Lab: IBM Toolbox for Java™

Student Exercises

Kim Button
John Eberhard

IBM Rochester
Session 41L A (403627)

Lab: IBM Toolbox for Java ©IBM Corp. 2008
1

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Lab: IBM Toolbox for Java

N I RO 151 L O 1 1 1 PR 4
OV ERV I EWN ..ottt e e e e e e e e e et e e e e e e e e e e e e e e aaeeeeeeeeee e aaaaeeeeeeeeeannaaneenaenennnnnnn 4
THE JAVAT™ LANGUAGE ... v et eveeeeeeeeeeeeesesevesesesesesesesessesssssesesesessssessssssssessssssssssseessssessssssssesesesesnsesnsnens 4
[BIM TOOLBOX FOR JAVA . .eteeeeeeeeeeeeeeeeseeeeeeeeesesesesesesessessessssssesessssesssssesessssssessssssessssssssssesssasaeasaseeaesens 5
B =3 N = TR 8
EXERCISE 1: COMMAND C A L oottt eeenaaneens 10
INTRODUGCTION .. veeeeeteteteeeseseeeeeesesesesssesesesesesssssesssesssssasssssssssesssssssessssssessssessesessssssssssesssasesesesesaeasaseens 10
GOALS OF THISEXERCISE wv.vvevvevevevereeesesesesesesessses s e e saesssesesesesesesasasasasasasesesesasssesesesesesssessessesssssenenns 10
PART 1; CREATE AN ASAOD OBJIECT ..vovvveeeeeeeesesessesesesesesesssesssesesesssasesssssessssssssssssssssssssssssssssssasssssenns 11
PART 2; CREATE A COMMANDCALL OBJIECT wvvvrvveeeeeeeeeeeeeeeeeeeeeeeseseseseseseeesssesesesssessssssssssssssesssssessens 12
PART 3: RUN THE COMMAND «..evevv ettt sessesesesesesesesesasasesesasasasesssesesssssessssssssesesesssesesesasasasanns 12
PART 4: RETRIEVE ASAOOMESSAGE OBJIECTS ...vvviveeeeeereeesesesesesesesesssssessssessssssssssssssssssssssssssasasssssssns 13
RUN THE APPLICATION 1ot veveteeeeeeeeeesesesesesesesssesesssesssesssssssssssssssesssssssssssssessssssssssssssssssssssssesesssssaseens 14
EXERCISE 2: IDBC ..ottt et ee e e e e eeeeereeeennaaaeens 15
INTRODUCTION «.vveeeeesereseseseseseseseseseseseseseeeseseseesssssesssesssesesesesesesesesasesesesesesesesessssesssessesesesesesasasasasenns 15
GOALS OF THISEXERCISE +vvvveveeveteveseeeseseesesesesssesesesssssesssssssssssssssssasssasesssesssesssssessssnssessssssssssssssssssses 15
PART 1 SET SYSTEM, LIBRARY AND DATABASE ...veveeeeeeeeeeeeeeeeeeeeeseseeesesesesesssessssssssssssssssesasssessens 16
PART 2: REGISTER THE TOOLBOX JDBC DRIVER.....c.ceeeieeeeeeeeeeeeeeeeeeeeseessesesesesesesesesesesesesasesasasanns 17
PART 3 ESTABLISH A CONNECTION ..v.vvevveteteesesesessesesesesesesesssesesesasssesssssssssssssssssssssssssssssssssesasssasesns 18
N g = T s =2 SRS 19
PART 5: PRINTING DATABASE INFORMATION.vcvieieeesesesesesesesesesesesesesssssessssssssssssesesesesesesesasesasenns 20
RUN THE APPLICATION «eveveveveteteteseseseeeesesesssesssesssssssssssssssssssssssasesssasasesssssessssssssssssssssssssssssssasasasssasasns 20
EXERCISE 3: SQL RESULT SET TABLE PANE ...ttt 21
INTRODUGCTION .. veeeeeteteteeeseseeeesesesesesesesesesesssssssesssssssssasssssssssesssesssessssssessseessssssssssssssnesssasesesesaseeasassens 21
GOALS OF THISEXERCISE 1vveeveeeveveveresesesesesesesessees s esessaes s s esesesesesesasasasasasssesesesesesesesesssesessesesessenesenenns 21
PART 1: CREATE AN SQL CONNECTION OBJECT ...vovuveeeeeeeseeseseeseseseesessssesessssessesesessssessssssessssssesseeesens 22
PART 2: CREATE AN SQLRESULTSETTABLEPANE OBJIECTevveeeeeeeeeeeseeeseeseessesseenseseeseseenes e, 23
PART 3; RUN A QUERY AND LOAD THE RESULTS ...v.vveeeeeeeseeeeeeeeeesesesesesesessssesesesesessasesesesesesessessseseenns 23
PART 4: SETUP AN ERROR HANDLERveveveteteesesessesesesesesssssssesesesesesasesssssessssssssssssssssssssssssssssssasssassnns 24
RUN THE APPLICATION «eveveveveteeeeeeeeeeeeseseseseeesssesessssssesssssssssssssssssssssssssssssesssssssssssssssssssssssssssessssssssens 25
INTRODUGCTION .. vetetetteteeeseseeeeeeeesesesesesesesesessassesssessssssssssssssesssesssssessssessssesssssssssssssssenssasssesesaseeasessens 27
GOALS OF THISEXERCISE wvvvuveeteseveresesesesesssessssesssssssssessssssssssssssssasasasasssesssssesssssssesssesssssssssesssssssseses 27
PART 1; CHARACTER CONVERSION ...v.vvveveeeteesesesesesesesesesssssssssssssssssssssssssesssssssssssssssssssssssssasasassssssens 28
PART 2 SET UP THE PROGRAMCALL OBJIECT .vvvvveeeeeeeeeeeeeeeeeeeeeeeeeseseseseseeesessesesssesssssssssssssssssssassssens 29
PART 3: PROGRAM PARAMETERSovveveveveeeeeesessesesesesesesasesesesesesesasasesssesessssssssssssssssesssesasesasasasasanns 29
PART 4: PARSING RETURNED DATA ...vovveveeeeeeeeeeeseeesesesesesesesesesesesesasasesssssessssssssssssssssssssssssssssasasssassnns 30
RUN THE APPLICATION et teveteeeteeeeseseeeeesesesesssesesssessssesssssssssssssesssesssssssssssessssseessssssssesssssssssesasasessseens 30
(O 1) 101 1 0 1] T 31
Lab: IBM Toolbox for Java ©IBM Corp. 2008
2

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

APPENDIX A: BONUSEXERCISES ...ttt st s 32

BONUSEXERCISE 1: PROGRAM CALL VIA PCML cccviiiit et 32
INTRODUGCTIONtteuititeeueestesteeeeauesseeseesseessesseensessesseanseaseessesseaneeseesseansessesseansesaeensessesnsessesseensessesneessenns 32
GOALS OF THISEXERCISE ...veeutitieueestesseessesseaeessesseessessessesssesssessessesssessssseessessessssssesssesssssesssessessesssesses 32
PART 1: CREATE THE PROGRAMCALLDOCUMENT OBJECTueetirieeeesteeneeneeseeseesseesesseesneessesseensessenns 33
L A o g L Y = @ 1 = U U 34
RUN THE APPLICATION ...ciutiiteeiteitteieestesseesteste et besieesesseeseesbesaeesbesbeeasesbesaeebesaeeeesbesnsesbesbeenbesbeeneensens 35
COMPARE PROGRAMCALL AND PCML ..ottt sttt nne s 35

BONUS EXERCISE 2: GUI BUILDERooiiiiiee sttt st s 36
INTRODUGCTION ...utteuttteeutestesteetesuesseestesueessesteessessesaeessesseeseesbeaaeesbesbeenseabeaseenbeaaeesesbeeaseneesbeenbesbeeneensens 36
GOALS OF THISEXERCISE ...veeutiitteutestesseeseesseaeessesseessessessssssessssssessesssessssseessessessssssesssessessesssessessenssesses 36
PART 1: START GUIBUILDERouiiuititeiiesiesteeiesieeieeie st e e steeseeseesteeneesaesseansesneensessesnseseesseensessesnsensenns 37
A A = e 1= N N e o P 39
PART 3: ADD TEXT BOXES TO THE PANEL ...cttiutetirteeiestee ettt ste st sbesie e s sse e e sbe e e seesaeesessesneensenns 40
PART 4: ADD BUTTONS TO THE PANELcettittetesteeteeiesteeeeseesseeseesteensessesseasesneensessesnsessesseensessesnsessens 41
PART 5: CREATE A PANELMANAGER OBJECTcutttttetiiteeeestesueeseesteseessesseensesseensessesnsessessessessesseessens 44
PART 6: SHOW THE PANELIMANAGER OBUJECTviitteiitieeertesueesiesieeeesresseessesseeseestesmeeseesseensessesneensenns 44
RUN THE APPLICATION ...eettittetesteeseestesseessesteessessesseessesseesssssesssesssssesssessssssesesssessessesssessessesnsessesssessenns 45

APPENDIX B: SOLUTIONS... ..ottt ettt eae sttt te e asaeste e saesseesaestesseensesseensessesssessnssnsses 46
EXERCISE 1: COMMAND CALL ...outiiuiitiiuieite et sie sttt st et st st sbe et sbesseebesaeensesbesasesbesbeenbesresnnensens 46
EXERCISE 2: IDBC QUERYectiitieiieieieiesiesteeaestesseesesseessessesseessessesnsessessssnsessssssessesnsessessesssessesssessenns 48
EXERCISE 3: SQL RESULT SET TABLE PANE ..ottt ettt eie st eee st e e e e steeeeseesaeeeesneeneesee e 51
EXERCISE 4: PROGRAM CALL ...eitiiuiitiitiesiesteeee sttt ettt e testesaeeseesbeemsesaesseesesaeensesbesnsessesseensessesneensenns 53
BONUS EXERCISE 1: PCML (JAVA SOURCE)ccuiitietiitieeestesseestestessessesseessesseessessesssessesseensessesssensenns 56
BONUS EXERCISE #1: PCML (PCML SOURCE)......cctitiitirieieieieeeiesie sttt sse e eens 58
BONUS EXERCISE #2: GUI BUILDERcoiiiitieienieeieeite st ettt seee st stesee st sseessesaeeneesbesneeseesseensessesneensenns 59

Lab: IBM Toolbox for Java ©IBM Corp. 2008

3

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Introduction

Thislab provides an overview of the IBM Toolbox for Java™. Y ou will build Java applications
using the IBM Toolbox for Java.

Overview

The Java™ Language

Javais asimple, object-oriented, network-aware, portable, interpreted, robust, secure,
architecture-neutral, high-performance, multithreaded, dynamic language. Javais object-
oriented from the ground up. Java organizes code into a collection of classes. Each classis
made up of methods and data. Classes can be grouped together and placed in packages.

® Packagesare similar to ILE RPG service programs. They enable you to divide your pieces
into easily reused units. Packages are Java language constructs. They may contain multiple
classes.

® Classesaresimilar to ILE RPG modules. They enable you to divide your source code into
functions (“methods” in Java, “procedures’ and “subroutines’ in RPG) and the variables
those functions need. Classes are typically self-contained groupings. They normally contain
multiple fields (variables) and methods.

® Methods are similar to ILE RPG procedures and subroutines. They contain al the actual
code your program will run. In Java, unlike RPG, executable code can only exist in methods,
and methods can only exist inside classes.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
4

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

IBM Toolbox for Java

Introduction

Java programs can access i5/0S data and resources from any client platform (including i5/0S)
using the IBM Toolbox for Java. The IBM Toolbox for Java contains the infrastructure that
allows access to the following i5/0OS data and resources.

JDBC and record-level accessto DB2/400 data
print resources
integrated file system
data queues

program calls
command calls

user lists

job lists

job logs

message queues

and many others!

The IBM Toolbox for Java provides Java Beans that can be used for visual application
development. Developers can use the classes directly from Java code or in avisual application
builder.

The V6R1 version of the Toolbox which shipswith i5/0S Version 6 release 1 is the current
version of the Toolbox. Alternatively, JTOpen 6.1 isthe latest open source version of the
Toolbox and it can be downloaded from the JTOpen website. The Toolbox runson any VM
that supports JDK 1.1.8 or later. The GUI components of the Toolbox require Swing 1.1 (the
new Swing names).

See http://www.ibm.com/systems/i/software/toolbox/ for more information.

The Toolbox source for aimost all componentsis available viathe JTOpen project at
http://jt400.sourceforge.net/. Thisis part of IBM’s open source devel opment community.
Developers can use the source as a debug tool, submit new function, modify it for their own use,
and submit problem reports and bug fixes.

The Official JTOpen and Toolbox forum:

* Go to http://www-03.ibm.com/servers/eserver/support/iseries/index.html
* Select “Problem Solving”, then “ Forums’

e then “JTOpen/Toolbox for Java Forum”

Lab: IBM Toolbox for Java ©IBM Corp. 2008
5

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

An Example

The following is a simple program that uses the Toolbox to call an i5/0S command. Several
lines in the program are numbered. These numbers correspond to explanations that follow the
example.

import com.ibm.as400.access.*; // 1

public class CmdCall

public static void main(String[] args)

}
}

try /] 2

{ AS400 system = new AS400(); // 3
AS400 system2 = new AS400 ("myAS400", "myID", "myPW") ;
CommandCall cc = new CommandCall (system) ; // 4
cc.run ("CRTLIB MYLIB") ; // 5
AS400Message[] ml = cc.getMessageList () ; // 6

for (int i=0; i<ml.length; i++)

{

System.out.println(ml[i] .getText ()) ; /] 7

catch (Exception e)

e.printStackTrace () ;

Comments

1.

2.

o O

The access classes of the Toolbox are in the com.ibm.as400.access package. Import this
package to use the Toolbox classes.

Like other Java objects, the Toolbox throws exceptions when something goes wrong.
These must be caught by programs that use the Toolbox. Exceptions are caught in Java
using atry/catch block. Any exceptions caused by the code in the try block will be
handled in the catch block.

The Toolbox AS400 object isthe object used to identify the target (server). If you
construct the AS400 object with no parameters, the Toolbox will prompt for system name,
userid and password. Notice when we create the second AS400 object, we supply these
values so the Toolbox will not prompt for them.

The Toolbox CommandCall object is used to send commands to the server. When we
create the command call object, we pass it an AS400 object so it knows which server is
the target of the command.

Use the run() method on the command call object to run a command.

The result of running acommand isalist of i5/0S messages. The Toolbox represents
these messages as A SA00M essage objects. When the command is complete, we get the
resulting messages from the command call object.

Lab: IBM Toolbox for Java ©IBM Corp. 2008

6
Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

7. Print the message text. Also available isthe message ID, message severity and other

information. In this program we are only printing the message text.

Javadoc

Like other Java classes, detailed API information can be displayed as Javadoc. Javadoc includes
an overview of the class, public constants, and a detailed explanation of each public constructor
and public method. Asacomponent is developed, the developers include information in the Java
sourcefiles. A tool that comes with the JDK pulls out this information and formatsit asHTML.

An example follows. The Toolbox Javadoc isinstalled on the lab PCs. To seeit, start

Netscape/Internet Explorer then open the file C:\toolbox\doc\T oolbox.html. Then select the
Javadocs link on the left. Leave the Toolbox Javadoc open for the remainder of thislab. It will

be a valuable resource to you.

5,400 Toolbox for Java - Netscape

Fil= Edit W¥iew Go Communicator Help

| 2w 3 A - % & B @
Back Forward Reload Home Search Metzcape Print Security Shop Stop
TBookmarks f Gota = |

IBM Toolbox for Java

B IBM Toolbox for Java
B What's new for VSR1
B Print this topic
b Settingup
b Access Classes

Bl 42400 class

|»

Constructor Summary

CommandCall)

Bl 5ecures 5400 class

B AB4000Ping

B BidiTransfomm class
B CommandCall class
B ConnectionPool class
B Datasrea class

4

Constructs a CommandCall object.

CommandCall (43400 system)
Constructs a CommandZall object.

CommandCall (5400 system, java.lang.String command)
Constructs a CommandCall object.

Bl Data conversion and data
B DataDueue classes
B Digital certificate classes
EnvironnentV ariable class
B Eventlog
B Exceptions
Bl FTF classes
B Integrated File System classes
B JavaspplicationCall class
B JDEC driver and interfaces
Bl Jobs classes
B ASMN essage class
B HetServer class
B Permiseion and UserPermission clas
Bl Print classes
B Productlicense class
B ProgramCall class
B 03VS0bjectP athi ame class
B Recordlevel access classes
B SystemStatus class
B SystemWalue classes
B Trace class
B UserGroup and UserList clasees
B UserSpace class
¥ Graphical Toolhox
¥ Craphical User Interface (SUT) Compor
b HTML Classes
¥ JavsBeans
¥ Program Call Markup Lan
3‘ Prooy support
4 |

Method Summary

waid

addActionCompletedlistener (AotionCompletedlistener listener)
Adds an ActionCompletedListener

waid

addPropertyChangelListener (java.beans.PropertyChangelistener 1

Adds a PropertyChangeListener

waid

addV¥etoableChangelListener | java.beans.VetoableChangelListener 1

Adds a VetoableChangelistener.

java.lang.Svring

getCommand ()
Eeturns the command to run.

Fulob

getdob ()
Eeturns an ETob object which represents the A3/400 job in which the com
jgital

ASA00Mes=agel]

getMessagelist ()
Eeturns the list of A3/400 messages returned from running the command

ASE00Meszage

getMessageList (int index)

Eeturns an AZ/A400 message returned from running the command.

A3400

getSystem()
Eeturns the A3/M00 on which the command is to be run.

java.lang.Thread

<

getSystemThread (|
R ehirne the & SEANN thread an wshich the coarmrmand wmranld he Inm aFat “W:ILI
»

= =8|

|Dcu:urner|t: Done

Lab: IBM Toolbox for Java

7

Course material may not be reproduced in whole or in part

without the prior written permission of IBM.

Trademarks are the property of their respective owners.

©IBM Corp. 2008

Lab: Introduction tothe IBM Toolbox for Java

The Lab

Overview

Thislab consists of exercises that demonstrate various components of the IBM Toolbox for Java.
In the exercises, you will create and run several Java applications. In most cases, you will start
with an existing source file. For each exercise, your task isto complete the application by
adding the IBM Toolbox for Java code. Y ou will then compile and run each application.

Y ou need the following hardware to complete this | ab:
Server —IBM System i™ - i5/0S V5R3 or later
Client - PC - Windows 9x/NT/2000/XP; 32MB memory; 200MB free hard drive space

Actualy, any computer with a Java Virtual Machine can be used (except for bonus exercise 1).
However, the lab instructions explain the instructions using Windows terminology and tools.

Y ou need the following software on the client to complete this |ab:

* JavaDevelopersKit 1.1.8 or later

e Swing 1.1 (included in Java Developers Kit 1.2)

* Modification 5 of the IBM Toolbox for Java (or aternately JTOpen version 3.3) or later
Note: It issuggested to get the latest release of JTOpen whichisversion 6.1.

Lab Flow

Most of the Java sourceis provided. What is missing is the code that demonstrates a particular
feature of the Toolbox. You will fill in this code then compile and run the program. Hintsare
given in the lab instructions to help you write the code. If you get stuck, the lab solutions are at
the end of this handout.

Remember
Javais case-sensitive. Enter all lines exactly in the case they appear in the prototypes that follow.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
8

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Lab Setup

During this lab you will need a server running i5/0S, a userid and a password. Thisinformation
will be given to you by the instructor. Pleasefill in thisinformation below so that you have it for
reference during the lab.

My 15/0S system is:

My i5/0S userid is:

My i5/0S password is:

The PC source code directory is C:\toolbox)\

Y ou are now ready to begin the exercises.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
9

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Exercise 1: Command Call

Introduction
In this exercise, you will use the IBM Toolbox for Javato call an i5/0S command from a Java
application.

The CommandCall object (part of the IBM Toolbox for Java) enables a Java program to call any
non-interactive i5/OS command. The list of i5/0S messages that result from the command are
available to the Java program when the i5/0S command compl etes.

In this exercise you will use AS400, CommandCall, and AS400M essage objects to complete a
Java application. Much of the application code has been provided for you. You will need to
write Java code to connect to the server, execute a command, and display the results.

Goals of this exercise
At the end of this exercise, you should be able to:

Create an ASA400 object.

Create a CommandCall object.
Run the command.

Retrieve AS400M essage objects.

hpOODNPRE

Lab: IBM Toolbox for Java ©IBM Corp. 2008
10

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Part 1: Create an AS400 object

Note that al sections that need code written by you start with the comments:
[= e e oo e e o

Type the code for each exercise after the beginning comments of Exercise #1 Part #x and before
the ending comments.

Setup

1. Start aDOS prompt (on Windows 2000 or XP) using the Start menu: select “Programs”,
“Accessories’, “Command Prompt”.

2. Change the current directory to the directory which contains the lab source code (C:\toolbox).
To change the directory, enter:

cd C:\toolbox

3. Runthebatch file ToolboxSetup. Thiswill set up the classpath environment variablesto
point to the Toolbox jar files. You must run this batch file any time you open anew MS-
DOS prompt.

4. Edit the CommandCallExample.java source file. Y ou can use any editor you like. For this
lab, we will use Windows Notepad. In the DOS prompt, type:

notepad CommandCallExamplejava

5. Locatethe section for Lab Exercise #1 Part #1.

Procedure

1. Create an AS400 object named system and specify your assigned i5/0S system name. (Hint:
Javastring literals are enclosed in double quotes). Some prototypes/examples that you may
need are listed below. The complete set of prototypesis provided in the documentation
(Javadoc) that is shipped in soft copy form with the IBM Toolbox for Java. This AS400
object represents the connection to the system running i5/0S. Remember, Java is case-
sensitivel

Remember that at any time during this lab, if you get stuck, you can either ask a lab attendant for

help or consult Appendix B for the solutions.

Prototypes

class AS400

e public AS400()

e public AS400(String systemName)

* public void setSystemName(String systemName)

Example code: AS400 system = new AS400();

Lab: IBM Toolbox for Java ©IBM Corp. 2008
11

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Part 2: Create a CommandCall object

Setup
1. Continue editing the CommandCallExample.java source file.
2. Locate the section for Lab Exercise #1 Part #2.

Procedure

1. Create aCommandCall object named command and specify the AS400 object that was
created in Part 1. Again, some prototypes that you may need are listed below. This
CommandCall object represents a command call, although at this point, no command has
been called.

Prototypes

class CommandCall

* public CommandCall()

e public CommandCall (A S400 system)
* public void setSystem(AS400 system)

Example Code: CommandCall command = new CommandCall();

Part 3: Run the command

Setup
1. Continue editing the CommandCallExample.java source file.
2. Locate the section for Lab Exercise #1 Part #3.

Procedure
1. Thelab aready has code that creates a String named commandString, which is made up of
the command line arguments passed by the user. Add the code to run this command.
2. Notice that the run() method returns a boolean, which indicates whether or not the command
was successful. Add code to check this and print the appropriate message, either
System.out.printIn(* The command was successful”);
or
System.out.printin(“ The command failed.”);

Prototypes
class CommandCall
* public boolean run(String commandsString)

Example code: boolean successful = command.run(*CRTLIB TESTLIB”);

Lab: IBM Toolbox for Java ©IBM Corp. 2008
12

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Part 4: Retrieve AS400Message objects

Setup
1. Continue editing the CommandCallExample.java source file.
2. Locate the section for Lab Exercise #1 Part #4.

Procedure

1. Retrieve any messages that were generated by running the command. The messages are
stored as an array of AS400M essage objects. Each AS400M essage object in the array
represents a message that was generated by the command.

2. Loop through the array of messages, and print each message’s ID and text to System.out.

Prototypes
class CommandCall
* public ASA00Message]] getMessageL.ist()

Example code: AS400M essage[] message = command.getM essagel.ist();
class AS400M essage
* public String getID()
* public String getText()

Example code: String iD = message.getID();

Lab: IBM Toolbox for Java ©IBM Corp. 2008
13

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Run the application
Now it is time to run the CommandCall Exampl e application.

1. Make sure to save the modified CommandCallExample.javafile.
2. Compile the application from the DOS prompt. Hint: Javais case-sensitive even on
Windows so the case of the file name must be correct. To compile, type:

javac CommandCallExamplejava

3. If you have errors, re-edit then re-compile the sourcefile.
4. Run the application once you successfully compiled it. The application has one command
line parameter, the command to run on the server. To run the program, type:

java CommandCallExample CRTLIB FRED

5. The application will prompt you for auser ID and password. This happens automatically
when your application accesses the server using the IBM Toolbox for Java. Enter your
assigned user ID and password.

2] Signon to AS400

System: I mySystem
Lser D I
Fasswaord: I

[+ Default User IO

[+ Save password

Ik | Cancel'

6. Verify that the application output (which appears in the DOS prompt) looks similar to this:

The command f ail ed.
CPF2111 Library FRED al ready exists.

**NOTE: If thisisthefirst time Library FRED is created, the output will say the
command completed successfully, otherwise the output will be as above.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
14

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Exercise 2: JDBC

Introduction

In this exercise, you will use the IBM Toolbox for Java JDBC driver to query a database on the
server. JDBC stands for Java Database Connectivity. JDBC is the Java standard for SQL
database access. The IBM Toolbox for Java provides a JDBC 3.0 implementation. With JDBC
you can access databases using standard Java interfaces.

In this exercise you will use Toolbox JDBC objects to complete a Java application. Much of the
application code has been provided for you. Y ou will need to write Java code to register the
Toolbox JDBC driver asthe driver to use, connect to the server, query the database, and display
the results.

Goals of this exercise
At the end of this exercise, you should be able to:

Register the Toolbox JDBC driver as the driver to use to get data.
Create an SQL Connection.

Create an SQL Statement.

Query the database to get database metadata.

Query the database to get aresult set.

agrwbdE

Lab: IBM Toolbox for Java ©IBM Corp. 2008
15

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Part 1: Set System, Library and Database
Note all sections that need code written by you start with the comments:

Setup
1. Edit the IDBCQuery.javasourcefile. Y ou can use any editor you like. For thislab, we will
use Windows Notepad. In the DOS prompt, type:

notepad JDBCQuery.java

2. Locatethe section for Lab Exercise #2 Part #1.

Procedure
Update the “xxxx”s to use the real values.
1. ‘system’ isthe name of the server we are running to.
2. ‘collectionName' isthe name of the i5/OS library. Use QIWS. In SQL terminology,
collections map to i5/0S libraries.
3. ‘tableName’ isthe name of the database file. Use QCUSTCDT. In SQL terminology,
tables map to i15/0S database files.

Remember that at any time during thislab, if you get stuck, you can either ask a lab attendant for
help or consult Appendix B for the solutions.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
16

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Part 2: Register the Toolbox JDBC Driver

Setup
1. Continue editing the IDBCQuery.java sourcefile.
2. Locate the section for Lab Exercise #2 Part #2.

Procedure

Register the Toolbox JDBC Driver. By registering the driver, the JDBC Driver Manager (part of
every Java Virtual Machine) will route JDBC calls to the Toolbox driver. The Toolbox driver, in
turn, will send them to the i5/0S host servers. Some prototypes that you may need are listed
below.

Hints
1. The Toolbox driver is named com.ibm.as400.access. ASA00JDBCDriver.
2. You must create a Toolbox driver object to use as a parameter on the registerDriver
method.
3. TheregisterDriver method is static. Static means you don’'t need to “new up” an object
to call the method, you just class qualify the method name. For example, suppose a
driver is com.greatStuff. JDBCDriver. Theline of codeis:

DriverManager.registerDriver(new com.greatStuff.JDBCDriver());

Prototypes
class Driver M anager
* public static void registerDriver(Driver driver)

Lab: IBM Toolbox for Java ©IBM Corp. 2008
17

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Part 3: Establish a Connection

Setup
1. Continue editing the IDBCQuery.java sourcefile.
2. Locate the section for Lab Exercise #2 Part #3.

Procedure

Connect to the database. Look up afew lines of code and you will see

“Connection connection = null;”. This code declares the variable * connection’ but nothing has
happened yet. Now it istime to establish the connection. Write the line of code to connect the
Toolbox JDBC driver to the DB2 on i5/0S.

Hints
1. Youwill again use the DriverManager class, thistime to get a connection. Likethe
previous exercise, you will use a static method on DriverManager.
2. TheToolbox syntax is“jdbc:as400://<system>".
3. You aready identified the system namein step 1. getConnection() requires a string so
you will have to concatenate the Toolbox constant with the system name. Using the
greatStuff driver in the hint section of the previous part, the line of codeis:

connection = DriverManager.getConnection(“jdbc:xxxx://” + system);

Prototypes
class Driver M anager
* public static Connection getConnection(String identifier)

Lab: IBM Toolbox for Java ©IBM Corp. 2008
18

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Part 4: Result Set

Setup
1. Continue editing JIDBCQuery.java
2. Locate the section for Lab Exercise #2 Part #4.

Procedure

1. Thenext step isto create a Statement object, then use the statement to run a query and
get back aResultSet. The result set contains the result of the query. Creating the
statement is already done for you. Look up one line in the code and you will seealine
that creates a statement from the connection. To do actual work, you tell the statement to
execute aquery.

2. Addaline of codeto get aresult set called ‘rs' containing all rows and columns of our
database. You create aresult set by executing a query with the connection object.

Hints

1. The SQL statement we will useis“SELECT * FROM xxxx”. The“*” meansall rows
and columns. After the “from” isthe database name, represented here by x’s.

2. Inthefirst part of this exercise you defined the collection and table namesin String
variables. You will need to concatenate Strings with constants to build the entire SQL
Statement.

3. Different database vendors use different separator charactersto separate library from file
name. Y ou could hardcode the DB2 UDB for i5/0OS separator character, but that would
not be very portable. The better thing to do is ask the database what its separator
character is.

Prototypes
class Statement
* public ResultSet executeQuery(String query)
Example Code: ResultSet rs = statement.executeQuery(“ SELECT * FROM xxx”);

class DatabaseM etaData
* public String getCatal ogSeparator()

Example Code: String separator = dmd.getCatal ogSeparator();

Lab: IBM Toolbox for Java ©IBM Corp. 2008
19

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Part 5. Printing Database Information

Setup
1. Continue editing the IDBCQuery.java sourcefile.
2. Locate the section for Lab Exercise #2 Part #5 (there are two markers).

Procedure

No code is needed for this part, just a couple of things to look at.

1. Findthefirst marker. The code here uses ResultSetM etaData to find out the number of
columnsin the result set and the column names. The result set not only contains the data but
also this metadata.

2. Find the second marker. Theresult set points at arow of dataat atime. You use
ResultSet.next() to get the next row of data. To get afield out of the row, you use
ResultSet.getString(int columnindex).

Run the application
Now it istime to run the JIDBCQuery application.

1. Make sure to save the modified JIDBCQuery.javafile.
2. Compile the application from the DOS prompt:

javac JDBCQuery.java
3. Run the application:
java JDBCQuery
4. Asinthe previous exercise, the Toolbox will prompt you for auser ID and password. This
happens automatically when your application accesses the server using the IBM Toolbox for

Java

5. The application will execute the query, and then print the contents of the database.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
20

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Exercise 3: SQL Result Set Table Pane

Introduction
In this exercise, you will use the IBM Toolbox for Java to present the results of an SQL database
query in agraphical user interface.

The SQL ResultSetTablePane object (part of the IBM Toolbox for Java) enables a Java program
to present the results of a database query in aJTable. A JTableisaJava Swing component and
can be embedded inside any graphical user interface.

In this exercise you will use SQL Connection, SQL ResultSetT ablePane, and
ErrorDialogAdapter objectsto complete a Java application. Y our application will present the
results of an SQL database query. The SQL query is entered by the user. The Swing and AWT
parts of the application have been provided for you. You will need to write Java code to connect
to the DB2 on i5/0S, create the SQL ResultSetTablePane object, and run the queries.

Goals of this exercise

At the end of this exercise, you should be able to:
1. Create a SQL Connection object.

2. Create a SQL ResultSetTablePane object.

3. Runaquery and load the results.

4. Setup an error handler.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
21

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Part 1: Create an SQLConnection object

Setup
1. Edit the SQL ResultSetTablePaneExample.java source file. 1nthe DOS prompt, type:

notepad SQL ResultSetTablePaneExample.java

2. Locatethe section for Lab Exercise #3 Part #1.

Procedure

1. Create a SQL Connection object, connection, that uses the JDBC URL
“jdbc:as400://systemName” , where systemName is your assigned i5/0S system name. This
SQL Connection object represents the JDBC connection to the DB2 on i5/0S.

Prototypes
class SQL Connection
* public SQL Connection (String URL)

Example Code: SQL Connection con = new SQL Connection(“jdbc:as400://system”);

Lab: IBM Toolbox for Java ©IBM Corp. 2008
22

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Part 2. Create an SQLResultSetTablePane object

Setup
1. Continue editing the SQL ResultSetTablePaneExample.java source file.
2. Locate the section for Lab Exercise #3 Part #2

Procedure

1. Create a SQLResultSetTablePane object called tablePane. This represents the graphical user
interface component which presents the contents of the query to the user.

2. Use setConnection() to set tablePane’ s connection to the SQL Connection object that you
created in Part 1. Thistells tablePane which JDBC connection to use for executing the query
and gathering results.

Prototypes

class SQL ResultSetTablePane

* public SQLResultSetTablePane ()

* public void setConnection (SQL Connection connection)

Example Code: SQL ResultSetTablePane tp = new SQL ResultSetTablePane();
tp.setConnection(connection);

Part 3: Run a query and load the results

Setup

1. Continue editing the SQL ResultSetTablePaneExample.java source file.

2. Locate the section for Lab Exercise #3 Part #3. Note: This section islocated in the
keyPressed(KeyEvent) method.

Procedure

1. Thequery text that the user typesis stored in a String named queryText. Use thisvalue to set
the query string to be run by tablePane.

2. Useload() to run the query and load the results into tablePane. By calling load(), the
tablePane object will actually run the query (using JDBC), load its results, and present them
inthetable. If you forget to call load(), the table will still appear, but it will be empty.

Prototypes

class SQL ResultSetTablePane

* public void setQuery (String query)
* publicvoidload ()

Example Code: tp.setQuery(query);
tp.load();

Lab: IBM Toolbox for Java ©IBM Corp. 2008
23

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Part 4: Setup an error handler

Setup
1. Continue editing the SQL ResultSetTablePaneExample.java sourcefile.
2. Locate the section for Lab Exercise #3 Part #4.

Procedure

1. Any errorsthat occur when accessing the server are not automatically displayed to the user.
Y ou need to set up an ErrorListener to handle errors. For this example, we will use an
ErrorDialogAdapter, which is an ErrorListener that handles errors by displaying themin a
message box for the user to see. Y ou can also implement your own custom error handler if
you have different requirements.

2. Create an ErrorDialogAdapter object called errorHandler and specify tablePane for the
component. Thisinitializes the error handler and tellsit to use tablePane to determine the
parent frame for any message box dialogs that it displays.

3. Use addErrorListener() to add errorHandler as an ErrorListener to tablePane. This sets up
the error handler to “listen” to tablePane. Now, whenever an error occursin tablePane, this
error handler will display a message box.

Prototypes

class ErrorDialogAdapter

* public ErrorDialogAdapter()

e public ErrorDialogAdapter(Component component)
* public void setComponent(Component component)

Example Code: ErrorDialogAdapter eda= new ErrorDialogAdapter();
eda.setComponent(tp);

class SQL ResultSetTablePane
* public void addErrorListener (ErrorListener listener)

Example Code: tp.addErrorListener(eda);

Lab: IBM Toolbox for Java ©IBM Corp. 2008
24

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Run the application
Now it istime to run the SQL ResultSet T ablePaneExampl e application.
1. Compile the application from a DOS prompt.
javac SQL ResultSet T ablePaneExamplejava
2. Run the application.
java SQL ResultSet TablePaneExample
3. The application displays the graphical user interface below. It includes atext field at the top,

where you can type in SQL queries. It also displays an empty table. Thetableisempty since
we have not yet run any queries.

Eéf’,% SQLRezult5etTablePane example E=]

Enter an SGL querny here.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
25

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

4. Enter an SQL query in the text field. Backspace over “Enter an SQL query here.” to erase it
so the SQL statement starts at the beginning of the text field. A good SQL statement to try is:

SELECT * FROM QIWS.QCUSTCDT
5. The application will prompt you for auser ID and password. This happens the first time you
run a query because thisis when the physical connection to the DB2 on i5/0Sis made. Enter
your assigned user 1D and password.

6. Verify that the resultsin the table look similar to this:

E%%SﬂLHesultﬁetTahlePane example M=l E3
SELECT *~ FROM QWS QCUSTCDT
CUSMUM | LSTHAM INIT STREET CITY

933472 Henning [4 4359 Elm Ave Dallas
838283 Jones B D 216 MY 135 5t Clay f
2925559 vine 55 PO Box 79 Eroton b
9353455 Johnson J A 2 Alpine Way Helen
27267 Tyroan W E 12 Myrtle Dr Hector I
2539572 | Stevens koL 2058 Snow Pass Denver
846283 Alison J S 78T Lake DOr lsle f
475923 Doe J 59 Archer Rd Sutter
622229 Thomas A 2 Dove Cincle Casper)
£9302 9 'Williarms ED 435 5E 2 Ave Dallas i}
192837 | Lee FL E96 2 Oak S5t Hector f
552090 | Abraharn M T 292 Mill 5t lsle f

1B

7. Close the window using the “X” in the upper right corner.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
26

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Exercise 4: Program Call

Introduction
In this exercise, you will use the IBM Toolbox for Java ProgramCall and ProgramParameter
classesto call ani5/OS API.

Goals of this exercise
At the end of this exercise, you should be able to:

1. Use Toolbox converter classes to convert numeric and string data between Java and i5/0S
types.

2. Build an array of program parameters.

3. Cdl ani5/0S program.

4. Parsetheresults of the program.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
27

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Part 1: Character Conversion
Note that al sections that need code written by you start with the comments:

Type the code for each exercise between the beginning comments of Exercise #4 Part #x and
before the ending comments.

Setup
1. Editthegsyrusri2.java sourcefile. Y ou can use any editor you like. For thislab, we will
use Windows Notepad. In the DOS prompt, type:

notepad gsyrusri2.java

2. Locatethe section for Lab Exercise #4 Part #1.

Procedure

Create atext conversion object called ‘char10’ that converts a 10-character string between Java
Unicode and i5/0S EBCDIC. Note the constructor of the converter object includes an AS400
object. The AS400 object is specified just in case a connection to the server is needed (under
certain environments). For most applications, though, the Toolbox’ s built-in conversion classes
handle String conversions between Unicode and EBCDIC without ever making a connection to
the server. (Hint -- just above the line of code you enter are converters for shorter strings).

Prototypes
class AS400T ext
* public A400Text(int length, int ccsid, AS400 system)
Example Code: AS00Text char6 = new ASA00Text(6, system.getCcsid(), system);

class AS400
* publicint getCcsid()

Example Code: int ccsid = system.getCcsid();

Remember that at any time during this lab, if you get stuck, you can either ask a lab attendant for
help or consult Appendix B for the solutions.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
28

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Part 2: Set Up the ProgramCall Object

Setup
1. Continue editing the gsyrusri2.java sourcefile.
2. Locate the section for Lab Exercise #4 Part #2.

Procedure

Enter two lines of code. Thefirst will create a ProgramCall object called ‘pc’. On the
constructor pass the AS400 object system. The program to call ison that server. The second line
of code will set the name of the programto call. Program names are fully qualified in terms of
the integrated file system. The program we are calling is QSY RUSRI.PGM which islocated in
QSYS.LIB.

Prototypes

class ProgramcCall

* public ProgramCall(A S400 system)

* public void setProgram(String program);

Example Code: ProgramCall pc = new ProgramCall(system);
pc.setProgram(“/QSY S.LI1B/QSY RUSRI.PGM");

Part 3: Program Parameters

Setup
1. Continue editing the gsyrusri2.java sourcefile.
2. Locate the section for Lab Exercise #4 Part #3.

Procedure
Add the line of code to create the third program parameter. This parameter is the data format.
We will be using format USRI0100.

Hints
1. Javanumbers array elements starting at O so the array index will be 2.
2. You must convert the string from a Java String to EBCDIC as you store the datain the
program parameter.
3. Your conversion must result in the correct number of bytes (8 in this case). Y ou should
use the char8 AS400Text object.
4. The next line of code shows setting the fourth parameter which is much like this one.

Prototypes
class ProgramPar ameter
* public ProgramParameter(byte]] data)

Example Code: parm[2] = new ProgramParameter(char8.toBytes(* USRI0100"));

Lab: IBM Toolbox for Java ©IBM Corp. 2008
29

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Part 4. Parsing Returned Data

Setup
1. Continue editing gsyrusri2.java
2. Locate the section for Lab Exercise #4 Part #4.

Procedure

At this point you have successfully called the program and have data back. Y ou designated
parameter O as the parameter getting output data and have retrieved the data as a byte array
called data. Now you have to parse the byte array to retrieve individual values. Create a String
object called ‘strvValue' that retrieves the profile name. 1t is 10 characterslong, starting at byte 8
in the byte array. Since the profile name is 10 characters long, you should use the AS400Text
object you created in part 1.

Prototypes

class ASA00T ext
* public Object toObject(byte[] serverValue, int offset)

Example Code. Object obj = char10.toObject(data, 8);

Run the application
Now it istime to run the application.

1. Make sure to save the modified gsyrusri2.javafile.
2. Compile the application from the DOS prompt:

javac gsyrusri2.java
3. Run the application:
javaqsyrusri2
4. Asin previous exercises, the Toolbox will prompt you for system name, user 1D and
password. This happens automatically when your application accesses the server using the

IBM Toolbox for Java.

5. The application will call thei5/OS program and print results.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
30

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Conclusion

In this lab, you enabled various pieces of a client to access a server running i5/OS using various
components from the IBM Toolbox for Java.

The IBM Toolbox for Javaisimplemented so that there are no platform dependencies in the code.
Since Java is portable across many environments, pure Java programs will run on any Java
enabled platform. The important implication to you as an application developer isthat one
version of your program will run on many platforms. This can reduce the duplicate development,
maintenance, and code porting expenses usually associated with multiple platform application
devel opment.

Y ou can get more information about the IBM Toolbox for Java and download atrial or open
source version by going to the web address http://www.ibm.com/ser ver s/eser ver /iseries'toolbox.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
31

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Appendix A: Bonus Exercises

Bonus Exercise 1: Program Call via PCML

Introduction

In the previous exercise you caled an i5/0S program using Toolbox ProgramCall. In this
exercise you will call the same program but this time you will call it using the Program Call
Markup Language (PCML) support in the Toolbox.

Many Toolbox objects (for example, User, Job, and DataArea) are implemented using Toolbox
ProgramCall. For these objects, Toolbox presents an easy to use Java interface. Under the
covers Toolbox implements these interfaces by calling i5/0S APIs. However, the ProgramCall
classes can be too hard to use to call some of the more complex APIs. PCML, an
implementation of XML, was created to solve the complexity problem. PCML offers the
following advantages over ProgramCall:

e Parameter formats are described via HTML-like syntax. You no longer have to count
offsets. Y ou describe the format of the data and the PCML does the offset calculation for
you. Thisis especialy useful for variable length and nested structures. PCML does the
messy math for you.

* PCML does data conversion for you. You describe the type and size of your data and
PCML does the conversion for you.

* Parameter formats can be changed without re-compiling the application. The PCML
source file is parsed at run time. If you need to change it, you simple change the .pcml
file and rerun the application.

Goals of this exercise
At the end of this exercise, you should be able to use PCML to call an i5/0OS program.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
32

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Part 1: Create the ProgramCallDocument Object
Note that al sections that need code written by you start with the comments:

Type the code for each exercise between the beginning comments of Lab Bonus Exercise #1 Part
#x and before the ending comments.

Setup
1. Edit the gsyrusri.java sourcefile. You can use any editor you like. For thislab, we will use
Windows Notepad. In the DOS prompt, type:

notepad gsyrusri.java

2. Locate the section for Lab Bonus Exercise #1 Part #1.

Procedure

Initialize the variable called pcml to the proper ProgramCall Document object.
ProgramCallDocument takes two parameters. the AS400 object representing the server and the
name of the file containing the PCML source. Our PCML sourcefileiscaled gsyrusri and the
ASA00 object representing the server is called system.

Prototypes
class ProgramCallDocument
* public ProgramCall Document(A S400 system, String PCMLFileName)

Example Code: ProgramCallDocument pcml = new ProgramCall Document(system, “gsysrusri”);

Remember that at any time during this lab, if you get stuck, you can either ask a lab attendant for
help or consult Appendix B for the solutions.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
33

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Part 2: Retrieve Output

Setup
1. Continue editing the gsyrusri.java sourcefile.
2. Locate the section for Lab Bonus Exercise #1 Part #2.

Procedure

At this point you successfully called the i5/OS program and have data back. Y ou will now pull
data from the output parameter. Asin thelast exercise, you will retrieve the user profile name.
You will let PCML do most of the work. All you haveto do is nhamethefield. PCML will
convert it and return the data to you.

To determine the identifier, you need to look at the PCML sourcefile. Edit qsyrusri.pcml.

* Thetop section of the file has a description of the USRIO100 format. Each field hasa
name, type and length (among other things). Type and length are used by PCML to
properly process the data. Names are used to identify what field you want.

* The bottom section of the file describes the parameters of the program. Looking at
the .java program you see no program name, format name, profile name, etc. That is
because these parameters are really constants. ‘Init’ isused to set their values so these
parameters are totally handled in the .pcml file.

To determine the name of the user profile field, you have to ‘fully qualify’ the name of the field
using periods to separate the values. Thefirst part is the program name label (gsyrusri). A

PCML file can contain descriptions for many program calls so you have to identify which one to
use. The second part isthe name of the parameter (receiver). Noteitstypeis‘struct’ which
means the structure at the top of the .pcml file describes the format of the data. The last part is
the name of the field in the structure (userProfile). The full label becomes
gsyrusri.receiver.user Profile. Add code to store the user profile in the String value.

Prototypes
class ProgramCallDocument
* public String getVaue(String label)

Example Code: String val = pcml.getValue(* gqsyrusri.receiver.userProfile”);

Lab: IBM Toolbox for Java ©IBM Corp. 2008
34

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Run the application
Now it istime to run the application.

1. Make sureto save the modified gsyrusri.javafile.
2. Compile the application from the DOS prompt:

javac gsyrusri.java
3. Run the application:
javaqsyrusri

4. Asinthe previous exercise, the Toolbox will prompt you for a system name, user ID and
password. This happens automatically when your application accesses the server using the
IBM Toolbox for Java.

5. The application will call the program and print the results.

Compare ProgramCall and PCML

Once you have both programs working, take a minute to compare the two programs
(gsyrusri.javaand gsyrusri2.java). The obvious difference is parameter handling. The program
that uses standard program call devotes alot of code to creating parameters and converting
between i5/0S formats and Java formats. The program that uses PCML does not need that code.
It describes the parameters then leaves building the parameter list and converting data to the
PCML code provided by the Toolbox.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
35

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Bonus Exercise 2: GUI Builder

Introduction

Designing graphical user interfaces (GUISs) using Java can be time consuming. The IBM
Toolbox for Java provides an XML application called Panel Definition Markup Language
(PDML) which can save you alot of time coding complex GUIs. Y ou can describe the
components and layout of your GUI using PDML. PDML looksalot like HTML, but the tags
are different. The PDML code that you write describes the types of components (e.g., lists, text
fields, buttons) that appear on your GUI and where on the GUI they are to be located. 1n most
cases, using PDML will take much less effort than writing the corresponding Java code.

The IBM Toolbox for Java also provides atool called GUIBuilder, which allows you to design
your GUI interactively. GUIBuilder is a Java application which automatically generates PDML
code for you.

In thislab, you will use the GUIBuUilder to design asimple GUI. The GUI will display text
boxes where the user can read and write entries to an 15/0S data queue. Y ou will also write the
Java code necessary to show the GUI on the screen.

Goals of this exercise

At the end of this exercise, you should be able to:
Start GUIBuUIilder.

Set the pand title.

Add text boxes to the panel.

Add buttons to the panel.

Create a PanelManager object.

Show the PanelM anager object.

Sk wdE

XML stands for eXtensible Markup Language. XML is alanguage for describing other specific
languages and is popular for describing datain aformat that is easily readable by humans and
easily parsable by computers.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
36

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction to the IBM Toolbox for Java

Part 1: Start GUIBuilder

Procedure
1. Inthe DOS prompt, type:

java com.ibm.as400.ui.tools.GUI Builder

2. Verify that you see windows similar to these:

J GUI Builder

Thisisthe main application window for GUIBuilder. There are two windows:

* The GUIBuilder window shows the menus for GUIBuilder.

* The Properties window shows the properties defined for the selected component.
Since there are no components currently selected, there is nothing in this window.

Lab: 1BM Toolbox for Java ©IBM Corp. 2008

37
Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

3. Inthe GUIBuilder window, select the File - New File menu. This creates anew filefor

your GUI.

4. Inthe GUIBuilder window, select the File-Save As menu. This prompts for afile name.
Enter GUIBuilder Example.pdml. Now your GUI definition will be saved in thisfile.

5. Click onthe “Insert Panel” button which is directly above the “ GUIBuilderExample” icon.

6. Verify that your windows look like this:

Jz GUI Builder =10] x|
File Miew Help
DS E g
B C:‘\toolboxAGUIBuilderExa... =] EH | | -x Properties . =] 3
H % B <o ‘ ¥ ® Propetty Yalug
E Tﬁ El -“.% E o %E U b Element PANEL
. Marme PAMEL1
0 GUIBuilderExample -
B-23 Title Fanel
e Size

F AWidth 400

F Height 200

lcon

Scroll true

Activate
e Panel [PAMEL1: C:\toolbox\GUIB uilderE xample. pdml] =] 3
g{,gﬁmwlalﬂﬁﬁ‘ﬁmﬁ e k| N,
LT | | EBrmEERdaoE FHE IR
PAMEL1]
{0 BUTTOM1
- BUTTONZ
- BUTTOR3

(0] 4 Cancel | Help |'?|
] | »

Now you are ready to design the GUI.

Lab: IBM Toolbox for Java

38

Course material may not be reproduced in whole or in part

without the prior written permission of IBM.

Trademarks are the property of their respective owners.

©IBM Corp. 2008

Lab: Introduction tothe IBM Toolbox for Java

Part 2: Set the panel title

1. Makesurethe PANEL 1 iconisselected. The Properties windows will show the properties

2. Inthe Propertieswindow, locate the Title property. Changeitsvalueto “GUI Builder

Procedure

of the panel.

Example”.
% Properties

Property YValue

Element PANEL
MHame PAMEL1
Title G| EIuiIderE}{ampIel
Size
F WWidth 400
F Height 200
lzan
Scroll frue
Activate

Lab: IBM Toolbox for Java

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

39

©IBM Corp. 2008

Lab: Introduction tothe IBM Toolbox for Java

Part 3: Add text boxes to the panel

Procedure

1. Locatethe il icon in the Panel window. Thisrepresents atext box. Left click on thisicon.

2. Leéeft click anywhere in the Panel window where you want to place the text box. For this
example, we will place it near the upper-left corner of the panel.

3. You can make the text box wider than its default width. Left click on the small dot on the
right side of the text box. Drag the right side to the desired width.

4. Repeat steps 1-3 to add another text box to the panel.

B Panel [PAMEL1: C:\toolbox\GUIBuilderE xample pdml]
Y En R IEAaahIDF i O A = IR SR
LR 1 | EFEErmBEES50F 0% 20 I = %
PANELY]
{0 BUTTON1
{0 BUTTONZ |
{0 BUTTON3
~abl TEXTFIELD1
“ahl TEXTFIELDZ |
]
0] Cancel | Help |7'|
| |
Al |
- 0,0 I 400x 200
Lab: IBM Toolbox for Java ©IBM Corp. 2008

40
Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Part 4. Add buttons to the panel

Procedure

1. Locatethe = icon in the Panel window. Thisrepresents a button. Left click on thisicon.
2. Left click anywhere in the Panel window where you want to place the button. For this
example, we will placeit to theright of the first text field.

e Panel [PAMEL1: C:\toolboxA\GUIBuilderE xample pdml]
i 5 S R e = 7 i R 5 N E i W
HoeomBw 83 0FH | 0% &0 1 E %

PANEL1

- BUTTON1

0 BUTTONZ |
{0 BUTTON3

~abl TEXTFIELD1
abl TEXTFIELDZ |

S E L TT O 4

] Cancel | Help |?|

Lab: IBM Toolbox for Java ©IBM Corp. 2008

41
Course material may not be reproduced in whole or in part
without the prior written permission of IBM.
Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

3. Notice that the Properties window shows the properties of the button. Locate the Text
property. Changeitsvalueto “Send” and press enter. Notice that the button’slabel changes
in the Panel window.

Jz Properties
Froperty Value

Element BLTTON
Mame BUTTOM4A
Ted EE
Bounds

L 204

Y 18

F Width a0

¥ Height 248

FIvower Text

Generate Field Help |true

F Help Title default
Disabled false

Icon

Style nane

Action

Lab: IBM Toolbox for Java ©IBM Corp. 2008

42
Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

4. Repeat steps 1-3 to add another button with the label *“ Refresh”.

B Panel [PAMEL1: C:\toolbox\GUIBuilderE xample.pdml]
$ B0 K as SBEE@F P EED @0 e o WY
SR EE-rm BB 0OBE OF L0 1= %

PAMEL1 N
----- i BUTTORMA
----- L BUTTORNZ | Send |
----- J BUTTOMN3
----- ahl TEXTFIELD1
----- ahl TEXTFIELD2 |
----- i BUTTOM4
----- BT T RS

4]

5. Inthe GUIBuilder window, select the File - Save menu. Thiswill save the GUI definition in

afile called GUIBuilderExample.pdml.
6. Inthe GUIBuilder window, select the File - Exit menu. Thiswill exit GUIBuilder.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
43
Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Part 5: Create a PanelManager object

The GUI definition that you have just completed does not work by itself. All you have doneis
described what the GUI looks like. Y ou need to write Java code that displays the GUI and
implements the behavior of the program. For this part of the lab, most of the Java application
codeis provided for you. You will need to write Java code to load the GUI definition and
display it on the screen.

Setup
1. Edit the GUIBuilderMain.java sourcefile. Inthe DOS prompt, type:

notepad GUIBuilderMain.java

2. Locate the section for Lab Bonus Exercise #2 Part #5.

Procedure

1. Create a PanelManager object named pm. In the constructor, specify “ GUIBuilderExample’
as the base name of the GUI definition, “PANEL1” asthe name of the panel, and null for the
data beans parameter.

Prototypes

class PanelM anager

* public PanelManager(String baseName, String panelName, DataBean[] dataBeans)

Example Code: PanelManager pm = new PanelManager(* Example”, “Panel”, null);
Part 6: Show the PanelManager object

Setup
1. Continue editing the GUIBuilderMain.java sourcefile.
2. Locate the section for Lab Bonus Exercise #2 Part #6.

Procedure
1. Show the GUI by calling the setVisible(true) method on pm, the PanelManager object.

Prototypes
class PanelM anager
* public void setVisible(boolean show)

Example Code: pm.setVisible(true);

Lab: IBM Toolbox for Java ©IBM Corp. 2008
44

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Run the application
Now it istime to run the GUIBuilderMain application.
1. Compile the application from a DOS prompt.
javac GUIBuilderMain.java
2. Run the application.
java GUIBuilderMain
Y ou may see ajava.util.MissingResour ceException message. Thisisjust awarning
message that no help text was found. (GUIBuilder allows you to define help text for the
panel, but we did not define any for thisexercise.) You can ignore this message.
3. The application displays the user ID and password prompt. Once signed on, it will display
the GUI that you designed.
4. Enter some text into the first text box and click the Send button. Thiswill write the text as

an entry to an i5/0OS data queue.

f25 Panel M=

| Send

| Refrash

Cancel | Help |‘?|

5. Click the Refresh button. Thiswill retrieve the most recent data queue entry from the server
and display it in the second text box. Remember that this data queue entry may have been
added by someone elsein the lab.

6. Closethe window using the “X” in the upper right corner.

Lab: IBM Toolbox for Java ©IBM Corp. 2008
45

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Appendix B: Solutions

Exercise 1: Command Call

i mport
i mport
i mport

public

{
publ

com i bm as400. access. AS400;

com i bm as400. access. AS400Message;

com i bm as400. access. CormandCal |

cl ass CommandCal | Exanpl e

ic static void main(String[] args)
y
e e
/1 Lab Exercise #1 Part #1 - Insert code here.
I e e
AS400 system = new AS400("nySystem'); /1 used to get a connection
e e
/1 End of code.
e e e
e
/1 Lab Exercise #1 Part #2 - Insert code here.
I e e

ConmmandCal I comand = new ConmandCal | (system); // used to run a comand

/1 Gather the conmmand |ine argunents passed to this .
StringBuffer buffer = new StringBuffer();
for (int i =0; i < args.length; ++i)

buf fer. append (args[i]);
buffer.append (" ");

}

String commandString = buffer.toString ();

I e e
/1 Lab Exercise #1 Part #3 - Insert code here.

I L e

i f (command. run(conmandString)) // runs the comuand, returns a bool ean
Systemout. println("The command was successful.");

el se
Systemout.println("The command failed.");

Lab: IBM Toolbox for Java ©IBM Corp. 2008

46
Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

/1 Lab Exercise #1 Part #4 - |Insert code here.

/1 gets the list of nessages returned after the command runs
AS400Message[] messageli st = comand. get Messageli st () ;

for (int i=0; i < messagelist.length; i++) /] outputs each nmessage
{
Systemout.println (messageList[i].getID() + ":" +
nessagelist[i].getText());
}
A e e
/1 End of code.
R

}
catch (Exception e) {

Systemout.println ("Error: " + e);
}
Systemexit (0);
}
}
Lab: IBM Toolbox for Java ©IBM Corp. 2008

47
Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Exercise 2: JDBC Query

import java.sqgl.*; // Part of the JDK
import com.ibm.as400.access.*; // import the Toolbox’s JDBC classes

public class JDBCQuery

{

// Format a string so that it has the specified width.
private static String format (String s, int width)

String formattedString;

// The string is shorter than specified width,
// so we need to pad with blanks.
if (s.length() < width)

{

StringBuffer buffer = new StringBuffer (s);

for (int i = s.length(); i < width; ++1)
buffer.append (" ");

formattedString = buffer.toString() ;

}

// Otherwise, we need to truncate the string.
else
formattedString = s.substring (0, width);

return formattedString;

public static void main (String[] parameters)

{

[= o

// Intro Lab Exercise #2 Part #1 - Finish code here.

[
String system = "mySystem"; // name of the system to connect to
String collectionName= "QIWS"; // collection/library name for table
String tableName = "QCUSTCDT"; // table/file name

e

// End of code.

A, ,— ————__,—"——————-
Connection connection = null; // Creates a connection object
try {

. i E .,

// Intro Lab Exercise #2 Part #2 - Insert code here.

e

// Load the IBM Toolbox for Java JDBC driver.
DriverManager.registerDriver (new
com.1ibm.as400.access.AS400JDBCDriver ()) ;

Lab: IBM Toolbox for Java ©IBM Corp. 2008
48

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

f/ = e

// Intro Lab Exercise #2 Part #3 - Insert code here.

[
// Get a connection to the database. Since we do not

// provide a user id or password, a prompt will appear
connection = DriverManager.getConnection ("jdbc:as400://" + system);

// retrieve information about the database
DatabaseMetaData dmd = connection.getMetaData () ;

// Execute the query.

Statement select = connection.createStatement () ;
R R R R PR P REEEERS
// Intro Lab Exercise #2 Part #4 - Insert code here.
/] = ool

// Executes the query and retrieves the results
ResultSet rs = select.executeQuery ("SELECT * FROM "
+ collectionName + dmd.getCatalogSeparator() + tableName) ;

[/

// End of code.

A
// Get information about the result set. Set the column

// width to whichever is longer: the length of the label
// or the length of the data.

// Retrieve information about the results
ResultSetMetaData rsmd = rs.getMetaData () ;
int columnCount = rsmd.getColumnCount () - 1; // skip last column

NN
NN
H
=]
=1
K
0
=
Q
o
e
X
0]
H
Q
'_].
)]
(0]
+
N
o
Q
H
o
+
Ul
I

// code below formats how the data in the ResultSet is displayed
String[] columnLabels = new String[columnCount] ;
int [] columnWidths = new int [columnCount] ;

for (int 1 = 1; i1 <= columnCount; ++1i)

{
columnLabels[i-1] = rsmd.getColumnLabel (i) ;
columnWidths [i-1] = Math.max (columnlabels[i-1].length(),

rsmd.getColumnDisplaySize (i));

}

// Output the column headings.
for (int i = 1; i <= columnCount; ++1)

System.out.print (format (rsmd.getColumnLabel (i),
columnWidths [1-11)) ;
System.out.print (" ");
System.out.println () ;
// Output a dashed line.
StringBuffer dashedLine;

for (int 1 = 1; i1 <= columnCount; ++1i)

for (int j = 1; j <= columnWidths([i-11; ++3)

Lab: IBM Toolbox for Java ©IBM Corp. 2008
49

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

System.out.print ("-");
System.out.print (" ");
System.out.println ();

// Iterate throught the rows in the result set and output
// the columns for each row.

// goes through the ResultSet one row at a time
while (rs.next ())

{

for (int 1 = 1; i <= columnCount; ++1i)

String value = rs.getString (i); // retrieves column value
if (rs.wasNull ())

value = "<null>";

}

System.out.print (format (value, columnWidths[i-11));
System.out.print (" ");

}

System.out.println () ;

catch (Exception e)

System.out.println () ;
System.out.println ("ERROR: " + e.getMessage());

// Clean up.

try
if (connection != null)
connection.close (); // closes the connection and any statements
catch (SQLException e) { } // Ignore errors.

System.exit (0);

Lab: IBM Toolbox for Java ©IBM Corp. 2008
50

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Exercise 3: SQL Result Set Table Pane

i mport com i bm as400. access. AS400JDBCDx i ver;

i mport com i bm as400. vaccess. Error D al ogAdapt er;

i mport com i bm as400. vaccess. SQLConnecti on;

i mport com i bm as400. vaccess. SQLResul t Set Tabl ePane;

i mport javax.sw ng.*;

i mport java.awt.*;

i mport java.awt.event.*;
i mport java. beans. *;

i mport java.sqgl.*;

public class SQLResul t Set Tabl ePaneExanpl e
ext ends KeyAdapt er

{

private static SQ.Result Set Tabl ePane t abl ePane_;

private static JTextField textField_;

public static void main(String argv[])

{

try {
/1 Register the |IBM Tool box for Java JDBC driver.
Driver Manager.regi sterDriver(new AS400JDBCDri ver());
e
/1 Lab Exercise #3 Part #1 - Insert code here.
e e
/] Get a connection to the database
SQLConnecti on connecti on = new SQ.Connection("j dbc: as400:// nySystent');
e e e
/1 End of code.
e e
L e e
/1 Lab Exercise #3 Part #2 - |Insert code here.
e e e R
SQLResul t Set Tabl ePane tabl ePane = new SQ.Resul t Set Tabl ePane() ;
t abl ePane. set Connecti on (connecti on);
L e e
/1 End of code.
e e R R
/1l Store the table pane in a static variable.
t abl ePane_ = t abl ePane;
/1 Initialize the text area.
textField_ = new JTextField ("Enter an SQ. query here.");
text Fi el d_. addKeyLi st ener (new SQ.Resul t Set Tabl ePaneExanmple ());
/1 Initialize the frane.
Lab: IBM Toolbox for Java ©IBM Corp. 2008

51
Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

JFrame frame = new JFranme ("SQLResult Set Tabl ePane exanple");
frane. get Cont ent Pane (). setlLayout (new BorderLayout ());
frane. get Content Pane ().add ("North", textField);
frane. get Cont ent Pane ().add ("Center", tablePane_);

/1 When the frame closes, exit the
franme. addW ndowli st ener (new W ndowAdapter ()

public void wi ndowC osi ng (W ndowEvent event) { Systemexit (0);}
1)

/1 Lab Exercise #3 Part #4 - Insert code here.
e e
ErrorDi al ogAdapt er errorHandl er = new ErrorDi al ogAdapt er (tabl ePane);
t abl ePane. addErr or Li stener (errorHandl er);

e e e R

/1 End of code.
e e

/1 Display the frane.
franme. pack();
frame. show();
} catch (Exception e) {
Systemout.println ("Error: " + e);
}

}

/1 This gets called whenever a key is pressed in the text area.
public void keyPressed (KeyEvent event)
{

try {
/1 Check for the Enter key.

if (event.getKeyCode () == KeyEvent.VK ENTER) {
String queryText = textField .getText ();

SQLResul t Set Tabl ePane t abl ePane = tabl ePane_;

/1 Lab Exercise #3 Part #3 - Insert code here.

e e e T R
t abl ePane. set Query (queryText);

t abl ePane. | oad ();
e e R

}
} catch (Exception e) {
Systemout.println ("Error
}

}
}

+ e);

Lab: IBM Toolbox for Java ©IBM Corp. 2008
52

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Exercise 4: Program Call
import com.ibm.as400.access.*;

//
// This program calls i5/0S API QSYRUSRI (Retrieve User Information)
// to get information on the current user.

//

public class gsyrusri2

—

public static void main(String[] argv)

try

{

String msgld, msgText;

AS400 system = new AS400(); // used to get a connection
// Create a binary converter to go between an i5/0S

// bin 4 and a Java int.

AS400Bin4 bin4 = new AS400Bin4 () ;

// Create text converters for the various sizes
// of strings will use.

AS400Text charé = new AS400Text (6, system.getCcsid(),
system) ; // text, size 6
AS400Text char7 = new AS400Text (7, system.getCcsid(),
system) ; // text, size 7
AS400Text char8 = new AS400Text (8, system.getCcsid(),
system) ; // text, size 8
R R
// Intro Lab Exercise #4 Part #1 - Insert code here.
A T T C RS

AS400Text charl0 = new AS400Text (10, system.getCcsid(),
system); // text, size 10

NN
NN
=
3
Q
(0]
h
Q
(0]
Q
()

// Reroute System.error to System.out
System.setErr (System.out) ;

// Create a program call object. Then
// set the program name to "/QSYS.LIB/QSYRUSRI.PGM"

ProgramCall pc = new ProgramCall (system) ;
pc.setProgram("/QSYS.LIB/QSYRUSRI.PGM") ;

NN
NN
H
=]
=
R
(¢}
=
Q
o
=
™
0]
=
Q
'_].
)]
(0]
++
N
o
Q
H
o
++
N
I
H
=]
)]
0]
H
o
Q
e}
Q,
(0]
=y
0]
=
(0]

NN
NN
=
=]

Q
o
Fh
Q
(0]
Q.
(0]

// The program has five parameters.
ProgramParameter [] parms = new ProgramParameter [5];

// First parm is the output area that contains the result.
// The parameter value 100 means expect 100 bytes back.
parms [0] = new ProgramParameter (100) ;

Lab: IBM Toolbox for Java ©IBM Corp. 2008
53

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

// Second parm is the size of the output area
// (100 bytes in our case).
parms [1] = new ProgramParameter (bin4.toBytes (100)) ;

// Third parm is the output format to use. The

// server expects the format to be in EBCDIC so we

// use our character converter to convert from a Java

// Unicode string to a byte array containing EBCDIC bytes.

e E
// Intro Lab Exercise #4 Part #3 - Insert code here.
e T
parms [2] = new ProgramParameter (char8.toBytes ("USRI0100")) ;
T
// End of code.
A LR
// Fourth parm is the user profile. It is also converted
// from Unicode to EBCDIC.
parms [3] = new ProgramParameter (charl0.toBytes ("*CURRENT")) ;

// Fifth parm is the 32 byte error area.
byte[] errorArea = new byte[32];
parms [4] = new ProgramParameter (errorArea, 32);

System.out.println ("Beginning ProgramCall Example..");
System.out.println (" Setting input parameters...");

// Give the list of parameters to the program call object.
pc.setParameterlList (parms) ;

/ Call the program. If the return code is false,

/ we received messages from the server saying why the

/ program failed. For example, program not found,

/ not authorized to program, etc. The failure to connect

/ to the server will show up as an exception, not a message.
f (pc.run() == false)

NN

~H

// Retrieve list of i15/0S messages
AS400Message[] msgs = pc.getMessagelList () ;

// Iterate through messages and write them to standard output
for (int m = 0; m < msgs.length; m++)

msgId = msgs[m] .getID() ;
msgText = msgs[m] .getText () ;
System.out.println (" " + msgId + " - " + msgText) ;

System.out.println("** Call to QSYRUSRI failed. **");

// else we were able to call the program and received data.

else

{
// Pull the data out of the output parm (the first parameter)
byte[] data = parms[0] .getOutputData () ;

// Print various values out of the return data. Note
the programmer has to know where in the buffer the
data starts. Also note the data at this point is
binary / EBCDIC. To be used by Java it must be
converted to Java types (int, long, ...) and Java
Strings.

NN
SN

Lab: IBM Toolbox for Java ©IBM Corp. 2008
54

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

int value = ((Integer) bin4.toObject (data)) .intValue() ;
System.out.println (" Bytes returned: " + value) ;
value = ((Integer) bin4.toObject (data, 4)) .intValue() ;
System.out.println (" Bytes available: " + value) ;

/] == oo

// Intro Lab Exercise #4 Part #4 - Insert code here.

/] == e oo
String strValue = (String) charl0.toObject (data, 8);

A L TR

// End of code.

/] == oo
System.out.println (" Profile name: "ot

strvValue) ;

strValue = (String) char7.toObject (data, 18);
System.out.println (" Previous signon date:" +
strValue) ;

strValue = (String) charé.toObject (data, 25);
System.out.println (" Previous signon time:" +
strvalue) ;

}

catch (Exception e)
System.out.println ("Unexpected Exception ") ;

e.printStackTrace () ;
System.out.println("*** Call to QSYRUSRI failed. ***m);

System.exit (0) ;

Lab: IBM Toolbox for Java ©IBM Corp. 2008
55

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Bonus Exercise 1. PCML (Java Source)

import com.ibm.as400.data.ProgramCallDocument ;
import com.ibm.as400.data.PcmlException;
import com.ibm.as400.access.AS400;

import com.ibm.as400.access.AS400Message;

//
// This program calls i5/0S API QSYRUSRI (Retrieve User Information)
// to get information on the current user.

//
public class gsyrusri
public static void main(String[] argv)

ProgramCallDocument pcml;
boolean rc = false;
String msgId, msgText;
Object wvalue;

System.setErr (System.out) ; // Redirect System.error to System.out

// Construct AS400 without parameters, user will be prompted
// for system name, userid and password.
AS400 system = new AS400(); // used to get a connection

try

System.out.println ("Beginning PCML Example..");
System.out.println (" Constructing ProgramCallDocument for QSYRUSRI API...");

// Construct ProgramCallDocument.

// First parameter is system to connect to.

// Second parameter is pcml resource name. In this example,

// serialized PCML file "gsyrusri.pcml.ser" or

// PCML source file "gsyrusri.pcml" must be found in the classpath.

// Set input parameters. Several parameters have default values
// specified in the PCML source. No need to set them using Java code.
System.out.println (" Setting input parameters...");
pcml.setValue ("gsyrusri.receiverLength",
new Integer ((pcml.getOutputsize ("gsyrusri.receiver"))));

// Request to call the API

// User will be prompted to sign on to the system
System.out.println (" Calling QSYRUSRI API.");
rc = pcml.callProgram("gsyrusri") ;

// If return code is false, we received messages from the i5/0S
if (rc == false)
{

// Retrieve list of i5/0S messages

AS400Message[] msgs = pcml.getMessageList ("gsyrusri") ;

// Iterate through messages and write them to standard output
for (int m = 0; m < msgs.length; m++)

msgId = msgs[m].getID();
msgText = msgs[m] .getText () ;
System.out.println (" " + msgId + " - " + msgText);

Lab: IBM Toolbox for Java ©IBM Corp. 2008
56

Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

}

System.out.println("** Call to QSYRUSRI failed. **");
System.exit (0) ;

// Return code was true, call to QSYRUSRI succeeded
// Write some of the results to standard output
else

value = pcml.getValue ("gsyrusri.receiver.bytesReturned") ;

System.out.println(" Bytes returned: " + value) ;
value = pcml.getValue ("gsyrusri.receiver.bytesAvailable") ;
System.out.println(" Bytes available: " + value) ;
T R
// Intro Lab Bonus Exercise #1 Part #2 - Insert code here.
R T
value = pcml.getValue ("gsyrusri.receiver.userProfile");
J] = s
// End of code.
A e EEE TR
System.out.println (" Profile name: " + value) ;
value = pcml.getValue ("gsyrusri.receiver.previousSignonDate") ;
System.out.println (" Previous signon date:" + wvalue) ;
value = pcml.getValue ("gsyrusri.receiver.previousSignonTime") ;
System.out.println (" Previous signon time:" + wvalue) ;
}
catch (PcmlException e)
System.out.println(e.getLocalizedMessage()) ;
e.printStackTrace () ;
System.out.println("*** Call to QSYRUSRI failed. **x");
System.exit (0) ;
}
System.exit (0) ;
}
Lab: IBM Toolbox for Java ©IBM Corp. 2008

57
Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Bonus Exercise #1: PCML (PCML Source)

<pcml version="1.0">

<!-- PCML source for calling "Retreive user Information" (QSYRUSRI) API -->
<!-- Format USRI0150 - Other formats are available -->
<struct name="usri0100">
<data name="bytesReturned" type="int" length="4" wusage="output"/>
<data name="bytesAvailable" type="int" length="4" usage="output"/>
<data name="userProfile" type="char" length="10" usage="output"/>
<data name="previousSignonDate" type="char" length="7" wusage="output"/>
<data name="previousSignonTime" type="char" length="6" usage="output"/>
<data type="byte" length="1" usage="output"/>
<data name="badSignonAttempts" type="int" length="4" wusage="output"/>
<data name="status" type="char" length="10" usage="output"/>
<data name="passwordChangeDate" type="byte" length="8" usage="output"/>
<data name="noPassword" type="char" length="1" wusage="output"/>
<data type="byte" length="1" usage="output"/>
<data name="passwordExpirationInterval" type="int" length="4" usage="output"/>
<data name="datePasswordExpires" type="byte" length="8" wusage="output"/>
<data name="daysUntilPasswordExpires" type="int" length="4" usage="output"/>
<data name="setPasswordToExpire" type="char" length="1" usage="output"/>
<data name="displaySignonInfo" type="char" length="10" usage="output"/>
</struct>
<!-- Program QSYRUSRI and its parameter list for retrieving USRI0100 format -->
<program name="gsyrusri" path="/QSYS.1lib/QSYRUSRI.pgm">
<data name="receiver" type="struct" usage="output"
struct="usri0100"/>
<data name="receiverLength" type="int" length="4" wusage="input" />
<data name="format" type="char" length="8" wusage="input"
init="USRI0100"/>
<data name="profileName" type="char" length="10" usage="input"
init="*CURRENT" />
<data name="errorCode" type="int" length="4" usage="input"
init="0"/>
</programs>
</pcml>
Lab: IBM Toolbox for Java ©IBM Corp. 2008
58

Course material may not be reproduced in whole or in part

without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

Bonus Exercise #2: GUI Builder

i mport com i bm as400. access. *;
i mport com i bm as400. ui.framework. java. *;
i mport javax.sw ng.*;

i mport java.awt.*;
i mport java.awt.event.*;

public class GUI Buil der Mai n
i mpl enents Acti onLi st ener

{

private static DataQueue dq;

private static JTextField sendFi el d;

private static JButton sendBut t on;

private static JTextField refreshFi el d;

private static JButton refreshButton;

public static void main(String[] args)

{

try {
e e e
/1 Intro Lab Bonus Exercise #2 Part #5 - Insert code here
e e R T
Panel Manager pm = new Panel Manager (" GUI Bui | der Exanpl e",
" PANEL1",
nul 1) ;
e e e T
/1 End of code.
e e e
/1 Initialize the conmponents as defined in GU Buil der Exanpl e. pdni .
sendFi el d = (JText Fi el d) pm get Conponent (" TEXTFI ELD1") ;
sendButt on = (JButton) pm get Component (" BUTTONM") ;
refreshField = (JText Fi el d) pm get Conponent (" TEXTFI ELD2") ;
refreshButton = (JButton) pm get Component ("BUTTONS") ;
/1 Initialize the AS400 obj ect.
AS400 system = new AS400();
/1 Initialize the data queue object. Create the data queue if
/1 it is not already created.
dg = new Dat aQueue(system "/ QSYS. LI B/ COVWON. LI B/ COVMON. DTAQ') ;
try {
dqg. creat e(500, "*ALL", true, false, false, "");
Lab: IBM Toolbox for Java ©IBM Corp. 2008

59
Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

Lab: Introduction tothe IBM Toolbox for Java

}
cat ch(Exception e) {

/1 lgnore. This means that the data queue is already
/] created.

/1 Add a listener which makes the Send button wite
/1 an entry to the data queue whenever it is pressed.
sendBut t on. addAct i onLi st ener (new GUI Bui | der Mai n());

/] Add a listener which nmakes the Refresh button

/1 peek the data queue whenever it is pressed.
refreshButton. addActi onLi st ener (new GUI Bui | der Mai n()) ;

/1 Intro Lab Bonus Exercise #2 Part #6 - Insert code here.

cat ch(Exception e) {
e.printStackTrace();

}
}
public void actionPerfornmed(Acti onEvent event)
{
try {
/1 Wite an entry to the data queue when the send
/1 button is pressed.
if (event.getSource() == sendButton) {
dg. wite(sendFi el d. get Text());
}
/1 Peek the data queue when the refresh button
/1 is pressed.
el se {
String text = dq.peek().getString();
refreshFi el d. set Text (text);
}
cat ch(Exception e) {
e.printStackTrace();
}
}
}
Lab: IBM Toolbox for Java ©IBM Corp. 2008

60
Course material may not be reproduced in whole or in part
without the prior written permission of IBM.

Trademarks are the property of their respective owners.

