width of the data sharing group by adding additional DB2 
members to absorb the total workload and requirement for threads. Some of these same 
customer installations added new LPARs to support the additional DB2 members. Other 
customer installations decided to run multiple members from the same DB2 sharing 
group on the existing LPARs.

 Why? The customer installations wanted to limit the number of LPARs running on 
the faster z10 and z196 systems because of increasing LPAR overheads. This could be 
achieved by running the existing number of DB2 members over a smaller number of 
LPARs (i.e., now run multiple DB2 members on the now smaller number of LPARs). 
However, if additional DB2 members were required to provide increased thread process-
ing capacity, the installation could spread the additional DB2 members across the existing 
LPARs (i.e., now multiple DB2 members running on each LPAR).

 Now, with the generous DBM1 31-bit virtual storage constraint relief in DB2 10 for 
z/OS, such customers have the ability to reduce the total number of DB2 members in a 
data sharing group. This change can reduce the number of DB2 members from the same 
data sharing group running on the same LPAR down to one, and it can possibly lead to a 
reduction in the total number of LPARs as well. The ability to reduce the total number of 
DB2 members and/or the number of LPARs will provide further price/performance (cost 
reduction) improvements.

 Before you consolidate DB2 members and LPARs, there are some potential issues 
to consider. For example, what will happen to the logging rate when you push more 
workload through a single DB2 subsystem? By running more workload through an 
individual DB2 subsystem, you will drive up the aggregate logging rate for that DB2 
subsystem. Can the size of the active log configuration, the dataset placement, and the  
I/O subsystem cope with the load? Will output log buffer latch contention be aggravated?



Planning for IBM DB2 10 for z/OS Upgrade   •  35

 You also need to consider the increase in SMF data volume generated per LPAR. In 
DB2 10 for z/OS, you can now enable DB2 compression of instrumentation record data 
written to SMF (e.g., DB2 accounting trace data) to reduce the SMF data volume gener-
ated. DB2 instrumentation data, such as statistics trace and accounting trace records, are 
typically written out to SMF and can benefit from this enhancement.

 A new DB2 system parameter (ZPARM) called SMFCOMP, once enabled by setting 
to YES, turns on DB2 compression of the output records written to SMF. This compres-
sion applies to any instrumentation record, not just statistics and accounting, that is 
written out to the SMF destination. We have observed up to a 70 percent reduction in the 
volume of SMF data generated when the SMF compression in DB2 is turned on. The 
CPU overhead incurred is only about 1 percent—representing a very good tradeoff.

 This enhancement provides an opportunity for improved problem determination 
(PD) and problem source identification (PSI) by offering the possibility of turning off the 
use of accounting roll-up for DDF and Recovery Resource Services attachment facility 
(RRSAF) workloads (default). We introduced this support in DB2 for z/OS Version 8 
to reduce SMF data volume, but one of the drawbacks of accounting roll-up was that it 
compromised the PD/PSI of performance problems.

 By rolling up the transaction activity for multiple transactions into a single account-
ing record, you will lose information about the outlying, badly performing transactions. 
The information about the poor performance of the outlying transactions gets “amortized” 
away by the accounting roll-up. Given the introduction of SMF data compression in DB2 
10 for z/OS, SMF compression may be a better option to control SMF data volume than 
using the accounting roll-up.

 Another consideration when migrating to any new DB2 for z/OS release is the 
impact of increased dump size due to growth in the total DB2 working set size (and 
the need to avoid partial dump capture). DB2 10 for z/OS is no different. Partial dump 
capture can seriously compromise the PD/PSI performed by DB2 for z/OS Development. 
Prevailing production experience with DB2 10 for z/OS is that MAXSPACE(DUMPSRV) 
should be set to at least 16 GB to avoid a partial dump. Customer installations 
should make sure sufficient real storage is provisioned on the LPAR for the increased 
MAXSPACE(DUMPSRV) requirement and avoid the system spilling out into auxiliary 
storage. It is vitally important to capture a dump very quickly in a small number of 
seconds to avoid disruption on the subject LPAR and sympathy sickness spreading to  
the rest of the data sharing.

 Finally, we want to re-emphasize the continued business and technical value of DB2 
data sharing to differentiate the z/OS platform in terms of providing continuous avail-
ability by masking both planned and unplanned outages. You want to avoid large single 
points of failure. For example, consider a recommended minimum configuration of 
four-way data sharing for true, continuous availability, assuming a two processor (CEC) 
configuration.



36  •  IBM DB2: The Past, Present, & Future

 By “four-way data sharing,” we mean that you have two boxes (CECs) and there 
are two LPARs running on each box (a total of four LPARs). A single DB2 member 
would run on each LPAR. That is the recommended minimum recommendation for true, 
continuous availability and to maintain performance, if you want to maintain your service 
level agreement (SLA). In this four-way configuration, if you were to lose a DB2 member 
or one LPAR, the surviving DB2 member on the alternate LPAR running on the same box 
can take on 100 percent of the workload and use all the CPU processing capacity avail-
able on the box (CEC).

Planning for real storage
Let us discuss now, in more detail, the need to carefully plan, provision, and monitor real 
storage consumption. Most DB2 9 for z/OS and DB2 for z/OS Version 8 customers are 
properly configured and provisioned in terms of real storage. However, some are running 
so low on available real storage that part of the DB2 working set is often being paged out, 
intermittently, to auxiliary (DASD) storage.

 Worse still, if a dump were to be taken on the system at the wrong time, the dump 
capture would take several minutes instead of a few seconds to complete, and it could 
spread sympathy sickness around a data sharing group. Information about real and 
auxiliary frames used is already recorded in the IFCID 225 record generated by DB2 for 
z/OS. However, although the provided information has been improved, with more details 
recorded in DB2 10 for z/OS, the information previously furnished in IFCID 225 has not 
allowed a customer installation to effectively monitor 64-bit shared and 64-bit common 
storage when running multiple DB2 subsystems on the same LPAR.

 A new DB2 APAR, PM24723, for DB2 10 for z/OS provides the needed capability. 
The new APAR uses the enhanced capability provided with MVS™ APAR OA35885, 
which provides a new callable service to Real Storage Manager (RSM) to report REAL 
and AUX usage for a given addressing range for shared objects. APAR PM24723 will 
have this new MVS APAR as a prerequisite. The PTFs for DB2 APAR PM24723 and 
MVS APAR OA35885 can be applied independently.

 The other advantage is that this same DB2 APAR provides a much-needed real 
storage management DISCARD function within DB2 when available real storage is 
overcommitted and the MVS system starts to make very significant use of auxiliary 
storage.

 Some customers have used a hidden DB2 system parameter called SPRMRSMX 
(real storage “kill switch”) when running multiple DB2 subsystems on the same LPAR. 
The SPRMRSMX ZPARM protects individual DB2 subsystems and other subsystems 
running on the LPAR such that if one of the DB2 subsystems were to “run away” in 
terms of virtual storage use, that subsystem would be “sacrificed” so that the other DB2 
subsystems running on the same LPAR could continue to run.



Planning for IBM DB2 10 for z/OS Upgrade   •  37

 Customers using system parameter SPRMRSMX are strongly recommended to 
carefully estimate and then set the value. If the value set is too small, there will be false 
positives and DB2 subsystems will be sacrificed unnecessarily. If the value is set too 
high, the LPAR (and all the DB2 subsystems running on it) will die before the runaway 
DB2 subsystem is detected and sacrificed. The “normal” working set size of a DB2 
subsystem needs to be determined based on IFCID 225 record data; this value should 
then be uplifted by a certain factor to provide for contingency. The resulting value should 
be used as the SPRMRSMX setting. The factor applied to determine the final value for 
SPRMRSMX will typically be around 1.2X to 1.5X for a production DB2 subsystem. This 
factor may need to be increased to 2X if the DB2 subsystem has small buffer pools. DB2 
9 for z/OS and DB2 for z/OS Version 8 customers who are currently using this system 
parameter will need to carefully re-evaluate the value set when migrating to DB2 10 for 
z/OS. In DB2 10 for z/OS, the hidden system parameter SPRMRSMX is replaced by an 
opaque system parameter called REALSTORAGE_MAX.

 In DB2 10 for z/OS, you will need to factor in the increased use of 64-bit shared 
private and common storage to establish the new DB2 for z/OS storage footprint. IPL 
amounts for the LPAR will need to be adjusted based on the number of DB2 members 
running on that LPAR. The following values are on a “per DB2 subsystem” basis (i.e., 
you would double them when running two DB2 subsystems on an LPAR, triple them for 
three, etc.):

Storage area IPL amount
64-bit private 1 TB
64-bit shared 128 GB
64-bit common 6 GB

 Note carefully that these values are not indicative of real storage to be used, or even 
of virtual storage to be allocated; they simply represent reserving an addressing range for 
DB2 for z/OS to use. These large memory object areas are allocated above the 2 GB bar, 
and they will be sparsely populated. Virtual storage is not allocated until the pieces of 
storage are actually referenced.

INSERT performance
INSERT is one of the most important SQL statements in DB2 for z/OS. It is also one of 
the most challenging for any database management system (DBMS) to handle. It repre-
sents a tradeoff between optimizing performance in terms of maximizing throughput 
(inserts per second) and minimizing contention versus efficient space reuse. Previous 
DB2 for z/OS releases have focused on improving INSERT performance. DB2 10 for  
z/OS provides some improvements for all table space types. There was particular focus 
on improving INSERT performance for universal table spaces, both partition by range 
(PBR) and partition by growth (PBG).



38  •  IBM DB2: The Past, Present, & Future

 Over the longer term, what we want to do in DB2 for z/OS is converge all the classic 
table space types to be UTS and deprecate the old, classic table space types. DB2 10 for 
z/OS includes two specific enhancements to improve insert performance for UTS. First, 
UTS now supports MEMBER CLUSTER to help where there is excessive page latch and 
page p-lock contention on space map pages and on data pages when using row-level 
locking. Second, changes were made to the space search algorithm, making the algorithm 
used by UTS now more like that used by the classic partitioned table space.

 The performance goal for INSERT in DB2 10 for z/OS was for UTS to be equal to,  
or better than, the classic partitioned table space. While we are not there yet, the perform-
ance is dramatically improved. However, the improvement relative to DB2 9 for z/OS is 
very workload dependent. There is still a tradeoff between maximizing throughput and 
minimizing contention versus efficient space reuse. We still have some work to do on 
UTS, in the area of both PBR/PBG when using row-level locking and where the insert 
activity is sequential.

 Three specific improvements to INSERT in DB2 10 for z/OS should help all table 
space types. The first is to reduce log record sequence number (LRSN) spin for inserts 
to the same index or data page. As processors become faster, such as z10 and z196, there 
is an increased possibility of duplicate LRSN values occuring and spins having to occur. 
When a spin occurs, processing loops in the DB2 code take place waiting for the LRSN 
value to change. The LRSN value is used in data sharing to serialize restart/recovery 
actions, and it is the high-order six bytes of the store clock (STCK) value. The LRSN is 
incremented every 16 microseconds. As processors get faster, there is increased poten-
tial for duplicate LRSN values to occur and the need to spin. We already made some 
improvements in DB2 9 for z/OS and DB2 for z/OS Version 8 regarding this issue.

 In DB2 10 for z/OS, when we have multi-row inserts (MRI) or single simple inserts 
within an application processing loop, we avoid the LRSN spins for the same page that 
would have occurred previously. The results have been very impressive. This improve-
ment applies when you use multi-row inserts to the same page or have simple inserts 
within an application processing loop to the same page, in a data sharing environment.

 The second improvement, which works very well, is an optimization for “pocket” 
sequential insert activity. This is where you have multiple “hot spots” in the key range 
and the INSERTs are “piling in” on these hot spots. During insert, DB2 Index Manager 
(IM) identifies to the DB2 Data Manager (DM) the candidate RID value (page) to be  
used to place the new data row. DB2 Index Manager now returns the next-lowest key 
RID value. The end result achieved is a much better chance to find the space and avoid  
a space search.

 The third improvement relates to parallel index read I/O, which works very well 
and is best-suited when it is activated where there are random index key inserts. This 
mechanism is normally enabled when three or more indices exist on the table and you 
are performing random index key INSERTs. It can also be enabled when only two indices 



Planning for IBM DB2 10 for z/OS Upgrade   •  39

exist on the table and the table is defined with the MEMBER CLUSTER option and/or 
APPEND option. Previously, you would see a lot of random sync page read I/O. We 
now do parallel index read I/O when there are three or more indices on the table, or two 
indices when the table is defined with MEMBER CLUSTER and/or APPEND options. This 
improves throughput by taking the synchronous read I/O delay activity out of the elapsed 
time for each insert.

 To compensate elsewhere for the potential increase in CPU resource consumption 
as a result of parallel index read I/O during insert, DB2 now makes the CPU resource 
consumption associated with prefetch engines (sequential prefetch, list prefetch, and limit 
prefetch) and with deferred write engines eligible for System z9® Integrated Information 
Processor (zIIP) offload. These types of processing are now offloaded to zIIP processors 
to compensate for any possible increase in CPU resource consumption when performing 
parallel index read I/O for random key INSERTs.

Accounting Trace Class 3 enhancement
In DB2 10 for z/OS, there are now separate counters for IRLM Lock/Latch Wait and DB2 
Latch Wait events in the DB2 accounting trace Class 3 accounting. Previously, both types 
of wait events were included in a single counter. When analyzing application perform-
ance problems, you had to try to figure out which type of wait activity was causing the 
value of this single counter to be elevated.

 The next improvement relates to data sharing. One of the disadvantages of having 
very large, local buffer pools with many group buffer pool (GBP) dependent objects, 
was that DB2 for z/OS used to scan the local buffer pool for each GBP-dependent object 
during DB2 shutdown. These scans potentially added a lot of delay in shutting down the 
DB2 subsystem. DB2 also used to scan the local buffer pool when an object went into 
or out of GBP dependency. This activity could add a lot of overhead, depending on how 
often these transitions were made.

 In DB2 10 for z/OS, we expect faster DB2 shutdown times because we avoid the 
local buffer pool scan per GBP-dependent object during the shutdown. We now also 
avoid the local buffer pool scan when an individual object (pageset/partition) transitions 
into or out of GBP dependency.

 Inline LOB column values are now supported in DB2 10 for z/OS. The size of the 
inline portion can be specified as a system parameter (ZPARM) or on an individual object 
basis. There is no “one size fits all” value for the use of inline LOBs. So, using a general 
value as a system parameter is unlikely to be a good choice as design default.

 You will get more value by setting the inline LOB value on the SQL DDL for the 
specific object. The performance tuning goal is to avoid access to the auxiliary table 
space for the majority of LOB column values. This function is aimed primarily at applica-
tions that have many, small LOB column values (i.e., up to a few hundred bytes in length, 
although they could be several thousand bytes in length).



40  •  IBM DB2: The Past, Present, & Future

 The design goal for the inline LOB value is to store the complete column value 
inline, in the base table row, and avoid access altogether to the auxiliary table space. The 
potential exists for significant CPU resource consumption reduction and elapsed time 
improvement if this can be achieved by setting the right value for the size of the inline 
portion.

 However, if you store all (or part) of the LOB column value inline, in the base table 
row, and then very rarely reference the LOB column value, you may impact perform-
ance elsewhere because you will get fewer rows per page. In any event, you may need to 
consider increasing the page size for the table space.

 In the worst case, if you have made a poor choice for the inline LOB column value, 
you will have the first part of most LOB column values in the base table and the remain-
ing part of each LOB column value in the auxiliary table space. So, not only will you 
get no benefit, but you will actually increase CPU overhead and waste DASD space. But 
another advantage to inline LOB column values is that the portion of the LOB column 
value that is stored in the base table row is now eligible for data compression and can be 
used in index on expression.

 Another performance enhancement to DB2 10 for z/OS relates to active log writes. 
Before DB2 10 for z/OS, DB2 active log writes were always done serially to log copy 1 
and log copy 2 when rewriting a previously written log CI that was partially filled. DB2 
would write to log copy 1, wait, and then, when it was successful, write to log copy 2. 
The reason for this was that, prior to RAID devices, we had single, large, expensive disks 
(SLEDs). We were always concerned that, when we rewrote a previously partially filled 
log CI, we might destroy the previous version of the log CI and its contents.

 With the increased reliability provided by RAID devices, there is no longer any 
reason to perform rewrites of log CIs serially. DB2 10 for z/OS now always performs 
active log writes in parallel. This enhancement can generate significant elapsed time 
improvements for applications that commit frequently or when other forced writes occur 
(e.g., related to index leaf page splits).

Hash access vs. index-only access
Hash access basically “competes” with clustered index access, and specifically with 
index-only access combined with index lookaside. In an effort to reduce CPU resource 
consumption, hash access tries to avoid going through an index B-tree structure with 
many levels to access the data row to improve query performance. The advantage that 
clustered index access has is that DB2 tries to maintain clustered data row access. Index-
only access avoids access to the data row completely. DB2 10 for z/OS also provides the 
opportunity to have a unique index with INCLUDE columns.

 Today, you may have multiple indices on a table. One index is there to enforce the 
uniqueness of the primary key. You may have added another index to improve perform-
ance (e.g., better filtering, avoiding sort). The leading columns may be the same in both 



Planning for IBM DB2 10 for z/OS Upgrade   •  41

indices. You may now include additional columns in a unique index and still use that 
same index as before to enforce the unique constraint.

 The length of each index entry will be larger. Now, the advantage of a unique index 
with INCLUDE columns is that it gives you the ability to satisfy the unique constraint 
check and provide the performance benefits you want for query. The result is that you can 
reduce the number of indexes required for performance reasons. For every index you can 
avoid, you will improve the performance of INSERT and DELETE and possibly improve 
UPDATE performance, as well.

 A number of customers evaluated both methods to try to find the “sweet spot.” There 
is definite value from hash access, provided you can determine that sweet spot. However, 
in practice, the sweet spot has proved to be relatively small. Here are guidelines for 
identifying the sweet spot:

•9 High NLEVELS in index (more than two)
•9 Access by applications needs to be purely direct row access by primary key
•9 Truly random access
•9 Read-intensive, not volatile
•9 No range queries (minimize BETWEENs, >, <, and so on)
•9 Many rows per page

 One of the key points about hash access performance is that you want to “tune” the 
space allocation of the fixed-sized hash area so that you reduce the number of rows that 
go into the overflow index (i.e., control overflow). If the primary fixed hash area is too 
small, you will have many rows in the overflow index; on the other hand, if the primary 
area is too large, you will have too much random I/O. It is important to minimize or avoid 
altogether rows in the overflow index.

 To help with sizing the fixed hash area size, DB2 10 for z/OS provides a new option 
on the REORG utility called AUTOESTSPACE(YES). When you perform REORG with this 
option, it uses information from Real Time Statistics (RTS) to resize the primary fixed 
hash area and reduce the number of rows in the overflow index. However, even after  
such a REORG, there may still be some small number of data rows in the overflow index.

 Finally, when you migrate to hash access, you will see some degradation in the 
elapsed time for both LOAD and REORG utility executions.

Availability
DB2 10 for z/OS provides a number of enhancements to reduce planned outages for 
applications and improve the success of the online REORG utility.

Online schema evolution
“Deferred Alter” is a new feature in DB2 10 for z/OS. With this mechanism, when you 
make a schema change, the change goes “pending” and it is stored in the DB2 catalog. 
The next time you perform an online REORG, the online REORG will materialize the 



42  •  IBM DB2: The Past, Present, & Future

pending changes. You can set up many Deferred Alters. Each of the changes will go 
pending in the DB2 catalog until the subsequent online REORG occurs, when the changes 
will be materialized.

 Why is this feature important? The Deferred Alter mechanism now gives you a 
migration path away from the classic table space types of simple, segmented, and  
partitioned—which contain a single table—over to universal table spaces.

Note

UTS is a prerequisite for some of the new DB2 10 for z/OS functions, 
such as hash access, inline LOB, and currently committed. It is also a 
prerequisite for the cloned table function in DB2 9 for z/OS. If a table space 
is a simple table space or a segmented table space, you can have only one 
table per table space to be able to use this migration path to UTS, because 
UTS still only supports one table per table space.

Note

This migration path to UTS is a “one-way ticket” only. Once you migrate 
to UTS, you cannot go back using the same Deferred Alter mechanism 
to simple, segmented, or partitioned table spaces. To return to using the 
classic table space types, you would have to unload the data, drop the table 
space, redefine the table space as it was before, and reload the data.

 Note also that point-in-time recovery to a point before a successful materializing 
online REORG is not possible. If, for example, you have incorrect results from REORG, 
possibly because the wrong rows were discarded or an application change needs to be 
rolled back, you cannot recover to a point in time before the online REORG.

 Now, once you have migrated to UTS PBG/PBR, you can change attributes such as 
DSSIZE and index page size. You can turn MEMBER CLUSTER on and off or migrate to 
and from hash access. These abilities are all provided by the Deferred Alter mechanism, 
followed by the online REORG. This function works very well and can help reduce the 
number of destructive database changes that previously caused database down time and 
impacted the availability of dependent critical business applications.

 To summarize, the benefits of Deferred Alter are:

99 Streamlining the move to UTS
99 Reducing the administrative time and cost associated with moving to UTS
99 Helping to minimize errors
99 Reducing outages

 Another new option is the FORCE option of online REORG. In the last part of the 



Planning for IBM DB2 10 for z/OS Upgrade   •  43

REORG, when you are in the final attempt to drain the object and are about to make the 
switch, if there are “active” threads blocking, the FORCE option allows DB2 10 for z/OS 
to kill the active threads.

 Early beta customers found limited value to this function because if the threads were 
active in DB2, DB2 would cancel the threads (good). But if the threads were inactive, the 
FORCE function did not kill them, and the online REORG failed. Then, when the inactive 
threads became active after the online REORG failed, the threads were canceled on their 
way back in. So the FORCE option is not a guaranteed way to kill all blocking threads and 
allow the online REORG to always make the switch.

 Also new with DB2 10 for z/OS, the online REORG of LOB table spaces provides 
a DISCARD option. Early customers thought this feature was of limited value because it 
cannot handle LOB column values greater than 32K bytes.

Other Issues
First, there is the retained ability to create classic partitioned table spaces (PTSs). In 
DB2 10 for z/OS, the classic PTS is now deprecated, meaning that, by default, you will 
not be able to create any new classic PTS. An attempt will be made to honor the request 
by creating a UTS PBR. However, a CREATE of UTS will support only the table-based 
controlled partitioning syntax. The legacy, index-based control partitioning syntax is not 
supported for UTS.

 So, by default, you may not be able to create any new, classic PTS. However, 
customers demanded the continued ability to create classic PTSs because there are 
still a few areas where classic PTS has value over UTS. The good news is that you can 
still create classic PTSs in DB2 10 for z/OS, and these table spaces are still officially 
supported. There are two ways to continue to create classic PTSs:

1. Specify SEGSIZE=0 on the CREATE TABLESPACE statement.
2. Set new system parameter DPSEGSZ to zero (the default is 32).

Either of these methods will let you create classic PTSs in DB2 10 for z/OS.

 For customers who still have old COBOL and PL/1 programs, the DB2 for OS/390® 
Version 7 lookalike precompiler (DSNHPC7) for COBOL and PL/I is still provided in 
DB2 10 for z/OS.

 The concurrency issues with parallel SQL DDL execution are not absolutely solved 
in DB2 10 for z/OS, despite the DB2 catalog restructure in Enable New Function Mode 
(ENFM). While the restructure was eventually successful to allow for parallel BIND/
REBIND activity, most customers still experience deadlocks when running parallel jobs 
with heavy SQL DDL against different databases within the same commit scope. There-
fore, some customers will still have to run their SQL DDL jobs single-threaded.



44  •  IBM DB2: The Past, Present, & Future

BIND/REBIND issues
With single-thread BIND/REBIND, early customers have reported degraded CPU and 
elapsed time performance on entry into DB2 10 for z/OS CM. There are two reasons for 
this experience:

•9 PLANMGMT is now ON by default, and its default value is EXTENDED.
•9 New indexes defined for post-ENFM processing, when hash links are 

eliminated, are being used even in CM.

 Because we have a single code path (no dual path processing) across the differ-
ent modes (CM, ENFM, NFM) of DB2 10 for z/OS, those indices are now used even 
in Conversion Mode. For most customers, single-thread BIND/REBIND performance 
remains important because there are no concurrency improvements until after the DB2 
catalog restructure is completed at the end of ENFM.

 With parallel BIND/REBIND jobs, particularly in data sharing mode, we identified 
and addressed a number of concurrency and performance problems prior to general 
availability, including performance problems related to the repetitive DELETE/INSERT 
processing.

 A number of customers have reported problems related to significant space growth  
in the SPT01 table space and in the associated LOB table spaces (SYSSPUXA, SYSSPUXB). 
The problem happens when an old READLRSN exists on the object. The problem can be 
observed in both data sharing and non-data sharing systems. Frequent reorganizations of 
these table spaces have been required to reclaim the excessive DASD space usage. This 
solution has been unacceptable to some of these customers. APAR PM64226 has now 
been opened to address the space growth issue associated with the LOB table spaces 
only. The solution involves being more aggressive on space reuse within the same DB2 
subsystem or member. This excessive space growth has been observed for other LOB 
table spaces within the DB2 catalog and directory (e.g., SYSDBDXA). The subject APAR 
will address the excessive space growth for these LOB table space objects as well. The 
problem related to excessive space use in the base SPT01 table space is still being worked 
through.

 The concurrency of parallel BIND/REBIND jobs is now working well after the ENFM 
processing is complete, even across different members of the same data sharing group. 
Several relevant fixing APARs must be applied to make this happen:

APAR Description
PM24721 Inefficient space search for out-of-line LOB in data sharing
PM27073 Inline LOB with compression for SPT01 to address SPT01
PM27973 More efficient space reuse for base table and UTS

 With these APARs applied, concurrent BIND/REBIND activity in both data sharing 
and non-data sharing systems works very well after you get past the ENFM processing.



Planning for IBM DB2 10 for z/OS Upgrade   •  45

 Once beyond ENFM processing, we recommend that customers change existing 
procedures to run BIND/REBIND activity in parallel (but you should not do this until after 
ENFM). Doing so gives customer installations the opportunity to get back to and improve 
upon the elapsed time performance (throughput) levels experienced in DB2 9 for z/OS 
and DB2 for z/OS Version 8 and to reduce application downtime when implementing new 
enterprise application releases.

Incompatible Changes
The most important incompatibility relates to the use of the CHAR(decimal), 
VARCHAR(decimal), CAST(decimal AS CHAR), and CAST(decimal AS VARCHAR) built-
in functions. As an application programmer, you may have used one of these functions 
and applied it against a decimal column value to pull out a numeric value to assign to 
particular fields.

 The incompatible change is documented in the DB2 10 for z/OS Installation and 
Migration Guide (GC19-2974). The challenge for customers is how to identify the rogue 
applications that are exposed to the incompatible changes and need to be corrected. How 
do you identify what the exposure is?

 By working with customers in the beta program, we were able to identify the  
issue related to the CHAR(decimal) built-in function. APAR PM29124 was created to 
restore the compatible behavior of pre–DB2 10 for z/OS releases, by default, for the 
CHAR(decimal) built-in function. This support applied only to the CHAR(decimal) 
function. The subject APAR introduced a new DB2 system parameter called BIF_
COMPATIBILITY. The options for BIF_COMPATIBILITY are V9 and CURRENT to enable 
and disable it, respectively. The parameter’s default value of V9 continues to allow the 
old behavior for the CHAR(decimal) function, but even with this setting you still get the 
new incompatible DB2 10 for z/OS behavior for VARCHAR/CAST(decimal) functions. A 
new IFCID 366 was made available under DB2 10 for z/OS to enable customers to trace 
and identify programs potentially at risk that require investigation and correction. This 
IFCID 366 trace record covers both static and dynamic SQL. IFCID 366 support was also 
made available under DB2 9 for z/OS as a USERMOD on request. APAR PM70455 has 
now been opened to formally retrofit IFCID 366 back to DB2 9 for z/OS.

 APAR PM66095 has now been opened; this APAR increases the scope of the  
DB2 subsystem parameter BIF_COMPATIBILITY to include VARCHAR(decimal),  
CAST(decimal AS CHAR), and CAST(decimal AS VARCHAR) built in functions. It  
also adds a third option, V9_DECIMAL_VARCHAR. These settings allow you to specify 
whether:

•9 The current DB2 10 for z/OS release format should be returned by all of these 
functions (BIF_COMPATIBILITY=CURRENT)

•9 The DB2 9 for z/OS format should be returned by all of these functions  
(BIF_COMPATIBILITY=V9_DECIMAL_VARCHAR)



46  •  IBM DB2: The Past, Present, & Future

•9 The current release format should be used by all of these functions except the 
CHAR(decimal) function, which should return the DB2 9 for z/OS format  
(BIF_COMPATIBILITY=V9)

 The next incompatibility issue is with SQL stored procedures. If you have a native 
SQL procedure that was implemented and/or regenerated under DB2 10 for z/OS and 
you need to fall back to DB2 9 for z/OS, that native SQL procedure will not run. The 
workaround is to run the ALTER PROCEDURE REGENERATE statement on the DB2 9  
for z/OS member. APAR PM13525 will deal with this issue automatically for you.

 Finally, there is an issue with the CREATE TRIGGER statement for triggers created 
on DB2 10 for z/OS. If you fall back to DB2 9 for z/OS, such triggers wonʼt work. The 
workaround: Drop and re-create these triggers under DB2 9 for z/OS after fallback.

Migration and Planning Considerations
This section reviews key migration and planning considerations in planning for DB2 10 
for z/OS.

Migration strategy
As in previous releases, we recommend a short time for mixed-release coexistence in 
data sharing. A short period for Enable New Function Mode is also highly recommended. 
Support from vendors may affect the staging of the migration. One consideration for 
Conversion Mode is that some of the new performance improvements cannot be used.

 There are options to consider that will affect the timing of when to move from Test to 
QA to Production. Even though there are better controls for preventing the use of new SQL 
functions, it is advisable not to have a long time gap when Test and Production levels are 
at different releases and at different maintenance levels for the same release. You now have 
more granularity in the migration process and can move through mode by mode. Some 
customers migrate both Test and Production to CM, wait and stabilize for a while, and then 
migrate to New Function Mode (NFM) through ENFM in a very short time.

 The chart shown in Figure 1.3 summarizes the history of DB2 releases. The top line 
tracks the year when each release became generally available (GA). The arrows show 
that the only releases where it was possible to skip a release were from DB2 for OS/390 
Version 5 to DB2 for OS/390 Version 7 and from DB2 for z/OS Version 8 to DB2 10  
for z/OS.

 The lower part of the chart indicates the steps within the upgrade path from DB2 
for z/OS Version 8 or DB2 9 for z/OS to DB2 10 for z/OS. The double-headed arrows 
indicate where you can “go back” a step, if necessary.



Planning for IBM DB2 10 for z/OS Upgrade   •  47

Note

If you are migrating from DB2 for z/OS Version 8, you have a decision to 
make. Should you go to DB2 9 for z/OS, or skip it and go directly to DB2 10 
for z/OS? Once you decide to migrate to DB2 10 for z/OS CM8, you can still 
return to DB2 for z/OS V8 by falling back. But you cannot then try later to 
migrate forward to DB2 9 for z/OS CM.

Planning considerations
In general, the DB2 10 for z/OS migration process is very similar to that for both DB2 
for z/OS Version 8 and DB2 9 for z/OS. It works well, with few customers experiencing 
problems with migration and fallback. The ENFM process in DB2 10 for z/OS runs a 
lot longer than it did for DB2 9 for z/OS and even longer than it did on DB2 for z/OS 
Version 8.

 You can migrate to DB2 10 for z/OS CM from either DB2 for z/OS Version 8 NFM or 
DB2 9 for z/OS NFM. You cannot migrate through either of the following two scenarios:

•9 Once you migrate forward from DB2 for z/OS Version 8 NFM to DB2 10 for  
z/OS CM8, you can always fall back to DB2 for z/OS Version 8 NFM, but you 
cannot then migrate forward to DB2 9 for z/OS CM.

•9 Once you migrate forward from DB2 for z/OS Version 8 NFM to DB2 9 for  
z/OS CM, you can always fall back to DB2 for z/OS Version 8 NFM, but you 
cannot then migrate forward to DB2 10 for z/OS CM8.

Figure 1.3: Timeline of DB2 releases and upgrade paths



48  •  IBM DB2: The Past, Present, & Future

Online migration in 24x7 environments
Increasingly, customers are asking whether they can run jobs DSNTIJTC (the 
CATMAINT utility) and DSNTIJEN alongside critical business application services. 
It is technically possible to run these jobs alongside well-behaved online transaction 
workloads. DSNTIJTC and DSNTIJEN use SQL DDL with frequent commit and REORG 
SHRLEVEL(REFERENCE). The jobs are designed to fail gracefully, leaving the DB2 catalog 
and directory fully operational. After problem determination is complete, the respective 
failing job can be corrected and resubmitted. The respective failing job will then restart 
from where it left off. However, there are some “rules of the game,” and you must be 
prepared to play by the rules. Jobs DSNTIJTC and DSNTIJEN should be scheduled during 
a relatively quiet period. In a non-data sharing system, you must stop all application 
workloads when the DSNTIJTC job is running. In a data sharing system, you must route 
work away from the DB2 member where the DSNTIJTC job is running by temporarily 
changing workload balancing and sysplex routing schemes.

 You should also synthetically stop all of the following workload types from running: 
SQL DDL, GRANTs and REVOKEs, BIND/REBIND, utilities, and monitors. All essential 
business-critical workloads that are running should commit frequently. You must be 
prepared to watch and intervene if needed. There is a strong recommendation to perform 
pre-migration catalog migration testing. You must be prepared for the DSNTIJTC job and/
or the DSNTIJEN job to possibly fail or for some business transactions to fail.

 There is also some critical maintenance you should apply. APAR PM62572 deals 
with undetected deadlock contention failure during the switch phase of the ENFM 
REORG step. APAR PM58575 avoids auto-bind triggering deadlock with RTS.

 If, as a customer installation, you are not prepared to play by these rules of the game, 
then take the outage, quiescing all applications, and run the DSNTIJTC or DSNTIJEN job 
with the migrating DB2 member started with ACCESS(MAINT).

 Here are some important APARs to remember:

•9 Fallback Toleration SPE:
 ◦ APAR PK56922

•9 Early Code for DB2 V8/V9:
 ◦ APAR PK87280 (supersedes APAR PK61766)

•9 Information APARs:
 ◦ II14474: V8 to V10
 ◦ II14477: V9 to V10

 If you are migrating from DB2 for z/OS Version 8 NFM, the bootstrap data set 
(BSDS) must be reformatted for the larger number of active/archive log tracking.



Planning for IBM DB2 10 for z/OS Upgrade   •  49

 For those who operate DB2 Connect™, the recommended minimum level to support 
DB2 10 for z/OS is now DB2 Connect V9.5 FP7. At least DB2 Connect V9.7 FP3A is 
required to support the new functions of DB2 10 for z/OS.

Deprecated DB2 system parameters (ZPARMs)
As with every release of DB2 for z/OS, DB2 for z/OS provides a list of system param-
eters slated for deprecation in DB2 10 for z/OS. Several customers have, however, 
misunderstood the term “deprecation” to imply that the system parameter has been 
removed or is rendered meaningless in the current release. The real meaning of depreca-
tion in this context is that the system parameter is still active in the current release but has 
been identified as being removed in a future release.

 The wording in the DB2 10 for z/OS Installation and Migration Guide has been clari-
fied and now states that although the deprecated system parameters are supported in DB2 
10 for z/OS, they will be removed in a later release of DB2 for z/OS.

 Table 1.2 summarizes the deprecated system parameters and their behavior after DB2 
10 for z/OS.

Deprecated system parameter Behavior in releases after DB2 10 for z/OS
DISABSCL In later DB2 releases, subsystems behave as if DISABSCL is set to NO.
DPSEGSZ In later DB2 releases, subsystems behave as if DPSEGSZ is set to 32.
OJPERFEH In later DB2 releases, subsystems behave as if OJPERFEH is set to YES.
OPTIOWGT In later DB2 releases, subsystems behave as if OPTIOWGT is set to 

ENABLE.
OPTIXIO In later DB2 releases, subsystems behave as if OPTIXIO is set to ON.
PTCDIO In later DB2 releases, subsystems behave as if PTCDIO is set to OFF.
RETVLCFK In later DB2 releases, subsystems behave as if RETVLCFK is set to NO. 

Use of non-padded indexes is recommended.
SEQCACH In later DB2 releases, subsystems behave as if SEQCACH is set to SEQ.
SEQPRES In later DB2 releases, subsystems behave as if SEQPRES is set to YES.
SMSDCFL In later DB2 releases, the CREATE STOGROUP and ALTER STOGROUP 

statements have been enhanced to include SMS data class parameters.
SMSDCIX In later DB2 releases, the CREATE STOGROUP and ALTER STOGROUP 

statements have been enhanced to include SMS data class parameters.
STATCLUS In later DB2 release, subsystems behave as if STATCLUS is set to 

ENHANCED.
Table 1.2: System parameters deprecated in DB2 10 for z/OS

Despite the clarification in the documentation, there is still concern that an import-
ant optimizer-related system parameter, OPTIOWGT, could be incorrectly set by some 
customers because it is listed as deprecated. There is a recommendation for OPTIOWGT 
to be set to ENABLE, the default value. As from DB2 9 for z/OS and later, there is a 
very strong recommendation from DB2 for z/OS Development for customers to use the 
default. A new APAR, PM70046, has been released for DB2 10 for z/OS to absolutely 
ensure that all customers follow this recommendation: Set system parameter OPTIOWGT 
to ENABLE to alleviate performance issues. This ZPARM will be removed in the next 
release of DB2.



50  •  IBM DB2: The Past, Present, & Future

Elimination of DDF Private Protocol
Many customers are still using DDF Private Protocol under DB2 for z/OS Version 8 
and DB2 9 for z/OS. Use of DDF Private Protocol in DB2 10 for z/OS is definitely not 
supported. There is zero tolerance for the use of DDF Private Protocol in DB2 10 for z/
OS. You must absolutely eliminate all use of DDF Private Protocol before starting DB2 
10 for z/OS in CM.

 Many customers have local plans and packages (CICS, IMS, batch, and so on) that 
have been accidentally mistagged as requiring the use of DDF Private Protocol. These 
mistagged plans and packages will be tolerated at allocation time. However, if any of 
these packages really does perform an external SQL call that uses DDF Private Protocol, 
the call will be prevented and the application will fail immediately.

DBRMs bound directly into plans 
In DB2 10 for z/OS, database request modules (DBRMs) bound directly into plans are 
no longer supported. However, if any DBRMs bound into plans are found at execution 
time, DB2 will automatically trigger the AUTOBIND process to generate packages on 
first allocation after entry into DB2 10 for z/OS. We choose a standard collection name to 
put these packages in, but the recommended best practice is to deal with DBRMs bound 
directly into plans before migrating to DB2 10 for z/OS. Any old plans and packages 
bound prior to DB2 for OS/390 Version 6 will also be invalidated and go through an 
AUTOBIND process.

SMS management of DB2 catalog and directory datasets
During CATMAINT and ENFM processing on DB2 10 for z/OS, all the new indexes and 
new table spaces in the DB2 catalog and directory will be created as SMS-controlled, 
requiring extended addressability (EA) and extended format (EF) attributes. Some 
customers still do not use SMS management for the DB2 catalog and directory. Before 
you initially start DB2 10 for z/OS and run CATMAINT, you must have set up your 
environments so that any new datasets created for the DB2 catalog and directory objects 
are placed on SMS-managed DASD volumes.

 For those of you coming from DB2 for z/OS V8, partitioned data sets extended 
(PDSEs)—as opposed to partitioned data sets (PDSs)—are required for the SDSNLOAD, 
SDSNLOD2, and ADSNLOAD libraries.

 The environment created by the DSNTIJSS job is only for DB2 catalog and directory 
data sets, which must be SMS-controlled in DB2 10 for z/OS. Other DB2 subsystem data 
sets, such as logs and the BSDS, are not accounted for in this environment.

 The DSNHDECP module supports the NEWFUN parameter, which can be set to one of 
the following options: V10, V9, or V8. This parameter setting provides a way of stopping 
both static and dynamic SQL applications from using new SQL functions.



Planning for IBM DB2 10 for z/OS Upgrade   •  51

Explain tables
Many customers are still employing old plan table formats when using EXPLAIN. DB2 
10 for z/OS brings some changes in this space. First, if you have any plan tables that use 
a format prior to DB2 for z/OS Version 8, they will not work with EXPLAIN in DB2 10 
for z/OS. The plan table format and the ASCII/EBCDIC Coded Character Set Identifier 
(CCSID) from previous releases are deprecated in DB2 10 for z/OS. They will fail with 
SQLCODE –20008. If you have plan tables in DB2 for z/OS Version 8 or DB2 9 for  
z/OS format, you can still use them, but they will generate a warning SQLCODE +20520, 
regardless of whether they use CCSID EBCDIC or UNICODE.

 If you use the DB2 10 for z/OS format of the plan tables with EXPLAIN, you must  
use UNICODE as the CCSID value. If you try to use CCSID EBCDIC with the DB2 10  
for z/OS format, you will receive the following errors:

•9 EXPLAIN fails with RC=8 DSNT408I SQLCODE=–878.
•9 BIND with EXPLAIN fails with RC=8 DSNX200I.

 We recommend using the DB2 10 for z/OS extended format of the plan tables with a 
CCSID value of UNICODE. APAR PK85068 can help you migrate existing plan tables in 
DB2 for z/OS Version 8 or DB2 9 for z/OS table format over to the new DB2 10 for z/OS 
format with a CCSID of UNICODE.

Should you “skip” DB2 9 for z/OS?
Those who decide to migrate from DB2 for z/OS Version 8 directly to DB2 10 for z/OS, 
are, by definition, early adopters of the new DB2 10 for z/OS release. This is because the 
end of support for DB2 for z/OS Version 8 came at the end of April 2012. Quite clearly, 
the DB2 for z/OS Version 8 to DB2 9 for z/OS migration is the safer path to take because 
DB2 9 for z/OS has been in the field for almost four years and is quite stable.

 Early customer adopters of DB2 10 for z/OS, whether migrating from DB2 for z/OS 
Version 8 or DB2 9 for z/OS, should expand their plans and take extra care to mitigate 
the risk of instability. This is not a statement of, nor an implication that, the DB2 10 for z/
OS release has any endemic problems of instability. These same recommendations would 
apply to any new release of DB2 for z/OS or any other major software product.

 First, you should perform application regression and stress testing to keep problems 
away from production. Next, plan to be proactive with regard to applying regular 
upgrades of preventive service within a continuous process. Plan to stay more current 
than two full, major preventive service maintenance drops per year. A continual process 
to apply regular, full, major preventive service maintenance drops, including HIPERs/
PEs, is essential and required for about a year.

 We strongly recommend planning for four major preventive service maintenance 
package drops in the first year, based on the quarterly RSU. Then, you can move to two 



52  •  IBM DB2: The Past, Present, & Future

major and two minor preventive service maintenance drops as the release passes through 
the early adopter curve. In between these drops, be vigilant and take advantage of the 
Enhanced HOLDDATA on a weekly basis to find out what critical HIPER PTFs and PTFs 
in Error (PEs) are becoming available, and then take action based on the risk of hitting 
the problem in your installation and the consequences of hitting the problem.

 One of the advantages of following the CST/RSU process for building preventa-
tive service packages, as opposed to following the PUT route, is that it enables you to 
stay current on HIPERs/PEs that have gone through more testing while at the same time 
letting you stay further back on non-HIPERs maintenance. This capability provides some 
level of protection against PTFs in Error (PEs).

 Finally, you have to be able to accept some level of risk and be able to handle some 
“bumps in the road” during the stepped migration process.

Security considerations when removing DDF Private Protocol
As previously mentioned, there is zero tolerance in DB2 10 for z/OS for applications 
issuing DDF Private Protocol requests. Before migrating to DB2 10 for z/OS CM, you 
need to plan for and work on eliminating all use of DDF Private Protocol and converting 
it to DRDA before you leave DB2 for z/OS Version 8 NFM or DB2 9 for z/OS NFM. 
There are fundamental differences in how authorization is performed, based on which 
distributed access protocol you use and whether the distributed access protocols are used 
in combination.

 Let me start with a brief recap of the differences between Private Protocol and 
DRDA Protocol.

 Private Protocol is unique to the DB2 for z/OS requester and supports static SQL 
statements only. The plan owner must have authorization to execute all SQL requests 
executed on the DB2 for z/OS server. The plan owner is authenticated on the DB2 for  
z/OS requester and not at the DB2 for z/OS server.

 Now, let us compare that with the DRDA Protocol. DRDA supports both static and 
dynamic SQL statements. The primary auth ID and associated secondary auth IDs must 
have authorization to execute both static SQL packages and dynamic SQL at the DB2 for 
z/OS server. The primary auth ID authenticated and secondary auth IDs are associated at 
the DB2 for z/OS server.

 In releases prior to DB2 10 for z/OS, Private Protocol and DRDA Protocol can be 
used by the same application within the same commit scope. You can “mix and match.” 
Private Protocol security semantics are used due to possible inconsistent behavior, which 
is dependent on how the programs are coded and executed.

 But there is also a difference prior to DB2 10 for z/OS in the authorizations required 
by an incoming DRDA connection at the DB2 for z/OS server, depending on where the 
connection comes from:



Planning for IBM DB2 10 for z/OS Upgrade   •  53

•9 Dynamic SQL DRDA connection from DB2 Connect and/or DB2 client direct 
connection where the connecting user ID needs authority to run the appropriate 
DB2 package and authority to access the DB2 table

•9 Dynamic SQL DRDA connection from DB2 for z/OS requester where the 
connecting user ID needs authority to access the DB2 table and the originating 
plan owner needs authority to run the appropriate DB2 package

 It is different for DB2 for z/OS requester to DB2 for z/OS server because connec-
tions were designed to use Private Protocol (PP) semantics to avoid changing auth IDs 
when switching from Private Protocol to DRDA Protocol.

 With the disappearance of Private Protocol in DB2 10 for z/OS, DB2 for z/OS 
Development have decided to bring the DRDA connection from DB2 for z/OS requester 
to DB2 for z/OS server in line with other DRDA requesters and to change the authoriza-
tions required. This change was retrofitted back into DB2 for z/OS Version 8 and DB2 
9 for z/OS with APAR PM17665. It is very important to distinguish clearly between the 
behavior of DRDA before and after APAR PM17665.

 So things will now change with the introduction of the PTF for APAR PM17665, 
which applies to both DB2 for z/OS Version 8 and DB2 9 for z/OS. It provides control 
over the authorization checks performed when migrating from Private Protocol to DRDA 
Protocol. In DB2 10 for z/OS, Private Protocol security semantics are no longer used 
because Private Protocol has now been eliminated and DRDA Protocol has to be used for 
access from a DB2 for z/OS requester. Migration to V10 or the application of the PTF for 
APAR PM17665 does affect you even if you have everything already bound as DRDA.

 After the introduction of the PTF for APAR PM17665, DB2 for z/OS Version 8 and 
DB2 9 for z/OS will now use DRDA authorization checks but will use the DB2 system 
parameter PRIVATE_PROTOCOL (previously introduced in APAR PK92339) to determine 
what security checks should be performed. This system parameter was introduced to 
allow a customer installation to prevent new use of Private Protocol after all the previous 
use was eliminated. To do this, a customer would set system parameter PRIVATE_
PROTOCOL to NO.

 So, before you disable DDF Private Protocol by setting DB2 system parameter 
PRIVATE_PROTOCOL to NO, ensure that all the appropriate grants are in place by grant-
ing execute privileges to any user who plans to run a package or a stored procedure 
package from a DB2 for z/OS requester against a DB2 for z/OS server. The requester will 
now be treated like any other DRDA client application running requests at a DB2 for z/
OS server.

 Clearly, this is a major change that could have a big impact. To help customers 
migrate away from Private Protocol to DRDA Protocol and handle in a timelier manner 
the changes introduced in security checking when the DRDA requester (client) is a DB2 
for z/OS requester, both DB2 for z/OS Version 8 and DB2 9 for z/OS will provide the 



54  •  IBM DB2: The Past, Present, & Future

option to continue to prevent the introduction of new Private Protocol requests and to 
continue to use the Private Protocol authorization checks. The latter option is achieved by 
changing the setting of DB2 system parameter PRIVATE_PROTOCOL from NO to AUTH.

Save critical access paths and accounting data
BIND REPLACE and REBIND activity can cause unwanted access path changes that can 
lead to run time performance degradation. You should identify important queries, plans, 
and packages. Be sure plan tables contain access paths and costs. ALTER current plan 
tables to add new DB2 10 for z/OS columns. REBIND may change access paths, so extract 
access plan information and run REBIND with EXPLAIN under a dummy collection or a 
different application or program name.

 Keep accounting reports for crucial queries and applications. If you have a problem 
and send in accounting layout long reports and the plan table data, we will be able to 
troubleshoot the problems more quickly. If you do not have the reports and the data, then 
we must guess.

Recommendation for REBIND under DB2 10 for z/OS
Customers understand the need to REBIND their static SQL packages to take advantage of 
the new query optimization enhancements. However, few customers recognize the other, 
potentially more important reasons why DB2 for z/OS Development suggests customers 
REBIND in CM on the current release.

 The first reason for REBIND relates to re-creating the prior release runtime structures 
to be tolerated on the current release. Across a release migration, runtime optimizations 
such as SPROCs for fast column processing are disabled, and the prior release structures 
needed to be puffed up to execute on the current release. Each of these may cost several 
percentage points in increased CPU resource consumption without any change in access 
path.

 Migrated packages from earlier releases also pose an increased risk of incorrect 
output or abend—especially the older these packages are. While DB2 for z/OS Develop-
ment are diligent in their efforts to test packages created under prior releases in the 
current release, when you consider the number of access paths available to the DB2  
for z/OS optimizer and the amount of potential maintenance under which prior REBIND 
might have occurred, it is virtually impossible to test all combinations. Basically, there is 
safety in being current on your REBINDs.

 While the aforementioned reasons for REBIND are common for all releases, there 
are additional reasons specific to DB2 10 for z/OS. Maximizing the DBM1 31-bit virtual 
storage constraint relief occurs only after REBIND, as does exposure to many new runtime 
optimizations delivered for existing access paths, such as RID overflow to workfile or the 
bulk of the predicate processing improvements. Again, these optimizations are available 
after REBIND even if the prior access path is maintained.



Planning for IBM DB2 10 for z/OS Upgrade   •  55

 Also specific to DB2 10 for z/OS: Any SQL statement that was bound prior to DB2 10 
for z/OS and exploits CPU parallelism will be incrementally bound for each execution on 
DB2 10 for z/OS until an explicit REBIND is performed on the package. This is due to diffi-
culty in tolerating the prior release parallelism runtime structures under DB2 10 for z/OS.

 REBIND is also recommended because many of the new plan management enhance-
ments exploit the internal access plan table representation (referred to as the Explain Data 
Block, or EDB) that is stored in the DB2 directory from DB2 9 for z/OS onwards.

 While discussing REBIND, it is important to point out that the REBIND recommen-
dation is for static SQL packages when migrating to CM. The vast majority of query 
optimization enhancements are available as soon as DB2 10 for z/OS CM, and there is no 
additional requirement to REBIND when migrating to NFM. Dynamic SQL is exposed to 
the new optimization enhancements at first execution.

 Figures 1.4 and 1.5 outline the DB2 enhancements that are available without REBIND 
and those that require REBIND.

Figure 1.4: DB2 10 performance enhancements available without REBIND

Figure 1.5: DB2 10 performance enhancements that require REBIND



56  •  IBM DB2: The Past, Present, & Future

RUNSTATS preparation before REBIND
The first step in minimizing exposure to bad access path selection is to ensure that you 
have a solid foundation in terms of catalog statistics. While DB2 for z/OS Development 
wants to provide all available optimization enhancements in CM, they also want to ensure 
that customers do not inadvertently REBIND on old catalog statistics if those statistics will 
change by default upon the first RUNSTATS collection in DB2 10 for z/OS.

 The recommendation has always been to collect default RUNSTATS TABLE(ALL) 
INDEX(ALL) KEYCARD, and in recognition of this, the DB2 10 for z/OS default enables 
KEYCARD for RUNSTATS of an index—and there is no way to disable KEYCARD.

 The recommendation, therefore, is to ensure that KEYCARD is being used for 
RUNSTATS before migration to DB2 10 for z/OS—regardless of whether the migration  
is from DB2 for z/OS Version 8 or from DB2 9 for z/OS.

 The second important RUNSTATS change applies to customers migrating from  
DB2 for z/OS Version 8 to DB2 10 for z/OS. DB2 9 for z/OS introduced a significant 
change to the CLUSTERRATIO calculation from RUNSTATS by moving toward exploiting 
dynamic prefetch for index scans and data access via an index. And the RUNSTATS 
CLUSTERRATIO calculation has been enhanced to align with the sequential detection 
algorithm that triggers dynamic prefetch. This new formula is available only in CM of 
the release after DB2 for z/OS Version 8, meaning that DB2 9 for z/OS customers were 
exposed in DB2 9 for z/OS and customers migrating from DB2 for z/OS Version 8 will 
be first exposed in DB2 10 for z/OS CM.

 For both RUNSTATS changes, it is important that you do not perform a mass REBIND 
in DB2 10 for z/OS CM if the next RUNSTATS execution will then change the default 
statistics collection. If KEYCARD is not currently used, it is recommended that you either 
begin using KEYCARD on RUNSTATS before migration or be prepared to run RUNSTATS 
before REBIND in DB2 10 for z/OS CM. Similarly, if migrating from DB2 for z/OS 
Version 8, run RUNSTATS before REBIND in DB2 10 for z/OS CM to pick up the new 
CLUSTERRATIO formula.

 Data sharing customers who plan to exploit mixed-release coexistence for a short 
period of time with DB2 for z/OS Version 8 and DB2 10 for z/OS subsystems should 
consider setting system parameter STATCLUS to STANDARD while in coexistence and 
should avoid REBINDs where possible. When all the members of the data sharing group 
have been migrated to DB2 for z/OS 10 CM, it is recommended to set system parameter 
STATCLUS to ENHANCED (default) and to run RUNSTATS before REBIND.

Pre-production access path analysis
Some customers have copied production statistics to a pre-production environment 
so they could perform proactive access path analysis. Often, however, they found that 
environmental differences, such as CPU speed or smaller buffer pool sizes, in their 
pre-production environment resulted in access paths that differed from production.



Planning for IBM DB2 10 for z/OS Upgrade   •  57

 To overcome the environmental differences, DB2 9 for z/OS APAR PM26475 and 
DB2 10 for z/OS APAR PM26973 delivered an enhancement to support overriding the 
environment variables. The enhancement includes two new system parameters:

•9 SIMULATED_CPU_SPEED
•9 SIMULATED_CPU_COUNT

 Once set, these parameters, instead of the actual system CPU speed and number  
of CPs, will be used by the optimizer for access path selection. In a pre-production 
environment, the recommendation is to set these system parameters to match the  
production values.

 In addition to CPU, new SYSIBM.DSN_PROFILE_ATTRIBUTES values provide the 
capability to override sort pool, RID pool, and buffer pool settings:

•9 SORT_POOL_SIZE
•9 MAX_RIDBLOCKS
•9 For buffer pools, the BP names listed in the DSNTIP1 panel—for example, 

'BP8K0' corresponds to BP BP8K0

 These settings impact only the information used by the optimizer and will be used 
in access path determination. The APAR closing text provides a more detailed explana-
tion of the parameters’ meanings and how to enable them using DSN_PROFILE_TABLE. 
This information is also documented in the DB2 10 for z/OS Managing Performance 
(SC19-2978) guide under the heading “Modeling a production environment on a test 
subsystem.”

 It is important to note, however, that a customer who copies statistics from a DB2 
for z/OS Version 8 production environment to a non-production environment using DB2 
10 for z/OS (or DB2 9 for z/OS) will not be able to reproduce the new CLUSTERRATIO 
formula without running DB2 9 for z/OS or DB2 10 for z/OS RUNSTATS on representa-
tive production data. However, copying DB2 9 for z/OS production statistics to a DB2 10 
for z/OS pre-production environment will allow an accurate representation of what the 
statistics would be in DB2 10 for z/OS production, provided that RUNSTATS was run in 
DB2 9 for z/OS with system parameter STATCLUS set to ENHANCED (default) and the 
KEYCARD option was used.

Minimizing exposure to regression across REBIND
After arguing the case for REBIND in DB2 10 for z/OS Conversion Mode, it is important 
to revisit the reason why customers often avoid REBIND: the risk of query performance 
(access path) regression. Despite taking steps to ensure a stable statistics base is estab-
lished, and potentially pre-production access path analysis performed, many customers 
may prefer to reduce the opportunity for any access path regression during migration. 
However, the non-access path reasons for REBIND make a compelling case to perform 
REBIND early in the DB2 10 for z/OS CM migration.



58  •  IBM DB2: The Past, Present, & Future

 For customers migrating from DB2 9 for z/OS, there is a significant enhancement to 
access plan management in DB2 10 for z/OS that allows customers to REBIND and poten-
tially reuse the prior access path. The reason it is mentioned that this option is available 
for customers upon migrations from DB2 9 for z/OS, but not from DB2 for z/OS Version 
8, is because the reuse of the prior plan depends on the internal Explain Data Block that is 
saved internally in DB2 9 for z/OS and later releases.

 To reiterate, a REBIND in DB2 10 for z/OS will generate new runtime structures, 
which means re-enablement of SPROCs and avoiding puffing and tolerance of the 
prior release runtime structures. It provides exploitation of DBM1 31-bit virtual storage 
constraint relief, new runtime optimizations, and safety from any quality issues with 
runtime structures from a prior release. Despite all those positives, there is a chance of 
an access path regression due to REBIND choosing a new access path. Let us not forget, 
however, that a new access path choice in the majority of cases provides similar or 
improved performance. But the reality is that many customers want to avoid that oppor-
tunity for regression.

 The new BIND/REBIND parameter APREUSE will try to reuse the prior access path 
for each query in the package. The only value options for APREUSE are NO/NONE (the 
default), which means do not reuse the prior plan—consistent with standard BIND/
REBIND behavior—or ERROR, which will try to reuse the prior plan but will fail the 
package BIND/REBIND if the prior plan cannot be reused.

 For customers who want to obtain the new runtime structures, runtime optimizations, 
and virtual storage constraint, but without risking access path regression, REBIND with 
the APREUSE(ERROR) option is a good solution for migration from DB2 9 for z/OS to 
DB2 10 for z/OS. These customers can REBIND again later without APREUSE to explore 
optimizer improvements after their migration has stabilized.

 Packages that fail to reuse the prior plan with APREUSE will remain as they were 
from the prior release, and customers must choose whether to REBIND to potentially 
obtain a new access path or leave these packages to be rebound at a later time.

 Customers migrating from either DB2 for z/OS Version 8 or DB2 9 for z/OS to 
DB2 10 for z/OS will automatically be able to exploit the plan management fallback 
capability upon access path regression. The system parameter default in DB2 10 for 
z/OS is PLANMGMT=EXTENDED, which means that a REBIND will store the prior 
copy as the PREVIOUS, and an ORIGINAL will also be stored if one does not already 
exist. Upon experiencing a performance regression, customers may choose to REBIND 
SWITCH(PREVIOUS) or REBIND SWITCH(ORIGINAL) to restore a prior copy.

 Switching back to a copy that was bound in a prior release means you are returning 
to the old runtime structure, which, as discussed, requires some additional CPU resource 
consumption to puff up the runtime structures to the format of the current release and also 
loses optimizations such as SPROCs.



Planning for IBM DB2 10 for z/OS Upgrade   •  59

Items Planned for Post-GA Delivery
The first items to mention here are APREUSE and APCOMPARE. These features are intro-
duced with APAR PM25679. These options of BIND REPLACE and REBIND provide a way 
to generate a new SQL runtime but, at the same time, ask DB2 10 for z/OS to give you 
the old access path wherever possible. So, if you have previously rebound under DB2 9 
for z/OS, this will mitigate the risk of access path change on the first BIND REPLACE or 
REBIND under DB2 10 for z/OS.

What to do if CPU performance regression occurs
When you encounter a possible CPU performance regression during migration to DB2  
10 for z/OS, the first challenge is to verify that a CPU regression actually occurred and  
to properly qualify the problem to specific connection types, packages, and plans.

 To do so, you need to find valid comparison points in the real production environ-
ment pre- and post- the migration to DB2 10 for z/OS. The best approach is to factor out 
the batch processing because it can be highly variable based on the business operational 
calendar. You can then compare the performance data for the period on DB2 for z/OS 
Version 8 or DB2 9 for z/OS with the corresponding period under DB2 10 for z/OS. As 
a starting point, you can use a combination of statistics trace data, accounting trace data, 
and workload indicators to ensure you have valid comparison points and can identify the 
nature of the problem.

1. To determine whether a CPU regression occurred at migration, find an interval 
of several days with a comparable SQL profile across the DB2 for z/OS releases. 
For a valid comparison, you need a corresponding interval that has a similar 
number of total SQL requests and a similar distribution across the different types 
of SQL statements (SELECT, INSERT, UPDATE, DELETE, and so on). If you find 
that the SQL profile has changed significantly, the application workload has 
changed and a valid comparison for CPU regression is not possible.

2. Compare performance data for the identified period in the DB2 for z/OS Version 
8 or DB2 9 for z/OS release with data from the corresponding period in the DB2 
10 for z/OS release. You can use a combination of the statistics and accounting 
traces to check whether you have the same pattern across the DB2 releases.
a. In the statistics trace data, start by comparing the CPU times for the 

following contexts:

• Task control blocks (TCB) and service request blocks (SRB) for the 
MSTR address space.

• Task control blocks (TCB), service request blocks (SRB), and specialty 
engine service request blocks for the DBM1 address space. The split 
between central processor and specialty engine time for the DBM1 
address space is likely to be different between DB2 for z/OS Version 8 
or DB2 9 for z/OS compared with DB2 10 for z/OS because CPU for 
prefetch and deferred write activity is now eligible for zIIP offload.



60  •  IBM DB2: The Past, Present, & Future

• Task control blocks (TCB) and service request blocks (SRB) for the 
IRLM address space.

b. In the accounting trace data, compare the Class 2 CPU times for each 
connection type, general purpose processors and for specialty engines, and 
check for the numbers of SQL requests, including the following workload 
indicators:

• The numbers of SQL statements for data manipulation, by type of 
statement (SELECT, INSERT, UPDATE, FETCH, and so on)

• The numbers of commit operations, rollback operations, getpage 
operations, and buffer pool updates

• The amount of read and write activity in terms of the number of I/O 
operations and the number of pages involved

c. Combine the statistics trace data and accounting trace data:

• Normalize the values by dividing the CPU time values by the number 
of commit and rollback operations. This assumes that the amount of 
batch activity factored out is relatively small. The resulting values are 
in terms of “CPU millisecond per commit or rollback.”

• Stack the various components of CPU resource consumption. For 
example:

MSTR TCB CPU-time / (commits + rollbacks)
MSTR SRB CPU-time / (commits + rollbacks)
DBM1 TCB CPU-time / (commits + rollbacks)
DBM1 SRB CPU-time / (commits + rollbacks)
DBM1 IIP SRB CPU-time / (commits + rollbacks)
IRLM TCB CPU-time / (commits + rollbacks)
IRLM SRB CPU-time / (commits + rollbacks)
Average Class 2 CP CPU * occurrences / (commits + rollbacks)
Average Class 2 SE CPU * occurrences / (commits + rollbacks)

3. Compare the number of getpage operations for the corresponding intervals. 
If you find a significant increase in the numbers of getpage operations across 
releases (for comparable application workloads), access path changes are the 
most likely cause of the CPU regression.

Additional post-GA items
Additional items planned for post-GA delivery include the following:

•9 In DB2 10 for z/OS, you will be able to delete a data sharing member (APAR 
PM31009). Deleting a DB2 member will require a quiesce of the data sharing 
group.



Planning for IBM DB2 10 for z/OS Upgrade   •  61

•9 Inline LOBs will be introduced for SPT01 to gain the benefits of data 
compression and improve BIND/REBIND performance (APAR PM27811).

•9 Enhancements for new DBA authorities (APAR PM28296):

 ◦ Prevent privileged users from stopping audit traces
 ◦ No implicit system privileges for DBADM

•9 Online REORG concurrency for materializing deferred ALTERs (APAR 
PM25648).

•9 Temporal enhancements:

 ◦ TIMESTAMP WITH TIMEZONE support (APAR PM31314)
 ◦ Enhancement for data replication (APAR PM31315)
 ◦ ALTER ADD COLUMN, propagate to history table (APAR PM31313)

•9 New system profile filters based on “client info” fields (APAR PM28500):

 ◦ Three new columns for user ID, application name, and workstation.
 ◦ Wildcard support: If column is '*' then all threads pass that qualification.

•9 A new DB2 system parameter to force deletion of coupling facility (CF) 
structures on group restart (APAR PM28925). This feature is aimed at disaster 
recovery. We want to avoid a situation during a disaster restart of using “stale” 
information in the CF structures. When the DB2 member starts and it is the first 
member to connect to the structure, it wipes out those structures and forces a 
group restart.

•9  Relief for the incompatible change in the behavior of the CHAR() function 
when applied to decimal data by using APAR PM29124 to restore the previous 
behavior that existed prior to DB2 10 for z/OS.

•9 Real storage monitoring enhancements (APAR PM24723); this APAR also 
provides protection for overcommitment of available real storage.

•9 Hash LOAD performance (APAR PM31214).
•9 DSSIZE greater than 64 GB (APAR yet to be announced).

Note

z/OS Real Storage Manager (RSM) APAR OA35885 is a prerequisite to the 
enhanced storage monitoring capability provided by DB2 APAR PM24723. 
DB2 APAR PM24723 is strongly recommended for production use of DB2 
10 for z/OS.

We strongly advise customers not to go into a major production 
environment without the proper monitoring of real and auxiliary storage 
usage as provided by this APAR and DB2 APAR PM24723. Together, these 
two APARs provide DB2 10 for z/OS with statistics on real and auxiliary 
storage use in relation to the 64-bit memory objects allocated by DB2 for  
z/OS above the 2 GB bar.



62  •  IBM DB2: The Past, Present, & Future

 DB2 10 for z/OS can request z/OS to provide information about real and auxiliary 
storage based on a particular addressing range. This functionality enables proper monitor-
ing when you have multiple DB2 subsystems running on the same LPAR. It also provides 
some protection against system paging, overcommitting real storage, or running out of 
auxiliary storage. DB2 can free unused memory back to the z/OS operating system.

When Should You Migrate to DB2 10 for z/OS?
A “normal” migration is moving one version at a time every three years. For custom-
ers with even earlier versions, the ability to skip a migration cycle will be attractive, but 
this ability is not “something for nothing.” Customers need to consider the tradeoffs and 
challenges in a “skip version” migration. Most customers who migrate to a new version 
some three years after the general announcement (GA) of the respective new release are 
already on DB2 9 for z/OS.

 The project for skipping a release is larger. While the testing and rollout are only 
a little greater than a single-version migration, the education and remediation work is 
roughly double the size; most project plans estimate 150 percent. Consider the timing 
carefully. Improvements in DB2 9 for z/OS are delayed with a “skip” release migration 
plan. You may need to apply for extended service on DB2 for z/OS Version 8.

 In summary:

•9 We recommend the regular application of preventive service maintenance. It 
should be a continual process.

•9 Testing should be performed over and above that performed by DB2 for z/OS 
Development.

•9 CST testing still does not replace the need for customer regression/stress testing 
to certify production readiness in a specific customer installation of a new DB2 
release.

•9 You must be prepared to tolerate some “bumps in the road.”
•9 Customers who are not prepared to take risk-mitigating actions and have no 

tolerance for “bumps in the road” should not be early adopters and should 
migrate directly to DB2 9 for z/OS.

 For customers who are still running DB2 for OS/390 Version 7, the option to skip 
from DB2 for z/OS Version 8 to DB2 10 for z/OS is very attractive and makes the current 
path clear. Customers who have just migrated to DB2 for z/OS Version 8 may like this 
alternative, for the short term. DB2 10 for z/OS supports migration from DB2 9 for  
z/OS NFM or from DB2 for z/OS Version 8 NFM. Customers not yet running DB2 for  
z/OS Version 8 or DB2 9 for z/OS should plan to migrate first to DB2 for z/OS Version 8, 
as preparation for an eventual migration to DB2 10 for z/OS.

 We estimate that about one in every five customers migrated using a “skip version” 
technique from DB2 for OS/390 Version 5 to DB2 for OS/390 Version 7, and we expect 



Planning for IBM DB2 10 for z/OS Upgrade   •  63

to see a similar proportion this time with DB2 10 for z/OS. The savings for skipping a 
version migration are less than 50 percent, since the education and needed application and 
administration changes are about the same. Customers who do choose a skip migration 
report that the project takes longer—about 50 percent longer than a normal migration path.

 Changing from DB2 for z/OS Version 8 or an earlier release to DB2 10 for z/OS 
will require a cultural shift that some describe as “culture shock.” If customers spend 
the bulk of their migration project time in testing, savings could be up to 40 percent. But 
most customer plans should expect a 20 to 25 percent reduction, compared with having to 
execute two release migrations.

 The tradeoff for skipping is primarily the later delivery of DB2 9 for z/OS 
improvements, namely CPU savings (especially in utilities and disk savings via index 
compression), improved insert and update throughput rates, improved SQL, and 
pureXML for developer productivity, as well as better availability.

Summary
To summarize, DB2 10 for z/OS is a very good release in terms of the opportunities for 
price/performance and scalability improvements. There is significant DBM1 31-bit virtual 
storage constraint relief (VSCR) to be gained after the rebind of static SQL plans and 
packages soon after reaching DB2 10 for z/OS Conversion Mode (CM). You can exploit 
the 1 MB size real storage page frames on z10 and z196 processors, provided the DB2 
local buffer pools are long-term page fixed. There are also improvements in terms of 
reduced latch contention and latch management overhead.

 Over and above the “out-of-the-box” performance improvements as a result of BIND/
REBIND of static SQL plans/packages and the use of 1 MB size real storage page frames, 
DB2 10 for z/OS offers opportunities for further price/performance improvements provid-
ed you have enough real storage provisioned on the LPAR. It is a classic tradeoff between 
increased real storage provision in order to reduce CPU resource consumption. This 
includes making more use of persistent threads both for legacy CICS and IMS/TM appli-
cations as well as the use of high-performance DBATs for DDF transactional workloads.

 If you have enough real storage provisioned on the LPAR, you can make greater use 
of packages bound with the BIND option RELEASE(DEALLOCATE) with these persistent 
threads. But you must recognize that the increased use of RELEASE(DEALLOCATE) is 
a tradeoff; it will lead to increased storage consumption, and you will need to plan for 
additional real storage resource consumption over and above the required 10 percent to 
30 percent increase just to stand still when migrating to DB2 10 for z/OS.

 The use of packages bound with the BIND option RELEASE(DEALLOCATE) with 
persistent threads can also reduce concurrency because BIND/REBIND and SQL DDL 
activity will not be able to break into work.



64  •  IBM DB2: The Past, Present, & Future

 DB2 10 for z/OS also provides an opportunity for the greatly enhanced verti-
cal scalability of an individual DB2 member in data sharing and the potential for DB2 
consolidation and possibly LPAR consolidation.

 You must carefully plan, provision, and monitor real storage resource consump-
tion. Early customer adopters of DB2 10 for z/OS, migrating from either DB2 for z/OS 
Version 8 or DB2 9 for z/OS, should make plans and take extra care to mitigate the risk 
of instability. Those steps include:

99 Plan regular full “major” maintenance drops within a continuous process.
99 Use CST/RSU recommended maintenance and exploit Enhanced HOLDDATA.
99 Perform application regression and stress testing to keep problems away from 

production.
99 Be prepared to tolerate some “bumps in the road.”



DB2 10 for z/OS 
Query Optimization Update

by Terry Purcell
IBM Silicon Valley Lab

IBM DB2 for z/OS customers expect improved performance in each release while 
maintaining the stability and reliability to which they have grown accustomed from 

the mainframe environment. DB2 10 for z/OS continues this theme, with significant 
attention given to improved plan management, runtime optimizations, and new access 
path choices.

 The DB2 optimizer goal is to provide continual improvement in performance for new 
and existing workloads while maintaining the stability and reliability of the access path 
choices on which our customers rely for their traditional workloads. Optimizer theorists 
and academics will point out the challenges for any query optimizer to guarantee perfec-
tion in access path selection. But the reality is, our DB2 for z/OS customers don’t want 
excuses; they need solutions that deliver this reliability in performance without increasing 
cost.

 So, how is IBM addressing these challenges? What you will see are the following 
major themes for enhancements to the DB2 10 for z/OS optimizer:

99 Predicate processing improvements regardless of access path
99 New access path choices to improve common query patterns
99 Enhancements to plan management

 Predicate processing improvements are just that: more efficient predicate evalua-
tion to reduce CPU consumption. New access path choices provide opportunities for 
improved performance for query patterns that have been identified as important to our 
DB2 customers. And, finally, plan management provides the capability to recover a prior 
static package upon access path regression. Also new in DB2 10 for z/OS is the ability to 
reuse the prior access path for BIND/REBIND.

 This three-pronged approach to enhancing query performance is anticipated to 
provide a more positive customer experience for the performance of your workloads  
than any release in recent memory. This is also likely to serve as the model for future 
DB2 releases to provide improved performance with reduced exposure to regression risk.



66  •  IBM DB2: The Past, Present, & Future

Access Path Management
The reason customers historically embraced static SQL over dynamic is that static 
provides a degree of certainty and stability, as its dictionary definition clearly states: 
Static “shows little or no change,” while dynamic implies ever-changing.

 Just because an SQL application is dynamic in nature does not mean the DB2 optimiz-
er will have a problem in its access path selection. However, there is a benefit to leaving 
the access path alone if it is already performing well. And you have greater control over 
this for static SQL than dynamic. Stability is only one consideration; the other is avoiding 
the overhead of BIND/PREPARE if there is no desire to explore a new access path.

 The topic of access path management encompasses both reducing dynamic PREPARE 
overhead (by avoiding PREPARE where possible) and addressing the potential instability 
that can occur from large-scale BINDs or REBINDs.

Dynamic statement cache enhancements
In a dynamic SQL environment, minimizing the overhead of PREPARE by exploiting the 
dynamic statement cache is one goal. The dynamic statement cache allows subsequent 
executions of the same SQL statement to reuse the previously PREPAREd access path, 
rather than preparing the statement again for every execution.

 For effective reuse of a prior execution, the statement must match between execu-
tions. This is why we encourage SQL applications to be coded using parameter markers, 
rather than literal values. Applications that have not been coded to use parameter markers 
will require a new PREPARE for each execution unless a recent execution of the same 
statement has occurred with exactly the same literal values. This is often unlikely.

Literal replacement
DB2 10 for z/OS introduces the capability to replace the literals with a marker so that 
queries containing literals can now be reused in the cache. The literals will be replaced 
with an ampersand (@), which is similar to, but not the same as, a parameter marker. This 
feature is referred to as literal replacement or literal concentration. The idea is that you 
concentrate all the various literal values into a single common ampersand for each predi-
cate. Repeat executions of the same query can subsequently benefit from a previously 
cached copy of the query in the dynamic statement, rather than issuing a new PREPARE.

 To enable literal concentration, perform one of the following steps:

•9 On the client, code the PREPARE ATTRIBUTES clause to include the 
CONCENTRATE STATEMENTS WITH LITERALS option.

•9 On the client side, change the JCC driver to include the keyword 
enableliteralReplacement='YES'.

•9 In the Open Database Connectivity (ODBC) initialization file in z/OS, set the 
LITERALREPLACEMENT keyword. This option enables literal replacement for all 
SQL coming into DB2 through ODBC.



DB2 10 for z/OS Query Optimization Update   •  67

 The lookup sequence for the SQL execution is to first look up the cache for the SQL 
with literals to see whether a prior copy has been cached with the same literals. If such a 
copy is found, the PREPARE is avoided and the prior access path used.

 Otherwise, the literals are replaced with an ampersand and the lookup is repeated. If 
a match is found, the matched access path is reused. Otherwise, a new PREPARE is issued 
and the resultant query and access path are stored in the dynamic statement cache.

 For transactional workloads with repeated, short-running queries, there is signifi-
cant benefit in avoiding the overhead of PREPARE for each execution of the query. While 
replacing a literal with an ampersand or coding a parameter marker can result in reduced 
PREPARE overhead, it also means the optimizer cannot take advantage of the literal values 
to improve its access path decision using FREQVAL or HISTOGRAM statistics.

 For example, if statistics show that STATUS='Y' is 99 percent of the data and 
STATUS='N' is 1 percent, a query with WHERE STATUS='N' will recognize that an index 
may be a good choice for the access path. However, WHERE STATUS='Y' would be best 
served with a table space scan. Replacing the literal with an ampersand means WHERE 
STATUS=& cannot take advantage of the frequency statistics.

 Provided an efficient access path is chosen for transactional queries, reducing 
PREPARE overhead should be the goal. Therefore, this is a tradeoff that most DBAs are 
willing to accept because PREPARE overhead can be easily observed.

 Parameter markers will still provide better performance than the literal replacement 
technique due to literal replacement potentially requiring an additional cache lookup. 
Additional storage is also needed for original predicate attributes such as data type and 
length with literal replacement.

 Regardless of whether coding parameter markers may be more efficient than literal 
replacement, the key point is that this enhancement is focused on applications that cannot 
or did not use parameter markers. Therefore, for transactional workloads, the literal 
replacement technique is likely to be more efficient than issuing a PREPARE—assuming 
no access path regressions result from hiding the literal values from the optimizer. Trans-
actional workloads generally are made up of many repeated executions of the same query.

 In reporting, ad hoc, or query workloads, it is preferable to let the optimizer see the 
literal values for improved access path selection. For such queries, the PREPARE overhead 
is a small percentage of the overall query cost. Thus, the focus is on giving the optimizer 
sufficient information to determine an efficient access path choice rather than shortcut-
ting PREPARE. In general, these workloads do not repeat executions of the same query 
patterns, so there is minimal benefit to avoiding PREPARE.

 For workloads that need both reduced PREPARE overhead and improved informa-
tion for the optimizer, consider using the REOPT(ONCE) BIND option in conjunction with 
literal replacement. The optimizer will use the set of literals from the first execution of the 



68  •  IBM DB2: The Past, Present, & Future

query for its access path determination. This option is a good choice if the query consist-
ently looks for the same values/ranges for the skewed or range predicates. However, it 
may not result in the best performance if, for example, the query flips from STATUS='Y' 
to 'N', because the access path determination will be based on the first execution.

 The target for this enhancement is applications that cannot or have not used param-
eter markers. Therefore, if a query currently contains a mixture of parameter markers and 
literal values, it will not be eligible for literal replacement—because the application can 
obviously tolerate parameter markers.

 When the query contains a mixture, the assumption is that there is an intention to 
code parameter markers for predicates that change frequently but whose change will 
not impact the access path, and to code literals for those for which the optimizer would 
benefit from seeing the literal.

 Consider this example:

WHERE ACCOUNT_NUMBER = ? AND STATUS = 'Y'

There may be millions of distinct ACCOUNT_NUMBERs, and each execution of the query 
uses a different value, which means the predicate is a good candidate for a parameter 
marker. The STATUS='Y' predicate may have two possible values and is likely to be 
skewed. Therefore, this predicate is a good candidate for a literal value. A query coded 
this way would not be a candidate for literal replacement because of the mix of parameter 
markers and literals.

 Limitations exist for literal replacements, including lack of support for LIKE predi-
cates. Also, the SQL text replaced with ampersands is not considered valid external 
syntax; it is an internal representation only. Therefore, externalized copies of the SQL 
with literals replaced cannot be fed into EXPLAIN or used for statement-level optimization 
hints or options (which are new to DB2 10).

Access plan stability or plan management
DB2 9 for z/OS delivered plan management, which supports a backup and recovery 
capability for the access plans of statically bound packages. DB2 10 for z/OS provides 
some incremental enhancements to the original plan management usability while also 
introducing some quantum leaps forward in reducing the impact of access path regression 
for static SQL.

 It should be noted that one of the most common comments or questions related to 
the DB2 9 enhancement is regarding the name—“plan management”—because it applies 
only to static packages. In query optimization, “plan” refers to the access plan or access 
path. Optimizer Development therefore uses the term “plan management” to refer, not to 
a plan or a package, but to the access plan chosen by the optimizer.



DB2 10 for z/OS Query Optimization Update   •  69

 Given that DB2 9 has been generally available for more than five years, the retort 
to this question about the name plan management has improved. To this date, there is no 
good answer as to why no similar questions arise about the PLAN_TABLE.

 The success of plan management in DB2 9 for z/OS has resulted in the first enhance-
ment seen in DB2 10: a simple change of the default value for the PLANMGMT ZPARM 
from OFF in DB2 9 to ENABLED in DB2 10. We want you to exploit this backup and 
recovery capability as an insurance policy for your access paths. Query performance  
has become mission critical for many of our customers, who cannot tolerate performance 
regressions because of either service level agreements or the high utilization rates for 
their mainframe applications.

 ZPARM PLANMGMT (and associated BIND option) controls only the capability 
for backup/recovery (REBIND SWITCH) of static packages. The new DB2 10 for z/OS 
plan management and EXPLAIN functions do not require this parameter to be enabled; 
however, I will repeat the recommendation to enable PLANMGMT as per the DB2 10 
default.

 A new catalog table, SYSIBM.SYSPACKCOPY, has been added to hold the metadata 
for the previous and original copies, which was previously available only in the 
SYSPACKAGE catalog table. To see information in DB2 9 for the previous/original copies, 
the user had to REBIND(SWITCH) that copy to become the current one and thus populate 
SYSPACKAGE. This step was inconvenient if you only needed to view this detail for the 
saved copies. In DB2 10 for z/OS, SYSPACKCOPY is populated during the Enable New 
Function Mode (ENFM) process.

 Space usage in SPT01 was one concern for DB2 9 customers due to the 64 GB data 
set limit for SPT01. DB2 for z/OS Version 8 and DB2 9 for z/OS supported compression 
of SPT01. Several solutions exist to reduce SPT01 space consumption and avoid the 64 
GB limit in DB2 10.

 First, SPT01 becomes a partition by growth (PBG) table space, and, with APAR 
PM27811, the use of inline large objects (LOBs) enables the compression of SPT01.

 An additional enhancement is the APRETAINDUP REBIND (and REBIND TRIGGER) 
package option. This option specifies whether an access plan is saved as either an original 
or a previous copy if the newly generated plan is equivalent. The default is YES—to retain 
the duplicates. Arguably, use of APRETAINDUP(NO) would result in space savings when 
using plan management basic or extended (the DB2 10 for z/OS default) because dupli-
cate access plans are not saved.

 When using APRETAINDUP(NO) in DB2 10 for z/OS, the existing (current) plan  
that is being replaced must have been bound in V9 or V10 for the access plan comparison 
to occur.

 That concludes the incremental enhancements to the backup and recovery capability 
of plan management in DB2 10 for z/OS.



70  •  IBM DB2: The Past, Present, & Future

DB2 10 Takes Plan Management to the Next Level
The backup and recovery capability of the DB2 9 for z/OS plan management was a  
very welcome addition to REBIND. However, DB2 10 for z/OS brings significantly  
more value to reduce the risk of access path regression across REBIND. In DB2 9, a new  
BIND/REBIND causes a compressed copy of the PLAN_TABLE rows for each SQL state-
ment in the package to be saved in the directory/SPT01. The internal representation of 
the PLAN_TABLE, which DB2 Development refers to as the Explain Data Block (EDB), is 
used as the basis for numerous enhancements to plan management—which will be outlined 
in the upcoming section. What this means, however, is that many of these enhancements 
are available only for BINDs/REBINDs that have occurred in DB2 9 or later.

 Many customers associate the recommendation to REBIND as a way to expose their 
queries to the improvements in the optimizer. But there are many situations in which 
customers may not be ready to expose themselves to access path changes but where 
REBIND is recommended or forced.

 Across a DB2 release, REBIND is recommended to take advantage of the new release 
runtime structures. While prior release runtime structures are tolerated in the new release 
(this is true for runtime structures from DB2 V6 and later in DB2 10), optimizations such 
as SPROCs are disabled. However, during a migration, it is reasonable to assume that 
system stability is desired from the migration before exposing the application to access 
path changes, due to concerns about regression.

 There is another, often less-discussed reason for REBINDing in each new release, and 
that is that older runtime structures are at greater risk of instability from either an abend 
or incorrect output. DB2 tolerates prior-release runtime structures from V6 onward in 
DB2 10, but there is still the question as to whether DB2 was able to test your V6 or V7 
runtime structure in DB2 10 testing. Considering the number of possible access paths, 
and the specific maintenance level when the package was bound, it is difficult to imagine 
that every combination received test coverage. The bottom line is that it is safer to be 
more current than two or more releases prior with your REBINDs.

 Given that DB2 Development are encouraging a REBIND at least once per release, 
it is important that we are also able to address the main reason why customers avoid 
REBIND—which is generally because of the risk of regression. For this reason, DB2 10 
adds a new parameter for BIND and REBIND that provides the capability to control when 
a new access path is considered for these commands. APREUSE (Access Path Reuse) will 
attempt to BIND/REBIND using the prior access path as an internal hint to drive the new 
access path choice. The supported parameter values are NO/NONE (default and standard 
BIND/REBIND behavior) or ERROR, whereby the BIND/REBIND will try to reuse the prior 
access path; if the prior access path cannot be reused, an error will be issued and the 
BIND/REBIND will fail. The level of granularity is on the package, which means a failure 
of any single SQL to reuse the prior access path will cause all SQL statements in the 
package to fail in their reuse.



DB2 10 for z/OS Query Optimization Update   •  71

 Another way of looking at APREUSE is that DB2 10 for z/OS gives you greater 
control over when you want to expose your application to new access path choices. 
Rather than being forced to open up new access path choices when REBIND is recom-
mended across migration, when APAR ++HOLD information recommends REBIND, or 
when a schema change invalidates the package, APREUSE lets you differentiate REBIND 
(and BIND) when you do and do not want to expose your application to new access path 
choices. This capability is a significant leap forward in providing further stabilization and 
avoidance of regression for static SQL.

 A second additional BIND/REBIND parameter choice, APCOMPARE, performs an 
access path comparison between the prior access path and the newly generated access 
path. The options are NO/NONE (default and no comparison performed), WARN (warning 
messages are written to the PLAN_TABLE.REMARKS column to identify access path differ-
ences), and ERROR (any access path difference results in failure of the BIND/REBIND). 
Arguably, APCOMPARE(WARN) should be the default for customers performing a BIND 
or REBIND of their static packages, because this setting simply externalizes meaningful 
information to the PLAN_TABLE about changes in the access path. APCOMPARE(ERROR) 
may be less useful, as it allows a BIND/REBIND to seek a new access path choice, but, 
due to the ERROR option, the BIND/REBIND will fail if a new access path is chosen.

 To clarify both APREUSE and APCOMPARE, APREUSE asks BIND/REBIND to attempt 
to reuse the prior access path. APCOMPARE, without APREUSE, will allow a new access 
path choice (same as BIND/REBIND prior to APREUSE) but will issue PLAN_TABLE 
messages to identify changes in the access path.

Note

APREUSE or APCOMPARE are valid only for packages bound in DB2 9 
for z/OS or later. Any usage of APREUSE/APCOMPARE on a pre-DB2 9 
package will be unable to internally use the EDB for reuse or comparison. 
However, this will not fail the package, which may be misleading to some 
users.

EXPLAIN enhancements
The theme of plan management is not complete without discussing the externalization  
of the access path in the PLAN_TABLE and other extended explain tables.

 It has been a longstanding requirement from our customers to be able to explain 
the existing access path for a previously bound package. This capability is necessary for 
cases where the prior BIND/REBIND used EXPLAIN(NO), or when the PLAN_TABLE rows 
are no longer in existence. Issuing a new EXPLAIN will potentially produce a new access 
path and thus not represent what is currently executing.

 Therefore, the requirement is to “tell me what I have.” I’ll discuss the DB2 solution 
next, and also a solution for the requirement to “tell me what I would get if I performed  
a BIND/REBIND today.”



72  •  IBM DB2: The Past, Present, & Future

 DB2 10 for z/OS adds a new option to EXPLAIN—EXPLAIN PACKAGE—for the 
requirement to “tell me what I have.” This option allows extraction of the existing access 
path from the package EDB. The output from EXPLAIN PACKAGE is inserted into the 
PLAN_TABLE. No other extended explain tables are populated by EXPLAIN PACKAGE. 
And it is possible to specify the COPY as the current, previous, or original to extract— 
as can be seen in the syntax diagram in Figure 2.1.

>>-EXPLAIN----PACKAGE----------->

>>-----COLLECTION--collection-name--PACKAGE--package-name--------->

>----+--------------------------+----+-------------------+-------->

     |                          |    |                   |

     +---VERSION-version-name---+    +---COPY--copy-id---+

Figure 2.1: EXPLAIN PACKAGE syntax diagram

 In this scenario, the term “EXPLAIN” is really a misnomer; this is actually an 
“EXTRACT.” An EXPLAIN has historically implied the generation of a new access path 
choice. However, instead of introducing a new “EXTRACT” keyword, DB2 has piggy-
backed on the EXPLAIN statement for this enhancement. As with many of the DB2 10 
plan management enhancements that rely on the internal representation of the access path 
from the EDB, this enhancement is supported only if the package is from DB2 9 or later.

 For those who want to ask the question, “What would the new access path be if I 
performed a BIND/REBIND today?” there is a new EXPLAIN(ONLY) option for BIND/
REBIND. EXPLAIN has always had the options YES/NO, and the addition of ONLY lets this 
“What if?” question be answered easily without impacting the existing package. Custom-
ers may have accomplished this previously by performing a BIND to a dummy collection 
or by manually explaining the SQL outside the package.

 It should be noted that extracting the SQL outside the package and issuing an 
EXPLAIN may not always be equivalent—as this would become a dynamic EXPLAIN 
rather than a static EXPLAIN. A dynamic EXPLAIN will not consider indexes in a restricted 
state, whereas a static EXPLAIN will. Also, data type or length differences between the 
host variable and predicate column are masked if you perform a dynamic EXPLAIN—and, 
despite the fact that DB2 V8 improved indexability for mismatched data type/length 
predicates, some behavioral differences still exist.

 For EXPLAIN(ONLY), the BIND/REBIND is performed, the chosen access path is 
written out to the PLAN_TABLE, and, finally, the BIND/REBIND is rolled back. The PLAN_
TABLE entries remain and are flagged with 'Y' in the new BIND_EXPLAIN_ONLY column 
so that customers can determine that these PLAN_TABLE rows—despite the fact that they 
are associated with packages—came from a BIND/REBIND with EXPLAIN(ONLY) and 
may not correlate to any current access path in the catalog. Locking/concurrency require-
ments are the same with EXPLAIN(ONLY) as for a standard BIND/REBIND.



DB2 10 for z/OS Query Optimization Update   •  73

 An additional parameter is available to have BIND/REBIND perform a syntax check 
as well without creating the actual package. You can use this option, SQLERROR(CHECK), 
independently of EXPLAIN(ONLY). The SQLERROR(CHECK) parameter of the BIND/
REBIND commands was targeted specifically to those customers who may have their 
development and test systems on another DB2 platform, and whose only opportunity to 
validate the package is in their production DB2 for z/OS system.

 With all these new additions to EXPLAIN, it becomes a challenge for users to under-
stand the usage scenario for each EXPLAIN option. Therefore, it is important to summarize 
the various EXPLAIN usages to help clarify their function.

 As Figure 2.2 outlines, the following summarizes the key usages of EXPLAIN:

•9 BIND/REBIND with EXPLAIN(YES) is an existing choice and performs the 
following:

 ◦ Generates a new access path (or attempts to reuse prior if 
APREUSE(ERROR))

 ◦ Populates the PLAN_TABLE
 ◦ Creates a new copy of the package

•9 BIND/REBIND with EXPLAIN(ONLY) is a new choice and performs the following:

 ◦ Generates a new access path (or attempts to reuse prior if 
APREUSE(ERROR))

 ◦ Populates the PLAN_TABLE
 ◦ Does not create a new copy of the package

•9 EXPLAIN PLAN is an existing choice executed from SPUFI/QMF/DSNTEP2  
and so on and performs the following:

 ◦ Generates a new access path
 ◦ Populates the PLAN_TABLE

•9 EXPLAIN PACKAGE is a new choice and performs the following:

 ◦ Does not generate a new access path; extracts the existing access path from 
the package

 ◦ Populates the PLAN_TABLE

•9 EXPLAIN STMTCACHE STMTID|STMTOKEN is an existing choice and performs 
the following:

 ◦ Does not generate a new access path; extracts the existing access path
 ◦ Populates the PLAN_TABLE



74  •  IBM DB2: The Past, Present, & Future

Options in bold are new to DB2 10.

BIND/REBIND with EXPLAIN(YES)
Generates a new access path, populates PLAN_TABLE, and creates a new package

BIND/REBIND with EXPLAIN(ONLY)
Generates a new access path, populates PLAN_TABLE, but does not create a new 
package

EXPLAIN PLAN (issued in SPUFI/QMF/DSNTEP2, etc.)
Generates a new access path and populates PLAN_TABLE

EXPLAIN PACKAGE
Does not generate new access path; extracts existing access path from package 
and populates PLAN_TABLE

EXPLAIN STMTCACHE STMTID|STMTOKEN
Does not generate new access path; extracts existing and populates PLAN_TABLE

Figure 2.2: EXPLAIN usage scenarios

Instance-based statement hints
Optimization Hints (opthints for short), first delivered in DB2 V6, have been embraced 
by some customers as a way to override a problem access path choice or stabilize queries 
to avoid access path change. It is also fair to say that opthints have been avoided by 
many other customers due to their cumbersome nature or the challenges for customers to 
micromanage access paths. The previously discussed DB2 10 for z/OS plan management 
enhancements may reduce the need for hints to be used to stabilize an access path.

 In addition to the plan management enhancements, DB2 10 improves the infrastruc-
ture and usability of opthints, so that customers continue to have a way to override an 
inefficient access path choice if other more suitable solutions aren’t viable.

 The first enhancement related to opthints introduces a catalog infrastructure to 
support a more general form of hints. This is referred to as the access path repository, 
which holds important query metadata (such as query text), query access paths, and other 
information, such as optimization options.

 The repository consists of several new catalog tables:

•9 SYSIBM.SYSQUERY is the central table of the access path repository. It holds one 
row for each static or dynamic SQL query that is to exploit user-specified hints 
or options.

•9 SYSIBM.SYSQUERYPLAN holds the plan hint information (if hints are specified) 
for each query in the SYSIBM.SYSQUERY table.



DB2 10 for z/OS Query Optimization Update   •  75

•9 SYSIBM.SYSQUERYOPTS holds the option information (if options are specified) 
for each query in SYSIBM.SYSQUERY.

 The original opthints delivered in DB2 V6 have often presented challenges for 
customers to maintain, and one reason for this is because they are tied to a query number. 
For static SQL, this means that if the application programmer adds or removes lines of 
code, the precompiler will generate a new query number for each SQL statement occur-
ring after the code change. DB2 V6 also provided the QUERYNO clause, which could be 
added to an SQL statement to ensure that the same query number was used across appli-
cation changes. For dynamic SQL, this was the required way to match a statement to a 
hint. For both static and dynamic, however, altering the SQL is often impractical and thus 
was rarely adopted as a solution.

 DB2 10 adds an alternative way to associate a statement and a hint—using the query 
text. Similar to the concept of a dynamic statement cache text match, the SQL text is tied 
to the hint such that a static BIND or dynamic PREPARE will attempt to look up the state-
ment text to find a matching hint. A hint can therefore be created irrespective of its usage 
for dynamic or static SQL—and thus the hint can be given a global scope or a package-
level scope.

 The hints are stored in the access path repository. The PLAN_TABLE isn’t going away, 
however. Instead, there is now an alternate method for looking up the hint that makes it 
simpler for dynamic and more stable for application changes in static SQL.

 While tying the hint to the statement text means changes in query numbers will not 
affect the hint, changes to the SQL statement will result in the match failing.

 To take advantage of the new hints process, take the following steps:

1. Enable the OPTHINTS ZPARM.
2. Populate the user table DSN_USERQUERY_TABLE with the query text. 

 ◦ Insert from SYSPACKSTMT (static) or DSN_STATEMENT_CACHE_TABLE 
(dynamic) to ensure that the correct DB2 representation of the SQL text  
is used.

3. Populate PLAN_TABLE with the corresponding hints.

 ◦ Note: Choose any arbitrary QUERYNO. The QUERYNO value must match 
between PLAN_TABLE and DSN_USERQUERY_TABLE. Duplicate query 
numbers in the PLAN_TABLE may result in difficulty matching the PLAN_
TABLE and DSN_USERQUERY_TABLE rows.

4. Execute the new command BIND QUERY to integrate the hint into the repository.
5. The next package BIND/REBIND or dynamic PREPARE can pick up the hint.

To remove the query from the repository, use the FREE QUERY command.



76  •  IBM DB2: The Past, Present, & Future

Instance-based (or statement-level) options
The same infrastructure that allows an access path hint to be matched to the statement 
text is also extended to allow statement-level scope for a small number of BIND param-
eters and ZPARMs, namely:

•9 REOPT
•9 STARJOIN enablement and number of tables qualified for STARJOIN
•9 Parallelism enablement and number of degrees

 This has been another longstanding customer requirement to provide improved 
granularity for the REOPT BIND option. Once a query is identified that would benefit from 
REOPT(ALWAYS), it is common for the customer to not want the overhead of REOPT for 
all other statements in the package. The previous recommendation has been to separate 
out the targeted query into a separate package, which is often impractical.

 The steps to implement these statement-level options are similar to those for state-
ment-level hints—minus the PLAN_TABLE input:

1. Enable the OPTHINTS ZPARM.
2. Populate the user table DSN_USERQUERY_TABLE with the query text.

 ◦ Insert from SYSPACKSTMT (static) or DSN_STATEMENT_CACHE_TABLE 
(dynamic) to ensure that the correct DB2 representation of the SQL text is 
used.

 ◦ Note: Choose any arbitrary QUERYNO value that does not currently exist 
in the PLAN_TABLE. The reason is that BIND QUERY first looks to find 
the PLAN_TABLE rows; if not found, it then looks at the options in DSN_
USERQUERY_TABLE.

3. Execute the new command BIND QUERY to integrate the statement-level options 
into the repository.

4. The next package BIND/REBIND or dynamic PREPARE can pick up the new 
options.

 Hints and options are mutually exclusive. Therefore, at this stage it is only possible 
to have either a hint or options for a given statement in SYSQUERY.

Predicate Processing and Runtime Optimizations
The most welcome performance improvements for customers are those that require 
minimal action or intervention. And the performance enhancements in DB2 10 for  
z/OS include predicate processing improvements and runtime optimizations that can  
be exploited within existing access path choices, as well as those that offer new choices 
to the DB2 for z/OS optimizer.

 It is well understood by DB2 Development that customers are continually pushed 
to do more with less—whether that is individual DBAs having to manage more DB2 



DB2 10 for z/OS Query Optimization Update   •  77

subsystems or the systems themselves increasing data volumes and throughput without  
a corresponding increase in available capacity. Thus, improving performance is among 
the highest priorities for DB2 Development.

Improvements to predicate application for IN and OR predicates
DB2 10 for z/OS delivers several enhancements to IN-list and OR predicate processing.

 The first enhancement involves an improvement to the execution performance of 
long IN-lists and complex AND/OR predicates that are chosen as index screening or  
stage 1. The improvement comes from DB2 being able to exit the predicate application 
process as soon as a true or false condition is triggered that allows further processing to 
be avoided. While DB2 has always been able to stop processing once a row is qualified  
or disqualified (depending on the predicate context), DB2 10 for z/OS delivers additional 
optimizations to traversing the predicate tree.

 Unfortunately, there is no way to identify a query as a candidate for this optimi-
zation—which raises the question, “Why is there any detail at all here about this 
enhancement?” The answer is because of customer questions as to why they have  
seen some queries achieve CPU reductions without an access path change. One possible 
explanation is of the aforementioned enhancement.

 The next enhancement relates to IN-list predicates that are candidates for index 
matching. When IN-list predicates are filtering, matching index access is often desirable 
using these IN-list predicates. Before DB2 10, DB2 could match on the first IN-list (based 
on the index key column order) and continue matching on available predicates until a 
second IN-list was encountered.

 Basically, DB2 could only match on one IN-list, and any subsequent IN-list predi-
cates would be applied as index screening. In situations where the second IN-list was 
more filtering, performance was not always optimal.

 Similarly, when choosing matching IN-list access, DB2 would not choose list 
prefetch, which is preferred if the index has a poor cluster ratio. Instead, DB2 might 
choose to match on one less column (without the IN-list) so that list prefetch could be 
exploited. Thus, DB2 would trade improved data I/O performance for less index match-
ing and instead apply the IN-list as screening.

 DB2 10 for z/OS addresses these issues with IN-list predicates by allowing the 
optimizer to consider converting the IN-list to a table such that the IN-list processing 
performs more like a join. This allows matching on multiple IN-lists and also list prefetch 
to be supported.

 However, this IN-list table will be chosen only if matching on multiple IN-lists is 
chosen, or if list prefetch is chosen with matching IN-list access. Otherwise, the previous 
type of IN-list matching is considered (ACCESSTYPE='N').



78  •  IBM DB2: The Past, Present, & Future

 In the EXPLAIN output in the PLAN_TABLE, this access to the in-memory table is 
associated with a new table type, 'I', and a new access type, 'IN'. Figure 2.3 shows the 
PLAN_TABLE output for IN-list table access with list prefetch.

 It should be noted that list prefetch will execute once per IN-list element. It is not a 
consolidated list prefetch access for all elements. Therefore, if the IN-list elements are 
each of a high cardinality, there may be no benefit to choosing list prefetch.

 Another enhancement to IN-list predicate processing is transitive closure support for 
IN-lists. The U.S. National Institute of Standards and Technology (NIST) defines transi-
tive closure as: “An extension or superset of a binary relation such that whenever (a,b) 
and (b,c) are in the extension, (a,c) is also in the extension.” To put that into a query 
predicate perspective, if A=B and A=1, then B also =1. DB2 has supported transitive 
closure for =, <, <=, >, >=, and BETWEEN for many releases, but DB2 10 for z/OS  
adds support for IN-lists.

 Figure 2.4 shows an example where IN-list predicate transitive closure (PTC) is now 
possible.

SELECT *

FROM T1, T2

WHERE T1.C1 = T2.C1

  AND T1.C1 IN (?, ?, ?)

  AND T2.C1 IN (?, ?, ?)  <--optimizer can generate

                             this predicate via PTC

Figure 2.4: IN-list Predicate Transitive Closure (PTC) example

 Without PTC, DB2 is likely to choose T1 as the leading table in the join sequence 
because there is only filtering on T1. By generating an additional predicate, AND T2.C1 
IN (?, ?, ?), DB2 may consider the alternate join sequence with T2 as the first (outer) table 
in the join sequence. This gives DB2 greater opportunity to choose the most efficient 
access path, regardless of how the query is coded.

Figure 2.3: IN-list table example with list prefetch



DB2 10 for z/OS Query Optimization Update   •  79

OR predicate processing improvements: Online cursor scrolling
We have discussed some enhancements to predicate processing for IN and OR predicates 
and the improved index matching capabilities for IN-lists. In prior releases of DB2, there 
has always been a link between OR and IN predicates, with DB2 rewriting simple OR 
conditions against the same column to become IN-lists. A simple example is WHERE C1 
= 1 OR C1 = 2, which DB2 rewrites to become WHERE C1 IN (1,2). This behavior has 
not changed in DB2 10 for z/OS.

 The DB2 10 enhancements target more complex OR predicates that are not candi-
dates for this simple rewrite to IN-lists. To improve processing for OR predicates, DB2 
introduces a new access type: range-list access. Range-list access refers to a “list of 
ranges” separated by OR. This is similar to IN-list access in its processing, but without 
representing the more-complex OR conditions as a simplified IN-list predicate.

 The two original targets for range-list access are:

•9 Scrolling/paging SQL: Common in CICS and other online web applications 
where the application wants to fetch the next n rows to fill a screen. This is not 
to be confused with scrollable cursors, which require the application to keep the 
transaction open for scrolling forward/backward through the result.

•9 Complex OR predicates against the same columns: Where the OR predicates are 
not simple equal predicates that DB2 would convert to an IN, but may include 
range predicates and/or compound predicates within each OR. The construct  
is common in some ERP applications that write predicates in disjunctive  
normal form.

 For both query patterns, the following conditions must be true to support range- 
list access:

•9 The OR predicate must refer to a single table.
•9 Each OR predicate can be mapped to the same index.
•9 Each OR has at least one matching predicate, given the chosen index.

 In this section, we discuss the (online) scrolling query pattern. Consider the example 
shown in Figure 2.5.

WHERE (LASTNAME='JONES' AND FIRSTNAME>'WENDY')

   OR (LASTNAME>'JONES')

ORDER BY LASTNAME, FIRSTNAME;

Figure 2.5: Cursor scrolling example as a range-list candidate

 This range-list example demonstrates scrolling through the phone book with current 
cursor position at “JONES, WENDY”. To scroll forward from this position, the user 
may code the WHERE clause predicates as shown in the figure. The first OR condition 
(LASTNAME='JONES' AND FIRSTNAME>'WENDY') requests the remaining “JONES” 
after the current position. The second OR condition (LASTNAME>'JONES') requests  
the rows for the subsequent last names after “JONES”.



80  •  IBM DB2: The Past, Present, & Future

 The new access method can convert this OR predicate into a range-list with two 
ranges (one range for each OR). Therefore, there will be at most two index probes 
given the PHONEBOOK index on LASTNAME, FIRSTNAME. The first probe is for 
LASTNAME='JONES' and FIRSTNAME>'WENDY'. And once FETCHing exhausts all quali-
fied rows from the first probe, the second probe will be issued for LASTNAME >'JONES'. 
These rows appear in the index in ascending order, which satisfies the ORDER BY, and 
thus there is no requirement to sort the rows.

 Prior to DB2 10, matching index access for this example required multi-index access, 
list prefetch, and a final sort to satisfy the ORDER BY. For this reason, it was common 
for users to code a redundant predicate, AND LASTNAME >= 'JONES', to support single-
matching index access. Figure 2.6 shows this approach.

WHERE ((LASTNAME='JONES' AND FIRSTNAME>'WENDY')

   OR (LASTNAME>'JONES'))

AND (LASTNAME >= 'JONES')

ORDER BY LASTNAME, FIRSTNAME;

Figure 2.6: Scrolling example with redundant predicate for matching index access

 In this code, with the added (redundant) predicate AND (LASTNAME >= 'JONES'), 
DB2 was able to choose single-matching index access, although prior to DB2 10, the 
best DB2 could do was match on one column using this redundant predicate. And the 
original predicates were applied as index screening—which means DB2 would position 
in the index as matching on LASTNAME='JONES' and then have to scan through all 
FIRSTNAMEs from “A” to “W” to reach FIRSTNAME>'WENDY' using the pre-DB2 10 
approach. With range-list access, DB2 can use both predicates on LASTNAME and  
FIRSTNAME to start the initial position in the index at JONES, WENDY.

 In DB2 10, the optimizer may choose range-list or any existing access method, 
including multi-index access. It is important to note that the optimizer will make a 
cost-based decision. One factor that is often unknown to the optimizer is whether 
the application will FETCH 10 or 20 rows and close the cursor—unless the query has 
OPTIMIZE FOR n ROWS coded (or FETCH FIRST n ROWS ONLY). Therefore, it is not 
guaranteed that range-list will be chosen for this query pattern.

 There is a second use case that also fits this scrolling type pattern but is unrelated 
to online applications, and that is batch restart logic. Range-list access is targeted more 
toward the online scrolling pattern, rather than batch restart usage, which is one reason 
why DB2 is not more aggressive when choosing range-list, since DB2 does not know 
whether the same pattern is for an online or a batch application. As mentioned, the 
OPTIMIZE FOR or FETCH FIRST clause is the best way to indicate to DB2 that this is  
an online query that is requesting a subset of the qualified rows.



DB2 10 for z/OS Query Optimization Update   •  81

OR predicate processing improvements: Other range-list usages
Range-list applies not only to the scrolling type SQL but to any complex OR conditions 
that can map to a single index. In Figure 2.7, range-list can be chosen with each OR 
leg having two matching columns on the index on LASTNAME, FIRSTNAME. Range-
list would also be applicable if the index were on FIRSTNAME, LASTNAME, or only on 
LASTNAME, or only on FIRSTNAME. As mentioned, one requirement for consideration 
of range-list access is that each OR leg must support matching index access for the same 
index.

WHERE (LASTNAME='JONES' AND FIRSTNAME='WENDY')

   OR (LASTNAME='SMITH' AND FIRSTNAME='JOHN');

Figure 2.7: Non-scrolling range-list candidate

 Prior to DB2 10, the optimizer could choose only multi-index access for matching 
index access due to the OR conditions. In DB2 10, the optimizer can choose either range-
list or multi-index access based on cost. Because range-list does not support list prefetch, 
but multi-index access requires list prefetch, it is expected to see range-list chosen for this 
type of SQL with a high cluster ratio index or if very few rows qualify, and multi-index 
access chosen for lower cluster ratio indexes.

Range-list EXPLAIN representation
The PLAN_TABLE representation for range-list includes a new access type: 
ACCESSTYPE='NR'. One row will appear for each OR condition, since each OR may 
have a different number of MATCHCOLS. Column MIXOPSEQ (multi-index operation 
sequence) provides an ordering of the range-list rows.

 Figure 2.8 borrows the range-list example from Figure 2.5 and reverses the order of 
the WHERE clause predicates to highlight an interesting nuance of the EXPLAIN output. 
The simplified EXPLAIN output shows the single predicate (LASTNAME > 'JONES') with 
MATCHCOLS=1 listed first in the PLAN_TABLE followed by the MATCHCOLS=2 predi-
cates. This PLAN_TABLE output matches the coding sequence, and, in this example, does 

Figure 2.8: Range-list EXPLAIN representation



82  •  IBM DB2: The Past, Present, & Future

not represent the order in which the values associated with those predicates would appear 
in the index.

 Range-list, if chosen, will access the index in the sequence that allows a sort to be 
avoided (if ORDER BY or GROUP BY is coded). The PLAN_TABLE is populated at BIND/
PREPARE, and for queries with host variables or parameter markers, it is not known what 
literal values will be used in the query.

 The DB2 implementation of range-list will re-order the OR conditions at runtime 
based on the literal values. Thus, it is not possible for BIND/PREPARE to know the order 
in which these conditions will be executed.

 Customers might ask the question, “But for the ‘screen-scrolling SQL’—such as the 
example in Figure 2.8—you know the order of the execution even with host variables, 
as it is most MATCHCOLS to least MATCHCOLS. Why don’t you order the PLAN_TABLE 
rows to reflect this?”

 First, this question takes a very narrow view of the range-list enhancement. As 
outlined, the enhancement covers more than the screen-scrolling scenario. But more 
important, because DB2 implemented the ordering of execution of the OR predicates at 
runtime (execution time), BIND/PREPARE is not aware of the ordering. And enhancing 
DB2 to also provide recognition of the likely order at BIND/PREPARE is of minimal 
value.

 The reason is because it is not a guarantee without knowing the literal values—and 
most SQLs use parameter markers or host variables. DB2 will always order the OR predi-
cates based on the literal values used to support moving through the index in the direction 
to support ORDER BY/GROUP BY ordering, or in ascending sequence if no particular 
order is required.

 Therefore, for effective access path analysis, all that is important to understand is 
that ACCESSTYPE='NR' is chosen and to know how many MATCHCOLS exist for each 
leg. The order in the PLAN_TABLE will be the sequence that is coded in the SQL. This 
allows the customer to match the PLAN_TABLE to the SQL. The actual order of execution 
will depend on the literal values used at runtime.

OUTER JOIN merge and subquery improvements
In general, materialization is more expensive for the execution of an SQL statement 
compared with merging a view or table expression. Therefore, in each release, DB2 
continues to extend cases where MERGE occurs instead of materialization, and DB2 10 
for z/OS is no exception.

 When there are CASE, VALUE, COALESCE, NULLIF, or IFNULL expressions on the 
preserved side of an OUTER JOIN, DB2 will be enhanced to merge the view/table expres-
sion. The merge is blocked if it would result in a stage 2 predicate, such as a CASE 
expression in the ON clause.



DB2 10 for z/OS Query Optimization Update   •  83

 Thus, the SQL in Figure 2.9 will merge the A table expression in DB2 10, while table 
expression B will continue to materialize. Prior to DB2 10, both table expressions will 
materialize.

SELECT A.C1, B.C1, A.C2, B.C2

FROM T1, (SELECT COALESCE(C1, 0) as C1 ,C2

          FROM T2 ) A  <--table expression A will be merged

       LEFT OUTER JOIN

             (SELECT COALESCE(C1, 0) as C1 ,C2

              FROM T3 ) B   <--B will be materialized

       ON A.C2 = B.C2

WHERE T1.C2 = A.C2;

Figure 2.9: OUTER JOIN merge/materialization example

 The second OUTER JOIN merge enhancement involves a view or table expression 
containing a subquery. Figure 2.10 provides an SQL example of a subquery on the NULL-
supplied table of a LEFT OUTER JOIN. In DB2 10, this table expression (or view) can be 
merged to the ON clause.

SELECT *

FROM T1 LEFT OUTER JOIN

       (SELECT * FROM T2

        WHERE T2.C1 = (SELECT MAX(T3.C1) FROM T3)) TE <--subquery

ON T1.C1 = TE.C1;

SELECT *

FROM T1 LEFT OUTER JOIN T2   <--table expression is merged

ON T2.C1 = (SELECT MAX(T3.C1) FROM T3)   <--subquery ON-predicate

AND T1.C1 = TT.C1;

Figure 2.10: OUTER JOIN with subquery merge example

 These views and table expressions must contain a reference to only one table. DB2 
performs the merge by converting the subquery predicate to a “before join” predicate— 
in the ON clause of a NULL-supplied table. When the table in the table expression is very 
large or there is significant filtering from the preserved side (left side of a LEFT OUTER 
JOIN), performance will be improved due to lack of materialization.

Note

Coding a subquery in an ON clause is not permitted. However, DB2 can 
merge the original table expression and execute as if this was coded.



84  •  IBM DB2: The Past, Present, & Future

 If the table expression with subquery is on the preserved row table (left side of a 
LEFT OUTER JOIN), DB2 will merge the table expression with subquery to the WHERE 
clause to apply before the join. Coding a subquery in the WHERE clause for a preserved 
row table (left side of LEFT OUTER JOIN) is valid syntax, and users can code this 
themselves.

Correlated subquery to non-correlated rewrite
Although not strictly related to materialization, the following subquery rewrite enhance-
ment is likely to be the most common query pattern of any of the previously discussed 
SQL examples within the merge/materialization topic.

 The SQL shown in Figure 2.11 seeks to return the most recent transaction for a given 
ACCOUNTNO (hence the MAX subquery). It is common to see this type of operation 
coded as a correlated subquery.

 Although the predicates on ACCOUNTNO in the outer query and the subquery are 
each indexable, the comparison of A.TRANDATE with the subquery result is stage 2, 
which means all transactions for a given account must be retrieved from the outer table.

 DB2 10 can rewrite this construct to a non-correlated subquery if it is semantic-
ally equivalent. Therefore, the subquery will be executed before accessing the outer 
query block, and the subquery result would become indexable. DB2 could then choose 
two matching columns on the outer, and only the desired transaction would need to be 
accessed.

Stage 2 predicate pushdown
Stage 2 predicates are the most expensive for DB2 to apply. This message has been 
repeated for many years, and customers have been encouraged to rewrite stage 2 predi-
cates to be stage 1 and/or indexable where possible.

 Of course, not all SQL is under the control of developers who heed the recommenda-
tion, or the SQL may be application-generated. Also, not all stage 2 predicates are easily 
rewritten to a more efficient form. So, it is clear that DB2 cannot ignore the performance 
challenge.

Figure 2.11: Correlated subquery to non-correlated rewrite example



DB2 10 for z/OS Query Optimization Update   •  85

 DB2 10 enhances predicate application by enabling index manager and data manager 
(stage 1) to call Relational Data Services, or RDS (stage 2) to evaluate stage 2 predicates. 
Therefore, these predicates can potentially be applied as index screening before data page 
access.

Note

These pushed-down predicates cannot be applied as index matching. Index 
on expression (delivered in DB2 9 for z/OS) should be considered for index 
matching of stage 2 expressions.

 This enhancement applies to arithmetic and date-time expressions, scalar built-in 
functions, and CAST operations. Limitations include:

•9 OR predicates must be able to be applied all at the same stage.
•9 Access paths involving list prefetch are not candidates for predicate pushdown.
•9 CASE expressions are not supported.
•9 IN-list predicates are not supported.

 If the query qualifies, the predicates will be marked in the DSN_FILTER_TABLE under 
the column PUSHDOWN. The DSN_FILTER_TABLE is one of the extended explain tables; 
the manual DB2 10 for z/OS Managing Performance (SC19-2978) provides further 
details.

 Figure 2.12 shows examples that demonstrate the eligibility for stage 2 predicate 
pushdown.

Figure 2.12: Stage 2 predicate pushdown examples

 Based on the figure, where an index exists on C1,C3, prior to DB2 10 the SUBSTR 
predicate was always stage 2. In DB2 10, the following describes the eligibility of each 
predicate shown in the figure:



86  •  IBM DB2: The Past, Present, & Future

•9 WHERE SUBSTR(C1,1,1) = ?

 ◦ Becomes an index screening candidate

•9 WHERE SUBSTR(C1,1,1) = ? OR C3 = ?

 ◦ Despite the OR predicate, this is an index screening candidate because both 
sides of the OR can be applied at the same stage—as index screening.

•9 WHERE SUBSTR(C1,1,1) = ? OR C4 = ?

 ◦ This example is not an index screening candidate because the predicate on 
C4 must be applied on the data row because it is not contained in the index. 
The compound predicate can, however, be pushed down to stage 1.

•9 WHERE SUBSTR(C1,1,1) = ? AND C4 = ?

 ◦ The SUBSTR expression is an index screening candidate because it is not 
separated by OR and is therefore applied independently of the predicate on 
C4.

•9 WHERE SUBSTR(C1,1,1) = ? OR C3 = (SELECT . . . )

 ◦ This is not an index screening candidate because predicates are separated 
by OR, and the subquery is not a candidate for pushdown. Thus, both 
predicates remain stage 2.

•9 WHERE SUBSTR(C1,1,1) = ? AND C3 = (SELECT . . . )

 ◦ The subquery is stage 2, but because the predicates are separated by AND, 
the SUBSTR becomes an index screening candidate.

This predicate pushdown enhancement does require a REBIND to take effect.

Predicate simplification
Despite the eligibility to push down stage 2 predicates to an earlier stage, the fact remains 
that stage 2 predicates are the least efficient predicates for DB2 to apply. To clarify, it is 
still true that a stage 1 predicate is more efficient to apply than a stage 2 predicate that is 
pushed down to stage 1.

 In recognition of some important query patterns for customers migrating from other 
platforms, DB2 V8 and V9 introduced several enhancements to predicate REWRITE that 
were enabled by ZPARM PREDPRUNE. Since few customers enabled the ZPARM, these 
enhancements do not become available for most customers until DB2 10, where the 
ZPARM is removed.

 The first enhancement is to remove simple “always false” predicates. The targeted 
example is demonstrated in Figure 2.13.



DB2 10 for z/OS Query Optimization Update   •  87

WHERE ('A' = 'B' OR COL1 IN ('B', 'C'))

      WHERE COL1 IN ('B', 'C')

Figure 2.13: “Always false” predicate simplification

 The always false 'A'='B' predicate renders the entire OR predicate stage 2. In DB2 
10 (or V8/V9 with ZPARM PREDPRUNE enabled), the always false predicate will be 
removed, leaving the indexable predicate WHERE COL1 IN ('B', 'C').

 Why would anyone code the original predicate? This query pattern came from a 
query generator, where this construct was used to enable or disable predicates within a 
common framework to simplify query generation.

 For simplicity, assume I have two predicates and the user may want to search by only 
one or the other, or by both. If the user wants to search by LASTNAME, for example, the 
code generator would create the following predicates:

WHERE ('A' = 'B' OR LASTNAME = 'PURCELL')

  AND ('A' = 'A' OR CITY = 'ZZZZZ')

 In this example, only the LASTNAME predicate is relevant. For each WHERE 
clause predicate to be true, one side of the OR must be true. Because 'A'='B' is false, 
LASTNAME='PURCELL' must be true for the row to qualify. And because 'A'='A' is true,  
it is irrelevant what the result is for the other side of the OR (CITY='ZZZZZ').

 Thus, to enable the CITY predicate, the query generator would create the following 
predicate structure:

WHERE ('A' = 'A' OR LASTNAME = 'ZZZZZZ')

  AND ('A' = 'B' OR CITY = 'NEW YORK') 

Now, the LASTNAME predicate has been “disabled,” and the CITY predicate “enabled.”

 If you have read through these predicate pruning examples and have understood this 
construct, you will realize that this is another variation of coding a generic SQL to cover 
all potential search combinations. Other common solutions include coding all predicates 
as BETWEEN or LIKE predicates and setting the values to cover the full range if a value 
is not required—although only the aforementioned query pattern is the target of this 
enhancement.

 Are you wondering what this means for documented tricks such as OR 0=1?  
OR 0=1 is not pruned, although other “always false” equal predicates such as OR  
1=2 are pruned. And because this enhancement applies only to always false equal and  
IN predicates, any other false conditions, such as OR 1>2 or OR 0<>0, are not pruned.



88  •  IBM DB2: The Past, Present, & Future

Note

This enhancement applies only to literal values, not to parameter markers 
or host variables. Nor does it apply when REOPT is used with parameter 
markers or host variables.

Removing unnecessary tables
Continuing the theme of query simplification and removing redundancy from the query, 
an additional enhancement under the guise of PREDPRUNE in DB2 V8/V9 and enabled by 
default in DB2 10 is the removal of unnecessary tables in outer joins.

 An OUTER JOIN is generally coded because the join relationship between two or 
more tables is optional. And while an INNER JOIN will only return rows that match across 
the join, an OUTER JOIN allows rows to be returned even if a match across the join is not 
found.

 So, imagine you were to code a LEFT OUTER JOIN but not select any columns or 
apply filtering based on the result from that optional table. If the join does not introduce 
duplicates, then that table join was redundant.

 Figure 2.14 shows an example of a redundant or unnecessary table join.

SELECT DISTINCT T1.C3

FROM T1 LEFT OUTER JOIN T2

ON T1.C2 = T2.C2

WHERE T1.C1 = ?

SELECT DISTINCT T1.C3

FROM T1

WHERE T1.C1 = ?

Figure 2.14: Removing unnecessary tables from OUTER JOINs

 Because this query selects only from T1, and no duplicates can be introduced by the 
join because of the DISTINCT in the query, the join to T2 is unnecessary, and DB2 will 
prune that table from the query with this new enhancement.

 If a DISTINCT is not coded on the query, the table is considered redundant only if the 
join columns have a unique index guaranteeing that duplicates cannot be introduced by 
the join.

Note

If DB2 recognizes this pattern and removes tables from the query, these 
tables will not appear in the PLAN_TABLE output.



DB2 10 for z/OS Query Optimization Update   •  89

Sort Performance Enhancements
Now, let’s move on from predicate processing to runtime optimizations related to sort. 
Sort is often an area of contention in query processing because sort is required for all 
workloads from online transaction processing (OLTP) through to reporting and business 
intelligence (BI) queries. And these queries are all competing for the same buffer pool 
resources and sort work data sets.

 DB2 9 for z/OS introduced numerous enhancements to improve the efficiency of 
sort, and these improvements have been extended further in DB2 10 for z/OS.

For a query with ORDER BY plus FETCH FIRST n ROWS ONLY, if a sort for ORDER BY 
cannot be avoided with the use of an index, sorting a large result set can be inefficient 
when only a small number of rows are fetched.

 In DB2 9, an in-memory replacement technique is used to achieve the desired order if 
the result is guaranteed to fit in a 32K page. In DB2 10, this support is extended to 128K.

 Figure 2.15 demonstrates an example of the in-memory replacement sort that was 
introduced in DB2 9 for FETCH FIRST n ROWS ONLY queries that require order (ORDER 
BY is coded).

 As the data is scanned, the ordered result is stored in-memory. As a new value is 
found that deserves to be in the first n rows, this value is swapped in and the highest 
stored value is swapped out. This process continues until all rows are processed by the 
chosen access path. Finally, the rows are returned in the required order.

 To calculate whether this in-memory replacement technique will be used, multiply 
n (where n is the value specified by FETCH FIRST n ROWS ONLY) times the data row 
length and sort key (for ORDER BY or GROUP BY). (It should be noted that EXPLAIN does 
not show which sort technique was used.)

Figure 2.15: In-memory replacement sort



90  •  IBM DB2: The Past, Present, & Future

 DB2 9 also avoids allocating a physical work file for final sort (for GROUP BY, 
ORDER BY, and DISTINCT) if the number of rows from sort is less than 256 and the result 
can fit in a 32K page. DB2 10 extends this support to intermediate sort in many situa-
tions.

 Finally, GROUP BY queries with less than 32,000 groups will benefit from a hash 
assist to the input to sort. This allows rows to be hashed to the same location as other 
keys of the same value upon input to the sort process. Thus, it is more likely that the sort 
will be able to be completed in one MERGE pass, reducing work file usage for sort and 
improving performance.

 All of the above-mentioned sort enhancements are considered runtime optimizations, 
and therefore explain is not aware whether these will take place.

New Choices for the Query Optimizer
As we’ve discussed, the DB2 optimizer must continually evolve, both with new choices 
in response to challenging query patterns and with cost model changes in response to 
the evolution of query workloads and associated performance challenges experienced by 
existing customers. Because our customers have grown accustomed to certain optimizer 
behavior from their existing workloads, one challenge is to ensure that the gradual evolu-
tion of improvements does not greatly disturb this balance.

Minimizing optimizer challenges for the optimizer cost model
Query performance regressions are, unfortunately, a possibility with any database 
management system. Fortunately for our DB2 for z/OS customers, their experiences are 
that regressions represent a very small percentage of their workload.

 The reasons why cost-based optimization may not always generate the optimal plan 
include the following:

•9 Insufficient statistics
•9 Unsubstantiated query optimization assumptions due to lack of knowledge of 

actual values to be used at execution time
•9 Unpredictable runtime resource availability (e.g., RID pool usage and other 

concurrent activity)

 In all, the plan picked by purely cost-based optimization may lack some robustness 
to prepare for various scenarios on some queries. To deal with some uncertainties, DB2 
10 for z/OS begins to introduce the concept of risk into the cost estimation process. The 
optimizer can choose the plan that has the lowest risk associated with it, within the range 
of access paths that are considered close to the lowest cost.

 The simplest example is for the optimizer to answer the question, “How many rows 
qualify WHERE BIRTHDATE < ?” Because the predicate is a parameter marker or host 
variable, the optimizer cannot accurately estimate the selectivity of the predicate until the 



DB2 10 for z/OS Query Optimization Update   •  91

literal value is known, since it is entirely possible that anywhere from 0 percent to 100 
percent of the rows could qualify, depending on the value used at execution time.

 Because a majority of queries use parameter markers or host variables, this type of 
predicate remains a challenge for the optimizer to estimate accurately. DB2 10 consid-
ers the risk of the estimate associated with such a predicate in its cost estimation. This 
enhancement is not something that can be controlled by customers, and it is an enhance-
ment to the internal optimizer cost model to help choose an access path that has both the 
lowest cost and lowest risk.

Minimizing risk of RID failure
Another area of risk for execution performance regression is when the optimizer chooses 
a list prefetch plan and an inaccurate estimation results in a record identifier (RID) pool 
overflow or other RID limit reached due to concurrent query activity. When this happens, 
RID access falls back to a table space scan and all index filtering is lost.

 Historically, the DB2 optimizer performs RID threshold checking as part of query 
optimization to avoid this runtime performance degradation. However, the optimizer may 
mistakenly estimate the number of qualified rows, or many concurrent queries  
may compete for the RID resources. Either of these situations could cause a limit to  
be reached.

 DB2 10 for z/OS is enhanced to fail over to writing the RIDs to a work file and 
continue RID processing rather than falling back to table space scan in many situations.

 A ZPARM, MAXTEMPS_RID, controls the maximum amount of work file usage for 
RID processing. However, we recommend you use this parameter as a safety net rather 
than as a general-use setting. The recommendation to use the default is to avoid a scenar-
io of reaching a RID threshold and failing over to a work file and continuing processing, 
only to reach the ZPARM limit and finally fall back to table space scan.

 Hybrid join already supports incremental RID processing once a RID limit is 
reached, and DB2 9 dynamic index ANDing already supports writing RIDs to a work file 
instead of falling back to table space scan. Therefore, the major targets for this enhance-
ment are list prefetch and multi-index access. There still exist cases where fallback to 
table space scan will occur, such as queries involving column functions (MAX, MIN, and 
so on).

 To reduce the incidences of RID pool overflow, DB2 10 also increases the RID pool 
default (ZPARM MAXRBLK) from 8 MB to 400 MB.

OPTIMIZE FOR 1 ROW fix
It has been documented for many releases that OPTIMIZE FOR 1 ROW (OF1R) will try  
to choose an access path that avoids a sort in an effort to return the first row quickly.  
DB2 Development received requirements from DB2 9 and DB2 10 beta customers to 



92  •  IBM DB2: The Past, Present, & Future

strengthen this OF1R sort avoidance behavior based on customers seeing some queries 
choose an access path that sorted when OF1R was coded. This is because the implemen-
tation of OF1R encouraged a sort avoidance plan but still allowed a cost-based decision 
for a sort path to be chosen if estimated to be efficient.

 These requirements led to an enhancement to DB2 10 before GA for the optimizer to 
block sort plans if OF1R was coded (unless, of course, no sort avoidance plans existed).

 A year after GA, a small number of customers saw access path regressions where 
OF1R queries switched from matching index access plus sort to a sort avoidance plan 
that was less efficient. For example, DB2 may have chosen a non-matching index scan to 
avoid the sort instead of the matching index plan that sorted. Non-matching index scan 
can be an inefficient choice if a large number of rows need to be scanned to find the first 
row that qualifies against the WHERE clause predicates.

 Figure 2.16 demonstrates this challenge.

IDX1 (FIRSTNAME)

IDX2 (LASTNAME, FIRSTNAME)

SELECT *

FROM PHONEBOOK

WHERE FIRSTNAME = ?

ORDER BY LASTNAME, FIRSTNAME

OPTIMIZE FOR 1 ROW

Figure 2.16: OPTIMIZE FOR 1 ROW example

 In this example, should the optimizer choose to match on IDX1 and sort? Or should 
it choose non-matching index scan (with index screening on FIRSTNAME) and avoid the 
sort using IDX2? The answer (unfortunately) is data dependent.

 Let’s use the first names of two recent U.S. presidents as an example to demonstrate.

 WHERE FIRSTNAME='GEORGE' may return many rows with IDX1 and thus sort this 
larger number of rows to retrieve the first qualified row by LASTNAME, FIRSTNAME 
order. But a non-matching index will avoid the sort and find the first 'GEORGE' early in 
the scan, thus avoiding processing and sorting a large number of rows.

 However, FIRSTNAME='BARACK' is likely to scan a large percentage of IDX2 
before finding a match due to this being an uncommon first name. This means IDX1 
is a safer choice for this example because it will match to find all occurrences of 
FIRSTNAME='BARACK' quickly, and because a small number of rows are likely to 
qualify, the sort will be efficient.



DB2 10 for z/OS Query Optimization Update   •  93

 From this customer experience, we learned that we have two potential users of 
OF1R:

•9 Customers who used OF1R to guarantee sort avoidance (and/or avoidance of list 
prefetch and so on) for targeted queries

•9 Customers who may have used OF1R more pervasively (perhaps because it was 
adopted as a site standard for online transactions, or to solve a one-time query 
performance issue that has now gone, or by programmers inadvertently copying 
SQL that included the OF1R clause)

 APAR PM56845 adds ZPARM OPT1ROWBLOCKSORT, which controls OF1R 
behavior. The parameter’s default value is DISABLE, meaning that the optimizer tries to 
choose an access path that avoids a sort if it is estimated to be cost-effective in returning 
the first row quickly. However, the optimizer is free to consider plans that require a sort. 
Setting OPT1ROWBLOCKSORT to ENABLE disables plans that require a sort and chooses 
the lowest-cost plan that avoids a sort. The DISABLE setting is more consistent with the 
behavior of OF1R prior to DB2 10.

Extending VOLATILE TABLE usage
Another option widely used by customers to influence a particular optimizer behavior 
is the VOLATILE table attribute. VOLATILE table support was added in DB2 for z/OS 
Version 8 based on a requirement from SAP to support its cluster tables. The requirement 
was to always prefer index access over a table space scan, and to guarantee that the data 
rows would be accessed in the index sequence, which meant no list prefetch.

 Many customers have true volatile tables—where the data volumes grow and shrink 
continually—making it difficult to collect a representative and reliable set of RUNSTATS 
data. However, these true volatile data tables do not always fit the SAP model for 
VOLATILE. The limitation on list prefetch would cause index access to be avoided if the 
only matching index plan required list prefetch.

 DB2 10 for z/OS extends the VOLATILE table support to the general-use case, 
without impacting the SAP case. To do this, if a table has only one index and that index is 
unique, DB2 10 will continue to follow the original SAP cluster table rules. Because SAP 
cluster tables have only one index—and that index is defined as unique—this rule in DB2 
10 lets the SAP-specific behavior be preserved.

 If the table has more than one index (or the only index is non-unique), DB2 uses the 
NPGTHRSH ZPARM rules, which prioritize matching index access over table space scan 
or non-matching index scan. With NPGTHRSH, list prefetch is permitted.



94  •  IBM DB2: The Past, Present, & Future

Note

The goal of both VOLATILE (at the table level) and NPGTHRSH (at the 
subsystem level) is to choose the index with the most matching predicates. 
If multiple indexes have the same high matching columns, then these 
indexes compete on cost. There is still a benefit to attempting to collect 
representative statistics on VOLATILE tables because this information will 
be used in the optimizer cost-based decision.

Index INCLUDE columns
While not strictly related to the optimizer, the following enhancement can improve query 
performance if used correctly and also simplify the choices available to the optimizer. 
The enhancement is index INCLUDE column support, which has been a longstanding 
requirement from customers.

 It is very common to see customers create indices to support index-only access. 
However, before DB2 10, for cases where you add columns to a unique index, customers 
are required to keep two indices: one to support the uniqueness of the business rule and 
the other to support index-only access.

 In Figure 2.17, assume IDX1 guarantees the uniqueness of C1 and IDX2 is created 
to provide index-only access for some queries. In DB2 10, you can alter IDX1 to add 
C2 as an INCLUDE column and then drop IDX2. Or, you can create a new index as IDX3 
UNIQUE (C1) INCLUDE (C2) and then drop the original indexes, IDX1 and IDX2. Regard-
less of the method used, the goal as demonstrated in the figure is to consolidate the two 
existing indexes into one.

IDX1 UNIQUE (C1)

IDX2 (C1,C2)

Consolidate to

IDX1 UNIQUE (C1) INCLUDE (C2)

Figure 2.17: Index INCLUDE columns

 Columns that are included cannot be matching columns for queries and cannot 
provide ordering for GROUP BY or ORDER BY. However, since the preceding columns are 
unique, matching on all columns preceding the included columns will guarantee one row 
or less is returned.

 Therefore, while some queries may see a reduction in matching columns if there are 
predicates on all columns of the larger index, no measurable performance difference is 
expected.



DB2 10 for z/OS Query Optimization Update   •  95

Note

The true motivation for this enhancement is to reduce the number of 
indices on a table where additional indices have been added for index-
only. Fewer indices can improve INSERT/UPDATE/DELETE and utility 
performance, reduce space, and potentially improve buffer pool hit ratios 
because fewer indices are competing for buffer pool resources.

 The following comment should seem obvious, but adding more columns to an index 
increases the size of that index. And, therefore, adding INCLUDE columns may degrade 
the performance of queries that were previously using the original (smaller) index.

Improving Parallelism Efficiency and Removing Limitations
The introduction of System z9 Integrated Information Processor (zIIP) processors has 
increased the motivation for many customers to exploit parallelism. This is in addition to 
the traditional reason for parallelism, which is to reduce the elapsed time of long-running 
queries. DB2 10 continues the theme from prior releases of reducing parallelism limita-
tions and also introduces enhancements to improve distribution of work across child 
tasks.

Removing parallelism limitations
In previous releases, when multi-row fetch is used, parallelism is disabled for the last 
parallel group in the top-level query block for many queries. For example, for the simple 
query SELECT * FROM TABLE, if multi-row fetch is used, parallelism is disabled. This 
restriction forces customers to choose between multi-row fetch and parallelism. Alter-
natively, if the customer does attempt both, DB2 may choose to introduce a final sort, if 
possible, so that parallelism and multi-row fetch can coexist.

 DB2 10 removes this restriction of multi-row fetch and parallelism, but only if the 
query explicitly contains the FOR FETCH/READ ONLY clause. The restriction still exists 
for an ambiguous cursor (a query that is not explicitly a read-only query).

 Another parallelism restriction removed in DB2 10 is when the parallel group 
contains a work file. In many situations, parallelism was disabled when a work file was 
contained within a parallel group. But in DB2 10, the work file can be shared across 
parallel child tasks. This enhancement applies only to CPU parallelism and does not 
extend to FULL OUTER JOINs.

Effectiveness of query parallelism
Once parallelism is chosen for a query, it is often a challenge for DB2 to ensure that the 
data is distributed evenly across each parallel child task. To effectively reduce the overall 
elapsed time of a query using parallelism, it is important for each child task to execute 
approximately the same amount of work; otherwise, the elapsed time is dictated by the 
single longest-running task.



96  •  IBM DB2: The Past, Present, & Future

 The key ranges for each child task are decided at BIND/PREPARE time based on 
statistics such as LOW2KEY, HIGH2KEY, and/or histogram statistics. The optimizer 
assumes that the data is uniformly distributed throughout the range of LOW2KEY and 
HIGH2KEY, unless histogram statistics exist to provide more detail about the data distri-
bution throughout the range. This makes DB2 too dependent on the availability and 
accuracy of the statistics. Because histograms are not generally collected by customers, 
the problem of uneven distribution of the parallel child tasks can be all too common.

 This challenge of uneven distribution of the parallel child tasks is most evident when 
DB2 uses the index key ranges or IN-list elements to cut the parallel degrees. When paral-
lelism degrees are cut based on page ranges or partition boundaries, the work is often 
more evenly distributed. Key range partitioning is used, in general, when the access path 
is driven by an available index—which is often desirable if this index also provides other 
predicate filtering.

 Given the query in Figure 2.18, DB2 will consider the LOW2KEY and HIGH2KEY of 
the date column C1 and will distribute the keys across the number of degrees. At execu-
tion time, each parallel child task operates against its defined range of keys. But if the 
data is not evenly distributed across those key values, some parallel tasks may be process-
ing fewer rows than other tasks—or zero rows.

SELECT *

FROM MEDIUM_TABLE M, LARGE_TABLE L

WHERE M.C2 = L.C2

AND M.C1 BETWEEN CURRENT DATE – 90 DAYS AND CURRENT DATE;

Figure 2.18: Sample query demonstrating the challenge in determining parallel ranges

Dynamic record range partitioning
DB2 10 for z/OS introduces dynamic record range partitioning to help address the 
problem of uneven distribution of the parallel child tasks. In dynamic record range parti-
tioning, DB2 introduces a sort into the access path so that the exact number of rows and 
key values are known at execution time. The resultant rows from the sort will be divided 
evenly across the parallel child tasks for subsequent join operations.

 This division of work doesn’t have to be on the key boundary unless it is required to 
support GROUP BY or DISTINCT ordering. Record range partitioning is therefore dynamic 
because partitioning is no longer based on the key ranges decided at BIND/PREPARE time. 
Instead, the key ranges are based on the number of composite records and the number of 
work elements (parallel child tasks). All the problems associated with key partitioning, 
such as the limited number of distinct values, lack of statistics, data skew, and data corre-
lation, are bypassed, and the composite side records are distributed evenly based on the 
actual number of rows sorted at query execution.

 This sort is not free, however, and therefore the cost of the sort is taken into consid-
eration by the optimizer in its cost-based access path decision.



DB2 10 for z/OS Query Optimization Update   •  97

 Figure 2.19 provides an example of how the output of the sort is evenly distributed 
between the parallel child tasks, such that each child task processes the same number of 
rows for the next join step.

 While this enhancement overcomes data skew or uneven distribution of work on 
the driving table in a join operation, it is still possible for subsequent joins to introduce a 
further unevenness to the number of rows being processed. And, as previously mentioned, 
dynamic record range partitioning is a new cost-based decision for the optimizer when 
parallelism is enabled for a query.

Straw model parallelism
The second solution in DB2 10 to deal with this uneven distribution challenge is straw 
model parallelism. The concept behind straw model is that DB2 will break up the access 
into more work elements than there are concurrent parallel degrees. And, therefore, with 
straw model, there is an opportunity to ensure that no single task is monopolizing the work.

 For straw model, ZPARM PARAMDEG still drives the number of concurrent paral-
lel degrees, but because more work elements are created, there is a queue of elements 
waiting. As each child task completes, it takes the next work element from the queue and 
begins processing.

 In Figure 2.20, assume PARAMDEG is 3. The left side of the figure shows the work 
distributed without the benefit of straw model, and the right side demonstrates using 
straw model parallelism. For the straw model example, DB2 has chosen to create 10 work 
elements, with PARAMDEG=3 dictating the number that actually execute concurrently.

Figure 2.19: Dynamic record range partitioning example



98  •  IBM DB2: The Past, Present, & Future

Note

The number of work elements is influenced by factors such as the number 
of partitions if parallelism cuts on page ranges or the number of keys if 
parallelism cuts on key ranges.

 Thus, for the straw model example in the figure, tasks 1 to 3 will process the first 
three work elements. If child task 2 completes first, it will take the fourth work element 
(first in the queue) to begin processing. Next, if task 3 completes, it will take the fifth 
work element (next in the queue), and so on, until all work elements are complete.

 This straw model process allows parallelism to cut the work into a finer degree of 
granularity. If the work is not distributed evenly, the shorter-running tasks will complete 
quicker and begin on the next element in the queue.

 Cutting to a finer degree of granularity increases the likelihood that more tasks will 
share the work and avoids the situations where one task processes all the rows and other 
child tasks process zero rows.

 Both straw model and dynamic record range partitioning are new cost-based choices 
available to the optimizer in DB2 10 for z/OS.

Figure 2.20: Straw model parallelism example



DB2 10 for z/OS Query Optimization Update   •  99

Improving the Inputs to the Query Optimizer
While a discussion on RUNSTATS is not technically an optimizer topic, the RUNSTATS 
utility is the method to capture the catalog statistics that the optimizer uses for access 
path selection. And, therefore, any enhancements to RUNSTATS may ease the burden 
associated with the statistics collection process and also improve the stability of access 
path choices.

 When discussing RUNSTATS and the optimizer, it is common to hear the question, 
“When is the optimizer going to take advantage of real-time statistics (RTS)?” The simple 
answer is: in DB2 10.

 But what needs an explanation is the other questions that also arise, such as, “When 
can I (or can I) stop running RUNSTATS and rely on RTS?” This question implies some 
misunderstanding of what information RUNSTATS and RTS can both provide to the DB2 
optimizer.

 In simple terms, RTS provides volume information—for example, how many 
INSERTs/UPDATEs/DELETEs have occurred since the last REORG or RUNSTATS—and for 
indexes, it reports how many pseudo-deleted index entries and near/far leaf pages exist.

 While some of the optimizer decisions are based on object size (because it can cost 
more to access a one-million-row table than a ten-row table), the optimizer also needs 
to determine the selectivity of WHERE/ON clause predicates to estimate the cost associ-
ated with accessing each object. This means it needs column cardinalities (COLCARDF), 
frequencies/histograms, and more. And RTS does not provide this information.

 Because the optimizer still relies on RUNSTATS, DB2 10 for z/OS also includes 
improvements to the usability and performance of the RUNSTATS utility.

Optimizer validation with real-time statistics
If real-time statistics doesn’t provide all the information necessary for the optimizer, how 
does the optimizer use RTS in DB2 10 for z/OS? The simple answer is that RTS is being 
used as a “sanity check” for certain exception conditions.

 The situations where the optimizer will validate the catalog statistics against RTS 
include:

•9 The catalog shows that the table, or the qualified partitions, are empty, or
•9 The table is marked as VOLATILE with default statistics, or
•9 The table qualifies for NPGTHRSH (NPAGESF < NPGTHRSH ZPARM).

 In these scenarios, DB2 will read the RTS tables during static BIND/REBIND or 
dynamic PREPARE to validate the number of rows in the table. This value is then used in 
the optimizer’s access path selection.



100  •  IBM DB2: The Past, Present, & Future

Note

Since RTS was integrated into the DB2 catalog in DB2 9 New Function 
Mode (NFM), customers migrating to DB2 10 from DB2 9 are able to 
exploit optimizer validation with RTS in DB2 10 Conversion Mode 9 (CM9). 
Customers migrating from DB2 V8 must wait until DB2 10 NFM before the 
optimizer can exploit RTS.

 In addition to reading RTS, DB2 10 adds a further validation for WHERE clause 
predicates using a probe of index non-leaf pages for exception conditions. If a WHERE 
clause predicate is estimated by the optimizer to qualify zero rows and there exists an 
index that would support matching index access, DB2 will also probe the index non-leaf 
pages during BIND/PREPARE to validate the predicate estimate.

 This index probing applies only if the optimizer has the literal value at BIND/
PREPARE to use for the index probe. This means either the query must contain literals 
rather than host variables or parameter markers, or it must use the REOPT BIND param-
eter. RTS validation, however, does not require the literal values or REOPT to validate the 
number of rows in the table or partition.

 This predicate and table size validation is externalized in a new EXPLAIN table called 
the DSN_COLDIST_TABLE.

RUNSTATS problem summary and automation
Understanding what RUNSTATS options to collect, and when to collect them, is a 
complex task. Answering the question, “When to collect statistics?” has been made easier 
with the stored procedure DSNACCOX.

 But the second question—“What to collect?”—remains a challenging task without 
the benefit of some tooling. Fortunately, IBM has the Data Studio or Optim™ Query 
Workload Tuner Statistics Advisor as a standalone tool that can analyze a query or 
workload and determine which statistics would benefit.

 In addition to the above solutions, which are already available, DB2 10 has taken 
steps to improve the automation of statistics collection.

 The DB2 10 solution for automating statistics maintenance is through a set of stored 
procedures that can monitor the need for statistics collection and schedule the execution 
of RUNSTATS. The DB2 10 for z/OS Managing Performance guide contains a section 
titled “Automating statistics maintenance” that provides more detailed information, 
including the steps required to set up the monitoring.

 This process will issue RUNSTATS alerts for out-of-date, missing, and conflicting 
database statistics. However, it should be noted that the process is not determining tailored 
RUNSTATS for your query workloads, which is the goal of a statistics advisor tool.



DB2 10 for z/OS Query Optimization Update   •  101

 Once the required statistics are identified, executing RUNSTATS through this 
automated process can collect those statistics through the exploitation of statistics 
profiles, which we discuss in the next section.

Note

The goal of these stored procedures is to simplify integration with tooling 
provided by various vendors. However, this does not preclude a customer 
from integrating this process into their existing statistics collection process.

 In addition to RUNSTATS automation, additional DB2 10 enhancements attempt to 
help with RUNSTATS complexity and cost.

RUNSTATS simplification
The first enhancement for RUNSTATS simplification is related to the KEYCARD option 
becoming the default for index RUNSTATS—regardless of whether it is explicitly speci-
fied. This change is in response to the ongoing recommendation by IBM for customers to 
collect KEYCARD to provide more accurate information to the optimizer about the inter-
mediate multi-column cardinalities for indexes with three or more columns.

 The general recommendation for statistics has been to collect RUNSTATS 
TABLE(ALL) INDEX(ALL) KEYCARD; now, with KEYCARD defaulted, the recommendation 
can be simplified to RUNSTATS TABLE(ALL) INDEX(ALL). A generalized recommenda-
tion for additional FREQVAL, HISTOGRAM, or COLGROUP statistics is more complicated, 
however, as the requirement for these additional statistics is based on predicates from 
an individual query or workload. This is why tooling is often necessary to assist in the 
identification of this requirement.

 Once additional statistics requirements are identified, DB2 10 lets you create an 
individual statistics profile for each table such that the execution of RUNSTATS can 
simply use the option USE PROFILE to collect these targeted statistics for a table.

 Figure 2.21 shows some examples of the statistics profile options in DB2 10.

Integrate specialized statistics into generic RUNSTATS job
•	 RUNSTATS	...	TABLE	tbl	COLUMN(C1)...	SET PROFILE
	 Or	use	SET PROFILE FROM EXISTING STATS
•	 RUNSTATS	...	TABLE	tbl	COLUMN(C5)...	UPDATE PROFILE
•	 RUNSTATS	...	TABLE	tbl	USE PROFILE

Figure 2.21: RUNSTATS options to SET/UPDATE/USE a stats profile



102  •  IBM DB2: The Past, Present, & Future

 The statistics profile options include the ability to:

•9 SET PROFILE
•9 UPDATE PROFILE
•9 USE PROFILE
•9 DELETE PROFILE

When included in a RUNSTATS execution, SET, UPDATE, and DELETE do not physically 
execute the RUNSTATS job to collect statistics; they simply create, update, or delete the 
stored profile.

 One nice feature of this statistics profile is the ability to SET PROFILE FROM 
EXISTING STATS. In this case, DB2 will create the statistics profile based on the statistics 
that exist in the catalog for this table. This feature can be beneficial if you have collected 
FREQVAL, HISTOGRAM, and/or COLGROUP at different times but do not have a record of 
all the options that have been used over time.

 UPDATE PROFILE can merge the existing profile information with the new options 
when you want to add new options to a profile. If you want to truly replace the profile, it 
is preferable to perform a DELETE PROFILE followed by a new SET PROFILE.

 The only concern with this approach is that deleting a profile does not delete existing 
statistics. Leaving statistics in the catalog that are no longer being re-collected will cause 
those statistics to become stale. Therefore, an additional step is to manually delete those 
statistics from the catalog that are no longer part of a profile.

 The statistics profiles are not without their own usability challenges. When USE 
PROFILE is specified, all tables specified in the RUNSTATS job must have a profile. 
Therefore, if you have 10,000 objects to collect statistics on and only 50 have special-
ized RUNSTATS requirements, you cannot integrate the 9,950 default RUNSTATS tables 
with the statistics profile tables. The current implementation of statistics profiles does, 
however, simplify the RUNSTATS syntax when issuing a single-table RUNSTATS.

RUNSTATS performance
The other important enhancement to RUNSTATS focuses on improving performance. The 
existing SAMPLE option of RUNSTATS can reduce CPU cost because it only performs 
the CPU-intensive cardinality calculation on the percentage specified by the SAMPLE 
keyword. However, regardless of the SAMPLE percentage specified, all 100 percent of the 
rows are still read by the RUNSTATS job.

 DB2 10 adds the option to sample at the page/row level—which means a reduc-
tion in the rows RUNSTATS will read. This enhancement can produce a more significant 
improvement in the CPU and elapsed time performance of RUNSTATS.

 When given the option to choose a percentage, the most obvious question is, “What 
percentage to use?” DB2 provides the TABLESAMPLE SYSTEM AUTO option, which lets 



DB2 10 for z/OS Query Optimization Update   •  103

DB2 choose the right percentage based on the table size. When you specify the AUTO 
option, tables with less than 500,000 rows will use a 100 percent sample, and after 
500,000 rows, the percentage will scale down from 100 percent to a low value of 10 
percent. RUNSTATS will adjust the percentage with the AUTO option, or you can override 
with a specific numeric value.

 Being more aggressive with a lower-percentage SAMPLE value can reduce the 
RUNSTATS cost further. However, there is some risk of being too aggressive because 
RUNSTATS is unable to estimate the values for the rows that are skipped. For this reason, 
DB2 implements a lower value of 10 percent.

 TABLESAMPLE applies only to single-table table spaces, and it is not applicable for 
LOB table spaces. Indexes do not exploit this page- and row-level sampling.

Summary
DB2 10 for z/OS is a significant release for query performance and optimization. The 
improvements in these areas are an acknowledgement of the increased focus our custom-
ers are placing on reducing total cost of ownership while maintaining the stability and 
reliability of their mainframe environments.

 While prior releases of DB2 have brought new optimizer access path choices, this 
additional focus on predicate and runtime optimizations, and on plan management, should 
provide the goal of improved performance with lower risk than before—a focus that is 
expected to continue in future releases of DB2.



104  •  IBM DB2: The Past, Present, & Future

DB2 10 for z/OS Case Study:  
Bankdata and JN Data

New features and a smooth upgrade process 
ease workload consolidation project

Bankdata exists to provide high-quality financial IT solutions to the 15 Danish banks 
that are its customers, and it is the largest IT developer in southern Denmark. JN Data 
specializes in the provision of IT operations and engineering for large Danish financial 
institutions, including Jyske Bank, Nykredit, BEC, and SDC. In 2010, JN Data acquired 
the IT operations unit of Bankdata, making it responsible for the combined workloads of 
both sets of customers.

 During the past two years, both organizations have been working hard to integrate 
their IT processes and procedures, with the main DB2 workloads due to be consolidated 
in October 2012. Undertaking a major DB2 version upgrade during such a critical time 
may seem strange at first, but according to Systems Programmer Frank Petersen, “DB2 
10 came at a very good time for us, as it will allow us to better cope with the very large 
increase in volumes we’re about to experience.”

 The workload consolidation will effectively double the Bankdata transaction and 
data volumes supported by JN Data, but the considerable virtual storage constraint relief 
(VSCR) enhancements delivered by DB2 10 for z/OS will allow the additional workload 
to be accommodated without having to increase the number of DB2 subsystems within 
the production data sharing groups. “The enhanced online schema change capabilities 
also made it easier for us to implement the physical design changes required by the 
merger, while minimizing the availability impact to our production workload,” added 
Frank.

 As Bankdata had been an active member of the DB2 10 beta program, key technical 
staff were able to explore its new features and build their technical knowledge and confi-
dence in the new release at an early stage. That experience allowed them to begin the 
DB2 10 implementation project very soon after the product became generally available 
in October 2010, with the last of the production DB2 systems successfully entering New 
Function Mode in the spring of 2012. “Overall the upgrade process has been a smooth 
one. We were especially pleased with the increased concurrency during the DB2 catalog 
restructuring, which reduced the impact to our production workload compared to previ-
ous upgrades,” said Frank.

 What other benefits has Frank observed as a result of the upgrade to DB2 10? “We 
have seen a few CPU reductions, but this has not been such a major benefit for us as 
our workload is mainly composed of very well-tuned static SQL—we don’t have much 
distributed or dynamic SQL,” he said. “However, the new statement-level account-



DB2 10 for z/OS Case Study   •  105

ing data is a great new feature, and we have already expanded our performance data 
warehouse to collect and exploit this valuable new feature.”

 JN Data currently has just two temporal tables in production as most developers have 
been very busy with the merger, but Frank sees considerable potential in the new feature. 
“The up-front productivity benefits are very welcome, of course, but reducing complexity 
and making future maintenance easier are just as important to us,” he noted.

 IT infrastructure upgrades often struggle to demonstrate direct business benefits,  
but in a period of considerable change and technical challenge for JN Data and Bankdata, 
the new features in DB2 10 for z/OS have made a timely and valuable contribution to the 
overall success of the workload integration project.



The launch of DB2 on June 7, 1983, marked the birth of relational database as a cornerstone for 
the enterprise; 30 years later, DB2 for z/OS is still the undisputed leader in the RDBMS market 
and the envy of its competitors when it comes to total system availability, scalability, security, 
reliability, and cost effectiveness. A majority of Fortune 500® companies, including the world’s 
top banks, retailers, and insurance providers, store mission-critical operational data in IBM® 
System z® and DB2® for z/OS®.

Why? It seems everyone offers a marketing bundle “just like the mainframe,” and while some of 
these solutions have some basic capabilities, DB2 for z/OS and System z continue to lead the 
way with fresh capabilities to handle rapidly changing, diverse, and unpredictable workloads while 
maximizing resource utilization and investment.

During 2013, IBM will celebrate the 30th anniversary of DB2 with customers, business partners, 
users, employees, and DB2 fans all around the world. We announced DB2 11 Early Support 
Program in October 2012, and we expect General Availability to follow shortly.

This book is packed with rich information to help you manage your IT business systems. 
Don Haderle, the father of DB2, shares with us the history and growth of DB2, and customer 
testimonials highlight DB2 memories and milestones. Next, John Campbell provides a detailed 
overview on the planning stage of migrating to IBM DB2 10, and finally Terry Purcell provides a 
technical overview of the business benefits of IBM DB2 for z/OS Optimizer.

We hope you enjoy this new book. Find out why DB2 is still growing after 30 years and how it is 
helping our customers to reduce costs and grow.

Surekha Parekh
World-Wide Marketing Program Director for DB2 for z/OS
http://www.facebook.com/IBMDB2forzOS

MC Press Online, LLC
3695 W. Quail Heights Court
Boise, ID 83703-3861

Price: $17.95 US/$19.95 CAN

IB
M

 D
B

2
: T

h
e
 P

ast, P
re

se
n
t &

 F
u
tu

re

5144

IBM DB2: The Past,  
Present & Future




