

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 1
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Lab: IBM Toolbox for Java™

Student Exercises

Jeff Lee
John Eberhard

IBM Rochester
Session 41LA (403627)

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 2
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Lab: IBM Toolbox for Java

INTRODUCTION ...4
OVERVIEW ..4

THE JAVATM LANGUAGE..4
IBM TOOLBOX FOR JAVATM ..5
THE LAB..8

EXERCISE 1: COMMAND CALL ...10
INTRODUCTION ..10
GOALS OF THIS EXERCISE ..10
PART 1: CREATE AN AS400 OBJECT..11
PART 2: CREATE A COMMANDCALL OBJECT...12
PART 3: RUN THE COMMAND ..12
PART 4: RETRIEVE AS400MESSAGE OBJECTS...13
RUN THE APPLICATION ..14

EXERCISE 2: JDBC...15
INTRODUCTION ..15
GOALS OF THIS EXERCISE ..15
PART 1: SET SYSTEM, LIBRARY AND DATABASE ..16
PART 2: REGISTER THE TOOLBOX JDBC DRIVER ...17
PART 3: ESTABLISH A CONNECTION..18
PART 4: RESULT SET..19
PART 5: PRINTING DATABASE INFORMATION ...20
RUN THE APPLICATION ..20

EXERCISE 3: SQL RESULT SET TABLE PANE..21
INTRODUCTION ..21
GOALS OF THIS EXERCISE ..21
PART 1: CREATE AN SQLCONNECTION OBJECT...22
PART 2: CREATE AN SQLRESULTSETTABLEPANE OBJECT..23
PART 3: RUN A QUERY AND LOAD THE RESULTS ..24
PART 4: SETUP AN ERROR HANDLER ..25
RUN THE APPLICATION ..25

EXERCISE 4: PROGRAM CALL ..28
INTRODUCTION ..28
GOALS OF THIS EXERCISE ..28
PART 1: CHARACTER CONVERSION...29
PART 2: SET UP THE PROGRAMCALL OBJECT...30
PART 3: PROGRAM PARAMETERS..30
PART 4: PARSING RETURNED DATA ..31
RUN THE APPLICATION ..31

CONCLUSION ..32
APPENDIX A: BONUS EXERCISES ...33

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 3
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

BONUS EXERCISE 1: USE XML TO CALL A PROGRAM ..33
INTRODUCTION ..33
GOALS OF THIS EXERCISE ..33
PART 1: CREATE THE PROGRAMCALLDOCUMENT OBJECT ...34
PART 2: RETRIEVE OUTPUT ..35
RUN THE APPLICATION ..36
COMPARE PROGRAMCALL AND PCML ...36

BONUS EXERCISE 2: GUI BUILDER ..37
INTRODUCTION ..37
GOALS OF THIS EXERCISE ..37
PART 1: START GUIBUILDER ..38
PART 2: SET THE PANEL TITLE ...40
PART 3: ADD TEXT BOXES TO THE PANEL ..41
PART 4: ADD BUTTONS TO THE PANEL ...42
PART 5: CREATE A PANELMANAGER OBJECT ..45
PART 6: SHOW THE PANELMANAGER OBJECT..45
RUN THE APPLICATION ..46

APPENDIX B: SOLUTIONS ...47
APPENDIX B: SOLUTIONS ...47

EXERCISE 1: COMMAND CALL...47
EXERCISE 2: JDBC QUERY..49
EXERCISE 3: SQL RESULT SET TABLE PANE ...52
EXERCISE 4: PROGRAM CALL ..54
BONUS EXERCISE 1: PCML (JAVA SOURCE) ...57
BONUS EXERCISE #1: PCML (PCML SOURCE) ...59
BONUS EXERCISE #2: GUI BUILDER..60

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 4
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Introduction

This lab provides an overview of the IBM Toolbox for Java™. You will build Java applications
using the IBM Toolbox for Java.

Overview
The JavaTM Language
Java is a simple, object-oriented, network-aware, portable, interpreted, robust, secure,
architecture-neutral, high-performance, multithreaded, dynamic language. Java is object-
oriented from the ground up. Java organizes code into a collection of classes. Each class is
made up of methods and data. Classes can be grouped together and placed in packages.

z Packages are similar to ILE RPG service programs. They enable you to divide your pieces

into easily reused units. Packages are Java language constructs. They may contain multiple
classes.

z Classes are similar to ILE RPG modules. They enable you to divide your source code into

functions (“methods” in Java, “procedures” and “subroutines” in RPG) and the variables
those functions need. Classes are typically self-contained groupings. They normally contain
multiple fields (variables) and methods.

z Methods are similar to ILE RPG procedures and subroutines. They contain all the actual

code your program will run. In Java, unlike RPG, executable code can only exist in methods,
and methods can only exist inside classes.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 5
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

IBM Toolbox for JavaTM
Introduction
Java programs can access IBM i data and resources from any client platform (including IBM i)
using the IBM Toolbox for Java. The IBM Toolbox for Java contains the infrastructure that
allows access to the following IBM i data and resources:

y JDBC and record-level access to DB2 data
y print resources
y integrated file system
y data queues
y program calls
y command calls
y user lists
y job lists
y job logs
y message queues
y and many others!

The IBM Toolbox for Java provides Java Beans that can be used for visual application
development. Developers can use the classes directly from Java code or in a visual application
builder.

The V6R1 version of the Toolbox which ships with IBM i 6.1 is the current version of the
Toolbox. Alternatively, JTOpen 6.4 is the latest open source version of the Toolbox and it can
be downloaded from the Toolbox website. The Toolbox runs on any JVM that supports JDK
1.1.8 or later. The GUI components of the Toolbox require Swing 1.1 (the new Swing names).

See www.ibm.com/systems/i/software/toolbox/ for more information.

The Toolbox source for almost all components is available via the JTOpen project at
sourceforge.net/projects/jt400 . This is part of IBM’s open source development community.
Developers can use the source as a debug tool, submit new function, modify it for their own use,
and submit problem reports and bug fixes.

The Official JTOpen and Toolbox forum (monitored by the Toolbox development team):
y Go to www.ibm.com/systems/support/i/forums
y Select “JTOpen/Toolbox for Java Forum”

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 6
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

An Example
The following is a simple program that uses the Toolbox to call an IBM i command. Several
lines in the program are numbered. These numbers correspond to explanations that follow the
example.

import com.ibm.as400.access.*; // 1

public class CmdCall
{
 public static void main(String[] args)
 {
 try // 2
 {
 AS400 system = new AS400(); // 3
 AS400 system2 = new AS400("myAS400", "myID", "myPW");

 CommandCall cc = new CommandCall(system); // 4

 cc.run("CRTLIB MYLIB"); // 5

 AS400Message[] ml = cc.getMessageList(); // 6

 for (int i=0; i<ml.length; i++)
 {
 System.out.println(ml[i].getText()); // 7
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

Comments

1. The access classes of the Toolbox are in package com.ibm.as400.access. To use the
Toolbox classes, you must import this package.

2. Like other Java objects, the Toolbox throws exceptions when something goes wrong.
These must be caught by programs that use the Toolbox. Exceptions are caught in Java
by using a try/catch block. Any exceptions caused by the code in the try block will be
handled in the catch block.

3. The Toolbox AS400 object is the object used to identify the target (server). If you
construct the AS400 object with no parameters, the Toolbox will prompt for system name,
userid and password. Notice when we create the second AS400 object, we supply these
values so the Toolbox will not prompt for them.

4. The Toolbox CommandCall object is used to send commands to the server. When we
create the CommandCall object, we pass it an AS400 object so it knows which server is
the target of the command.

5. Use the run() method on the CommandCall object to run a command.
6. The result of running a command is a list of IBM i messages. The Toolbox represents

these messages as AS400Message objects. When the command is complete, we get the
resulting messages from the CommandCall object.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 7
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

7. Print the message text. Also available is the message ID, message severity and other
information. In this program we are only printing the message text.

Javadoc
Like other Java classes, detailed API information can be displayed as Javadoc. Javadoc includes
an overview of the class, public constants, and a detailed explanation of each public constructor
and public method. As a component is developed, the developers include information in the Java
source files. A tool that comes with the JDK pulls out this information and formats it as HTML.
An example follows. The Toolbox Javadoc is installed on the lab PCs. To see it, start a browser
(Firefox or Internet Explorer) then open the file C:\toolbox\doc\Toolbox.html. Then select the
Javadocs link on the left. Leave the Toolbox Javadoc open for the remainder of this lab. It will
be a valuable resource to you.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 8
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

The Lab

Overview
This lab consists of exercises that demonstrate various components of the IBM Toolbox for Java.
In the exercises, you will create and run several Java applications. In most cases, you will start
with an existing source file. For each exercise, your task is to complete the application by
adding the IBM Toolbox for Java code. You will then compile and run each application.

You need the following hardware to complete this lab:

Server – IBM i - IBM i V5R3 or later

Client - PC - Windows 9x/NT/2000/XP/Vista; 32MB memory; 200MB free hard drive space

Actually, any computer with a Java Virtual Machine can be used (except for bonus exercise 1).
However, the lab instructions explain the instructions using Windows terminology and tools.

You need the following software on the client to complete this lab:

y Java Developers Kit 1.1.8 or later
y Swing 1.1 (included in Java Developers Kit 1.2)
y The current version of the IBM Toolbox for Java (also known as JTOpen)

Lab Flow
Most of the Java source is provided. What is missing is the code that demonstrates a particular
feature of the Toolbox. You will fill in this code, then compile and run the program. Hints are
given in the lab instructions to help you write the code. If you get stuck, the lab solutions are at
the end of this handout.

Remember
Java is case-sensitive. Enter all lines exactly in the case they appear in the prototypes that follow.
Pay particular attention to semicolons, parentheses (), braces {}, and quotes "".

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 9
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Lab Setup
During this lab you will need a server running IBM i, a userid and a password. This information
will be given to you by the instructor. Please fill in this information below so that you have it for
reference during the lab.

My IBM i system is: ______________________________

My IBM i userid is: ______________________________

My IBM i password is: ______________________________

The PC source code directory is C:\toolbox\

You are now ready to begin the exercises.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 10
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Exercise 1: Command Call
Introduction
In this exercise, you will use the IBM Toolbox for Java to call an IBM i command from a Java
application.

The CommandCall object (part of the IBM Toolbox for Java) enables a Java program to call any
non-interactive IBM i command. The list of IBM i messages that result from the command are
available to the Java program when the IBM i command completes.

In this exercise you will use AS400, CommandCall, and AS400Message objects to complete a
Java application. Much of the application code has been provided for you. You will need to
write Java code to connect to the server, execute a command, and display the results.

Goals of this exercise
At the end of this exercise, you should be able to:

1. Create an AS400 object.
2. Create a CommandCall object.
3. Run the command.
4. Retrieve the resulting AS400Message objects.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 11
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 1: Create an AS400 object
Note that all sections that need code written by you start with the comments:
 // ---
 // Lab Exercise #1 Part #x - Insert code here.
 // ---
and end with the comments:
 // ---
 // End of code.
 // ---

Type the code for each exercise after the beginning comments of Exercise #1 Part #x and before
the ending comments.

Setup
1. Start a DOS prompt (on Windows) using the Start menu: select “Programs”, “Accessories”,

“Command Prompt”.
2. Change the current directory to the directory which contains the lab source code (C:\toolbox).

To change the directory, enter:

 cd C:\toolbox

3. Run the batch file ToolboxSetup. This will set up the classpath environment variables to
point to the Toolbox jar files. You must run this batch file any time you open a new MS-
DOS prompt.

4. Edit the CommandCallExample.java source file. You can use any editor you like. For this
lab, we will use Windows Notepad. In the DOS prompt, type:

 notepad CommandCallExample.java

5. Locate the section for Lab Exercise #1 Part #1.

Procedure
1. Create an AS400 object named system and specify your assigned IBM i system name. (Hint:

All Java string literals are enclosed in double quotes). Some prototypes/examples that you
may need are listed below. The complete set of prototypes is provided in the documentation
(Javadoc) that is shipped in soft copy form with the IBM Toolbox for Java. This AS400
object represents the connection to the system running IBM i. Remember, Java is case-
sensitive!

Remember that at any time during this lab, if you get stuck, you can either ask a lab attendant for
help or consult Appendix B for the solutions.

Prototypes:
class AS400
y public AS400()
y public AS400(String systemName)
y public void setSystemName(String systemName)

 Example code: AS400 system = new AS400();

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 12
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 2: Create a CommandCall object
Setup
1. Continue editing the CommandCallExample.java source file.
2. Locate the section for Lab Exercise #1 Part #2.

Procedure
1. Create a CommandCall object named command and specify the AS400 object that was

created in Part 1. Again, some prototypes that you may need are listed below. This
CommandCall object represents a command call, although at this point, no command has
been called.

Prototypes:

class CommandCall
y public CommandCall()
y public CommandCall(AS400 system)
y public void setSystem(AS400 system)

 Example Code: CommandCall command = new CommandCall();

Part 3: Run the command
Setup
1. Continue editing the CommandCallExample.java source file.
2. Locate the section for Lab Exercise #1 Part #3.

Procedure
1. The lab already has code that creates a String named commandString, which is made up of

the command line arguments passed by the user. Add the code to run this command.
2. Notice that the run() method returns a Boolean (true/false), which indicates whether or not

the command was successful. Add code to check this and print the appropriate message,
either
 System.out.println(“The command was successful”);

 or
 System.out.println(“The command failed.”);

Prototypes:

class CommandCall
y public boolean run(String commandString)

 Example code: boolean successful = command.run(“CRTLIB TESTLIB”);

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 13
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 4: Retrieve AS400Message objects
Setup
1. Continue editing the CommandCallExample.java source file.
2. Locate the section for Lab Exercise #1 Part #4.

Procedure
1. Retrieve any messages that were generated by running the command. The messages are

stored as an array of AS400Message objects. Each AS400Message object in the array
represents a message that was generated by the command.

2. Loop through the array of messages, and print each message’s ID and text to System.out.

Prototypes:

class CommandCall
y public AS400Message[] getMessageList()

 Example code: AS400Message[] message = command.getMessageList();

class AS400Message
y public String getID()
y public String getText()

 Example code: String iD = message.getID();

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 14
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Run the application

Now it is time to run the CommandCallExample application.

1. Make sure to save the modified CommandCallExample.java file.
2. Compile the application from the DOS prompt. Hint: Java is case-sensitive even on

Windows so the case of the file name must be correct. To compile, type:

 javac CommandCallExample.java

3. If you have errors, re-edit then re-compile the source file.
4. Run the application once you successfully compiled it. The application has one command

line parameter, the command to run on the server. To run the program, type:

 java CommandCallExample CRTLIB FRED

5. The application will prompt you for a user ID and password. This happens automatically

when your application accesses the server using the IBM Toolbox for Java. Enter your
assigned user ID and password.

6. Verify that the application output (which appears in the DOS prompt) looks similar to this:

 The command failed.
 CPF2111 Library FRED already exists.

 **NOTE: If this is the first time Library FRED is created, the output will say the
 command completed successfully, otherwise the output will be as above.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 15
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Exercise 2: JDBC
Introduction
In this exercise, you will use the IBM Toolbox for Java JDBC driver to query a database on the
server. JDBC stands for Java Database Connectivity. JDBC is the Java standard for SQL
database access. The IBM Toolbox for Java provides both JDBC 3.0 and JDBC 4.0
implementations. With JDBC you can access databases using standard Java interfaces.

In this exercise you will use Toolbox JDBC objects to complete a Java application. Much of the
application code has been provided for you. You will need to write Java code to register the
Toolbox JDBC driver as the driver to use, connect to the server, query the database, and display
the results.

Goals of this exercise
At the end of this exercise, you should be able to:

1. Register the Toolbox JDBC driver as the driver to use to get data.
2. Create an SQL Connection.
3. Create an SQL Statement.
4. Query the database to get database metadata.
5. Query the database to get a result set.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 16
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 1: Set System, Library and Database
Note all sections that need code written by you start with the comments:

 // ---
 // Lab Exercise #2 Part #x - Insert code here.
 // ---

and end with the comments:

 // ---
 // End of code.
 // ---

Setup
1. Edit the JDBCQuery.java source file. You can use any editor you like. For this lab, we will

use Windows Notepad. In the DOS prompt, type:

 notepad JDBCQuery.java

2. Locate the section for Lab Exercise #2 Part #1.

Procedure
Update the “xxxx”s to use the real values.

1. ‘system’ is the name of the server we are running to.
2. ‘collectionName’ is the name of the IBM i library. Use QIWS. In SQL terminology,

collections are the same as IBM i libraries.
3. ‘tableName’ is the name of the database file. Use QCUSTCDT. In SQL terminology,

tables are the same as IBM i database files.

Remember that at any time during this lab, if you get stuck, you can either ask a lab attendant for
help or consult Appendix B for the solutions.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 17
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 2: Register the Toolbox JDBC Driver
Setup
1. Continue editing the JDBCQuery.java source file.
2. Locate the section for Lab Exercise #2 Part #2.

Procedure
Register the Toolbox JDBC driver. By registering the driver, the JDBC Driver Manager (part of
every Java Virtual Machine) will route JDBC calls to the Toolbox driver. The Toolbox driver, in
turn, will send them to the IBM i host servers. Some prototypes that you may need are listed
below.

Hints
1. The Toolbox JDBC driver is officially named com.ibm.as400.access.AS400JDBCDriver.
2. You must create a Toolbox driver object to use as a parameter on the registerDriver

method.
3. The registerDriver method is static. Static means you don’t need to “new up” an object

to call the method, you just class-qualify the method name. For example, suppose a
driver is named com.greatStuff.JDBCDriver. The line of code is:

DriverManager.registerDriver(new com.greatStuff.JDBCDriver());

Prototypes:

class DriverManager
y public static void registerDriver(Driver driver)

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 18
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 3: Establish a Connection
Setup
1. Continue editing the JDBCQuery.java source file.
2. Locate the section for Lab Exercise #2 Part #3.

Procedure
Connect to the database. Look up a few lines of code and you will see
“Connection connection = null;”. This code declares the variable ‘connection’ but nothing has
happened yet. Now it is time to establish the connection. Write the line of code to connect the
Toolbox JDBC driver to the DB2 on IBM i.

Hints
1. You will again use the DriverManager class, this time to get a connection. Like the

previous exercise, you will use a static method on DriverManager.
2. The Toolbox URL syntax is “jdbc:as400://<system>”.
3. You already identified the system name in step 1. getConnection() requires a string so

you will have to concatenate the Toolbox constant with the system name. Using the
greatStuff driver in the hint section of the previous part, the line of code is:

connection = DriverManager.getConnection(“jdbc:xxxx://” + system);

Prototypes:

class DriverManager
y public static Connection getConnection(String identifier)

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 19
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 4: Result Set
Setup

1. Continue editing JDBCQuery.java
2. Locate the section for Lab Exercise #2 Part #4.

Procedure
1. The next step is to create a Statement object, then use the statement to run a query and

get back a ResultSet. The result set contains the result of the query. Creating the
statement is already done for you. Look up one line in the code and you will see a line
that creates a statement from the connection. To do actual work, you tell the statement to
execute a query.

2. Add a line of code to get a result set called ‘rs’ containing all rows and columns of our
database. You create a result set by executing a query with the connection object.

Hints
1. The SQL statement we will use is “SELECT * FROM xxxx”. The “*” means all rows

and columns. After the “from” is the database name, represented here by x’s.
2. In the first part of this exercise you defined the collection and table names in String

variables. You will need to concatenate Strings with constants to build the entire SQL
statement.

3. Different database vendors use different separator characters to separate library from file
name. You could hardcode the DB2 UDB for IBM i separator character, but that would
not be very portable. The better thing to do is ask the database what its separator
character is.

Prototypes:

class Statement
y public ResultSet executeQuery(String query)

 Example Code: ResultSet rs = statement.executeQuery(“SELECT * FROM xxx”);

class DatabaseMetaData
y public String getCatalogSeparator()

 Example Code: String separator = dmd.getCatalogSeparator();

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 20
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 5: Printing Database Information

Setup
1. Continue editing the JDBCQuery.java source file.
2. Locate the section for Lab Exercise #2 Part #5 (there are two markers).

Procedure
No code is needed for this part, just a couple of things to look at.
1. Find the first marker. The code here uses ResultSetMetaData to find out the number of

columns in the result set and the column names. The result set not only contains the data but
also this metadata.

2. Find the second marker. The result set points at a row of data at a time. You use
ResultSet.next() to get the next row of data. To get a field out of the row, you use
ResultSet.getString(int columnIndex).

Run the application

Now it is time to run the JDBCQuery application.

1. Make sure to save the modified JDBCQuery.java file.
2. Compile the application from the DOS prompt:

 javac JDBCQuery.java

3. Run the application:

 java JDBCQuery

4. As in the previous exercise, the Toolbox will prompt you for a user ID and password. This

happens automatically when your application accesses the server using the IBM Toolbox for
Java.

5. The application will execute the query, and then print the contents of the database.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 21
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Exercise 3: SQL Result Set Table Pane
Introduction
In this exercise, you will use the IBM Toolbox for Java to present the results of an SQL database
query in a graphical user interface.

The SQLResultSetTablePane object (part of the IBM Toolbox for Java) enables a Java program
to present the results of a database query in a JTable. A JTable is a Java Swing component and
can be embedded inside any graphical user interface.

In this exercise you will use SQLConnection, SQLResultSetTablePane, and
ErrorDialogAdapter objects to complete a Java application. Your application will present the
results of an SQL database query. The SQL query is entered by the user. The Swing and AWT
parts of the application have been provided for you. You will need to write Java code to connect
to the DB2 on IBM i, create the SQLResultSetTablePane object, and run the queries.

Goals of this exercise
At the end of this exercise, you should be able to:
1. Create a SQLConnection object.
2. Create a SQLResultSetTablePane object.
3. Run a query and load the results.
4. Setup an error handler.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 22
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 1: Create an SQLConnection object

Setup
1. Edit the SQLResultSetTablePaneExample.java source file. In the DOS prompt, type:

 notepad SQLResultSetTablePaneExample.java

2. Locate the section for Lab Exercise #3 Part #1.

Procedure
1. Create a SQLConnection object, connection, that uses the JDBC URL

“jdbc:as400://systemName”, where systemName is your assigned IBM i system name. This
SQLConnection object represents the JDBC connection to the DB2 on IBM i.

Prototypes:

class SQLConnection
y public SQLConnection (String URL)

 Example Code: SQLConnection con = new SQLConnection(“jdbc:as400://system”);

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 23
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 2: Create an SQLResultSetTablePane object

Setup
1. Continue editing the SQLResultSetTablePaneExample.java source file.
2. Locate the section for Lab Exercise #3 Part #2

Procedure
1. Create a SQLResultSetTablePane object called tablePane. This represents the graphical user

interface component which presents the contents of the query to the user.
2. Use setConnection() to set tablePane’s connection to the SQLConnection object that you

created in Part 1. This tells tablePane which JDBC connection to use for executing the query
and gathering results.

Prototypes:

class SQLResultSetTablePane
y public SQLResultSetTablePane ()
y public void setConnection (SQLConnection connection)

 Example Code: SQLResultSetTablePane tp = new SQLResultSetTablePane();

 tp.setConnection(connection);

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 24
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 3: Run a query and load the results
Setup
1. Continue editing the SQLResultSetTablePaneExample.java source file.
2. Locate the section for Lab Exercise #3 Part #3. Note: This section is located in the

keyPressed(KeyEvent) method.

Procedure
1. The query text that the user types is stored in a String named queryText. Use this value to set

the query string to be run by tablePane.
2. Use load() to run the query and load the results into tablePane. By calling load(), the

tablePane object will actually run the query (using JDBC), load its results, and present them
in the table. If you forget to call load(), the table will still appear, but it will be empty.

Prototypes:

class SQLResultSetTablePane
y public void setQuery (String query)
y public void load ()

 Example Code: tp.setQuery(query);
 tp.load();

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 25
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 4: Setup an error handler

Setup
1. Continue editing the SQLResultSetTablePaneExample.java source file.
2. Locate the section for Lab Exercise #3 Part #4.

Procedure
1. Any errors that occur when accessing the server are not automatically displayed to the user.

You need to set up an ErrorListener to handle errors. For this example, we will use an
ErrorDialogAdapter, which is an ErrorListener that handles errors by displaying them in a
message box for the user to see. You can also implement your own custom error handler if
you have different requirements.

2. Create an ErrorDialogAdapter object called errorHandler and specify tablePane for the
component. This initializes the error handler and tells it to use tablePane to determine the
parent frame for any message box dialogs that it displays.

3. Use addErrorListener() to add errorHandler as an ErrorListener to tablePane. This sets up
the error handler to “listen” to tablePane. Now, whenever an error occurs in tablePane, this
error handler will display a message box.

Prototypes:

class ErrorDialogAdapter
y public ErrorDialogAdapter()
y public ErrorDialogAdapter(Component component)
y public void setComponent(Component component)

 Example Code: ErrorDialogAdapter eda = new ErrorDialogAdapter();

 eda.setComponent(tp);

class SQLResultSetTablePane
 y public void addErrorListener (ErrorListener listener)

 Example Code: tp.addErrorListener(eda);

Run the application

 Now it is time to run the SQLResultSetTablePaneExample application.

1. Compile the application from a DOS prompt.

 javac SQLResultSetTablePaneExample.java

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 26
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

2. Run the application.

 java SQLResultSetTablePaneExample

3. The application displays the graphical user interface below. It includes a text field at the top,

where you can type in SQL queries. It also displays an empty table. The table is empty since
we have not yet run any queries.

4. Enter an SQL query in the text field. Backspace over “Enter an SQL query here.” to erase it

so the SQL statement starts at the beginning of the text field. A good SQL statement to try is:

 SELECT * FROM QIWS.QCUSTCDT

5. The application will prompt you for a user ID and password. This happens the first time you

run a query because this is when the physical connection to the DB2 on IBM i is made. Enter
your assigned user ID and password.

6. Verify that the results in the table look similar to this:

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 27
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

7. Close the window clicking on the “X” in the upper right corner.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 28
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Exercise 4: Program Call
Introduction
In this exercise, you will use the IBM Toolbox for Java's ProgramCall and ProgramParameter
classes to call an IBM i API.

Goals of this exercise
At the end of this exercise, you should be able to:

1. Use Toolbox converter classes to convert numeric and string data between Java and IBM i

types.
2. Build an array of program parameters.
3. Call an IBM i program.
4. Parse the results of the program.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 29
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 1: Character Conversion
Note that all sections that need code written by you start with the comments:

 // ---
 // Lab Exercise #4 Part #x - Insert code here.
 // ---

and end with the comments:

 // ---
 // End of code.
 // ---

Type the code for each exercise between the beginning comments of Exercise #4 Part #x and
before the ending comments.

Setup
1. Edit the qsyrusri2.java source file. You can use any editor you like. For this lab, we will

use Windows Notepad. In the DOS prompt, type:

 notepad qsyrusri2.java

2. Locate the section for Lab Exercise #4 Part #1.

Procedure
Create a text conversion object called ‘char10’ that converts a 10-character string between Java
Unicode and IBM i EBCDIC. Note the constructor of the converter object includes an AS400
object. The AS400 object is specified just in case a connection to the server is needed (under
certain environments). For most applications, though, the Toolbox’s built-in conversion classes
handle String conversions between Unicode and EBCDIC without ever making a connection to
the server. (Hint -- just above the line of code you enter are converters for shorter strings).

Prototypes:
class AS400Text
y public AS400Text(int length, int ccsid, AS400 system)

 Example Code: AS400Text char6 = new AS400Text(6, system.getCcsid(), system);

class AS400
y public int getCcsid()

 Example Code: int ccsid = system.getCcsid();

Remember that at any time during this lab, if you get stuck, you can either ask a lab attendant for
help or consult Appendix B for the solutions.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 30
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 2: Set Up the ProgramCall Object
Setup
1. Continue editing the qsyrusri2.java source file.
2. Locate the section for Lab Exercise #4 Part #2.

Procedure
Enter two lines of code. The first will create a ProgramCall object called ‘pc’. On the
constructor pass the AS400 object system. The program to call is on that server. The second line
of code will set the name of the program to call. Program names are fully qualified in terms of
the integrated file system. The program we are calling is QSYRUSRI.PGM which is located in
QSYS.LIB.

Prototypes:

class ProgramCall
y public ProgramCall(AS400 system)
y public void setProgram(String program);

 Example Code: ProgramCall pc = new ProgramCall(system);

 pc.setProgram(“/QSYS.LIB/QSYRUSRI.PGM”);

Part 3: Program Parameters
Setup
1. Continue editing the qsyrusri2.java source file.
2. Locate the section for Lab Exercise #4 Part #3.

Procedure
Add the line of code to create the third program parameter. This parameter is the data format.
We will be using format USRI0100.

Hints
1. Java numbers array elements starting at 0 so the array index will be 2.
2. You must convert the string from a Java String to EBCDIC as you store the data in the

program parameter.
3. Your conversion must result in the correct number of bytes (8 in this case). You should

use the char8 AS400Text object.
4. The next line of code shows setting the fourth parameter which is much like this one.

Prototypes:

class ProgramParameter
y public ProgramParameter(byte[] data)

 Example Code: parm[2] = new ProgramParameter(char8.toBytes(“USRI0100”));

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 31
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 4: Parsing Returned Data
Setup
1. Continue editing qsyrusri2.java
2. Locate the section for Lab Exercise #4 Part #4.

Procedure
At this point you have successfully called the program and have data back. You designated
parameter 0 as the parameter getting output data and have retrieved the data as a byte array
called data. Now you have to parse the byte array to retrieve individual values. Create a String
object called ‘strValue’ that retrieves the profile name. It is 10 characters long, starting at byte 8
in the byte array. Since the profile name is 10 characters long, you should use the AS400Text
object you created in part 1.

Prototypes:

class AS400Text
y public Object toObject(byte[] serverValue, int offset)

 Example Code: Object obj = char10.toObject(data, 8);

Run the application

Now it is time to run the application.

1. Make sure to save the modified qsyrusri2.java file.
2. Compile the application from the DOS prompt:

 javac qsyrusri2.java

3. Run the application:

 java qsyrusri2

4. As in previous exercises, the Toolbox will prompt you for system name, user ID and

password. This happens automatically when your application accesses the server using the
IBM Toolbox for Java.

5. The application will call the IBM i program and print results.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 32
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Conclusion

In this lab, you enabled various pieces of a client to access a server running IBM i, using various
components from the IBM Toolbox for Java.

The IBM Toolbox for Java is implemented so that there are no platform dependencies in the code.
Since Java is portable across many environments, pure Java programs will run on any Java
enabled platform. The important implication to you as an application developer is that a single
version of your program will run on many platforms. This can reduce the duplicate development,
maintenance, and code porting expenses usually associated with multiple platform application
development.

You can get more information about the IBM Toolbox for Java, and download a trial or open
source version, by going to the web address www.ibm.com/systems/i/software/toolbox/

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 33
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Appendix A: Bonus Exercises

Bonus Exercise 1: Use XML to call a program
Introduction
In the previous exercise you called an IBM i program using Toolbox ProgramCall. In this
exercise you will call the same program but this time you will call it using the Program Call
Markup Language (PCML) support in the Toolbox.

Many Toolbox objects (for example, User, Job, and DataArea) are implemented using Toolbox
ProgramCall. For these objects, Toolbox presents an easy to use Java interface. Under the
covers Toolbox implements these interfaces by calling IBM i APIs. However, the ProgramCall
classes can be burdensome to use to call some of the more complex APIs. PCML, an
implementation of XML1, was created to solve the complexity problem. PCML offers the
following advantages over ProgramCall:
y Parameter formats are described via HTML-like syntax. You no longer have to count

offsets. You simply describe the format of the data, and the PCML does the offset
calculation for you. This is especially useful for variable-length and nested structures.
PCML does the messy (and boring) math for you.

y PCML does data conversion for you. You simply describe the type and size of your data,
and PCML does the conversion for you.

y Parameter formats can be changed without re-compiling the application. The PCML
source file is parsed at run time. If you need to change it, you simply change the .pcml
file and rerun the application.

Goals of this exercise
At the end of this exercise, you should be able to use PCML to call an IBM i program.

1 XML stands for eXtensible Markup Language. XML is a language for describing other specific languages and is
popular for describing data in a format that is easily readable by humans and easily parsed by computers.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 34
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 1: Create the ProgramCallDocument Object
Note that all sections that need code written by you start with the comments:

 // ---
 // Lab Bonus Exercise #1 Part #x - Insert code here.
 // ---

and end with the comments:

 // ---
 // End of code.
 // ---

Type the code for each exercise between the beginning comments of Lab Bonus Exercise #1 Part
#x and before the ending comments.

Setup
1. Edit the qsyrusri.java source file. You can use any editor you like. For this lab, we will use

Windows Notepad. In the DOS prompt, type:

 notepad qsyrusri.java

2. Locate the section for Lab Bonus Exercise #1 Part #1.

Procedure
Initialize the variable called pcml to the proper ProgramCallDocument object.
ProgramCallDocument takes two parameters: the AS400 object representing the server and the
name of the file containing the PCML source. Our PCML source file is called qsyrusri and the
AS400 object representing the server is called system.

Prototypes:

class ProgramCallDocument
y public ProgramCallDocument(AS400 system, String PCMLFileName)

 Example Code: ProgramCallDocument pcml = new ProgramCallDocument(system, “qsysrusri”);

Remember that at any time during this lab, if you get stuck, you can either ask a lab attendant for
help or consult Appendix B for the solutions.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 35
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 2: Retrieve Output
Setup
1. Continue editing the qsyrusri.java source file.
2. Locate the section for Lab Bonus Exercise #1 Part #2.

Procedure
At this point you successfully called the IBM i program and have data back. You will now pull
data from the output parameter. As in the last exercise, you will retrieve the user profile name.
You will let PCML do most of the work. All you have to do is name the field. PCML will
convert it and return the data to you.

To determine the identifier, you need to look at the PCML source file. Edit qsyrusri.pcml.
y The top section of the file has a description of the USRI0100 format. Each field has a

name, type and length (among other things). Type and length are used by PCML to
properly process the data. Names are used to identify what field you want.

y The bottom section of the file describes the parameters of the program. Looking at
the .java program you see no program name, format name, profile name, etc. That is
because these parameters are really constants. ‘Init’ is used to set their values so these
parameters are totally handled in the .pcml file.

To determine the name of the user profile field, you have to ‘fully qualify’ the name of the field
using periods to separate the values. The first part is the program name label (qsyrusri). A
PCML file can contain descriptions for many program calls so you have to identify which one to
use. The second part is the name of the parameter (receiver). Note its type is ‘struct’ which
means the structure at the top of the .pcml file describes the format of the data. The last part is
the name of the field in the structure (userProfile). The full label becomes
qsyrusri.receiver.userProfile. Add code to store the user profile in the String value.

Prototypes:

class ProgramCallDocument
y public String getValue(String label)

 Example Code: String val = pcml.getValue(“qsyrusri.receiver.userProfile”);

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 36
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Run the application

Now it is time to run the application.

1. Make sure to save the modified qsyrusri.java file.
2. Compile the application from the DOS prompt:

 javac qsyrusri.java

3. Run the application:

 java qsyrusri

4. As in the previous exercise, the Toolbox will prompt you for a system name, user ID and

password. This happens automatically when your application accesses the server using the
IBM Toolbox for Java.

5. The application will call the program and print the results.

Compare ProgramCall and PCML
Once you have both programs working, take a minute to compare the two programs
(qsyrusri.java and qsyrusri2.java). The obvious difference is parameter handling. The program
that uses standard program call devotes a lot of code to creating parameters and converting
between IBM i formats and Java formats. The program that uses PCML does not need that code.
It describes the parameters, then leaves building the parameter list and converting data to the
PCML code provided by the Toolbox.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 37
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Bonus Exercise 2: GUI Builder
Introduction
Designing graphical user interfaces (GUIs) using Java can be time consuming. The IBM
Toolbox for Java provides an XML2 application called Panel Definition Markup Language
(PDML) which can save you a lot of time coding complex GUIs. You can describe the
components and layout of your GUI using PDML. PDML looks a lot like HTML, but the tags
are different. The PDML code that you write describes the types of components (e.g., lists, text
fields, buttons) that appear on your GUI and where on the GUI they are to be located. In most
cases, using PDML will take much less effort than writing the corresponding Java code.

The IBM Toolbox for Java also provides a tool called GUIBuilder, which allows you to design
your GUI interactively. GUIBuilder is a Java application which automatically generates PDML
code for you.

In this lab, you will use the GUIBuilder to design a simple GUI. The GUI will display text
boxes where the user can read and write entries to an IBM i data queue. You will also write the
Java code necessary to show the GUI on the screen.

Goals of this exercise
At the end of this exercise, you should be able to:
1. Start GUIBuilder.
2. Set the panel title.
3. Add text boxes to the panel.
4. Add buttons to the panel.
5. Create a PanelManager object.
6. Show the PanelManager object.

2XML stands for eXtensible Markup Language. XML is a language for describing other specific
languages and is popular for describing data in a format that is easily readable by humans and
easily parsed by computers.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 38
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 1: Start GUIBuilder

Procedure
1. In the DOS prompt, type:

 java com.ibm.as400.ui.tools.GUIBuilder

2. Verify that you see windows similar to these:

 This is the main application window for GUIBuilder. There are two windows:

y The GUIBuilder window shows the menus for GUIBuilder.
y The Properties window shows the properties defined for the selected component.

Since there are no components currently selected, there is nothing in this window.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 39
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

3. In the GUIBuilder window, select the File - New File menu. This creates a new file for
your GUI.

4. In the GUIBuilder window, select the File-Save As menu. This prompts for a file name.
Enter GUIBuilderExample.pdml. Now your GUI definition will be saved in this file.

5. Click on the “Insert Panel” button which is directly above the “GUIBuilderExample” icon.
6. Verify that your windows look like this:

Now you are ready to design the GUI.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 40
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 2: Set the panel title

Procedure
1. Make sure the PANEL1 icon is selected. The Properties windows will show the properties

of the panel.
2. In the Properties window, locate the Title property. Change its value to “GUI Builder

Example”.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 41
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 3: Add text boxes to the panel
Procedure

1. Locate the icon in the Panel window. This represents a text box. Left click on this icon.
2. Left click anywhere in the Panel window where you want to place the text box. For this

example, we will place it near the upper-left corner of the panel.
3. You can make the text box wider than its default width. Left click on the small dot on the

right side of the text box. Drag the right side to the desired width.
4. Repeat steps 1-3 to add another text box to the panel.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 42
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 4: Add buttons to the panel

Procedure

1. Locate the icon in the Panel window. This represents a button. Left click on this icon.
2. Left click anywhere in the Panel window where you want to place the button. For this

example, we will place it to the right of the first text field.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 43
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

3. Notice that the Properties window shows the properties of the button. Locate the Text
property. Change its value to “Send” and press enter. Notice that the button’s label changes
in the Panel window.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 44
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

4. Repeat steps 1-3 to add another button with the label “Refresh”.

5. In the GUIBuilder window, select the File - Save menu. This will save the GUI definition in
a file called GUIBuilderExample.pdml.
6. In the GUIBuilder window, select the File - Exit menu. This will exit GUIBuilder.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 45
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Part 5: Create a PanelManager object

The GUI definition that you have just completed does not work by itself. All you have done is
described what the GUI looks like. You need to write Java code that displays the GUI and
implements the behavior of the program. For this part of the lab, most of the Java application
code is provided for you. You will need to write Java code to load the GUI definition and
display it on the screen.

Setup
1. Edit the GUIBuilderMain.java source file. In the DOS prompt, type:

notepad GUIBuilderMain.java

2. Locate the section for Lab Bonus Exercise #2 Part #5.

Procedure
1. Create a PanelManager object named pm. In the constructor, specify “GUIBuilderExample”

as the base name of the GUI definition, “PANEL1” as the name of the panel, and null for the
data beans parameter.

Prototypes:

class PanelManager
y public PanelManager(String baseName, String panelName, DataBean[] dataBeans)

 Example Code: PanelManager pm = new PanelManager(“Example”, “Panel”, null);

Part 6: Show the PanelManager object

Setup
1. Continue editing the GUIBuilderMain.java source file.
2. Locate the section for Lab Bonus Exercise #2 Part #6.

Procedure
1. Show the GUI by calling the setVisible(true) method on pm, the PanelManager object.

Prototypes:
class PanelManager
y public void setVisible(boolean show)

 Example Code: pm.setVisible(true);

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 46
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Run the application

 Now it is time to run the GUIBuilderMain application.

1. Compile the application from a DOS prompt.

 javac GUIBuilderMain.java

2. Run the application.

 java GUIBuilderMain

 You may see a java.util.MissingResourceException message. This is just a warning

message that no help text was found. (GUIBuilder allows you to define help text for the
panel, but we did not define any for this exercise.) You can ignore this message.

3. The application displays the user ID and password prompt. Once signed on, it will display
the GUI that you designed.

4. Enter some text into the first text box and click the Send button. This will write the text as
an entry to an IBM i data queue.

5. Click the Refresh button. This will retrieve the most recent data queue entry from the server
and display it in the second text box. Remember that this data queue entry may have been
added by someone else in the lab.

6. Close the window by clicking on the “X” in the upper right corner.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 47
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Appendix B: Solutions

Exercise 1: Command Call

import com.ibm.as400.access.AS400;
import com.ibm.as400.access.AS400Message;
import com.ibm.as400.access.CommandCall;

public class CommandCallExample
{
 public static void main(String[] args)
 {
 try
 {

 // ---
 // Lab Exercise #1 Part #1 - Insert code here.
 // ---

 AS400 system = new AS400("mySystem"); // used to get a connection

 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #1 Part #2 - Insert code here.
 // ---

 CommandCall command = new CommandCall(system); // used to run a command

 // ---
 // End of code.
 // ---

 // Gather the command line arguments passed to this .
 StringBuffer buffer = new StringBuffer();
 for (int i = 0; i < args.length; ++i)
 {
 buffer.append (args[i]);
 buffer.append (" ");
 }
 String commandString = buffer.toString ();

 // ---
 // Lab Exercise #1 Part #3 - Insert code here.
 // ---

 if (command.run(commandString)) // runs the command, returns a boolean
 System.out.println("The command was successful.");
 else
 System.out.println("The command failed.");

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 48
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #1 Part #4 - Insert code here.
 // ---

 // gets the list of messages returned after the command runs
 AS400Message[] messageList = command.getMessageList();
 for (int i=0; i < messageList.length; i++) // outputs each message
 {
 System.out.println (messageList[i].getID() + ":" +
 messageList[i].getText());
 }

 // ---
 // End of code.
 // ---

 }
 catch (Exception e) {
 System.out.println ("Error: " + e);
 }

 System.exit (0);
 }
}

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 49
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Exercise 2: JDBC Query

import java.sql.*; // Part of the JDK
import com.ibm.as400.access.*; // import the Toolbox’s JDBC classes

public class JDBCQuery
{
 // Format a string so that it has the specified width.
 private static String format (String s, int width)
 {
 String formattedString;

 // The string is shorter than specified width,
 // so we need to pad with blanks.
 if (s.length() < width)
 {
 StringBuffer buffer = new StringBuffer (s);

 for (int i = s.length(); i < width; ++i)
 buffer.append (" ");

 formattedString = buffer.toString();
 }

 // Otherwise, we need to truncate the string.
 else
 formattedString = s.substring (0, width);

 return formattedString;
 }

 public static void main (String[] parameters)
 {
 // ---
 // Intro Lab Exercise #2 Part #1 - Finish code here.
 // ---
 String system = "mySystem"; // name of the system to connect to
 String collectionName= "QIWS"; // collection/library name for table
 String tableName = "QCUSTCDT"; // table/file name
 // ---
 // End of code.
 // ---

 Connection connection = null; // Creates a connection object

 try {

 // ---
 // Intro Lab Exercise #2 Part #2 - Insert code here.
 // ---
 // Load the IBM Toolbox for Java JDBC driver.
 DriverManager.registerDriver(new
 com.ibm.as400.access.AS400JDBCDriver());
 // ---
 // End of code.
 // ---

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 50
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

// ---
 // Intro Lab Exercise #2 Part #3 - Insert code here.
 // ---
 // Get a connection to the database. Since we do not
 // provide a user id or password, a prompt will appear

 connection = DriverManager.getConnection ("jdbc:as400://" + system);
 // ---
 // End of code.
 // ---

 // retrieve information about the database
 DatabaseMetaData dmd = connection.getMetaData ();

 // Execute the query.
 Statement select = connection.createStatement ();

 // ---
 // Intro Lab Exercise #2 Part #4 - Insert code here.
 // ---
 // Executes the query and retrieves the results
 ResultSet rs = select.executeQuery ("SELECT * FROM "
 + collectionName + dmd.getCatalogSeparator() + tableName);
 // ---
 // End of code.
 // ---

 // Get information about the result set. Set the column
 // width to whichever is longer: the length of the label
 // or the length of the data.
 // ---
 // Intro Lab Exercise #2 Part #5 -
 // ---
 // Retrieve information about the results
 ResultSetMetaData rsmd = rs.getMetaData ();
 int columnCount = rsmd.getColumnCount () - 1; // skip last column

 // code below formats how the data in the ResultSet is displayed
 String[] columnLabels = new String[columnCount];
 int[] columnWidths = new int[columnCount];

 for (int i = 1; i <= columnCount; ++i)
 {
 columnLabels[i-1] = rsmd.getColumnLabel (i);
 columnWidths[i-1] = Math.max (columnLabels[i-1].length(),
 rsmd.getColumnDisplaySize (i));
 }

 // Output the column headings.
 for (int i = 1; i <= columnCount; ++i)
 {
 System.out.print (format (rsmd.getColumnLabel(i),
 columnWidths[i-1]));
 System.out.print (" ");
 }
 System.out.println ();

 // Output a dashed line.
 StringBuffer dashedLine;
 for (int i = 1; i <= columnCount; ++i)
 {
 for (int j = 1; j <= columnWidths[i-1]; ++j)
 {

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 51
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

 System.out.print ("-");
 }
 System.out.print (" ");
 }
 System.out.println ();

 // Iterate throught the rows in the result set and output
 // the columns for each row.
 // ---
 // Intro Lab Exercise #2 Part #5 -
 // ---

// goes through the ResultSet one row at a time
 while (rs.next ())
 {
 for (int i = 1; i <= columnCount; ++i)
 {
 String value = rs.getString (i); // retrieves column value
 if (rs.wasNull ())
 {
 value = "<null>";
 }
 System.out.print (format (value, columnWidths[i-1]));
 System.out.print (" ");
 }
 System.out.println ();
 }

 }
 catch (Exception e)
 {
 System.out.println ();
 System.out.println ("ERROR: " + e.getMessage());
 }

 // Clean up.
 try
 {
 if (connection != null)
 connection.close (); // closes the connection and any statements
 }
 catch (SQLException e) { } // Ignore errors.

 System.exit (0);
 }
}

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 52
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Exercise 3: SQL Result Set Table Pane

import com.ibm.as400.access.AS400JDBCDriver;
import com.ibm.as400.vaccess.ErrorDialogAdapter;
import com.ibm.as400.vaccess.SQLConnection;
import com.ibm.as400.vaccess.SQLResultSetTablePane;

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.beans.*;
import java.sql.*;

public class SQLResultSetTablePaneExample
extends KeyAdapter
{
 private static SQLResultSetTablePane tablePane_;
 private static JTextField textField_;

 public static void main(String argv[])
 {
 try {
 // Register the IBM Toolbox for Java JDBC driver.
 DriverManager.registerDriver(new AS400JDBCDriver());

 // ---
 // Lab Exercise #3 Part #1 - Insert code here.
 // ---

 // Get a connection to the database
 SQLConnection connection = new SQLConnection("jdbc:as400://mySystem");

 // ---
 // End of code.
 // ---

 // ---
 // Lab Exercise #3 Part #2 - Insert code here.
 // ---
 SQLResultSetTablePane tablePane = new SQLResultSetTablePane();
 tablePane.setConnection (connection);
 // ---
 // End of code.
 // ---

 // Store the table pane in a static variable.
 tablePane_ = tablePane;

 // Initialize the text area.
 textField_ = new JTextField ("Enter an SQL query here.");
 textField_.addKeyListener (new SQLResultSetTablePaneExample ());

 // Initialize the frame.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 53
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

 JFrame frame = new JFrame ("SQLResultSetTablePane example");
 frame.getContentPane ().setLayout (new BorderLayout ());
 frame.getContentPane ().add ("North", textField_);
 frame.getContentPane ().add ("Center", tablePane_);

 // When the frame closes, exit the .
 frame.addWindowListener (new WindowAdapter ()
 {
 public void windowClosing (WindowEvent event) { System.exit (0);}
 });

 // ---
 // Lab Exercise #3 Part #4 - Insert code here.
 // ---
 ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (tablePane);
 tablePane.addErrorListener (errorHandler);
 // ---
 // End of code.
 // ---

 // Display the frame.
 frame.pack();
 frame.show();
 } catch (Exception e) {
 System.out.println ("Error: " + e);
 }
 }

 // This gets called whenever a key is pressed in the text area.
 public void keyPressed (KeyEvent event)
 {
 try {
 // Check for the Enter key.
 if (event.getKeyCode () == KeyEvent.VK_ENTER) {
 String queryText = textField_.getText ();

 SQLResultSetTablePane tablePane = tablePane_;

 // ---
 // Lab Exercise #3 Part #3 - Insert code here.
 // ---
 tablePane.setQuery (queryText);
 tablePane.load ();
 // ---
 // End of code.
 // ---
 }
 } catch (Exception e) {
 System.out.println ("Error: " + e);
 }
 }
}

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 54
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Exercise 4: Program Call

import com.ibm.as400.access.*;

 //
 // This program calls IBM i API QSYRUSRI (Retrieve User Information)
 // to get information on the current user.
 //

 public class qsyrusri2
 {
 public static void main(String[] argv)
 {
 try
 {
 String msgId, msgText;

 AS400 system = new AS400(); // used to get a connection

 // Create a binary converter to go between an IBM i
 // bin 4 and a Java int.
 AS400Bin4 bin4 = new AS400Bin4();

 // Create text converters for the various sizes
 // of strings will use.
 AS400Text char6 = new AS400Text(6, system.getCcsid(),
 system); // text, size 6
 AS400Text char7 = new AS400Text(7, system.getCcsid(),
 system); // text, size 7
 AS400Text char8 = new AS400Text(8, system.getCcsid(),
 system); // text, size 8
 // ---
 // Intro Lab Exercise #4 Part #1 - Insert code here.
 // ---
 AS400Text char10 = new AS400Text(10, system.getCcsid(),
 system); // text, size 10
 // ---
 // End of code.
 // ---

 // Reroute System.error to System.out
 System.setErr(System.out);

 // Create a program call object. Then
 // set the program name to "/QSYS.LIB/QSYRUSRI.PGM"
 // ---
 // Intro Lab Exercise #4 Part #2 - Insert code here.
 // ---
 ProgramCall pc = new ProgramCall(system);
 pc.setProgram("/QSYS.LIB/QSYRUSRI.PGM");
 // ---
 // End of code.
 // ---

 // The program has five parameters.
 ProgramParameter[] parms = new ProgramParameter[5];

 // First parm is the output area that contains the result.
 // The parameter value 100 means expect 100 bytes back.
 parms[0] = new ProgramParameter(100);

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 55
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

 // Second parm is the size of the output area
 // (100 bytes in our case).
 parms[1] = new ProgramParameter(bin4.toBytes(100));

 // Third parm is the output format to use. The
 // server expects the format to be in EBCDIC so we
 // use our character converter to convert from a Java
 // Unicode string to a byte array containing EBCDIC bytes.
 // ---
 // Intro Lab Exercise #4 Part #3 - Insert code here.
 // ---
 parms[2] = new ProgramParameter(char8.toBytes("USRI0100"));
 // ---
 // End of code.
 // ---

 // Fourth parm is the user profile. It is also converted
 // from Unicode to EBCDIC.
 parms[3] = new ProgramParameter(char10.toBytes("*CURRENT"));

 // Fifth parm is the 32 byte error area.
 byte[] errorArea = new byte[32];
 parms[4] = new ProgramParameter(errorArea, 32);

 System.out.println("Beginning ProgramCall Example..");
 System.out.println(" Setting input parameters...");

 // Give the list of parameters to the program call object.
 pc.setParameterList(parms);

 // Call the program. If the return code is false,
 // we received messages from the server saying why the
 // program failed. For example, program not found,
 // not authorized to program, etc. The failure to connect
 // to the server will show up as an exception, not a message.
 if (pc.run() == false)
 {
 // Retrieve list of IBM i messages
 AS400Message[] msgs = pc.getMessageList();

 // Iterate through messages and write them to standard output
 for (int m = 0; m < msgs.length; m++)
 {
 msgId = msgs[m].getID();
 msgText = msgs[m].getText();
 System.out.println(" " + msgId + " - " + msgText);
 }
 System.out.println("** Call to QSYRUSRI failed. **");
 }
 // else we were able to call the program and received data.
 else
 {
 // Pull the data out of the output parm (the first parameter)
 byte[] data = parms[0].getOutputData();

 // Print various values out of the return data. Note
 // the programmer has to know where in the buffer the
 // data starts. Also note the data at this point is
 // binary / EBCDIC. To be used by Java it must be
 // converted to Java types (int, long, ...) and Java
 // Strings.

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 56
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

 int value = ((Integer) bin4.toObject(data)).intValue();
 System.out.println(" Bytes returned: " + value);

 value = ((Integer) bin4.toObject(data, 4)).intValue();
 System.out.println(" Bytes available: " + value);

 // ---
 // Intro Lab Exercise #4 Part #4 - Insert code here.
 // ---
 String strValue = (String) char10.toObject(data, 8);
 // ---
 // End of code.
 // ---
 System.out.println(" Profile name: " +
 strValue);

 strValue = (String) char7.toObject(data, 18);
 System.out.println(" Previous signon date:" +
 strValue);

 strValue = (String) char6.toObject(data, 25);
 System.out.println(" Previous signon time:" +
 strValue);
 }
 }
 catch (Exception e)
 {
 System.out.println("Unexpected Exception ");
 e.printStackTrace();
 System.out.println("*** Call to QSYRUSRI failed. ***");
 }

 System.exit(0);
 }
 }

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 57
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Bonus Exercise 1: PCML (Java Source)
 import com.ibm.as400.data.ProgramCallDocument;
 import com.ibm.as400.data.PcmlException;
 import com.ibm.as400.access.AS400;
 import com.ibm.as400.access.AS400Message;

 //
 // This program calls IBM i API QSYRUSRI (Retrieve User Information)
 // to get information on the current user.
 //

 public class qsyrusri {

 public static void main(String[] argv)
 {
 ProgramCallDocument pcml;
 boolean rc = false;
 String msgId, msgText;
 Object value;

 System.setErr(System.out); // Redirect System.error to System.out

 // Construct AS400 without parameters, user will be prompted
 // for system name, userid and password.
 AS400 system = new AS400(); // used to get a connection

 try
 {
 System.out.println("Beginning PCML Example..");
 System.out.println(" Constructing ProgramCallDocument for QSYRUSRI API...");

 // Construct ProgramCallDocument.
 // First parameter is system to connect to.
 // Second parameter is pcml resource name. In this example,
 // serialized PCML file "qsyrusri.pcml.ser" or
 // PCML source file "qsyrusri.pcml" must be found in the classpath.
 // ---
 // Intro Lab Bonus Exercise #1 Part #1 - Insert code here.
 // ---
 pcml = new ProgramCallDocument(system, "qsyrusri");
 // ---
 // End of code.
 // ---

 // Set input parameters. Several parameters have default values
 // specified in the PCML source. No need to set them using Java code.
 System.out.println(" Setting input parameters...");
 pcml.setValue("qsyrusri.receiverLength",
 new Integer((pcml.getOutputsize("qsyrusri.receiver"))));

 // Request to call the API
 // User will be prompted to sign on to the system
 System.out.println(" Calling QSYRUSRI API.");
 rc = pcml.callProgram("qsyrusri");

 // If return code is false, we received messages from the IBM i
 if(rc == false)
 {
 // Retrieve list of IBM i messages
 AS400Message[] msgs = pcml.getMessageList("qsyrusri");

 // Iterate through messages and write them to standard output
 for (int m = 0; m < msgs.length; m++)
 {
 msgId = msgs[m].getID();
 msgText = msgs[m].getText();
 System.out.println(" " + msgId + " - " + msgText);

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 58
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

 }

 System.out.println("** Call to QSYRUSRI failed. **");
 System.exit(0);
 }
 // Return code was true, call to QSYRUSRI succeeded
 // Write some of the results to standard output
 else
 {
 value = pcml.getValue("qsyrusri.receiver.bytesReturned");
 System.out.println(" Bytes returned: " + value);
 value = pcml.getValue("qsyrusri.receiver.bytesAvailable");
 System.out.println(" Bytes available: " + value);
 // ---
 // Intro Lab Bonus Exercise #1 Part #2 - Insert code here.
 // ---
 value = pcml.getValue("qsyrusri.receiver.userProfile");
 // ---
 // End of code.
 // ---
 System.out.println(" Profile name: " + value);
 value = pcml.getValue("qsyrusri.receiver.previousSignonDate");
 System.out.println(" Previous signon date:" + value);
 value = pcml.getValue("qsyrusri.receiver.previousSignonTime");
 System.out.println(" Previous signon time:" + value);
 }
 }
 catch (PcmlException e)
 {
 System.out.println(e.getLocalizedMessage());
 e.printStackTrace();
 System.out.println("*** Call to QSYRUSRI failed. ***");
 System.exit(0);
 }

 System.exit(0);
 }
 }

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 59
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Bonus Exercise #1: PCML (PCML Source)
<pcml version="1.0">

 <!-- PCML source for calling "Retreive user Information" (QSYRUSRI) API -->

 <!-- Format USRI0150 - Other formats are available -->
 <struct name="usri0100">
 <data name="bytesReturned" type="int" length="4" usage="output"/>
 <data name="bytesAvailable" type="int" length="4" usage="output"/>
 <data name="userProfile" type="char" length="10" usage="output"/>
 <data name="previousSignonDate" type="char" length="7" usage="output"/>
 <data name="previousSignonTime" type="char" length="6" usage="output"/>
 <data type="byte" length="1" usage="output"/>
 <data name="badSignonAttempts" type="int" length="4" usage="output"/>
 <data name="status" type="char" length="10" usage="output"/>
 <data name="passwordChangeDate" type="byte" length="8" usage="output"/>
 <data name="noPassword" type="char" length="1" usage="output"/>
 <data type="byte" length="1" usage="output"/>
 <data name="passwordExpirationInterval" type="int" length="4" usage="output"/>
 <data name="datePasswordExpires" type="byte" length="8" usage="output"/>
 <data name="daysUntilPasswordExpires" type="int" length="4" usage="output"/>
 <data name="setPasswordToExpire" type="char" length="1" usage="output"/>
 <data name="displaySignonInfo" type="char" length="10" usage="output"/>
 </struct>

 <!-- Program QSYRUSRI and its parameter list for retrieving USRI0100 format -->
 <program name="qsyrusri" path="/QSYS.lib/QSYRUSRI.pgm">
 <data name="receiver" type="struct" usage="output"
 struct="usri0100"/>
 <data name="receiverLength" type="int" length="4" usage="input" />
 <data name="format" type="char" length="8" usage="input"
 init="USRI0100"/>
 <data name="profileName" type="char" length="10" usage="input"
 init="*CURRENT"/>
 <data name="errorCode" type="int" length="4" usage="input"
 init="0"/>
 </program>

 </pcml>

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 60
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

Bonus Exercise #2: GUI Builder

import com.ibm.as400.access.*;
import com.ibm.as400.ui.framework.java.*;
import javax.swing.*;

import java.awt.*;
import java.awt.event.*;

public class GUIBuilderMain
implements ActionListener
{

 private static DataQueue dq;
 private static JTextField sendField;
 private static JButton sendButton;
 private static JTextField refreshField;
 private static JButton refreshButton;

 public static void main(String[] args)
 {

 try {

 // --
 // Intro Lab Bonus Exercise #2 Part #5 - Insert code here.
 // --

 PanelManager pm = new PanelManager("GUIBuilderExample",
 "PANEL1",
 null);

 // --
 // End of code.
 // --

 // Initialize the components as defined in GUIBuilderExample.pdml.
 sendField = (JTextField)pm.getComponent("TEXTFIELD1");
 sendButton = (JButton)pm.getComponent("BUTTON4");
 refreshField = (JTextField)pm.getComponent("TEXTFIELD2");
 refreshButton = (JButton)pm.getComponent("BUTTON5");

 // Initialize the AS400 object.
 AS400 system = new AS400();

 // Initialize the data queue object. Create the data queue if
 // it is not already created.
 dq = new DataQueue(system, "/QSYS.LIB/COMMON.LIB/COMMON.DTAQ");
 try {
 dq.create(500, "*ALL", true, false, false, "");

Lab: Introduction to the IBM Toolbox for Java

Lab: IBM Toolbox for Java ©IBM Corp. 2009

 61
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 Trademarks are the property of their respective owners.

 }
 catch(Exception e) {
 // Ignore. This means that the data queue is already
 // created.
 }
 // Add a listener which makes the Send button write
 // an entry to the data queue whenever it is pressed.
 sendButton.addActionListener(new GUIBuilderMain());

 // Add a listener which makes the Refresh button
 // peek the data queue whenever it is pressed.
 refreshButton.addActionListener(new GUIBuilderMain());

 // --
 // Intro Lab Bonus Exercise #2 Part #6 - Insert code here.
 // --

 pm.setVisible(true);

 // --
 // End of code.
 // --
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }

 public void actionPerformed(ActionEvent event)
 {
 try {

 // Write an entry to the data queue when the send
 // button is pressed.
 if (event.getSource() == sendButton) {
 dq.write(sendField.getText());
 }

 // Peek the data queue when the refresh button
 // is pressed.
 else {
 String text = dq.peek().getString();
 refreshField.setText(text);
 }
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }
}

