
Extending WebSphere Applications
for Business-to-Business Integration

AS/400 Edition

July 31, 2000
An IBM e-business Experience Report

For questions, contact:
ebit@us.ibm.com

1

44 PaymentServlet .
44 Insco2Servlet .
44 InscoLoginServlet .
43 INSCO application details .
42 Payment transactions .
42 Payment Manager sources .
40 Configuring and administering Payment Manager .
40 Creating a Payment Manager instance and adding the cassette
39 Installing Payment Manager Framework and CyberCash cassette
39 Setting up the Payment Manager .
38 LDAP discoveries .
36 Setting up the LDAP server .
35 WebSphere security discoveries .
35 Configuring WebSphere Application Server security .
33 About WebSphere Application Server security .
32 Installing WebSphere Application Server .
32 Setting up the WebSphere Application Server .
32 INSCO server setup .
32 INSCO application .
30 Virtual private networking (VPN) and IP packet security .
30 XML Lightweight Extractor (XLE) .
29 eXtensible Markup Language (XML) .
28 Underwriter and INSCO B2B applications .
27 Database .
24 WebSphere security using LDAP .
19 INSCO application .
18 Application design decisions .
16 Application overview .
16 About LotusXSL (eXtensible Stylesheet Language) .
16 About XML Lightweight Extractor (XLE) .
15 About eXtensible Markup Language (XML) .
15 About AS/400 virtual private networking (VPN) .
15 About Lightweight Directory Access Protocol (LDAP) .
14 About the WebSphere Payment Manager .
14 About the WebSphere Application Server .
14 Key software products .
13 System hardware .
11 Run-time environment .
11 Environment overview .
11 Scenario architecture .
9 Key findings .
8 Executive summary .
6 Business solution .
6 Introduction .
5 Preface .

2

103 Examples: LDIF import files .
98 Data files .
97 Database details .
82 Application screen views .
82 Application source code .
81 System software requirements .
80 System hardware .
80 Reference information .
80 Appendix .
79 Underwriter VPN configuration .
79 INSCO VPN configuration .
78 Setting up the VPN .
77 Configuring IP packet filtering and NAT .
76 The scenario network .
75 Other security design considerations .
74 INSCO security design .
73 Security technologies .
72 INSCO security requirements .
72 Network and security .
70 XSL style sheet .
70 ManualApproveServlet .
69 SubmitApplicationServlet .
69 Underwriter B2B application .
68 UnderwriterResponseServlet .
67 XLE mapping files .
66 SubmitApplication .
66 Trigger program discoveries .
65 Trigger program .
65 INSCO B2B application .
64 XML communication .
64 B2B application details .
62 Setting up e-mail .
62 B2B server setup .
62 B2B applications .
59 INSCO servlet development discoveries .
57 Submit insurance application .
56 Create new customer .
53 Select customer information .
52 Submit payment information .
50 View policy information .
49 Update personal information .
47 Home .
46 Login .
45 INSCO application flow .
45 JavaBeans component .

3

131 License and disclaimer .
130 Trademarks .
129 VPN IP filter rules (underwriter) .
128 VPN configuration details (underwriter) .
122 VPN creation steps (underwriter) .
122 VPN IP filter rules (INSCO) .
121 VPN configuration details (INSCO) .
115 VPN creation steps (INSCO) .
115 Configuring network security .
113 Configuring the network .
111 Securing web resources .
111 Configuring HTTP Server for authorization services .
110 Configuring WebSphere Application Server security .
110 Setting up AS/400 WebSphere applications for B2B integration .
108 Payment Manager 2.1 API .
106 Examples: XML coded messages .

4

PrefacePrefacePrefacePreface
This scenario experience report is brought to you by a group of AS/400® developers in the
IBM® Rochester laboratory, called the e-business integration test (e-bit) team. The scenarios,
designed and constructed by the team, are derived from established business patterns (for
example, user-to-business, business-to-business (B2B)). These scenarios demonstrate how
AS/400 technology can be used to build e-business solutions.

The team takes the scenario through the design, implementation, evaluation, and deployment
process much like an actual company would. Although the team is restricted to a test laboratory
environment, great effort is made to reflect reality. Upon completion of the scenario, the team
publishes an experience report, like this one, which documents the team’s scenario experience.

Who should read this report?

This report provides content that is useful to a broad set of people who are involved in e-business
solution implementations:

� System architect who designs a new web-based application that needs to incorporate
existing applications, data, and technology. Recommended sections: Introduction, Scenario
architecture

� Solution provider who configures a complete e-business application for a customer.
Recommended sections: All sections of the document

� Other I/T architects who need to understand the technology and products used for
e-business application development. Recommended sections: Introduction, Scenario
architecture

� Technical specialist who needs detailed information on how to configure an application
server or needs source code examples. Recommended sections: Introduction, INSCO
application, B2B application, Network and security

Preface 5

IntroductionIntroductionIntroductionIntroduction

In the first implementation, we depicted an existing insurance company that was interested in
providing customer self-service via the web. The insurance company was able to provide a web
site where its customers could use a browser to obtain insurance policy information and update
personal information. The first implementation report, titled “Scaling Up e-business
Implementations with WebSphere: AS/400 Edition,” is available on the web at:

http://www-4.ibm.com/software/ebusiness/scalingwebsphere.html

For this scenario, we are extending the implementation of a fictitious insurance company called
INSCO. The insurance company was satisfied with its first experience in using the web to
improve its relationship with its customers. Customers are now satisfied because they can review
their policy information anytime they want. Agents do not have to handle as many inquiry calls
from their customers, which allows them the time to support even more customers.

The next step for the insurance company is to continue to exploit the Internet as a new way of
doing business. This will eliminate many of the inefficiencies associated with traditional
insurance processes and transactions. The goal is for the insurance company to extend its
customer service capabilities for external customers and to provide service capabilities for the
insurance agents. In addition, it would like to tie all its partners and systems together to make
running its operations more efficient and cost effective. The insurance company will extend its
e-business implementation by providing the following services:

Policy access and online payments. In addition to being able to view policy information and
update personal data, customers will now be able to pay their semiannual insurance
premiums over the web using a credit card and a secure electronic payment method. Agents
will now have web access to policy information for the customers that they support. Account
administrators will be able to view and update information for all customers. With the
addition of service capabilities for agents, the goal is to continue to improve customer
satisfaction while at the same time reducing personnel costs to support these customers.

Online application submission. Agents will now be able to submit new insurance
applications over the web using a simple browser interface. Once the application is
submitted and accepted, a request is sent to an insurance underwriter for final approval. The
goal is to improve customer service while increasing the efficiency and reducing the costs of
submitting a new application.

Business solution

This report describes the experience of enhancing an advanced e-business Customer Relationship
Management (CRM) solution. This solution implements a user-to-business and a
business-to-business (B2B) scenario. User-to-business and business-to-business are two of the

Introduction 6

business patterns that IBM customers and partners are focusing on. These business patterns and
scenarios are a key component of the Application Framework for e-business, enabling IBM and
business partner technical consultants to match proven architectures and designs to a given
business problem. The business patterns constitute a set of reusable best practices for building
e-business applications today. This report attempts to capture some of these best practices in an
AS/400 environment. For more information on the different business patterns, see the Patterns
for e-business web site located at:

http://www.ibm.com/software/developer/web/patterns

This interactive patterns site acts as a guide to aid you in the selection of the pattern and
topologies most relevant to your needs. It describes a system architecture and design structure for
various classes of applications. The patterns are categorized as follows:

User-to-business. Users interacting with enterprise applications and transactions
User-to-online buying. Businesses selling packaged goods through an online catalog
Business-to-business. Businesses programmatically linking between businesses
User-to-data. Users extracting useful information from large amounts of data
User-to-user. Users collaborating with each other using e-mail and shared documents

At the time of this writing, the web site has material for the user-to-business and user-to-online
buying patterns.

The solution described in this report is an implementation of the user-to-business pattern. It deals
with users interacting with an enterprise insurance application. The user-to-business pattern is
simple in concept. It has a presentation layer, represented by a browser communicating with an
HTTP Server, and an application layer, which is responsible for the business logic and data
access. This is an example of the thin client model in that only a small portion of the presentation
logic runs on the user's browser. Most of the presentation logic and all of the application logic are
on the server. This model allows for easy scalability by increasing the power of the server
machine or the number of servers used to handle requests. It is also easy to adapt this model to
new kinds of clients such as personal digital assistants (PDAs) and cell phones. The actual
business logic never has to change.

For more information on the user-to-business pattern, see the following redbook:
Patterns for e-business: User-to-Business Patterns for Topology 1 and 2 using WebSphere
Advanced Edition, SG24-5864, at:

http://www.redbooks.ibm.com/abstracts/sg245864.html

This solution also represents an implementation of the B2B pattern. It deals with a programmatic
link between the insurance company and an underwriter. The B2B pattern is still being finalized,
but is fairly well defined. It consists of two application layers on different business machines
communicating with each other using mutually agreed-to messages. Each message represents a
unit of work that must be performed at the target system. The message format and transport

Introduction 7

mechanism must be predetermined and agreed to by both sides. The message format should be
made as general as possible so as not to expose the internals of either application. This allows the
implementation of the application to change over time without affecting the message definitions.
The Patterns for e-business web site that is referenced above will be updated with B2B pattern
information in the near future.

The solution described in this report uses the concepts and terminology described in the Patterns
for e-business web site. It may be useful to refer to that web site for additional background
information.

Executive summary

This scenario enhances the existing self-service web insurance operations. The goal was to
provide a web site where the insurance company's customers and agents could use a browser to
obtain insurance policy information, update their personal information, submit payments, and
submit applications. This scenario allowed us the opportunity to describe the following
procedures for AS/400 customers:

� Use the original INSCO environment, which included a firewall and Network Dispatcher,
as the environment for this scenario.

� Set up and use the IBM HTTP Server for AS/400 licensed program.
� Set up and secure a virtual private network.
� Establish and implement a security policy and use various techniques to ensure the

privacy of transactions: Secure Sockets Layer (SSL), basic authentication, WebSphere™
security for login processing, which is backed by a Lightweight Directory Access
Protocol (LDAP) directory, which is in turn backed by a validation list for secure storage
of passwords.

� Set up and use WebSphere Application Server 3.02 Advanced Edition for AS/400
licensed program offering (LPO). (WebSphere Application Server 3.02 Standard Edition
for AS/400 PRPQ could also be used.) The web-facing application in this scenario
implemented a combination of Java™ servlets and JavaServer Pages™ (JSP)
technology.

� Use the WebSphere Connection Manager function to improve performance when
accessing the database.

� Set up and use the IBM WebSphere Payment Manager for AS/400 licensed program with
the CyberCash cassette to accept payments over the web.

� Use eXtensible Markup Language (XML) to format messages to the remote underwriters
using standard document type definitions (DTDs) defined by the insurance industry.

� Use XML Lightweight Extractor (XLE) to convert policy information stored in the
database to XML format. This approach will be used in lieu of DB2 XML Extenders for
AS/400 that will be available at a later time.

� Use LotusXSL (eXtensible Stylesheet Language) for converting XML documents into
HTML to view policy applications through a browser.

� Use LDAP to provide agent authorization to policy records.

Introduction 8

� Access existing enterprise data residing in a DB2® Universal Database™ for AS/400
(DB2 UDB for AS/400) from a Java servlet.

The intent of our scenario implementation was to extend how the AS/400 could be used to
implement an e-business solution. We found that we were able to extend this e-business scenario
on the AS/400 and take advantage of AS/400 strengths such as reliability, scalability, security,
and cost of ownership. Not only did we use the AS/400 for the core transactional web servers,
but we also used the AS/400e™ server as the enterprise database, LDAP, and Payment Manager
servers.

Key findings

The following list provides a glimpse into some of the key findings for this scenario:

� The AS/400 provided the server functionality we needed for our base environment. This
included the key servers, IBM HTTP Server, WebSphere Application Server, LDAP server,
and Payment Manager server. The approach we chose was to get the servers up and running
with minimal configurations and then tune the configuration per our specific implementation.
For more information on the setup and configuration, refer to the “INSCO application”
section for more details.

� For the main INSCO implementation, we made use of WebSphere Application Server
security to secure our servlets and JSP files. We also used the LDAP server to provide a way
to grant agents access to specific customer policies. We also used the Payment Manager
server to provide a means for secure payment of policies. For more information, refer to the
“INSCO application” section for more details.

� To secure our web applications, we used WebSphere Application Server Version 3.02
security. When considering using the security function provided, take into consideration that
your application will run slower and that the function is complex to configure. For more
information, refer to the “INSCO application” section for more details.

� For the B2B implementation, we established a secure connection between the two businesses’
internal systems by establishing a VPN. Communication between the B2B applications
involved the use of eXtensible Markup Language (XML). One application used XML
Lightweight Extractor (XLE) to convert its database information into an XML message. The
other used LotusXSL (eXtensible Stylesheet Language) to convert the request XML
document into HTML. For more information, refer to the “B2B application” and “Network
and Security” sections for more details.

� During the implementation of this scenario, we experienced several key debugging
challenges. We were faced with debugging issues concerning LDAP, WebSphere
Application Server, DB2 UDB for AS/400, and WebSphere Payment Manager. In the
sections where these technologies are discussed, there are discovery sections that will give

Introduction 9

you helpful hints. For more information, refer to the “INSCO application” and the “B2B
application” sections for more details.

Introduction 10

Scenario architectureScenario architectureScenario architectureScenario architecture
In this scenario, INSCO will continue to utilize the logical three-tier model of IBM’s Application
Framework for e-business. More information on Application Framework for e-business is
available on the web at:

http://www-4.ibm.com/software/ebusiness/

For more information on the three-tier model used in the first scenario, refer to the first
implementation report titled “Scaling Up e-business Implementations with WebSphere: AS/400
Edition.” It is available on the web at:

http://www-4.ibm.com/software/ebusiness/scalingwebsphere

INSCO enhanced its business by integrating its internal system with a business partner system.
This allowed INSCO to run its operation more efficiently and cost effectively. INSCO
implemented a secure B2B connection by configuring a virtual private network (VPN) (see
Figure 1). This connection, along with the supporting B2B applications, allowed the two
businesses to automate the insurance application approval process.

Figure 1. B2B model

Environment overview

This topic discusses the run-time environment, the system hardware, and the key products that
were used for this B2B solution.

Run-time environment

The INSCO insurance company wanted to be able to provide high availability and scalability for
its application, so it used dual web servers with a network dispatcher node to handle the expected
Scenario architecture 11

traffic. It also needed to protect its internal network, so it established a screened subnet security
architecture using two security gateways (also known as firewalls) to create a demilitarized zone
(DMZ) in which the web servers would run. The web servers communicated with the back-end
systems through a domain firewall. This configuration was the same as the configuration used in
scenario 1.

For this scenario, several servers were required for the successful implementation of this
scenario. “At the heart” of the scenario are the HTTP Servers and the WebSphere Application
Servers that reside on the systems in the DMZ, the INSCO intranet, and the underwriter intranet.
These servers were responsible for handling the HTTP and HTTPS requests made by INSCO
customers and for retrieving the requested data from the back-end enterprise data server. They
were also used by the INSCO company to communicate with the business partner. The
enterprise data server, DB2 UDB for AS/400, running in the INSCO internal network provided
the data access and management services. A Domain Name System (DNS) server running in the
outside world provided name resolution services so that customers could refer to the
transactional web servers by name (www.insco.com). We provided secure connections for our
customers by using the HTTPS protocol. This required that we establish a certificate authority
and create server certificates for our transactional web servers. We established the certificate
authority in the outside world and used the Digital Certificate Manager feature of Operating
System/400® (OS/400®) to create and manage the server certificates.

Figure 2 reflects the run-time topology used in this scenario. With scenario 2, a node was added,
which represents a business partner’s application and data--the underwriter. Communication with
this node needs to be secure; therefore, a VPN was established to allow the two nodes to
communicate.

Figure 2: Run-time topology

The following list represents the details for each item depicted in Figure 2. Each system is
followed by a list of the key products and features.

1. The underwriter enterprise server is an AS/400 at V4R4.
a. DB2 UDB for AS/400

Scenario architecture 12

b. WebSphere Application Server 3.02 Advanced Edition for AS/400 LPO
c. IBM HTTP Server for AS/400 licensed program
d. Java Development Kit 1.1.7 licensed program

2. Outside world system is an AS/400 at V4R4
a. Digital Certificate Manager feature of OS/400
b. Domain Name System feature

3. Protocol firewall is implemented on an IBM 2212 Router
a. N-ways Multiprotocol Access Services feature of the 2212 Router

4. Two transactional web servers are on two AS/400 systems at V4R4
a. WebSphere Application Server 3.02 Advanced Edition for AS/400
b. IBM HTTP Server for AS/400
c. Java Development Kit 1.1.7

5. Domain firewall is installed on an Integrated Netfinity Server (Windows NT Version 4.0)
a. IBM eNetwork Firewall for NT Version 4.1

6. INSCO enterprise server is an AS/400 at V4R4
a. DB2 UDB for AS/400
b. WebSphere Application Server 3.02 Advanced Edition for AS/400
c. IBM HTTP Server for AS/400
d. Java Development Kit 1.1.7
e. WebSphere Payment Manager for AS/400 Version 2.1
f. Directory Services for AS/400 feature of OS/400

System hardware

Two AS/400 systems were used in our scenario implementation: two 8-way systems. On the first
8-way system, two logical partitions were created. Two logical partitions were created on the
first system, and three logical partitions were created on the second system.

Note: The system hardware details are available in the “System hardware” section of the
“Appendix.”

Logical partitioning is the ability to make a single multiprocessing AS/400 system run as if it
were two or more independent systems. Version 4 Release 4 Modification 0 (V4R4M0) of
OS/400 introduced logical partitioning. For more on logical partitions, see the AS/400
Information Center available on the web at:

http://www.as400.ibm.com/infocenter

Scenario architecture 13

Key software products

The key software products used in this scenario were WebSphere Application Server Advanced
Edition for AS/400, WebSphere Payment Manager for AS/400, Lightweight Directory Access
Protocol (LDAP), and AS/400 virtual private networking (VPN). In addition, key elements used
were LotusXSL (eXtensible Stylesheet Language), IBM XML4J parser, and XML Lightweight
Extractor (XLE). The following sections describe these products and contain links to more
information.

Note: The AS/400 software product inventory for this scenario is available in the “System
software requirements” section of the “Appendix.”

About the WebSphere Application Server

IBM WebSphere Application Server is a robust deployment environment for e-business
applications. The Standard Edition lets you use Java servlets, JSP technology, and XML to
quickly transform static web sites into vital sources of dynamic web content. The Advanced
Edition is a high-performance Enterprise JavaBeans™ (EJB) server for implementing EJB
components that incorporate business logic. The Enterprise Edition integrates EJB and Common
Object Request Broker Architecture (CORBA) components to build high-transaction,
high-volume e-business applications.

Detailed information on IBM WebSphere Application Server for AS/400 (Advanced and
Standard Editions) is available on the web at:

http://www.as400.ibm.com/products/websphere/

About the WebSphere Payment Manager

IBM WebSphere Payment Manager for AS/400 provides secure, electronic payment processing
to Internet merchants. IBM WebSphere Payment Manager works with payment cassettes to
support the SET™ Secure Electronic Transaction™ and CyberCash payment protocols. Payment
Manager integrates with merchant software systems and provides cash register-like functionality
to manage payment processing. Payment Manager receives payments, and processes those
payments with banks and other financial institutions.

Detailed information on IBM WebSphere Payment Manager for AS/400 is available on the web
at:

http://www-4.ibm.com/software/webservers/commerce/payment/

Scenario architecture 14

About Lightweight Directory Access Protocol (LDAP)

LDAP is a directory service protocol that runs over TCP/IP. The LDAP directory service follows
a client/server model. One or more LDAP servers contain the directory data. An LDAP client
connects to an LDAP server and makes a request. The server responds with a reply, or with a
pointer (a referral) to another LDAP server. Because LDAP is a directory service, rather than a
database, the information in an LDAP directory is usually descriptive, attribute-based
information. LDAP users generally read the information in the directory much more often than
they change it. Updates are typically simple, all-or-nothing changes. Common uses of LDAP
directories include online telephone directories and e-mail directories. Other uses include security
tasks such as authentication and authorization.

Detailed information on LDAP is available on the AS/400 Information Center on the web at:

http://www.as400.ibm.com/infocenter

About AS/400 virtual private networking (VPN)

A virtual private network (VPN) allows a company to securely extend its private intranet over the
existing framework of a public network such as the Internet. With a VPN, a company can control
network traffic while providing important security features such as authentication and data
privacy.

AS/400 VPN is a function of Operations Navigator, the graphical user interface (GUI) for
AS/400, that can be used to create a secure end-to-end path between any combination of host and
gateway. VPNs use authentication methods, encryption algorithms, and other precautions to
ensure that data sent between the two endpoints of its connection remains secure.
AS/400 VPN runs on the network layer of the TCP/IP layered communications stack model.
Specifically, VPNs created using the AS/400 VPN GUI use the IP Security Architecture (IPSec)
open framework. IPSec is unique in that it provides base security functions for the Internet, as
well as flexible building blocks from which robust, secure virtual private networks can be
constructed.

Detailed information on AS/400 VPN is available on the AS/400 Information Center on the web
at:

http://www.as400.ibm.com/infocenter

About eXtensible Markup Language (XML)

The eXtensible Markup Language (XML) is a framework for defining application-specific
data-markup languages. Markup languages, like HTML, use tags to delineate each piece of data
found within an overall document. Unlike HTML, XML is focused on describing data and its
structure independent of the way the data is presented to the user. This, plus the fact that XML is

Scenario architecture 15

a standard, platform-neutral technology, makes XML a good choice for applications that need to
exchange information, especially those that cross enterprise boundaries.

Detailed information on XML is available on the web at:

http://www.ibm.com/developer/xml/

About XML Lightweight Extractor (XLE)

XML Lightweight Extractor (XLE) allows a user to annotate a given document type definition
(DTD), then extract XML documents conforming to that DTD from underlying data sources.
The template at the heart of all XML data interchange is a DTD, which defines the semantics of
an XML document. Organizations like XML.org are coordinating vendor-neutral efforts to
standardize DTDs for vertical markets.

In many applications, it is often necessary to generate XML documents from existing data
sources so that the documents conform to certain given DTDs. XLE allows a user to complete
this task in a simple and flexible way, without requiring the user to write detailed access queries
(for example, SQL).

Detailed information on XLE is available on the web at:

http://www.alphaworks.ibm.com/tech/xle

About LotusXSL (eXtensible Stylesheet Language)

LotusXSL provides a mechanism for formatting and transforming XML, either at the browser or
on the server. It allows the developer to take the abstract data semantics of an XML instance and
transform it into a presentation language such as HTML or into another XML document type.

LotusXSL implements an XSL processor in Java that can be used from the command line, can be
used in an applet or a servlet, or can be used as a module in other programs.

Detailed information on LotusXSL is available on the web at:

http://www.alphaworks.ibm.com/tech/LotusXSL

Application overview

This section introduces the INSCO and the Underwriter applications. It then describes the two
key products needed to support the INSCO application: WebSphere Application Server security
using LDAP and database. Next, the application overview describes the flow of the Underwriter
and INSCO B2B applications. Finally, it describes the following key products needed to support
the B2B application: XML, XLE, and VPN.

Scenario architecture 16

The INSCO company is extending the services it provides to include enhanced policy access,
online payment, and online application submission:

� Policy access. Customers will be able to view policy information and update personal
data. Agents will also have access to the policy information and personal data for the
customers that they support. Account administrators will be able to view and update
information about all customers.

� Online payment. Customers will be able to pay semiannual insurance premiums over
the web by using a credit card and a secure electronic payment method, CyberCash.

� Online application submission. Agents will be able to submit new insurance
applications over the web using a simple browser interface. Once the application is
submitted and validated, a request is sent to an insurance underwriter.

When developing these new services, INSCO defined the following roles and responsibilities:

Customers. These are the people who buy services from the insurance company and keep an
active account. These people traditionally deal directly with an insurance agent for any
activity associated with their policies. With the new e-business services provided by this
company, the customers will be able to use any browser to access the insurance company’s
web page, log on with a user ID and password associated with their account, and view
information about any of their individual policies. They will also be able to update their
individual account information to indicate change of address, for example. Another new
e-business service that customers will have at their disposal is the ability to pay their policy
premiums over the Internet using a credit card. Not all customers will take advantage of this
service, but some will enjoy the convenience and paperwork reduction of doing it this way.
Customers expect the insurance company to maintain the privacy of their account information
by making sure that only those authorized to see their information (such as their agent) are
able to see it. They also expect their account and policy information as well as credit card
information to be protected as it flows over the Internet.

Agents. Agents are employees of the insurance company and conduct the day-to-day business
of dealing with customers, filing claims, and soliciting new business. The new e-business
services being introduced will make agents’ lives easier by allowing them to be more mobile
as well as more responsive to their customers’ needs. With a simple browser, the agent will
be able to access the policy information for the customers they support and update personal
information for any INSCO customer. They will also be able to submit policy applications for
any customer and create accounts for new customers. The agents expect to be able to
conduct business whether they are in their office or working from a remote location. They
expect to be able to access information about all their clients without requiring unique
credentials for each client, and they expect to conduct their business securely.

Scenario architecture 17

Account administrators. Account administrators are employees of the company who have
been assigned the responsibility of ensuring that day-to-day operations run smoothly. As
such, they are given the privileges required to access and modify accounts and policies of any
customer. Account administrators expect easy-to-use tools to do their job, as well as
unfettered access to all policy information once appropriate credentials are supplied.

Security administrators. Security administrators are employees of the company who have
the responsibility of developing and implementing the company’s security policy. As such,
they are able to create and modify user registries and authorization databases or directories.
They can handle customer and agent requests to change or reset passwords or to temporarily
set individual authorizations. Security is important to this company and its customers.

Underwriters. Underwriters are the employees of a company who are responsible for
approving new policy applications. They review new applications, make an assessment on the
insurability of the applicant, and determine the rate to be applied to this policy. Traditionally,
this is largely a manual process. With the new e-business services being introduced, some of
these processes can be automated. For example, new policy applications that adhere to certain
criteria (existing customer in good standing, maximum face value of policy, standard
contract) can be automatically approved or conditionally approved pending credit approval.
This greatly reduces the workload for the underwriter. The underwriter expects to be able to
establish the rules associated with automatic underwriting and modify or restrict those rules
at any time. They expect to be notified immediately of all new applications that require
manual approval as well as have access to a log of applications that are automatically
approved.

Application design decisions

The following describes the design decisions that were made up front:

� The payment processing portion of the INSCO application was written as a separate
servlet. This allows the INSCO company to change its Payment Manager APIs in the
event that the Payment Manager changes or if INSCO decides to go with a different
payment solution.

� For simplicity, we will only include the main driver on the auto insurance policy, which
will be the customer.

� Underwriters may choose to implement their database as they want.

� We will use a data queue to generate the next available customer number and policy
number to avoid the issuance of duplicate numbers.

� There will not be an update policy function. To update a policy, the current policy would
need to be deleted and a new one created. To delete a policy, the agent must contact the
account administrator who would delete the policy.

Scenario architecture 18

� Customers will only see and be able to update the following information: first name, last
name, middle initial, address, zip code, e-mail address, home phone, and work phone.

� Agents will only be allowed to view those policies that they are responsible for. They
will be allowed to change any customer's personal information, which includes first
name, last name, middle initial, address, zip code, e-mail, home phone, and work phone.
Agents will also be allowed to submit an application for any customer. These changes are
based on the LDAP design we chose.

INSCO application

An INSCO user (customer or agent) will log on using a form-based authorization, which calls the
InscoLoginServlet. The InscoLoginServlet uses WebSphere authentication to verify the user.
Once the user has been verified, the user information will be stored as session data, and the user
will be redirected to the Insco2Servlet. At this point, the Insco2Servlet becomes the controlling
servlet. The Insco2Servlet will access an LDAP directory to provide the user type (that is,
customer, agent, or account administrator), which will allow the servlet to load the proper JSP
file. For a customer, the Customer Home Page will be loaded. For an agent or account
administrator, the Select Customer Information page will be loaded.

The flow of a customer's interaction with the INSCO application is shown in Figure 3. The
numbered transitions are described in the steps that follow.

Scenario architecture 19

Figure 3. Customer flow

1. Using a web browser, customers access http://www.insco.com/inscologin.html to load the
login page.

2. Customers enter their account number and password and click Login. At this point,
customers are authenticated by IBM Websphere Application Server security using LDAP,
and the Customer Home Page is loaded. From the Customer Home Page, they can update
their personal information, view the details of any of their policies, submit a payment on
one or more of their policies, or log off of the INSCO application.

3. From the Customer Home Page, customers can change their name, address, and phone
number by clicking the Update Personal Info button. This sends them to the Update
Personal Information page, which allows them to view and update their personal
information. While updating their personal information, customers can use the Reset
button to refresh the values of all fields to their initial values. Customers can also click
the Cancel button to return to the Customer Home Page without making any changes.

4. To actually update their information, customers must click the Submit Changes button.
This will send them to the Request Submitted page. On the Request Submitted page, they

Scenario architecture 20

are automatically redirected to the Customer Home Page after five seconds. They may
also click the Back to Home Page button to return there as well.

5. From the Customer Home Page, customers can also view the details of a home or auto
policy by clicking the View button corresponding to the policy they want to view. When
customers finish viewing their policy information, they can click the Back to Home Page
button to return to the Customer Home Page.

a. If the selected policy is an auto policy, customers are sent to the View Auto Policy

page detailing the selected policy’s information.

b. If the selected policy is a home policy, the customer is sent to the View Home Policy
page detailing the selected policy’s information.

6. Customers can also submit an online payment from the Customer Home Page. To submit
a payment, they select the policies they would like to make a payment for and click the
Submit Payment button. This will direct them to the Make Payment page. The Make
Payment page provides a form for them to enter their credit card information and allows
them to verify that the correct policies were selected and that the total payment amount is
correct. If customers decide against making the payment, they can click Cancel and
return to the Customer Home Page.

7. To make the payment, the customer must click the Make Payment button. After clicking
the Make Payment button, the IBM WebSphere Payment Manager for AS/400 is used to
process the customer’s payment. Upon completion, the customer is sent to the Pay
Success page. On the Pay Success page, the customer may click the Home button to
return to the Customer Home Page or may wait five seconds to be automatically
redirected.

8. When customers finish using the INSCO application, the customer should click Log Off
from the Customer Home Page to leave the INSCO application securely. By clicking Log
Off, no one else using the customer's browser will be able to view any of the customer’s
personal information from the INSCO web site.

The flow of an agent's interaction with the INSCO application is shown in Figure 4 with the
numbered transitions described in the steps that follow.

Scenario architecture 21

Figure 4. Agent and account administrator flow

1. Using a web browser within the INSCO intranet, agents access
http://sys.bus.com/inscologin.html to load the initial page.

2. Agents enter their account number and password and click Login. At this point, the agent
is authenticated by IBM Websphere Application Server security using LDAP and the
Select Customer Information page is loaded. The Select Customer Information page
provides several options for agents. Agents can search on a policy number, a customer
number, or a customer's last name; can create a new customer; or can log off the INSCO
application.

3. On the Select Customer Information page, agents can enter a policy number and click the
Select button. LDAP is used to check agent authorization to the policy. If agents have
authorization to access the policy, the View Auto Policy page or the View Home Policy

Scenario architecture 22

page is displayed with the policy’s information. When agents have finished viewing the
policy details, they can click the Back to Home Page button to go to the Agent Home
Page. See item 8 below for more information on the Agent Home Page.

4. Agents also can search on a customer number from the Select Customer Information
page. After entering a customer number and clicking the Select button, agents are sent
directly to the Agent Home Page if the customer exists. The Agent Home Page contains
the information for the customer whose number was entered by agents.

5. From the Select Customer Information page, agents can do a fuzzy search on a customer's
last name. After entering all or part of a customer’s last name, agents click the Select
button and is sent to the Search Results page. The Search Results page provides a list of
customers whose last name matches or starts with the name provided by the agent. If
agents find the customer in the list that they would like to work with, they can click the
View button corresponding to that customer. This will send agents to the Agent Home
Page to work with that customer. If agents do not find the customer they are looking for,
they can click Cancel and return to the Select Customer Information page.

6. Agents can create a new customer by clicking the Create New Customer button on the
Select Customer Information page. This sends agents to the New Customer page
containing a form to fill in all of the customer’s personal information. If agents decide
not to create a new customer account, they may click Cancel to return to the Select
Customer Information page.

7. When all required fields are filled in, agents may click Add Customer to actually create
the new customer account. After clicking Add Customer, agents are sent to the Request
Submitted page, which confirms the account was added. Agents can return to the Agent
Home Page by clicking Back to Home Page or wait to be redirected there after five
seconds.

8. The Agent Home Page is similar to the Customer Home Page. It contains the same
information that the customer sees, but with several major differences. First, the View
buttons only appear for policies that agents are authorized to access. The check boxes for
each policy and the Submit Payment button have been removed. Finally, agents can also
submit auto and home applications or can return to the Select Customer Information page.

9. From the Agent Home Page, agents can update the customer’s personal information by
selecting the Update Personal Info button. This operation is the same as it is for
customers. For more information on the flow of updating a customer’s personal
information, see items 3 and 4 of the customer flow.

10. From the Agent Home Page, agents can submit a new auto policy application by selecting
Submit Auto Application.

Scenario architecture 23

a. This will direct agents to the Submit Auto Application page, which allows agents to
enter the information for the auto to be covered and to select the desired coverage. If
agents decide not to submit the application, they can click the Cancel button to return
to the Agent Home Page.

b. After agents enter all of the specific policy information, they can select the Submit
Auto Application button to submit the application. If the application submission
completes successfully, agents are sent to the Request Submitted page. Agents can
continue to the Agent Home Page by selecting the Back to Home Page button, or they
are automatically redirected there after 5 seconds.

11. From the Agent Home Page, agents can submit a new home policy application by
selecting Submit Home Application. The flow of submitting a home application is the
same as the flow for submitting an auto application. See the previous item for more
information.

12. By clicking one of the View buttons on the Agent Home Page, agents can view a policy.
This operation flows the same as it does for customers from their respective home page.
For more information, see item 5 of the customer flow for a detailed description.

13. Agents may return to the Select Customer Information page by clicking the Select
Another Customer button on the Agent Home Page.

14. Agents can log off of the INSCO application from either the Agent Home Page or the
Select Customer Information page by clicking Log Off. This securely logs agents off of
the application and prevents others who are using an agent's browser from viewing any
sensitive information that an agent may have viewed while working from the INSCO web
site.

WebSphere security using LDAP

In this scenario, INSCO used WebSphere Application Server security to secure its web resources.
INSCO implemented this security by using the Lightweight Third-Party Authentication (LTPA)
framework. LTPA accesses the Lightweight Directory Access Protocol (LDAP) to authenticate
users. LDAP is provided on the AS/400 as a part of the operating system and is known as
Directory Services. The details of LTPA are described later in the INSCO application section.

INSCO used LDAP exclusively for authentication and authorization:

� Authentication provides verification of the user’s identity. This was accomplished by
prompting the users for their user ID and password. These credentials were then passed
from the WebSphere Application Server to the LDAP server for verification.

� Authorization allows users access to specific objects. Authorization was handled in the
application by binding to the LDAP server with the user’s credentials and attempting to

Scenario architecture 24

access a certain policy. If the attempt was successful, the user has authority to that policy
within the INSCO application.

The following diagram depicts the Directory Information Tree (DIT) that was defined to be used
by WebSphere to authorize users.

Figure 5. Directory Information Tree

Each object in a DIT has a distinguished name (DN) associated with it. A DN is composed of a
sequence of relative distinguished names (RDNs) separated by commas. The sequence of RDNs
makes up a DN that identifies the parents of a directory entry up to the root of a DIT. For
example, in this scenario, the DN cn=A0000001,ou=agents,o=insco,dc=sys,dc=insco,dc=com
represented the person with the common name (cn) A0000001 under the organizationalUnit (ou)
agents in the organization (o) insco, which was under the domain (dc) sys.insco.com.

The INSCO DIT was broken up into three main subtrees: agents, customers, and policies. In
addition, several groups were defined to make assigning authority easier. An account
administrator, inscoAdmin, owned and could access all other objects in the DIT. INSCO used
the following default objectclasses provided by LDAP: domain, organization, organizationalUnit,
AccessGroup, inetOrgPerson, and ePerson. In addition, INSCO defined two new objectclasses,
inscoPerson and inscoPolicy, and one new attribute, inscoPersonType. Each object type of the
DIT is described in the following section.

Scenario architecture 25

o=insco and cn=inscoAdmin
The organization o=insco and the account cn=inscoAdmin were created and owned by the
LDAP administrator. The o=insco entry contained all of the main organizationalUnits and
groups used in this scenario. The account cn=inscoAdmin had an objectclass of
inetOrgPerson and ePerson. This account was responsible for all entries below the o=insco
entry and was the only person who had access to the cn=securityAdministrators group.

Customers
Each of the insurance company's customers had a corresponding account added to the
ou=customers container. These entries had the objectclass inetOrgPerson, ePerson, and
inscoPerson. The addition of inscoPerson was needed so INSCO could add an attribute to
each entry specifying the type of account. For customers, the attribute inscoPersonType was
set to customer. An aclEntry attribute was also added to each entry to allow customers to
access their own entry. After customer authentication, the aclEntry allowed the application to
check the inscoPersonType attribute to determine if the person was a customer or agent.

Policies
Every insurance policy had a corresponding entry under the ou=policies container. The
insurance policies used the objectclass inscoPolicy, and had no attributes associated with
them. These entries did not contain any policy information, but instead served as access
control for the application. Associated with each policy was an aclEntry attribute for each
person who had access to the policy. By default, an aclEntry was added for the customer who
owned the policy, the agent who created the policy, and both the cn=securityAdministrators
and cn=accountAdministrators groups.

Agents
Each insurance agent had a corresponding entry created under the ou=agents container.
Agents had the same objectclasses as customers. The difference was that the
inscoPersonType attribute for agents was set to agent unless the agent was an administrator.
Each agent was a member of the group cn=allAgents. They could also be members of the
administrator's groups, which would give them more access.

Account administrators
If agents were members of the cn=accountAdministrators group, they had access to update
and view all policies in the insurance company. However, they could not create or delete
agents or change who had access to a policy.

Security administrators
The security administrators were responsible for adding or deleting agents. They could also
change who had access to a policy and add agents to the cn=accountAdministrators group.

ACLs
Access control lists (ACLs) were used to control who had access to certain entries in the
LDAP server. After an agent logged on and tried to view a certain policy, the application

Scenario architecture 26

would bind to the LDAP server with the agent’s credentials and try to access the policy entry.
Agents would be allowed to view the actual policy if they had access to the policy entry.

Database

DB2 UDB for AS/400 provides reliable data management and allows INSCO to access the data
from multiple platforms. Again, our environment consists of AS/400e servers in the middle tier
(DMZ), with our data residing on an AS/400e server in the third tier (internal network). Figure 6
depicts the INSCO database schema.

Figure 6. INSCO database schema

The following list shows the file contents for each table that is used to store the insurance
company information.

Scenario architecture 27

Pending policy applicationsPending
Auto policy informationAuto
Home policy informationHome
Zip codes and state namesZip
Payment history of a policyPayment history
Information on the policy coverageCoverage
Base policy informationBase policy
Insurance agent informationAgent
Customer’s personal dataCustomer
File contentsTable name

The arrows show the relationship between the tables. Note that the database was redesigned
from the original INSCO database. We removed the ClientPW table and replaced it with an
LDAP directory. We moved the passwords to the LDAP directory so we could use WebSphere
authentication.

Note: The complete database layout can be found in the “Database details” section of the
“Appendix.”

Underwriter and INSCO B2B applications

The process of approving a policy application with the Underwriter and INSCO B2B applications
is illustrated and described below.

Figure 7. B2B flow

Scenario architecture 28

1. The INSCO application running on the DMZ web servers adds a policy application to the
database.

2. Whenever a policy gets added to the database, a trigger program is called.

3. The trigger program invokes a Java application (SubmitApplication).

4. The INSCO SubmitApplication program, using XLE, gets the data from the database and
submits the resulting XML document to the underwriter's SubmitApplicationServlet.

5. The SubmitApplicationServlet parses the XML data from INSCO, adds an entry in a
database with the request identifier, and stores the XML data in a file on the server.

6a. The SubmitApplicationServlet then determines whether this application can be instantly
approved or rejected. In this scenario, we base this decision solely on income. It then
formulates an XML-encoded response and passes it back to the SubmitApplication
program to indicate whether it was instantly approved or not.

6b. Applications that are not instantly approved or rejected must be handled manually by the
underwriters. They can do so by running the ManualApproveServlet. This servlet
queries the database for new applications and retrieves the XML data about the
application from the file stored on the server. The servlet formats this data and presents
the information to the underwriters by using LotusXSL style sheets. The underwriters
can then approve or reject this application by pressing the appropriate button, and the
ManualApproveServlet forwards the XML-encoded response to the
UnderwriterResponseServlet on the INSCO server.

7. The UnderwriterResponseServlet or the SubmitApplicationServlet parses the received
XML-encoded response from the underwriter and, based on the content, updates the
database accordingly.

eXtensible Markup Language (XML)

We used XML for formatting communication between INSCO and the underwriter primarily
because we wanted to use a flexible, well-defined protocol that was already defined for the
industry. We found the XML standard we were looking for at Agency-Company Operations
Research and Development (ACORD). They have defined XML data type definitions (DTDs)
for all aspects of the insurance industry. DTDs define XML tags and their relationship with other
tags found in an XML document or data stream. We found two separate and distinct insurance
models defined at the ACORD site. One was strictly for life insurance. The other was more
broad and encompassed auto insurance, home insurance, and many other types, called property
and casualty. Because these two models were so different and to make things easier, we decided
to pick only one to use. From these two models, we used the property and casualty model
because it included both auto and home insurance and mapped better to our scenario.

Scenario architecture 29

These models were defined to include all the data that an insurance company would require to
conduct business. From these models, a separate DTD is proposed and approved for each type of
transaction that uses this defined data. For example, one DTD would be created to define a
home-owners insurance application request to an underwriter. Not all of the available DTDs had
been proposed at the writing of this report, but fortunately the following DTDs had been
proposed or approved:

� Personal Auto Insurance Request
� Personal Auto Insurance Response
� Personal Home Insurance Request
� Personal Home Insurance Response

Given the status of these DTDs, we decided to limit this scenario to include only auto and home
insurance. More information about the ACORD DTDs can be found at:

http://www.acord.org/standards/xml/Frame.htm

XML Lightweight Extractor (XLE)

To make the XML messages easier to create, we decided to use XLE, which is a utility provided
by the IBM AlphaWorks team. XLE allows you to easily extract data out of any database and
format the results into XML. This is done by creating a mapping file, which tells XLE which
database tables and columns to map to which XML tags.

Virtual private networking (VPN) and IP packet security

There were several network security considerations in our scenario. We needed to provide a
secure connection between the INSCO and underwriter systems for the automated approval
application. We also needed to secure other network communications.

We needed to connect the INSCO and underwriter systems hosting the automated approval
application. The applications communicate using the HTTP protocol. Two key security
requirements for this communication are data integrity and confidentiality. Since both
companies have established Internet connectivity, a VPN solution was chosen.

AS/400 VPN uses two IPSec protocols to protect data as it flows through the VPN tunnel:
Authentication Header (AH) and Encapsulating Security Payload (ESP). The Internet Key
Exchange (IKE) protocol, or key management, is another part of IPSec implementation. While
IPSec encrypts your data, IKE supports automated negotiation of security associations and
supports automated generation and refreshing of cryptographic keys.

For the automated approval application process, INSCO implemented a host-to-host dynamic
VPN connection. There was no need to connect the INSCO and underwriter internal networks.
Only the internal systems that were hosting the automated approval applications needed to be

Scenario architecture 30

connected. Use of a dynamic connection provided additional security through the use of the IKE
protocol mentioned above.

IP packet security was deployed to secure network communications. IP packet filtering was
implemented on the firewalls and AS/400 systems. IP packet filtering protects your system by
filtering packets according to rules that you specify. You define the policies that determine the
types of packets that are permitted or denied access to your system or network.

Network address translation (NAT) was also used to hide internal IP addresses of INSCO internal
servers from public knowledge. Static NAT, which is a one-to-one mapping of IP addresses, was
used. NAT was configured on the INSCO domain firewall. Static NAT rules were defined to
map the internal addresses of the INSCO servers to public IP addresses.

Scenario architecture 31

INSCO applicationINSCO applicationINSCO applicationINSCO application
The goal of the INSCO application was to allow the insurance company to extend its customer
service capabilities for external customers and to provide service capabilities for its internal
customers (that is, the insurance agents).

The INSCO application was deployed on the transactional web servers residing in the DMZ and
in the intranet. The three web servers, with IBM HTTP Server and IBM WebSphere Application
Server installed, were equipped with identical versions of the application. The two web servers
used in the DMZ allowed the implementation to handle more customer requests with greater
efficiency. The one web server used in the intranet allowed the agents to access the application
internally.

INSCO server setup

For the INSCO application, the following servers had to be set up:

�WebSphere Application Server 3.02 Advanced Edition
�LDAP 2.1
�Payment Manager 2.1

The following sections describe how each of these servers was set up and configured.

Setting up the WebSphere Application Server

For our implementation, we used IBM WebSphere Application Server 3.02 Advanced Edition for
AS/400. We used the Advanced Edition because WebSphere Application Server Standard
Edition for AS/400 Version 3.02 was not available. Once the Standard Edition is made publicly
available, it could be used in place of the Advanced Edition.

Installing WebSphere Application Server

The setup of IBM WebSphere Application Server 3.02 Advanced Edition was completed using
the product documentation. No special considerations were made for our particular
implementation. The general setup steps used in our implementation follow:

1. Check the prerequisite requirements for installing and running WebSphere Application
Server.

2. Install WebSphere Application Server on the AS/400.
3. Start the WebSphere Application Server environment.

On the AS/400 command line, enter STRSBS QEJB/QEJBSBS to start the QEJB
subsystem and the default administrative server.

INSCO application 32

4. Verify that the WebSphere Application Server environment has started.
5. Install the WebSphere Administrative Console on a workstation that is located in the

same domain as the WebSphere Application Server.

The Administrative Console is used for configuring and managing WebSphere
Application Server for AS/400. It is necessary to install the Console before using
WebSphere Application Server.

6. Start the WebSphere Administrative Console on the workstation.
7. Create a new HTTP server configuration.
8. Configure IBM HTTP Server for AS/400 to support WebSphere Application Server.
9. Start an HTTP server instance.
10. Verify the installation.
11. Check the WebSphere Application Server Advanced Edition V3.02 PTF web page to

verify that the latest Advanced Edition program temporary fixes (PTFs) are installed on
the AS/400.

Make sure that you install PTF SF99028 and PTF SF99029. The page is available on the
web at:

http://www.as400.ibm.com/products/websphere/services/service.htm#AE

For complete documentation on setting up WebSphere Advanced Edition on AS/400, refer to
IBM WebSphere Application Server Advanced Edition for AS/400 available on the web at:

http://://www.as400.ibm.com/products/websphere/docs/as400v302/docs/index.html

About WebSphere Application Server security

It was desirable for INSCO to provide a form-based authentication (inscologin.html). To provide
this type of authentication, the WebSphere Application Server was set up to use the custom
challenge mechanism. Custom challenge is useful when one wants the server to use an HTML
form to retrieve the user ID and password. The use of an HTML form allows the application to
retain the user ID and password for later use. For example, the INSCO servlet requires the user
ID and password to bind to the LDAP directory for agent authorization to policies.

To implement the custom challenge mechanism, Lightweight Third-Party Authentication (LTPA)
needed to be utilized. LTPA accesses the LDAP, and LDAP contains the user registry against
which authentication is performed. In this scenario, the user registry was populated with the user
ID and password from the existing database tables. The passwords were only stored in the LDAP
directory. To allow users to change their passwords or to apply password policy rules, an
application would need to be written. In this scenario, a password changing tool was not
implemented; therefore, users would need to contact the security administrator to change their
password.

INSCO application 33

Using LTPA, WebSphere allows users to authenticate once per session. In our scenario, the web
servers were located in the DMZ, and the LTPA and LDAP servers were located in the INSCO
intranet. A typical authentication flow and description follow:

Figure 8. LTPA authentication flow

1. A user who has yet to be authenticated issues a request to access a secure web resource that is
configured to use the Custom login challenge mechanism.

2. The web server challenges the user by redirecting the browser to a uniform resource locator
(URL) configured as the login URL. To perform a form-based login, this URL points to an
HTML file containing a form to request a user ID and password.

3. The user then responds to the challenge by providing the authentication information.
4. When the form is submitted, the web server contacts the security application, a servlet that

performs a customized login, and provides the authentication information. If the user is
authenticated, a token is issued to the web server.

5. When a request for authentication comes in from a web server, the LTPA server will use the
LDAP user directory to authenticate the user.

6. If the user’s authentication data is verified, the LTPA server issues an LTPA token to the
client.

7. The web server receives the token issued to the user and serves the requested resource. If
WebSphere Single Sign-On (SSO) is enabled, the web server will store the token in the user’s
browser as a cookie.

To maintain the authentication state across multiple web requests, the WebSphere SSO
framework must be used. The use of SSO requires LTPA to be the authentication mechanism.
WebSphere includes a CustomLoginServlet sample that extends the AbstractLoginServlet that
can be modified to perform a customized login. For an overview of WebSphere Application
Server security, refer to IBM WebSphere Standard/Advanced 3.02 Security Overview available
on the web at:

http://www-4.ibm.com/software/webservers/appserv/security.pdf

INSCO application 34

Configuring WebSphere Application Server security

This topic provides an overview of the steps necessary for configuring WebSphere Application
Server security.

Note: Due to the complexity of configuring WebSphere Application Server security, the
exact steps are provided in the “Appendix.”

To configure WebSphere Application Server security:

1. Enable security by selecting Specify Global Settings in the WebSphere
Administrative Console.

2. Enable the use of authorization services for the HTTP Server configuration.

3. Secure the WebSphere resources.

Turning on security disables any Enterprise JavaBeans (EJBs) beans until security has
been configured for these applications. In our scenario, we did not have any EJBs
deployed under the WebSphere Application Server.

For complete documentation on setting up WebSphere Advanced Edition security on AS/400,
refer to IBM WebSphere Application Server Advanced Edition for AS/400 available on the web
at:

http://www.as400.ibm.com/products/websphere/docs/as400v302/docs/index.html

WebSphere security discoveries

The following discoveries are useful when configuring custom authentication. Make sure that
the following items are defined correctly:

1. Under the Global Security settings:
a. Make sure you enable SSO.
b. Make sure that your domain name is fully qualified. For example, if your machine

name is foo.mydomain.com, then your domain name should be mydomain.com.
c. Make sure that the login URL is fully qualified and that the host name is within the

domain that you specified.
d. If your domain is a normal top-level domain, myserver.com, make sure to set your

realm and domain names to .myserver.com. If your domain is an extended domain,
myserver.ny.us, make sure to set your realm and domain names to
myserver.ny.us.

2. Make sure that the redirect URL is fully qualified in the HTML form used for
authentication. This refers to the “jumpto” URL within the CustomLoginServlet.

INSCO application 35

3. All resources that are accessed by a secured resource must also be secured. This includes
all servlets and all JSP files.

4. The following changes need to be made to the AbstractLoginServlet:
try {
retCreds = authenticator.login(userid, password, true);
Authenticator.setInvocationCredentials(retCreds); // add this line

} catch(Exception e) { // catch all possible exceptions
throw new ServletException(); }

// do whatever is required of postlogin
// move this line from its previous location (just after the setSSO code block) to here.

postLogin(req, res);

// apart from performing authentication, set up the SSO cookie so that
// WebSphere can use that instead of prompting for used and password
// or in the case of Custom challenge type will not redirect the
// user back to the logic form
if (sets) {
try {
setupSSO(userid, password, req, res);

} catch (RemoteException e) {
throw new ServletException("Error setting single sign-on");

} catch (org.omg.SecurityLevel2.LoginFailed e) {
throw new ServletException("Login Failed");

}

}

Setting up the LDAP server

The LDAP server is located on the enterprise server and is accessed from the transactional web
servers via the default LDAP port, 389. To set up the LDAP server, we had to update the
configuration files, configure the server through Operations Navigator, and populate the LDAP
server with initial data from the database.

Because we decided to add custom objects and attributes to the DIT, we needed to update the
LDAP server’s configuration files to reflect this. The following objects were added to the end of
the /QIBM/UserData/Os400/DirSrv/UsrOC.txt file on the enterprise server:

objectclass inscoPerson
requires

objectClass
allows

inscoPersonType

objectclass inscoPolicy
requires

objectClass,
cn

This adds two objects to the LDAP server. The inscoPerson object allows the inscoPersonType
attribute. The inscoPolicy object requires the cn attribute and allows no other attributes.

INSCO application 36

We also added the following line to the /QIBM/UserData/Os400/DirSrv/UsrAT.txt file:

attribute inscoPersonType cis inscoPersonType 15 normal

This line indicates that attribute inscoPersonType can be added to objects, and it can have a
maximum of 15 characters. This attribute will be set to either customer, agent, securityAdmin,
or accountAdmin, based on what type the person is. Once these changes were made, we were
ready to create and configure our LDAP server.

To configure a new LDAP server:

1. Within Operations Navigator, expand Network Servers TCP/IP, right-click
Directory, and select Configure to configure a new LDAP server. We used the following
values in the configuration wizard:

dc=sys,dc=insco,dc=comDirectory Suffix

adminAdministrator
Password

cn=administratorAdministrator Name
/QSYS.LIB/LDAPINSCO.LIBLibrary

2. Create an index on the cn attribute (to improve the performance of searches).

a. Right-click Directory.
b. Select Properties.
c. Click the Performance tab.
d. Click Indexing Rules... and add cn to the list of indexed attributes (which is initially

empty).

3. Populate the LDAP server with initial data.

We wanted to create an LDAP entry for each agent, customer, and policy currently in the
database, so we wrote a simple Java program that queried the database and generated the
LDIF files for LDAP. LDIF (LDAP Directory Interchange Format) files are specially
formatted text files that provide a simple way to import a lot of data into an LDAP server at
once. Our Java program generated a separate LDIF file for agents, customers, and policies,
and then generated another LDIF file to import the groups that we needed. We also needed to
write LDIF files to create the DIT structure.

Below is an example of a policy entry:

dn: cn=P55557,ou=policies,o=insco,dc=sys,dc=insco,dc=com
cn: P55557
aclEntry: group:cn=accountAdministrators,o=insco,dc=sys,dc=insco,dc=com:

object:ad:normal:rwsc:sensitive:rwsc:critical:rwsc
aclEntry: access-id:cn=C22223,ou=customers,o=insco,dc=sys,dc=insco,dc=com:

object:a:normal:rwsc:sensitive:rwsc:critical:rwsc
aclEntry: access-id:cn=A11113,ou=agents,o=insco,dc=sys,dc=insco,dc=com:

INSCO application 37

object:ad:normal:rwsc:sensitive:rwsc:critical:rwsc
entryOwner: access-id:cn=administrator
entryOwner: access-id:cn=inscoAdmin,o=insco,dc=sys,dc=insco,dc=com
entryOwner: group:cn=securityAdministrators,o=insco,dc=sys,dc=insco,dc=com
objectclass: inscoPolicy

All the aclEntry lines must be on a single line, but they are broken up here for presentation
purposes. Only entryOwners are permitted to change an entry’s access control list (ACL)
attributes, so we made the group cn=securityAdministrators and the entry cn=inscoAdmin
entryOwners. We also added an aclEntry attribute to each policy for the group
cn=accountAdministrators so that account administrators could access every policy, for the
customer who owns the policy and for the agent who created the policy. Agent and customer
entries were set up similarly.

Note: Examples of agent and customer entries are listed in the “Appendix.”

After we created the LDIF files, we imported them into LDAP. First, we had the main LDAP
administrator import the top-level objects of the DIT, under which all the INSCO objects exist,
and import the cn=inscoAdmin entry. Then, we had the cn=inscoAdmin user import the rest of
the DIT and all the agents, customers, policies, and groups. To import the LDIF files into the
LDAP server, we issued the following LDAP utilities from QSH shell on the enterprise server:

ldapadd -D "cn=administrator" -w admin -f "/insco/adminDIT.ldif"
ldapadd -D "cn=inscoAdmin,o=insco,dc=sys,dc=insco,dc=com" -w insco -f "/insco/ldap/inscoDIT.ldif"
ldapadd -D "cn=inscoAdmin,o=insco,dc=sys,dc=insco,dc=com" -w insco -f "/insco/ldap/agents.ldif"
ldapadd -D "cn=inscoAdmin,o=insco,dc=sys,dc=insco,dc=com" -w insco -f "/insco/ldap/customers.ldif"
ldapadd -D "cn=inscoAdmin,o=insco,dc=sys,dc=insco,dc=com" -w insco -f "/insco/ldap/policies.ldif"
ldapmodify -D "cn=inscoAdmin,o=insco,dc=sys,dc=insco,dc=com" -w insco -f "/insco/ldap/groups.ldif"

The group objects cn=securityAdministrators, cn=accountAdministrators, and cn=allAgents were
created in the inscoDIT.ldif file, but they were populated in the groups.ldif file. The entire
LDAP data population took about 6 hours to complete in our scenario, which had 1000 agents,
30,000 customers, and 60,000 policies. The reason this took so long was due to the heavy use of
ACLs in the LDAP server.

For more information about setting up and using the LDAP server on the AS/400, see the AS/400
Directory Services web site at:

http://www.as400.ibm.com/ldap

LDAP discoveries

The following discoveries are useful when setting up an LDAP server:

� In an LDIF file, you cannot change the ownerPropagate or inheritOnCreate attribute of an
entry without also changing the entryOwner attribute.

INSCO application 38

� In an LDIF file, you cannot change the aclPropagate attribute without also changing the
aclEntry attribute.

� There are two ways to import data into an LDAP server. One is by importing through
Operations Navigator, and one is by calling the LDAP utilities (such as ldapadd) from the
QSH shell. We found that the LDIF file you use must contain different attributes based
on which method you use. To import data from Operations Navigator, you are required
to specify the ownerSource and aclSource attributes or you cannot change any of the
entryOwner or ACL attributes. This is not valid when using the LDAP utilities, where
you cannot specify ownerSource or aclSource, or the command will fail.

Setting up the Payment Manager

The process for a merchant to become fully functional with a Payment Manager begins with the
merchant going to a financial institution to set up bank accounts and choosing what credit cards
they would like to support. The merchant would then register with CyberCash. The financial
institution would give CyberCash information about the new accounts. CyberCash gives
merchants a CyberCash ID and a CyberCash merchant key for each account they have with
CyberCash, and that information is used to configure the CyberCash cassette. The following web
pages explain these steps in detail.

These web sites give a good overview of what is involved in registering with CyberCash:

https://amps.cybercash.com/
http://www.cybercash.com/cybercash/merchants/credit_start.html

This web site has a step-by-step guide of the steps a merchant would take. In our case, we do not
have to download any software:

http://www.cybercash.com/cybercash/merchants/docs/html/get_started.html

This web site contains the MCK Planning Guide, which walks through the process on page 31
(Integrating Your Storefront with Cash Register Service). Again, we did not need the MCK or
any CyberCash software because we have integrated all of that into the cassette.

http://www.cybercash.com/cybercash/merchants/docs/plan.pdf

Installing Payment Manager Framework and CyberCash cassette

The following describes how to install and set up the Payment Manager.
The Restore Licensed Program (RSTLICPGM) CL command is used to install the Payment
Manager. This installs the Payment Manager Framework and the Test cassette.

INSCO application 39

RSTLICPGM LICPGM(5733PY2) DEV(OPT01)

In addition to installing the Framework, the cassette for CyberCash needed to be installed. The
cassette is installed using Option 2.

RSTLICPGM LICPGM(5733PY2) DEV(OPT01) OPTION(2)

During installation, the QPYMADM user profile is created. This profile is used as the default
Payment Manager Administrator for all instances. A password must be associated with this
profile before it can be used. The Change User Profile (CHGUSRPRF) CL command is used to
change the password. Once the password is changed, this profile can be used to initially log onto
the Payment Manager user interface.

Creating a Payment Manager instance and adding the cassette

Now that the Framework and the cassette have been installed, a Payment Manager instance needs
to be created. To create an instance, you must first ensure that the HTTP administration server is
started and also that the WebSphere Application Server has been started. To start the
administration server, use the Start TCP/IP Server (STRTCPSVR) CL command:

STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

The WebSphere Application Server can be started with the Start Subsystem (STRSBS)
command:

STRSBS SBSD(QEJB/QEJBSBS)

To create the Payment Manager instance, access the AS/400 Tasks web page at
http://<<hostname>>:2001/ and select the Payment Manager icon.

Once the instance has been created, you must add the cassette to the Payment Manager instance.
This is accomplished by selecting the instance from the drop-down box and selecting Work with
Cassettes.

Configuring and administering Payment Manager

After all installations are complete, the Payment Manager can be started by using the Start
Payment Manager (STRPYMMGR) CL command.

After we installed and configured the Payment Manager Framework, Payment Manager instance,
and the CyberCash cassette, we took the following steps to achieve a fully functioning Payment
Manager:

1. Define Payment Manager users

INSCO application 40

The Payment Manager uses the WebSphere operating system user registry, which is
composed of Operating System/400 (OS/400) users. To define Payment Manager users,
users must have a valid OS/400 user profile prior to being assigned roles. The Create
User Profile (CRTUSRPRF) CL command was used to create the appropriate OS/400
user profiles for this scenario.

2. Start the Payment Manager user interface

After the OS/400 user profiles were created, the Payment Manager user interface was
started by using the web site http://<hostname>>/PaymetManager/ and logging in as the
default Payment Manager administrator, QPYMADM.

3. Create Merchant/Authorize Payment cassette

The first step in configuring the Payment Manager was to create a merchant and authorize
that merchant to use the CyberCash cassette.

4. Assign user roles

Having created a merchant and user profiles previously, the next step was to assign user
roles. In this scenario a user was assigned as a merchant administrator, and we also
assigned a user as a clerk. The clerk role was selected because we needed a user who
could perform all payment processing options for the merchant (except credit and credit
reversal), and the clerk fit this role.

5. Create an account and a brand

The first task of the merchant administrator was to establish an account for the
CyberCash cassette. An account is a relationship between the merchant and the financial
institution that processes transactions for that merchant. To create an account, we first
logged in as the merchant administrator. The account was created by selecting the
Merchant Cassette Settings.

After adding an account, a brand must be created for the account. A brand is a credit
card type, such as VISA. To create a brand, we accessed the Merchant Cassette Settings
options, selected the CyberCash cassette, selected the account just created, and selected
Brands.

Now that the Payment Manager and merchant administration tasks are complete, approving
orders, depositing payments, settling batches, issuing credits, and viewing daily batch totals may
begin.

To exercise the CyberCash functions in the Payment Manager, we used an internal IBM tool.
This tool allowed us to validate the payment processing application. The CyberCash Cash

INSCO application 41

Register could also be used in test mode during the setup and testing for a payment processing
application.

Payment Manager sources

The following documents are available after installation of Payment Manager 2.1 and can be
accessed from the Payment Manager Tasks web page, accessible from the AS/400 Tasks page at
http://system-name:2001 where the system-name is the TCP/IP host name of the AS/400. The
link name in the navigation frame is Documentation.

� IBM WebSphere Payment Manager Administrator's and User's Guide, Version 2.1,
provides information regarding installing, configuring, and maintaining the IBM
WebSphere Payment Manager on AS/400. The "For More Information" topic contains
additional, related web sites and documents.

� IBM WebSphere Payment Manager Programmer's Guide and Reference for AS/400,

Version 2.1, provides details about the Payment and Administration API.

� Payment Manager Read Me (English only).

� IBM WebSphere Payment Manager Cassette for SET Supplement for AS/400, Version
2.1, provides information about using the SET protocol with the Payment Manager
Framework to process electronic payments.

� SET Cassette Read Me (English only).

� IBM WebSphere Payment Manager Cassette for CyberCash Supplement for AS/400,
Version 2.1, provides information about using the CyberCash protocol with the Payment
Manager Framework to process electronic payments.

� CyberCash Cassette Read Me (English only).

� Client API Library (CAL).

Payment transactions

The INSCO application uses the Payment Manager Accept_Payment() method specifying auto
approve and auto deposit. The Payment Manager indicates success or failure of the payment
transaction. If the payment transaction fails in any way, an appropriate message is sent to
customers indicating that their credit card payment was not accepted. Possible failures include
unknown card number, invalid expiration, insufficient funds, Payment Manager ended, and
Gateway not communicating.

To accept payments over the web, the insurance company must register itself as a merchant with
a public payment gateway. This gateway will allow the insurance company to request approval of

INSCO application 42

credit card charges. It also allows the company to set up an account such that approved credit
card payments can be deposited directly into this account.

Numerous payment gateways are available that support a variety of payment protocols. The
insurance company uses the Cybercash protocol due to its general acceptance in the industry.

For information regarding financial institutions that have established payment gateways to handle
payment processing needs by using the Payment Manager, refer to the web site:

http://www.ibm.com/software/commerce/connect

INSCO application details

The INSCO application, designed for the purposes of this report, can improve customer service
and reduce costs by allowing customers to view and update their personal information, view
policy information, and pay their semiannual insurance premiums.

INSCO is now expanding its web application to include agent service capabilities. These
services will allow agents to access these services from both the Internet and INSCO intranet.
The services provided to agents will allow them to view policy information for the customers
that they support, view and update customer’s personal information, submit new insurance
applications, and create an account for a new customer. An account administrator working for
INSCO will be able to use these new services to work with all customers.

In many cases, web applications such as this can be easily implemented by extending a
company’s existing applications and data for the web. For our application, INSCO had existing
enterprise data residing in a DB2 UDB for AS/400 database. We created three servlets that
extend the HTTPServlet class. This class has specialized methods for handling HTML forms,
which allow for easy transfer of data from the HTML form to a servlet for processing. Since our
application relies on HTML forms to receive input from the user, this was the logical choice.

Note: See the “Application source code” section of the “Appendix” for instructions on
downloading the source code and JSP files for the INSCO application.

The INSCO application can be broken down into four sections:

� The InscoLoginServlet is responsible for authenticating the user.

� The Insco2Servlet is responsible for automating the customer and agent business
processes for the insurance company.

INSCO application 43

� The PaymentServlet is responsible for retrieving credit card information from the
customer and processing the payment with the Payment Manager.

� The JavaBeans component is used to encapsulate user, policy, and coverage data. These
beans are used to share data between the servlet methods and the JSP files.

InscoLoginServlet

The insurance company’s login page, inscologin.html, is actually an HTML form. It is served via
the HTTP protocol. On this page, users are asked to enter their user ID (a customer number or an
agent number) and password. These values will then be sent via HTTPS to the doPost() method
in the InscoLoginServlet on the web server.

The InscoLoginServlet inherits directly from the AbstractLoginServlet and is a replica of the
CustomLoginServlet. However, to support session tracking, a few lines were added to the
postLogin() method. The CustomLoginServlet and the AbstractLoginServlet are provided in the
servlets directory of the WebSphere Application Server.

Insco2Servlet

The Insco2Servlet allows customers and agents to access business processes via the web. The
Insco2Servlet runs on the transactional web servers. This part of the INSCO application consists
of one servlet, Insco2Servlet, and the following JSP files: Home.jsp, InscoError.jsp,
InscoLogoff.jsp, InscoWarning.jsp, NewCustomer.jsp, RequestSubmit.jsp, SearchResults.jsp,
SelectCustomerInformation.jsp, SubmitAutoApp.jsp, SubmitHomeApp.jsp, UpdateInfo.jsp,
ViewAutoPolicy.jsp, and ViewHomePolicy.jsp. All of the JSP files were created using the
JavaServer Pages 1.0 specification.

The Insco2Servlet contains the following methods: doPost(), doGet(), init(), logoff(), home(),
selectCustomerInformation(), selectInfo(), newCustomer(), addCustomer(), newAutoApp(),
newHomeApp(), addPolicy(), padNumber(), populateDataQueue(), getCustomerInfo(),
checkAgentAccess(), updatePersonalInfo(), submitPersonalInfo(), viewPolicy(), and
errorHandle().

PaymentServlet

The PaymentServlet allows customers to submit a secure electronic credit card payment on their
insurance policies. The PaymentServlet runs on the transactional web servers alongside the
Insco2Servlet. This part of the INSCO application consists of one servlet, PaymentServlet, and
the following JSP files: PaymentCreditCard.jsp, PaymentSuccess.jsp, and PaymentError.jsp. It
contains four methods: doPost(), doPayment(), doCreditCard(), and init().

INSCO application 44

JavaBeans component

The beans used by the Insco2Servlet and the PaymentServlet are the UserBean, PolicyBean,
AutoBean, HomeBean, and CoverageBean.

The UserBean is used by the Insco2Servlet to store information regarding the current user. If a
customer is the current user, the bean will be used to store that customer's personal information.
If an agent is logged into the INSCO servlet, the UserBean is used to store the personal
information of the customer with which the agent is working.

The PolicyBean is used by the Insco2Servlet to store the base information about a policy. The
AutoBean and HomeBean inherit directly from the PolicyBean and are used to store policy
information for auto and home insurance, respectively. The CoverageBean is used to store the
coverage information for either an auto insurance policy or home insurance policy.

INSCO application flow

In both the Insco2Servlet and the PaymentServlet, the init() method reads a data file called
login.properties. This data file contains information about the database it will be connecting to,
the data source that it will be using, the LDAP server URL, the system where the data queues are
located, the LDAP suffix, and the user ID and password needed to connect to the database and
the data queue.

The second part of the init() method establishes a connection to the database using the data
source implementation. The setup of the data source was performed on the WebSphere
Application Server. Detailed information on connection pooling is available on the web at:

http://www.as400.ibm.com/products/websphere/docs/as400v302/docs/index.html

The doPost() method, from both servlets, retrieves the session values and then routes each
request to the appropriate method within the servlet. The supporting method then handles the
request and responds to the appropriate JSP file. The doPost() method is used due to security
concerns.

The ErrorHandle.jsp page is used to handle any exceptions encountered by the servlets and
provide a friendly message to the user on the error encountered.

The Log Off button is available from the Customer Home Page, Agent Home Page, or Select
Customer Information. This option is available because it is essential to security that the user
logs off to end the session. The servlet is invoked to call the Log Off page, InscoLogoff.jsp,
which displays a personalized good-bye message to the user through the use of the session data.
The session is then invalidated, which means the session’s HttpSession object and its data values
are removed from the WebSphere Application Server. If the user fails to issue a log off, the
session remains active for 30 minutes from the last time the user sent a request to the web server.

INSCO application 45

The flow of the main operations of the INSCO application are discussed in the following
sections: Login, Home, Update personal information, View policy information, Submit payment
information, Select customer information, Create new customer, and Submit insurance
application.

Login

The login page provides the means by which customers and agents log onto the INSCO web site.
Figure 9 illustrates logging onto the INSCO application. Each numbered transition is described
in the steps that follow.

Figure 9. Insco login flow

1. The user either loads the inscologin.html page or is directed there by trying to load the
Insco2Servlet. Once users have filled in their user ID and password and selected the
Login button, the doPost() method is invoked in the InscoLoginServlet.

2. At this point, the doPost() method obtains the user ID, password, and redirect URL from
the form. It then calls the login() method located in the AbstractLoginServlet.

3. The AbstractLoginServlet uses WebSphere Application Server's custom authentication
and LTPA to authenticate the user against an LDAP directory via the SSOAuthenticator.
The user’s information is verified on the LDAP server residing in the INSCO intranet. If
LDAP is unable to validate the login information, an exception is thrown and an error

INSCO application 46

page is returned.

4. Once the user has been authenticated, the login() method calls the postLogin() method
located in the InscoLoginServlet. The postLogin() method sets the user ID and password
as session values. Once the session values are set, control is returned to the login()
method.

5. Finally, the login() method redirects the request to the Insco2Servlet’s doGet() method
via the redirectURL. A redirect request only routes to a doGet() method. The doGet()
method retrieves the session values and then binds to the LDAP server to obtain the user
type. It then sets the homebutton value to Home or Select Customer Information, based
on user type, and calls the doPost() method.

Home

The main web page provided to both customers and agents is the home page. The home page
provides the means by which customers navigate through the INSCO web site and agents work
with a specific customer. Figure 10 illustrates the application flow when loading the home page.
Each numbered transition is described in the steps that follow.

Figure 10. INSCO home flow

INSCO application 47

1. When the user clicks a button causing their respective home page to load, the servlet is
invoked and the doPost() method is called.

2. The doPost() method calls the home() method.

3. The home() method then calls the getCustomerInfo() method to obtain the customer’s
personal information.

4. The getCustomerInfo() method obtains a data source object. A data source object is
established by obtaining one of the existing database connections from the pool. Once
the data source object is established, a query against the database is executed to return the
customer's personal information based on the customer number. The customer’s
information includes first name, last name, middle initial, address, zip code, e-mail
address, and home and work phone numbers. The data is retrieved from the database,
parsed and stored in a UserBean object, and the data source object is returned to the pool.
The customer's name is stored in the session data, and the UserBean object is returned to
the home() method.

5. The home() method stores the UserBean object in the request object. It then obtains a
data source object and performs a query against the database to return the policy
information of all policies owned by the customer. Returned along with a policy number
is the policy type, status, payment due date, and payment amount. The data is then stored
in a vector of PolicyBean objects.

6. In the case of agents, the checkAgentAccess() method is called to determine which
policies they are authorized to access.

7. The checkAgentAccess() method loops through the vector of policies performing an
LDAP search on each policy. To perform an LDAP search, the servlet first sets the
environment properties for LDAP access. Once the properties have been set, the servlet
binds to the directory and performs the necessary search on each policy. If the agent has
access, Yes is stored in the Access field of that policy’s PolicyBean object (the default is
No). After all the policies have been processed, control is returned to the home() method.

8. The vector of policy beans is stored in the UserBean object, and the request is forwarded
to the Home.jsp page.

9. From the home page, a user has several options. All users can update personal
information, log off of the application, and view policies. However, agents can only view
policies they are authorized to access. A customer can also submit an online payment on
one or more policies. An agent can submit home and auto applications and can return to
the Select Customer Information page. When users select one of the options available to
them, the servlet is invoked and the doPost() method is called to handle the user’s
selection.

INSCO application 48

Update personal information

The option to update a customer’s personal information is provided to both customers and
agents. The Update Personal Information page provides the means to change customer
information. Figure 11 illustrates the application flow for updating personal information. Each
numbered transition is described in the steps that follow.

Figure 11. INSCO update personal information flow

1. When users select the Update Personal Information button from their respective home
page, the servlet is invoked, and the doPost() method is called.

2. The doPost() method calls the updatePersonalInfo() method.

3. The updatePersonalInfo() method calls the getCustomerInfo() method to obtain the
current information for the customer.

4. The getCustomerInfo() method obtains a data source object and queries the database for
the customer’s information. The data is stored in a UserBean object and returned to the
updatePersonalInfo() method.

5. The updatePersonalInfo() method stores the UserBean object in the request object and
calls the UpdatePersonalInformation.jsp.

INSCO application 49

6. The UpdatePersonalInformation.jsp contains the following editable fields: first name, last
name, middle initial, address, zip code, e-mail address, home phone number, and work
phone number.

The user has the following choices: make changes on the form and submit them, reset the
form to its initial values, or go back to the home page without making any changes.
When the user clicks the Submit Changes button, the servlet is invoked and the doPost()
method is called.

7. The doPost() method evaluates the homebutton parameter to the submitChanges value
and calls the submitPersonalInfo() method.

8. The submitPersonalInfo() method obtains a data source object and updates the customer
table.

9. Once the update completes successfully, the RequestSubmit.jsp is called. The
RequestSubmit.jsp is used to prevent users from resubmitting the request to update or
insert to the database if they press the Reload button on their web browser.

10. Users may click the Back to Home Page button to return to their respective home page, or
they may wait five seconds and be redirected there.

View policy information

The option to view policy information is provided to both customers and agents. Customers are
allowed to view all of their policies, but agents are only allowed to view a policy if they are
authorized to access it. The View Auto (or Home) Policy pages allow the user to view the details
of a specific policy. Figure12 illustrates the application flow when a user elects to view a
policy’s information. Each numbered transition is described in the steps that follow.

INSCO application 50

Figure 12. INSCO view policy information flow

1. When users select any View Policy button from their respective home page, the servlet is
invoked, and the doPost() method is called.

2. The doPost() method calls the viewPolicy() method.

3. The viewPolicy() method obtains a data source object and then executes a series of
queries to return the customer’s policy information based on the policy number selected
on the home page, the coverage information based on the policy number, and the date of
the last payment based on the policy number. The data is retrieved from the database and
stored in either a HomeBean or AutoBean object depending on the policy type.

4. At this point, one of two JSP files is loaded based on the type of policy viewed:
a. If it is an auto policy, the ViewAutoPolicy.jsp page is loaded.
b. If it is a home policy, the ViewHomePolicy.jsp page is loaded.

5. When users are done viewing the policy details, they click the Back to Home Page button,
which invokes the servlet and calls doPost() to handle the request.
a. From the View Auto Policy page, users are sent back to their respective home page.
b. The same occurs from the View Home Policy page as in 5a.

INSCO application 51

Submit payment information

The option to submit payment information is provided to customers. The Submit Payment page
allows a customer to pay the premiums on selected policies from the Home Page. Figure 13
illustrates the application flow for submitting payment information. Each numbered transition is
described in the steps that follow.

Figure 13. INSCO submit payment flow

1. When the user selects the Submit Payment button from the Customer Home Page, the
PaymentServlet is invoked. The PaymentServlet will return control to the home() method
once its processing is completed.

2. The doCreditCard() method gets called from the doPost() method if option parameter of
the HTML form is set to the getCreditCardNum value. This method is called when the
customer clicks Make Payment from the Customer Home Page.

3. The first thing the doCreditCard() method does is query the database for information
about each policy. It then creates a vector of PolicyBean objects and stores this vector in
a UserBean object. Next, it calls PaymentCreditCard.jsp and passes the newly created
UserBean object into the request, so it is accessible from the JSP file.

4. The PaymentCreditCard.jsp displays all the policies to be paid for and a total payment to
the browser. It also displays entries to be filled out by the customer about the credit card

INSCO application 52

being used to make the payment.

5. When the customer clicks the Make Payment button on PaymentCreditCard.jsp, the
option parameter of the HTML form is set to the payPremium value and the form is
submitted.

6. Next, the doPayment() method of the PaymentServlet is called.

7. The doPayment() method is the method that actually makes a connection to the Payment
Manager and sends the payment information. The only Payment Manager API call used
in the PaymentServlet is the AcceptPayment command. This command creates an order
in the Payment Manager and has the option to automatically approve the order and/or to
deposit the payment with a financial institution. In this case, we are automatically
approving the order and depositing.

a. The first thing the doPayment() method does is set up the parameters for the
AcceptPayment command. This API call is documented in detail in the Appendix, but
in general, the following needs to be passed: the payment amount, currency, order
number, and whether or not the payment should be automatically approved and/or
deposited. After the AcceptPayment command is called, the return code is tested to
determine if the payment was a success.

b. If the payment succeeded, another connection is made to the database to update the
payment history table and the next due date.

8. Then, PaymentSuccess.jsp is called. If the payment fails, PaymentError.jsp is called,
which tells customers to contact their agent.

9. PaymentSuccess.jsp flashes a success message to the customer and forwards the browser
to the Customer Home Page after 5 seconds by submitting a form with the homebutton
parameter set to Home.

Select customer information

The option to select customer information is provided to agents. The Select Customer
Information page allows an agent to search on a policy number, a customer number, or a
customer’s last name. Figure 14 illustrates the application flow for selecting customer
information. Each numbered transition is described in the steps that follow.

INSCO application 53

Figure 14. INSCO select customer information flow

1. Once the user has been authenticated and has been determined to be an agent, the doGet()
method calls the doPost() method.

2. The doPost() method then calls the selectCustomerInformation() method.

3. The selectCustomerInformation() method obtains a data source object, and a query
against the database is executed to return the agent’s personal information based on the
agent number. This information is stored in the session data. Then the
selectCustomerInformation() method calls the SelectInformation.jsp page to welcome the
agent.

4. The SelectInformation.jsp gives agents a choice to search for the following: a policy
based on a policy number, a customer based on the customer number, or a customer based
on the last name. The agent could also press the New Customer button (see Figure 15,
INSCO create new customer flow), or log off.

5. The agent’s choice is passed back to the servlet via the doPost() method.

6. The servlet’s doPost() method routes the request to the selectInfo() method.

7. The selectInfo() method checks each of the possible parameters to determine what the
agent was trying to search on, and takes the appropriate action.

INSCO application 54

a. When an agent selects to search on a policy, an LDAP request is opened and the
policy in question is searched for. If the policy is not found, it could mean that the
policy does not exist or that the agent does not have access to the policy. In either
case, a message is displayed to the agent to explain this. Otherwise, if the record was
found in LDAP, then the viewPolicy() method is called (see 8d in Figure 14).

b. When the agent selects to search by customer number, then the selectInfo() method
requests a database connection to see if that customer exists in the database. If the
customer does exist, then the customer’s name and number are placed in the session,
and the home() method is called (see 8c in Figure 14).

When the agent chooses to search for customers by their last name, the selectInfo()
method requests a database connection to see if any customers exist in the database
with the last name that the agent supplied. For 7b in Figure 14, a count is taken on
the number of customers that match.

8. If the count of the customers (from step 7) is greater than 20, then the selectInfo() method
calls the InscoWarning.jsp (see 8a in Figure 14); otherwise, it calls SearchResults.jsp (see
8b in Figure 14).

a. InscoWarning.jsp is displayed when the number of customers returned in the SQL
result set is greater than 20.

b. SearchResults.jsp is used to display all of the customers that were returned from the
search.

c. The home() method is called when the agent selects to search by a customer number
that exists.

d. The viewPolicy() method is called when the agent selects to search on a policy and
has access to the policy.

9. If more than 20 customers are returned in the result, then the InscoWarning.jsp is
displayed; otherwise, the SearchResults.jsp is displayed.

a. A warning page is displayed to agents, telling them how many customers matched the
search and asking them if they would like to continue. Agents have the choice of
canceling the search or continuing. If they want to continue, then when they submit
the HTML form, an appropriate parameter is passed to the servlet to call the
SearchResults.jsp page.

b. The SearchResults.jsp page contains a table listing all of the customers that match the
search by last name. Next to each name in the table is a button to view that customer.

INSCO application 55

When the agent presses one of these buttons, then the servlet’s doPost() method is
invoked once again, and this time calls the home() method.

Create new customer

The option to add a new customer to the insurance company’s database is provided to agents on
the New Customer page. Figure 15 illustrates the application flow for creating a new customer.
Each numbered transition is described in the steps that follow.

Figure 15. INSCO create new customer flow

1. When an agent selects the New Customer button from the Select Customer Information
page, the servlet is invoked, and the doPost() method is called.

2. The doPost() method calls the newCustomer() method.

3. The newCustomer() method calls the NewCustomer.jsp page. The NewCustomer JSP file
contains the following editable fields: first name, middle initial, last name, password,
home address, zip code, e-mail address, phone numbers, social security number, date of
birth, marital status, occupation, and household income. When the form is completed, the
agent has the choice of pressing the Add New Customer button or the Cancel button. If
the agent chooses to cancel the request, the agent is returned to the Select Customer
Information page.

INSCO application 56

4. When the user presses the Add New Customer button, the form is submitted to
Insco2Servlet’s doPost() method.

5. The doPost() method determines that a new customer form has been submitted and calls
the addCustomer() method to handle this request.

6. The addCustomer() method performs the following operations:

a. It first obtains a new customer number through the use of an AS/400 data queue. The
servlet uses the AS/400 Toolbox for Java access classes to get a reference to the data
queue, and then tries to read from it. If the data queue does not exist, it is created. If it
is empty, then a call is made to the populateDataQueue() method. The
populateDataQueue() method makes a call to the database to get the largest customer
number from the customer table, adds one to this number, and eventually returns this
number to the calling method. But, before it returns, it pushes 20 new customer
numbers on to the data queue. The numbers that are pushed on to the data queue must
first be formatted so that they have the correct number of preceding zeros. The
formatting is accomplished by making a call to the padNumber() method.

b. An LDAP add operation is then performed to add the customer to the LDAP
directory.

c. If the customer is added successfully, the servlet requests a data source object and
inserts the customer information into the database.

7. If the previous step completes successfully, the RequestSubmit.jsp is loaded informing
agents that their information has been submitted.

8. The agent can then press the Back to Home button, or after 5 seconds, the
RequestSubmit.jsp calls the doPost() method, which calls the home() method.

Submit insurance application

The option to submit either a home policy or auto policy insurance application is provided to
agents. The Submit Home Application or Submit Auto Application page allows an agent to add
a home or auto insurance application to the insurance company’s database. Figure 16 illustrates
the application flow for submitting an insurance application. Each numbered transition is
described in the steps that follow.

INSCO application 57

Figure 16. INSCO submit insurance application flow

1. When an agent selects the Submit Auto Application or Submit Home Application button
from the Agent Home Page, the servlet is invoked and the doPost() method is called.

2. The doPost() method calls either:

a. The newHomeApp() method.
b. The newAutoApp() method.

3. The method called from the previous step displays the JSP page to submit the appropriate
policy application form. This form contains all of the editable fields needed to submit an
auto or home insurance application.

a. The newHomeApp() method calls the SubmitHomeApp.jsp file.
b. The newAutoApp() method calls the SubmitAutoApp.jsp file.

4. Both of the JSP pages work in the same manner. The primary difference between the files
is the type of input that is requested from the user and the data that is displayed to the
agent. When agents have completed the form, they have the choice to submit the
application, add a coverage level, or cancel the operation. If the agent chooses to cancel
the request, the agent is returned to the Agent Home Page. If the Add Coverage button is
clicked, then the agent is taken back to step 2, and all of the policy information entered by
the agent is passed along in the request to the servlet. The servlet then passes this

INSCO application 58

information back to the JSP page so that the agent does not have to re-enter any
information.

a. The SubmitAutoApp.jsp
b. The SubmitHomeApp.jsp

After all desired coverages have been added to the policy, the agent clicks the Submit
Auto Application button or the Submit Home Application button. The appropriate JSP
file invokes the servlet and the doPost() method is called.

5. The doPost() method calls the addPolicy() method.

6. The addPolicy() method has several steps that it must go through to submit and add the
policy to the INSCO environment:

a. It obtains a new policy number through the use of a data queue.

b. It then opens an LDAP request to add the policy to the LDAP directory along with the
proper customer and agent access authorities.

c. Once the policy has been added to the LDAP directory, the servlet obtains a data
source object, and database inserts are performed into the appropriate tables. After the
insert has completed on either the AUTO or HOME table, a database trigger is
activated. This trigger submits the policy application to the underwriter for approval.
The details of this trigger program are described later in the “INSCO B2B
application” section.

7. Once the update has completed successfully, the RequestSubmit.jsp is loaded to give a
visual confirmation to the agent.

8. The RequestSubmit.jsp redirects to the doPost() method, which calls the home() method.

INSCO servlet development discoveries

The following discoveries and recommendations are based on our experience coding the INSCO
application:

� When using any Payment Manager API call, the API classes need to be imported into the
servlet. The API classes, etillCal.zi and eTillxml4j209.jar, need to be copied from the
enterprise server to both transactional web servers before compiling the servlet. These
API classes also need to be added to the WebSphere Application Server classpath for the
web application being used.

� The way beans were instantiated needed to be changed from ab = (ABean)
Beans.instantiate(null, "ABean") as used in the scenario 1 servlet to ab = (ABean)

INSCO application 59

Beans.instantiate(getClass().getClassLoader(), "ABean"). The reason for this change is
that if you use null for the first parameter, then WebSphere uses the system class loader
and cannot find the ABean class.

� Migration from the Connection Manager to data source is recommended since the APIs
for Connection Manager may not be available in releases beyond WebSphere Application
Server 3.x Advanced Edition. Detailed information on migrating from Connection
Manager is available on the web at:

http://www.as400.ibm.com/products/websphere/docs/as400v302/docs/index.html

From this page, select the Servlets tab, select Migrating, and then select Connection
Manager.

� Create a data source to implement the new connection pooling. Detailed information on
setting up a data source is available on the web at:

 http://www.as400.ibm.com/products/websphere/docs/as400v302/docs/index.html

From this page, select the Home tab, select Search, enter data source and press Enter.
Select Creating a data source from the WebSphere Administrative Console.

� In scenario 1, the servlet used the following code from com.sun.server.http.* to call JSP
pages.

((com.sun.server.http.HttpServiceResponse) ares).callPage("/inscohome.jsp", areq);

WebSphere Application Server 3.02 has deprecated this interface from WebSphere
Application Server 2.0. However, to ease migration, they have re-implemented Sun's
class for compatibility purposes. One solution is to recompile your source code with the
WebSphere Application Server 3.02 version ibmwebas.jar file in your classpath. Another
way to call a JSP page is to replace the callPage() call with the following:

RequestDispatcher rd = getServletContext().getRequestDispatcher("/inscohome.jsp");
rd.forward(areq, ares);

� The WebSphere servlet engine can handle most cases of session management. However,
sessions can still become corrupted. The JavaServer Pages 1.0 specification addresses the
possibility that sessions can break programatically. For example:

1. WebSphere Application Server assigns a session to an instance variable in a servlet
and then allows that assigned session to be modified by other threads that may run the
servlet.

2. A servlet spawns multiple threads and gives each thread access to the session.

INSCO application 60

The WebSphere documentation discusses sessions as well and is available on the web at:

http://www.as400.ibm.com/products/websphere/docs/as400v302/docs/index.html

From this page, click the Servlets tab and click Developing in the navigation bar. After
the navigation bar expands, click Servlet APIs, and then click Sessions.

Here is a discussion from that section that applies to session management:

In all cases, WebSphere Application Server defines the notion of a session
transaction, which begins when the servlet calls HttpServletRequest.getSession() and
ends with the completion of the servlet's service() method. By default, WebSphere
Application Server locks sessions during the scope of these transactions to maintain
session integrity. This means that one (and only one) instance of a servlet can access
a session at a given time. In the case where several servlets are chained together to
service an individual HTTP request, the session stays locked across each servlet in the
chain until a response is finally sent back to the user.

� The following ports need to be opened on the domain firewall: port 389 for LDAP; ports
449, 8471, 8472, and 8476 for AS/400 Toolbox for Java, JDBC driver, and data queue
usage; and port 446 for the AS/400 Developer Kit for Java.

� The CustomLoginServlet provided with the WebSphere Application Server only redirects
to a doGet() method.

INSCO application 61

B2BB2BB2BB2B applications applications applications applications
The Underwiter and INSCO B2B applications were deployed on the enterprise servers in the
INSCO and the underwriter intranets. The two servers, both with IBM HTTP Server and IBM
WebSphere Application Server installed, were equipped with each company’s portion of the
application. The applications communicated with each other over the VPN via XML messages
using HTTP.

The goal of these applications is to allow the underwriter to approve any new policy applications
submitted by the INSCO company. After an insurance application is added to the database
residing in the INSCO intranet, the policy is submitted to the underwriter via an XML message.
Once underwriters receive the insurance application, they make an assessment of the insurability
of the applicant. Some policies are automatically approved while others must be approved
manually. Once the underwriter approves or rejects the policy, an XML response is sent to
INSCO informing it of the policy status. After receiving the response, INSCO updates the status
of the policy in the database and sends an e-mail to the appropriate customer and agent informing
them of the status change.

B2B server setup
For the B2B applications, WebSphere Application Server 3.02 Advanced Edition needed to be
set up on both the enterprise server and the underwriter server. The setup was identical to the
setup of the transactional web servers, except that security did not need to be set up on the two
systems because communication between them was through a VPN. Data sources and web
applications were set up similar to how they were set up on the transactional web servers.

Setting up e-mail

E-mail is probably the most widely used Internet application. It provides a convenient and
inexpensive way to communicate across the world. This scenario introduced some automated
features to INSCO. E-mail was chosen as a means to confirm transactions handled by the
automated processes.

Looking at the run-time topology diagram (Figure 17), we see that in order for mail to be
delivered from INSCO to the Internet, it must flow through the domain and protocol firewalls.

B2B application 62

Figure 17: Run-time topology

The domain firewall is running a secure mail proxy server. The domain firewall’s job is to send
e-mail from hosts inside the firewall to hosts outside the firewall. Filter rules were added to the
domain and protocol firewalls to permit mail traffic.

The Simple Mail Transfer Protocol (SMTP) provides both send and receive functions that allow
you to send or receive e-mail. When we configured the AS/400 SMTP server for INSCO’s
internal network, two parameters needed to be set so that all outgoing mail was forwarded to the
domain firewall.

These parameters can be easily set using Operations Navigator. From Operations Navigator, go
to the General page of the SMTP server properties. We specified a mail router (INSCO
firewall) and checked Forward outgoing mail to router through firewall.

The Domain Name System (DNS) server plays an important role in the delivery of e-mail. The
local mail server determines an Internet address for each e-mail recipient and asks Domain Name
System (DNS) servers to assist in determining these addresses. SMTP determines an address by
first requesting the address of the mail exchanger (MX) for the recipient. A mail exchanger is a
server program that is in charge of delivering e-mail to a set of hosts. Not all recipients have
mail exchangers. The answer from the domain name server may indicate that there is no mail
exchanger resource data for the requested recipient's host. If this happens, SMTP sends the query
again to the domain name server. SMTP asks for the Internet address of the recipient's host so
that the system can send the e-mail directly to that host.

A Post Office Protocol (POP) client was used to retrieve e-mail. POP is an electronic mail
protocol with both client (sender/receiver) and server (storage) functions. POP allows mail for
multiple users to be stored in a central location until a request for delivery is made by an
electronic mail program. The AS/400 POP server was configured and used.

B2B application 63

Additional information on setting up AS/400 e-mail can found at the following web site for the
AS/400 Information Center.

http://www.as400.ibm.com/infocenter

Within the AS/400 Information Center, select TCP/IP, then Sending and receiving e-mail.

B2B application details
The B2B applications can be broken down into three main sections: the Underwriter B2B
application, the INSCO B2B application, and the XML communication between the two
applications.

XML communication

XML documents are sent in the body of an HTTP request to and from the INSCO and
underwriter servers over the VPN. These XML documents follow the ACORD DTDs for
personal-home and personal-auto insurance-application requests. These DTDs define the
information and semantics that must be sent in a policy application request and response.

The request XML document will be created from the policy and customer information stored in
the database on INSCO’s enterprise server. INSCO used XML Lightweight Extractor (XLE) to
map the data in the database to tags in the DTDs and to generate the request XML document. The
request XML document is sent to the underwriter in the body of an HTTP request and then
parsed with IBM’s XML4J parser to extract the needed data. The underwriter also uses the
LotusXSL product, shipped with WebSphere Application Server 3.02 Advanced Edition, to
display the XML document. When the underwriter needs to send a response back to INSCO, it
generates the response XML document, which is much shorter and simpler than the request, and
sends it to INSCO in the body of an HTTP request. INSCO then uses the XML4J parser to
extract the policies status and processes accordingly.

The four DTDs (PersAutoAddRq.dtd, PersAutoAddRs.dtd, PersHomeAddRq.dtd, and
PersHomeAddRs.dtd) were copied to both the enterprise server and the underwriter server
because they were needed to validate the XML documents. To make the communication more
robust, we validated each XML document with the appropriate DTD after it was generated and
after it was received. XML validation means that the XML document is checked to make sure it
follows the rules and semantics set up in the DTD.

For more information on the ACORD DTDs, refer to the ACORD web site:

http://www.acord.org

B2B application 64

Note: See the “Appendix” for an example of each XML document we used.

INSCO B2B application

Figure 18 depicts the INSCO B2B application, which consists of the following components: the
POLICYTRIG trigger program, the autoPolicy.dtdsa and homePolicy.dtdsa XLE mapping files,
the SubmitApplication Java program, and the UnderwriterResponseServlet servlet.

Figure 18. INSCO B2B application

Trigger program

A trigger is a program that is attached to a database file. The trigger executes when a specified
event occurs to a specified table.

Detailed information on triggering automatic events is available on the AS/400 Information
Center on the web at:

http://www.as400.ibm.com/infocenter

In this scenario, triggers were placed on both the HOME and AUTO tables to occur after an
insert operation takes place. The CL trigger program, POLICYTRIG, submits the Java Program,
SubmitApplication, to batch.

Note: See the Payment Manager 2.1 API section of the “Appendix” for the POLICYTRIG
code snippet.

B2B application 65

Trigger program discoveries

Two factors determined why the SubmitApplication program, which was called from the CL
trigger program, needed to be submitted to batch.

First, if the SubmitApplication program was not submitted to batch, there was a chance that a
deadlock could exist. A deadlock could be created when the SubmitApplication program needed
to obtain a lock on the file that activated the trigger. This file was also being used by the insert
request, which would be waiting for the trigger to complete before it would release its lock.
Eventually, this would cause the SubmitApplication program’s update request to time out, and it
would not complete successfully. To alleviate this deadlock condition, the SubmitApplication
program was submitted to batch. This allowed the program to run in its own process and
subsystem while also allowing the trigger to complete. Once the trigger completed, the file lock
was released and the SubmitApplication program was able to complete.

Second, if the SubmitApplication program was not submitted to batch, the insert request would
wait until the trigger had completed its processing. This would cause a longer delay to the user
before the request submitted page would be displayed. Since submitting a policy was already
complex and costly for a web application, the best solution was to have the trigger program
submit the SubmitApplication program to batch.

SubmitApplication

The SubmitApplication program receives new policy applications and sends them to the
underwriter for approval. Then, if the policy is instantly approved or rejected, the program
updates the status and sends e-mail to the appropriate people. The SubmitApplication program is
called from the trigger program whenever a new policy gets added to the database. It contains
the following methods: main(), submitApplications(), sendEmail(), addToPending(),
updateDatabase(), validateXmlString(), sendRequest(), generateRequestId(), log(), init(), and
readSMTP().

The main() method, which gets called when the SubmitApplication program is invoked, simply
calls the submitApplications() method. The init() method is called from the
submitApplications() method; it initializes a log file for error reporting and reads a properties file
for database connection information. The log() method takes a string as a parameter and writes
that string to the log file that is set up in the init() method. The generateRequestId() method
creates a new unique request identifier based on the policy number and current time so that
requests can be tracked easily.

The submitApplications() method first queries the database for new policies. For each new
policy, it calls the XLE extract() method to get the request XML document. It then calls the
validateXmlString() method to ensure that XLE generated a valid XML document. Next, it tries

B2B application 66

to call sendRequest() to send the request XML document to the underwriter. If sendRequest()
fails, it will retry a preset number of times. In our case we set the number of retries to 2.

The sendRequest() method opens up an HTTP connection to the underwriter server. It then
prints the request XML document into the body of the HTTP request and sends it. Next, the
sendRequest() method checks the header of the HTTP response for errors, setting a return code
appropriately if any exist. If there are no errors, it reads the response XML document from the
body of the response and calls the validateXmlString() method to ensure the underwriter sent a
valid response. Next, it uses the XML4J parser to extract data from the response XML document
and verifies that the request identifier matches the response identifier. Finally, the
updateDatabase() and sendEmail() methods get called, and the addToPending() method gets
called if the status of the policy is pending, meaning that the underwriter was not able to instantly
approve or reject the policy.

The updateDatabase() method changes the status of the policy in the database. The
addToPending() method inserts a record into the PENDING table of the database with the
request identifier as the primary key. The sendEmail() method first queries the database to
determine the customer and agent’s e-mail addresses; then it opens up a socket to the SMTP
server to send a status update e-mail to the customer and agent. The sendEmail() method uses
the readSMTP() method to clear the input stream while writing to the SMTP server.

XLE mapping files

INSCO had to create a separate XLE mapping file (also called a DTDSA file, which stands for
data type definition with source annotation) for each policy type, home and auto, because each
type has its own DTD. These mapping files are similar to DTDs except that they have additional
semantics to describe where each tag will get its data. This allows XLE to assemble an XML
document from a set of relational database tables.

XLE was a new product during the implementation of this scenario. Some limitations with the
XLE documentation made it difficult to map the INSCO database to the ACORD DTDs. The
problem was that XLE was designed to map each XML tag to one specific column of one
specific table. But in the ACORD DTD, they reuse tags to describe similar data. For example,
they have a Name tag which can be used to describe a company name, an agent's name, or a
customer's name, each of which is stored in a different table in our scenario. Dates are extremely
troublesome because they reuse the YEAR, MONTH, and DAY. To work around most of the
problems, some slight changes needed to be made to the ACORD DTD.

The list below summarizes the changes we made to the ACORD DTD:

� Changed the Date tags in the DTDs from multiple subtags to single value tags.
Old format:

<DateOfBirth>
<YEAR>1999</YEAR>
<MONTH>09</MONTH>
<DAY>14</DAY>

</DateOfBirth>

B2B application 67

New format:
<DateOfBirth>1999-09-14</DateOfBirth>

This affected the DateOfBirth, EffectiveDate, and ExpirationDate tags. This change was
required because of the XLE limitation and because of the way the database returned
dates.

� Changed the HouseholdIncome and DeductibleAmount tags from multiple subtags to
single value tags.
Old format:

<HouseholdIncome>
<Amount>50000</Amount>

</HouseholdIncome>

New format:
<HouseholdIncome>50000</HouseholdIncome>

This change was needed because the Amount tag was already being used as a
CurrentTermAmount subtag.

� Only used the Addr1 subtag in the CustomerAddress tag and Addr2 subtag in the
PostalAddress tag. This was not a change to the ACORD DTD, but a restriction we had
to follow because of the XLE limitation.

UnderwriterResponseServlet

The UnderwriterResponseServlet is similar to the SubmitApplication program. It has almost the
same code except that it is a servlet instead of a Java application, and it processes the response
but does not send a request to the underwriter. The UnderwriterResponseServlet gets called from
the underwriter’s ManualApproveServlet whenever a policy application needs to be manually
approved or rejected. It contains the following methods: doPost(), sendEmail(), readSMTP(),
updateDatabase(), validateXmlString(), and init().

As with all servlets, the init() method gets called when the servlet first gets invoked within
WebSphere Application Server. It reads database connection properties from a properties file
and sets up a data source object for making connections to the database.

The doPost() method is invoked each time the UnderwriterResponseServlet gets called. It reads
the response XML document from the HTTP request body and makes sure it is a valid XML
document by calling the validateXmlString() method. It then parses out the status information
from the XML document with the XML4J parser, similar to the sendRequest() method of the
SubmitApplication program. Next, it queries the PENDING table of the database to verify that
the response matches a pending request. Finally, if there are no errors, the doPost() method calls
both the updateDatabase() and sendEmail() methods.

The updateDatabase(), sendEmail(), and readSMTP() methods are all identical to the methods in
the SubmitApplication program.

B2B application 68

Underwriter B2B application

Figure 19 depicts the underwriter B2B application, which consists of the
SubmitApplicationServlet, the ManualApproveServlet, and the appview.xsl LotusXSL file.

Figure 19. Underwriter B2B application

SubmitApplicationServlet

The SubmitApplicationServlet processes the application request from INSCO’s
SubmitApplication program and sends a response XML document back to INSCO stating
whether the policy was approved, rejected, or pending. It contains the following methods:
doPost(), init(), parseXmlDocument(), and validateXmlString().

The init() method is the same as it is in the other servlets in that it sets up the data source object
for connecting to the database. The doPost() method does all the work in this servlet. First, the
doPost() method reads the request XML document from the HTTP request body and makes sure
it is valid by calling the validateXmlString() method. Then, it calls parseXmlDocument(), which
uses the XML4J parser to extract certain information from the request XML document, such as
policy number and income. Next, the doPost() method saves the request XML document as an
XML file in a directory on the AS/400. It will later be read by the ManualApproveServlet for
viewing by the underwriter.

The doPost() method then determines whether the policy can be instantly approved or rejected.
To keep things simple, we decided to base this decision solely on the income of the customer. If
a customer’s income is greater than $50,000, we instantly approve the policy; if it is less than
$20,000, the policy requires manual approval, and the status is sent back to INSCO as pending.
Based on this decision, the doPost() method formulates a response XML document and passes it

B2B application 69

back to the SubmitApplication program in the request body. Finally, the doPost() method inserts
a record into a database table with the request identifier and status so that the underwriter can
easily determine which policy applications have been approved, rejected, or are pending.

ManualApproveServlet

The ManualApproveServlet allows the underwriter to view all the pending, approved, or rejected
policy applications; to view specific policy details; and to approve or reject policies that have a
pending status. The methods used in this servlet are doPost(), sendResponse(), viewApp(), and
init().

The init() method sets up the data source object for connecting to the database. The doPost()
method first checks the option parameter of the HTML form. If it is set to the view value, the
viewApp() method is called; if it is set to the respond value, the sendResponse() method is
called. Otherwise, the doPost() method displays some or all of the policy applications from the
database depending on what the option parameter is set to. The underwriter can choose what
types (approved, rejected, or pending) of policy applications to display or can choose to display
all policy applications. The doPost() method then displays a table of policy applications to the
underwriter with data such as status and customer name and a View button for each application.
When the View button is clicked, the option parameter is set to the view value and the doPost()
method calls the viewApp() method.

The viewApp() method uses LotusXSL style sheets to display the policy application. First, the
viewApp() method must read the request XML document that was saved into a directory by
SubmitApplicationServlet. It then reads the appview.xsl style sheet for use by the LotusXSL
processor, which processes the request XML document and prints the results to the servlet output
stream (that is, to the browser).

The sendResponse() method is called when the option parameter is set to the respond value,
which is done in the appview.xsl style sheet when the underwriter clicks Approve or Reject. It
first reads the status from the HTML form parameters and then formulates the response XML
document to send back to INSCO. Then it opens up an HTTP connection to INSCO via the
VPN. The response XML document is sent in the body of the HTTP request to INSCO’s
UnderwriterResponseServlet. If there are no errors in the connection, the APPS table of the
database is updated to reflect the status change of the policy application. Finally, a status
message is sent to the browser informing the underwriter that the operation was successful or that
it failed.

XSL style sheet

The appview.xsl style sheet tells the LotusXSL processor how to convert the request XML
document into HTML to be sent to the browser. The style sheet works by telling the processor
what HTML to print out for each tag of the XML document. In the appview.xsl style sheet, all
the data of the policy application is formatted into HTML so that the underwriter can easily view
the application from a browser and approve or reject the policy. Approve and Reject buttons are

B2B application 70

also displayed on this page. When either button is clicked, the appropriate parameters, such as
the status and the reason for approval or rejection, are passed to the ManualApproveServlet and
the sendRequest() method is called.

For more information about the LotusXSL, refer to:

http://www.alphaworks.ibm.com/tech/LotusXSL

B2B application 71

Network and securityNetwork and securityNetwork and securityNetwork and security
As businesses are extended into the e-business world through user-to-business and B2B
configurations, designing and deploying a security plan becomes increasingly important.

The first task in designing your security plan is to consult your security policy to understand what
you need to protect and what level of access you need to provide. As you formulate your plan,
you may find your security and access needs working against each other. Greater access needs
may mean less security and more security may mean less access. This is where your security
policy will determine which wins out--security or function.

Any time you are dealing with a network, especially the Internet, the best approach to take is a
layered approach. That is, you implement as many layers of security as you can and as many as
your security policy dictates. For example, rather than relying solely on a firewall to protect
your network, you implement all the packet filtering your Internet Service Provider (ISP)
provides, put additional packet filtering in your router, thoroughly test and keep your firewall
configuration up to date, and implement a restrictive security policy on your host AS/400. The
layered security approach that INSCO implemented is described below.

INSCO security requirements

The INSCO business plan called for the company to expand its capabilities in the following
areas:

� Customer self-service via the Internet
� Agent access via the Internet
� Automated application approval

Let’s analyze each of the enhancements in further detail to better understand the security
requirements. What do we need to protect? We need to ensure that the communication between
the end users (customers and agents) and the web servers is secure. The data that customers and
agents are accessing needs to be secured. Customers can see only their policy information, and
the agents can see only policy information for customers that they are responsible for. Payment
processing requires secure communication. The application collecting payment information
needs to communicate securely with the Payment Manager server.

Now let’s figure out what level of access we need to provide. The customer and agent access
capabilities are provided by custom applications running on servers in INSCO’s demilitarized
zone (DMZ) network. These applications need to access servers running on an internal system in
INSCO’s internal network.

Providing an automated approval application required cooperation with the underwriter
company. Applications running on servers in the INSCO and underwriter networks
communicate with one another to handle the application approval process. Communications

Network and security 72

between these applications must be secure. The access provided also needs to be restricted to
only what is needed for the applications.

Security technologies

With a basic understanding of what we need to protect and what level of access we need, we can
investigate available technologies. There are several technologies available: firewalls, SSL over
HTTPS, VPN, and IP packet filtering. You can also incorporate security into your application
utilizing security architectures such as the WebSphere distributed security model.

Firewalls have been and remain the anchor point for network security, but a growing number of
alternatives continue to become available. Firewalls are neither cheap nor easy to install and
maintain, so a market has been created for security devices that provide cost-effective solutions
and solutions that are easy to deploy and manage. A number of security functions on servers and
routers, as well as the increasing number of security appliances, have created the ability to build
more layered security solutions, without adding to the complexity of installation and
maintenance.

The SSL protocol consists of two separate protocols, the record protocol and the handshake
protocol. The handshake protocol is encapsulated within the record protocol. The SSL
handshake is used to establish an SSL session on the TCP/IP connection between a client and a
server application. The SSL handshake usually occurs immediately after the TCP connection is
established. During the handshake, the client and server agree on the encryption algorithms and
the encryption keys that they will use for that session. In all SSL handshakes, the client will
authenticate and verify the identity of the server. The server can optionally authenticate and
verify the identity of the client. After the SSL handshake has successfully completed, information
exchanged between the client and server is encrypted using the negotiated keys. An important
advantage of SSL is its ability to negotiate unique encryption keys for each SSL session between
a client and a server even if they have not previously communicated with each other.

During the SSL handshake, the client and server exchange digital certificates. Digital certificates
provide identifying information that enables the client and server to identify each other. Digital
certificates are issued by trusted third-parties called certificate authorities. An SSL client must
trust the certificate authority that issued the server’s certificate in order for the SSL handshake
to complete successfully.

The SSL protocol engine provides a set of published application programming interfaces (APIs)
that are used by socket applications. It uses the services of a cryptographic service provider to
perform all cryptographic services.

A virtual private network (VPN) is an extension of an enterprise's private intranet across a
public network such as the Internet, which creates a secure private connection essentially through
a private tunnel. VPNs securely convey information across the Internet that connects remote
users, branch offices, and business partners into an extended corporate network. ISPs offer
cost-effective access to the Internet (via direct lines or local telephone

Network and security 73

numbers), enabling companies to eliminate their current, expensive leased lines, long-distance
calls, and toll-free telephone numbers.

VPN implementations come in two forms, endpoint (host) and gateway. An endpoint solution is
when the VPN implementation exists at the application’s initial entry into the TCP/IP domain. In
this case, the data never travels on an IP segment without encryption. In a gateway
implementation, some IP segments are not secured, and another node provides encryption for
other segments in the path.

Integrated VPN solutions provide better security than firewall or gateway encryption solutions
because they provide encryption support between the network endpoints, thus thwarting both
external and internal hackers.

IP packet filtering is a technology that is inserted at a low level in the IP stack. IP, or
Internet Protocol, runs on every host and is responsible for routing packets to their destination.
As packets are about to be sent or received, the packet filter decides whether the operation should
be performed or whether the packet should be discarded. It does this by comparing the packet
against a set of rules that say what packets are permitted. Packet filters are a good way to
selectively allow some traffic into a subnetwork. They are also a good way of protecting the
higher communications layers and applications from unwanted traffic. Because good traffic goes
through unchanged, the protection is completely transparent to users and applications. Packet
filters look at the first few bytes of each packet, called the packet header. The packet header
describes the connection protocol and application protocol that are being used. Using this
information the packet filter determines whether it should allow the packet through or discard it.

WebSphere Application Server 3.02 Advanced Edition provides a unified security model that can
be used to secure web pages, servlets, and enterprise beans. It also provides an HTTP Single
Sign-On solution and improved LDAP directory support.

INSCO security design

INSCO implemented network configuration for its customer and agent access functions
according to the screened subnet architecture. This configuration introduces a third network
known as the demilitarized zone (DMZ). Two security gateways are used to create the three
networks. Details on the configuration can be found in scenario 1, “Scaling Up e-business
Implementations with WebSphere - AS/400 Edition.” This report is available on the web at:

http://www-4.ibm.com/software/ebusiness/scalingwebsphere.html

For the screened subnet architecture implementation, INSCO deployed a protocol firewall and a
domain firewall. Both firewalls perform IP packet filtering. The domain firewall also performs
network address translation (NAT). NAT is used to “hide” the private addresses of the INSCO
internal network servers. AS/400 IP packet filtering is also deployed on the servers running in
the DMZ. This adds yet another layer of defense. Further details on the INSCO screened subnet
architecture implementation can be found in scenario 1.

Network and security 74

The HTTPS protocol secures the communication between end-users and the INSCO transactional
web servers. We are currently using the HTTP protocol for communications between the INSCO
transactional web servers and the Payment Manger server. We plan to switch to the HTTPS
protocol as soon as the Payment Manager 2.1 receives export approvals.

For the automated approval application process, INSCO implemented a host-to-host VPN. There
is no need to connect the INSCO and underwriter internal networks. Only the internal systems
hosting the automated approval application need to be connected.

Other security design considerations

We have stepped through the INSCO security implementation fairly quickly. There are many
more security considerations that today’s e-business companies need to address.

As stated earlier, the best approach is a layered approach:

When looking for an ISP, we chose one that obviously took our security concerns seriously.
They have a special team for dealing with and tracking security breaches as well as denial of
service attacks. Not all ISPs have this level of concern. We wanted to make sure we would get
the support we need should our system ever be compromised. We also made sure the ISP had
implemented the latest denial-of-service techniques that are appropriate for an ISP. Our ISP
also allowed us to put in place some basic packet filtering rules, which was yet another layer of
security.

We make sure that we review and test our firewall configurations regularly. This is especially
important after adding a new application to our web server or altering our firewall configuration.
We have a separate test group from those making the configuration changes.

We have taken an exclusionary approach to securing our AS/400e servers. The following are the
choices we made:

� Users only have authority to run the applications they need to run. *PUBLIC authority on
most application libraries is *EXCLUDE to prevent general access. In addition, *PUBLIC
authority on the ‘/’ (root) directory has been changed to *RX.

� We loaded only the products we intended to use on this system. No extraneous OS/400
options, licensed programs, or third-party applications were loaded on a system unless we
needed that function. The reason for this is to minimize the number of interfaces that must
be secured (and the potential tools with which the system could be attacked).

� QSECURITY is set to 50, which provides the greatest system integrity capabilities.

� We used the Security Configuration Wizard (available through Operations Navigator) to
determine the best settings for the security-related system values, given our configuration.

Network and security 75

The wizard also provided help in scheduling security monitoring tools and setting system
auditing values.

� The only TCP/IP servers started were those associated with the TCP/IP applications we were
using, for example, HTTP. Port restrictions are used to ensure no other port can be exploited.

� Reports are run regularly (once a month) to ensure that object-level security has not changed
and that the only user profiles on the system are ones that actually need access to the system,
are IBM-supplied profiles, or application profiles.

The scenario network
Before diving into setup and configuration details, we need to have an understanding of the
scenario network implementation. The following figure illustrates the desired network
configuration:

Figure 20. Desired scenario network configuration

Network and security 76

Due to restrictions in our testing lab, our actual implementation ended up as follows:

Figure 21. Actual scenario network configuration

Configuring IP packet filtering and NAT

First, let’s look at the changes to the INSCO firewall configuration. The INSCO firewall
implementation is discussed in our previously published report, titled Scaling Up e-business
Implementations with WebSphere - AS/400 Edition. This report is available on the web at:

http://www-4.ibm.com/software/ebusiness/scalingwebsphere.html

Security enhancements made to the INSCO application required updates to the INSCO firewall
configuration. WebSphere security was implemented using an LDAP server. The LDAP server
resides behind the firewall in the INSCO internal network. Filter rules needed to be added to
permit INSCO transactional web server access to the LDAP server. Also, the INSCO application
Network and security 77

now supports online payments. The Payment Manager server resides behind the firewall in the
INSCO internal network. Filter rules needed to be added to permit INSCO transactional web
server access to the Payment Manager server.

Note: Detailed information on the specific rules can be found in the “Appendix.”

We also used Network Address Translation (NAT) to hide two internal interfaces from the
public. One interface is used to access the database and LDAP servers. The other interface is
used to access the Payment Manager.

Note: Specific information on the NAT configuration can be found in the “Appendix.”

Setting up the VPN

Before setting up your VPN, you need to make sure you have established a network route to and
from the endpoints of the VPN. This can be challenging because you may need to momentarily
open up your private network to verify the connection by using a utility like Ping. This will
require coordination and cooperation between the owners of the endpoint systems and the ISPs
involved.

A VPN was established to support the automated approval application process. There are several
types of VPNs. For this implementation a host-to-host VPN was established. The VPN New
Connection Wizard was used to create the VPN configurations. This wizard makes it easy to
create a VPN connection.

The wizard creates a dynamic key group with a policy setting of filter rule for remote ports and
protocol. The only protocol that was needed was TCP port 80 (HTTP). We found it easiest to
simply modify the dynamic key connection properties to restrict the traffic. We first changed the
dynamic key group settings from filter rule to connection for local ports, remote ports, and
protocol. We then modified the dynamic key connection services properties to restrict the traffic.
We specified a local port of 80, a remote port of any port, and a protocol of TCP.

We then added filter rules to enable the VPNs. Two filter rules were added to allow the Internet
Key Exchange (IKE) negotiations. Another filter rule was added to serve as the IPSec anchor
rule for the VPN. Following are the options selected (indicated by check marks) while using the
Wizard to create the VPNs.

Note: Detailed VPN configuration information can be found in the “Appendix.”

Network and security 78

INSCO VPN configuration

Host to host connection group name: UnderwriterVPN
Remote key server
� Authentication: Pre-shared key
� Remote hosts to connect to:

199.0.0.44
Data Policy
� Highest security/lowest performance
Key Policy
� Balanced security/performance
Local key server:
� Identifier type: Version 4 IP address
� IP Address: 199.0.0.65

Underwriter VPN configuration

Host to host connection group name: InscoUnderwriterVPN
Remote key server
� Authentication: Pre-shared key
� Remote hosts to connect to:

199.1.1.65
Data Policy

� Highest security/lowest performance
Key Policy

� Balanced security/performance
Local key server:

� Identifier type: Version 4 IP address
� IP Address: 199.0.0.44

We found the redbook AS/400 Internet Security: Implementing AS/400 Virtual Private Networks,
SG24-5404-00, helpful in constructing the VPN connection. It can be found at:

http://www.redbooks.com

Additional information on virtual private networking can found at the AS/400 Information
Center:

http://www.as400.ibm.com/infocenter

Within the AS/400 Information Center, select Internet and Secure Networks and then select
Virtual private networking.

Network and security 79

AppendixAppendixAppendixAppendix
The “Appendix” includes reference information and the more complex setup procedures that
pertain to this scenario.

Reference information
The following subtopics discuss the software and hardware used, where to find the source code,
views of some application screens, database details and data files used, and examples of LDIF,
XML, and the Payment Manager API.

System hardware

Details concerning hardware content of the two AS/400e servers used for this scenario are
described in the following tables. AS4SYS1a and AS4SYS1b are the two AS/400e servers
located in the DMZ. AS4SYS2a is the AS/400 located in the INSCO intranet. AS4SYS2b is the
AS/400 located in the underwriter intranet. AS4SYS2c is the AS/400 located in the scenario
internet.

AS/400e 1
9406 server 740

19.4 GB19.8 GBMain storage
ASP 728 GBASP 472 GBSystem
V4R4M0V4R4M0Release
44Processors

AS4SYS1b
(primary)

AS4SYS1a Partition

AS/400e 2
9406 server 730

1.7 GB2 GB8.9 GBMain storage
ASP 120 GBASP 155 GBASP 267 GBSystem
V4R4M0V4R4M0V4R4M0Release
224Processors
AS4SYS2c (primary) AS4SYS2b AS4SYS2a Partition

Appendix 80

System software requirements

The software inventory for each AS/400e server is described in the following tables:

AS4SYS1a, AS4SYS1b:

5769-SS1Cryptographic Service Provider
5769-AC3Crypto Access Provider 128-bit for AS/400
5733-WA2WebSphere Application Server for AS/400 (version 3.02)
5769-CE3Client Encryption 128-bit
5769-DG1IBM HTTP Server for AS/400
5769-JC1AS/400 Toolbox for Java
5769-JV1AS/400 Developer Kit for Java
5769-JV1Java Developer Kit 1.1.7

DB2 UDB for AS/400

AS4SYS2a:

5769-SS1Host Servers
5769-SS1AS/400 Integration for NT
5769-SS1Domain Name System
5769-SS1Digital Certificate Manager
5769-SS1Cryptographic Service Provider
5769-AC3Crypto Access Provider 1228-bit for AS/400

LDAP 2.1
5733-PY2WebSphere Payment Manager for AS/400 (version 2.1)
5769-DG1IBM HTTP Server for AS/400
5733-WA2WebSphere Application Server for AS/400 (version 3.02)
5769-JV1Java Developer Kit 1.1.7

DB2 UDB for AS/400

AS4SYS2b:

5769-JV1Java Developer Kit 1.1.7
5769-DG1IBM HTTP Server for AS/400
5733-WA2WebSphere Application Server for AS/400 (version 3.02)

DB2 UDB for AS/400

AS4SYS2c:

5769-SS1Domain Name System
5769-SS1Digital Certificate Manager
5769-SS1Cryptographic Service Provider
5769-AC3Crypto Access Provider 128-bit for AS/400

Appendix 81

Application source code

Along with this report, a zip file is available for download. This zip file contains the HTML file,
images, properties file, Java source files, and JSP files necessary to re-create this scenario.

Once you have downloaded this file, unzip it to a location of your choice, and then refer to the
readme.txt file for instructions on deployment.

Application screen views

The following images are the full size views of what the INSCO application looks like to the
user. For the order of appearance of the screen views for the customer and agent, see Figure 3
(Customer flow diagram) and Figure 4 (Agent and account administrator flow diagram),
respectively.

Figure 23. INSCO Login page

Appendix 82

Figure 24. Select Customer Information page

Appendix 83

Figure 25. Search Results page

Appendix 84

Figure 26. INSCO Agent Home Page

Appendix 85

Figure 27. INSCO Customer Home Page

Appendix 86

Figure 28. Update Personal Information page

Appendix 87

Figure 29. View Home Policy page

Appendix 88

Figure 30. View Auto Policy page

Appendix 89

Figure 31. Submit Automobile Application page

Appendix 90

Figure 32. Submit Home Application page

Appendix 91

Figure 33. New INSCO Customer page

Appendix 92

Figure 34. Make Payment page

Appendix 93

Figure 35. Make Payment - Success page

Appendix 94

Figure 36. Request Submitted Page

Appendix 95

Figure 37. Log Off page

Appendix 96

Database details

Definitions for each of the data files used in the INSCO database are listed below. Each data file
is stored in its own separate table. The tables contain the following fields:

A brief description of what the field contains, and possibly an
example to show the format of the data to be contained.

Description/Example

Used when the Data Type field is listed as DECIMAL. Digits
describes the length of the field, and DecPos is the number of
decimal positions allowed. For example 8,2 means the field could
accept a value like 123456.78

Digits, DecPos

A “Y” indicates that this field can contain a null value.Allow Null

Length refers to how long the field is. Alloc is how much space is
initially allocated to that field.

Length/Alloc

The type of data that is contained in the field: character, integer, date,
and so forth.

Data Type

Another way to reference the field. Normally, it is a bit longer and
more descriptive than the Field Name.

Alias Name

The name of the field in the data fileField Name

Any special requirements associated with a field. This indicates that a
constraint or an index needs to be applied to the data file to enforce
the rule. In the case of a check constraint, a description of the check
constraint is given after the table. Possible values used in the table are
Primary key (P), Foreign key (F), Unique (U), Check (C), and Index
(Inx).

Key

Appendix 97

Data files

CUSTOMER--File contains information for each customer of INSCO

The household income of
the customer

INTEGERHOUSEHOLD_INCOMEINCOME
Occupation of insuredY50/15VARCHAROCCUPATIONJOBTITLE

Marital status
M - Married
S - Single
D - Divorced
W - Widowed

1CHARMARITAL_STATUSMARIEDC
Date of birthDATEDATE_OF_BIRTHDOB

Social security number
(000000001)

9CHARSOCIAL_SECURITY_N
UMBER

SSN

Evening telephone
number - (xxx) xxx-xxxx

Y14CHARHOME_PHONEEVEPHONE

Day time work number
(xxx) xxx-xxxx

Y14CHARWORK_PHONEDAYPHONE
E-mail addressY255/30VARCHARE_MAIL_ADDRESSEMAIL
Zip code9CHAR ZIP_CODEZIPF
Address40/20VARCHARHOME_ADDRESSADDRESS
Last name25/10VARCHARLAST_NAMECLNAMEInx
Middle initialY1CHARMIDDLE_INITIALCMI
First name20/10VARCHARFIRST_NAMECFNAME

Customer identification
number - C0000001

8CHARCUSTOMER_NUMBERCNUMPC

Description/ExampleAllow
Null

Length
/Alloc

Data TypeAlias NameField NameKey

Check constraints:
� A constraint is needed to make sure the MARITAL_STATUS field contains only the four choices given.

CONSTRAINT CUSTOMER_MARIED_CHK CHECK
(UPPER (MARITAL_STATUS) IN ('S','M','D','W'))

� A constraint is needed to make sure the CUSTOMER_NUMBER fits the required format defined in the table above.
CONSTRAINT CUSTOMER_CNUM_CHECK CHECK
(CUSTOMER_NUMBER BETWEEN 'C0000000' AND 'C9999999')

ZIP_CODE--File contains zip codes and state names

Full state name40/20VARCHARFULL_STATE_NAMEFULLNAME
Abbreviated state name2CHARSTATE_CODECODE
City name40/20VARCHARCITY_NAMECITY
Zip code9CHARZIPCODEZIPPC

Description/ExampleLength
/Alloc

Data TypeAlias NameField NameKey

Check constraints:
� A constraint is needed to make sure the ZIPCODE field contains only numeric characters

CONSTRAINT ZIP_CODE_ZIP_CHK CHECK (TRIM (ZIP)
BETWEEN '000000000' AND '999999999'

Appendix 98

BASEPOLICY--File contains policy information common to both Auto and Home

Description of status that
was given.
Policy was rejected because
applicant has a poor credit
history.

Y255/10VARCHARDESCRIPTIONDESC

Status of policy
A - Approved
R - Rejected
N - New
P - Pending
C - Closed

1CHARSTATUS_CODESTATUSC

Type of policy purchased -
Home or Auto.

4CHARPOLICY_TYPEPTYPEC
Date that the next bill is dueDATENEXT_DUE_DATEDUEDATE
Date the policy takes effectDATEEFFECTIVE_DATEDATESTR

Agent identification number
- A0000001

8CHARAGENT_NUMBERANUMF

Customer identification
number - C0000001

8CHARCUSTOMER_NUMBERCNUMF

Policy number
P1234567890

11CHARPOLICY_NUMBERPNUMPC

Description/ExampleAllow
Null

Length
/Alloc

Data TypeAlias NameField NameKey

Check constraints:
� A constraint is needed to make sure the MARITAL_STATUS field contains only one of the two choices given

CONSTRAINT BASE_TYPE_CHK CHECK
(UPPER (POLICY_TYPE) IN ('HOME', 'AUTO'))

� A constraint is needed to make sure the CUSTOMER_NUMBER fits the required format
CONSTRAINT CUSTOMER_CNUM_CHECK CHECK
(CUSTOMER_NUMBER BETWEEN 'C0000000' AND 'C9999999')

� A constraint is needed to make sure the AGENT_NUMBER fits the required format
CONSTRAINT AGENT_CNUM_CHECK CHECK (AGENT_NUMBER BETWEEN 'A0000000' AND
'A9999999')

� A constraint is needed to make sure the POLICY_NUMBER fits the required format
CONSTRAINT BASE_PNUM_CHK CHECK
(POLICY_NUMBER BETWEEN 'P0000000000' AND 'P9999999999')

� A constraint is needed to make sure the MARITAL_STATUS field contains only one of the two choices given
CONSTRAINT STATUS_STAT_CHK CHECK (UPPER (STATUS_CODE) IN ('A','R','N','P','C'))

Appendix 99

AGENT--File contains agent information

E-mail addressY255/30VARCHARE_MAIL_ADDRESSEMAIL
Last name of agent25/10VARCHARLAST_NAMEALNAME
First name of agent20/10VARCHARFIRST_NAMEAFNAME

Agent identification number in
the form of: A0000001

8CHARAGENT_NUMBERANUMPC

Description/ExampleAllow
Null

Length
/Alloc

Data TypeAlias NameField
Name

Key

Check constraints:
� A constraint is needed to make sure the AGENT_NUMBER fits the required format

CONSTRAINT AGENT_ANUM_CHK CHECK (AGENT_NUMBER BETWEEN 'A0000000' AND 'A9999999')

HOME--File contains information for a home insurance policy

Year house was occupied4CHARYEAR_OCCUPIEDOCCUPIEDC
Year house was built4CHARYEAR_BUILTBUILTC

Type of door lock
DBLCL - Double cylinder
DEADB - Dead bolt
SPRING - Spring
OT - Other

6CHARLOCK_CODELOCKTYPE
Number of rooms in houseINTEGERNUMBER_OF_ROOMSROOMS
Zip code of home covered9CHARZIP_CODEZIPF
Address of home covered40/20VARCHARHOUSE_ADDRESSADDRESS
Policy number - P123456789011CHARPOLICY_NUMBERPNUMUF

Description/ExampleLength
/Alloc

Data TypeAlias NameField NameKey

Notes:
� The types of door locks and their codes were taken from page 49 of the ACORD_Code_Lists_for_PC.doc.
� A check constraint was not placed on LOCK_CODE because this field could be expanded to accept more types

of locks than the ones that we limited ourselves to in this scenario.
Check constraints:
� A constraint is needed to make sure the YEAR_BUILT fits the required format

CONSTRAINT HOUSE_BUILT_CHK CHECK (YEAR_BUILT BETWEEN '0000' AND '9999')

� A constraint is needed to make sure the YEAR_OCCUPIED fits the required format
CONSTRAINT HOME_OCCUPIED_CHK CHECK (YEAR_OCCUPIED BETWEEN '0000' AND '9999')

Appendix 100

AUTO--File contains information for an auto insurance policy

Customer’s drivers license
number - T123456789012

13CHARDRIVER_LICENSELICENSE
Estimated annual mileageINTEGERANNUAL_MILESMILES
Date vehicle was purchasedDATEPURCHASE_DATEDATEOWN

State vehicle is registered in -
MN

2CHARREGISTERED_STATESTATE

Vehicle identification number -
39483038593098457277

30CHARIDENTIFICATION_NUMVIN
Number of cylinders - 4INTEGERCYLINDERSCYLNDRS

Vehicle’s body type
2DRHT - 2-door hard top
4DRHT - 4-door hard top
4W - 4-door wagon
4WD - 4-wheel drive
CONVT - Convertible
VANMV - Minivan
TRUCKT - Truck
MC - Motorcycle

6CHARBODY_TYPEBODY
Vehicle’s year - 19974CHARMODEL_YEARYR
Vehicle’s model - SL220/10VARCHARMODELMODELC
Vehicle’s make - Saturn20/10VARCHARMANUFACTURERMAKE
Policy number - P123456789011CHARPOLICY_NUMBERPNUMUF

Description/ExampleLength
/Alloc

Data TypeAlias NameField NameKey

Notes:
� Coverage types were taken from pages 99 - 101of ACORD_Code_Lists_for_PC.doc. Many additional codes

could be used, but we decided to limit ourselves to the types listed.
� A check constraint was not placed on BODY_TYPE because this field could be expanded to accept many more

types than the ones that we limited ourselves to in this scenario.
Check constraints:
� A constraint is needed to make sure the MODEL_YEAR fits the required format

CONSTRAINT AUTO_YEAR_CHK CHECK (MODEL_YEAR BETWEEN '0000' AND '9999')

Appendix 101

COVERAGE -- File contains information on coverage for each policy

Deductible amountINTEGERDEDUCTIBLEDEDUCT

Limit amount - The maximum
amount that will be paid on a
claim

INTEGERLIMIT_AMOUNTLIMIT

Term amount - Amount that needs
to be paid each term (every 6
months)

INTEGERTERM_AMOUNTTERM

Coverage type
AUPIP - Auto personal injury
protection
ATOWG - Auto towing
ACOMP - Auto comprehensive
ACOLL - Auto collision
THEFT - Theft
VMM - Vandalism and malicious
mischief
FLOOD - Flood
FIRE - Fire

5CHARCOVERAGE_TYPECTYPE
Coverage numberINTCOVERAGE_NUMBERCOVNUMP
Policy number - P123456789011CHARPOLICY_NUMBERPNUMPF

Description/ExampleLengthData
Type

Alias NameField NameKey

Notes:
� Coverage types were taken from pages 22 - 40 of ACORD_Code_Lists_for_PC.doc. Many additional codes

could be used, but we decided to limit ourselves to the types listed.
� A check constraint was not placed on COVERAGE_TYPE because this field could be expanded to accept many

more types than the ones that we limited ourselves to in this scenario.

PAYHIST -- File contains the payment history for each policy

Amount that customer paid8, 2DECIMALAMOUNT_PAIDPAID
Amount that is due8, 2DECIMALAMOUNT_DUEDUE
Policy number - P123456789011CHARPOLICY_NUMBERPNUMF

Timestamp when record was
added

TIMESTAMPADDEDADDEDP

Description/ExampleDigits,
DecPos

LengthData TypeAlias NameField
Name

Key

Appendix 102

PENDING -- File contains the pending policy applications

Status description255/20VARCHARDESCRIPTIONDESC
Status of the policy - P1CHARSTATUS_CODESCODE
Policy number - P123456789020CHARPOLICY_NUMBERPOLNUMF

Unique request ID for this policy
application

50CHARREQUEST_IDREQIDP

Description/ExampleLengthData TypeAlias NameField
Name

Key

The following table resides on the underwriter’s system and contains a history of all policy
applications submitted to the underwriter.

APPS -- File contains the underwriter’s policy applications

Status of the policy - P1CHARSTATUSSTATUS

Customer’s name who owns the
policy

100/20VARCHARCUSTOMER_NAMECUSTNAME

Company’s account number with the
underwriter

INTEGERACCOUNT_NUMACCTNUM

Company the policy application
came from

100/20VARCHARCOMPANYCOMPANY
Type of policy - HOME or AUTO4CHARPOLICY_TYPEPOLTYPE

Timestamp when this application
was added

TIMESTAMPTIMESTAMPTIMESTAMP

Unique request ID for this policy
application.

50VARCHARREQUEST_IDREQIDP
Description/ExampleLengthData TypeAlias NameField NameKey

Examples: LDIF import files

The following LDIF examples were used to create the DIT structure and populate the LDAP
server with data that was migrated from the database.
adminDIT.ldif

This LDIF file sets up the top-level objects in the DIT.

dn: dc=sys, dc=insco, dc=com
dc: sys
objectclass: domain

dn: o=insco, dc=sys, dc=insco, dc=com
o: insco
inheritOnCreate: FALSE
aclEntry: access-id:cn=inscoAdmin, o=insco, dc=sys, dc=insco, dc=com:

object:a:normal:rwsc:sensitive:rwsc:critical:rsc
entryOwner: access-id:cn=administrator
objectclass: organization

Appendix 103

dn: cn=inscoAdmin, o=insco, dc=sys, dc=insco, dc=com
cn: inscoAdmin
sn: inscoAdmin
userPassword: insco
entryOwner: access-id:cn=administrator
inheritOnCreate: FALSE
aclEntry: access-id:cn=inscoAdmin, o=insco, dc=sys, dc=insco, dc=com:

object:a:normal:rwsc:sensitive:rwsc:critical:rsc
objectclass: inetOrgPerson
objectclass: ePerson

inscoDIT.ldif

This LDIF file sets up the groups and the agent, customer, and policy containers.

dn: cn=securityAdministrators, o=insco, dc=sys, dc=insco, dc=com
cn: securityAdministrators
member: cn=inscoAdmin, o=insco, dc=sys, dc=insco, dc=com
aclEntry: access-id:cn=inscoAdmin, o=insco, dc=sys, dc=insco, dc=com:

object:ad:normal:rwsc:sensitive:rwsc:critical:rwsc
aclEntry: group:cn=securityAdministrators, o=insco, dc=sys, dc=insco, dc=com:

object:ad:normal:rwsc:sensitive:rwsc:critical:rwsc
entryOwner: access-id:cn=administrator
entryOwner: access-id:cn=inscoAdmin, o=insco, dc=sys, dc=insco, dc=com
inheritOnCreate: FALSE
objectclass: AccessGroup

dn: cn=accountAdministrators, o=insco, dc=sys, dc=insco, dc=com
cn: accountAdministrators
member: cn=inscoAdmin, o=insco, dc=sys, dc=insco, dc=com
entryOwner: access-id:cn=administrator
entryOwner: access-id:cn=inscoAdmin, o=insco, dc=sys, dc=insco, dc=com
aclEntry: access-id:cn=inscoAdmin, o=insco, dc=sys, dc=insco, dc=com:

object:ad:normal:rwsc:sensitive:rwsc:critical:rwsc
aclEntry: group:cn=securityAdministrators, o=insco, dc=sys, dc=insco, dc=com:

object:ad:normal:rwsc:sensitive:rwsc:critical:rwsc
inheritOnCreate: FALSE
objectclass: AccessGroup

dn: cn=allAgents, o=insco, dc=sys, dc=insco, dc=com
cn: allAgents
member: cn=inscoAdmin, o=insco, dc=sys, dc=insco, dc=com
entryOwner: access-id:cn=administrator
entryOwner: access-id:cn=inscoAdmin, o=insco, dc=sys, dc=insco, dc=com
aclEntry: access-id:cn=inscoAdmin, o=insco, dc=sys, dc=insco, dc=com:

object:ad:normal:rwsc:sensitive:rwsc:critical:rwsc
aclEntry: group:cn=securityAdministrators, o=insco, dc=sys, dc=insco, dc=com:

object:ad:normal:rwsc:sensitive:rwsc:critical:rwsc
aclEntry: group:cn=accountAdministrators, o=insco, dc=sys, dc=insco, dc=com:

object:ad:normal:rwsc:sensitive:rwsc:critical:rwsc
inheritOnCreate: FALSE
objectclass: AccessGroup

dn: ou=policies, o=insco, dc=sys, dc=insco, dc=com
ou: policies
inheritOnCreate: FALSE
entryOwner: access-id:cn=administrator
entryOwner: access-id:cn=inscoAdmin, o=insco, dc=sys, dc=insco, dc=com
aclEntry: access-id:cn=inscoAdmin, o=insco, dc=sys, dc=insco, dc=com:

object:ad:normal:rwsc:sensitive:rwsc:critical:rwsc

Appendix 104

aclEntry: group:cn=allAgents, o=insco, dc=sys, dc=insco, dc=com:
object:a:normal:rwsc:sensitive:rwsc:critical:rwsc

objectclass: organizationalUnit

dn: ou=agents, o=insco, dc=sys, dc=insco, dc=com
ou: agents
inheritOnCreate: FALSE
entryOwner: access-id:cn=administrator
entryOwner: access-id:cn=inscoAdmin, o=insco, dc=sys, dc=insco, dc=com
aclEntry: access-id:cn=inscoAdmin, o=insco, dc=sys, dc=insco, dc=com:

object:ad:normal:rwsc:sensitive:rwsc:critical:rwsc
aclEntry: group:cn=securityAdministrators, o=insco, dc=sys, dc=insco, dc=com:

object:a:normal:rwsc:sensitive:rwsc:critical:rwsc
objectclass: organizationalUnit

dn: ou=customers, o=insco, dc=sys, dc=insco, dc=com
ou: customers
inheritOnCreate: FALSE
entryOwner: access-id:cn=administrator
entryOwner: access-id:cn=inscoAdmin, o=insco, dc=sys, dc=insco, dc=com
aclEntry: access-id:cn=inscoAdmin, o=insco, dc=sys, dc=insco, dc=com:

object:ad:normal:rwsc:sensitive:rwsc:critical:rwsc
aclEntry: group:cn=allAgents, o=insco, dc=sys, dc=insco, dc=com:

object:a:normal:rwsc:sensitive:rwsc:critical:rwsc
objectclass: organizationalUnit

agents.ldif

This LDIF file adds all the agents to the LDAP directory. Only one agent is shown here.

dn: cn=A0000001, ou=agents, o=insco, dc=sys, dc=insco, dc=com
cn: A0000001
sn: A0000001
userPassword: insco01
inscoPersonType: agent
entryOwner: access-id:cn=administrator
entryOwner: access-id:cn=inscoAdmin,o=insco,dc=sys,dc=insco,dc=com
entryOwner: access-id:cn=A0000001,ou=agents,o=insco,dc=sys,dc=insco,dc=com
objectclass: inetOrgPerson
objectclass: ePerson

objectclass: inscoPerson

customers.ldif

This LDIF file adds all the customers to the LDAP directory. Only one customer is shown here.

dn: cn=C0000001, ou=customers, o=insco, dc=sys, dc=insco, dc=com
cn: C0000001
sn: C0000001
userPassword: insco01
inscoPersonType: customer
entryOwner: access-id:cn=administrator
entryOwner: access-id:cn=inscoAdmin,o=insco,dc=sys,dc=insco,dc=com
aclEntry: access-id:cn=C0000001,ou=customers,o=insco,dc=sys,dc=insco,dc=com:

object:a:normal:rwsc:sensitive:rwsc:critical:rsc
objectclass: inetOrgPerson

Appendix 105

objectclass: ePerson

objectclass: inscoPerson

policies.ldif

This LDIF file adds all the policies to the LDAP directory. Only one policy is shown here.

dn: cn=P55557,ou=policies,o=insco,dc=sys,dc=insco,dc=com
cn: P55557
aclEntry: group:cn=accountAdministrators,o=insco,dc=sys,dc=insco,dc=com:

object:ad:normal:rwsc:sensitive:rwsc:critical:rwsc
aclEntry: access-id:cn=C22223,ou=customers,o=insco,dc=sys,dc=insco,dc=com:

object:a:normal:rwsc:sensitive:rwsc:critical:rwsc
aclEntry: access-id:cn=A11113,ou=agents,o=insco,dc=sys,dc=insco,dc=com:

object:ad:normal:rwsc:sensitive:rwsc:critical:rwsc
entryOwner: access-id:cn=administrator
entryOwner: access-id:cn=inscoAdmin,o=insco,dc=sys,dc=insco,dc=com
entryOwner: group:cn=securityAdministrators,o=insco,dc=sys,dc=insco,dc=com
objectclass: inscoPolicy

groups.ldif

This LDIF file adds all the groups to the LDAP directory. Only the cn=accountAdministrators
group is shown here.

dn: cn=accountAdministrators, o=insco, dc=sys, dc=insco, dc=com
member: cn=A0000500, ou=agents, o=insco, dc=sys, dc=insco, dc=com
member: cn=A0000501, ou=agents, o=insco, dc=sys, dc=insco, dc=com

member: cn=A0000502, ou=agents, o=insco, dc=sys, dc=insco, dc=com

Examples: XML coded messages

The following code is an example of a home policy application request:

<?xml version="1.0"?>
<!DOCTYPE PersHomeAddRQ SYSTEM "/insco/PersHomeAddRq.dtd">
<PersHomeAddRQ>

<RqUID>INSCO-P0000000002-954363583374</RqUID>
<Account>

<AccountNumber>10000342</AccountNumber>
<Name>

<NameType>Corporation/Commercial</NameType>
<CommercialName>

<CompanyName>INSCO Insurance Company</CompanyName>
</CommercialName>

</Name>
</Account>
<Customer>

<CustomerName>
<NameType>Person</NameType>
<PersonName>

<LastName>JOHNSON</LastName>
<FirstName>JAMES</FirstName>

Appendix 106

</PersonName>
</CustomerName>
<CustomerAddress>

<Addr1>1234 Any Street SW</Addr1>
<City>Some City</City>
<StateProv>XZ</StateProv>
<PostalCode>00001</PostalCode>

</CustomerAddress>
<CustomerContact>

<ContactType>CUSTCONTACT</ContactType>
<PersonContact>

<DayPhone>(xxx)xxx-xxxx</DayPhone>
<EvePhone>(xxx)xxx-xxxx</EvePhone>
<EMailAddr>anyaddress@isp.com</EMailAddr>

</PersonContact>
</CustomerContact>
<CustType>Retail</CustType>

</Customer>
<PersonalPolicy>

<PolicyNumber>P0000000002</PolicyNumber>
<LOBCode>HOME</LOBCode>
<EffectiveDate>1999-09-04</EffectiveDate>
<ExpirationDate>2000-03-04</ExpirationDate>
<PersonalApplicationInfo>

<InsuredInfo>
<DateOfBirth>YYYY-MM-DD</DateOfBirth>
<MaritalStatus>D</MaritalStatus>
<OccupationDescription>Teacher</OccupationDescription>
<SocialSecurityNumber>000000123</SocialSecurityNumber>

</InsuredInfo>
<HouseholdIncome>23199</HouseholdIncome>

</PersonalApplicationInfo>
</PersonalPolicy>
<PersonalHomeLineOfBusiness>

<LOBCode>HOME</LOBCode>
<PersonalDwell>

<DoorLockCode>DBLCL</DoorLockCode>
<NumberOfRooms>2</NumberOfRooms>
<YearBuilt>1931</YearBuilt>
<YearOfOccupancy>1972</YearOfOccupancy>

</PersonalDwell>
<Coverage>

<CoverageCode>THEFT</CoverageCode>
<Limit>

<LimitAmount>50000</LimitAmount>
</Limit>
<Deductible>

<DeductibleAmount>50</DeductibleAmount>
</Deductible>
<CurrentTermAmount>

<Amount>100</Amount>
</CurrentTermAmount>

</Coverage>
<Coverage>

<CoverageCode>Flood</CoverageCode>
<Limit>

<LimitAmount>50000</LimitAmount>
</Limit>
<Deductible>

<DeductibleAmount>50</DeductibleAmount>
</Deductible>

Appendix 107

<CurrentTermAmount>
<Amount>100</Amount>

</CurrentTermAmount>
</Coverage>
<Coverage>

<CoverageCode>FIRE</CoverageCode>
<Limit>

<LimitAmount>50000</LimitAmount>
</Limit>
<Deductible>

<DeductibleAmount>50</DeductibleAmount>
</Deductible>
<CurrentTermAmount>

<Amount>100</Amount>
</CurrentTermAmount>

</Coverage>
<Location>

<PostalAddress>
<Addr2>5678 Any Street SW</Addr2>
<City>Some City</City>
<StateProv>XZ</StateProv>
<PostalCode>00002</PostalCode>

</PostalAddress>
</Location>

</PersonalHomeLineOfBusiness>
<Producer>

<Name>
<NameType>Person</NameType>
<PersonName>

<LastName>DOE</LastName>
<FirstName>JOHN</FirstName>

</PersonName>
</Name>

</Producer>
</PersHomeAddRQ>

The following is an example of an auto policy application response:

<?xml version="1.0" ?>
<!DOCTYPE PersAutoAddRS SYSTEM "/insco/PersAutoAddRs.dtd">
<PersAutoAddRS>

<RqUID>INSCO-P0000000096-954172189002</RqUID>
<Status>

<StatusCode>A</StatusCode>
<Description>Approved.</Description>

</Status>
</PersAutoAddRS>

Payment Manager 2.1 API

The PaymentServlet will use only one API call from the Payment Manager product,
AcceptPayment. This command creates an Order object in the Payment Manager. If successful,
it will be placed in the Ordered state; if the command fails, it will not be created. You can
optionally have the Payment Manager automatically approve the order and/or have funds
automatically deposited. For our scenario we will be automatically approving and depositing
when we call this command.

Appendix 108

This table shows the required keywords for the AcceptPayment command.

Specifies payment protocol used (that is, “Test” for test
cassette or “CyberCash” for CyberCash cassette)

PAYMENTTYPE
Unique order number.ORDERNUMBER
“AcceptPayment” (indicates API command to call).OPERATION
PaymentManager merchant to place payment with.MERCHANTNUMBER
“3” (indicates PaymentManager Version 2.1).ETAPIVERSION
Currency type of payment (that is, “840” (US Dollar)).CURRENCY
Amount of payment.AMOUNT
ValueKeyword

This table shows the optional keywords for the AcceptPayment command.

The batch number under which this payment will be processed.BATCHNUMBER

Whether payment should be automatically deposited.
0 - Funds should not be automatically deposited.
1 - Funds should be automatically deposited.

DEPOSITFLAG
Unique payment number.PAYMENTNUMBER
Amount to be approved automatically.PAYMENTAMOUNT
URL containing order details.ORDERURL
Path to locally stored DTD.DTDPATH

Whether payment should be automatically approved.
0 - Transaction should not be approved.
1 - Transaction should be approved.

APPROVEFLAG
The number of decimal places to shift payment amount.AMOUNTEXP10
ValueKeyword

This example code snippet calls the AcceptPayment command:

//setup the info to send to Payment Manager
Hashtable pairs = new Hashtable();
pairs.put(KEY_PAYMENTTYPE, “Test”);
pairs.put(KEY_MERCHANTNUMBER, “853”);
pairs.put(KEY_ORDERNUMBER, “123456789”);
pairs.put(KEY_PAYMENTNUMBER, “123456789”);
pairs.put(KEY_AMOUNT, new Integer(500));
pairs.put(KEY_PAYMENTAMOUNT, new Integer(500));
pairs.put(KEY_CURRENCY, “840”);
pairs.put(KEY_AMOUNTEXP10, “-2”);
pairs.put(KEY_APPROVEFLAG, “1”);
pairs.put(KEY_DEPOSITFLAG, “1”);
pairs.put("$PAN", “1111222233334444”);
pairs.put("$BRAND", “Visa”);
pairs.put("$EXPIRY", “092001);
pairs.put("$ACCOUNTNUMBER", “1”);
String pServerHost = "pmgr.insco.com";
int pServerPort = 80;

Appendix 109

//call accept payment from the Payment Manager
int primaryRC = 0;
int secondaryRC = 0;
try {

server = new PaymentServerClient(null, pServerHost, pServerPort);
PaymentServerResponse psResp =

server.issueCommand(OP_ACCEPTPAYMENT, pairs, DbUser, DbPassword);
primaryRC = psResp.getPrimaryRC();
secondaryRC = psResp.getSecondaryRC();

} catch (PaymentServerAuthorizationException ex) {
// handle error

} catch (PaymentServerCommunicationException ex) {
// handle error

} catch (PaymentServerClientException ex) {
// handle error

} finally {
if (server !=null) try {server.close(); } catch (IOException e) {}

}

Setting up AS/400 WebSphere applications for B2B
integration
The following subtopics describe how to configure WebSphere Application Server security,
HTTP Server configuration, and how to configure the network and its associated resources.

Configuring WebSphere Application Server security

To enable security for the administrative server, follow these steps:

1. Add users that need to be authorized to an LDAP directory.

2. From the Tasks view in the WebSphere Administrative Console, expand the Security
tree.

3. Select the Specify Global Settings item and click the Start icon.

4. Fill in the fields for each tabbed page as appropriate for your WebSphere Application
Server environment. General information concerning the fields on these pages can be
found in the Security Properties help page.

a. On the General tab, check the Enable Security check box. You may also want to
change the Security Cache Timeout value. We changed ours to 30 seconds.

b. On the Application Defaults tab, set your Realm Name to your domain name (see
item 1d of the “WebSphere security discoveries” section of the “INSCO application”
topic). Select your Challenge Type to be Custom. In the Login URL and Relogin
URL fields, specify the full path to your HTML file, which contains a form to request
a user ID and password; that is:

Appendix 110

 http://www.insco.com/inscologin.html

c. On the Authentication Mechanism tab, specify the Authentication Mechanism to be
LTPA. Generate keys for LTPA by pressing the Generate Keys button. Enter a
password to be used in creating the keys. Also, enable SSO by entering a Shared
Name, which can be anything you want. The Shared Name will be used as the name
of the cookie that gets created. Also, enter the name of your Domain (see item 1d of
the “WebSphere security discoveries” section of the “INSCO application” topic).

d. On the User Registry tab, fill in the fields corresponding to your LDAP setup. The
following list represents the values that we used for the fields:

i. Security Server ID: cn=administrator
ii. Security Server Password: password for cn=administrator
iii. Directory Type select the advanced button

1) Change the User Filter from uid to cn
2) Change the User ID Map from uid to cn

iv. Host: sys.insco.com
v. Base Distinguished Name: dc=sys,dc=insco,dc=com
vi. Bind Distinguished Name: cn=administrator
vii. Bind Password: password for cn=administrator

e. Click the Finished button.

5. Restart the administrative server.

Configuring HTTP Server for authorization services

To enable the use of authorization services for the HTTP Server configuration, follow these
steps:

1. Open the properties file on the AS/400 using the following command on an AS/400
command line: EDTF STMF(‘instance.root/properties/bootstrap.properties’).

Note: Instance.root will most likely be ‘/QIBM/UserData/WebASAdv/default’.

2. In the bootstrap.properties file, locate the property ose.security.enabled.
3. Change the line to read ose.security.enabled=true.
4. Save the updated file.
5. Restart your HTTP Server instance.

Securing web resources

The following steps will enable you to secure web resources using the WebSphere
Administrative Console:

Appendix 111

1. From the Tasks view, expand the Configuration tree.

2. Configure a web application to hold the servlets and JSP files that you want to secure.

3. Expand the Configuration tree again.

4. Select the Configure an Enterprise Application option and click the Start icon.

a. Specify a name for your enterprise application; then press the Next button.
b. Expand the Web Applications tree, select the web application that you configured in

step 2, click the Add button, click the Next button, and then click the Finished
button.

5. Expand the Security tree.

6. Select the Configure Application Security option and click the Start icon.

a. Expand the Enterprise Applications tree.
b. Select the enterprise application configured in step 4 and click the Next button.
c. Set your Realm Name to your domain name (see item 1d of the “WebSphere security

discoveries” section of the “INSCO application” topic), and select your Challenge
Type to be Custom. In the Login URL and Relogin URL fields, specify the full
path to your HTML file, which contains a form to request user ID and password; that
is:

http://www.insco.com/inscologin.html

and then click the Finished button.

7. Select the Work With Method Groups option and click the Start icon.

8. Select the Configure Resource Security option and click the Start icon.

a. Expand the Virtual Hosts tree.
b. Expand the default_host tree.
c. Select the uniform resource identifier (URI) for the servlet or JSP file that you want to

secure and press the Next button. You will only be able to select one URI at a time,
so you may have to perform this step multiple times. Answer Yes to the Use Default
Method Groups dialog box, and then press the Finished button.

9. Select the Assign Permissions option and click the Start icon.

Appendix 112

a. To associate a user registry entry with a permission, select the permission (such as
Application_Name-ReadMethods) and click Add. To disassociate a user registry
entry, select the entry and click Remove.

b. Select either All Authenticated or Selection. Selection will give you the option of
selecting groups of users or specific users.

Configuring the network

There are four distinct networks in this scenario: the INSCO intranet, the INSCO DMZ, the
scenario internet, and the underwriter intranet. The following figures illustrate each network in
detail.

Figure 38. INSCO intranet

Appendix 113

Figure 39. INSCO DMZ

The IP addresses, 199.1.1.40 and 199.1.1.44, were static mapped (using NAT) to INSCO internal
addresses.

The IP address, 199.1.1.50, is a virtual IP address. It was created and activated on both
transactional web server systems.

Figure 40. Scenario internet

Appendix 114

Figure 41. Underwriter intranet

Configuring network security

This topic shows the VPN creation procedures, the VPN configuration details, and the VPN IP
filter rules for the INSCO and the underwriter networks.

VPN creation steps (INSCO)

We created the INSCO VPN by using the New Connection Wizard - INSCO.

Starting at Operations Navigator, expand the system (INSCO) Network IP Security.
Select Virtual Private Networking and then open Configuration.

Appendix 115

Select File, New Connection, and Hosts to Hosts to start the Connection Wizard.

Appendix 116

Specify a connection name and description.

We chose the highest security, lowest performance selection for the key policy.

Appendix 117

We specified the local identifier information. For a host-to-host connection, the VPN servers and
data endpoints have the same IP addresses.

Appendix 118

Next, we specified the remote VPN server and authentication information. Here we are using a
pre-shared key.

Appendix 119

We chose to balance security and performance for our data policy.

Next, click the Finish button to create the VPN connection.

Appendix 120

VPN configuration details (INSCO)

No size limitMaximum Size Limit (kilobytes)
1440Maximum Key Lifetime (minutes)

Key Management
Default 768-bit MODPDiffie-Hellman Group
3DES-CBCEncryption Algorithm
SHAHash Algorithm
ebitvpnPre-Shared Key Value
Pre-shared KeyAuthentication Method

Key Protection Transforms
Aggressive ModeInitiator Negotiation
UnderwriterHSName

Key Policy

No size limitExpire at size limit (kilobytes)
60Expire after (minutes)

Key Expiration
DES-CBCEncryption Algorithms
HMAC-MD5Authentication Algorithms
ESPProtocol
TransportEncapsulation Mode
ESPData Protection Proposals
Pre-shared KeyAuthentication Method

Diffie-Hellman Group
NoUse Diffie-Hellman Perfect Forward Secrecy
UnderwriterBSName

Data Policy

199.1.1.65IP Address
Version 4 IP AddressIdentifier Type

Local Key Server
UnderwriterHSKey Policy
199.0.0.44IP Address
Version 4 IP AddressIdentifier Type
YesRemote Key Server
UnderwriterName

Key Connection Group

ConnectionProtocol
ConnectionRemote Ports
Single value from connectionRemote Address
ConnectionLocal Ports
Single value from connectionLocal Address
Never expiresConnection Lifetime
UnderwriterBSData Management Security Policy
UnderwriterPolicy
Either system can initiate this connectionInitiation
Both systems are hostsSystem Role
UnderwriterName

Dynamic Key Group

TCPProtocol
Any PortRemote Port
80Local Port

Services
199.0.0.44Remote Address
199.1.1.65Local Address
Start AutomaticallyStart when TCP/IP is started?
199.0.0.44Identifier
UnderwriterKey Connection Group

Remote Key Server
Underwriter:L1Name

Dynamic Key Connection

Appendix 121

VPN IP filter rules (INSCO)

The IP filter rules for the INSCO VPN connection to the underwriter system follow.

OFF*199.1.1.65*199.0.0.44OUTBOUNDIPSECINSCOVPN
OFF*199.0.0.44UDP199.1.1.65INBOUNDPERMITINSCOVPN
OFF*199.1.1.65UDP199.0.0.44OUTBOUNDPERMITINSCOVPN
JournalingFragmentDestinationServiceSourceDirectionActionFilter Set

VPN creation steps (underwriter)

We took these steps to create the underwriter VPN.

Starting at Operations Navigator, expand the system (INSCO) Network IP Security.
Select Virtual Private Networking and then open Configuration.

Select File, New Connection, and Hosts to Hosts to start the Connection Wizard.

Appendix 122

Appendix 123

Specify a connection name and description.

We chose the highest security, lowest performance selection for the key policy.

Appendix 124

Next, we specified the remote VPN server and authentication information. Here we are using a
pre-shared key.

Appendix 125

Next, we specified the remote VPN server and authentication information. Here we are using a
pre-shared key.

Appendix 126

We chose to balance security and performance for our data policy.

Next, click the Finish button to create the VPN connection.

Appendix 127

VPN configuration details (underwriter)

No size limitMaximum Size Limit (kilobytes)
1440Maximum Key Lifetime (minutes)

Key Management
Default 768-bit MODPDiffie-Hellman Group
3DES-CBCEncryption Algorithm
SHAHash Algorithm
ebitvpnPre-Shared Key Value
Pre-shared KeyAuthentication Method

Key Protection Transforms
Aggressive ModeInitiator Negotiation
INSCOHSName

Key Policy

No size limitExpire at size limit (kilobytes)
60Expire after (minutes)

Key Expiration
DES-CBCEncryption Algorithms
HMAC-MD5Authentication Algorithms
ESPProtocol
TransportEncapsulation Mode
ESPData Protection Proposals
Pre-shared KeyAuthentication Method

Diffie-Hellman Group
NoUse Diffie-Hellman Perfect Forward Secrecy
INSCOBSName

Data Policy

199.0.0.44IP Address
Version 4 IP AddressIdentifier Type

Local Key Server
INSCOHSKey Policy
199.1.1.65IP Address
Version 4 IP AddressIdentifier Type
YesRemote Key Server
INSCOName

Key Connection Group

ConnectionProtocol
ConnectionRemote Ports
Single value from connectionRemote Address
ConnectionLocal Ports
Single value from connectionLocal Address
Never expiresConnection Lifetime
INSCOBSData Management Security Policy
INSCOPolicy
Either system can initiate this connectionInitiation
Both systems are hostsSystem Role
INSCOName

Dynamic Key Group

TCPProtocol
AnyRemote Port
80Local Port

Services
199.1.1.65Remote Address
199.0.0.44Local Address
Start AutomaticallyStart when TCP/IP is started?
199.1.1.65Identifier
INSCOKey Connection Group

Remote Key Server
INSCO:L1Name

Dynamic Key Connection

Appendix 128

VPN IP filter rules (underwriter)

The IP filter rules for the underwriter VPN connection to the INSCO system follow.

OFF*199.1.1.65*199.0.0.44OUTBOUNDIPSECINSCOVPN
OFF*199.1.1.65UDP199.0.0.44OUTBOUNDPERMITINSCOVPN
OFF*199.0.0.44UDP199.1.1.65INBOUNDPERMITINSCOVPN
JournalingFragmentDestinationServiceSourceDirectionActionFilter Set

These rules are in addition to those documented in our last report.

HTTP port 80 - Source: INSCO DMZ Servers, Destination: INSCO Payment Manager

outboundrouteNonsecure1023gt80eqtcp/ackpermit
inboundrouteSecure1023gt80egtcp/ackpermit

outboundrouteSecure80eq1023gttcppermit
inboundrouteNonsecure80eq1023gttcppermit

DirectionRoutingInterfacePort #OperationPort #OperationProtocolAction

DestinationSource

HTTPS port 443 - Source: INSCO DMZ Servers, Destination: INSCO Internal Server

outboundrouteNonsecure1023eq443gttcp/ackpermit
inboundrouteSecure1023gt443egtcp/ackpermit

outboundrouteSecure443eq1023gttcppermit
inboundrouteNonsecure443eq1023gttcppermit

DirectionRoutingInterfacePort #OperationPort #OperationProtocolAction

DestinationSource

LDAP port 389 - Source: INSCO DMZ Servers, Destination: INSCO Internal Server

outboundrouteNonsecure1023gt389eqtcp/ackpermit
inboundrouteSecure1023gt389egtcp/ackpermit

outboundrouteSecure389eq1023gttcppermit
inboundrouteNonsecure389eq1023gttcppermit

DirectionRutingInterfacePort #OperationPort #OperationProtocolAction

DestinationSource

Data queue port 8472 - Source: INSCO DMZ Servers, Destination: INSCO Internal Server

outboundrouteNonsecure1023gt8472eqtcp/ackpermit
inboundrouteSecure1023gt8472egtcp/ackpermit

outboundrouteSecure8472eq1023gttcppermit
inboundrouteNonsecure8472eq1023gttcppermit

DirectionRoutingRInterfacePort #OperationPort #OperationProtocolAction

DestinationSource

Appendix 129

Trademarks

IBM, AS/400, DB2, DB2 Universal Database, Operating System/400, OS/400, RS/6000, and
WebSphere are trademarks or registered trademarks of International Business Machines
Corporation and/or its subsidiaries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

SET and the SET logo are trademarks owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

IBM UNCLASSIFIED

Trademarks 130

License and disclaimer

Every effort has been made to present a fair assessment of the product families discussed in this
paper. The opinions and recommendations expressed in this paper are those of the authors, not
necessarily those of IBM.

This material contains IBM copyrighted sample programming source code (“Sample Code”).
IBM grants you a nonexclusive license to compile, link, execute, display, reproduce, distribute
and prepare derivative works of this Sample Code. The Sample Code has not been thoroughly
tested under all conditions. IBM, therefore, does not guarantee or imply its reliability,
serviceability, or function. IBM provides no program services for the Sample Code.

All Sample Code contained herein is provided to you "AS IS" without any warranties of any
kind. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE EXPRESSLY
DISCLAIMED. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO
YOU. IN NO EVENT WILL IBM BE LIABLE TO ANY PARTY FOR ANY DIRECT,
INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF
THE SAMPLE CODE INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS,
BUSINESS INTERRUPTION, LOSS OF PROGRAMS OR OTHER DATA ON YOUR
INFORMATION HANDLING SYSTEM OR OTHERWISE, EVEN IF WE ARE
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

COPYRIGHT

(C) Copyright IBM CORP. 2000
All rights reserved.
US Government Users Restricted Rights -
Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

IBM UNCLASSIFIED

License & Disclaimer 131

