AS/400 Toolbox for Java

<|lI!

AS/400 Toolbox for Java

<|lI!

© Copyright International Business Machines Corporation 1998, 1999. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. AS/400 Toolbox for Java
Warning: Temporary Level 2 Header .
What it is .
How it works.
How to use these pages .
How to get additional information: . .
How to see what's new or changed: .

Chapter 2. What's new for V4R5.

Additional access and visual classes.

Additional new functions

Additional functions and features in Graph|cal Toolbox
Compatibility .

How to see what's new or changed

Chapter 3. Setting up AS/400 Toolbox for Java .

Workstation requirements for AS/400 Toolbox for Java

0S/400 requirements for running AS/400 Toolbox for Java .
Installing AS/400 Toolbox for Java on the AS/400 . .
Configuring an HTTP server for use with AS/400 Toolbox for Java
Performance considerations related to installation location .

Copying the AS/400 Toolbox for Java class files on your workstation .

Chapter 4. AS/400 Toolbox for Java access classes.
AS400 class .
Managing default user IDs .
Using a password cache .
Prompting for user IDs and passwords
Prompting, default user ID, and password cachlng summary
Secure AS/400 Class .
Command call.
Example.
Data area
CharacterDataArea
DecimalDataArea
LocalDataArea
LogicalDataArea .
DataAreaEvent
DataArealistener .
Data conversion and descrlptron .
Data types .
Conversion specn‘yrng a record format
Example .
Numeric conversion
Text conversion .
Composite types.
Field descriptions
Record format.
Record
Data queues . .
Sequential and keyed data queues .
Sequential data queues .
Examples

© Copyright IBM Corp. 1998, 1999

NRPRRRRER

A DhOWOWWW

0 00 00 0o O U1 Ul

.1
.12
. 13
. 13
. 13
. 16
.17
.17
. 18
. 18
. 18
.19
.19
. 20
. 20
. 20
. 20
. 20
.21
.21
.22
.22
. 23
. 24
. 25
.27
.27
. 28
. 28

Keyed data queues.
Examples
Digital certificates
Listing certificates
Exceptions .
Exceptions thrown by the AS/400 Toolbox for Java access classes
Inheritance structure for exceptions .
FTP class
FTP subclass .
Integrated file system .
Examples
IFSFile
IFSJavaFile
IFSFilelnputStream .
IFSKey
File sharing mode
IFSTextFilelnputStream
IFSFileOutputStream .
IFSTextFileOutputStream.
IFSRandomAccessFile
IFSFileDialog .
JavaApplicationCall .
Example .
JDBC.
Examples
Registering the JDBC drlver .
Using the JDBC driver to connect to an AS/4OO database
Running SQL statements with Statement objects .
Statement interface.
PreparedStatement interface
CallableStatement interface.
DatabaseMetaData interface
AS400JDBCBIob interface .
AS400JDBCBIobLocator interface
AS400JDBCClob interface .
AS400JDBCClobLocator interface
JDBC Properties.
Jobs .
Examples
Job.
JobList
JobLog
Messages . .
AS400Message .
Examples
MessageFile
MessageQueue .
Network print .
Examples
Listing Print objects
Examples
Working with Print objects
Retrieving PrintObject attributes .
setAttributes method
PrintParameterList class .
Creating new spooled files .

iV AS/400 Toolbox for Java

. 28
. 29
. 29
. 30
.31
. 32
. 32
. 33
. 33
. 33
. 34
. 35
. 37
. 38
. 39
. 39
. 40
. 40
.41
.41
. 42
. 43
. 43
. 43
. 44
. 44
. 45
. 46
. 46
. 47
. 47
. 48
. 48
. 49
. 49
. 50
. 50
. 53
. 53
. 54
. 54
. 55
. 55
. 55
. 56
. 56
. 57
. 57
. 58
. 58
. 59
. 59
. 60
. 60
. 60
. 61

Data stream types in spooled files
Examples .
Generating an SCS data stream . :
Reading spooled files and AFP resources
Example .

. 61
. 62
. 62
. 63
. 63

Reading spooled f|Ies usmg PnntObJectPageInputStream and PnntObJectTransformedInputStream

SpooledFileViewer class .
Permission classes .
Permission class.
UserPermission class .
DLOPermission .
RootPermission .
QSYSPermission
Program call
Using ProgramParameter objects
QSYSObjectPathName class .
Record-level access
Examples
AS400File .
KeyedFile
Specifying the key
SequentialFile.
AS4OOF|IeRec0rdDescrlptlon
System Status S
Example .
SystemPool
System values
System value list.
Examples of using the SystemVaIue and SystemVaIueLlst classes
Trace (Serviceability) .
Users and groups
Retrieving information about users and groups
User space.
AS/400 server access pomts

Chapter 5. Graphical user interface classes.
Graphical user interface classes .
AS/400 Panes.
AS/400 resources
Setting the root .
Loading the contents .
Actions and properties panes .
Models
Examples
Command Call
Examples
Data queues .
Examples
Error events .
Integrated file system .
File dialogs.
Example . .
Directories in AS/4OO panes .
Example .
Text file documents
Example

63

. 64

. 66
. 66
. 66
. 67
. 68
. 69
. 70
.71
.72
. 73
.74
.74
. 82
. 82
. 84
. 85
. 86
. 87
. 87
. 88
. 88
. 88
. 89
. 90
.91
.91
. 92

. 93
. 93
. 94
. 94
. 94
. 95
. 95
. 95
. 96
. 96
.97
.97
. 98
. 98
. 99
.99
. 100
. 100
. 101
. 101
. 102

Contents

\Y

VJavaApplicationCall.

JDBC .
SQL connectlons .
Buttons and menu items
Documents .
Result set form panes
Result set table panes .
Example
Result set table models
SQL query builders
Example

Jobs.
Examples .

Messages.
Message lists
Example
Message queues .
Example

Network Print
VPrinters .
Example
VPrinter
Example .
VPrinter Example .
Printer output
Example

VPrinterOutput Example

Permission
Program call .
Parameters .
Examples .
Record-Level Access.
Keyed access .
Record list form panes .
Example
Record list table panes
Record list table models
System status
System pool .
System status pane .
System values .
Example
Users and groups .
Other Examples

Chapter 6. Utility classes

Client installation and update classes
Using the AS400ToolboxInstaller .
Embedding the AS400ToolboxInstaller class in your program .
Running the AS400ToolboxInstaller class from the command line

AS400ToolboxJarMaker .

Flexibility of AS4OOTooIboxJarMaker .
Using AS400ToolboxJarMaker

RunJavaApplication .

Chapter 7. Proxy Support

Vi AS/400 Toolbox for Java

. 102
. 102
. 103
. 103
. 104
. 105
. 105
. 105
. 106
. 106
. 107
. 107
. 108
. 108
. 108
. 109
. 109
. 110
. 110
111
. 112
. 113
. 114
. 114
. 116
. 117
. 117
. 118
. 119
. 120
. 120
. 121
. 121
. 121
. 122
. 122
. 122
. 123
. 123
. 124
. 124
. 124
. 124
. 126

. 127
. 127
. 127
. 127
. 128
. 129
. 129
. 129
. 130

. 131

How it works.
Classes available .

Example: Running a Java applrcatlon usrng Proxy Support
Example: Running a Java applet using proxy support.

Chapter 8. JavaBeans .
Examples .

JavaBeans code example

Visual bean builder code example .

Chapter 9. Graphical Toolbox .

Overview . .
Benefits of the Graphrcal Toolbox .

Inside the Graphical Toolbox . .
Getting started with the Graphical Toolbox .
Setting up the Graphical Toolbox

Installing the Graphical Toolbox on your workstatron

Setting your classpath
JAR File Descriptions .
Using the Graphical Toolbox .
Creating your user interface .
Running the GUI Builder
Types of user interface resources .
Generated files .
Running the Resource Scrrpt Converter
Displaying your panels at runtime .
Examples . .
Graphical Toolbox examples .
Graphical Toolbox Example
Editable Comboboxes .
Creating a panel with GUIBurIder .
Creating a deck pane with GUIBuilder
Creating a property sheet with GUIBuilder .
Creating a tabbed pane with GUIBuilder
Creating a wizard with GUIBuilder .
Creating a toolbar with GUIBuilder.
Creating a menubar with GUIBuilder .
Example: Creating the Help Document .
Spinner. .
Properties.
Events .
Methods .
Calendar spinner .
Date spinner.
Time spinner.
Numeric spinner .
Using the Graphical Toolbox ina browser .
Constructing the applet .
HTML tags
Installing and runnlng the applet
Explanation of the Toolbox Widgets

Chapter 10. Program Call Markup Language .

Overview . .
Platform requrrements
Topics for more information

. 131
. 132
. 132
. 133

. 135
. 135
. 135
. 137

. 139
. 139
. 139
. 140
. 141
. 141
. 141
. 141
. 142
. 142
. 142
. 142
. 143
. 144
. 145
. 146
. 146
. 148
. 149
. 153
. 154
. 155
. 156
. 156

Contents

. 156
. 156
. 157
. 157
. 158
. 158
. 160
. 161
. 161
. 165
. 168
. 170
. 170
. 170
. 172
. 173
. 173

. 177
. 177
. 177
.77

Vil

Building AS/400 program calls with PCML .
Using PCML source files .
Using serialized PCML files .
PCML source files vs. serialized PCML flles .
Qualified names
Accessing data in arrays
Debugging

PCML syntax
The program tag
The struct tag
The data tag .

Program Call Markup Language (PCML) examples

License information .

Simple example of retrieving data .

Example of retrieving a list of information .
Example of retrieving multidimensional data .

Chapter 11. Java Security

Secure Sockets Layer

SSL versions .

Using SSL certificates
SSL legal responsibilities .
SSL requirements .
Using a certificate from a trusted auth0r|ty
Building your own certificate .

Authentication Services .
Overview of support prowded
Setting thread identities.
Example .
Security example .

HTML Classes .
HTML form classes .
HTML class example output .
Form Input classes
HTML Text class
HTMLHyperlink class.
LayoutFormPanel class.
TextAreaFormElement class .
LabelFormElement
SelectFormElement .
SelectOption . .
RadioFormInputGroup class .
HTML Table classes .

Servlet classes .
RowData class .
RowMetaData classes .
Converter classes .

Tips for programming .
Shutting down your Java program

Integrated file system path names for AS/400 objects

Managing connections .

Java virtual machine for AS/4OO
AS/400 optimization . .
Performance improvements .
Java national language support .

Service and support for the AS/400 TooIbox for Java

Vili AS/400 Toolbox for Java

. 177
. 178
. 178
. 178
. 179
. 179
. 180
. 181
. 181
. 183
. 188
. 198
. 198
. 200
. 202
. 205

. 209
. 209
. 209
. 209
. 210
. 210
. 211
. 212
. 213
. 213
. 213
. 213
. 214
. 214
. 215
. 215
. 216
. 219
. 220
. 220
. 222
. 222
. 222
. 223
. 224
. 224
. 227
. 228
. 235
. 237
. 238
. 238
. 239
. 240
. 244
. 248
. 250
. 251
. 252

Code Examples L ..o 252
Code examples from the accessclasses .252
Code examples using the GUIclasses .255
Code examples from the utility classes .256
Code examples from the JavaBeans topics .256
Examples from the HTMLclasses .256
Examples from the servletclasses. .257
Security example257
Tips for Programming .Z258

Javadoc L L Lo e e s s 289

AS/400 Toolbox for Java reference links. .25
HTML o o e s e e s s a2
XHTML. e e 299
Java. . . . L L L L oo 260
Servlets L L L L L oL Lo s 260
Other references260

Contents X

X AS/400 Toolbox for Java

Chapter 1. AS/400 Toolbox for Java

Warning: Temporary Level 2 Header

What it is

AS/400 Toolbox for Java is a set of Java classes that allow you to access AS/400 data through a Java
program. With these classes, you can write client/server applications, applets, and servlets that work with
data on your AS/400. You can also run Java applications that use the AS/400 Toolbox for Java on the Java
virtual machine for AS/400.

How it works

AS/400 Toolbox for Java uses the AS/400 Host Servers as access points to the system. However, you do
not need Client Access to use AS/400 Toolbox for Java. Each server runs in a separate job on the AS/400,
and each server job sends and receives data streams on a socket connection.

How to use these pages

Use What's new for a summary of V4R5 new and changed AS/400 Toolbox for Java functions.
Use setting up and system properties to install and configure AS/400 Toolbox for Java.

Use AS/400 Toolbox for Java access classes to access and manage resources on your AS/400.

Use AS/400 Toolbox for Java graphical user interface (GUI) classes to visually present and
manipulate data.

5. Use the AS/400 Toolbox for Java utility classes to do administrative tasks, such as using the
AS400ToolboxInstaller class and AS400JarMaker class.

6. Use the AS/400 Toolbox for Java proxy support if you want the minimum number of classes
downloaded on the client.

7. Use JavaBeans, which are the components for the AS/400 Toolbox for Java, as reusable software
components in your applications.

8. Use the Graphical Toolbox to create your own GUI panels.

9. Use the Program Call Markup Language (PCML) to call AS/400 programs by writing less Java code.
10. Use the Security classes to make secured connections with the AS/400, verify a user’s identity
working on the AS/400, and verify the identity of a user working on the AS/400 system.

11. Use the AS/400 Toolbox for Java HTML classes to quickly create HTML forms and tables.

12. Use the AS/400 Toolbox for Java Servlet classes to assist in retrieving and formatting data for use in
Java servlets.

P wbd PR

How to get additional information:
1. Follow our tips for programming with the AS/400 Toolbox for Java.
2. Use the tutorial to see code examples with detailed descriptions of what is happening in the example.

3. Use the examples section to navigate to the code examples that are provided throughout this
document.

Use the Javadoc section for detailed information about each of the classes.

See our reference section for more information about HTML, XHTML, Java, and Servlets.

6. Use print this topic to download a PDF or zip file of the HTML files that comprise the AS/400 Toolbox
for Java documentation.

S

© Copyright IBM Corp. 1998, 1999 1

How to see what’s new or changed:

To help you see where technical changes have been made, this information uses:
* The image to mark where new or changed information begins.

* The image to mark where new or changed information ends.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

2 AS/400 Toolbox for Java

Chapter 2. What's new for V4R5

The AS/400 Toolbox for Java Version 4 Release 5 (V4R5) licensed program installs on V4R3 and later of
0S/400. From a client, AS/400 Toolbox for Java connects back to V4R2 and later of OS/400.

Additional access and visual classes

AS/400 Toolbox for Java V4RS5 also features new classes in the access and vaccess packages. These
new classes provide access to the following:

FTP: classes to interact with FTP servers.
JavaApplicationCall: classes to run a Java program on the AS/400's JVM.
ServiceProgramCall: classes to call an AS/400 service program.

Additional new functions

AS/400 Toolbox for Java V4R5 also features the following new functions:

Security classes: Classes to make secured connections with the AS/400, authenticate any user’s identity
on the AS/400, and associate the user with the underlying OS/400 thread are now provided.

HTML classes: Classes to help you create HTML forms and tables are now provided.
Servlet classes: Classes to help speed up the process of creating servlets are now provided.

Proxy support: An alternative jar file is now provided that works with a proxy server to provide similar
functionality to the AS/400 Toolbox for Java classes, but with less download time.

System properties: Use system properties to configure certain AS/400 Toolbox for Java components.

With the addition of the servlet and proxy support functions, there are now three ways you can configure
the AS/400 Toolbox for Java:

Traditional: jt400.jar resides on the client and connected to the AS/400

Proxy: jt400Proxy.jar resides on the client, jt400.jar resides on the proxy server, and the proxy server is
connected to the AS/400

Servlet: a browser connects to the webserver running the servlet, jt400Servlet.jar and jt400Access.jar
reside on the webserver, and the webserver is connected to the AS/400

Additional functions and features in Graphical Toolbox

The Graphical Toolbox, introduced in V4R4, has been enhanced with more features and an improved look
and feel. The changes made for V4R5 follow:

The PDML runtime environment now uses Swing 1.1. This allows you to take advantage of enhanced
functions and performance available in the latest release of the Java Foundation Classes.

The GUI Builder generates help in a composite file for easier development.

Enhancements have been made to the GUI Builder and Resource Script Converter, including:
— Cut, copy, and paste support

— Undo and redo support

— Generation of Java source for event handlers

— Support for context menus, menubars, and toolbars

— Ability to browse for images

— New panels now contain OK, Cancel, and Help buttons by default

— Resizable controls within resizable panels

© Copyright IBM Corp. 1998, 1999 3

— Ability to reference panels in other PDML files

— Spin button control

— Ability to equalize space between selected fields
— Hide and show events for buttons

— lcon placement on buttons

— Custom cell editors/renderers for tables and lists
— Selected and deselected events for list items

— Table column heading alignment in tables

— Support for multiple icons on tree nodes

— Improved Javadoc and more coding examples

* The program call framework has been enhanced to provide PCML support for service program calls on
the AS/400.

Compatibility

There are some objects you will not be able to deserialize using this release of AS/400 Toolbox for
Java that were serialized using earlier versions of AS/400 Toolbox for Java.

AS/400 Toolbox for Java now provides support for

* Swing 1.1; this is required if you are using GUI classes or Graphical Toolbox.
« Java 2, with continued support of Java 1.1.x

* Linux workstations

If you intend to run a Java program that uses AS/400 Toolbox for Java classes on Java virtual machine of
AS/400, you must run AS/400 Toolbox for Java at a compatible version and release level as the Operating
System/400 program that is running on your system. OS/400 ships with the parts of AS/400 Toolbox for
Java that are needed to improve performance when your application is running on Java virtual machine.
Use the following chart to ensure compatibility:

Level of OS/400 Compatible Level of AS/400 Toolbox for Java
V3R2MO V3R2M1 | V4R2MO | VAR5MO
VAR2 X X X
V4R3 X X X
VAR4 X X X
VAR5 X

How to see what's new or changed

To help you see where technical changes have been made, this information uses:
* The image to mark where new or changed information begins.

* The image to mark where new or changed information ends.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

4 AS/400 Toolbox for Java

Chapter 3. Setting up AS/400 Toolbox for Java

The AS/400 Toolbox for Java classes allow you to access AS/400 resources, data, and programs through
Java applets, servlets, or applications.

To install AS/400 Toolbox for Java do these tasks:

You also need to consider the following:

+ EConfiguring an HTTP server for use with AS/400 Toolbox for Java” on page 8 if you want to use
applets or servlets from an AS/400 that uses AS/400 Toolbox for Java classes served from the
same AS/400. You must also consider this topic if you are interested in using SSL.

« tPerfarmance considerations related to installation location” an page d to understand when

significant performance impacts may occur because of where and how you install the class
files.

« ECopying the AS/400 Toolbox for Java class files on your warkstation” an page g for information on

copying files to your workstation.

Additional information on AS/400 Toolbox for Java:

All of the V4R5 Java information is provided on the AS/400e Information Center. This CD-ROM was
shipped with

Workstation requirements for AS/400 Toolbox for Java

To run AS/400 Toolbox for Java, your workstation must have the following:
* For Java applications:

— A Java virtual machine that fully supports JDK 1.1.7 or any later JDK, including Java 2. If your
program uses the Graphical Toolbox or classes in the vaccess package, Swing 1.1 is also required.
The following environments have been tested:

- Windows 98
- Windows 95
- Windows NT Workstation 4.0
- AIX Version 4.1.4.0
- Sun Solaris Version 7
- AS/400 Version 4 Release 3 or later
- 0S/2 Version 4 Release 5
- Linux 5.2
- TCP/IP installed.
* For Java applets:
* A browser that has a compatible Java virtual machine. The following environments have been tested:
- Netscape Communicator 4.04 with the JDK 1.1 patch from http://developer.netscape.com
- Netscape Communicator 4.05 with the JDK 1.1 patch built-in
- Microsoft Internet Explorer 4.0.

© Copyright IBM Corp. 1998, 1999 5

- TCP/IP installed and configured.

- The workstation must connect to an AS/400 that is running OS/400 V4R2 or later. AS/400 Toolbox
for Java has switched to support Swing 1.1. This required programming changes to the AS/400
Toolbox for Java classes and, if your programs use the Graphical Toolbox or the vaccess classes,
you will need to change your programs as well. In addition to a programming change, the Swing
classes must be in the CLASSPATH when the program is run. The Swing classes are part of Java
2 or, if you don’t have Java 2, you can download the Swing 1.1 classes from
http://java.sun.com/products/jfc/index.html .

0OS/400 requirements for running AS/400 Toolbox for Java

To run AS/400 Toolbox for Java, the AS/400 system to which you are connecting must be running one of
the following:

e (0S/400 Version 4 Release 5
¢ (0S/400 Version 4 Release 4
e 0S/400 Version 4 Release 3

¢ (0S/400 Version 4 Release 2 NOTE: AS/400 Toolbox for Java will not install on Version 4 Release 2;
However, from a client, it connects back to Version 4 Release 2.

If you intend to run a Java program that uses AS/400 Toolbox for Java classes on Java virtual machine of
AS/400, you must run AS/400 Toolbox for Java at a compatible version and release level as the Operating
System/400 program that is running on your system. OS/400 ships with the parts of AS/400 Toolbox for
Java that are needed to improve performance when your application is running on Java virtual machine.
Use the following chart to ensure compatibility:

Level of OS/400 Compatible Level of AS/400 Toolbox for Java
V3R2MO V3R2M1 | V4R2MO | V4AR5MO
VAR2 X X X
V4R3 X X X
V4R4 X X X
VAR5 X

If you are going to use the spooled file viewer functions (SpooledFileViewer class) of AS/400 Toolbox for
Java, you must ensure that host option 8 (AFP Compatibility Fonts) is installed on your AS/400.

Also, the Host Servers option of OS/400 must be installed and started on AS/400.

Note: SpooledFileViewer, PrintObjectPagelnputStream, and PrintObjectTransformedIinputStream classes work only
when connecting to V4R4 or later systems.

The print support in AS/400 Toolbox for Java requires additional function in the OS/400 print server. You
must have the appropriate PTF:

* For V4R5, 5769SS1: no PTF needed
* For V4R4, 5769SS1: no PTF needed
* For V4R3, 5769SS1: PTF SF48498
* For V4R2, 5769SS1: PTF SF46476

The JDBC driver requires a database server PTF. You must have the appropriate PTF from the following
list:

* For V4R5, 5769SS1: no PTF needed

* For V4R4, 5769SS1: no PTF needed

* For V4R3, 5769SS1: no PTF needed

6 AS/400 Toolbox for Java

* For V4R2, 5769SS1: PTF SF46460

The process and accuracy of retrieving sign-on server CCSIDs have been improved. These PTFs are not
required, but they do improve performance:

* For V4R5, 5769SS1: no PTF needed
* For V4R4, 5769SS1: no PTF needed
* For V4R3, 5769SS1: PTF SF1257
* For V4R2, 5769SS1: PTF SF1256

Ensure that the QUSER profile is enabled and has a valid password. To do this, enter DSPUSRPRF
USRPRF(QUSER) on an AS/400 command line. The resulting display shows the status for QUSER.

Start the OS/400 host servers by running two commands from an AS/400 command line:
*+ STRHOSTSVR (Start Host Server)

» STRTCPSVR SERVER(*DDM) (Start TCP/IP Server command with *DDM specified for the Server
parameter.

For more information on host server options, see the TCP/IP topic in the AS/400e Information Center.

The TCP/IP Connectivity Ultilities for AS/400 licensed program, 5769-TC1, is installed on the AS/400. For
more information on TCP/IP, see the OS/400 TCP/IP Configuration and Reference, SC41-5420 .

If you are going to use secure sockets layer (SSL), you need to install the following:
e IBM HTTP Server licensed program, 5769-DG1

* (0S/400 Option 34 (Digital Certificate Manager)

* One of the Cryptographic Access Provider licensed programs:
Cryptographic Access Provider (40-bit), 5769-AC1
Cryptographic Access Provider (56-bit), 5769-AC2
Cryptographic Access Provider (128-bit), 5769-AC3

One of the client encryption licensed programs:

- AS/400 Client Encryption (40-bit), 5769-CE1

- AS/400 Client Encryption (56-bit), 5769-CE2

- AS/400 Client Encryption (128-hit), 5769-CE3

Note: AS/400 Client Encryption licensed program is backward compatible with Cryptographic Access Provider licensed
program. In other words, when 5769-CE3 is installed, you can use 5769-AC3, 5769-AC2, or 5769-AC1. You can only
use 5769-CE1 with 5769-AC1.

SSL connections perform slower than connections without encryption and you can only run them
from an SSL capable server, V4R4 or later.

For more information on SSL, see Secure sockets layer in AS/400 Toolbox for Java topic of the
AS/400e Information Center.

Note: Like the SpooledFileViewer, PrintObjectPagelnputStream, and PrintObjectTransformedInputStream classes
mentioned above, full Blob and Clob (JDBC) support and SSL are available only when connecting to V4R4 and later
AS/400 systems.

Chapter 3. Setting up AS/400 Toolbox for Java 7

Installing AS/400 Toolbox for Java on the AS/400

To install AS/400 Toolbox for Java licensed program, you must be on V4R3 or later . Then follow these
steps:

* On the AS/400 command line, enter GO LICPGM.
» Select 11. Install licensed program.
* Select 5769JC1 AS/400 Toolbox for Java.

For more information on installing licensed programs, see the Software Installation book, SC41-5120.

Configuring an HTTP server for use with AS/400 Toolbox for Java

If you want to use applets, servlets, SSL, or the AS400ToolboxInstaller class, you must set up an HTTP
server and install the class files on the AS/400 system. For more information on the IBM HTTP Server, see
the IBM HTTP Server for AS/400 Webmaster's Guide, GC41-5434, at the following URL:
http://www.as400.ibm.com/http . From this URL, take the Documentation link to a short list of books
available on the IBM HTTP Server.

For information on the Digital Certificate Manager and how to create and work with digital certificates using
the IBM HTTP Server, see the Getting started with IBM Digital Certificate Manager topic in the Internet
section of the AS/400e Information

Performance considerations related to installation location

You have three options for installing the AS/400 Toolbox for Java classes:
1. Install the full AS/400 Toolbox for Java package on your AS/400

* The advantage of installing to the AS/400 directly is that it gives you a centralized administration
point for maintaining the classes.

2. Install the full AS/400 Toolbox for Java package on your workstation

» If you choose not to install the full package on your workstation you may be dissatisfied with the
performance of starting your application. For example, when a low-speed communication link
connects AS/400 and the workstation, the performance of loading classes from the AS/400 to the
workstation may be unacceptable.

* Another advantage of installing the full package to your workstation is if your Java application
accesses classes via the CLASSPATH environment variable, you do not need a method of file
redirection. However, if the classes are on the AS/400 and your Java application accesses classes
via the CLASSPATH, you do need a method of file redirection, such as Client Access for AS/400.

3. By using proxy support, you can download the minimum amount of AS/400 Toolbox for Java classes to
your workstation and still enjoy most of the advantages of installing the full package. The classes that
you install with the proxy jar file allow you to call many of the AS/400 Toolbox for Java classes. The
proxy classes then work with a proxy server (gateway) which, in turn, accesses the remaining AS/400
Toolbox for Java classes remotely.

Copying the AS/400 Toolbox for Java class files on your workstation

Copying the class files to your workstation allows you to serve the files from your workstation. You can use
the AS400ToolboxInstaller class or rely on existing mechanisms for obtaining server updates on your
workstation.

8 AS/400 Toolbox for Java

You can use either the jt400.zip file or the jt400.jar file on your workstation. The following instructions use
the jt400.zip file, but these instructions also work for the jt400.jar file. To copy the files from AS/400 to your
workstation:

Decide what method you would like to use to copy files to your workstation. You can either use the
AS400ToolboxInstaller class or manually copy either the zip file or the jar file.

* AS/400 Toolbox for Java information fully documents the AS400ToolboxInstaller class. In AS/400
Toolbox for Java information in the AS/400e Information Center, look under quot;Tips for Programming”
and then "Install and update.” Or if you are viewing this information through the Information Center, see
Client installation and update classes .

* Find the file named jt400.zip. It should reside in the /QIBM/ProdData/HTTP/Public/jt400/lib directory.
Copy jt400.zip from the AS/400 to your workstation. You can do this in a variety of ways. The easiest
way is to use Client Access/400 to map a network drive on your workstation to AS/400. Another method
is to use file transfer protocol (FTP) to send the file to your workstation (ensure that you transfer the file
in binary mode).

» Update the CLASSPATH environment variable of your workstation by adding the location where you put
the program files. For example, on a personal computer (PC) that is using the Windows 95 operating
system, if jt400.zip resides in C:\jt400\lib\jt400.zip, add ;C:\jt400\lib\jt400.zip to the CLASSPATH
variable.

Chapter 3. Setting up AS/400 Toolbox for Java 9

10 AS/400 Toolbox for Java

Chapter 4. AS/400 Toolbox for Java access classes

The AS/400 Toolbox for Java access classes represent AS/400 data and resources. The classes work with
AS/400 servers to provide an internet-enabled interface to access and update AS/400 data and resources.

The following classes provide access to AS/400 resources:

AS400 - manages sign-on information, creates and maintains socket connections, sends and receives
data

Command call - runs AS/400 batch commands
Data area - creates, accesses, and deletes data areas

Data conversion and description - converts and handles data, and describes the record format of a
buffer of data

Data queues - creates, accesses, changes, and deletes data queues
Digital certificates - manages digital certificates on AS/400

Exceptions - throws errors when, for example, device errors or programming errors occur
FTP - provides you with a programmable interface to FTP functions

Integrated file system - accesses files, opens files, opens input and output streams, and lists the
contents of directories

JavaApplicationCall - calls a Java program on the AS/400 that runs on the Java virtual machine for
AS/400

Java Database Connectivity (JDBC) - accesses DB2 UDB for AS/400 data
Jobs - accesses AS/400 jobs and job logs

Messages - accesses messages and message queues on the AS/400 system
Network print - manipulates AS/400 print resources

Permission - displays and changes authorities in AS/400 objects

Program call - calls any AS/400 program
Service Program call - calls an AS/400 service program

QSYS object path name - represents objects in the AS/400 integrated file system
Record-level access - creates, reads, updates, and deletes AS/400 files and members

System status - displays system status information and allows access to system pool
information

System values - retrieves and changes system values and network attributes
Trace (serviceability) - logs trace points and diagnostic messages

Users and groups - accesses AS/400 users and groups

User space - accesses an AS/400 user space

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

AS400 class

The AS400 class manages the following:

* A set of socket connections to the server jobs on the AS/400.

» Sign-on behavior for the AS/400. This includes prompting the user for sign-on information,
password caching, and default user management.

The Java program must provide an AS400 object when the Java program uses an instance of a
class that accesses the AS/400. For example, the CommandCall object requires an AS400 object
before it can send commands to the AS/400.

© Copyright IBM Corp. 1998, 1999 11

The AS400 object handles connections, user IDs, and passwords differently when it is running in the
Java virtual machine for AS/400. For more information, see Java virtual machine for AS/400.

See managing connections for information on managing connections to the AS/400 through the
AS400 object.

AS400 class provides the following sign-on functions:
* Authenticate the user profile

* Get profile token credential

* Manage default user IDs

» Cache passwords

* Prompt for user ID

* Change a password

* Get the version and release of the AS/400

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Managing default user IDs

To minimize the number of times a user has to sign on, use a default user ID. The Java program uses the
default user ID when a the program does not provide a user ID. The default user ID can be set either by
the Java program or through the user interface. If the default user ID has not been established, the
Sign-On dialog allows the user to set the default user ID. Once the default user ID is established for a
given AS/400, the Sign-On dialog does not allow the default user ID to be changed. When an AS400
object is constructed, the Java program can supply the user ID and password. When a program supplies
the user ID to the AS400 object, the default user ID is not affected. The program must explicitly set the
default user ID (setUseDefaultUser()) if the program wants to set or change the default user ID. See
Prompting, default user ID, and password caching summary for more information.

The AS400 object has methods to get, set, and remove the default user ID. The Java program can also
disable default user ID processing through the setUseDefaultUser() method. If default user ID processing
is disabled and the Java application does not supply a user ID, the AS400 object prompts for user ID
every time a connection is made to the AS/400 system.

All AS400 objects that represent the same AS/400 system within a Java virtual machine use the same
default user ID.

In the following example, two connections to the AS/400 are created by using two AS400 objects. If the
user checked the Default User ID box when signing on, the user is not prompted for a user ID when the
second connection is made.

// Create two AS400 objects to the
// same AS/400.
new AS400("mySystem.myCompany.com");
new AS400("mySystem.myCompany.com");
// Start a connection to the command
// call service. The user is prompted
// for user ID and password.
sysl.connectService(AS400.COMMAND) ;
// Start another connection to the
// command call service. The user is
// not prompted.
sys2.connectService (AS400.COMMAND) ;

AS400 sysl
AS400 sys2

The default user ID information is discarded when the last AS400 object for an AS/400 system is garbage
collected.

12 AS/400 Toolbox for Java

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Using a password cache

The password cache allows the AS/400 Toolbox for Java to save password and user ID information so that
it does not prompt the user for that information every time a connection is made. Use the methods
provided by the AS400 object to do the following:

» Clear the password cache and disable the password cache
* Minimize the number of times a user must type sign-on information

The password cache applies to all AS400 objects that represent an AS/400 system within a Java virtual
machine. Java does not allow sharing information between virtual machines, so a cached password in one
Java virtual machine is not visible to another virtual machine. The cache is discarded when the last AS400
object is garbage collected. The Sign-On dialog has a checkbox that gives the user the option to cache
the password. When an AS400 object is constructed, the Java program has the option to supply the user
ID and password. Passwords supplied on constructors are not cached.

The AS400 object provides methods to clear the password cache and disable the password cache . See
Prompting, default user ID, and password caching summary for more information.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
Prompting for user IDs and passwords

Prompting for user ID and password:
* May occur when connecting to the AS/400 system
« Can be turned off by your Java program

Java programs can turn off user ID and password prompting and message windows displayed by the
AS400 object. An example of when this may be needed is when an application is running on a gateway on
behalf of many clients. If prompts and messages are displayed on the gateway machine, the user has no
way of interacting with the prompts. These types of applications can turn off all prompting by using the
setGuiAvailable() method on the AS400 object.

See Prompting, default user ID, and password caching summary for more information.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Prompting, default user ID, and password caching summary

Java programs can control when prompting for user ID and password caching occurs. The information
from the Sign-On dialog can be used to set the default user ID and cache the password. The following
table summarizes when prompting takes place, what information is retrieved, and what information is set.
This table assumes that the Java program allows default user ID processing and password caching, and
that you checked the Default User ID box and the Save Password box on the Sign-On dialog.

This table should be used for client connections, not for running natively on the AS/400.

System User Default Result
Supplied D Password User Password
on Supplied Supplied Is in Cache
Constructoon on Establishedor
ConstructoConstructor User ID

Chapter 4. AS/400 Toolbox for Java access classes 13

User is
prompted
for
system
name,
user ID,
and
password.
Default
user ID
is
established
and
password
is
cached.

X User is
prompted
for user
ID and
password.
System
name is
displayed
but
cannot
be
changed.
Default
user ID
is
established
and
password
is
cached.

X X User is
prompted
for
password.
User ID
is
displayed
and can
be
changed.
System
name is
displayed
but
cannot
be
changed.
Default
user ID
is not
changed.
Password
is
cached.

14 AS/400 Toolbox for Java

No
prompt.
Default
user ID
is not
changed.
Password
is not
cached.

User is
prompted
for
system
name
and

password.

User ID
is
displayed
and can
be
changed.
Changing
the user
ID will
not
change
the
default
user ID.
Password
is
cached.
Prompt
for
password
for the
default
user ID.
User ID
is
displayed
and can
be
changed.
System
name is
displayed
but
cannot
be
changed.
Password
is
cached.

Chapter 4. AS/400 Toolbox for Java access classes

15

X X X No
prompt.
Connect
using
default
user ID
and
password
from
cache.
X X X No
prompt.
Connect
as
specified
user
using
password
from
cache.
X X X X No
prompt.
Connect
as
specified
user
using
password
from
cache.
X X X X No
prompt.
Connect
as
specified
user.
System User Default Result
Supplied ID Password User Password
on Supplied Supplied Is in Cache
Constructoon on Establishedor
ConstructoConstructor User ID

[Information Center Home Page | Feedback]

Secure AS/400 Class

[Legal | AS/400 Glossary]

You can setup a secure AS/400 connection by creating an instance of a SecureAS400() object with or

without prompting the user for sign-on information as indicated below:

* SecureAS400(SecureAS400(String systemName, String userID) prompts you for sign-on information
* SecureAS400(String systemName, String userID, String password) does not prompt you for sign-on

information

The SecureAS400 class is a subclass of the AS400 class.

The following example shows you how to use CommandCall to send commands to the AS/400 system

using a secure connection:

16 AS/400 Toolbox for Java

// Create a secure AS400 object. This is the only statement that changes
// from the non-SSL case.

SecureAS400 sys = new SecureAS400("mySystem.myCompany.com");

// Create a command call object

CommandCall cmd = new CommandCall(sys, "myCommand");

// Run the commands. A secure connection is made when the

// command is run. A1l the information that passes between the

// client and server is encrypted.

cmd.run()

For more information, see secure sockets layer.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Command call

The CommandCall class allows a Java program to call a non-interactive AS/400 command. Results of the
command are available in a list of AS400 Message objects.

Input to CommandCall is as follows:
* The command string to run
* The AS400 object that represents the AS/400 system that will run the command

The command string can be set on the constructor, through the setCommand() method, or on the run()
method. After the command is run, the Java program can use the getMessageList() method to retrieve any
AS/400 messages resulting from the command.

Using the CommandCall class causes the AS400 object to connect to the AS/400.

The following example shows how to use the CommandCall class run a command on an AS/400 system:

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create a command call object. This
// program sets the command to run
// later. It could set it here on the
// constructor.
CommandCall cmd = new CommandCall(sys);
// Run the CRTLIB command
cmd.run("CRTLIB MYLIB");
// Get the message list which
// contains the result of the
// command.
AS400Message[] messagelList = cmd.getMessagelList();
// ... process the message list.
// Disconnect since I am done sending
// commands to the AS/400
sys.disconnectService(AS400.COMMAND) ;

Using the CommandCall class causes the AS400 object to connect to the AS/400. See managing
connections for information on managing connections.

Example

Run a command that is specified by the user.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Chapter 4. AS/400 Toolbox for Java access classes 17

Data area

The DataArea class is an abstract base class that represents an AS/400 data area object. This base class
has four subclasses that support the following: character data, decimal data, logical data, and local data
areas that contain character data.

Using the DataArea class, you can do the following:
* Get the size of the data area

* Get the name of the data area

* Return the AS/400 system object for the data area
» Refresh the attributes of the data area

» Set the system where the data area exists

Using the DataArea class causes the AS400 object to connect to the AS/400. See managing connections
for information on managing connections.

CharacterDataArea

The CharacterDataArea class represents a data area on the AS/400 that contains character data.
Character data areas do not have a facility for tagging the data with the proper CCSID; therefore, the data
area object assumes that the data is in the user's CCSID. When writing, the data area object converts
from a string (Unicode) to the user's CCSID before writing the data to the AS/400. When reading, the data
area object assumes that the data is the CCSID of the user and converts from that CCSID to Unicode
before returning the string to the program. When reading data from the data area, the amount of data read
is by number of characters, not by the number of bytes.

Using the CharacterDataArea class, you can do the following:

* Clear the data area so that it contains all blanks.

* Create a character data area on the AS/400 system using default property values

* Create a character data area with specific attributes

» Delete the data area from the AS/400 system where the data area exists

* Return the integrated file system path name of the object represented by the data area.

* Read all of the data that is contained in the data area

* Read a specified amount of data from the data area starting at offset O or the offset that you specified
» Set the fully qualified integrated file system path name of the data area

* Write data to the beginning of the data area

» Write a specified amount of data to the data area starting at offset O or the offset that you specified

DecimalDataArea

The DecimalDataArea class represents a data area on the AS/400 that contains decimal data.

Using the DecimalDataArea class, you can do the following:

* Clear the data area so that it contains 0.0

» Create a decimal data area on the AS/400 system using default property values

* Create a decimal data area with specified attributes

Delete the data area from the AS/400 system where the data area exists

Return the number of digits to the right of the decimal point in the data area

* Return the integrated file system path name of the object represented by the data area.

18 AS/400 Toolbox for Java

* Read all of the data that is contained in the data area
» Set the fully qualified integrated file system path name of the data area
* Write data to the beginning of the data area

The following example shows how to create and to write to a decimal data area:

// Establish a connection to the AS/400 "My400".
AS400 system = new AS400("My400");
// Create a DecimalDataArea object.
QSYSObjectPathName path = new QSYSObjectPathName("MYLIB", "MYDATA", "DTAARA");
DecimalDataArea dataArea = new DecimalDataArea(system, path.getPath());
// Create the decimal data area on the AS/400 using default values.
dataArea.create();
// Clear the data area.
dataArea.clear();
// Write to the data area.
dataArea.write(new BigDecimal("1.2"));
// Read from the data area.
BigDecimal data = dataArea.read();
// Delete the data area from the AS/400.
dataArea.delete();

LocalDataArea

The LocalDataArea class represents a local data area on the AS/400. A local data area exists as a
character data area on the AS/400, but the local data area does have some restrictions of which you
should be aware.

The local data area is associated with a server job and cannot be accessed from another job. Therefore,
you cannot create or delete the local data area. When the server job ends, the local data area associated
with that server job is automatically deleted, and the LocalDataArea object that is referring to the job is no
longer valid. You should also note that local data areas are a fixed size of 1024 characters on the AS/400
system.

Using the LocalDataArea class, you can do the following:

* Clear the data area so that it contains all blanks

* Read all of the data that is contained in the data area

* Read a specified amount of data from the data area starting at offset that you specified

» Write data to the beginning of the data area

* Write a specified amount of data to the data area where the first character is written to offset

LogicalDataArea
The LogicalDataArea class represents a data area on the AS/400 that contains logical data.

Using the LogicalDataArea class, you can do the following:

» Clear the data area so that it contains false

* Create a character data area on the AS/400 system using default property values

* Create a character data area with specified attributes

» Delete the data area from the AS/400 system where the data area exists

* Return the integrated file system path name of the object represented by the data area.
* Read all of the data that is contained in the data area

» Set the fully qualified integrated file system path name of the data area

* Write data to the beginning of the data area

Chapter 4. AS/400 Toolbox for Java access classes 19

DataAreaEvent

The DataAreaEvent class represents a data area event.

You can use the DataAreaEvent class with any of the DataArea classes. Using the DataAreaEvent class,
you can do the following:

¢ Get the identifier for the event

DataArealListener

The DataArealistener class provides an interface for receiving data area events.

You can use the the DataArealistener class with any of the DataArea classes. You can invoke the
DataArealListener class when any of the following are performed:

e Clear

* Create

* Delete

* Read

* Write

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Data conversion and description

The data conversion classes provide the capability to convert numeric and character data between
AS/400 and Java formats. Conversion may be needed when accessing AS/400 data from a Java program.
The data conversion classes support conversion of various numeric formats and between various EBCDIC
code pages and unicode.

The data description classes build on the data conversion classes to convert all fields in a record with a
single method call. The RecordFormat class allows the program to describe data that makes up a
DataQueueEntry, ProgramCall parameter, a record in a database file accessed through record-level
access classes, or any buffer of AS/400 data. The Record class allows the program to convert the
contents of the record and access the data by field name or index.

Data types

The AS400DataType is an interface that defines the methods required for data conversion. A Java program
uses data types when individual pieces of data need to be converted. Conversion classes exist for the
following types of data:

* Numeric
» Text (character)
» Composite (numeric and text)

Conversion specifying a record format

The AS/400 Toolbox for Java provides classes for building on the data types classes to handle converting
data one record at a time instead of one field at a time. For example, suppose a Java program reads data
off a data queue. The data queue object returns a byte array of AS/400 data to the Java program. This
array can potentially contain many types of AS/400 data. The application can convert one field at a time
out of the byte array by using the data types classes, or the program can create a record format that
describes the fields in the byte array. That record then does the conversion.

20 AS/400 Toolbox for Java

Record format conversion can be useful when you are working with data from the program call, data
queue, and record-level access classes. The input and output from these classes are byte arrays that can
contain many fields of various types. Record format converters can make it easier to convert this data
between AS/400 format and Java format.

Conversion through record format uses three classes:
» Field description classes identify a field or parameter with a data type and a name.
* A record format class describes a group of fields.
* Arecord class joins the description of a record (in the record format class) with the actual data.

Example

The data queue example shows how RecordFormat and Record can be used with the data queue classes.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
Numeric conversion

Conversion classes for numeric data simply convert numeric data from AS/400 format to Java format.
Supported types are shown in the following table:

Numeric Type Description
AS400Bin2 Converts between a signed two-byte AS/400 number and
a Java Short object.
AS400Bin4 Converts between a signed four-byte AS/400 number and
a Java Integer object.
AS400ByteArray Converts between two byte arrays. This is useful because
the converter correctly zero-fills and pads the target buffer.
AS400Float4 Converts between a signed four-byte floating point AS/400
number and a Java Float object.
AS400Float8 Converts between a signed eight-byte floating point
AS/400 number and a Java Double object.
AS400PackedDecimal Converts between a packed-decimal AS/400 number and
a Java BigDecimal object.
AS400UnsignedBin2 Converts between an unsigned two-byte AS/400 number
and a Java Integer object.
AS400UnsignedBin4 Converts between an unsigned four-byte AS/400 number
and a Java Long object.
AS400ZonedDecimal Converts between a zoned-decimal AS/400 number and a

Java BigDecimal object.

The following example shows conversion from an AS/400 numeric type to a Java int:

// Create a buffer to hold the AS/400
// type. Assume the buffer is filled
// with numeric AS/400 data by data
// queues, program call, etc.

byte[] data = new byte[100];
// Create a converter for this
// AS/400 data type.

AS400Bin4 bindConverter = new AS400Bin4();
// Convert from AS/400 type to Java
// object. The number starts at the
// beginning of the buffer.

Integer intObject = (Integer) bin4Converter.toObject(data,0);
// Extract the simple Java type from
// the Java object.

int i = intObject.intValue();

Chapter 4. AS/400 Toolbox for Java access classes 21

The following example shows conversion from a Java int to an AS/400 numeric data type:

// Create a Java object that contains
// the value to convert.
Integer intObject = new Integer(22);
// Create a converter for the AS/400
// data type.
AS400Bin4 bindConverter = new AS400Bin4();
// Convert from Java object to
// AS/400 type.
byte[] data = bin4Converter.toBytes(intObject);
// Find out how many bytes of the
// buffer were filled with the
// AS/400 value.
int Tength = bin4Converter.getBytelLength();

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Text conversion

Character data is converted through the AS400Text class. This class converts character data between an
EBCDIC code page and character set (CCSID), and unicode. When the AS400Text object is constructed,
the Java program specifies the length of the string to be converted and the AS/400 CCSID or encoding.
The CCSID of the Java program is assumed to be unicode. The toBytes() method converts from Java form
to byte array in AS/400 format. The toObject() method converts from a byte array in AS/400 format to Java
format.

For example, assume that a DataQueueEntry object returns AS/400 text in EBCDIC. The following
example converts this data to unicode so that the Java program can use it:

// ... Assume the data queues work
// has already been done to retrieve
// the text from the AS/400 and the
// data has been put in the
// following buffer.

int textLength = 100;

byte[] data = new byte[textLength];
// Create a converter for the AS/400
// data type. Note a default
// converter is being built. This
// converter assumes the AS/400
// EBCDIC code page matches the
// client's locale. If this is not
// true the Java program can
// explicitly specify the EBCDIC
// ccsid to use.

AS400Text textConverter = new AS400Text(textLength);
// Convert the data from EBCDIC to
// unicode.

String javaText = (String) textConverter.toObject(data);

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Composite types

Conversion classes for composite types are as follows:
* AS400Array - Allows the Java program to work with an array of data types.

* AS400Structure - Allows the Java program to work with a structure whose elements are data
types.

The following example shows conversion from a Java structure to a byte array and back again. The
example assumes that the same data format is used for both sending and receiving data.

22 AS/400 Toolbox for Java

// Create a structure of data types
// that corresponds to a structure
// that contains:

// - a four-byte number
// - four bytes of pad

// - an eight-byte number
// 40 characters

AS400DataType[] myStruct =
{

new AS400Bin4(),
new AS400ByteArray(4),
new AS400F1oat8(),
new AS400Text (40)
}s
// Create a conversion object using
// the structure.
AS400Structure myConverter = new AS400Structure(myStruct);
// Create the Java object that holds
// the data to send to the AS/400.
Object[] myData =
{

new Integer(88), // the four-byte number
new byte[0], // the pad (let the conversion object 0 pad)
new Double(23.45), // the eight-byte floating point number

"This is my structure" // the character string
}s
// Convert from Java object to byte array.
byte[] myAS400Data = myConverter.toBytes(myData);
// ... send the byte array to the
// AS/400. Get data back from the
// AS/400. The returned data will
// also be a byte array.
// Convert the returned data from
// AS/400 to Java format.
Object[] myRoundTripData =
(Object[])myConverter.toObject (myAS400Data,0);
// Pull the third object out of the
// structure. This is the double.
Double doubleObject = (Double) myRoundTripData[2];
// Extract the simple Java type from
// the Java object.
double d = doubleObject.doubleValue();

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
Field descriptions

The field description classes allow the Java program to describe the contents of a field or parameter with a
data type and a string containing the name of the field. If the program is working with data from
record-level access, it can also specify any AS/400 data definition specification (DDS) keywords that
further describe the field.

The field description classes are as follows:
* BinaryFieldDescription

* CharacterFieldDescription

» DateFieldDescription

» DBCSEitherFieldDescription

* DBCSGraphicFieldDescription

* DBCSOnlyFieldDescription

* DBCSOpenFieldDescription

* FloatFieldDescription

Chapter 4. AS/400 Toolbox for Java access classes 23

* HexFieldDescription

* PackedDecimalFieldDescription
* TimeFieldDescription

* TimestampFieldDescription

* ZonedDecimalFieldDescription

For example, assume that the entries on a data queue have the same format. Each entry has a message
number (AS400Bin4), a time stamp (8 characters), and message text (50 characters). These can be
described with field descriptions as follows:
// Create a field description for
// the numeric data. Note it uses
// the AS400Bin4 data type. It also
// names the field so it can be
// accessed by name in the record
// class.
BinaryFieldDescription bfd = new BinaryFieldDescription(new AS400Bin4(),
"msgNumber") ;
// Create a field description for
// the character data. Note it uses
// the AS400Text data type. It also
// names the field so it can be
// accessed by name by the record
// class.
CharacterFieldDescription cfdl = new CharacterFieldDescription(new AS400Text(8),
"msgTime");
// Create a field description for
// the character data. Note it uses
// the AS400Text data type. It also
// names the field so it can be
// accessed by name by the record
// class.
CharacterFieldDescription cfd2 = new CharacterFieldDescription(new AS400Text (50),
"msgText");

The field descriptions are now ready to be grouped in a record format class. The example continues in the
record format section.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
Record format

The record format class allows the Java program to describe a group of fields or parameters. A record
object contains data described by a record format object. If the program is using record-level access
classes, the record format class also allows the program to specify descriptions for key fields.

A record format object contains a set of field descriptions. The field description can be accessed by index
or by name. Methods exist on the record format class to do the following:

* Add field descriptions to the record format.

* Add key field descriptions to the record format.

* Retrieve field descriptions from the record format by index or by name.

» Retrieve key field descriptions from the record format by index or by name.
* Retrieve the names of the fields that make up the record format.

* Retrieve the names of the key fields that make up the record format.

* Retrieve the number of fields in the record format.

* Retrieve the number of key fields in the record format.

» Create a Record object based on this record format.

24 AS/400 Toolbox for Java

For example, to add the field descriptions created in the field description example to a record format:

// Create a record format object,

// then fill it with field

// descriptions.
RecordFormat rf = new RecordFormat();
rf.addFieldDescription(bfd);
rf.addFieldDescription(cfdl);
rf.addFieldDescription(cfd2);

The program is now ready to create a record from the record format. The example continues in the record
section.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Record

The record class allows the Java program to process data described by the record format class. Data is
converted between byte arrays containing the AS/400 data and Java objects. Methods are provided in the
record class to do the following:

» Retrieve the contents of a field, by index or by name, as a Java object.

* Retrieve the number of fields in the record.

» Set the contents of a field, by index or by name, with a Java object.

* Retrieve the contents of the record as AS/400 data into a byte array or output stream.
» Set the contents of the record from a byte array or an input stream.

» Convert the contents of the record to a String.

For example, to use the record format created in the record format example:

// Assume data queue setup work has

// already been done. Now read a

// record from the data queue.
DataQueueEntry dqge = dq.read();

// The data from the data queue is

// now in a data queue entry. Get

// the data out of the data queue

// entry and put it in the record.

// We obtain a default record from

// the record format object and

// initialize it with the data from the

// data queue entry.
Record dqRecord = rf.getNewRecord(dqe.getData());

// Now that the data is in the

// record, pull the data out one

// field at a time, converting the

// data as it is removed. The result

// is data in a Java object that the

// program can now process.
Integer msgNumber = (Integer) dqRecord.getField("msgNumber");
String msgTime (String) dgRecord.getField("msgTime");
String msgText (String) dqRecord.getField("msgText");

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
Retrieving the contents of a field

Retrieve the contents of a Record object by having your Java program either get one field at a time or get
all the the fields at once. Use the getField() method to retrieve a single field by name or by index. Use the
getFields() method to retrieve all of the fields as an Object][].

Chapter 4. AS/400 Toolbox for Java access classes 25

The Java program must cast the Object (or element of the Object[]) returned to the appropriate Java
object for the retrieved field. The following table shows the appropriate Java object to cast based on the

field type.

Field Type (DDS)
BINARY (B),

length <=4

BINARY (B),

length >=5
CHARACTER (A)
DBCS Either (E)
DBCS Graphic (G)
DBCS Only (J)

DBCS Open (O)
DATE (L)

FLOAT (F),

single precision
FLOAT (F),

double precision
HEXADECIMAL (H)
PACKED DECIMAL (P)
TIME (T)
TIMESTAMP (Z)
ZONED DECIMAL (P)

Field Type (FieldDescription)
BinaryFieldDescription

BinaryFieldDescription

CharacterFieldDescription
DBCSEitherFieldDescription
DBCSGraphicFieldDescription
DBCSOnlyFieldDescription
DBCSOpenFieldDescription
DateFieldDescription
FloatFieldDescription

FloatFieldDescription

HexFieldDescription
PackedDecimalFieldDescription
TimeDecimalFieldDescription
TimestampDecimalFieldDescription
ZonedDecimalFieldDescription

[Information Center Home Page | Feedback]

Setting the contents of a field

Java Object
Short

Integer

String
String
String
String
String
String
Float

Double

byte[]
BigDecimal
String
String
BigDecimal

[Legal | AS/400 Glossary]

Set the contents of a Record object by using the setField() method in your Java program. The Java
program must specify the appropriate Java object for the field being set. The following table shows the
appropriate Java object for each possible field type.

Field Type (DDS)
BINARY (B),

length <=4

BINARY (B),

length >=5
CHARACTER (A)
DBCS Either (E)
DBCS Graphic (G)
DBCS Only (J)

DBCS Open (0O)
DATE (L)

FLOAT (F),

single precision
FLOAT (F),

double precision
HEXADECIMAL (H)
PACKED DECIMAL (P)
TIME (T)
TIMESTAMP (2)
ZONED DECIMAL (P)

Field Type (FieldDescription)
BinaryFieldDescription

BinaryFieldDescription

CharacterFieldDescription
DBCSEitherFieldDescription
DBCSGraphicFieldDescription
DBCSOnlyFieldDescription
DBCSOpenFieldDescription
DateFieldDescription
FloatFieldDescription

FloatFieldDescription

HexFieldDescription
PackedDecimalFieldDescription
TimeDecimalFieldDescription
TimestampDecimalFieldDescription
ZonedDecimalFieldDescription

[Information Center Home Page | Feedback]

26 AS/400 Toolbox for Java

Java Object
Short

Integer

String
String
String
String
String
String
Float

Double

byte[]
BigDecimal
String
String
BigDecimal

[Legal | AS/400 Glossary]

Data queues

The DataQueue classes allow the Java program to interact with AS/400 data queues. AS/400 data queues
have the following characteristics:

* The data queue allows for fast communications between jobs. Therefore, it is an excellent way to
synchronize and pass data between jobs.

* Many jobs can simultaneously access the data queues.

* Messages on a data queue are free format. Fields are not required as they are in database files.
* The data queue can be used for either synchronous or asynchronous processing.

* The messages on a data queue can be ordered in one the following ways:

— Last-in first-out (LIFO). The last (newest) message that is placed on the data queue is the first
message that is taken off the queue.

— First-in first-out (FIFO). The first (oldest) message that is placed on the data queue is the first
message that is taken off the queue.

— Keyed. Each message on the data queue has a key associated with it. A message can be taken off
the queue only by specifying the key that is associated with it.

The data queue classes provide a complete set of interfaces for accessing AS/400 data queues from
your Java program. It is an excellent way to communicate between Java programs and AS/400
programs that are written in any programming language.

A required parameter of each data queue object is the AS400 object that represents the AS/400 system
that has the data queue or where the data queue is to be created.

Using the data queue classes causes the AS400 object to connect to the AS/400. See managing
connections for information about managing connections.

Each data queue object requires the integrated file system path name of the data queue. The type for
the data queue is DTAQ. See integrated file system path names for more information.

Sequential and keyed data queues

The data queue classes support the following data queues:
* Sequential data queues
» Keyed data queues

Methods common to both types of queues are in the BaseDataQueue class. The DataQueue class
extends the BaseDataQueue class in order to complete the implementation of sequential data queues. The
BaseDataQueue class is extended by the KeyedDataQueue class to complete the implementation of
keyed data queues.

When data is read from a data queue, the data is placed in a DataQueueEntry object. This object holds
the data for both keyed and sequential data queues. Additional data available when reading from a keyed
data queue is placed in a KeyedDataQueueEntry object that extends the DataQueueEntry class.

The data queue classes do not alter data that is written to or is read from the AS/400 data queue. The
Java program must correctly format the data. The data conversion classes provide methods for converting
data.

The following example creates a DataQueue object, reads data from the DataQueueEntry object, and then
disconnects from the system.

Chapter 4. AS/400 Toolbox for Java access classes 27

// Create an AS400 object
AS400 sys = new AS400("mySystem.myCompany.com");
// Create the DataQueue object
DataQueue dq = new DataQueue(sys, "/QSYS.LIB/MYLIB.LIB/MYQUEUE.DTAQ");
// read data from the queue
DataQueueEntry dgData = dg.read();
// get the data out of the DataQueueEntry object.
byte[] data = dgData.getData();
// ... process the data
// Disconnect since I am done using data queues
sys.disconnectService(AS400.DATAQUEUE) ;

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Sequential data queues

Entries on a sequential AS/400 data queue are removed in first-in first-out (FIFO) or last-in first-out (LIFO)
sequence. The BaseDataQueue and DataQueue classes provide the following methods for working with
sequential data queues:

* Create a data queue on the AS/400. The Java program must specify the maximum size of an
entry on the data queue. The Java program can optionally specify additional data queue
parameters (FIFO vs LIFO, save sender information, specify authority information, force to disk,
and provide a queue description) when the queue is created.

* Peek at an entry on the data queue without removing it from the queue. The Java program can
wait or return immediately if no entry is currently on the queue.

* Read an entry off the queue. The Java program can wait or return immediately if no entry is
available on the queue.

* Write an entry to the queue.
* Clear all entries from the queue.
* Delete the queue.

The BaseDataQueue class provides additional methods for retrieving the attributes of the data
queue.

Examples

Sequential data queue examples, in which the producer puts items on a data queue, and the consumer
takes the items off the queue and processes them:

* Sequential data queue producer example.
* Sequential data queue consumer example.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Keyed data queues

The BaseDataQueue and KeyedDataQueue classes provide the following methods for working with keyed
data queues:
* Create a keyed data queue on the AS/400. The Java program must specify key length and
maximum size of an entry on the queue. The Java program can optionally specify authority
information, save sender information, force to disk, and provide a queue description.

* Peek at an entry based on the specified key without removing it from the queue. The Java
program can wait or return immediately if no entry is currently on the queue that matches the key
criteria.

* Read an entry off the queue based on the specified key. The Java program can wait or return
immediately if no entry is available on the queue that matches the key criteria.

28 AS/400 Toolbox for Java

* Write a keyed entry to the queue.
» Clear all entries or all entries that match a specified key.
* Delete the queue.

The BaseDataQueue and KeyedDataQueue classes also provide additional methods for retrieving
the attributes of the data queue.

Examples

In the following keyed data queue examples, the producer puts items on a data queue, and the consumer
takes the items off the queue and processes them:

» Keyed data queue producer example
» Keyed data queue consumer example

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Digital certificates

Digital certificates are digitally-signed statements used for secured transactions over the internet. (Digital
certificates can be used on AS/400 systems running on Version 4 Release 3 (V4R3) and later.) To make a
secure connection using the secure sockets layer (SSL), a digital certificate is required.

Digital certificates comprise the following:
* The public encryption key of the user
* The name and address of the user

* The digital signature of a third-party certification authority (CA). The authority’s signature means that the
user is a trusted entity.

* The issue date of the certificate
* The expiration date of the certificate

As an administrator of a secured server, you can add a certification authority’s "trusted root key” to the
server. This means that your server will trust anyone who is certified through that particular certification
authority.

Digital certificates also offer encryption, ensuring a secure transfer of data through a private encryption
key.

You can create digital certificates through the javakey tool. (For more information about javakey and Java
security, see the Sun Microsystems, Inc., Java Security page .) The AS/400 Toolbox for Java licensed
program has classes that administer digital certificates on an AS/400.

The AS/400 Digital Certificate classes provide methods to manage X.509 ASN.1 encoded certificates.
Classes are provided to do the following:

* Get and set certificate data.
 List certificates by validation list or user profile.

* Manage certificates, for example, add a certificate to a user profile or delete a certificate from a
validation list.

Using a certificate class causes the AS400 object to connect to the AS/400. See managing connections for
information about managing connections.

On the AS/400, certificates belong to a validation list or to a user profile.

Chapter 4. AS/400 Toolbox for Java access classes 29

* The AS400CertificateUserProfileUtil class has methods for managing certificates on a user profile.
* The AS400CertificateVIdIUtil class has methods for managing certificates in a validation list.

These two classes extend AS400CertificateUtil, which is an abstract base classes that defines methods
common to both subclasses.

The AS400Certificate class provides methods to read and write certificate data. Data is accessed as an
array of bytes. The Java.Security package in Java virtual machine 1.2 provides classes that can be used
to get and set individual fields of the certificate.

Listing certificates

To get a list of certificates, the Java program must do the following:
1. Create an AS400 object.

2. Construct the correct certificate object. Different objects are used for listing certificates on a user profile
(AS400CertificateUserProfileUtil) versus listing certificates in a validation list (AS400CertificateVIdIUtil).

3. Create selection criteria based on certificate attributes. The AS400CertificateAttribute class contains
attributes used as selection criteria. One or more attribute objects define the criteria that must be met
before a certificate is added to the list. For example, a list might contain only certificates for a certain
user or organization.

4. Create a user space on the AS/400 and put the certificate into the user space. Large amounts of data
can be generated by a list operation. The data is put into a user space before it can be retrieved by
the Java program. Use the listCertificates() method to put the certificates into the user space.

5. Use the getCertificates() method to retrieve certificates from the user space.

The following example lists certificates in a validation list. It lists only those certificates belonging to a
certain person.

// Create an AS400 object. The
// certificates are on this system.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create the certificate object.
AS400CertificateVidlUtil certificatelList =
new AS400CertificateV1dlUtil(sys, "/QSYS.LIB/MYLIB.LIB/CERTLIST.VLDL");
// Create the certificate attribute
// list. We only want certificates
// for a single person so the list
// consists of only one element.
AS400CertificateAttribute[] attributeList = new AS400CertificateAttribute[1];
attributeList[0] = new AS400CertificateAttribute(AS400CertificateAttribute.SUBJECT_COMMON_NAME, "Jane Doe");
// Retrieve the Tist that matches
// the criteria. User space "myspace"
// in library "mylib" will be used
// for storage of the certificates.
// The user space must exist before
// calling this API.
int count = certificateList.listCertificates(attributeList,
"/QSYS.LIB/MYLIB.LIB/MYSPACE.USRSPC");
// Retrieve the certificates from
// the user space.
AS400Certificates[] certificates = certificatelList.getCertificates("/QSYS.LIB/MYLIB.LIB/MYSPACE.USRSPC", 0, 8);
// ... process the certificates

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

30 AS/400 Toolbox for Java

Exceptions

The AS/400 Toolbox for Java access classes throw exceptions when device errors, physical limitations,
programming errors, or user input errors occur. The exception classes are based upon the type of error
that occurs instead of the location where the error originates.

Each exception contains three pieces of information:

» Error type - The exception object that is thrown indicates the type of error that occurred. Errors of the
same type are grouped together in an exception class. See the list of exceptions for more information
about error types.

* Error details - The exception contains a return code to further identify the cause of the error that
occurred. The return code values are constants within the exception class.

* Error text - The exception contains a text string that describes the error that occurred. The string is
translated in the locale of the client Java virtual machine.

The following example shows how to catch a thrown exception, retrieve the return code, and display the
exception text:

// ... all the setup work to delete
// a file on the AS/400 through the
// IFSFile class is done. Now try
// deleting the file.

try

aFile.delete();

}
// The delete failed.
catch (ExtendedIOException e)
{
// Display the translated string
// containing the reason that the
// delete failed.
System.out.printin(e);
// Get the return code out of the
// exception and display additional
// information based on the return
// code.
int rc = e.getReturnCode()
switch (rc)

case ExtendedIOException.FILE_IN_USE:
System.out.printin("Delete failed, file is in use "):
break;
case ExtendedIOException.PATH_NOT_FOUND:
System.out.printin("Delete failed, path not found ");
break;
// ... for every specific error you
// want to track
default:
System.out.printin("Delete failed, rc = ");
System.out.printin(rc);
}
}

See exceptions inheritance structure for more information about exceptions.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Chapter 4. AS/400 Toolbox for Java access classes

31

Exceptions thrown by the AS/400 Toolbox for Java access classes

The following table describes when various exceptions are thrown.

Exception

AS400Exception
AS400SecurityException
ConnectionDroppedException
ErrorCompletingRequestException
ExtendedIOException

ExtendedlllegalArgumentException
ExtendedlllegalStateException

lllegalObjectTypeException

lllegalPathNameException
InternalErrorException

ObjectAlreadyExistsException
ObjectDoesNotExistException
RequestNotSupportedException

ReturnCodeException

ServerStartupException

Description

Thrown if the AS/400 system returns an error message.
Thrown if a security or authority error occurs.

Thrown if the connection is dropped unexpectedly.
Thrown if an error occurs before the request is completed.
Thrown if an error occurs while communicating with the
AS/400.

Thrown if an argument is not valid.

Thrown if the AS/400 object is not in the proper state to
perform the operation.

Thrown if the AS/400 object is not of the required type.
Thrown if an integrated file system path name is not valid.
Thrown if an internal problem occurs. When this type of
exception is thrown, contact your service representative to
report the problem.

Thrown if the AS/400 object already exists.

Thrown if the AS/400 object does not exist.

Thrown if the requested function is not supported because
the AS/400 system is not at the correct level.

An interface for exceptions that contain a return code.
The return code is used to further identify the cause of an
error.

Thrown if the AS/400 server cannot be started.

See Inheritance structure for exceptions for more information about exceptions thrown by the AS/400

Toolbox for Java.

[Information Center Home Page | Feedback]

[Legal | AS/400 Glossary]

Inheritance structure for exceptions

The exceptions that are thrown by AS/400 Toolbox for Java access classes inherit from Exception,
IOException, or RuntimeException:

» class java.lang.Exception

— AS400SecurityException

— ErrorCompletingRequestException
- AS400Exception
- lllegalObjectTypeException
- ObjectAlreadyExistsException
- ObjectDoesNotExistException
- RequestNotSupportedException
- class java.io.lOException

ConnectionDroppedException
ExtendedIOException
ServerStartupException

» class java.lang.RuntimeException

32 AS/400 Toolbox for Java

— class java.io.lllegalArgumentException
- ExtendedlllegalArgumentException
- lllegalPathNameException

- InternalErrorException
- class java.lang.lllegalStateException

* ExtendedlllegalStateException
- class java.sql.SQLEXxception

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

FTP class

The FTP class provides a programmable interface to FTP functions. You no longer have to use
java.runtime.exec() or tell your users to run FTP commands in a separate application. That is, you can
program FTP functions directly into your application. So, from within your program, you can do the
following:

e Connect to an FTP server

* Send commands to the server
List the files in a directory

Get files from the server and
Put files to the server

For example, with the FTP class, you can copy a set of files from a directory on a server.

FTP is a generic interface that works with many different FTP servers. Therefore, it is up to the
programmer to match the semantics of the server.

FTP subclass

While the FTP class is a generic FTP interface, the AS400FTP subclass is written specifically for the FTP
server on the AS/400. That is, it understands the semantics of the FTP server on the AS/400, so the
programmer doesn’t have to. For example, this class understands the various steps needed to transfer an
AS/400 save file to the AS/400 and performs these steps automatically. AS400FTP also ties into the
security facilities of the AS/400 Toolbox for Java. As with other AS/400 Toolbox for Java classes,
AS400FTP depends on the AS400 object for system name, user ID, and password.

The following example puts a save file to the AS/400. Note the application does not set data transfer type
to binary or use Toolbox CommandCall to create the save file. Since the extension is .savf, AS400FTP
class detects the file to put is a save file so it does these steps automatically.

AS400 system = new AS400();

AS400FTP ftp = new AS400FTP(system);
ftp.put("myData.savf", "/QSYS.LIB/MYLIB.LIB/MYDATA.SAVF");

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Integrated file system

The integrated file system classes allow a Java program to access files in the AS/400 integrated file
system as a stream of bytes or a stream of characters. The integrated file system classes were created
because the java.io package does not provide file redirection and other AS/400 functionality.

The function that is provided by the IFSFile classes is a superset of the function provided by the file 10
classes in the java.io package. All methods in java.io FilelnputStream, FileOutputStream, and
RandomAccessFile are in the integrated file system classes.

In addition to these methods, the classes contain methods to do the following:

Chapter 4. AS/400 Toolbox for Java access classes 33

» Specify a file sharing mode to deny access to the file while it is in use

» Specify a file creation mode to open, create, or replace the file

* Lock a section of the file and deny access to that part of the file while it is in use
» List the contents of a directory more efficiently

» Determine the number of bytes available on the AS/400 file system

» Allow a Java applet to access files in the AS/400 file system

* Read and write data as text instead of as binary data

Through the integrated file system classes, the Java program can directly access stream files on the
AS/400. The Java program can still use the java.io package, but the client operating system must then
provide a method of redirection. For example, if the Java program is running on a Windows 95 or
Windows NT operating system, the Network Drives function of AS/400 Client Access for 32-bit Windows is
required to redirect java.io calls to the AS/400. With the integrated file system classes, you do not need
Client Access for AS/400.

A required parameter of the integrated file system classes is the AS400 object that represents the AS/400
system that contains the file. Using the integrated file system classes causes the AS400 object to connect
to the AS/400. See managing connections for information about managing connections.

The integrated file system classes require the hierarchical name of the object in the integrated file system.
Use the forward slash as the path separator character. The following example shows how to access FILE1
in directory path DIR1/DIR2:

/DIR1/DIR2/FILE1

The integrated file system classes are as follows.

Class Description
IFSFile Represents a file in the integrated file system
IFSJavaFile Represents a file in the integrated file system (extends
java.io.File)
IFSFilelnputStream Represents an input stream for reading data from an
AS/400 file
IFSTextFilelnputStream Represents a stream of character data read from a file
IFSFileOutputStream Represents an output stream for writing data to an AS/400
file
IFSTextFileOutputStream Represents a stream of character data being written to a
file
IFSRandomAccessFile Represents a file on the AS/400 for reading and writing
data
IFSFileDialog Allows the user to move within the file system and to

select a file within the file system

Examples

The IFSCopyFile example shows how to use the integrated file system classes to copy a file from one
directory to another on the AS/400.

The File List Example shows how to use the integrated file system classes to list the contents of a
directory on the AS/400.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

34 AS/400 Toolbox for Java

IFSFile

The IFSFile class represents an object in the AS/400 integrated file system. The methods on IFSFile
represent operations that are done on the object as a whole. You can use IFSFilelnputStream,
IFSFileOutputStream, and IFSRandomAccessFile to read and write to the file. The IFSFile class allows the
Java program to do the following:

» Determine if the object exists and is a directory or a file

» Determine if the Java program can read from or write to a file

* Determine the length of a file

» Determine the permissions of an object and set the permissions of an object.
* Create a directory

* Delete a file or directory

* Rename a file or directory

» Get or set the last modification date of a file

» List the contents of a directory

» Determine the amount of space available on the AS/400 system

The following examples show how to use the IFSFile class.

Example 1: To create a directory:

// Create an AS400 object. This new
// directory will be created on this
// AS/400.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create a file object that
// represents the directory.
IFSFile aDirectory = new IFSFile(sys, "/mydirl/mydir2/newdir");
// Create the directory.
if (aDirectory.mkdir())
System.out.printin("Create directory was successful");
// Else the create directory failed.
else
{
// If the object already exists,
// find out if it is a directory or
// file, then display a message.
if (aDirectory.exists())

if (aDirectory.isDirectory())
System.out.printin("Directory already exists");
else
System.out.printin("File with this name already exists");
}

else
System.out.printin("Create directory failed");

// Disconnect since I am done
// accessing files.
sys.disconnectService(AS400.FILE);

Example 2: When an error occurs, the IFSFile class throws the ExtendedlOException exception. This
exception contains a return code that indicates the cause of the failure. The IFSFile class throws the
exception even when the java.io class that IFSFile duplicates does not. For example, the delete method
from java.io.File returns a boolean to indicate success or failure. The delete method in IFSFile returns a
boolean, but if the delete fails, an ExtendedlOException is thrown. The ExtendedlOException provides the
Java program with detailed information about why the delete failed.

Chapter 4. AS/400 Toolbox for Java access classes 35

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create a file object that
// represents the file.
IFSFile aFile = new IFSFile(sys, "/mydirl/mydir2/myfile");
// Delete the file.
try
{
aFile.delete();
// The delete was successful.
System.out.printin("Delete successful ");
}
// The delete failed. Get the return
// code out of the exception and
// display why the delete failed.
catch (ExtendedIOException e)
{
int rc = e.getReturnCode();
switch (rc)
{
case ExtendedIOException.FILE_IN_USE:
System.out.printin("Delete failed, file is in use ");
break;
case ExtendedIOException.PATH_NOT_FOUND:
System.out.printIn("Delete failed, path not found ");
break;
// ... for every specific error
// you want to track.
default:
System.out.printin("Delete failed, rc = ");
System.out.printin(rc);

}

Example 3: The following example shows how to list files on the AS/400. A filter object is supplied so that
only directories are listed.

// Create the AS400 object.

AS400 system = new AS400("mySystem.myCompany.com");
// Create the file object.

IFSFile directory = new IFSFile(system, "/");
// Generate a list of all
// subdirectories in the directory.
// 1t uses the filter defined below.

String[] DirNames = directory.list(new DirectoryFilter());
// Display the results.

if (subDirNames != null)

for (int i = 0; i < subDirNames.length; i++)
System.out.printin(subDirNames[i]);
else
System.out.printIn("No subdirectories.");

// Here is the filter. It keeps
// directories and discards files.
// The accept method is called for
// every directory entry in the list.
// 1f the element is a directory,
// 'true' is returned so the
// directory is returned. The results
// are returned in the string array
// returned to the 1ist() method
// above.

class DirectoryFilter implements IFSFileFilter

{

public boolean accept(IFSFile file)

36 AS/400 Toolbox for Java

{
return file.isDirectory();
}
}

Example 4. The Java program can optionally specify match criteria when listing files in the directory.
Match criteria reduce the number of files that are returned by AS/400 to the IFSFile object, which improves
performance. The following example shows how to list files with extension .txt:

// Create the AS400 object.
AS400 system = new AS400("mySystem.myCompany.com");
// Create the file object.
IFSFile directory = new IFSFile(system, "/");
// Generate a list of all files with
// extension .txt
String[] names = directory.list("*.txt");
// Display the names.
if (names != null)
for (int i = 0; i < names.length; i++)
System.out.printin(names[i]);
else
System.out.printIn("No .txt files");

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

AS/400 Toolbox for Java \ Access classes \ Integrated file system \ IFS Java file

IFSJavaFile

The IFSJavaFile class represents a file in the AS/400 integrated file system and extends the java.io.File
class. IFSJavaFile allows you to write files for the java.io.File interface that access AS/400 integrated file
systems.

IFSJavaFile makes portable interfaces that are compatible with java.io.File and uses only the errors and
exceptions that java.io.File uses. IFSJavaFile uses the security manager features from java.io.File, but
unlike java.io.File, IFSJavaFile uses security features continuously.

You use IFSJavaFile with IFSFilelnputStream and IFSFileOutputStream. It does not support
java.io.FilelnputStream and java.io.FileOutputStream.

IFSJavaFile is based on IFSFile; however, its interface is more like java.io.File than IFSFile. IFSFile is an
alternative to the IFSJavaFile class.

An example of how to use the IFSJavaFile class is given below.

// Work with /Dir/File.txt on the system flash.
AS400 as400 = new AS400("flash");
IFSJavaFile file = new IFSJavaFile(as400, "/Dir/File.txt");
// Determine the parent directory of the file.
String directory = file.getParent();
// Determine the name of the file.
String name = file.getName();
// Determine the file size.
long length = file.length();
// Determine when the file was last modified.
Date date = new Date(file.lastModified());
// Delete the file.
if (file.delete() == false)
{
// Display the error code.
System.err.printin("Unable to delete file.");

try
{

Chapter 4. AS/400 Toolbox for Java access classes 37

IFSFileQutputStream os = new IFSFileQutputStream(file.getSystem(),

file,
IFSFileOutputStream.SHARE_ALL,
false);

byte[] data = new byte[256];

int i = 03

for (; i < data.length; i++)
{
data[i] = (byte) i;
os.write(data[i]);

os.close();

}

catch (Exception e)

{

System.err.printin ("Exception: " + e.getMessage());

}
[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

IFSFilelnputStream

The IFSFilelnputStream class represents an input stream for reading data from a file on the AS/400. As in
the IFSFile class, methods exist in IFSFilelnputStream that duplicate the methods in FilelnputStream from
the java.io package. In addition to these methods, IFSFilelnputStream has additional methods specific to
the AS/400. The IFSFilelnputStream class allows a Java program to do the following:

* Open a file for reading. The file must exist since this class does not create files on the AS/400.
* Open a file for reading and specify the file sharing mode.

* Determine the number of bytes in the stream.

* Read bytes from the stream.

» Skip bytes in the stream.

* Lock or unlock bytes in the stream.

* Close the file.

As in FilelnputStream in java.io, this class allows a Java program to read a stream of bytes from the file.
The Java program reads the bytes sequentially with only the additional option of skipping bytes in the
stream.

The following example shows how to use the IFSFilelnputStream class.

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");

// Open a file object that

// represents the file.
IFSFileInputStream aFile =

new IFSFileInputStream(sys,"/mydirl/mydir2/myfile");

// Determine the number of bytes in

// the file.
int available = aFile.available();

// Allocate a buffer to hold the data
byte[] data = new byte[10240];

// Read the entire file 10K at a time
for (int i = 0; i < available; i += 10240)
{

}

aFile.close();

aFile.read(data);

// Close the file.

In addition to the methods in FilelnputStream, IFSFilelnputStream gives the Java program the following
options:

38 AS/400 Toolbox for Java

* Locking and unlocking bytes in the stream. See IFSKey for more information.
» Specifying a sharing mode when the file is opened. See sharing modes for more information.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

AS/400 Toolbox for Java \ Access classes \ Integrated file system \ IFS key

IFSKey

If the Java program allows other programs access to a file at the same time, the Java program can lock
bytes in the file for a period of time. During that time, the program has exclusive use of that section of the
file. When a lock is successful, the integrated file system classes return an IFSKey object. This object is
supplied to the unlock() method to indicate which bytes to unlock. When the file is closed, the system
unlocks all locks that are still on the file (the system does an unlock for every lock that the program did not
unlock).

The following example shows how to use the IFSKey class.

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");
// Open an input stream. This
// constructor opens with share_all
// so other programs can open this
// file.
IFSFileInputStream aFile =
new IFSFileInputStream(sys,"/mydirl/mydir2/myfile");
// Lock the first 1K bytes in the
// file. Now no other instance can
// read these bytes.
IFSKey key = aFile.lock(1024);
// Read the first 1K of the file.
byte data[] = new byte[1024];
aFile.read(data);
// Unlock the bytes of the file.
aFile.unlock(key);
// Close the file.
aFile.close();

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

AS/400 Toolbox for Java \ Access classes \ Integrated file system \ IFS file sharing mode

File sharing mode

The Java program can specify a sharing mode when a file is opened. The program either allows other
programs to open the file at the same time or has exclusive access to the file.

The following example shows how to specify a file sharing mode.

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");
// Open a file object that
// represents the file. Since this
// program specifies share-none, all
// other open attempts fail until
// this instance is closed.
IFSFileOutputStream aFile =
new IFSFileOutputStream(sys,
"/mydirl/mydir2/myfile",
IFSFiTeOutputStream.SHARE_NONE,
false);
// ... perform operations on the

Chapter 4. AS/400 Toolbox for Java access classes 39

/] file.

// Close the file. Now other open

// requests succeed.
aFile.close();

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

IFSTextFilelnputStream

The IFSTextFilelnputStream class represents a stream of character data read from a file. The data read
from the IFSTextFilelnputStream object is supplied to the Java program in a Java String object, so it is
always unicode. When the file is opened, the IFSTextFilelnputStream object determines the CCSID of the
data in the file. If the data is stored in an encoding other than unicode, the IFSTextFilelnputStream object
converts the data from the file’s encoding to unicode before giving the data to the Java program. If the
data cannot be converted, an UnsupportedEncodingException is thrown.

The following example shows how to use the IFSTextFilelnputStream:

// Work with /File on the system
// mySystem.
AS400 as400 = new AS400("mySystem");
IFSTextFileInputStream file = new IFSTextFileInputStream(as400, "/File");
// Read the first four characters of
// the file.
String s = file.read(4);
// Display the characters read. Read
// the first four characters of the
// file. If necessary, the data is
// converted to unicode by the
// IFSTextFileInputStream object.
System.out.printin(s);
// Close the file.
file.close();

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

IFSFileOutputStream

The IFSFileOutputStream class represents an output stream for writing data to a file on the AS/400. As in
the IFSFile class, methods exist in IFSFileOutputStream that duplicate the methods in FileOutputStream
from the java.io package. IFSFileOutputStream also has additional methods specific to the AS/400. The
IFSFileOutputStream class allows a Java program to do the following:

* Open a file for writing. If the file already exists, it is replaced. Also available is a constructor that takes
a boolean argument that specifies whether the contents of an existing file have been appended.

* Open a file for writing and specifying the file sharing mode.
* Write bytes to the stream.

* Commit to disk the bytes that are written to the stream.

* Lock or unlock bytes in the stream.

* Close the file.

As in FileOutputStream in java.io, this class allows a Java program to sequentially write a stream of bytes
to the file.

The following example shows how to use the IFSFileOutputStream class.

// Create an AS400 object
AS400 sys = new AS400("mySystem.myCompany.com");

// Open a file object that

// represents the file.
IFSFileOutputStream aFile =

40 AS/400 Toolbox for Java

new IFSFileOutputStream(sys,"/mydirl/mydir2/myfile");
// Write to the file
byte i = 123;
aFile.write(i);
// Close the file.
aFile.close();

In addition to the methods in FileOutputStream, IFSFileOutputStream gives the Java program the following
options:

* Locking and unlocking bytes in the stream. See IFSKey for more information.

» Specifying a sharing mode when the file is opened. See sharing modes for more information.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

IFSTextFileOutputStream

The IFSTextFileOutputStream class represents a stream of character data being written to a file. The data
supplied to the IFSTextFileOutputStream object is in a Java String object so the input is always unicode.
The IFSTextFileOutputStream object can convert the data to another CCSID as it is written to the file,
however. The default behavior is to write unicode characters to the file, but the Java program can set the
target CCSID before the file is opened. In this case, the IFSTextFileOutputStream object converts the
characters from unicode to the specified CCSID before writing them to the file. If the data cannot be
converted, an UnsupportedEncodingException is thrown.

The following example shows how to use IFSTextFileOutputStream:

// Work with /File on the system
// mySystem.
AS400 as400 = new AS400("mySystem");
IFSTextFileOutputStream file = new IFSTextFileOutputStream(as400, "/File");
// Write a String to the file.
// Because no CCSID was specified
// before writing to the file,
// unicode characters will be
// written to the file. The file
// will be tagged as having unicode
// data.
file.write("Hello world");
// Close the file.
file.close();

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

IFSRandomAccessFile

The IFSRandomAccessFile class represents a file on the AS/400 for reading and writing data. The Java
program can read and write data sequentially or randomly. As in IFSFile, methods exist in
IFSRandomAccessFile that duplicate the methods in RandomAccessFile from the java.io package. In
addition to these methods, IFSRandomAccessFile has additional methods specific to the AS/400. Through
IFSRandomAccessFile, a Java program can do the following:

* Open a file for read, write, or read/write access. The Java program can optionally specify the file
sharing mode and the existence option.

* Read data at the current offset from the file.
* Write data at the current offset to the file.

* Get or set the current offset of the file.

* Close the file.

Chapter 4. AS/400 Toolbox for Java access classes 41

The following example shows how to use the IFSRandomAccessFile class to write four bytes at 1K
intervals to a file.

// Create an AS400 object.

AS400 sys = new AS400("mySystem.myCompany.com");
// Open a file object that represents
// the file.

IFSRandomAccessFile aFile =

new IFSRandomAccessFile(sys,"/mydirl/myfile", "rw");

// Establish the data to write.

byte i = 123;
// Write to the file 10 times at 1K
// intervals.

for (int j=0; j<10; j++)

{
// Move the current offset.
aFile.seek(j * 1024);
// Write to the file. The current
// offset advances by the size of
// the write.
aFile.write(i);

}

aFile.close();

// Close the file.

In addition to the methods in java.io RandomAccessFile, IFSRandomAccessFile gives the Java program
the following options:

* Committing to disk bytes written.
» Locking or unlocking bytes in the file.
* Locking and unlocking bytes in the stream. See IFSKey for more information.
» Specifying a sharing mode when the file is opened. See sharing modes for more information.
» Specify the existence option when a file is opened. The Java program can choose one of the following:
— Open the file if it exists; create the file if it does not.
— Replace the file if it exists; create the file if it does not.
— Fail the open if the file exists; create the file if it does not.
— Open the file if it exists; fail the open if it does not.
— Replace the file if it exists; fail the open if it does not.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

IFSFileDialog

The IFSFileDialog class allows you to traverse the file system and select a file. This class uses the IFSFile
class to traverse the list of directories and files in the integrated file system on the AS/400. Methods on the
class allow a Java program to set the text on the push buttons of the dialog and to set filters. Note that an
IFSFileDialog class based on Swing 1.1 is also available.

You can set filters through the FileFilter class. If the user selects a file in the dialog, the getFileName()
method can be used to get the name of the file that was selected. The getAbsolutePath() method can be
used to get the path and name of the file that was selected.

The following example shows how to set up a dialog with two filters and to set the text on the push
buttons of the dialog.
// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create a dialog object setting
// the text of the dialog's title
// bar and the AS/400 to traverse.

42 AS/400 Toolbox for Java

IFSFileDialog dialog = new IFSFileDialog(this, "Title Bar Text", sys);
// Create a list of filters then set
// the filters in the dialog. The
// first filter will be used when
// the dialog is first displayed.
FileFilter[] filterList = {new FileFilter("A11 files (*.*)", "x.%"),
new FileFilter("HTML files (x.HTML", "=.HTM")};
dialog.setFileFilter(filterList, 0);
// Set the text on the buttons of
// the dialog.
dialog.setOkButtonText ("Open");
dialog.setCancelButtonText("Cancel");
// Show the dialog. If the user
// selected a file by pressing the
// Open button, get the file the
// user selected and display it.
if (dialog.showDialog() == IFSFileDialog.0K)
System.out.printin(dialog.getAbsolutePath());

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

JavaApplicationCall

The JavaApplicationCall class provides you with the ability to easily run a Java program residing on the
AS/400 from a client with the Java virtual machine for AS/400.

After establishing a connection to the AS/400 from the client, the JavaApplicationCall class lets you
configure the following:

1. Set the CLASSPATH environment variable on the AS/400 with the setClassPath() method
2. Define your program’s parameters with the setParameters() method

3. Run the program with run()
4

Send input from the client to the Java program. The Java program reads the input via standard input
which is set with the sendStandardInString() method. You can redirect standard output and standard
error from the Java program to the client via the getStandardOutString() and getStandardErrorString()

JavaApplicationCall is a class you call from your Java program. However, the AS/400 Toolbox for Java

also provides utilities to call AS/400 Java programs. These utilities are complete Java programs you can
run from your workstation. See RunJavaApplication class for more information.

Example

This example shows you how to run a program on the AS/400 from the client that outputs "Hello World!”.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

JDBC

The AS/400 Toolbox for Java JDBC (Java Database Connectivity) driver allows Java programs to access
AS/400 database files using standard JDBC interfaces. Use these standard JDBC interfaces to issue SQL
statements and process results. JDBC is a standard part of Java and is included in JDK 1.1.

The AS/400 Toolbox for Java supports JDBC 2.0. If you want to use any of the following JDBC 2.0
enhancements, you also need to use JDK 1.2:

e Blob interface
¢ Clob interface
e Scrollable result set

Chapter 4. AS/400 Toolbox for Java access classes 43

» Updatable result set
* Batch update capability with Statement, PreparedStatement, and CallableStatement objects

JDBC defines the following Java interfaces:
» The Driver interface creates the connection and returns information about the driver version.
* The Connection interface represents a connection to a specific database.
* The Statement interface runs SQL statements and obtains the results.
* The PreparedStatement interface runs compiled SQL statements.
* The CallableStatement interface runs SQL stored procedures.

* The ResultSet interface provides access to a table of data that is generated by running a SQL
query or DatabaseMetaData catalog method.

* The DatabaseMetaData interface provides information about the database as a whole.
* The Blob interface provides access to binary large objects (BLOBS).
* The Clob interface provides access to character large objects (CLOBS).

We have included a table that lists JDBC properties for easy reference.

Examples
Using the JDBC driver to create and populate a table.

Using the JDBC driver to query a table and output its contents.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Registering the JDBC driver

Before using JDBC to access data in an AS/400 database file, you need to register the JDBC driver for the
AS/400 Toolbox for Java licensed program with the DriverManager. You can register the driver either by
using a Java system property or by having the Java program register the driver:
* Register by using a system property
Each virtual machine has its own method of setting system properties. For example, the Java command
from the JDK uses the -D option to set system properties. To set the driver using system properties,
specify the following:
"-Djdbc.drivers=com.ibm.as400.access.AS400JDBCDriver"
» Register by using the Java program
To explicitly load the driver, add the following to the Java program before the first JIDBC call:
java.sql.DriverManager.registerDriver (new com.ibm.as400.access.AS400JDBCDriver ());

The AS/400 Toolbox for Java JDBC driver does not require an AS400 object as an input parameter like the
other AS/400 Toolbox for Java classes that get data from an AS/400. An AS400 object is used internally,
however, to manage default user and password caching. When a connection is first made to the AS/400,
the user may be prompted for user ID and password. The user has the option to save the user ID as the
default user ID and add the password to the password cache. As in the other AS/400 Toolbox for Java
functions, if the user ID and password are supplied by the Java program, the default user is not set and
the password is not cached. See managing connections for information on managing connections.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

44 AS/400 Toolbox for Java

Using the JDBC driver to connect to an AS/400 database

You can use the DriverManager.getConnection() method to connect to the AS/400 database.
DriverManager.getConnection() takes a uniform resource locator (URL) string as an argument. The JDBC
driver manager attempts to locate a driver that can connect to the database that is represented by the
URL. When using the AS/400 Toolbox for Java driver, use the following syntax for the URL:

"jdbc:as400://systemName/defaultSchema;1istOfProperties"
Note: Either systemName or defaultSchema can be omitted from the URL.
Examples: Using the JDBC driver to connect to an AS/400

Example 1: Using a URL in which a system name is not specified. This will result in the user being
prompted to type in the name of the system to which the user wants to connect.

"jdbc:as400:"

Example 2: Connecting to the AS/400 database; no default schema or properties specified.

// Connect to system 'mySystem'. No
// default schema or properties are
// specified.
Connection ¢ = DriverManager.getConnection("jdbc:as400://mySystem");

Example 3: Connecting to the AS/400 database; default schema specified.

// Connect to system 'mySys2'. The
// default schema 'myschema' is
// specified.
Connection c2 = DriverManager.getConnection("jdbc:as400://mySys2/mySchema");

Example 4: Connecting to the AS/400 database; properties are specified using java.util.Properties. The
Java program can specify a set of JDBC properties either by using the java.util.Properties interface or by
specifying the properties as part of the URL. See JDBC properties for a list of supported properties.

For example, to specify properties using the Properties interface, use the following code as an example:

// Create a properties object.
Properties p = new Properties();
// Set the properties for the
// connection.
p.put("naming", "sql1");
p.put("errors", "full");
// Connect using the properties
// object.
Connection ¢ = DriverManager.getConnection("jdbc:as400://mySystem",p);

Example 5: Connecting to the AS/400 database; properties are specified using a uniform resource locator
(URL).
// Connect using properties. The
// properties are set on the URL
// instead of through a properties
// object.
Connection ¢ = DriverManager.getConnection(
"jdbc:as400://mySystem;naming=sql;errors=full");

Example 6: Connecting to the AS/400 database; user ID and password are specified.

// Connect using properties on the
// URL and specifying a user ID and
// password

Chapter 4. AS/400 Toolbox for Java access classes 45

Connection ¢ = DriverManager.getConnection(
"jdbc:as400://mySystem;naming=sql;errors=full",
"auser",
"apassword") ;

Example 7: Disconnecting from the database. Use the close() method on the Connecting object to
disconnect from the AS/400. To close the connection that is created in the above example, use the
following statement:

c.close();

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Running SQL statements with Statement objects
Use a Statement object to run an SQL statement and optionally obtain the ResultSet produced by it.

PreparedStatement inherits from Statement, and CallableStatement inherits from PreparedStatement. Use
the following Statement objects to run different SQL statements:

« IStatement interface’ - to run a simple SQL statement that has no parameters.
* PreparedStatement - to run a precompiled SQL statement that may or may not have IN parameters.

» CallableStatement - to run a call to a database stored procedure. A CallableStatement may or may not
have IN, OUT, and INOUT parameters.

The Statement object allows you to submit multiple update commands as a single group to a database
through the use of a batch update facility. Through the use of the batch update facility, you may get better
performance because it is usually faster to process a group of update operations than to process one
update operation at a time. If you want to use the batch update facility, you need JDBC 2.0 and JDK 1.2.

When using batch updates, usually you should turn off auto-commit. Turning off auto-commit allows your
program to determine whether to commit the transaction if an error occurs and not all of the commands
have executed. In JDBC 2.0, a Statement object can keep track of a list of commands that can be
successfully submitted and executed together in a group. When this list of batch commands is executed by
the executeBatch() method, the commands are executed in the order in which they were added to the list.

Statement interface

Use Connection.createStatement() to create new Statement objects.

The following example shows how to use a Statement object.

// Connect to the AS/400.
Connection ¢ = DriverManager.getConnection("jdbc:as400://mySystem");
// Create a Statement object.
Statement s = c.createStatement();
// Run an SQL statement that creates
// a table in the database.
s.executeUpdate ("CREATE TABLE MYLIBRARY.MYTABLE (NAME VARCHAR(20), ID INTEGER)");
// Run an SQL statement that inserts
// a record into the table.
s.executeUpdate("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES ('DAVE', 123)");
// Run an SQL statement that inserts
// a record into the table.
s.executeUpdate ("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES ('CINDY', 456)");
// Run an SQL query on the table.
ResultSet rs = s.executeQuery("SELECT * FROM MYLIBRARY.MYTABLE");
// Close the Statement and the
// Connection.
s.close();
c.close();

46 AS/400 Toolbox for Java

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

PreparedStatement interface

You can use a PreparedStatement object when an SQL statement is going to be run many times. An SQL
statement can be precompiled. A "prepared.” statement is an SQL statement that has been precompiled.
This approach is more efficient than running the same statement multiple times using a Statement object,
which compiles the statement each time it is run. In addition, the SQL statement contained in a
PreparedStatement object may have one or more IN parameters. Use Connection.prepareStatement() to
create PreparedStatement objects.

You can use a batch update facility to associate a single PreparedStatement object with multiple sets of
input parameter values. This unit then can be sent to the database for processing as a single entity. You
may get better performance with batch updates because it is usually faster to process a group of update
operations than one update operation at a time. If you want to use the batch update facility, you need
JDBC 2.0 and JDK 1.2.

The following example shows how to use the PreparedStatement interface.

// Connect to the AS/400.
Connection ¢ = DriverManager.getConnection("jdbc:as400://mySystem");
// Create the PreparedStatement
// object. It precompiles the
// specified SQL statement. The
// question marks indicate where
// parameters must be set before the
// statement is run.
PreparedStatement ps = c.prepareStatement ("INSERT INTO MYLIBRARY.MYTABLE (NAME, ID) VALUES (?, ?)");
// Set parameters and run the
// statement.
ps.setString(1, "JOSH");
ps.setInt(2, 789);
ps.executeUpdate();
// Set parameters and run the
// statement again.
ps.setString(1, "DAVE");
ps.setInt(2, 456);
ps.executeUpdate();
// Close PreparedStatement and the
// Connection.
ps.close();
c.close();

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

CallableStatement interface

You can use a CallableStatement object to run SQL stored procedures. The stored procedure being called
must already be stored in the database. CallableStatement does not contain the stored procedure, it only
calls the stored procedure.

A stored procedure can return one or more ResultSet objects and can use IN parameters, OUT
parameters, and INOUT parameters. Use Connection.prepareCall() to create new CallableStatement
objects.

You can use a batch update facility to associate a single CallableStatement object with multiple sets of
input parameter values. This unit then can be sent to the database for processing as a single entity. You
may get better performance with batch updates because it is usually faster to process a group of update
operations than one update operation at a time. If you want to use the batch update facility, you need
JDBC 2.0 and JDK 1.2.

Chapter 4. AS/400 Toolbox for Java access classes 47

The following example shows how to use the CallableStatement interface.

Connection ¢ =

// Connect to the AS/400.
DriverManager.getConnection("jdbc:as400://mySystem");

// Create the CallableStatement

// object. It precompiles the

// specified call to a stored

// procedure. The question marks

// indicate where input parameters

// must be set and where output

// parameters can be retrieved.

// The first two parameters are

// input parameters, and the third

// parameter is an output parameter.

CallableStatement cs = c.prepareCall("CALL MYLIBRARY.ADD (?, ?, ?)");

// Set input parameters.

cs.setlnt (1, 123);
cs.setlnt (2, 234);

// Register the type of the output
// parameter.

cs.registerQutParameter (3, Types.INTEGER);

cs.execute ();

// Run the stored procedure.

// Get the value of the output
// parameter.

int sum = cs.getInt (3);

cs.close();
c.close();

// Close the CallableStatement and
// the Connection.

[Information Center Home Page | Feedback]

DatabaseMetaData interface

[Legal | AS/400 Glossary]

You can use a DatabaseMetaData object to obtain information about the database as a whole as well as

catalog information.

The following example shows how to return a list of tables, which is a catalog function:

Connection ¢ =

// Connect to the AS/400.
DriverManager.getConnection("jdbc:as400://mySystem");

// Get the database metadata from

// the connection.

DatabaseMetaData dbMeta = c.getMetaData();

String catalog
String schema
String table

String types[]
ResultSet rs =

c.close();

// Get a list of tables matching the
// following criteria.
= "myCatalog";
= "mySchema";
= "myTable%"; // % indicates search pattern
= {"TABLE", "VIEW", "SYSTEM TABLE"};
dbMeta.getTables(catalog, schema, table, types);
// ... iterate through the ResultSet
// to get the values
// Close the Connection.

[Information Center Home Page | Feedback]

AS400JDBCBIob interface

[Legal | AS/400 Glossary]

You can use a AS400JDBCBIob object to access binary large objects (BLOBS), such as sound byte (.wav)
files or image (.qgif) files.

48 AS/400 Toolbox for Java

The key difference between the AS400JDBCBIob class and the AS400JDBCBIlobLocator class is where
the blob is stored. With the AS400JDBCBIlob class, the blob is stored in the database, which inflates the
size of the database file. The AS400JDBCBIobLocator class stores a locator (think of it as a pointer) in the
database file that points to where the blob is located.

With the AS400JDBCBIob class, the lob threshold property can be used. This property specifies the
maximum large object (LOB) size (in kilobytes) that can be retrieved as part of a result set. LOBs that are
larger than this threshold are retrieved in pieces using extra communication to the server. Larger LOB
thresholds reduce the frequency of communication to the server, but they download more LOB data, even
if it is not used. Smaller lob thresholds may increase frequency of communication to the server, but they
only download LOB data as it is needed. See JDBC properties for information on additional properties that
are available.

Using the AS400JDBCBIob interface, you can do the following:
» Return the entire blob as a stream of uninterpreted bytes

* Return part of the contents of the blob

* Return the length of the blob

The following example shows how to use the AS400JDBCBIob interface:

Blob blob = resultSet.getBlob (1);
Tong length = blob.length ();
byte[] bytes = blob.getBytes (0, (int) length);

AS400JDBCBIlobLocator interface

You can use a AS400JDBCBIlobLocator object to access a binary large objects.

Using the AS400JDBCBIlobLocator interface, you can do the following:
* Return the entire blob as a stream of uninterpreted bytes

» Return part of the contents of the blob

* Return the length of the blob

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
AS400JDBCClob interface

You can use a AS400JDBCCIlob object to access character large objects (CLOBSs), such as large
documents.

The key difference between the AS400JDBCClob class and the AS400JDBCClobLocator class is where
the blob is stored. With the AS400JDBCClob class, the blob is stored in the database, which inflates the
size of the database file. The AS400JDBCClobLocator class stores a locator (think of it as a pointer) in the
database file that points to where the blob is located.

With the AS400JDBCClob class, the lob threshold property can be used. This property specifies the
maximum large object (LOB) size (in kilobytes) that can be retrieved as part of a result set. LOBs that are
larger than this threshold are retrieved in pieces using extra communication to the server. Larger LOB
thresholds reduce the frequency of communication to the server, but they download more LOB data, even
if it is not used. Smaller lob thresholds may increase frequency of communication to the server, but they
only download LOB data as it is needed. See JDBC properties for information on additional properties that
are available.

Using the AS400JDBCClob interface, you can do the following:
* Return the entire clob as a stream of ASCII characters

Chapter 4. AS/400 Toolbox for Java access classes 49

e Return the contents of the clob as a character stream

* Return a part of the contents of the clob
» Return the length of the clob

The following example shows how to use the AS400JDBCClob interface:

Clob clob = rs.getClob (1);

int length = clob.getLength ();

String s =

clob.getSubString (0, (int) length);

AS400JDBCClobLocator interface

You can use a AS400JDBCClobLocator object to access character large objects (CLOBS).

Using the AS400JDBCClobLocator interface, you can do the following:
* Return the entire clob as a stream of ASCII characters

* Return the entire clob as a character stream
* Return a part of the contents of the clob

* Return the length of the clob

[Information Center Home Page | Feedback]

JDBC Properties

[Legal | AS/400 Glossary]

The following table lists various JDBC properties for AS/400 Toolbox for Java. It specifies whether the
property is supported by AS/400 Toolbox for Java JDBC and/or Native JDBC and offers a description of

the property in question.

Property

AS/400 Toolbox for Java
JDBC Support

Native JDBC Support

Description

user

X

X

User name for connecting
to AS/400

password

X

X

Password for connecting to
AS/400

prompt

Specifies whether the user
should be prompted if a
user name or password is
needed to connect to the
AS/400 server

libraries

The AS/400 libraries to add
to the server's job library
list. For Native, only one

library is allowed and it will

be used as the default
library

transaction isolation

Conne

Sets the transaction
isolation level for the
connection. Has same
affect as using
tion.setTransactionlsolation()

date format

The date format used in
date literals within SQL
statements

50 AS/400 Toolbox for Java

Property

AS/400 Toolbox for Java
JDBC Support

Native JDBC Support

Description

date separator

X

The date separator used in
date literals within SQL
statements

decimal separator

The decimal separator used
in numeric literals within
SQL statements

do escape processing

Specifies if statements
under the connection must
do escape processing.
Using escape processing is
a way to code your SQL
statements so that they are
generic and similar for all
platforms, but then the
database reads the escape
clauses and substitutes the
proper system specific
version for the user

naming

The naming convention
used when referring to
tables (sql versus system)

time format

The time format used in
time literals within SQL
statements

time separator

The time separator used in
time literals within SQL
statements

block criteria

The criteria for retrieving
data from the AS/400 server
in blocks of records

block size

The block size in kilobytes
to retrieve from the AS/400
server and cache on the
client

blocking enabled

Specifies if the connection
should use blocking on
result set row retrieval

lob threshold

Specifies the maximum
LOB (large object) size in
kilobytes that can be
retrieved as part of a result
set

prefetch

Specifies whether to
prefetch data upon
executing a SELECT
statement

extended dynamic

Extended dynamic support
provides a mechanism for
caching dynamic SQL
statements on the server

package

Specifies the base name of
the SQL package

Chapter 4. AS/400 Toolbox for Java access classes 51

Property

AS/400 Toolbox for Java
JDBC Support

Native JDBC Support

Description

package library

X

Specifies the library for the
SQL package

package criteria

X

Specifies the type of SQL
statements to be stored in
the SQL package

package cache

Specifies whether to cache
SQL packages in memory

package clear

Specifies whether to clear
SQL packages when they
become full

package add

Specifies whether to add
statements to an existing
SQL package

package error

Specifies the action to take
when SQL package errors
occur

sort

Specifies how the server
sorts records before
sending them to the client

sort language

Specifies a three-character
language id to use for
selection of a sort sequence

sort table

Specifies the library and file
name of a sort sequence
table stored on the AS/400
server

sort weight

Specifies how the server
treats case while sorting
records

access

Specifies the level of
database access for the
connection

error

Specifies the amount of
detail to be returned in the
message for errors that
occur on the AS/400 server

remarks

Specifies the source of the
text for REMARKS columns
in ResultSets returned by
DatabaseMetaData
methods

secure

Specifies whether a
SecureSockets Layer (SSL)
connection is used to
communicate with the
server

translate binary

Specifies whether binary
data is translated

trace

Specifies whether trace
messages should be logged

52

AS/400 Toolbox for Java

JDBC Class Methods
Connection setAutoCommit()
setCatalog()
setReadOnly()
setTransactionlsolation()
setTypeMap()
Statement setCursorName()

setEscapeProcessing()

setFetchDirection()

setFetchSize()

setMaxFieldSize()

setMaxRows()

setQueryTimeout()

[Information Center Home Page | Feedback]

[Legal | AS/400 Glossary]

Jobs

The AS/400 Toolbox for Java Jobs classes allow a Java program to retrieve and

change the following type of job information:
» Date and Time Information

» Job Queue

* Language ldentifiers

* Message Logging

e Output Queue

* Printer Information

The job classes are as follows:

» Job - retrieves and changes AS/400 job information
» JobList - retrieves a list of AS/400 jobs

» JobLog - represents the job log of an AS/400

Examples

List the jobs belonging to a specific user and list jobs with job status information.

Display the messages in a job log.

Use a cache when setting a value and getting a value:

try {
// Creates AS400 object.
AS400 as400 = new AS400("systemName");
// Constructs a Job object
Job job = new Job(as400,"QDEV002");
// Gets job information
System.out.printin("User of this job :" + job.getUser());
System.out.printIn("CPU used :" + job.getCPUUsed();

System.out.printin("Job enter system date : " + job.getJobEnterSystemDate());

// Sets cache mode
job.setCacheChanges (true);

Chapter 4. AS/400 Toolbox for Java access classes 53

// Changes will be store in the cache.
job.setRunPriority(66);
job.setDateFormat ("*YMD");
// Commit changes. This will change the value on the AS/400.
job.commitChanges();
// Set job information to system directly(without cache).
job.setCacheChanges(false);
job.setRunPriority(60);

} catch (Exception e)

{
}

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Job

System.out.printin(quot;error :" +)

The job class allows a java program to retrieve and change AS/400 jobs information.

The following type of job information can be retrieved and changed with the Job class:
* Job queues

* Output queues

* Message logging

* Printer device

e Country identifier

* Date format

The job class also allows the ability to change a single value at a time, or cache several changes using
the setCacheChanges(true) method and committing the changes using the commitChanges() method. If
caching is not turned on, you do not need to do a commit.

Use this example for how to set and get values to and from the cache in order to set the run priority with
the setRunPriority() method and set the date format with the setDateFormat() method.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

JobList

You can use JoblList class to list AS/400 jobs. With the JoblList class, you can retrieve the following:
* All jobs
» Jobs by name, job number, or user

Use the getJobs() method to return a list of AS/400 jobs or getLength() method to return the number of
jobs retrieved with the last getJobs().

The following example lists all active jobs on the system:

// Create an AS400 object. List the
// jobs on this AS/400.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create the job 1ist object.
JobList jobList = new JobList(sys);
// Get the Tist of active jobs.
Enumeration Tist = jobList.getJobs();
// For each active job on the system
// print job information.
while (list.hasMoreElements())

{
Job j = (Job) Tlist.nextElement();

54 AS/400 Toolbox for Java

System.out.printin(j.getName() + "." +
j.getUser() + "." +
j.getNumber());

}

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

JoblLog

The JobLog class retrieves messages in the job log of an AS/400 job by calling getMessages().

The following example prints all messages in the job log for the specified user:

// ... Setup work to create an AS400
// object and a jobList object has
// already been done
// Get the list of active jobs on
// the AS/400
Enumeration Tist = jobList.getJobs();
// Look through the 1ist to find a
// job for the specified user.
while (list.hasMoreETements())
{
Job j = (Job) Tist.nextElement();
if (j.getUser().trim().equalsIgnoreCase(userID))
{

// A job matching the current user
// was found. Create a job log
// object for this job.
JoblLog jlog = new JoblLog(system,
Jj.getName(),
j.getUser(),
Jj.getNumber());
// Enumerate the messages in the job
// Tog then print them.
Enumeration messagelList = jlog.getMessages();
while (messageList.hasMoreETements())
{
AS400Message message = (AS400Message) messagelist.nextElement();
System.out.printin(message.getText());
1
}
}

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Messages

AS400Message

AS400 Message object allows the Java program to retrieve an AS/400 message that is generated from a
previous operation (for example, from a command call). From a message object, the Java program can
retrieve the following:

* The AS/400 library and message file that contain the message
* The message ID

* The message type

* The message severity

* The message text

* The message help text

Chapter 4. AS/400 Toolbox for Java access classes 55

The following example shows how to use the AS/400 Message object:

// Create a command call object.
CommandCall cmd = new CommandCall(sys, "myCommand");
// Run the command
cmd.run();
// Get the Tlist of messages that are
// the result of the command that I
// just ran
AS400Message[] messagelList = cmd.getMessagelist();
// Tterate through the list
// displaying the messages
for (int i = 0; i < messagelList.length; i++)

{
}

System.out.printin(messagelList[i].getText());

Examples
The CommandCall example shows how a message list is used with CommandcCall.

The ProgramCall example shows how a message list is used with ProgramCall.
QueuedMessage

The QueuedMessage class extends the AS400Message class. The QueuedMessage class accesses
information about a message on an AS/400 message queue. With this class, a Java program can retrieve:

» Information about where a message originated, such as program, job name, job number, and user
* The message queue

* The message key

* The message reply status

The following example prints all messages in the message queue of the current (signed-on) user:

// The message queue is on this as400.
AS400 sys = new AS400(mySystem.myCompany.com)
// Create the message queue object.
// This object will represent the
// queue for the current user.
MessageQueue queue = new MessageQueue(sys, MessageQueue.CURRENT);
// Get the list of messages currently
// in this user's queue.
Enumeration e = queue.getMessages();
// Print each message in the queue.
while (e.hasMoreETements())
{
QueuedMessage msg = e.getNextElement();
System.out.printin(msg.getText());
}

MessageFile

The MessageFile class allows you to receive a message from an AS/400 message file. The MessageFile
class returns an AS400Message object that contains the message. Using the MessageFile class, you can
do the following:

* Return a message object that contains the message
* Return a message object that contains substitution text in the message

The following example shows how to retrieve and print a message:

56 AS/400 Toolbox for Java

AS400 system = new AS400("mysystem.mycompany.com");
MessageFile messageFile = new MessageFile(system);
messageFile.setPath("/QSYS.LIB/QCPFMSG.MSGF");
AS400Message message = messageFile.getMessage("CPDO170");
System.out.printin(message.getText());

MessageQueue

The MessageQueue class allows a Java program to interact with an AS/400 message queue. It acts as a
container for the QueuedMessage class. The getMessages() method, in particular, returns a list of
QueuedMessage objects. The MessageQueue class can do the following:

* Set message queue attributes

* Get information about a message queue

* Receive messages from a message queue
* Send messages to a message queue

* Reply to messages

The following example lists messages in the message queue for the current user:

// The message queue is on this as400.
AS400 sys = new AS400(mySystem.myCompany.com)
// Create the message queue object.
// This object will represent the
// queue for the current user.
MessageQueue queue = new MessageQueue(sys, MessageQueue.CURRENT);
// Get the 1ist of messages currently
// in this user's queue.
Enumeration e = queue.getMessages();
// Print each message in the queue.
while (e.hasMoreETements())
{
QueuedMessage msg = e.getNextElement();
System.out.printin(msg.getText());
1

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Network print

Print objects include spooled files, output queues, printers, printer files, writer jobs, and Advanced Function
Printing (AFP) resources, which include fonts, form definitions, overlays, page definitions, and page
segments. AFP resources are accessible only on Version 3 Release 7 (V3R7) and later AS/400 systems.
(Trying to open an AFPResourceList to a system that is running an earlier version than V3R7 generates a
RequestNotSupportedException exception.)

The AS/400 Toolbox for Java classes for print objects are organized on a base class, PrintObject, and on
a subclass for each of the six types of print objects. The base class contains the methods and attributes
common to all AS/400 print objects. The subclasses contain methods and attributes specific to each
subtype.

Use the network print classes for the following:
» Working with AS/400 print objects:

— PrintObjectList class - use for listing and working with AS/400 print objects. (Print objects
include spooled files, output queues, printers, Advanced Function Printing (AFP) resources,
printer files, and writer jobs)

— PrintObject base class - use for working with print objects
— Retrieving PrintObject attributes

Chapter 4. AS/400 Toolbox for Java access classes 57

— Creating new AS/400 spooled files using the SpooledFileOutputStream class (use for
EBCDIC-based printer data)

— Generating SNA Character Stream (SCS) printer data streams
— Reading spooled files and AFP resources using the PrintObjectinputStream

— Reading spooled files using PrintObjectPagelnputStream and
PrintObjectTransformedInputStream

— Viewing Advanced Function Printing (AFP) and SNA Character Stream (SCS)
spooled files

Examples

* The Create Spooled File Example shows how to create a spooled file on an AS/400 from an input
stream.

* The Create SCS Spooled File Example shows how to generate a SCS data stream using the
SCS3812Writer class, and how to write the stream to a spooled file on the AS/400.

* The Read Spooled File Example shows how to read an existing AS/400 spooled file.

» The first Asynchronous List Example shows how to asynchronously list all spooled files on a system and
how to use the PrintObjectListListener interface to get feedback as the list is being built.

* The second Asynchronous List Example shows how to asynchronously list all spooled files on a system
without using the PrintObjectListListener interface

* The Synchronous List Example shows how to synchronously list all spooled files on a system.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
Listing Print objects

You can use the PrintObjectList class and its subclasses to work with lists of print objects. Each subclass
has methods that allow filtering of the list based on what makes sense for that particular type of print
object. For example, SpooledFileList allows you to filter a list of spooled files based on the user who
created the spooled files, the output queue that the spooled files are on, the form type, or user data of the
spooled files. Only those spooled files that match the filter criteria are listed. If no filters are set, a default
for each of the filters are used.

To actually retrieve the list of print objects from the AS/400, the openSynchronously() or
openAsynchronously() methods are used. The openSynchronously() method does not return until all
objects in the list have been retrieved from the AS/400 system. The openAsynchronously() method returns
immediately, and the caller can do other things in the foreground while waiting for the list to build. The
asynchronously opened list also allows the caller to start displaying the objects to the user as the objects
come back. Because the user can see the objects as they come back, the response time may seem faster
to the user. In fact, the response time may actually take longer overall due to the extra processing being
done on each object in the list.

If the list is opened asynchronously, the caller may get feedback on the building of the list. Methods, such
as isCompleted() and size(), indicate whether the list has finished being built or return the current size of
the list. Other methods, waitForListToComplete() and waitForltem(), allow the caller to wait for the list to
complete or for a particular item. In addition to calling these PrintObjectList methods, the caller may
register with the list as a listener. In this situation, the caller is notified of events that happen to the list. To
register or unregister for the events, the caller uses PrintObjectListListener(), and then calls
addPrintObjectListListener() to register or removePrintObjectListListener() to unregister. The following table
shows the events that are delivered from a PrintObjectList.

Event When Delivered
listClosed When the list is closed.
listCompleted When the list completes.

58 AS/400 Toolbox for Java

Event When Delivered

listErrorOccurred If any exception is thrown while the list is being retrieved.
listOpened When the list is opened.
listObjectAdded When an object is added to the list.

After the list has been opened and the objects in the list processed, close the list using the close()
method. This frees up any resources allocated to the garbage collector during the open. After a list has
been closed, its filters can be modified, and the list can be opened again.

When print objects are listed, attributes about each print object listed are sent from the AS/400 and stored
with the print object. These attributes can be updated using the update() method in the PrintObject class.

Which attributes are sent back from the AS/400 depends on the type of print object being listed. A default

list of attributes for each type of print object that can be overridden by using the setAttributesToRetrieve()

method in PrintObjectList exists. See the Retrieving PrintObject attributes section for a list of the attributes
each type of print object supports.

Listing AFP Resources is allowed only on V3R7 and later release of AS/400. Opening an AFPResourcelList
to an system older than V3R7 generates a RequestNotSupportedException exception.

Examples
Asynchronous List Example 1
Asynchronous List Example 2

Synchronous List Example

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Working with Print objects

PrintObject is an abstract class. (An abstract class does not allow you to create an instance of the class.
Instead, you must create an instance of one of its subclasses.) Create objects of the subclasses in any of
the following ways:

» If you know the system and the identifying attributes of the object, construct the object explicitly by
calling its public constructor.

* You can use a PrintObjectList subclass to build a list of the objects and then get at the individual
objects through the list.

* An object may be created and returned to you as a result of a method or set methods being called. For
example, the static method start() in the WriterJob class returns a WriterJob object.

Use the base class, PrintObject, and its subclasses to work with AS/400 print objects:
e OutputQueue

* Printer

* PrinterFile

* SpooledFile

* WriterJob

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Chapter 4. AS/400 Toolbox for Java access classes 59

Retrieving PrintObject attributes

You can retrieve print object attributes by using the attribute ID and one of these methods from the base
PrintObject class:

» Use getintegerAttribute(int attributelD) to retrieve an integer type attribute.
» Use getFloatAttribute(int attributelD) to retrieve a floating point type attribute.
» Use getStringAttribute(int attributelD) to retrieve a string type attribute.

The attributelD parameter is an integer that identifies which attribute to retrieve. All of the IDs are defined
as public constants in the base PrintObject class. The PrintAttributes file contains an entry of each
attribute ID. The entry includes a description of the attribute and its type (integer, floating point, or string).
For a list of which attributes may be retrieved using these methods, select the following links:

* AFPResourceAttrs for AFP Resources
* OutputQueueAttrs for output queues

* PrinterAttrs for printers

* PrinterFileAttrs for printer files

» SpooledFileAttrs for spooled files

* WriterJobAttrs for writer jobs

To achieve acceptable performance, these attributes are copied to the client. These attributes are copied
either when the objects are listed, or the first time they are needed if the object was created implicitly. This
keeps the object from going to the host every time the application needs to retrieve an attribute. This also
makes it possible for the Java print object instance to contain out-of-date information about the object on
the AS/400. The user of the object can refresh all of the attributes by calling the update() method on the
object. In addition, if the application calls any methods on the object that would cause the object’s
attributes to change, the attributes are automatically updated. For example, if an output queue has a
status attribute of RELEASED (getStringAttribute(ATTR_OUTQSTS); returns a string of "RELEASED"),
and the hold() method is called on the output queue, getting the status attribute after that returns HELD.

setAttributes method

You can use the setAttributes method to change the attributes of spooled files and printer file objects.
Select the following links for a list or which attributes may be set:

» PrinterFileAttrs file for printer files
» SpooledFileAttrs for spooled files

The setAttributes method takes a PrintParameterList parameter, which is a class that is used to hold a
collection of attributes IDs and their values. The list starts out empty, and the caller can add attributes to
the list by using the various setParameter() methods on it.

PrintParameterList class

You can use the PrintParameterList class to pass a group of attributes to a method that takes any of a
number of attributes as parameters. For example, you can send a spooled file using TCP (LPR) by using
the SpooledFile method, sendTCP(). The PrintParameterList object contains the required parameters for
the send command, such as the remote system and queue, plus any optional parameters desired, such as
whether to delete the spooled file after it is sent. In these cases, the method documentation gives a list of
required and optional attributes. The PrintParameterList setParameter() method does not check which
attributes you are setting and the values that you set them to. The PrintParameterList setParameter()
method simply contains the values to pass along to the method. In general, extra attributes in the
PrintParameterList are ignored, and illegal values on the attributes that are used are diagnosed on the
AS/400.

60 AS/400 Toolbox for Java

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Creating new spooled files

You can use the SpooledFileOutputStream class to create new AS/400 spooled files. The class derives
from the standard JDK java.io.OutputStream class; after its construction, it can be used anywhere an
OutputStream is used.

When creating a new SpooledFileOutputStream, the caller may specify the following:

* Which printer file to use

* Which output queue to put the spooled file on

» A PrintParameterList object that may contain parameters to override fields in the printer file

These parameters are all optional (the caller may pass null of any or all of them). If a printer file is not
specified, the network print server uses the default network print printer file, QPNPSPRTF. The output
gqueue parameter is there as a convenience; it also can be specified in the PrintParameterList. If the output
queue parameter is specified in both places, the PrintParameterList field overrides the output queue
parameter. See the documentation of the SpooledFileOutputStream constructor for a complete list of which
attributes may be set in the PrintParameterList for creating new spooled files.

Use one of the write() methods to write data into the spooled file. The SpooledFileOutputStream object
buffers the data and sends it when either the output stream is closed or the buffer is full. Buffering is done
for two reasons:

» It allows the automatic data typing (see Data Stream Types In Spooled Files below) to analyze a
full-buffer of data to determine the data type

* It makes the output stream work faster because not every write request is communicated to the AS/400.
Use the flush() method to force the data to be written to the AS/400.

When the caller is finished writing data to the new spooled file, the close() method is called to close the
spooled file. Once the spooled file has been closed, no more data can be written to it. By calling the
getSpooledFile() method once the spooled file has been closed, the caller can get a reference to a
SpooledFile object that represents the spooled file.

Data stream types in spooled files

Use the Printer Data Type attribute of the spooled file to set the type of data to be put into the spooled file.
If the caller does not specify a printer data type, the default is to use automatic data typing. This method
looks at the first few thousand bytes of the spooled file data, determines if it fits either SNA Character
Stream (SCS) or Advanced Function Printing data stream (AFPDS) data stream architectures, and then
sets the attribute appropriately. If the bytes of spooled file data do not match either of these architectures,
the data is tagged as *USERASCII. Automatic data typing works most of the time. The caller generally
should use it unless the caller has a specific case in which automatic data typing does not work. In those
cases, the caller can set the Printer Data Type attribute to a specific value (for example, *SCS). If the
caller wants to use the printer data that is in the printer file, the caller must use the special value *PRTF. If
the caller overrides the default data type when creating a spooled file, caution must be used to ensure that
the data put into the spooled file matches the data type attribute. Putting non-SCS data into a spooled file
that is marked to receive SCS data triggers an error message from the host and the loss of the spooled
file.

Generally, this attribute can have three values:
* *SCS - an EBCDIC, text-based printer data stream.

Chapter 4. AS/400 Toolbox for Java access classes 61

* *AFPDS (Advanced Function Presentation Data Stream) - another data stream supported on the
AS/400. *AFPDS can contain text, image, and graphics, and can use external resources such as page
overlays and external images in page segments.

* *USERASCII - any non-SCS and non-AFPDS printer data that the AS/400 handles by just passing it
through. Postscript and HP-PCL data streams are examples data streams that would be in a
*USERASCII spooled file.

Examples
Create Spooled File Example

Create SCS Spooled File Example

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
Generating an SCS data stream

To generate spooled files that will print on certain printers attached to AS/400, an SNA Character Stream
(SCS) data stream may have to be created. (SCS is a text-based, EBCDIC data stream that can be
printed on SCS printers, IPDS printers, or to PC printers.) SCS can be printed by converting it using an
emulator or the host print transform on the AS/400.

You can use the SCS writer classes to generate such an SCS data stream. The SCS writer classes
convert Java unicode characters and formatting options into an SCS data stream. Five SCS writer classes
generate varying levels of SCS data streams. The caller should choose the writer that matches the final
printer destination to which the caller or end user will be printing.

Use the following SCS writer classes to generate an SCS printer data stream:

SCS5256Writer The simplest SCS writer class. Supports text, carriage
return, line feed, new line, form feed, absolute horizontal
and vertical positioning, relative horizontal and vertical
positioning, and set vertical format.

SCS5224Writer Extends the 5256 writer and adds methods to set
character per inch (CPI) and lines per inch (LPI).
SCS5219Writer Extends the 5224 writer and adds support for left margin,

underline, form type (paper or envelope), form size, print
quality, code page, character set, source drawer number,
and destination drawer number.

SCS5553Writer Extends the 5219 writer and adds support for adds
support for character rotation, grid lines, and font scaling.
The 5553 is a double-byte character set (DBCS) data
stream.

SCS3812Writer Extends the 5219 writer and adds support for bold,
duplex, text orientation, and fonts.

To construct an SCS writer, the caller needs an output stream and, optionally, an encoding. The data
stream is written to the output stream. To create an SCS spooled file, the caller first constructs a
SpooledFileOutputStream, and then uses that to construct an SCS writer object. The encoding parameter
gives a target EBCDIC coded character set identifier (CCSID) to convert the characters to.

Once the writer is constructed, use the write() methods to output text. Use the carriageReturn(), lineFeed(),
and newLine() methods to position the write cursor on the page. Use the endPage() method to end the
current page and start a new page.

When all of the data has been written, use the close() method to end the data stream and close the output
stream.

62 AS/400 Toolbox for Java

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Reading spooled files and AFP resources

You can use the PrintObjectinputStream class to read the raw contents of a spooled file or Advanced
Function Printing (AFP) resource from the AS/400. The class extends the standard JDK
java.io.InputStream class so that it can be used anywhere an InputStream is used.

Obtain a PrintObjectinputStream object by calling either the getinputStream() method on an instance of the
SpooledFile class or the getinputStream() method on an instance of the AFPResource class. Getting an
input stream for a spooled file is supported for Version 3 Release 2 (V3R2), V3R7, and later versions of
the OS/400 program. Getting input streams for AFP resources is supported for V3R7 and later.

Use one of the read() methods for reading from the input stream. These methods all return the number of
bytes actually read, or -1 if no bytes were read and the end of file was reached.

Use the available() method of PrintObjectinputStream to return the total number of bytes in the spooled file
or AFP resource. The PrintObjectinputStream class supports marking the input stream, so
PrintObjectinputStream always returns true from the markSupported() method. The caller can use the
mark() and reset() methods to move the current read position backward in the input stream. Use the skip()
method to move the read position forward in the input stream without reading the data.

Example

Read Spooled File Example

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Reading spooled files using PrintObjectPagelnputStream and
PrintObjectTransformedInputStream

You can use the PrintObjectPagelnputStream class to read the data out of an AS/400 AFP and SCS
spooled file one page at a time.

You can obtain a PrintObjectPagelnputStream object with the getPagelnputStream() method.

Use one of the read() methods for reading from the input stream. All these methods return the number of
bytes actually read, or -1 if no bytes were read and the end of page was reached.

Use the available() method of PrintObjectPagelnputStream to return the total number of bytes in the
current page. The PrintObjectPagelnputStream class supports marking the input stream, so
PrintObjectPagelnputStream always returns true from the markSupported() method. The caller can use the
mark() and reset() methods to move the current read position backward in the input stream so that
subsequent reads reread the same bytes. The caller can use the skip() method to move the read position
forward in the input stream without reading the data.

However, when transforming an entire spooled file data stream is desired, use the
PrintObjectTransformedInputStream class.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Chapter 4. AS/400 Toolbox for Java access classes 63

SpooledFileViewer class

The SpooledFileViewer class creates a window for viewing Advanced Function Printing (AFP) and
Systems Network Architecture character string (SCS) files that have been spooled for printing. The class
essentially adds a "print preview” function to your spooled files, common to most word processing
programs. See Figure 1 below.

The spooled file viewer is especially helpful when viewing the accuracy of the layout of the files is more
important than printing the files, or when viewing the data is more economical than printing, or when a
printer is not available.

Note: SS1 Option 8 (AFP Compatibility Fonts) must be installed on the host AS/400 system.
Using the SpooledFileViewer class

Three constructor methods are available to create an instance of the SpooledFileViewer class. The
SpooledFileViewer() constructor can be used to create a viewer without a spooled file associated with it. If
this constructor is used, a spooled file will need to be set later using setSpooledFile(SpooledFile). The
SpooledFileViewer(SpooledFile) constructor can be used to create a viewer for the given spooled file, with
page one as the initial view. Finally, the SpooledFileViewer(spooledFile, int) constructor can be used to
create a viewer for the given spooled file with the specified page as the initial view. No matter which
constructor is used, once a viewer is created, a call to load() must be performed in order to actually
retrieve the spooled file data.

Then, your program can traverse the individual pages of the spooled file by using the following methods:
* load FlashPage()

* load Page()

* pageBack()

* pageForward()

If, however, you need to examine particular sections of the document more closely, you can magnify or
reduce the image of a page of the document by altering the ratio proportions of each page with the
following:

« fitHeight()

» fitPage()

o fitWidth()

* actualSize()

Your program would conclude with calling the close() method that closes the input stream and releases
any resource associations with the stream.

Using the SpooledFileViewer

An instance of the SpooledFileViewer class is actually a graphical representation of a viewer capable of
displaying and navigating through an AFP or SCS spooled file. For example, the following code creates
the spooled file viewer in Figure 1 to display a spooled file previously created on the AS/400.

Note: Select each button on the image in Figure 1 below for an explanation of its function. If your browser is not
JavaScript enabled, use the button link for a description of each button on the image instead.

// Assume splf is the spooled file.

// Create the spooled file viewer

SpooledFileViewer splfv = new SpooledFileViewer(splf, 1);
splfv.load();

// Add the spooled file viewer to a frame

64 AS/400 Toolbox for Java

JFrame frame = new JFrame("My Window");
frame.getContentPane().add(sp1fv);
frame.pack();

frame.show();

or a description of each button on the image "A picture of the individual button on the toolbar”"> a
description of each button on the image "A picture of the individual button on the toolbar”> description of
each button on the image "A picture of the individual button on the toolbar”> description of each button on
the image "A picture of the individual button on the toolbar”> description of each button on the image "A
picture of the individual button on the toolbar”> description of each button on the image "A picture of the
individual button on the toolbar”> description of each button on the image "A picture of the individual
button on the toolbar”> description of each button on the image "A picture of the individual button on the
toolbar”> description of each button on the image "A picture of the individual button on the toolbar”>
description of each button on the image "A picture of the individual button on the toolbar”> escription of
each button on the image "A picture of the individual button on the toolbar”> escription of each button on
the image "A picture of the individual button on the toolbar”>

Figure 1: SpooledFileViewer..

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

SpooledFileViewer Toolbar Explanation

SpooledFileViewer:

The actual size button returns the spooled file page image to its original size by using the actualSize()
method.

The fit width button stretches the spooled file page image to the left and right edges of the viewer’s frame
by using the fitwidth() method.

The fit page button stretches the spooled file page image vertically and horizontally to fit within the spooled
file viewer’s frame by using the fitPage() method.

The zoom button allows you to increase or decrease the size of the spooled file page image by selecting
one of the preset percentages or entering your own percent in a text field that appears in a dialog box
after selecting the zoom button.

The go to page button allows you to go to a specific page within the spooled file when selected.

The first page button takes you to the first page of the spooled file when selected and indicates that you
are on the first page when deactivated.

The previous page button takes you to the page immediately before the page you are viewing when
selected.

The next page button advances you to the page immediately after the page you are viewing when
selected.

The last page button advances you to the last page of the spooled file when selected and indicates that
you are on the last page when deactivated.

The load flash page button loads the previously viewed page by using the loadFlashPage() method when
selected.

Chapter 4. AS/400 Toolbox for Java access classes 65

The set paper size button allows you to set the paper size when selected.

The set viewing fidelity button allows you to set the viewing fidelity when selected.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Permission classes

The permission classes allow you to get and set object authority information. Object authority information
is also known as permission. The Permission class represents a collection of many users’ authority to a
specific object. The UserPermission class represents a single user’s authority to a specific object.

Permission class

The Permission class allows you to retrieve and change object authority information. It includes a
collection of many users who are authorized to the object. The Permission object allows the Java program
to cache authority changes until the commit() method is called. Once the commit() method is called, all
changes made up to that point are sent to the AS/400. Some of the functions provided by the Permission
class include:

» addAuthorizedUser(): Adds an authorized user.

» commit(): Commits the permission changes to the AS/400.

» getAuthorizationList(): Returns the authorization list of the object.

» getAuthorizedUsers(): Returns an enumeration of authorized users.

» getOwner(): Returns the name of the object owner.

» getSensitivityLevel(): Returns the sensitivity level of the object.

* getType(): Returns the object authority type (QDLO, QSYS, or Root).

» getUserPermission(): Returns the permission of a specific user to the object.
» getUserPermissions(): Returns an enumeration of permissions of the users to the object.
» setAuthorizationList(): Sets the authorization list of the object.

* setSensitivityLevel(): Sets the sensitivity level of the object.

Example

This example shows you how to create a permission and add an authorized user to an object.

// Create AS400 object

AS400 as400 = new AS400();

// Create Permission passing in the AS/400 and object

Permission myPermission = new Permission(as400, "QSYS.LIB/myLib.LIB");
// Add a user to be authorized to the object
myPermission.addAuthorizedUser("Userl");

UserPermission class

The UserPermission class represents the authority of a single, specific user. UserPermission has three
subclasses that handle the authority based on the object type:

Class Description

DLOPermission Represents a user’s authority to Document Library Objects
(DLOs), which are stored in QDLS.

QSYSPermission Represents a users’s authority to objects stored in

QSYS.LIB and contained in the AS/400.

66 AS/400 Toolbox for Java

Class Description

RootPermission Represents a user’s authority to objects contained in the
root directory structure. RootPermissions objects are those
objects not contained in QSYS.LIB or QDLS.

The UserPermission class allows you to do the following:
» Determine if the user profile is a group profile

* Return the user profile name

* Indicate whether the user has authority

* Set the authority of authorization list management

Example

This example shows you how to retrieve the users and groups that have permission on an object and print
them out one at a time.

// Create a system object.
AS400 sys = new AS400("MYAS400", "USERID", "PASSWORD");
// Represent the permissions to an object on the system, such as a library.
Permission objectInQSYS = new Permission(sys, "/QSYS.LIB/FRED.LIB");
// Retrieve the various users/groups that have permissions set on that object.
Enumeration enum = objectInQSYS.getUserPermissions();
while (enum.hasMoreElements())
{
// Print out the user/group profile names one at a time.
UserPermission userPerm = (UserPermission)enum.nextElement();
System.out.printin(userPerm.getUserID());
1

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
DLOPermission

DLOPermission is a subclass of UserPermission. DLOPermission allows you to display and set the
permission a user has for a document library object (DLO).

One of the following authority values is assigned to each user.

Value Description

*ALL The user can perform all operations except those
operations that are controlled by authorization list
management.

*AUTL The authorization list is used to determine the authority for
the document.

*CHANGE The user can change and perform basic functions on the
object.

*EXCLUDE The user cannot access the object.

*USE The user has object operational authority, read authority,

and execute authority.

You must use one of the following methods to change or determine the user’s authority:
* Use getDataAuthority() to display the authority value of the user
» Use setDataAuthority() to set the authority value of the user

To send the changes to the AS/400, use commit from the Permission class.

Chapter 4. AS/400 Toolbox for Java access classes 67

Warning: Temporary Level 4 Header

Example: This example shows you how to retrieve and print the dlo permissions, including the user
profiles for each permission.

// Create a system object.
AS400 sys = new AS400("MYAS400", "USERID", "PASSWORD");
// Represent the permissions to a DLO object.
Permission objectInQDLS = new Permission(sys, "/QDLS/MyFolder");
// Print the object pathname and retrieve its permissions.
System.out.printIn("Permissions on "+objectInQDLS.getObjectPath()+" are as follows:");
Enumeration enum = objectInQDLS.getUserPermissions();
while (enum.hasMoreElements())
{
// For each of the permissions, print out the user profile name
// and that user's authorities to the object.
DLOPermission dloPerm = (DLOPermission)enum.nextElement();
System.out.printin(dloPerm.getUserID()+": "+dloPerm.getDataAuthority());
}

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

RootPermission

RootPermission is a subclass of UserPermission. The RootPermission class allows you to display and set
the permissions for the user of an object contained in the root directory structure.

An object on the root directory structure can set the data authority or the object authority. You can set the
data authority to the values listed below. Use the getDataAuthority() method to to display the current
values and the setDataAuthority() method to set the data authority.

Value Description

*none The user has no authority to the object.

*RWX The user has read, add, update, delete, and execute
authorities.

*RW The user has read, add, and delete authorities.

*RX The user has read and execute authorities.

*WX The user has add, update, delete, and execute authorities.

*R The user has read authority.

*W The user has add, update, and delete authorities.

*X The user has execute authority.

*EXCLUDE The user cannot access the object.

*AUTL The public authorities on this object come from the

authorization list.

The object authority can be set to one or more of the following values: alter, existence, management, or
reference. You can use the setAlter(), setExistence(), setManagement(), or setReference() methods to set
the values on or off.

After setting either the data authority or the object authority of an object, it is important that you use the
commit() method from the Permissions class to send the changes to the AS/400.

Warning: Temporary Level 4 Header

Example: This example shows you how to retrieve and print the permissions for a root object.

// Create a system object.

AS400 sys = new AS400("MYAS400", "USERID", "PASSWORD");

// Represent the permissions to an object in the root file system.

Permission objectInRoot = new Permission(sys, "/fred");

// Print the object pathname and retrieve its permissions.
System.out.printIn("Permissions on "+objectInRoot.getObjectPath()+" are as follows:");

68 AS/400 Toolbox for Java

Enumeration enum = objectInRoot.getUserPermissions();
while (enum.hasMoreElements())

{
// For each of the permissions, print out the user profile name
// and that user's authorities to the object.
RootPermission rootPerm = (RootPermission)enum.nextElement();
System.out.printin(rootPerm.getUserID()+": "+rootPerm.getDataAuthority());

}

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

QSYSPermission

QSYSPermission is a subclass of UserPermission. QSYSPermission allows you to display and set the
permission a user has for an object in the traditional AS/400 library structure stored in QSYS.LIB. An
object stored in QSYS.LIB can set its authorities by setting a single object authority value or by setting
individual object and data authorities.

Use the getObjectAuthority() method to display the current object authority or the setObjectAuthority()
method to set the current object authority using a single value. The following table lists the valid values:

Value Description

*ALL The user can perform all operations except those
operations that are controlled by authorization list
management.

*AUTL The authorization list is used to determine the authority for
the document.

*CHANGE The user can change and perform basic functions on the
object.

*EXCLUDE The user cannot access the object.

*USE The user has object operational authority, read authority,

and execute authority.

Use the appropriate set method to set the detailed object authority values on or off:
» setAlter()

* setExistence()

* setManagement()

* setOperational()

* setReference()

Use the appropriate set method to set the detailed data authority values on or off:
* setAdd()

» setDelete()

» setExecute()

* setRead()

» setUpdate()

The single authority actually represents a combination of the detailed object authorities and the data
authorities. Selecting a single authority automatically turns on the appropriate detailed authorities.
Likewise, selecting various detailed authorities changes the appropriate single authority values. The
following table illustrates the relationships:

Detailed Object Authority Detailed Data Authority
Basic Opr Mgt Exist Alter Ref Read Add Upd DIt Exe
Authority

Chapter 4. AS/400 Toolbox for Java access classes 69

Detailed Object Authority Detailed Data Authority

All Y Y Y Y Y Y Y Y Y Y
Change Y n n n n Y Y Y Y Y
Exclude n n n n n n n n n n
Use Y n n n n Y n n n Y
Autl Only valid with a specified authorization list and user (*PUBLIC). Detailed Object and Data authorities are

determined by the list."Y" refers to those authorities that can be assigned.
"n" refers to those authorities that cannot be assigned.

If a combination of detailed object authority and data authority does not map to a single authority value,
then the single value becomes "User Defined.” For more information on object authorities, refer to the
AS/400 CL commands Grant Object Authority (GRTOBJAUT) and Edit Object Authority (EDTOBJAUT).

Warning: Temporary Level 4 Header

Example: This example shows you how to retrieve and print the permissions for a QSYS object.

// Create a system object.
AS400 sys = new AS400("MYAS400", "USERID", "PASSWORD");
// Represent the permissions to a QSYS object.
Permission objectInQSYS = new Permission(sys, "/QSYS.LIB/FRED.LIB");
// Print the object pathname and retrieve its permissions.
System.out.printIn("Permissions on "+objectInQSYS.getObjectPath()+" are as follows:");
Enumeration enum = objectInQSYS.getUserPermissions();
while (enum.hasMoreElements())
{
// For each of the permissions, print out the user profile name
// and that user's authorities to the object.
QSYSPermission gsysPerm = (QSYSPermission)enum.nextElement();
System.out.printin(gsysPerm.getUserID()+": "+gsysPerm.getObjectAuthority());

}
[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Program call

The ProgramcCall class allows the Java program to call an AS/400 program. You can use the
ProgramParameter class to specify input, output, and input/output parameters. If the program runs, the
output and input/output parameters contain the data that is returned by the AS/400 program. If the AS/400
program fails to run successfully, the Java program can retrieve any resulting AS/400 messages as a list
of AS400Message objects.

Required parameters are as follows:
* The program and parameters to run
* The AS400 object that represents the AS/400 system that has the program.

The program name and parameter list can be set on the constructor, through the setProgram() method, or
on the run() method The run() method calls the program.

The ProgramCall object class causes the AS400 object to connect to the AS/400.

The following example shows how to use the ProgramCall class:

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create a program object. I choose
// to set the program to run later.
ProgramCall pgm = new ProgramCall(sys);
// Set the name of the program.
// Because the program does not take

70 AS/400 Toolbox for Java

// any parameters, pass null for the

// ProgramParameter[] argument.
pgm.setProgram(QSYSObjectPathName.toPath("MYLIB",
"MYPROG",
"PGM"),null;
// Run the program. My program has

// no parms. If it fails to run, the failure

// is returned as a set of messages

// in the message list.
if (pgm.run() !'= true)
{

// 1f you get here, the program

// failed to run. Get the list of

// messages to determine why the

// program didn't run.
AS400Message[] messagelist = pgm.getMessagelist();

// ... Process the message list.

// Disconnect since I am done
// running programs
sys.disconnectService(AS400.COMMAND) ;

The ProgramCall object requires the integrated file system path name of the program.

Using the ProgramCall class causes the AS400 object to connect to the AS/400. See managing

connections for information about managing connections.

Using ProgramParameter objects

You can use the ProgramParameter objects to pass parameter data between the Java program and the

AS/400 program. Set the input data with the setinputData() method. After the program is run, retrieve the

output data with the getOutputData() method. Each parameter is a byte array. The Java program must

convert the byte array between Java and AS/400 formats. The data conversion classes provide methods
for converting data. Parameters are added to the ProgramCall object as a list.

The following example shows how to use the ProgramParameter object to pass parameter data.

// Create an AS400 object

AS400 sys = new AS400("mySystem.myCompany.com");
// My program has two parameters.
// Create a list to hold these
// parameters.

ProgramParameter[] parmList = new ProgramParameter[2];

// First parameter is an input
// parameter
{1, 2, 3};
new ProgramParameter(key);
// Second parameter is an output
// parameter. A four-byte number
// is returned.
parmList[1] = new ProgramParameter(4);
// Create a program object
// specifying the name of the
// program and the parameter Tist.
pgm = new ProgramCall(sys,

byte[] name
parmList[0]

ProgramCall

"/QSYS.LIB/MYLIB.LIB/MYPROG.PGM",

parmList);
// Run the program.
if (pgm.run() != true)
{

// If the AS/400 cannot run the

// program, look at the message list

// to find out why it didn't run.
AS400Message[] messagelist = pgm.getMessagelist();

Chapter 4. AS/400 Toolbox for Java access classes

71

else

// Else the program ran. Process the
// second parameter, which contains
// the returned data.
// Create a converter for this
// AS/400 data type
AS400Bin4 bin4Converter = new AS400Bin4();
// Convert from AS/400 type to Java
// object. The number starts at the
// beginning of the buffer.
byte[] data = parmList[1].getOutputData();
int i = bin4Converter.tolnt(data);
}
// Disconnect since I am done
// running programs
sys.disconnectService (AS400.COMMAND) ;

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

QSYSObjectPathName class

You can use the QSYSObjectPathName class to represent an object in the integrated file system. Use this
class to build an integrated file system name or to parse an integrated file system name into its
components.

Several of the AS/400 Toolbox for Java classes require an integrated file system path name in order to be
used. Use a QSYSObjectPathName object to build the name.

The following examples show how to use the QSYSObjectPathName class:

Example 1: The ProgramCall object requires the integrated file system name of the AS/400 program to
call. A QSYSObjectPathName object is used to build the name. To call program PRINT_IT in library
REPORTS using a QSYSObjectPathName:

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create a program call object.
ProgramCall pgm = new ProgramCall(sys);
// Create a path name object that
// represents program PRINT_IT in
// library REPORTS.
QSYSObjectPathName pgmName = new QSYSObjectPathName("REPORTS",
"PRINT_IT",
n PGM") ;
// Use the path name object to set
// the name on the program call
// object.
pgm.setProgram(pgmName.getPath());
// ... run the program, process the
// results

Example 2: If the name of the AS/400 object is used just once, the Java program can use the toPath()
method to build the name. This method is more efficient than creating a QSYSObjectPathName object.

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create a program call object.
ProgramCall pgm = new ProgramCall(sys);
// Use the toPath method to create
// the name that represents program
// PRINT_IT in library REPORTS.
pgm.setProgram(QSYSObjectPathName.toPath ("REPORTS",

72 AS/400 Toolbox for Java

"PRINT_IT",
"PGM“)) ;
// ... run the program, process the
// results

Example 3: In this example, a Java program was given an integrated file system path. The
QSYSObjectPathName class can be used to parse this name into its components:

// Create a path name object from

// the fully qualified integrated

// file system name.
QSYSObjectPathName ifsName = new QSYSObjectPathName(pathName);
// Use the path name object to get
// the library, name and type of
// AS/400 object.
ifsName.getLibraryName();
ifsName.getObjectName();
ifsName.getObjectType();

String Tibrary
String name
String type

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Record-level access

Record-level access supports both Java programs and Java applets when the programs and applets are

running on an AS/400 system that is at Version 4 Release 2 (V4R2) or later.

The record-level access classes provide the ability to do the following:
» Create an AS/400 physical file specifying one of the following:
— The record length
— An existing data description specifications (DDS) source file
— A RecordFormat object

» Retrieve the record format from an AS/400 physical or logical file, or the record formats from an

AS/400 multiple format logical file.

Note: The record format of the file is not retrieved in its entirety. The record formats retrieved are
meant to be used when setting the record format for an AS400File object. Only enough information

is retrieved to describe the contents of a record of the file. Record format information, such as

column headings and aliases, is not retrieved.
* Access the records in an AS/400 file sequentially, by record number, or by key.
» Write records to an AS/400 file.
* Update records in an AS/400 file sequentially, by record number, or by key.
* Delete records in an AS/400 file sequentially, by record number, or by key.
* Lock an AS/400 file for different types of access.
» Use commitment control to allow a Java program to do the following:

— Start commitment control for the connection.

— Specify different commitment control lock levels for different files.

— Commit and rollback transactions.
* Delete AS/400 files.
* Delete a member from an AS/400 file.

Note: The record-level access classes do not support logical join files or null key fields.

The following classes perform these functions:

Chapter 4. AS/400 Toolbox for Java access classes

73

* The AS400File class is the abstract base class for the record-level access classes. It
provides the methods for sequential record access, creation and deletion of files and
members, and commitment control activities.

* The KeyedFile class represents an AS/400 file whose access is by key.
* The SequentialFile class represents an AS/400 file whose access is by record number.

* The AS400FileRecordDescription class provides the methods for retrieving the record format
of an AS/400 file.

The record-level access classes require an AS400 object that represents the AS/400 system
that has the database files. Using the record-level access classes causes the AS400 object to
connect to the AS/400. See managing connections for information about managing connections.

The record-level access classes require the integrated file system path name of the data base
file. See integrated file system path names for more information.

The record-level access classes use the following:
* The RecordFormat class to describe a record of the database file
* The Record class to provide access to the records of the database file

These classes are described in the data conversion section.

Examples

* The sequential access example shows how to access an AS/400 file sequentially.

* The read file example shows how to use the record-level access classes to read an AS/400 file.

* The keyed file example shows to to use the record-level access classes to read records by key from an
AS/400 file.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

AS400File

The AS400File class provides the methods for the following:
* Creating and deleting AS/400 physical files and members
* Reading and writing records in AS/400 files

» Locking files for different types of access

» Using record blocking to improve performance

» Setting the cursor position within an open AS/400 file

* Managing commitment control activities

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
Creating and deleting files and members

AS/400 physical files are created by specifying a record length, an existing AS/400 data description
specifications (DDS) source file, or a RecordFormat object.

When you create a file and specify a record length, a data file or a source file can be created. The method
sets the record format for the object. Do not call the setRecordFormat() method for the object.

A data file has one field. The field name is the name of the file, the field type is of type character, and the
field length is the length that is specified on the create method.

A source file has three fields:

74 AS/400 Toolbox for Java

* Field SRCSEQ is ZONED DECIMAL (6,2)
* Field SRCDAT is ZONED DECIMAL (6,0)
 SRCDTA is a character field with a length that is the length specified on the create method minus 12

The following examples show how to create files and members.

Example 1: To create a data file with a 128-byte record:

// Create an AS400 object, the file
// will be created on this AS/400.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create a file object that represents the file
SequentialFile newFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");
// Create the file
newFile.create(128, "«DATA", "Data file with a 128 byte record");
// Open the file for writing only.
// Note: The record format for the file
// has already been set by create()
newFi1e.open(AS400F11e.WRITE_ONLY, 0, AS400F1'1e.COMMIT_LOCK_LEVEL_NONE);
// Write a record to the file. Because the record
// format was set on the create(), getRecordFormat()
// can be called to get a record properly formatted
// for this file.
Record writeRec = newFile.getRecordFormat().getNewRecord();
writeRec.setField(0, "Record one");
newFile.write(writeRec);

// Close the file since I am done using it
newFile.close();

// Disconnect since I am done using

// record-Tevel access
sys.disconnectService(AS400.RECORDACCESS) ;

Example 2: When creating a file specifying an existing DDS source file, the DDS source file is specified
on the create() method. The record format for the file must be set using the setRecordFormat() method
before the file can be opened. For example:

// Create an AS400 object, the

// file will be created on this AS/400.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create QSYSObjectPathName objects for

// both the new file and the DDS file.
QSYSObjectPathName file = new QSYSObjectPathName("MYLIB", "MYFILE", "FILE", "MBR");
QSYSObjectPathName ddsFile = new QSYSObjectPathName("MYLIB", "DDSFILE", "FILE", "MBR");

// Create a file object that represents the file
SequentialFile newFile = new SequentialFile(sys, file);

// Create the file
newFile.create(ddsFile, "File created using DDSFile description");

// Set the record format for the file

// by retrieving it from the AS/400.
newFile.setRecordFormat (new AS400FileRecordDescription(sys,
newFile.getPath()).retrieveRecordFormat()[0]);

// Open the file for writing
newFile.open(AS400File.WRITE_ONLY, O, AS400File.COMMIT_LOCK_LEVEL_NONE);

// Write a record to the file. The getRecordFormat()

// method followed by the getNewRecord() method is used to get

// a default record for the file.

Record writeRec = newFile.getRecordFormat().getNewRecord();
newFile.write(writeRec);

// Close the file since I am done using it
newFile.close();

// Disconnect since I am done using

// record-level access
sys.disconnectService(AS400.RECORDACCESS) ;

Chapter 4. AS/400 Toolbox for Java access classes

Example 3: When creating a file specifying a RecordFormat object, the RecordFormat object is specified
on the create() method. The method sets the record format for the object. The setRecordFormat() method
should not be called for the object.

// Create an AS400 object, the file will be created
// on this AS/400.

AS400 sys = new AS400("mySystem.myCompany.com");
// Create a file object that represents the file

SequentialFile newFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");

// Retrieve the record format from an existing file
RecordFormat recordFormat = new AS400FileRecordDescription(sys,
"/QSYS.LIB/MYLIB.LIB/EXISTING.FILE/MBR1.MBR").retrieveRecordFormat()[0];
// Create the file
newFile.create(recordFormat, "File created using record format object");
// Open the file for writing only.
// Note: The record format for the file
// has already been set by create()
newFile.open(AS400Fil e.WRITE_ONLY, 0, AS400Fil e.COMMIT_LOCK_LEVEL_NONE) 5
// Write a record to the file. The recordFormat
// object is used to get a default record
// properly formatted for the file.
Record writeRec = recordFormat.getNewRecord();
newFile.write(writeRec);

// Close the file since I am done using it
newFile.close();

// Disconnect since I am done using

// record-Tevel access
sys.disconnectService(AS400.RECORDACCESS) ;

When deleting files and members, use these methods:
» Use the delete() method to delete AS/400 files and all of their members.

Use the deleteMember() method to delete just one member of a file.

Use the addPhysicalFileMember() method to add members to a file.

[Information Center Home Page | Feedback]

Commitment control

[Legal | AS/400 Glossary]

Through commitment control, your Java program has another level of control over changing a file. With
commitment control turned on, transactions to a file are pending until they are either committed or rolled
back. If committed, all changes are put to the file. If rolled back, all changes are discarded. The
transaction can be changing an existing record, adding a record, deleting a record, or even reading a

record depending on the commitment control lock level specified on the open().

The levels of commitment control are as follows:
* All - Every record accessed in the file is locked until the transaction is committed or rolled back.
* Change - Updated, added, and deleted records in the file are locked until the transaction is

76

committed or rolled back.

» Cursor Stability - Updated, added, and deleted records in the file are locked until the transaction
is committed or rolled back. Records that are accessed but not changed are locked only until

another record is accessed.

* None - There is no commitment control on the file. Changes are immediately put to the file and

cannot be rolled back.

You can use the startCommitmentControl() method to start commitment control. Commitment control
applies to the AS400 connection. Once commitment control is started for a connection, it applies to
all files opened under that connection from the time that commitment control was started. Files
opened before commitment control is started are not under commitment control. The level of

AS/400 Toolbox for Java

commitment control for individual files is specified on the open() method. You should specify
COMMIT_LOCK_LEVEL_DEFAULT to use the same level of commitment control as was specified on
the startCommitmentControl() method.

For example:

// Create an AS400 object, the files exist on this
// AS/400.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create three file objects
SequentialFile myFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");
SequentialFile yourFile = new SequentialFile(sys, "/QSYS.LIB/YOURLIB.LIB/YOURFILE.FILE/%FILE%.MBR");
SequentialFile ourFile = new SequentialFile(sys, "/QSYS.LIB/OURLIB.LIB/OURFILE.FILE/%FILE%.MBR");
// Open yourFile before starting commitment control
// No commitment control applies to this file. The
// commit lock Tevel parameter is ignored because
// commitment control is not started for the connection.
yourFile.setRecordFormat (new YOURFILEFormat());
yourFile.open(AS400File.READ_WRITE, 0, AS400File.COMMIT_LOCK LEVEL_DEFAULT);
// Start commitment control for the connection.
// Note: Any of the three files could be used for
// this call to startCommitmentControl().
myFile.startCommitmentControl (AS400File.COMMIT LOCK LEVEL CHANGE);
// Open myFile and ourFile
myFile.setRecordFormat (new MYFILEFormat());
// Use the same commit Tock level as specified
// when commitment control was started
myFile.open(AS400File.WRITE_ONLY, 0, COMMIT LOCK LEVEL DEFAULT);
ourFile.setRecordFormat (new OURFILEFormat());
// Specify a different commit lock level than
// when commitment control was started
ourFile.open(AS400File.READ_WRITE, O, COMMIT LOCK_LEVEL CURSOR_STABILITY);
// write and update records in all three files

// Commit the changes for files myFile and ourFile.
// Note that the commit commits all changes for the connection
// even though it is invoked on only one AS400File object.
myFile.commit();
// Close the files
myFile.close();
yourFile.close();
ourFile.close();
// End commitment control
// This ends commitment control for the connection.
ourFile.endCommitmentControl();
// Disconnect since I am done using record-level access
sys.disconnectService(AS400.RECORDACCESS) ;

The commit() method commits all transactions since the last commit boundary for the connection.
The rollback() method discards all transactions since the last commit boundary for the connection.
Commitment control for a connection is ended through the endCommitmentControl() method. If a file
is closed prior to invoking the commit() or rollback() method, all uncommitted transactions are rolled
back. All files opened under commitment control should be closed before the
endCommitmentControl() method is called.

The following examples shows how to start commitment control, commit or roll back functions, and
then end commitment control:

// ... assume the AS400 object and file have been

// instantiated.

// Start commitment control for *CHANGE
aFile.startCommitmentControl (AS400File.COMMIT_LOCK_LEVEL_CHANGE) ;

// ... open the file and do several changes. For

// example, update, add or delete records.

// Based on a flag either save or discard the

Chapter 4. AS/400 Toolbox for Java access classes 77

// transactions.
if (saveChanges)
aFile.commit();
else
aFile.rollback();
// Close the file
aFile.close();
// End commitment control for the connection.
aFile.endCommitmentControl();

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
Reading and writing records

You can use the AS400File class to read, write, update, and delete records in AS/400 files. The record is
accessed through the Record class, which is described by a RecordFormat class. The record format must
be set through the setRecordFormat() method before the file is opened, unless the file was just created
(without an intervening close()) by one of the create() methods, which sets the record format for the object.

Use the read() methods to read a record from the file. Methods are provided to do the following:
* read() - read the record at the current cursor position

» readFirst() - read the first record of the file

* readLast() - read the last record of the file

» readNext() - read the next record in the file

* readPrevious() - read the previous record in the file

The following example shows how to use the readNext() method:

// Create an AS400 object, the file exists on this
// AS/400.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create a file object that represents the file
SequentialFile myFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");
// Assume that the AS400FileRecordDescription class
// was used to generate the code for a subclass of
// RecordFormat that represents the record format
// of file MYFILE in library MYLIB. The code was
// compiled and is available for use by the Java
// program.
RecordFormat recordFormat = new MYFILEFormat();
// Set the record format for myFile. This must
// be done prior to invoking open()
myFile.setRecordFormat (recordFormat);
// Open the file.
myFile.open(AS400File.READ ONLY, ©, AS400File.COMMIT LOCK_LEVEL NONE);
// Read each record in the file writing field
// CUSTNAME to System.out
System.out.printin(" CUSTOMER LIST");
System.out.printin(" ")
Record record = myFile.readNext();
while(record != null)
{
System.out.printin(record.getField("CUSTNAME"));
record = myFile.readNext();

}

// Close the file since I am done using it
myFile.close();

// Disconnect since I am done using

// record-level access.
sys.disconnectService(AS400.RECORDACCESS) ;

Use the update() method to update the record at the cursor position.

78 AS/400 Toolbox for Java

For example:

// Create an AS400 object, the file exists on this
// AS/400.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create a file object that represents the file
SequentialFile myFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");
// Assume that the AS400FileRecordDescription class
// was used to generate the code for a subclass of
// RecordFormat that represents the record format
// of file MYFILE in Tibrary MYLIB. The code was
// compiled and is available for use by the Java program.
RecordFormat recordFormat = new MYFILEFormat();
// Set the record format for myFile. This must
// be done prior to invoking open()
myFile.setRecordFormat (recordFormat) ;
// Open the file for updating
myFile.open(AS400File.READ WRITE, 0, AS400File.COMMIT LOCK LEVEL NONE);
// Update the first record in the file. Assume
// that newName is a String with the new name for
// CUSTNAME
Record updateRec = myFile.readFirst();
updateRec.setField("CUSTNAME", newName);
myFile.update(updateRec);

// Close the file since I am done using it
myFile.close();

// Disconnect since I am done using record-level access
sys.disconnectService(AS400.RECORDACCESS);

Use the write() method to append records to the end of a file. A single record or an array of records can
be appended to the file.

Use the deleteCurrentRecord() method to delete the record at the cursor position.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
Locking files

The Java program can lock a file to prevent other users from accessing the file while the first Java

program is using the file. Lock types are as follows:

* Read/Exclusive Lock - The current Java program reads records, and no other program can access the

file.

Read/Allow shared read Lock - The current Java program reads records, and other programs can read

records from the file.

* Read/Allow shared write Lock - The current Java program reads records, and other programs can
change the file.

* Write/Exclusive Lock - The current Java program changes the file, and no other program can access
the file.

» Write/Allow shared read Lock - The current Java program changes the file, and other programs can

read records from the file.

Write/Allow shared write Lock - The current Java program changes the file, and other programs can

change the file.

To give up the locks obtained through the lock() method, the Java program should invoke the
releaseExplicitLocks() method.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Chapter 4. AS/400 Toolbox for Java access classes 79

Using record blocking

The AS400File class uses record blocking to improve performance:

« If the file is opened for read-only access, a block of records is read when the Java program reads
a record. Blocking improves performance because subsequent read requests may be be handled
without accessing the server. Little performance difference exists between reading a single record
and reading several records. Performance improves significantly if records can be served out of
the block of records cached on the client.

The number of records to read in each block can be set when the file is opened. For example:

// Create an AS400 object, the file exists on this
// AS/400.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create a file object that represents the file
SequentialFile myFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");
// Assume that the AS400FileRecordDescription class
// was used to generate the code for a subclass of
// RecordFormat that represents the record format
// of file MYFILE in Tlibrary MYLIB. The code was
// compiled and is available for use by the Java
// program.
RecordFormat recordFormat = new MYFILEFormat();
// Set the record format for myFile. This must
// be done prior to invoking open()
myFile.setRecordFormat (recordFormat);
// Open the file. Specify a blocking factor of 50.
int blockingFactor = 50;
myFile.open(AS400File.READ ONLY, blockingFactor, AS400File.COMMIT LOCK LEVEL NONE);
// Read the first record of the file. Because
// a blocking factor was specified, 50 records
// are retrieved during this read() invocation.
Record record = myFile.readFirst();
for (int i = 1; 1 < 50 && record != null; i++)
{
// The records read in this loop will be served out of the block of
// records cached on the client.
record = myFile.readNext();

}

// Close the file since I am done using it
myFile.close();

// Disconnect since I am done using

// record-level access
sys.disconnectService(AS400.RECORDACCESS) ;

 If the file is opened for write-only access, the blocking factor indicates how many records are
written to the file at one time when the write(Record[]) method is invoked.

For example:

// Create an AS400 object, the file exists on this
// AS/400.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create a file object that represents the file
SequentialFile myFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");
// Assume that the AS400FileRecordDescription class
// was used to generate the code for a subclass of
// RecordFormat that represents the record format
// of file MYFILE in library MYLIB. The code was
// compiled and is available for use by the Java
// program.
RecordFormat recordFormat = new MYFILEFormat();
// Set the record format for myFile. This must
// be done prior to invoking open()
myFile.setRecordFormat (recordFormat);
// Open the file. Specify a blocking factor of 50.
int blockingFactor = 50;

80 AS/400 Toolbox for Java

myFile.open(AS400File.WRITE_ONLY, blockingFactor, AS400File.COMMIT LOCK_LEVEL_NONE);
// Create an array of records to write to the file
Record[] records = new Record[100];
for (int i = 0; i < 100; i++)
{
// Assume the file has two fields,
// CUSTNAME and CUSTNUM
records[i] = recordFormat.getNewRecord();
records[i].setField("CUSTNAME", "Customer " + String.valueOf(i));
records[i].setField("CUSTNUM", new Integer(i));
1
// Write the records to the file. Because the
// blocking factor is 50, only two trips to the
// AS/400 are made with each trip writing 50 records
myFile.write(records);

// Close the file since I am done using it
myFile.close();

// Disconnect since I am done using

// record-level access
sys.disconnectService (AS400.RECORDACCESS) ;

 If the file is opened for read-write access, no blocking is done. Any blocking factor
specified on open() is ignored.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Setting the cursor position

An open file has a cursor. The cursor points to the record to be read, updated, or deleted. When a file is
first opened the cursor points to the beginning of the file. The beginning of the file is before the first record.
Use the following methods to set the cursor position:

» positionCursorAfterLast() - Set cursor to after the last record. This method exists so Java programs can
use the readPrevious() method to access records in the file.

» positionCursorBeforeFirst() - Set cursor to before the first record. This method exists so Java programs
can use the readNext() method to access records in the file.

* positionCursorToFirst() - Set the cursor to the first record.

» positionCursorToLast() - Set the cursor to the last record.

» positionCursorToNext() - Move the cursor to the next record.

* positionCursorToPrevious() - Move the cursor to the previous record.

The following example shows how to use the positionCursorToFirst() method to position the cursor.

// Create an AS400 object, the file exists on this
// AS/400.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create a file object that represents the file
SequentialFile myFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");
// Assume that the AS400FileRecordDescription class
// was used to generate the code for a subclass of
// RecordFormat that represents the record format
// of file MYFILE in Tibrary MYLIB. The code was
// compiled and is available for use by the Java
// program.
RecordFormat recordFormat = new MYFILEFormat();
// Set the record format for myFile. This must
// be done prior to invoking open()
myFile.setRecordFormat (recordFormat) ;
// Open the file.
myFile.open(AS400File.READ WRITE, 1, AS400File.COMMIT_LOCK LEVEL NONE);
// 1 want to delete the first record of the file.
myFile.positionCursorToFirst();
myFile.deleteCurrentRecord();

Chapter 4. AS/400 Toolbox for Java access classes 81

// Close the file since I am done using it
myFile.close();

// Disconnect since I am done using

// record-Tevel access
sys.disconnectService(AS400.RECORDACCESS) ;

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

KeyedFile

The KeyedFile class gives a Java program keyed access to an AS/400 file. Keyed access means that the
Java program can access the records of a file by specifying a key. Methods exist to position the cursor,
read, update, and delete records by key.

To position the cursor, use the following methods:

» positionCursor(Object[]) - set cursor to the first record with the specified key.

* positionCursorAfter(Object[]) - set cursor to the record after the first record with the specified key.

» positionCursorBefore(Object[]) - set cursor to the record before the first record with the specified key.

To delete a record, use the following method :
» deleteRecord(Object[]) - delete the first record with the specified key.

The read methods are:

* read(Object[]) - read the first record with the specified key.

» readAfter(Obiject[]) - read the record after the first record with the specified key.

* readBefore(Object[]) - read the record before the first record with the specified key.

» readNextEqual() - read the next record whose key matches the specified key. Searching starts from the
record after the current cursor position.

* readPreviousEqual() - read the previous record whose key matches the specified key. Searching starts
from the record before the current cursor position.

To update a record, use the following method:
» update(Object[]) - update the record with the specified key.

Methods are also provided for specifying a search criteria when positioning, reading, and updating by key.
Valid search criteria values are as follows:

* Equal - find the first record whose key matches the specified key.
* Less than - find the last record whose key comes before the specified key in the key order of the file.

» Less than or equal - find the first record whose key matches the specified key. If no record matches the
specified key, find the last record whose key comes before the specified key in the key order of the file.

» Greater than - find the first record whose key comes after the specified key in the key order of the file.
» Greater than or equal - find the first record whose key matches the specified key. If no record matches

the specified key, find the first record whose key comes after the specified key in the key order of the
file.
KeyedFile is a subclass of AS400File; all methods in AS400File are available to KeyedFile.
Specifying the key

The key for a KeyedFile object is represented by an array of Java Objects whose types and order
correspond to the types and order of the key fields as specified by the RecordFormat object for the file.

82 AS/400 Toolbox for Java

The following example shows how to specify the key for the KeyedFile object.

// Specify the key for a file whose key fields, in order,
// are:
// CUSTNAME CHAR(10)
// CUSTNUM BINARY (9)
// CUSTADDR CHAR(100)VARLEN()
// Note that the last field is a variable-length field.
Object[] theKey = new Object[3];
theKey[0] = "John Doe";
theKey[1] = new Integer(445123);
theKey[2] 2227 John Doe Lane, ANYTOWN, NY 11199";

A KeyedFile object accepts partial keys as well as complete keys. However, the key field values that are

specified must be in order.

For example:

// Specify a partial key for a file whose key fields,
// in order, are:
// CUSTNAME CHAR(10)
// CUSTNUM BINARY (9)
// CUSTADDR CHAR(100)VARLEN()
Object[] partialKey = new Object[2];
partialKey[0] = "John Doe";
partialKey[1] = new Integer(445123);
// Example of an INVALID partial key
Object[] INVALIDPartialKey = new Object[2];
INVALIDPartialKey[0] = new Integer(445123);
INVALIDPartialKey[1] = "2227 John Doe Lane, ANYTOWN, NY 11199";

Null keys and null key fields are not supported.

The key field values for a record can be obtained from the Record object for a file through the
getKeyFields() method.

The following example shows how to read from a file by key:

// Create an AS400 object, the file exists on this
// AS/400.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create a file object that represents the file
KeyedFile myFile = new KeyedFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");
// Assume that the AS400FileRecordDescription class
// was used to generate the code for a subclass of
// RecordFormat that represents the record format
// of file MYFILE in Tibrary MYLIB. The code was
// compiled and is available for use by the Java program.
RecordFormat recordFormat = new MYKEYEDFILEFormat();
// Set the record format for myFile. This must
// be done prior to invoking open()
myFile.setRecordFormat (recordFormat);
// Open the file.
myFile.open(AS400File.READ_WRITE, 0, AS400File.COMMIT LOCK_LEVEL_NONE);
// The record format for the file contains
// four key fields, CUSTNUM, CUSTNAME, PARTNUM
// and ORDNUM in that order.
// The partialKey will contain 2 key field
// values. Because the key field values must be
// in order, the partialKey will consist of values for
// CUSTNUM and CUSTNAME.
Object[] partialKey = new Object[2];
partialKey[0] = new Integer(1l);
partialKey[1] = "John Doe";
// Read the first record matching partialKey
Record keyedRecord = myFile.read(partialKey);

Chapter 4. AS/400 Toolbox for Java access classes

83

// 1f the record was not found, null is returned.

if (keyedRecord != null)

{ // Found the record for John Doe, print out the info.
System.out.printIn("Information for customer " + (String)partialKey[1] + ":");
System.out.printIn(keyedRecord);

}

// Close the file since I am done using it
myFile.close();

// Disconnect since I am done using record-level access
sys.disconnectService (AS400.RECORDACCESS) ;

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

SequentialFile

The SequentialFile class gives a Java program access to an AS/400 file by record number. Methods exist
to position the cursor, read, update, and delete records by record number.

To position the cursor, use the following methods:

» positionCursor(int) - set cursor to the record with the specified record number.

» positionCursorAfter(int) - set cursor to the record after the specified record number.

» positionCursorBefore(int) - set cursor to the record before the specified record number.

To delete a record, use the following method:
» deleteRecord(int) - delete the record with the specified record number.

To read a record, use the following methods:

* read(int) - read the record with the specified record number.

* readAfter(int) - read the record after the specified record number.

* readBefore(int) - read the record before the specified record number.

To update a record, use the following method:
» update(int) - update the record with the specified record number.

SequentialFile is a subclass of AS400File; all methods in AS400File are available to SequentialFile.

The following example shows how to use the SequentialFile class:

// Create an AS400 object, the file exists on this
// AS/400.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create a file object that represents the file
SequentialFile myFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/%FILE%.MBR");
// Assume that the AS400FileRecordDescription class
// was used to generate the code for a subclass of
// RecordFormat that represents the record format
// of file MYFILE in Tibrary MYLIB. The code was
// compiled and is available for use by the Java program.
RecordFormat recordFormat = new MYFILEFormat();
// Set the record format for myFile. This must
// be done prior to invoking open()
myFile.setRecordFormat (recordFormat);
// Open the file.
myFile.open(AS400File.READ_WRITE, 0, AS400File.COMMIT LOCK LEVEL NONE);
// Delete record number 2.
myFile.delete(2);
// Read record number 5 and update it
Record updateRec = myFile.read(5);
updateRec.setField("CUSTNAME", newName);

84 AS/400 Toolbox for Java

// Use the base class' update() method since I am

// already positioned on the record.
myFile.update(updateRec);

// Update record number 7
updateRec.setField("CUSTNAME", nextNewName) ;
updateRec.setField("CUSTNUM", new Integer(7));
myFile.update(7, updateRec);

// Close the file since I am done using it
myFile.close();

// Disconnect since I am done using record-level access
sys.disconnectService(AS400.RECORDACCESS) ;

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

AS400FileRecordDescription

The AS400FileRecordDescription class provides the methods for retrieving the record format of an AS/400
file. This class provides methods for creating Java source code for subclasses of RecordFormat and for
returning RecordFormat objects, which describe the record formats of user-specified AS/400 physical or
logical files. The output of these methods can be used as input to an AS400File object when setting the
record format.

It is recommended that the AS400FileRecordDescription class always be used to generate the
RecordFormat object when the AS/400 file already exists on the AS/400 system.

Note: The AS400FileRecordDescription class does not retrieve the entire record format of a file. Only
enough information is retrieved to describe the contents of the records that make up the file. Information
such as column headings, aliases, and reference fields is not retrieved. Therefore, the record formats
retrieved cannot necessarily be used to create a file whose record format is identical to the file from which
the format was retrieved.

Creating Java source code for subclasses of RecordFormat to represent the
record format of AS/400 files

The createRecordFormatSource() method creates Java source files for subclasses of the RecordFormat
class. The files can be compiled and used by an application or applet as input to the
AS400File.setRecordFormat() method.

The createRecordFormatSource() method should be used as a development time tool to retrieve the
record formats of existing AS/400 files. This method allows the source for the subclass of the
RecordFormat class to be created once, modified if necessary, compiled, and then used by many Java
programs accessing the same AS/400 files. Because this method creates files on the local system, it can
be used only by Java applications. The output (the Java source code), however, can be compiled and then
used by Java applications and applets alike.

Note: This method overwrites files with the same names as the Java source files being created.

Example 1: The following example shows how to use the createRecordFormatSource() method:

// Create an AS400 object, the file exists on this
// AS/400.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create an AS400FileRecordDescription object that represents the file
AS400FileRecordDescription myFile = new AS400FileRecordDescription(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE");
// Create the Java source file in the current working directory.
// Specify "package com.myCompany.myProduct;" for the
// package statement in the source since I will ship the class
// as part of my product.
myFile.createRecordFormatSource(null, "com.myCompany.myProduct");
// Assuming that the format name for file MYFILE is FILE1l, the

Chapter 4. AS/400 Toolbox for Java access classes 85

// file FILE1Format.java will be created in the current working directory.
// It will overwrite any file by the same name. The name of the class
// will be FILE1Format. The class will extend from RecordFormat.

Example 2: Compile the file you created above, FILE1Format.java, and use it as follows:

// Create an AS400 object, the file exists on this
// AS/400.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create an AS400File object that represents the file
SequentialFile myFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE");
// Set the record format
// This assumes that import.com.myCompany.myProduct.FILElFormat;
// has been done.
myFile.setRecordFormat(new FILE1Format());
// Open the file and read from it

// Close the file since I am done using it
myFile.close();

// Disconnect since I am done using record-level access
sys.disconnectService(AS400.RECORDACCESS) ;

Creating RecordFormat objects to represent the record format of AS/400 files

The retrieveRecordFormat() method returns an array of RecordFormat objects that represent the record
formats of an existing AS/400 file. Typically, only one RecordFormat object is returned in the array. When
the file for which the record format is being retrieved is a multiple format logical file, more than one
RecordFormat object is returned. Use this method to dynamically retrieve the record format of an existing
AS/400 file during runtime. The RecordFormat object then can be used as input to the
AS400File.setRecordFormat() method.

The following example shows how to use the retrieveRecordFormat() method:

// Create an AS400 object, the file exists on this
// AS/400.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create an AS400FileRecordDescription object that represents the file
AS400FileRecordDescription myFile = new AS400FileRecordDescription(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE");
// Retrieve the record format for the file
RecordFormat[] format = myFile.retrieveRecordFormat();
// Create an AS400File object that represents the file
SequentialFile myFile = new SequentialFile(sys, "/QSYS.LIB/MYLIB.LIB/MYFILE.FILE");
// Set the record format
myFile.setRecordFormat (format[0]);
// Open the file and read from it

// Close the file since I am done using it
myFile.close();

// Disconnect since I am done using record-level access
sys.disconnectService(AS400.RECORDACCESS) ;

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

System Status

The SystemStatus classes allow you to retrieve system status information and to retrieve and change
system pool information. The SystemStatus object allows you to retrieve system status information
including the following:

» getUsersCurrentSignedOn(): Returns the number of users currently signed on the system
» getUsersTemporarilySignedOff(): Returns the number of interactive jobs that are disconnected

» getDateAndTimeStatusGathered(): Returns the date and time when the system status information was
gathered

86 AS/400 Toolbox for Java

* getJobsInSystem(): Returns the total number of user and system jobs that are currently running
» getBatchJobsRunning(): Returns the number of batch jobs currently running on the system

» getBatchJobsEnding(): Returns the number of batch jobs that are in the process of ending

* getSystemPools(): Returns an enumeration containing a SystemPool object for each system pool

In addition to the methods within the SystemStatus class, you also can access SystemPool through
SystemStatus. SystemPool allows you to get information about system pools and change system pool
information.

Example

This example shows you how to use caching with the SystemStatus class:

AS400 system = new AS400("MyAS400");
SystemStatus status = new SystemStatus(system);
// Turn on caching. It is off by default.
status.setCaching(true);
// This will retrieve the value from the system.
// Every subsequent call will use the cached value
// instead of retrieving it from the system.
int jobs = status.getJobsInSystem();
// ... Perform other operations here ...
// This determines if caching is still enabled.
if (status.isCaching())
{

// This will retrieve the value from the cache.

jobs = status.getJobsInSystem();
1
// Go to the system next time, regardless if caching is enabled.
status.refreshCache();
// This will retrieve the value from the system.
jobs = status.getJobsInSystem();
// Turn off caching. Every subsequent call will go to the system.
status.setCaching(false);
// This will retrieve the value from the system.
jobs = status.getJobsInSystem();

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

SystemPool

The SystemPool class allows you to retrieve and change system pool information including the following:

* The getPoolSize() method returns the size of the pool, and the setPoolSize() method sets the size of
the pool.

* The getPoolName() method retrieves the name of the pool, and the setPoolName() method sets the
pool's name.

* The getReservedSize() method returns the amount of storage in the pool that is reserved for system
use.

* The getDescription() method returns the description of the system pool.

* The getMaximumActiveThreads() method returns the maximum number of threads that can be active in
the pool at any one time.

* The setMaximumFaults() method sets the maximum faults-per-second guideline to use for this system
pool.

* The setPriority() method sets the priority of this system pool relative to the priority of the other system
pools.

Chapter 4. AS/400 Toolbox for Java access classes 87

Example

//Create AS400 object.

AS400 as400 = new AS400("system name");

//Construct a system pool object.

SystemPool systemPool = new SystemPool(as400,"*SPOOL");

//Get system pool paging option

System.out.printin("Paging option : "+systemPool.getPagingOption());

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

System values

The system value classes allow a Java program to retrieve and change system values and network
attributes.

This includes the ability to display the following:
» Description

* Name

* Release

Using the SystemValue class, a single system value can also be retrieved using the getValue() method
and changed using the setValue() method. However, to retrieve a group of system values with the
getGroup() method, SystemValueList should be used.

System value list

SystemValueList represents a list of system values on the specified AS/400 system. The list is divided into
several groups that allow the Java program to access a portion of the system values at a time.

The following is a list of the groups:
* All values

» Allocation system values

» Date and time system values
» Editing system values

* Library list system values

* Message system values

* Network attributes

* Security system values

» Storage system values

* System control system values

Whenever the value of a system value is retrieved for the first time, the value is retrieved from the AS/400
and cached. On subsequent retrievals, the cached value is returned. If the current AS/400 value is desired
instead of the cached value, a clear() must be done to clear the current cache.

Examples of using the SystemValue and SystemValueList classes

The following example shows how to create and retrieve a system value:

//Create an AS400 object

AS400 sys = new AS400("mySystem.myCompany.com");

//Create a system value representing the current second on the system.
SystemValue sysval = new SystemValue(sys, "QSECOND");

//Retrieve the value.

88 AS/400 Toolbox for Java

String second = (String)sysval.getValue();

//At this point QSECOND is cached. Clear the cache to retrieve the most
//up-to-date value from the system.

sysval.clear();

second = (String)sysval.getValue();

//Create a system value Tist.

SystemValuelList 1ist = new SystemValuelList(sys);
//Retrieve all the of the date/time system values.

Vector vec = Tlist.getGroup(SystemValueList.GROUP_DATTIM);
//Disconnect from the system.
sys.disconnectAl1Services();

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Trace (Serviceability)

The Trace object allows the Java program to log trace points and diagnostic messages. This information
helps reproduce and diagnose problems.

The Trace class logs the following categories of information:

Conversion Logs character set conversions between Unicode and
native code pages. This category should be used only
by the AS/400 Toolbox for Java classes.

Information Traces the flow through a program.

Warning Logs information about errors the program was able to
recover from.

Error Logs additional errors that cause an exception.

Diagnostic Logs state information.

Data stream Logs the data that flows between the AS/400 and the

Java program. This category should be used only by the
AS/400 Toolbox for Java classes.

Proxy This category is used by AS/400 Toolbox for Java classes
to log data flow between the client and the proxy server.
All This category is used to enable or disable tracing for all of

the above categories at once. Trace information can not
be directly logged to this category.

The AS/400 Toolbox for Java classes also use the trace categories. When a Java program enables
logging, AS/400 Toolbox for Java information is included with the information that is recorded by the
application.

You can enable the trace for a single category or a set of categories. Once the categories are
selected, use the setTraceOn method to turn tracing on and off. Data is written to the log using the log
method.

Excessive logging can impact performance. Use the isTraceOn method to query the current state of
the trace. Your Java program can use this method to determine whether it should build the trace record
before it calls the log method. Calling the log method when logging is off is not an error, but it takes more
time.

The default is to write log information to standard out. To redirect the log to a file, call the

setFileName() method from your Java application. In general, this works only for Java applications
because most browsers do not give applets access to write to the local file system.

Chapter 4. AS/400 Toolbox for Java access classes 89

Logging is off by default. Java programs should provide a way for the user to turn on logging so that it is
easy to enable logging. For example, the application can parse for a command line parameter that
indicates which category of data should be logged. The user can set this parameter when log information
is needed.

The following examples show how to use the Trace class.

Example 1: The following is an example of how to use the setTraceOn method, and how to write data to a
log by using the log method.

// Enable diagnostic, information, and warning logging.
Trace.setTraceDiagnosticOn(true);
Trace.setTraceInformationOn(true);

Trace.setTraceWarningOn(true);

// Turning tracing on.
Trace.setTraceOn(true);

// ... At this point in the Java program,

// write to the log.

Trace.log(Trace.INFORMATION, "Just entered class xxx, method xxx");

// Turning tracing off.

Trace.setTraceOn(false);

Example 2: The following examples show how to use trace. Method 2 is the preferable way to write code
that uses trace.

// Method 1 - build a trace record
// then call the log method and Tet
// the trace class determine if the
// data should be logged. This will
// work but will be slower than the
// following code.
String traceData = new String("just entered class xxx, data = ");
traceData = traceData + data + "state = " + state;
Trace.log(Trace.INFORMATION, traceData);
// Method 2 - check the Tog status
// before building the information to
// log. This is faster when tracing
// is not active.
if (Trace.isTraceOn() && Trace.isTraceInformationOn())
{
String traceData = new String("just entered class xxx, data = ");
traceData = traceData + data + "state = " + state;
Trace.log(Trace.INFORMATION, traceData);
}

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Users and groups

The user and group classes allow you to get a list of users and user groups on the AS/400 system as well
as information about each user through a Java program. Some of the user information you can retrieve
includes previous sign-on date, status, date the password was last changed, date the password expires,
and user class. When you access the User object, you should use the setSystem() method to set the
system name and the setName() method to set the user name. After those steps, you use the
loadUserInformation() method to get the information from the AS/400.

The UserGroup object represents a special user whose user profile is a group profile. Using the
getMembers() method, a list of users that are members of the group can be returned.

The Java program can iterate through the list using an enumeration. All elements in the enumeration are
User objects; for example:

90 AS/400 Toolbox for Java

// Create an AS400 object.

AS400 system = new AS400 ("mySystem.myCompany.com");
// Create the UserList object.

UserList userList = new UserList (system);

// Get the 1ist of all users and groups.

Enumeration enum = userList.getUsers ();

// Iterate through the Tlist.

while (enum.hasMoreElements ())

{
User u = (User) enum.nextElement ();
System.out.printin (u);

}

Retrieving information about users and groups

You use a UserList to get a list of the following:
* All users and groups

* Only groups

* All users who are members of groups

» All users who are not members of groups

The only property of the UserList object that must be set is the AS400 object that represents the AS/400
system from which the list of users is to be retrieved.

By default, all users are returned. Use a combination of setUserInfo() and setGrouplinfo() to specify exactly
which users should be returned.

Example
Use a UserList to list all of the users in a given group.

[Legal | AS/400 Glossary]

User space

The UserSpace class represents a user space on the AS/400 system. Required parameters are the name
of the user space and the AS400 object that represents the AS/400 system that has the user space.
Methods exist in user space class to do the following:

* Create a user space.

* Delete a user space.

* Read from a user space.
* Write to user space.

* Get the attributes of a user space. A Java program can get the initial value, length value, and automatic
extendible attributes of a user space.

» Set the attributes of a user space. A Java program can set the initial value, length value, and automatic
extendible attributes of a user space.

The UserSpace object requires the integrated file system path name of the program. See integrated file
system path names for more information.

Using the UserSpace class causes the AS400 object to connect to the AS/400. See managing connections
for information about managing connections.

The following example creates a user space, then writes data to it.

Chapter 4. AS/400 Toolbox for Java access classes 91

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create a user space object.
UserSpace US = new UserSpace(sys,
"/QSYS.LIB/MYLIB.LIB/MYSPACE.USRSPC");
// Use the create method to create the user space on
// the AS/400.

US.create (10240, // The initial size is 10K
true, // Replace if the user space already exists
", // No extended attribute
(byte) 0x00, // The initial value is a null
"Created by a Java program", // The description of the user space
"%USE") ; // Public has use authority to the user space

// Use the write method to write bytes to the user space.
US.write("Write this string to the user space.", 0);

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

AS/400 server access points

The AS/400 Toolbox for Java access classes provide functionality that is similar to using Client Access for
AS/400 APIs. However, Client Access for AS/400 is not a requirement for using the classes.

The access classes use the existing AS/400 servers as the access points to the AS/400 system. Each
server runs in a separate job on the AS/400 and sends and receives data streams on a socket connection.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

92 AS/400 Toolbox for Java

Chapter 5. Graphical user interface classes

AS/400 Toolbox for Java provides a set of graphical user interface (GUI) classes in the vaccess package.
These classes use the access classes to retrieve data and to present the data to the user.

Java programs that use the AS/400 Toolbox for Java GUI (graphical user interface) classes need Swing
1.1. You get Swing 1.1 either by running Java 2 or by downloading Swing 1.1 from Sun Microsystems, Inc.
. In the past, AS/400 Toolbox for Java has required Swing 1.0.3, and V4R5 is the first release that Swing
1.1 is supported. To move to Swing 1.1, some programming changes were made; therefore, you may have
to make some programming changes as well. See http://www.javasoft.com/products/jfc/index.html for more
information about Swing.

For more information about the relationships between the AS/400 Toolbox for Java GUI classes, the
Access classes, and Java Swing, see the Graphical user interface classes diagram.

Use the AS400 panes classes to display AS/400 data.

APIs are available to access the following AS/400 resources and their tools:
» Command call

* Data queues

* Error events*

* Integrated file system
» JavaApplicationCall

» Java database connectivity (JDBC)

* Jobs*

* Messages*

* Network print* including the spooled file viewer
* Permission

* Program call

* Record-level access

e System status

» System values

* Users and Groups

Note: AS400 panes are used with other vaccess classes (see items marked above with an asterisk) to
present and allow manipulation of AS/400 resources.

When programming with the AS/400 Toolbox for Java graphical user interface components, use the Error
events classes to report and handle error events to the user.

See Access classes for more information about accessing AS/400 data.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Graphical user interface classes

AS/400 Toolbox for Java provides graphical user interface (GUI) classes to retrieve and display, and in
some cases manipulate, AS/400 data. These classes use the Java Swing 1.1 framework. The following
diagram shows the relationship between these classes.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

© Copyright IBM Corp. 1998, 1999 93

AS/400 Panes

AS/400 panes are graphical user interface components that present and allow manipulation of one or more
AS/400 resource. The behavior of each AS/400 resource varies depending on the type of resource.

All panes extend the Java Component class. As a result, they can be added to any AWT Frame, Window,
or Container.

The following AS/400 panes are available:
* AS400ListPane presents a list of AS/400 resources and allows selection of one or more resources.

* AS400DetailsPane presents a list of AS/400 resources in a table where each row displays various
details about a single resource. The table allows selection of one or more resources.
AS400TreePane presents a tree hierarchy of AS/400 resources and allows selection of one or more
resources.

AS400ExplorerPane combines an AS400TreePane and AS400DetailsPane so that the resource
selected in the tree is presented in the details.

AS/400 resources

AS/400 resources are represented in the graphical user interface with an icon and text. AS/400 resources
are defined with hierarchical relationships where a resource might have a parent and zero or more
children. These are predefined relationships and are used to specify what resources are displayed in an
AS/400 pane. For example, VJobList is the parent to zero or more VJobs, and this hierarchical relationship
is represented graphically in an AS/400 pane.

The AS/400 Toolbox for Java provides access to the following AS/400 resources:

» VIFSDirectory represents a directory in the integrated file system.

* VJob represents a job.

* VJoblList represents a list of jobs.

* VMessagelist represents a list of messages returned from a CommandCall or ProgramcCall.
* VMessageQueue represents a message queue.

* VPrinters represents a list of printers.

* VPrinter represents a printer.

* VPrinterOutput represents a list of spooled files.

* VUserList represents a list of users.

All resources are implementations of the VNode interface.

Setting the root

To specify which AS/400 resources are presented in an AS/400 pane, set the root using the constructor or
setRoot() method. The root defines the top level object and is used differently based on the pane:

* AS400ListPane presents all of the root’s children in its list.

» AS400DetailsPane presents all of the root’s children in its table.
* AS400TreePane uses the root as the root of its tree.

* AS400ExplorerPane uses the root as the root of its tree.

Any combination of panes and roots is possible.

The following example creates an AS400DetailsPane to present the list of users defined on the system:

94 AS/400 Toolbox for Java

// Create the AS/400 resource
// representing a list of users.
// Assume that "system" is an AS400
// object created and initialized
// elsewhere.
VUserList userList = new VUserList (system);
// Create the AS400DetailsPane object
// and set its root to be the user
// list.
AS400DetailsPane detailsPane = new AS400DetailsPane ();
detailsPane.setRoot (userList);
// Add the details pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (detailsPane);

Loading the contents

When AS/400 pane objects and AS/400 resource objects are created, they are initialized to a default state.
The relevant information that makes up the contents of the pane is not loaded at creation time.

To load the contents, the application must explicitly call the load() method. In most cases, this initiates
communication to the AS/400 system to gather the relevant information. Because it can sometimes take a
while to gather this information, the application can control exactly when it happens. For example, you can:

» Load the contents before adding the pane to a frame. The frame does not appear until all information is
loaded.

» Load the contents after adding the pane to a frame and displaying that frame. The frame appears, but it
does not contain much information. A "wait cursor” appears and the information is filled in as it is
loaded.

The following example loads the contents of a details pane before adding it to a frame:

// Load the contents of the details
// pane. Assume that the detailsPane
// was created and initialized
// elsewhere.
detailsPane.load ();
// Add the details pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (detailsPane);

Actions and properties panes
At run time, the user can select a pop-up menu on any AS/400 resource. The pop-up menu presents a list
of relevant actions that are available for the resource. When the user selects an action from the pop-up

menu, that action is performed. Each resource has different actions defined.

In some cases, the pop-up menu also presents an item that allows the user to view a properties pane. A
properties pane shows various details about the resource and may allow the user to change those details.

The application can control whether actions and properties panes are available by using the
setAllowActions() method on the pane.

Models

The AS/400 panes are implemented using the model-view-controller paradigm, in which the data and the
user interface are separated into different classes. The AS/400 panes integrate AS/400 Toolbox for Java

Chapter 5. Graphical user interface classes 95

models with Java graphical user interface components. The models manage AS/400 resources and the
graphical user interface components display them graphically and handle user interaction.

The AS/400 panes provide enough functionality for most requirements. However, if an application needs
more control of the JFC component, then the application can access an AS/400 model directly and provide
customized integration with a different graphical user interface component.

The following models are available:

* AS400ListModel implements the JFC ListModel interface as a list of AS/400 resources. This can be
used with a JFC JList object.

* AS400DetailsModel implements the JFC TableModel interface as a table of AS/400 resources where
each row contains various details about a single resource. This can be used with a JFC JTable object.

* AS400TreeModel implements the JFC TreeModel interface as a tree hierarchy of AS/400 resources.
This can be used with a JFC JTree object.

Examples
* Present a list of users on the system using an AS400ListPane with a VUserList object.
The following image shows the finished product:

* Present the list of messages generated by a command call using an AS400DetailsPane with a
VMessagelist object.

The following image shows the finished product:

» Present an integrated file system directory hierarchy using an AS400TreePane with a
VIFSDirectory object.

The following image shows the finished product:
* Present network print resources using an AS400ExplorerPane with a VPrinters object.
The following image shows the finished product:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Command Call

The command call graphical user interface components allow a Java program to present a button or menu
item that calls a non-interactive AS/400 command.

A CommandCallButton object represents a button that calls an AS/400 command when pressed. The
CommandCallButton class extends the Java Foundation Classes (JFC) JButton class so that all buttons
have a consistent appearance and behavior.

Similarly, a CommandCallMenultem object represents a menu item that calls an AS/400 command when
selected. The CommandCallMenultem class extends the JFC JMenultem class so that all menu items also
have a consistent appearance and behavior.

To use a command call graphical user interface component, set both the system and command properties.
These properties can be set using a constructor or through the setSystem() and setCommand() methods.

The following example creates a CommandCallButton. At run time, when the button is pressed, it creates a
library called "FRED":

// Create the CommandCallButton

// object. Assume that "system" is

// an AS400 object created and

// initialized elsewhere. The button
// text says "Press Me", and there is
// no icon.

96 AS/400 Toolbox for Java

CommandCallButton button = new CommandCallButton ("Press Me", null, system);
// Set the command that the button will run.
button.setCommand ("CRTLIB FRED");
// Add the button to a frame. Assume
// that "frame" is a JFrame created
// elsewhere.
frame.getContentPane ().add (button);

When an AS/400 command runs, it may return zero or more AS/400 messages. To detect when the
AS/400 command runs, add an ActionCompletedListener to the button or menu item using the
addActionCompletedListener() method. When the command runs, it fires an ActionCompletedEvent to all
such listeners. A listener can use the getMessageList() method to retrieve any AS/400 messages that the
command generated.

This example adds an ActionCompletedListener that processes all AS/400 messages that the command
generated:

// Add an ActionCompletedlListener that
// is implemented using an anonymous
// inner class. This is a convenient
// way to specify simple event
// listeners.
button.addActionCompletedListener (new ActionCompletedListener ()
{
public void actionCompleted (ActionCompletedEvent event)
{
// Cast the source of the event to a
// CommandCallButton.
CommandCallButton sourceButton = (CommandCallButton) event.getSource ();
// Get the Tist of AS/400 messages
// that the command generated.
AS400Message[] messagelList = sourceButton.getMessagelList ();
// ... Process the message list.
1
1

Examples
This example shows how to use a CommandCallMenultem in an application.

The image below shows the CommandCall graphical user interface component:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Data queues

The data queue graphical components allow a Java program to use any Java Foundation Classes (JFC)
graphical text component to read or write to an AS/400 data queue.

The DataQueueDocument and KeyedDataQueueDocument classes are implementations of the JFC
Document interface. These classes can be used directly with any JFC graphical text component. Several
text components, such as single line fields (JTextField) and multiple line text areas (JTextArea), are
available in JFC.

Data queue documents associate the contents of a text component with an AS/400 data queue. (A text
component is a graphical component used to display text that the user can optionally edit.) The Java
program can read and write between the text component and data queue at any time. Use
DataQueueDocument for sequential data queues and KeyedDataQueueDocument for keyed data
gueues.

Chapter 5. Graphical user interface classes 97

To use a DataQueueDocument, set both the system and path properties. These properties can be set
using a constructor or through the setSystem() and setPath() methods. The DataQueueDocument object is
then "plugged” into the text component, usually using the text component’s constructor or setDocument()
method. KeyedDataQueueDocuments work the same way.

The following example creates a DataQueueDocument whose contents are associated with a data queue:

// Create the DataQueueDocument
// object. Assume that "system" is
// an AS400 object created and
// initialized elsewhere.
DataQueueDocument dqDocument = new DataQueueDocument (system, "/QSYS.LIB/MYLIB.LIB/MYQUEUE.DTAQ");
// Create a text area to present the
// document.
JTextArea textArea = new JTextArea (dqDocument);
// Add the text area to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (textArea);

Initially, the contents of the text component are empty. Use read() or peek() to fill the contents with the
next entry on the queue. Use write() to write the contents of the text component to the data queue. Note
that these documents only work with String data queue entries.

Examples
Example of using a DataQueueDocument in an application.

The following image shows the DataQueueDocument graphical user interface component being used in a
JTextField. A button has been added to provide a GUI interface for the user to write the contents of the
test field to the data queue.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Error events

In most cases, the AS/400 Toolbox for Java graphical user interface (GUI) components fire error events
instead of throw exceptions.

An error event is a wrapper around an exception that is thrown by an internal component.

You can provide an error listener that handles all error events that are fired by a particular graphical user
interface component. Whenever an exception is thrown, the listener is called, and it can provide
appropriate error reporting. By default, no action takes place when error events are fired.

The AS/400 Toolbox for Java provides a graphical user interface component called ErrorDialogAdapter,
which automatically displays a dialog to the user whenever an error event is fired.

The following example shows how you can handle error events by displaying a dialog:

// ... all the setup work to Tay out

// a graphical user interface

// component is done. Now add an

// ErrorDialogAdapter as a listener

// to the component. This will report

// all error events fired by that

// component through displaying a

// dialog.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (parentFrame);
component.addErrorListener (errorHandler);

98 AS/400 Toolbox for Java

You can write a custom error listener to handle errors in a different way. Use the ErrorListener interface to
accomplish this.

The following example shows how to define an simple error listener that only prints errors to System.out:

class MyErrorHandler
implements ErrorListener

{
// This method is invoked whenever
// an error event is fired.
public void errorOccurred(ErrorEvent event)

{
Exception e = event.getException ();
System.out.printin ("Error: " + e.getMessage ());

}

The following example shows how to handle error events for a graphical user interface component using
this customized handler:

MyErrorHandler errorHandler = new MyErrorHandler ();
component.addErrorListener (errorHandler);

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Integrated file system

The integrated file system graphical user interface components allow a Java program to present directories
and files in the AS/400 integrated file system in a graphical user interface.

The following components are available:

» |FSFileDialog presents a dialog that allows the user to choose a directory and select a file by navigating
through the directory hierarchy.

» VIFSDirectory is a resource that represents a directory in the integrated file system for use in AS/400
panes.

» IFSTextFileDocument represents a text file for use in any Java Foundation Classes (JFC) graphical text
component.

To use the integrated file system graphical user interface components, set both the system and the path or
directory properties. These properties can be set using a constructor or through the setDirectory() (for
IFSFileDialog) or setSystem() and setPath() methods (for VIFSDirectory and IFSTextFileDocument).

You should set the path to something other than "/QSYS.LIB" because this directory is usually large, and
downloading its contents can take a long time.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
File dialogs

The IFSFileDialog class is a dialog that allows the user to traverse the directories of the AS/400 integrated
file system and select a file. The caller can set the text on the buttons on the dialog. In addition, the caller

can use FileFilter objects, which allow the user to limit the choices to certain files.

If the user selects a file in the dialog, use the getFileName() method to get the name of the selected file.
Use the getAbsolutePath() method to get the full path name of the selected file.

The following example sets up an integrated file system file dialog with two file filters:

Chapter 5. Graphical user interface classes 99

// Create a IFSFileDialog object
// setting the text of the title bar.
// Assume that "system" is an AS400
// object and "frame" is a JFrame
// created and initialized elsewhere.
IFSFileDialog dialog = new IFSFileDialog (frame, "Select a file", system);
// Set a list of filters for the dialog.
// The first filter will be used
// when the dialog is first displayed.
FileFilter[] filterList = {new FileFilter ("A11 files (*.*)", "*.x"),
new FileFilter ("HTML files (*.HTML", "*.HTM")};
// Then, set the filters in the dialog.
dialog.setFileFilter (filterList, 0);
// Set the text on the buttons.
dialog.setOkButtonText ("Open");
dialog.setCancelButtonText ("Cancel");
// Show the dialog. If the user
// selected a file by pressing the
// "Open" button, then print the path
// name of the selected file.
if (dialog.showDialog () == IFSFileDialog.0K)
System.out.printin (dialog.getAbsolutePath ());

Example
Present an IFSFileDialog and print the selection, if any.

The following image shows the IFSFileDialog graphical user interface component:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Directories in AS/400 panes

AS/400 panes are graphical user interface components that present and allow manipulation of one or more
AS/400 resources. A VIFSDirectory object is a resource that represents a directory in the integrated file
system for use in AS/400 panes. AS/400 panes and VIFSDirectory objects can be used together to present
many views of the integrated file system, and to allow the user to navigate, manipulate, and select
directories and files.

To use a VIFSDirectory, set both the system and path properties. You set these properties using a
constructor or through the setSystem() and setPath() methods. You then plug the VIFSDirectory object into
the AS/400 pane as the root, using the pane’s constructor or setRoot() method.

VIFSDirectory has some other useful properties for defining the set of directories and files that are
presented in AS/400 panes. Use setinclude() to specify whether directories, files, or both appear. Use
setPattern() to set a filter on the items that are shown by specifying a pattern that the file name must
match. You can use wildcard characters, such as "*" and "?", in the patterns. Similarly, use setFilter() to
set a filter with an IFSFileFilter object.

When AS/400 pane objects and VIFSDirectory objects are created, they are initialized to a default state.
The subdirectories and the files that make up the contents of the root directory have not been loaded. To
load the contents, the caller must explicitly call the load() method on either object to initiate communication
to the AS/400 system to gather the contents of the directory.

At run-time, a user can perform actions on any directory or file through the pop-up menu.

The following actions are available for directories:
» Create file - creates a file in the directory. This will give the file a default name.
» Create directory - creates a subdirectory with a default name.

100 AS/400 Toolbox for Java

* Rename - renames a directory.
* Delete - deletes a directory.

» Properties - displays properties such as the location, number of files and subdirectories, and
modification date.

The following actions are available for files:

» Edit - edits a text file in a different window.

* View - views a text file in a different window.

* Rename - renames a file.

* Delete - deletes a file.

» Properties - displays properties such as the location, size, modification date, and attributes.

Users can only read or write directories and files to which they are authorized. In addition, the caller can
prevent the user from performing actions by using the setAllowActions() method on the pane.

The following example creates a VIFSDirectory and presents it in an AS400ExplorerPane:

// Create the VIFSDirectory object.

// Assume that "system" in an AS400

// object created and initialized

// elsewhere.
VIFSDirectory root = new VIFSDirectory (system, "/DirectoryA/DirectoryB");

// Create and Toad an AS400ExplorerPane object.
AS400ExpTorerPane explorerPane = new AS400ExplorerPane (root);
explorerPane.load ();

// Add the explorer pane to a frame.

// Assume that "frame" is a JFrame

// created elsewhere.
frame.getContentPane ().add (explorerPane);

Example

Present an integrated file system directory hierarchy using an AS400TreePane with a VIFSDirectory
object.

The following image shows the VIFSDirectory graphical user interface component:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Text file documents

Text file documents allow a Java program to use any Java Foundation Classes (JFC) graphical text
component to edit or view text files in AS/400 integrated file system. (A text component is a graphical
component used to display text that the user can optionally edit.)

The IFSTextFileDocument class is an implementation of the JFC Document interface. It can be used
directly with any JFC graphical text component. Several text components, such as single line fields
(JTextField) and multiple line text areas (JTextArea), are available in JFC.

Text file documents associate the contents of a text component with a text file. The Java program can load
and save between the text component and the text file at any time.

To use an IFSTextFileDocument, set both the system and path properties. These properties can be set
using a constructor or through the setSystem() and setPath() methods. The IFSTextFileDocument object is
then "plugged” into the text component, usually using the text component’s constructor or setDocument()
method.

Chapter 5. Graphical user interface classes 101

Initially, the contents of the text component are empty. Use load() to load the contents from the text file.
Use save() to save the contents of the text component to the text file.

The following example creates and loads an IFSTextFileDocument:

// Create and load the

// IFSTextFileDocument object. Assume

// that "system" is an AS400 object

// created and initialized elsewhere.
IFSTextFileDocument ifsDocument = new IFSTextFileDocument (system, "/DirectoryA/MyFile.txt");
ifsDocument.load ();

// Create a text area to present the

// document.
JTextArea textArea = new JTextArea (ifsDocument);

// Add the text area to a frame.

// Assume that "frame" is a JFrame

// created elsewhere.
frame.getContentPane ().add (textArea);

Example
Present an IFSTextFileDocument in a JTextPane.

The following image shows the IFSTextFileDocument graphical user interface component:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

VJavaApplicationCall

The VJavaApplicationCall class allows you to run a Java application on the AS/400 from a client by using
a graphical user interface (GUI).

The GUI is a panel with two sections. The top section is an output window that displays output that the
Java program writes to standard output and standard error. The bottom section is an input field where the
user enters the Java environment, the Java program to run with parameters and input the Java program
receives via standard input. Refer to the Java command options for more information.

For example, this code would create the following GUI for your Java program.

VJavaApplicationCall is a class that you call from your Java program. However, the AS/400 Toolbox for
Java also provides a utility that is a complete Java application that can be used to call your Java program
from a workstation. Refer to the VRunJavaApplication class for more information.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

JDBC

The Java Database Connectivity (JDBC) graphical user interface components allow a Java program to
present various views and controls for accessing a database using SQL (Structured Query Language)
statements and queries.

The following components are available:
* SQLStatementButton is a button that issues an SQL statement when clicked.
* SQLStatementMenultem is a menu item that issues an SQL statement when selected.

* SQLStatementDocument is a document that can be used with any Java Foundation Classes (JFC)
graphical text component to issue an SQL statement.

* SQLResultSetFormPane presents the results of an SQL query in a form.

102 AS/400 Toolbox for Java

* SQLResultSetTablePane presents the results of an SQL query in a table.
* SQLResultSetTableModel manages the results of an SQL query in a table.
* SQLQueryBuilderPane presents an interactive tool for dynamically building SQL queries.

All JDBC graphical user interface components communicate with the database using a JDBC driver. The
JDBC driver must be registered with the JDBC driver manager in order for any of these components to
work. The following example registers the AS/400 Toolbox for Java JDBC driver:

// Register the JDBC driver.
DriverManager.registerDriver (new com.ibm.as400.access.AS400JDBCDriver ());

SQL connections

An SQLConnection object represents a connection to a database using JDBC. The SQLConnection
object is used with all of the JDBC graphical user interface components.

To use an SQLConnection, set the URL property using the constructor or setURL(). This identifies the
database to which the connection is made. Other optional properties can be set:

* Use setProperties() to specify a set of JDBC connection properties.
* Use setUserName() to specify the user name for the connection.
» Use setPassword() to specify the password for the connection.

The actual connection to the database is not made when the SQLConnection object is created. Instead, it
is made when getConnection() is called. This method is normally called automatically by the JDBC
graphical user interface components, but it can be called at any time in order to control when the
connection is made.

The following example creates and initializes an SQLConnection object:

// Create an SQLConnection object.
SQLConnection connection = new SQLConnection ();

// Set the URL and user name properties of the connection.
connection.setURL ("jdbc:as400://MySystem");
connection.setUserName ("Lisa");

An SQLConnection object can be used for more than one JDBC graphical user interface component. All
such components will use the same connection, which can improve performance and resource usage.
Alternately, each JDBC graphical user interface component can use a different SQL object. It is sometimes
necessary to use separate connections, so that SQL statements are issued in different transactions.

When the connection is no longer needed, close the SQLConnection object using close(). This frees up
JDBC resources on both the client and server.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Buttons and menu items

An SQLStatementButton object represents a button that issues an SQL (Structured Query Language)
statement when pressed. The SQLStatementButton class extends the Java Foundation Classes (JFC)
JButton class so that all buttons have a consistent appearance and behavior.

Similarly, an SQLStatementMenultem object represents a menu item that issues an SQL statement when
selected. The SQLStatementMenultem class extends the JFC JMenultem class so that all menu items
have a consistent appearance and behavior.

To use either of these classes, set both the connection and the SQLStatement properties. These
properties can be set using a constructor or the setConnection() and setSQLStatement() methods.

Chapter 5. Graphical user interface classes 103

The following example creates an SQLStatementButton. When the button is pressed at run time, it deletes
all records in a table:

// Create an SQLStatementButton object.
// The button text says "Delete AT1",
// and there is no icon.
SQLStatementButton button = new SQLStatementButton ("Delete A11");
// Set the connection and SQLStatement
// properties. Assume that "connection"
// is an SQLConnection object that is
// created and initialized elsewhere.
button.setConnection (connection);
button.setSQLStatement ("DELETE FROM MYTABLE");
// Add the button to a frame. Assume
// that "frame" is a JFrame created
// elsewhere.
frame.getContentPane ().add (button);

After the SQL statement is issued, use getResultSet(), getMoreResults(), getUpdateCount(), or
getWarnings() to retrieve the results.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Documents

The SQLStatementDocument class is an implementation of the Java Foundation Classes (JFC) Document
interface. It can be used directly with any JFC graphical text component. Several text components, such
as single line fields (JTextField) and multiple line text areas (JTextArea), are available in JFC.
SQLStatementDocument objects associate the contents of text components with SQLConnection objects.
The Java program can run the SQL statement contained in the document contents at any time and then
process the results, if any.

To use an SQLStatementDocument, you must set the connection property. Set this property by using the
constructor or the setConnection() method. The SQLStatementDocument object is then "plugged” into the
text component, usually using the text component’s constructor or setDocument() method. Use execute()
at any time to run the SQL statement contained in the document.

The following example creates an SQLStatementDocument in a JTextField:

// Create an SQLStatementDocument
// object. Assume that "connection"
// is an SQLConnection object that is
// created and initialized elsewhere.
// The text of the document is
// initialized to a generic query.
SQLStatementDocument document = new SQLStatementDocument (connection, "SELECT * FROM QIWS.QCUSTCDT");
// Create a text field to present the
// document.
JTextField textField = new JTextField ();
textField.setDocument (document);
// Add the text field to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (textField);
// Run the SQL statement that is in
// the text field.
document.execute ();

After the SQL statement is issued, use getResultSet(), getMoreResults(), getUpdateCount(), or
getWarnings() to retrieve the results.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

104 AS/400 Toolbox for Java

Result set form panes

An SQLResultSetFormPane presents the results of an SQL (Structured Query Language) query in a form.
The form displays one record at a time and provides buttons that allow the user to scroll forward,
backward, to the first or last record, or refresh the view of the results.

To use an SQLResultSetFormPane, set the connection and query properties. Set these properties by using
the constructor or the setConnection() and setQuery() methods. Use load() to execute the query and
present the first record in the result set. When the results are no longer needed, call close() to ensure that
the result set is closed.

The following example creates an SQLResultSetFormPane object and adds it to a frame:

// Create an SQLResultSetFormPane
// object. Assume that "connection"
// is an SQLConnection object that is
// created and initialized elsewhere.
SQLResultSetFormPane formPane = new SQLResultSetFormPane (connection, "SELECT = FROM QIWS.QCUSTCDT");
// Load the results.
formPane.load ();
// Add the form pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (formPane);

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Result set table panes

An SQLResultSetTablePane presents the results of an SQL (Structured Query Language) query in a table.
Each row in the table displays a record from the result set and each column displays a field.

To use an SQLResultSetTablePane, set the connection and query properties. Set properties by using the

constructor or the setConnection() and setQuery() methods. Use load() to execute the query and present

the results in the table. When the results are no longer needed, call close() to ensure that the result set is
closed.

The following example creates an SQLResultSetTablePane object and adds it to a frame:

// Create an SQLResultSetTablePane
// object. Assume that "connection"
// is an SQLConnection object that is
// created and initialized elsewhere.
SQLResultSetTablePane tablePane = new SQLResultSetTablePane (connection, "SELECT * FROM QIWS.QCUSTCDT");
// Load the results.
tablePane.load ();
// Add the table pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (tablePane);

Example

Present an SQLResultSetTablePane that displays the contents of a table. This example uses an
SQLStatementDocument (denoted in the following image by the text, "Enter a SQL statement here”) that
allows the user to type in any SQL statement, and an SQLStatementButton (denoted by the text, "Delete
all rows") that allows the user to delete all rows from the table.

The following image shows the SQLResultSetTablePane graphical user interface component.

Chapter 5. Graphical user interface classes 105

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Result set table models

SQLResultSetTablePane is implemented using the model-view-controller paradigm, in which the data and
the user interface are separated into different classes. The implementation integrates
SQLResultSetTableModel with the Java Foundation Classes’ (JFC) JTable. The SQLResultSetTableModel
class manages the results of the query and JTable displays the results graphically and handles user
interaction.

SQLResultSetTablePane provides enough functionality for most requirements. However, if a caller needs
more control of the JFC component, then the caller can use SQLResultSetTableModel directly and provide
customized integration with a different graphical user interface component.

To use an SQLResultSetTableModel, set the connection and query properties. Set these properties by
using the constructor or the setConnection() and setQuery() methods. Use load() to execute the query and
load the results. When the results are no longer needed, call close() to ensure that the result set is closed.

The following example creates an SQLResultSetTableModel object and presents it with a JTable:

// Create an SQLResultSetTableModel
// object. Assume that "connection"
// is an SQLConnection object that is
// created and initialized elsewhere.
SQLResultSetTableModel tableModel = new SQLResultSetTableModel (connection, "SELECT * FROM QIWS.QCUSTCDT");
// Load the results.
tableModel.load ();
// Create a JTable for the model.
JTable table = new JTable (tableModel);
// Add the table to a frame. Assume
// that "frame" is a JFrame created
// elsewhere.
frame.getContentPane ().add (table);

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
SQL query builders
An SQLQueryBuilderPane presents an interactive tool for dynamically building SQL queries.

To use an SQLQueryPane, set the connection property. This property can be set using the constructor or
the setConnection() method. Use load() to load data needed for the query builder graphical user interface.
Use getQuery() to get the SQL query that the user has built.

The following example creates an SQLQueryBuilderPane object and adds it to a frame:

// Create an SQLQueryBuilderPane
// object. Assume that "connection"
// is an SQLConnection object that is
// created and initialized elsewhere.
SQLQueryBuilderPane queryBuilder = new SQLQueryBuilderPane (connection);
// Load the data needed for the query
// builder.
queryBuilder.load ();
// Add the query builder pane to a
// frame. Assume that "frame" is a
// JFrame created elsewhere.
frame.getContentPane ().add (queryBuilder);

106 AS/400 Toolbox for Java

Example

Present an SQLQueryBuilderPane and a button. When the button is clicked, present the results of the
query in an SQLResultSetFormPane in another frame.

The following image shows the SQLQueryBuilderPane graphical user component:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Jobs

The jobs graphical user interface components allow a Java program to present lists of AS/400 jobs and job
log messages in a graphical user interface.

The following components are available:
* A VJobList object is a resource that represents a list of AS/400 jobs for use in AS/400 panes.
* A VJob object is a resource that represents the list of messages in a job log for use in AS/400 panes.

You can use AS/400 panes, VJobList objects, and VJob objects together to present many views of a job
list or job log.

To use a VJoblList, set the system, name, number, and user properties. Set these properties by using a
constructor or through the setSystem(), setName(), setNumber(), and setUser() properties.

To use a VJob, set the system property. Set this property by using a constructor or through the
setSystem() method.

Either the VJobList or VJob object is then "plugged” into the AS/400 pane as the root, using the pane’s
constructor or setRoot() method.

VJobList has some other useful properties for defining the set of jobs that are presented in AS/400 panes.
Use setName() to specify that only jobs with a certain name should appear. Use setNumber() to specify
that only jobs with a certain number should appear. Similarly, use setUser() to specify that only jobs for a
certain user should appear.

When AS/400 pane, VJobList, and VJob objects are created, they are initialized to a default state. The list
of jobs or job log messages are not loaded at creation time. To load the contents, the caller must explicitly
call the load() method on either object. This will initiate communication to the AS/400 system to gather the
contents of the list.

At run-time, a user can perform actions on any job list, job, or job log message through the pop-up menu.

The following actions are available for jobs:
* Properties - displays many properties such as the type and status.
* Modify - changes properties

The following menu item is available for job lists:

* Properties - allows the user to set the name, number, and user properties. This may be used to change
the contents of the list.

The following action is available for job log messages:
* Properties - displays many properties such as the full text, severity, and time sent.

Chapter 5. Graphical user interface classes 107

Users can only access jobs to which they are authorized. In addition, the Java program can prevent the
user from performing actions by using the setAllowActions() method on the pane.

The following example creates a VJobList and presents it in an AS400ExplorerPane:

// Create the VJobList object. Assume

// that "system" is an AS400 object

// created and initialized elsewhere.
VJobList root = new VJobList (system);

// Create and load an

// AS400ExplorerPane object.
AS400ExplorerPane explorerPane = new AS400ExplorerPane (root);
explorerPane.load ();

// Add the explorer pane to a frame.

// Assume that "frame" is a JFrame

// created elsewhere.
frame.getContentPane ().add (explorerPane);

Examples

This VJobList example presents an AS400ExplorerPane filled with a list of jobs. The list shows jobs on the
system that have the same job name.

The following image shows the VJobList graphical user interface component:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Messages

The messages graphical user interface components allow a Java program to present lists of AS/400
messages in a graphical user interface.

The following components are available:

* A VMessagelist object is a resource that represents a list of messages for use in AS/400 panes. This is
for message lists generated by command or program calls.

* A VMessageQueue object is a resource that represents the messages in an AS/400 message queue for
use in AS/400 panes.

AS/400 panes are graphical user interface components that present and allow manipulation of one or more
AS/400 resources. VMessagelist and VMessageQueue objects are resources that represent lists of
AS/400 messages in AS/400 panes.

You can use AS/400 pane, VMessagelList, and VMessageQueue objects together to present many views
of a message list and to allow the user to select and perform operations on messages.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Message lists

A VMessagelist object is a resource that represents a list of messages for use in AS/400 panes. This is
for message lists generated by command or program calls. The following methods return message lists:

* CommandCall.getMessageList()

* CommandCallButton.getMessageList()

* CommandCallMenultem.getMessageList()
* ProgramCall.getMessagelList()

* ProgramCallButton.getMessageList()

108 AS/400 Toolbox for Java

* ProgramCallMenultem.getMessageList()

To use a VMessagelist, set the messageList property. Set this property by using a constructor or through
the setMessageList() method. The VMessagelList object is then "plugged” into the AS/400 pane as the
root, using the pane’s constructor or setRoot() method.

When AS/400 pane and VMessageList objects are created, they are initialized to a default state. The list of
messages is not loaded at creation time. To load the contents, the caller must explicitly call the load()
method on either object.

At run-time, a user can perform actions on any message through the pop-up menu. The following action is
available for messages:

* Properties - displays properties such as the severity, type, and date.

The caller can prevent the user from performing actions by using the setAllowActions() method on the
pane.

The following example creates a VMessagelist for the messages generated by a command call and
presents it in an AS400DetailsPane:
// Create the VMessagelList object.
// Assume that "command" is a
// CommandCall object created and run
// elsewhere.
VMessagelList root = new VMessagelist (command.getMessagelist ());
// Create and Toad an AS400DetailsPane
// object.
AS400DetailsPane detailsPane = new AS400DetailsPane (root);
detailsPane.load ();
// Add the details pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (detailsPane);

Example

Present the list of messages generated by a command call using an AS400DetailsPane with a
VMessagelList object.

The following image shows the VMessagelList graphical user interface component:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Message queues

A VMessageQueue object is a resource that represents the messages in an AS/400 message queue for
use in AS/400 panes.

To use a VMessageQueue, set the system and path properties. These properties can be set using a
constructor or through the setSystem() and setPath() methods. The VMessageQueue object is then
"plugged” into the AS/400 pane as the root, using the pane’s constructor or setRoot() method.

VMessageQueue has some other useful properties for defining the set of messages that are presented in

AS/400 panes. Use setSeverity() to specify the severity of messages that should appear. Use
setSelection() to specify the type of messages that should appear.

Chapter 5. Graphical user interface classes 109

When AS/400 pane and VMessageQueue objects are created, they are initialized to a default state. The
list of messages is not loaded at creation time. To load the contents, the caller must explicitly call the
load() method on either object. This will initiate communication to the AS/400 system to gather the
contents of the list.

At run-time, a user can perform actions on any message queue or message through the pop-up menu.
The following actions are available for message queues:

* Clear - clears the message queue.

* Properties - allows the user to set the severity and selection properties. This may be used to change
the contents of the list.

The following action is available for messages on a message queue:

* Remove - removes the message from the message queue.

* Reply - replies to an inquiry message.

» Properties - displays properties such as the severity, type, and date.

Of course, users can only access message queues to which they are authorized. In addition, the caller can
prevent the user from performing actions by using the setAllowActions() method on the pane.

The following example creates a VMessageQueue and presents it in an AS400ExplorerPane:

// Create the VMessageQueue object.

// Assume that "system" is an AS400

// object created and initialized

// elsewhere.
VMessageQueue root = new VMessageQueue (system, "/QSYS.LIB/MYLIB.LIB/MYMSGQ.MSGQ");

// Create and load an

// AS400ExplorerPane object.
AS400ExpTorerPane explorerPane = new AS400ExplorerPane (root);
explorerPane.load ();

// Add the explorer pane to a frame.

// Assume that "frame" is a JFrame

// created elsewhere.
frame.getContentPane ().add (explorerPane);

Example

Present the list of messages in a message queue using an AS400ExplorerPane with a VMessageQueue
object.

The following image shows the VMessageQueue graphical user interface component;

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Network Print

The network print graphical user interface components allow a Java program to present lists of AS/400
network print resources in a graphical user interface.

The following components are available:

* A VPrinters object is a resource that represents a list of printers for use in AS/400 panes.

* A VPrinter object is a resource that represents a printer and its spooled files for use in AS/400 panes.
* A VPrinterOutput object is a resource that represents a list of spooled files for use in AS/400 panes.

* A SpooledFileViewer object is a resource that visually represents spooled files.

110 AS/400 Toolbox for Java

AS/400 panes are graphical user interface components that present and allow manipulation of one or more
AS/400 resources. VPrinters, VPrinter, and VPrinterOutput objects are resources that represent lists of
AS/400 network print resources in AS/400 panes.

AS/400 pane, VPrinters, VPrinter, and VPrinterOutput objects can be used together to present many views
of network print resources and to allow the user to select and perform operations on them.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
VPrinters

A VPrinters object is a resource that represents a list of printers for use in AS/400 panes.

To use a VPrinters object, set the system property. Set this property by using a constructor or through the
setSystem() method. The VPrinters object is then "plugged” into the AS/400 pane as the root, using the
pane’s constructor or setRoot() method.

A VPrinters object has another useful property for defining the set of printers that is presented in AS/400
panes. Use setPrinterFilter() to specify a filter that defines which printers should appear.

When AS/400 pane and VPrinters objects are created, they are initialized to a default state. The list of
printers has not been loaded. To load the contents, the caller must explicitly call the load() method on
either object.

At run-time, a user can perform actions on any printer list or printer through the pop-up menu. The
following action is available for printer lists:

* Properties - allows the user to set the printer filter property. This may be used to change the contents of
the list.

The following actions are available for printers in a printer list:

* Hold - holds the printer.

* Release - releases the printer.

» Start - starts the printer.

» Stop - stops the printer.

* Make available - makes the printer available.

* Make unavailable - makes the printer unavailable.

» Properties - displays properties of the printer and allows the user to set filters.

Users can only access printers to which they are authorized. In addition, the caller can prevent the user
from performing actions by using the setAllowActions() method on the pane.

The following example creates a VPrinters object and presents it in an AS400TreePane

// Create the VPrinters object.
// Assume that "system" is an AS400
// object created and initialized
// elsewhere.
VPrinters root = new VPrinters (system);
// Create and load an AS400TreePane
// object.
AS400TreePane treePane = new AS400TreePane (root);
treePane.load ();
// Add the tree pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (treePane);

Chapter 5. Graphical user interface classes 111

Example

Present network print resources using an AS400ExplorerPane with a VPrinters object.

The following image shows the VPrinters graphical user interface component:

[Information Center Home Page | Feedback]

HHHHTTH T e nnnn

I

/I VPrinters example. This program presents various network
/I print resources with an explorer pane.

I

/I Command syntax:

1 VPrintersExample system

I

HHHHTTH T T T nn§n

I

/I This source is an example of AS/400 Toolbox for Java "VPrinters”.

/I 1BM grants you a nonexclusive license to use this as an example
/I from which you can generate similar function tailored to

/I your own specific needs.

1

/I This sample code is provided by IBM for illustrative purposes
/I only. These examples have not been thoroughly tested under all
/I conditions. IBM, therefore, cannot guarantee or imply

/I reliability, serviceability, or function of these programs.

1

/I All programs contained herein are provided to you "AS IS”

/I without any warranties of any kind. The implied warranties of
/I merchantablility and fithess for a particular purpose are

Il expressly disclaimed.

1l

/I AS/400 Toolbox for Java

/I (C) Copyright IBM Corp. 1997, 1998

/I All rights reserved.

/I US Government Users Restricted Rights -

/I Use, duplication, or disclosure restricted

I/l by GSA ADP Schedule Contract with IBM Corp.

1

o

import com.ibm.as400.access.*;

import com.ibm.as400.vaccess.*;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class VPrintersExample

{
public static void main (String[] args)
{
/I If a system was not specified, then display help text and
Il exit.
if (args.length 1= 1)
{

System.out.printin("Usage: VPrintersExample system”);
return;

112 AS/400 Toolbox for Java

[Legal | AS/400 Glossary]

/Il Create an AS400 object. The system name was passed
/I as the first command line argument.
AS400 system = new AS400 (args[0]);
/I Create a VPrinters object which represents the list
/I of printers attached to the system.
VPrinters printers = new VPrinters (system);
/I Create a frame.
JFrame f = new JFrame ("VPrinters example”);
/I Create an error dialog adapter. This will display
/I any errors to the user.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);
/I Create an explorer pane to present the network print resources.
/I Use load to load the information from the system.
AS400ExplorerPane explorerPane = new AS400ExplorerPane (printers);
explorerPane.addErrorListener (errorHandler);

explorerPane.load ();
/I When the frame closes, exit.
f.addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent event)

{
}

System.exit (0);

D

/I Layout the frame with the explorer pane.
f.getContentPane ().setLayout (new BorderLayout ());
f.getContentPane ().add ("Center”, explorerPane);
f.pack ();

f.show ();

catch (Exception e)

try
}
{
}
}
}
VPrinter

System.out.printin ("Error: " + e.getMessage ());
System.exit (0);

A VPrinter object is a resource that represents an AS/400 printer and its spooled files for use in AS/400

panes.

To use a VPrinter, set the printer property. Set this property by using a constructor or through the
setPrinter() method. The VPrinter object is then "plugged” into the AS/400 pane as the root, using the

pane’s constructor or setRoot() method.

When AS/400 pane and VPrinter objects are created, they are initialized to a default state. The printer’s
attributes and list of spooled files are not loaded at creation time.

To load the contents, the caller must explicitly call the load() method on either object. This will initiate

communication to the AS/400 system to gather the contents of the list.

Chapter 5. Graphical user interface classes

113

At run-time, a user can perform actions on any printer or spooled file through the pop-up menu. The
following actions are available for printers:

* Hold - holds the printer.

* Release - releases the printer.

» Start - starts the printer.

» Stop - stops the printer.

* Make available - makes the printer available.

* Make unavailable - makes the printer unavailable.

» Properties - displays properties of the printer and allows the user to set filters.

The following actions are available for spooled files listed for a printer:

* Reply - replies to the spooled file.

» Hold - holds the spooled file.

* Release - releases the spooled file.

» Print next - prints the next spooled file.

* Send - sends the spooled file.

* Move - moves the spooled file.

* Delete - deletes the spooled file.

» Properties - displays many properties of the spooled file and allows the user to change some of them.

Users can only access printers and spooled files to which they are authorized. In addition, the caller can
prevent the user from performing actions by using the setAllowActions() method on the pane.

The following example creates a VPrinter and presents it in an AS400ExplorerPane:

// Create the VPrinter object.

// Assume that "system" is an AS400

// object created and initialized

// elsewhere.
VPrinter root = new VPrinter (new Printer (system, "MYPRINTER"));

// Create and load an

// AS400ExplorerPane object.
AS400ExpTlorerPane explorerPane = new AS400ExplorerPane (root);
explorerPane.load ();

// Add the explorer pane to a frame.

// Assume that "frame" is a JFrame

// created elsewhere.
frame.getContentPane ().add (explorerPane);

Example

Present network print resources using an AS400ExplorerPane with a VPrinter object.

The following image shows the VPrinter graphical user interface component:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

VPrinter Example
HTT1110117111111111171111111111711111111117111111111171111111111
//

// VPrinter example. This program presents a printer and its spooled
// files in an explorer pane.

/1

// Command syntax:

// VPrinterExample system

//

114 AS/400 Toolbox for Java

;;///

// This source is an example of AS/400 Toolbox for Java "VPrinter".
// IBM grants you a nonexclusive license to use this as an example
// from which you can generate similar function tailored to
// your own specific needs.
//
// This sample code is provided by IBM for illustrative purposes
// only. These examples have not been thoroughly tested under all
// conditions. IBM, therefore, cannot guarantee or imply
// reliability, serviceability, or function of these programs.
//
// A1l programs contained herein are provided to you "AS IS"
// without any warranties of any kind. The implied warranties of
// merchantablility and fitness for a particular purpose are
// expressly disclaimed.
//
// AS/400 Toolbox for Java
// (C) Copyright IBM Corp. 1997, 1998
// A1l rights reserved.
// US Government Users Restricted Rights -
// Use, duplication, or disclosure restricted
// by GSA ADP Schedule Contract with IBM Corp.
//
[ITTETIITETIEE L7 inriirriiiiiieriiiiiiiriiiliieilieiiiiieiiii
import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;
import javax.swing.=*;
import java.awt.=;
import java.awt.event.x;
public class VPrinterExample
{
public static void main (String[] args)
{
// 1f the user does not supply a printer name then show printer information
// for a printer called 0S2VPRT;
String printerName = "OS2VPRT";
// 1f a system was not specified, then display help text and
// exit.
if (args.length == 0)

System.out.printin("Usage: VPrinterExample system printer");

return;
}
// 1f the user specified a name, use it instead of the default.
if (args.length > 1)

printerName = args[1];
try
{

// Create an AS400 object. The system name was passed

// as the first command Tine argument.

AS400 system = new AS400 (args[0]);

// Create a Printer object (from the Toolbox access package)

// which represents the printer, then create a VPrinter

// object to graphically show the spooled files on the printer.

Printer printer = new Printer(system, printerName);

VPrinter vprinter = new VPrinter(printer);

// Create a frame to hold our window.

JFrame f = new JFrame ("VPrinter Example");

// Create an error dialog adapter. This will display

// any errors to the user.

ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);

// Create an explorer pane to present the printer and its spooled

// files. Use Toad to load the information from the system.

AS400ExpTlorerPane explorerPane = new AS400ExplorerPane (vprinter);

explorerPane.addErrorListener (errorHandler);

explorerPane.load ();

Chapter 5. Graphical user interface classes

115

// When the frame closes, exit.
f.addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent event)

{

}
1
// Layout the frame with the explorer pane.
f.getContentPane ().setlLayout (new BorderLayout ());
f.getContentPane ().add ("Center", explorerPane);
f.pack ();
f.show ();

System.exit (0);

catch (Exception e)

{
System.out.printin ("Error: " + e.getMessage ());
System.exit (0);

}

}
Printer output

A VPrinterOutput object is a resource that represents a list of spooled files on an AS/400 for use in AS/400
panes.

To use a VPrinterOutput object, set the system property. This property can be set using a constructor or
through the setSystem() method. The VPrinterOutput object is then "plugged” into the AS/400 pane as the
root, using the pane’s constructor or setRoot() method.

A VPrinterOutput object has other useful properties for defining the set of spooled files that is presented in
AS/400 panes. Use setFormTypeFilter() to specify which types of forms should appear. Use
setUserDataFilter() to specify which user data should appear. Finally, use setUserFilter() to specify which
users spooled files should appear.

When AS/400 pane and VPrinterOutput objects are created, they are initialized to a default state. The list
of spooled files is not loaded at creation time. To load the contents, the caller must explicitly call the load()
method on either object. This will initiate communication to the AS/400 system to gather the contents of
the list.

At run-time, a user can perform actions on any spooled file or the spooled file list through the pop-up
menu. The following action is available for spooled file lists:

* Properties - Allows the user to set the filter properties. This may be used to change the contents of the
list.

The following actions are available for spooled files:

* Reply - replies to the spooled file.

* Hold - holds the spooled file.

* Release - releases the spooled file.

» Print next - prints the next spooled file.

* Send - sends the spooled file.

* Move - moves the spooled file.

* Delete - deletes the spooled file.

» Properties - displays many properties of the spooled file and allows the user to change some of them.

Of course, users can only access spooled files to which they are authorized. In addition, the caller can
prevent the user from performing actions by using the setAllowActions() method on the pane.

116 AS/400 Toolbox for Java

The following example creates a VPrinterOutput and presents it in an AS400ListPane:

// Create the VPrinterOutput object.
// Assume that "system" is an AS400
// object created and initialized
// elsewhere.
VPrinterQutput root = new VPrinterOutput (system);
// Create and load an AS400ListPane
// object.
AS400ListPane TistPane = new AS400ListPane (root);
listPane.load ();
// Add the Tist pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (listPane);

Example
Present a list of spooled files by using the network print resource, VPrinterOutput object.

The following image shows the VPrinterOutput graphical user interface component:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

VPrinterOutput Example
%//

// VPrinterQutput example. This program presents a list of spooled
// files on the AS/400. A11 spooled files, or spooled files for

// a specific user can be displayed.

//

// Command syntax:

// VPrinterOQutputExample system <user>

// (User is optional, if not specified all spooled files on the system
// will be displayed. Caution - listing all spooled files on the system
// and take a Tong time)

//

[ITITTTTIETIE L1 riiiiiilrriieillliieeirllliieiililiiiili
//

// This source is an example of AS/400 Toolbox for Java "VPrinterOutput".
// IBM grants you a nonexclusive license to use this as an example
// from which you can generate similar function tailored to

// your own specific needs.

//

// This sample code is provided by IBM for illustrative purposes
// only. These examples have not been thoroughly tested under all
// conditions. IBM, therefore, cannot guarantee or imply

// reliability, serviceability, or function of these programs.

//

// A11 programs contained herein are provided to you "AS IS"

// without any warranties of any kind. The implied warranties of
// merchantablility and fitness for a particular purpose are

// expressly disclaimed.

//

// AS/400 Toolbox for Java

// (C) Copyright IBM Corp. 1997, 1998

// A1l rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted

// by GSA ADP Schedule Contract with IBM Corp.

//
LTI LTI I T 211010111111111111711117

import com.ibm.as400.access.*;
import com.ibm.as400.vaccess.*;

Chapter 5. Graphical user interface classes

117

import javax.swing.*;
import java.awt.=;
import java.awt.event.x;
public class VPrinterQutputExample
{
public static void main (String[] args)
{
// If a system was not specified, display help text and exit.
if (args.length == 0)

System.out.printin("Usage: VPrinterOutputExample system <user>");
return;

// Create an AS400 object. The system name was passed
// as the first command Tine argument.
AS400 system = new AS400 (args[0]);
system.connectService(AS400.PRINT);
// Create the VPrinterQutput object.
VPrinterOutput printerQutput = new VPrinterOutput(system);
// If a user was specified as a command 1ine parameter, tell
// the printerObject to get spooled files only for that user.
if (args.length > 1)

printerQutput.setUserFilter(args[1]);
// Create a frame to hold our window.
JFrame f = new JFrame ("VPrinterOutput Example");
// Create an error dialog adapter. This will display
// any errors to the user.
ErrorDialogAdapter errorHandler = new ErrorDialogAdapter (f);
// Create an details pane to present the list of spooled files.
// Use load to load the information from the system.
AS400DetailsPane detailsPane = new AS400DetailsPane (printerOutput);
detailsPane.addErrorListener (errorHandler);
detailsPane.load ();
// When the frame closes, exit.
f.addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent event)

{

}
1
// Layout the frame with the details pane.
f.getContentPane ().setlLayout (new BorderLayout ());
f.getContentPane ().add ("Center", detailsPane);
f.pack ();
f.show ();

System.exit (0);

catch (Exception e)

{
System.out.printin ("Error: " + e.getMessage ());
System.exit (0);

}

Permission

The Permission information can be used in a graphical user interface (GUI) through the VIFSFile and
VIFSDirectory classes. Permission has been added as an action in each of these classes.

The following example shows how to use Permission with the VIFSDirectory class:

// Create AS400 object
AS400 as400 = new AS400();
// Create an IFSDirectory using the system name

118 AS/400 Toolbox for Java

// and the full path of a QSYS object

VIFSDirectory directory = new VIFSDirectory(as400,
"/QSYS.LID/test1libl.1ib");

// Create as explorer Pane

AS400ExplorerPane pane = new AS400ExplorerPane((VNode)directory);

// Load the information

pane.load();

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Program call

The program call graphical user interface components allow a Java program to present a button or menu
item that calls an AS/400 program. Input, output, and input/output parameters can be specified using
ProgramParameter objects. When the program runs, the output and input/output parameters contain data
returned by the AS/400 program.

A ProgramCallButton object represents a button that calls an AS/400 program when pressed. The
ProgramCallButton class extends the Java Foundation Classes (JFC) JButton class so that all buttons
have a consistent appearance and behavior.

Similarly, a ProgramCallMenultem object represents a menu item that calls an AS/400 program when
selected. The ProgramCallMenultem class extends the JFC JMenultem class so that all menu items also
have a consistent appearance and behavior.

To use a program call graphical user interface component, set both the system and program properties.
Set these properties by using a constructor or through the setSystem() and setProgram() methods.

The following example creates a ProgramCallMenultem. At run time, when the menu item is selected, it
calls a program:

// Create the ProgramCallMenultem
// object. Assume that "system" is
// an AS400 object created and
// initialized elsewhere. The menu
// item text says "Select Me", and
// there is no icon.
ProgramCallMenultem menultem = new ProgramCallMenultem ("Select Me", null, system);
// Create a path name object that
// represents program MYPROG in
// Tibrary MYLIB
QSYSObjectPathName programName = new QSYSObjectPathName("MYLIB", "MYPROG", "PGM");
// Set the name of the program.
menultem.setProgram (programName.getPath());
// Add the menu item to a menu.
// Assume that the menu was created
// elsewhere.
menu.add (menultem);

When an AS/400 program runs, it may return zero or more AS/400 messages. To detect when the AS/400
program runs, add an ActionCompletedListener to the button or menu item using the
addActionCompletedListener() method. When the program runs, it fires an ActionCompletedEvent to all
such listeners. A listener can use the getMessageList() method to retrieve any AS/400 messages that the
program generated.

This example adds an ActionCompletedListener that processes all AS/400 messages that the program
generated:

// Add an ActionCompletedListener

// that is implemented by using an

// anonymous inner class. This is a

// convenient way to specify simple

Chapter 5. Graphical user interface classes 119

// event listeners.
menultem.addActionCompletedListener (new ActionCompletedListener ()
{
public void actionCompleted (ActionCompletedEvent event)
{
// Cast the source of the event to a
// ProgramCallMenultem.
ProgramCallMenultem sourceMenultem = (ProgramCallMenultem) event.getSource ();
// Get the Tist of AS/400 messages
// that the program generated.
AS400Message[] messagelList = sourceMenultem.getMessagelList ();
// ... Process the message list.
1
1

Parameters

ProgramParameter objects are used to pass parameter data between the Java program and the AS/400
program. Input data is set with the setlnputData() method. After the program is run, output data is retrieved
with the getOutputData() method.

Each parameter is a byte array. It is up to the Java program to convert the byte array between Java and
AS/400 formats. The data conversion classes provide methods for converting data.

You can add parameters to a program call graphical user interface component one at a time using the
addParameter() method or all at once using the setParameterList() method.

For more information about using ProgramParameter objects, see the ProgramCall access class.

The following example adds two parameters:

// The first parameter is a String

// name of up to 100 characters.

// This is an input parameter.

// Assume that "name" is a String

// created and initialized elsewhere.
AS400Text parmlConverter = new AS400Text (100, system.getCcsid (), system);
ProgramParameter parml = new ProgramParameter (parmlConverter.toBytes (name));
menultem.addParameter (parml);

// The second parameter is an Integer

// output parameter.
AS400Bin4 parm2Converter = new AS400Bind ();
ProgramParameter parm2 = new ProgramParameter (parm2Converter.getBytelLength ());
menultem.addParameter (parm2);

// ... after the program is called,

// get the value returned as the

// second parameter.
int result = parm2Converter.toInt (parm2.getOutputData ());

Examples
Example of using a ProgramCallButton in an application.

The following image shows how the ProgramcCallButton looks:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

120 AS/400 Toolbox for Java

Record-Level Access

The record-level access graphical user interface components allow a Java program to present various
views of AS/400 files.

The following components are available:

» RecordListFormPane presents a list of records from an AS/400 file in a form.

* RecordListTablePane presents a list of records from an AS/400 file in a table.

» RecordListTableModel manages the list of records from an AS/400 file for a table.

Keyed access

You can use the record-level access graphical user interface components with keyed access to an AS/400
file. Keyed access means that the Java program can access the records of a file by specifying a key.

Keyed access works the same for each record-level access graphical user interface component. Use
setKeyed() to specify keyed access instead of sequential access. Specify a key using the constructor or
the setKey() method. See Specifying the key for more information about how to specify the key.

By default, only records whose keys are equal to the specified key are displayed. To change this, specify
the searchType property using the constructor or setSearchType() method. Possible choices are as
follows:

* KEY_EQ - Display records whose keys are equal to the specified key.

 KEY_GE - Display records whose keys are greater than or equal to the specified key.
* KEY_GT - Display records whose keys are greater than the specified key.

* KEY_LE - Display records whose keys are less than or equal to the specified key.

« KEY_LT - Display records whose keys are less than the specified key.

The following example creates a RecordListTablePane object to display all records less than or equal to a
key.

// Create a key that contains a
// single element, the Integer 5.
Object[] key = new Object[1];
key[0] = new Integer (5);
// Create a RecordListTablePane
// object. Assume that "system" is an
// AS400 object that is created and
// initialized elsewhere. Specify
// the key and search type.
RecordListTablePane tablePane = new RecordListTablePane (system,
"/QSYS.LIB/QGPL.LIB/PARTS.FILE", key, RecordListTablePane.KEY_LE);
// Load the file contents.
tablePane.load ();
// Add the table pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (tablePane);

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Record list form panes

A RecordListFormPane presents the contents of an AS/400 file in a form. The form displays one record at
a time and provides buttons that allow the user to scroll forward, backward, to the first or last record, or
refresh the view of the file contents.

Chapter 5. Graphical user interface classes 121

To use a RecordListFormPane, set the system and fileName properties. Set these properties by using the
constructor or the setSystem() and setFileName() methods. Use load() to retrieve the file contents and
present the first record. When the file contents are no longer needed, call close() to ensure that the file is
closed.

The following example creates a RecordListFormPane object and adds it to a frame:

// Create a RecordListFormPane

// object. Assume that "system" is

// an AS400 object that is created

// and initialized elsewhere.
RecordListFormPane formPane = new RecordListFormPane (system, "/QSYS.LIB/QIWS.LIB/QCUSTCDT.FILE");

// Load the file contents.
formPane.load ();

// Add the form pane to a frame.

// Assume that "frame" is a JFrame

// created elsewhere.
frame.getContentPane ().add (formPane);

Example
Present an RecordListFormPane which displays the contents of a file.

The following image shows the RecordListFormPane graphical user interface component:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Record list table panes

A RecordListTablePane presents the contents of an AS/400 file in a table. Each row in the table displays a
record from the file and each column displays a field.

To use a RecordListTablePane, set the system and fileName properties. Set these properties by using the
constructor or the setSystem() and setFileName() methods. Use load() to retrieve the file contents and
present the records in the table. When the file contents are no longer needed, call close() to ensure that
the file is closed.

The following example creates a RecordListTablePane object and adds it to a frame:

// Create an RecordlListTablePane
// object. Assume that "system" is
// an AS400 object that is created
// and initialized elsewhere.
RecordListTablePane tablePane = new RecordListTablePane (system, "/QSYS.LIB/QIWS.LIB/QCUSTCDT.FILE");
// Load the file contents.
tablePane.load ();
// Add the table pane to a frame.
// Assume that "frame" is a JFrame
// created elsewhere.
frame.getContentPane ().add (tablePane);

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Record list table models

RecordListTablePane is implemented using the model-view-controller paradigm, in which the data and the
user interface are separated into different classes. The implementation integrates RecordListTableModel
with Java Foundation Classes’ (JFC) JTable. The RecordListTableModel class retrieves and manages the
contents of the file and JTable displays the file contents graphically and handles user interaction.

122 AS/400 Toolbox for Java

RecordListTablePane provides enough functionality for most requirements. However, if a caller needs more
control of the JFC component, then the caller can use RecordListTableModel directly and provide
customized integration with a different graphical user interface component.

To use a RecordListTableModel, set the system and fileName properties. Set these properties by using the
constructor or the setSystem() and setFileName() methods. Use load() to retrieve the file contents. When
the file contents are no longer needed, call close() to ensure that the file is closed.

The following example creates a RecordListTableModel object and presents it with a JTable:

// Create a RecordListTableModel

// object. Assume that "system" is

// an AS400 object that is created

// and initialized elsewhere.
RecordListTableModel tableModel = new RecordListTableModel (system, "/QSYS.LIB/QIWS.LIB/QCUSTCDT.FILE");

// Load the file contents.
tableModel.load ();

// Create a JTable for the model.
JTable table = new JTable (tableModel);

// Add the table to a frame. Assume

// that "frame" is a JFrame

// created elsewhere.
frame.getContentPane ().add (table);

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

System status

The System Status graphical user interface (GUI) components allow you to create GUIs by using the
existing AS/400 Panes. You also have the option to create your own GUIs using the Java Foundation
Classes (JFC). The VSystemStatus object represents a system status on the AS/400. The VSystemPool
object represents a system pool on the AS/400. The VSystemStatusPane represents a visual pane that
displays the system status information.

The VSystemStatus class allows you to get information about the status of an AS/400 session within a
graphical user interface (GUI) environment. Some of the possible pieces of information you can get are
listed below:

* The getSystem() method returns the AS/400 system where the system status information is contained
* The getText() method returns the description text
* The setSystem() method sets the AS/400 where the system status information is located

In addition to the methods mentioned above, you can also access and change system pool information in
a graphic interface.

You use VSystemStatus with VSystemStatusPane. VSystemPane is the visual display pane where
information is shown for both system status and system pool.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

System pool

The VSystemPool class allows you to retrieve and set system pool information from an AS/400 using a
graphical user interface design. VSystemPool works with various panes in the vaccess package including
the VSystemStatusPane.

Some of the methods that are available to use in VSystemPool are listed below:
* The getActions() method returns a list of actions that you can perform

Chapter 5. Graphical user interface classes 123

* The getSystem() method returns the AS/400 system where the system pool information is found
* The setSystemPool() method sets the system pool object

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

System status pane

The VSystemStatusPane class allows a Java program to display system status and system pool
information.

VSystemStatusPane includes the following methods:
* getVSystemsStatus(): Returns the VSystemsStatus information in a VSystemStatusPane.
» setAllowModifyAllPools(): Sets the value to determine if system pool information can be modified.

The following example shows you how to use the VSystemStatusPane class:

// Create an as400 object.

AS400 mySystem = new AS400("mySystem.myCompany.com");

// Create a VSystemStatusPane

VSystemStatusPane myPane = new VSystemStatusPane(mySystem);
// Set the value to allow pools to be modified
myPane.setAllowModifyAl1Pools(true);

//Load the information

myPane.load();

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

System values

The system value graphical user interface (GUI) components allow a Java program to create GUIs by
using the existing AS400 Panes or by creating your own panes using the Java Foundation Classes(JFC).
The VSystemValueList object represents a system value list on the AS/400.

To use the System Value GUI component, set the system name with a constructor or through the
setSystem() method.

Example

The following example creates a system value GUI using the AS400Explorer Pane:

//Create an AS400 object

AS400 mySystem = newAS400("mySystem.myCompany.com");
VSystemValueList mySystemValuelList = new VSystemValuelist(mySystem);
as400Panel=new AS400ExplorerPane((VNode)mySystemValueList);

//Create and load an AS400ExplorerPane object

as400Panel.load();

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Users and groups

The users and groups graphical user interface components allow you to present lists of AS/400 users and
groups through the VUser class.

The following components are available:

» AS/400 panes are graphical user interface components that present and allow manipulation of one or
more AS/400 resources.

124 AS/400 Toolbox for Java

* A VUserList object is a resource that represents a list of AS/400 users and groups for use in AS/400
panes.

* A VUserAndGroup object is a resource for use in AS/400 panes that represents groups of AS/400 users.
It allows a Java program to list all users, list all groups, or list users who are not in groups.

AS/400 panes and VUserList objects can be used together to present many views of the list. They can
also be used to allow the user to select users and groups.

To use a VUserList, you must first set the system property. Set this property by using a constructor or
through the setSystem() method. The VUserList object is then "plugged” into the AS/400 pane as the root,
using the pane’s constructor or setRoot() method.

VUserList has some other useful properties for defining the set of users and groups that are presented in
AS/400 panes:

» Use the setUserInfo() method to specify the types of users that should appear.
» Use the setGrouplnfo() method to specify a group name.

You can use the VUserAndGroup object to get information about the Users and Groups on the system.
Before you can get information about a particular object, you need to load the information so that it can be
accessed. You can display the AS/400 system in which the information is found by using the getSystem
method.

When AS/400 pane objects and VUserList or VUserAndGroup objects are created, they are initialized to a
default state. The list of users and groups has not been loaded. To load the contents, the Java program
must explicitly call the load() method on either object to initiate communication to the AS/400 system to
gather the contents of the list.

At run-time, you can perform actions on any user list, user, or group through the pop-up menu.

The following action is available for users:

* Properties - displays a list of user information including the description, user class, status, job
description, output information, message information, international information, security information, and
group information.

The following menu item is available for user lists:

* Properties - allows the user to set the user information and group information properties. This may be
used to change the contents of the list.

The following action is available for users and groups:
» Properties - displays properties such as the user name and description.

Users can only access users and groups to which they are authorized. In addition, the Java program can
prevent the user from performing actions by using the setAllowActions() method on the pane.

The following example creates a VUserList and presents it in an AS400DetailsPane:

// Create the VUserList object.

// Assume that "system" is an AS400

// object created and initialized

// elsewhere.

VUserList root = new VUserList (system);

// Create and load an

// AS400DetailsPane object.

AS400DetailsPane detailsPane = new AS400DetailsPane (root);
detailsPane.load ();

Chapter 5. Graphical user interface classes 125

// Add the details pane to a frame.

// Assume that "frame" is a JFrame

// created elsewhere.
frame.getContentPane ().add (detailsPane);

The following example shows how to use the VUserAndGroup object:

// Create the VUserAndGroup object.

// Assume that "system" is an AS/400 object created and initialized elsewhere.
VUserAndGroup root = new VUserAndGroup(system);

// Create and Load an AS/400ExplorerPane

AS400ExpTlorerPane explorerPane = new AS400ExplorerPane(root);
explorerPane.load();

// Add the explorer pane to a frame

// Assume that "frame" is a JFrame created elsewhere
frame.getContentPane().add(explorerPane);

Other Examples
Present a list of users on the system using an AS400ListPane with a VUserList object.

The following image shows the VUserList graphical user interface component:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

126 AS/400 Toolbox for Java

Chapter 6. Utility classes

Utility classes are classes that help you do specific tasks. For VAR5, AS/400 Toolbox for Java offers the

following utilities:

* AS400ToolboxInstaller - Allows you to install and update AS/400 Toolbox for Java classes on the client.
This function is available both as a Java program and has an application programming interface(API).

* AS400ToolboxJarMaker - Generates a faster loading Java Toolbox JAR file by creating a smaller JAR
file from a larger one, or by selectively unzipping a JAR file to gain access to the individual content files.

» JavaApplicationCall - Allows you to run a Java program on the AS/400 from a command line prompt or
graphical user interface.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Client installation and update classes

The AS/400 Toolbox for Java classes can be referenced at their location in the integrated file system on
the AS/400. Because program temporary fixes (PTFs) are applied to this location, Java programs that
access these classes directly on the AS/400 system automatically receive these updates. Accessing the
classes from the AS/400 does not work for every situation, specifically those listed below:

* If a low-speed communication link connects AS/400 and the client, the performance of loading the
classes from the AS/400 may be unacceptable.

« |If Java applications use the CLASSPATH environment variable to access the classes on the client
file system, you need AS/400 Client Access to redirect file system calls to the AS/400. It may not
be possible for AS/400 Client Access to reside on the client.

In these cases, installing the classes on the client is a better solution. The AS400ToolboxInstaller
class provides client installation and update functions to manage AS/400 Toolbox for Java classes
when they reside on a client.

Using the AS400ToolboxInstaller

You can invoke the AS400ToolboxInstaller object in the following ways:
* From within your program
e From a command line

If your Java program uses AS/400 Toolbox for Java functions, you can include the AS400ToolboxInstaller
class as a part of your program. When the Java program is installed or first run, it can use the
AS400ToolboxInstaller class to install the AS/400 Toolbox for Java classes on the client. When the Java
program is restarted, it can use the AS400ToolboxInstaller to update the classes on the client.

Note: If you are using the V3R2 or V3R2M1 version of the AS/400 Toolbox for Java and you want to upgrade to V4R2
or a later version, you must use a V4R2 or later level of the AS400ToolboxInstaller class. You must use this level to
ensure that machine readable information (MRI) stored in .property files in earlier releases of the AS/400 Toolbox for
Java is properly replaced by .class files used in later releases.

The AS400ToolboxInstaller class copies files to the client’s local file system. This class may not work in an
applet; many browsers do not allow a Java program to write to the local file system.

Embedding the AS400ToolboxInstaller class in your program

The AS400ToolboxInstaller class provides the application programming interfaces (APIs) that are
necessary to install, uninstall, and update AS/400 Toolbox for Java classes from within the program on the
client.

© Copyright IBM Corp. 1998, 1999 127

Use the install() method to install or update the AS/400 Toolbox for Java classes. To install or update,
provide the source and target path, and the name of the package of classes in your Java program. The
source URL points to the location of the control files on the server. The directory structure is copied from
the server to the client.

The install() method only copies files; it does not update the CLASSPATH environment variable. If the
install() method is successful, the Java program can call the getClasspathAdditions() method to determine
what must be added to the CLASSPATH environment variable.

The following example shows how to use the AS400ToolboxInstaller class to install files from an AS/400
called "mySystem” to directory "jt400" on drive d:, and then how to determine what must be added to the
CLASSPATH environment variable:

// Install the AS/400 Toolbox for Java
// classes on the client.
URL sourceURL = new URL("http://mySystem.myCompany.com/QIBM/ProdData/HTTP/Public/jt400/");
if (AS400ToolboxInstaller.install(
"ACCESS",
"d:\\jt4e0",
sourceURL))

// 1f the AS/400 Toolbox for Java classes were installed
// or updated, find out what must be added to the
// CLASSPATH environment variable.
Vector additions = AS400ToolboxInstaller.getClasspathAdditions();
// If updates must be made to CLASSPATH
if (additions.size() > 0)
{

}
}

// ... Process each classpath addition

// ... Else no updates were needed.

Use the isInstalled() method to determine if the AS/400 Toolbox for Java classes are already installed on
the client. Using the isInstalled() method allows you to determine if you want to complete the install now or
postpone it to a more convenient time.

The install() method both installs and updates files on the client. A Java program can call the
isUpdateNeeded() method to determine if an update is needed before calling install().

Use the unlinstall() method to remove the AS/400 Toolbox for Java classes from the client. The uninstall
method only removes files; the CLASSPATH environment variable is not changed. Call the
getClasspathRemovals() method to determine what can be removed from the CLASSPATH environment
variable.

For more examples of how to install and update the AS400ToolboxInstaller class within a program on the
client workstation, refer to the Install/Update example.

Running the AS400ToolboxInstaller class from the command line

The AS400ToolboxInstaller class can be used as a stand-alone program, run from the command line.
Running the AS400ToolboxInstaller from the command line means you do not have to write a program.
Instead, you run it as a Java application to install, uninstall, or update the AS/400 Toolbox for Java
classes.

Specifying the appropriate install, uninstall, or compare option, invoke the AS400ToolboxInstaller class with
the following command:

java utilities.AS400ToolboxInstaller [options]

128 AS/400 Toolbox for Java

The -source option indicates where the AS/400 Toolbox for Java classes can be found and -target
indicates where the AS/400 Toolbox for Java classes are to be stored on the client.

Options are also available to install the entire toolbox or just certain functions. For instance, an option
exists to install just the proxy classes of AS/400 Toolbox for Java.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

AS400ToolboxJarMaker

While the JAR file format was designed to speed up the downloading of Java program files, the
AS400ToolboxJarMaker class generates an even faster loading Java Toolbox JAR file through its ability to
create a smaller JAR file from a larger one.

Also, the AS400ToolboxJarMaker class can unzip a JAR file for you to gain access to the individual
content files for basic use.

Flexibility of AS400ToolboxJarMaker

All of the AS400ToolboxJarMaker functions are performed with the AS400ToolboxJarMaker class and the
AS400ToolboxJarMaker subclass:

* The generic JarMaker tool operates on any JAR or Zip file; it splits a jar file or reduces the size of a jar
file by removing classes that are not used.

* The AS400ToolboxJarMaker customizes and extends AS400ToolboxJarMaker functions for easier use
with AS/400 Toolbox for Java JAR files.

According to your needs, you can invoke the AS400ToolboxJarMaker methods from within your own Java
program or as a standalone program (java utilities.JarMaker [options]). For a complete set of options
available to run at a command line prompt, see the following:

» Options for the JarMaker base class
» Extended options for the AS/400 ToolboxJarMaker subclass

Using AS400ToolboxJarMaker
Uncompressing a JAR file

Suppose you wanted to uncompress just one file bundled within a JAR file. AS400ToolboxJarMaker allows
you to expand the file into one of the following:

» Current directory (extract(jarFile))
* Another directory (extract(jarFile, outputDirectory))

For example, with the following code, you are extracting AS400.class and all of its dependent classes from
jt400.jar:

java utilities.AS400ToolboxJarMaker -source jt400.jar
-extract outputDir
-requiredFile com/ibm/as400/access/AS400.class
Splitting up a single JAR file into multiple, smaller JAR files

Suppose you wanted to split up a large JAR file into smaller JAR files, according to your preference for
maximum JAR file size. AS400ToolboxJarMaker, accordingly, provides you with the split(jarFile, splitSize)
function.

In the following code, jt400.jar is split into a set of smaller JAR files, none larger than 300K:

Chapter 6. Utility classes 129

java utilities.AS400TooTlboxJarMaker -split 300
Removing unused files from a JAR file

With the AS/400ToolboxJarMaker subclass of JarMaker, you can exclude any AS/400 Toolbox for Java files
not needed by your application by selecting only the AS/400 Toolbox for Java components, languages, and
CCsSIDs that you need to make your application run. This extension of AS400ToolboxJarMaker also
provides you with the option of including the JavaBean files associated with the components you have
chosen, or excluding those that are unnecessary.

In the following command, for example, a JAR file is created containing only those Toolbox classes
needed to make the Command Call and Program Call components of the Toolbox work:

java utilities.AS400ToolboxJarMaker -component CommandCall,ProgramCall

Additionally, if it is unnecessary to convert text strings between Unicode and the double byte character set
(DBCS) conversion tables, you can create a 400K byte smaller JAR file by omitting the unneeded
conversion tables with the -ccsid option:

java utilities.AS400ToolboxJarMaker -component CommandCA11,ProgramCall -ccsid 61952

Notes:

1. The conversion table for CCSID 61952 must be included via the -ccsid option when including the integrated file
system classes in the jar file.

2. Conversion classes are not included with the program call classes. When including program call classes the
conversion classes used by your program must also be explicitly included via the -ccsid option.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

RunJavaApplication

The RunJavaApplication and VRunJavaApplication classes are utilities to run Java programs on the Java
virtual machine for AS/400. Unlike JavaApplicationCall and VJavaApplicationCall classes that you call from
your Java program, RunJavaApplication and VRunJavaApplication are complete programs.

The RunJavaApplication class is a command line utility. It lets you set the environment (CLASSPATH and
properties, for example) for the Java program. You specify the name of the Java program and its
parameters, then you start the program. Once started, you can send input to the Java program which it
receives via standard input. The Java program writes output to standard output and standard error.

The VRunJavaApplication utility has the same capabilities. The difference is VJavaApplicationCall uses a
graphical user interface while JavaApplicationCall is a command line interface.

This is an example of the RunJavaApplication class command line syntax, and this demonstrates how you
write a command for running a program with VRunJavaApplication.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

130 AS/400 Toolbox for Java

Chapter 7. Proxy Support

AS/400 Toolbox for Java now has added proxy support for some of the classes. Proxy support is the
processing that AS/400 Toolbox for Java needs to carry out a task on a Java virtual machine other than
the Java virtual machine where the application actually is. Before proxy support, the classes containing the
public interface and all classes to process a request were run in the same Java virtual machine as the
application. With proxy support, only the public interface needs to be with the application. The classes
necessary to process a request are running on another machine. Proxy support does not change the
public interface. The same program can run with either the proxy version of AS/400 Toolbox for Java or
the traditional version.

The goal of the multiple-tier, proxy scenario is to make the downloaded jar file as small as possible so that
downloading this file from an applet takes less time. When you use the proxy classes, the entire AS/400
Toolbox for Java does not need to be installed on the client. To make the smallest jar file possible, use
AS400JarMaker on the proxy jar file to choose only those components you need to make the
jt400Proxy.jar file as small as possible. The chart below compares the size of the proxy jar files with the
traditional jar files:

An additional benefit is that fewer ports have to be open through a firewall to do proxy support. With
traditional AS/400 Toolbox for Java, multiple ports must be open. This is because command call uses a
different port than JDBC, which uses a different port than print, and so on. Each of these ports must be
allowed through the firewall. With proxy support, all the data flows through the same port. The default port
is 3470. You can choose to call the setPort() method to change the port setting or use the -port option
when starting the proxy server:

java com.ibm.as400.access.ProxyServer -port 1234

The jt400Proxy.jar ships with the rest of the traditional AS/400 Toolbox for Java and, like the rest of the
AS/400 Toolbox for Java, the proxy classes are pure Java so they can run on any machine with a Java
virtual machine. The proxy classes dispatch all method calls to a server application, or proxy server. The
full AS/400 Toolbox for Java classes are on the proxy server. When a client uses a proxy class, the
request is transferred to the proxy server which creates and administers the real AS/400 Toolbox for Java
objects.

The following picture shows how the traditional and proxy client connect to the AS/400. The proxy server
can be the AS/400 that the data resides on.

An application using proxy support will perform slower that the same application using traditional AS/400
Toolbox for Java classes. This is due to the extra communication needed to support the smaller proxy
classes. Applications that make fewer method calls will see the least performance degradation.”

How it works

In order to use the proxy server implementation of the AS/400 Toolbox for Java classes, you need to
complete these steps:

1. (Optional) Run AS400ToolboxJarMaker on jt400Proxy.jar to discard classes that you do not need.

2. Determine how to get jt400Proxy.jar to the client. If you are using a Java program, use the
AS400ToolboxInstaller class or another method to get it to the client. If you are using a Java applet,
you may be able to download the jar file from the HTML server.

3. Determine what server you will use for the proxy server. For Java applications, the proxy server can be
any computer. For Java applets, the proxy server must be running on the same computer as the HTTP
server.

4. Start the proxy server, using the command "java com.ibm.as400.access.ProxyServer”

© Copyright IBM Corp. 1998, 1999 131

5. On the client, you need to set system properties.
6. You can now run the client program.

If you want to work with both the proxy classes and classes not in jt400Proxy.jar, you can refer to jt400.jar
instead of jt400Proxy.jar. jt400Proxy.jar is a subset of the jt400.jar and, therefore, all of the Proxy classes
are contained in the jt400.jar file.

We have provided two specific examples for using a proxy server with the steps listed above. The first
shows how to run a Java application using proxy support and the second shows how to run an applet
using proxy support:

* Running a Java application using proxy support
* Running a Java applet using proxy support

Classes available

Some AS/400 Toolbox for Java classes are enabled to work with the proxy server application. These
include the following:

- JDBC

* Record-level database access
* IFS File

* Print

* Data Queues

* Command Call

* Program Call

» Service Program Call
* User spaces

* Data areas

* AS/400 Object

* Secure AS/400 Object

Other classes are not supported at this time by jt400Proxy. Also, integrated file system permissions are not
functional under the proxy jar file. However, you can use the JarMaker class to include these classes from
the jt400.jar file.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Example: Running a Java application using Proxy Support

The following example shows you the steps to run a Java application using proxy support.

1. Choose a machine to act as the proxy server. The Java environment and CLASSPATH on the proxy
server machine should include the jt400.jar file. This machine must have a connection to the AS/400
system.

2. Start the proxy server on this machine by typing:
java com.ibm.as400.access.ProxyServer -verbose
Specifying verbose will allow you to monitor when the client connects and disconnects.

3. Choose a machine to act as the client. The Java environment and CLASSPATH on the client machine
should include the jt400Proxy.jar file and your application classes. This machine must be able to
connect to the proxy server but does not need a connection to the AS/400 system.

4. Set the value of the com.ibm.as400.access.AS400.proxyServer system property to be the name of your
proxy server, and run the application. An easy way to do this is by using the -D option on most Java

132 AS/400 Toolbox for Java

Virtual Machine invocations:
java -Dcom.ibm.as400.access.AS400.proxyServer=psMachineName YourApplication

As your application runs, you should see (if you set verbose in step 2) the application make at least
one connection to the proxy server.
[Information Center Home Page | [Legal | AS/400 Glossary]

Example: Running a Java applet using proxy support

The following example shows you the steps to run a Java applet using proxy support.

1.

Choose a machine to act as the proxy server. Applets can initiate network connections only to the
machine from which they were originally downloaded; therefore, it works best to run the proxy server
on the same machine as the HTTP server. The Java environment and CLASSPATH on the proxy
server machine should include the jt400.jar file.

Start the proxy server on this machine by typing:
java com.ibm.as400.access.ProxyServer -verbose
Specifying verbose will allow you to monitor when the client connects and disconnects.

Applet code needs to be downloaded before it runs so it is best to reduce the size of the code as
much as possible. The AS400ToolboxJarMaker can reduce the jt400Proxy.jar significantly by
including only the code for the components that your applet uses. For instance, if an applet uses only
JDBC, we can reduce the jt400Proxy.jar file to include the minimal amount of code by running:
java utilities.AS400ToolboxJarMaker -source jt400Proxy.jar -destination jt400ProxySmall.jar
-component JDBC

The applet must set the value of the com.ibm.as400.access.AS400.proxyServer system property to be
the name of your proxy server. A convenient way to do this for applets is using a compiled Properties
class (Example). Compile this class and place the generated Properties.class file in the
com/ibm/as400/access directory (the same path your html file is coming from). For example, if the
html file is /mystuff/HelloWorld.html, then Properties.class should be in
/mystuff/com/ibm/as400/access.

Put the jt400ProxySmall.jar in the same directory as as the html file (/mystuff/ in step 4).

Refer to the applet like this in your HTML file:
<APPLET archive="jt400Proxy.jar, Properties.class” code="YourApplet.class” width=300
height=100> </APPLET>

[Information Center Home Page | [Legal | AS/400 Glossary]

Chapter 7. Proxy Support 133

134 AS/400 Toolbox for Java

Chapter 8. JavaBeans

JavaBeans are reuseable software components that are written in Java. The component is a piece of
program code that provides a well-defined, functional unit, which can be as small as a label for a button on
a window or as large as an entire application.

JavaBeans can be either visual or nonvisual components. Non-visual JavaBeans still have a visual
representation, such as an icon or a hame, to allow visual manipulation.

All AS/400 Toolbox for Java public classes are also JavaBeans. These classes were built to Javasoft
JavaBean standards; they function as reuseable components. The properties and methods for an AS/400
Toolbox for Java JavaBean are the same as the properties and methods of the class.

JavaBeans can be used within an application program or they can be visually manipulated in builder tools,
such as the IBM VisualAge for Java product.

Examples

» See JavaBeans code example as an example of how to use JavaBeans in your program.

» See Visual bean builder code example as an example of how to create a program from JavaBeans by
using a visual bean builder such as IBM Visual Age for Java.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

JavaBeans code example

The following example creates an AS400 object and a CommandCall object, and then registers listeners
on the objects. The listeners on the objects print a comment when the AS/400 system connects or
disconnects and when the CommandCall object completes the running of a command.

[ITTLETIIEIIEEEI L0l 1i11ir1ie710711711104711111111111111111
//

// Beans example. This program uses the JavaBeans support in the

// AS/400 Toolbox for Java classes.

//

// Command syntax:

// BeanExample

//

[ILITTTTEETE L e iiiirriiieiirlrrieeiillliieiiiliiieiillli
//

// This source is an example of JavaBeans in the AS/400 Toolbox for Java.
// IBM grants you a nonexclusive Ticense to use this as an example from
// which you can generate a similar function tailored to your own

// specific needs.

//

// This sample code is provided by IBM for illustrative purposes only.

// These examples have not been thoroughly tested under all conditions.
// IBM, therefore, cannot guarantee or imply reliability, serviceability,
// or function of these programs.

//

// A1l programs contained herein are provided to you "AS IS" without any
// warranties of any kind. The implied warranties of merchantability and
// fitness for a particular purpose are expressly disclaimed.

//

// AS/400 Toolbox for Java

// (C) Copyright IBM Corp. 1997

// A1l rights reserved.

// US Government Users Restricted Rights -

// Use, duplication, or disclosure restricted

// by GSA ADP Schedule Contract with IBM Corp.

© Copyright IBM Corp. 1998, 1999 135

//

[ITTETTTIEE L L7 i iiiriiiriiedlieiliiiiiieilieiellieiiieiiiiel
import com.ibm.as400.access.AS400;

import com.ibm.as400.access.CommandCall;

import com.ibm.as400.access.ConnectionListener;

import com.ibm.as400.access.ConnectionEvent;

import com.ibm.as400.access.ActionCompletedListener;

import com.ibm.as400.access.ActionCompletedEvent;

class BeanExample

{

}

AS400 as400_ = new AS400();
CommandCall cmd_ = new CommandCall(as400_);
BeanExample()

{
// Whenever the system is connected or disconnected print a
// comment. Do this by adding a listener to the AS400 object.
// When a system is connected or disconnected, the AS400 object
// will call this code.
as400_.addConnectionListener
(new ConnectionListener()

{ public void connected(ConnectionEvent event)
{ System.out.printIn("System connected.");
éub]ic void disconnected(ConnectionEvent event)
{ System.out.printin("System disconnected.");
}}
)s

// Whenever a command runs to completion print a comment. Do this
// by adding a listener to the commandCall object. The commandCall
// object will call this code when it runs a command.
cmd_.addActionCompletedListener(

new ActionCompletedListener()

{

public void actionCompleted(ActionCompletedEvent event)

{
}

System.out.printin("Command completed.");

}
)s
}
void runCommand ()
{
try
{
// Run a command. The listeners will print comments when the
// system is connected and when the command has run to
// completion.
cmd_.run("TESTCMD PARMS");

catch (Exception ex)

{

1
1
public static void main(String[] parameters)
{
BeanExample be = new BeanExample();
be.runCommand() ;
System.exit(0);

System.out.printin(ex);

[Information Center Home Page | Feedback]

136 AS/400 Toolbox for Java

[Legal | AS/400 Glossary]

Visual bean builder code example

This example uses the IBM VisualAge for Java Enterprise Edition V2.0 Composition Editor, but other visual
bean builders are similar. This example creates an applet for a button that, when pressed, runs a
command on an AS/400.

» Drag and drop a Button (Buttonl in Figure 1) on the applet. (The Button can be found in the bean
builder on the left side of the Visual Composition tab in Figure 1.)

* Drop a CommandCall bean and an AS400 bean outside the applet. (The beans can be found in the
bean builder on the left side of the Visual Composition tab in Figure 1.)

Figure 1. VisualAge Visual Composition Editor window - gui.BeanExample.

» Edit the bean properties. (To edit, select the bean and then right-click to display a pop-up window, which
has Properties as an option.)

— Change the label of the Button to Run command, as shown in
Figure 2.

Figure 2. Changing the label of the button to Run command.

— Change the system name of the AS400 bean to TestSys.
— Change the user ID of the AS400 bean to TestUser, as shown in Figure 3.

Figure 3. Changing the name of the user ID to TestUser.

— Change the command of the CommandCall bean to SNDMSG MSG('Testing’)
TOUSR('TESTUSER’), as shown in Figure 4.

Figure 4. Changing the command of the CommandcCall bean.

* Connect the AS400 bean to the CommandCall bean. The method you use to do this varies between
bean builders. For this example, do the following:

— Select the CommandCall bean and then click the right mouse button
— Select Connect

— Select Connectable Features

— Select system from the list of features as shown in Figure 5.

— Select the AS400 bean

— Select this from the pop-up menu that appears over the AS400 bean

Figure 5. Connecting AS400 bean to CommandcCall bean.

» Connect the button to the CommandCall bean.
— Select the Button bean and then click the right mouse button
— Select Connect
— Select actionPerformed
— Select the CommandCall bean
— Select Connectable Features from the pop-up menu that appears
— Select run() from the list of methods as shown in Figure 6.

Figure 6. Connecting a method to a button.

Chapter 8. JavaBeans 137

When you are finished, the VisualAge Visual Composition Editor window should look like Figure 7.

Figure 7. Finished bean example.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

138 AS/400 Toolbox for Java

Chapter 9. Graphical Toolbox

Overview

The Graphical Toolbox, a set of Ul tools, makes it easy to create custom user interface panels in Java.
You can incorporate the panels into your Java applications, applets, or Operations Navigator plug-ins.
The panels may contain data obtained from the AS/400, or data obtained from another source such as a
file in the local file system or a program on the network.

The GUI Builder is a WYSIWYG visual editor for creating Java dialogs, property sheets and wizards.
With the GUI Builder you can add, arrange, or edit user interface controls on a panel, and then preview
the panel to verify the layout behaves the way you expected. The panel definitions you create can be
used in dialogs, inserted within property sheets and wizards, or arranged into splitter, deck, and tabbed
panes. The GUI Builder also allows you to build menu bars, toolbars, and context menu definitions.

The Resource Script Converter converts Windows resource scripts into an XML representation that is
usable by Java programs. With the Resource Script Converter you can process Windows resource scripts
(RC files) from your existing Windows dialogs and menus. These converted files can then be edited with
the GUI Builder. Property sheets and wizards can be made from RC files using the resource script
converter along with the GUI Builder.

Underlying these two tools is a new technology called the Panel Definition Markup Language, or
PDML. PDML is based on the Extensible Markup Language (XML) and defines a platform-independent
language for describing the layout of user interface elements. Once your panels are defined in PDML,
you can use the runtime API provided by the Graphical Toolbox to display them. The API displays your
panels by interpreting the PDML and rendering your user interface using the Java Foundation Classes.

Benefits of the Graphical Toolbox

Write Less Code and Save Time
With the Graphical Toolbox you have the ability to create Java-based user interfaces quickly and
easily. The GUI Builder lets you have precise control over the layout of Ul elements on your
panels. Because the layout is described in PDML, you are not required to develop any Java code
to define the user interface, and you do not need to recompile code in order to make changes.
As a result, significantly less time is required to create and maintain your Java applications. The
Resource Script Converter lets you migrate large numbers of Windows panels to Java quickly and
easily.

Custom Help
Defining user interfaces in PDML creates some additional benefits. Because all of a panel’s
information is consolidated in a formal markup language, the tools can be enhanced to perform
additional services on behalf of the developer. For example, both the GUI Builder and the

Resource Scriﬁft Converter are capable of generating HTML skeletons for the panel’s online help.
You decide which help topics are required and the help topics are automatically built based on

your requirements. Anchor tags for the help topics are built right into the help skeleton, which frees
the help writer to focus on developing appropriate content. The Graphical Toolbox runtime
environment automatically displays the correct help topic in response to a user’s request.

Automatic Panel to Code Integration
In addition, PDML provides tags that associate each control on a panel with an attribute on a Java
bean. Once you have identified the bean classes that will supply data to the panel and have
associated a attribute with each of the appropriate controls, you can request that the tools
generate Java source code skeletons for the bean objects. At runtime, the Graphical Toolbox
automatically transfers data between the beans and the controls on the panel that you identified.

© Copyright IBM Corp. 1998, 1999 139

Platform Independent
The Graphical Toolbox runtime environment provides support for event handling, user data
validation, and common types of interaction among the elements of a panel. The correct platform
look and feel for your user interface is automatically set based on the underlying operating system,
and the GUI Builder lets you toggle the look and feel so that you can evaluate how your panels
will look on different platforms.

Inside the Graphical Toolbox

The Graphical Toolbox provides you with two tools and, therefore, two ways of automating the creation of
your user interfaces. You can use the GUI Builder to quickly and easily create new panels from scratch, or
you can use the Resource Script Converter to convert existing Windows-based panels to Java. The
converted files can then be edited with GUI Builder. Both tools support internationalization.

GUI Builder. Two windows are displayed when you invoke the GUI Builder for the first time, as shown
below.

Use the File Builder window, shown in Figure 1, to create and edit your PDML files.

Figure 1. File Builder window.

Use the Properties window, shown in Figure 2, to view or change the properties of the currently selected
control.

Figure 2. Properties window.

Use the Panel Builder window to create and edit your graphical user interface components. Select the
desired component from the toolbar and click on the panel to place it where ever you want. The toolbar
also facilities for aligning groups of controls, for previewing the panel, and for requesting online help for a
GUI Builder function. See Explanation of the Toolbox Widgets for a description of what each icon does.

Figure 3. Panel Builder window.

The panel being edited is displayed in the Panel Builder window. This example demonstrates how each
window works together.

Resource Script Converter. The Resource Script Converter consists of a two-paned tabbed dialog as
shown in Figure 4. On the Convert pane you specify the name of the Microsoft or VisualAge for
Windows RC file that is to be converted to PDML. You can specify the name of the target PDML file and
associated Java resource bundle that will contain the translated strings for the panels. In addition, you
can request that online help skeletons be generated for the panels, generate Java source code skeletons
for the objects that supply data to the panels, and serialize the panel definitions for improved performance
at runtime. The Converter’s online help provides a detailed description of each input field on the Convert
pane.

140 AS/400 Toolbox for Java

Figure 4. Resource Script Converter.

After the conversion has run successfully, you can use the View pane to view the contents of your
newly-created PDML file, and preview your new Java panels. You can use the GUI Builder to make minor
adjustments to a panel if needed. The Converter always checks for an existing PDML file before
performing a conversion, and attempts to preserve any changes in case you need to run the conversion
again later.

Getting started with the Graphical Toolbox

Use the following topics to to learn more about the Graphical Toolbox:
» Setting up the Graphical Toolbox

» Creating your user interface

» Displaying your panels at runtime

* Generating online help files

» Graphical Toolbox example

» Using the Graphical Toolbox in a browser

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Setting up the Graphical Toolbox

The Graphical Toolbox is delivered as a set of JAR files. To set up the Graphical Toolbox you must install
the JAR files on your workstation and set your CLASSPATH environment variable.

Installing the Graphical Toolbox on your workstation

To develop Java programs using the Graphical Toolbox, first install the Graphical Toolbox JAR files on your
workstation. There are two ways to do this:

Transfer the JAR Files
Note: The following list represents three different ways to transfer the JAR files. The AS/400
Toolbox for Java licensed program must be installed on your AS/400.

* Use FTP (ensure you transfer the files in binary mode) and copy the JAR files from the
directory /QIBM/ProdData/HTTP/Public/jt400/lib to a local directory on your workstation

* Use Client Access/400 to map a network drive.

* The AS400ToolboxInstaller class that comes with the AS/400 Toolbox for Java can also be used
to install the Graphical Toolbox JAR files - specify the package name "OPNAV". For more
information, see Client installation and update classes.

Install JAR files with Client Access Express
You can also install the Graphical Toolbox when you install Client Access Express. The AS/400
Toolbox for Java is now shipped as part of Client Access Express. If you are installing Client
Access Express for the first time, choose Custom Install and select the AS/400 Toolbox for Java
component on the install menu. If you have already installed Client Access Express, you can use
the Selective Setup program to install this component if it is not already present.

Setting your classpath

To use the Graphical Toolbox, you must add these JAR files to your CLASSPATH environment variable (or
specify them on the classpath option on the command line). For example, if you have copied the files to
the directory C:\jt400\lib on your workstation, you must add the following path names to your classpath:

Chapter 9. Graphical Toolbox 141

C:\jt400\1ib\uitools.jar;
C:\jt400\1ib\jui400.jar;
C:\jt400\1ib\datas00.jar;
C:\jt400\1ib\uti1400.jar;
C:\jt400\1i1b\x4j400.jar;

If you have installed the Graphical Toolbox using Client Access Express, the JAR files will all reside in the
directory \Program Files\lom\Client Access\jt400\lib on the drive where you have installed Client Access
Express. The path names in your classpath should reflect this.

JAR File Descriptions

uitools.jar Contains the GUI Builder and Resource Script Converter tools.

jui400.jar Contains the runtime API for the Graphical Toolbox. Java programs use this API to display
the panels constructed using the tools. These classes may be redistributed with applications.
data400.jar Contains the runtime API for the Program Call Markup Language (PCML). Java programs
use this API to call AS/400 programs whose parameters and return values are identified using PCML.
These classes may be redistributed with applications.

util400.jar Contains utility classes for formatting AS/400 data and handling AS/400 messages. These
classes may be redistributed with applications.

x4j400.jar Contains the XML parser used by the API classes to interpret PDML and PCML documents.

Note: Internationalized versions of the GUI Builder and Resource Script Converter tools are available. To run a
non-U.S. English version you must add the correct version of uitools.jar for your language and country to your
Graphical Toolbox installation. These JAR files are available on the AS/400 in
/QIBM/ProdData/HTTP/Public/jt400/Mri29xx, where 29xx is the 4-digit OS/400 NLV code corresponding to your
language and country. (The names of the JAR files in the various MRI29xx directories include the correct 2-character
Java language and country code suffixes.) This additional JAR file should be added to your classpath ahead of
uitools.jar in the search order.

Using the Graphical Toolbox

Once you have installed the Graphical Toolbox, follow these links to learn how to use the tools:

. FRinnng fhe GUL Buider]

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Creating your user interface

Running the GUI Builder

To start the GUI Builder, invoke the Java interpreter as follows:

java com.ibm.as400.ui.tools.GUIBuilder [-plaf look and feel]

If you did not set your CLASSPATH environment variable to contain the Graphical Toolbox JAR files, then
you will need to specify them on the command line using the classpath option. See Setting Up the
Graphical Toolbox.

Options

-plaf look and feel

142 AS/400 Toolbox for Java

The desired platform look and feel. This option lets you override the default look and feel that is

set based on the platform you are developing on, so you can preview your panels to see how they
will look on different operating system platforms. The following look and feel values are

accepted:
* Windows
* Metal
* Motif

Currently, additional look and feel attributes that Swing 1.1 may support are not supported by the
GUI Builder

Types of user interface resources

When you start the GUI Builder for the first time you will create a new PDML file by clicking New File on
the File pulldown. Once you have created your new PDML file, you can define any of the following types
of Ul resources to be contained within it.

Panel The fundamental resource type. It describes a rectangular area within which Ul elements are
arranged. The Ul elements may consist of simple controls, such as radio buttons or text fields,
images, animations, custom controls, or more sophisticated subpanels (see Split Pane, Deck Pane
and Tabbed Pane below). A panel may define the layout for a stand-alone window or dialog, or it
may define one of the subpanels that is contained in another Ul resource.

Menu
A popup window containing one or more selectable actions, each represented by a text string
("Cut”, "Copy” and "Paste” are examples). You can define mnemonics and accelerator keys for
each action, insert separators and cascading submenus, or define special checked or radio button
menu items. A menu resource may be used as a stand-alone context menu, as a drop-down menu
in a menu bar, or it may itself define the menu bar associated with a panel resource.

Toolbar
A window consisting of a series of push buttons, each representing a possible user action. Each
button may contain text, an icon or both. You can define the toolbar as floatable, which lets the
user drag the toolbar out of a panel and into a stand-alone window.

Property Sheet
A stand-alone window or dialog consisting of a tabbed panels and OK, Cancel, and Help buttons.
Panel resources define the layout of each tabbed window.

Wizard
A stand-alone window or dialog consisting of a series of panels that are displayed to the user in a
predefined sequence, with Back, Next, Cancel, Finish, and Help buttons. The wizard window may
also display a list of tasks to the left of the panels which track the user’s progress through the
wizard.

Split Pane
A subpane consisting of two panels separated by a splitter bar. The panels may be arranged
horizontally or vertically.

Tabbed Pane
A subpane that forms a tabbed control. This tabbed control can be placed inside of another panel,
split pane, or deck pane.

Deck Pane
A subpane consisting of a collection of panels. Of these, only one panel can be displayed at a
time. For example, at runtime the deck pane could change the panel which is displayed depending
on a given user action.

String Table
A collection of string resources and their associated resource identifiers.

Chapter 9. Graphical Toolbox 143

Generated files

The translatable strings for a panel are not stored in the PDML file itself, but in a separate Java resource
bundle. The tools let you specify how the resource bundle is defined, either as a Java PROPERTIES file
or as a ListResourceBundle subclass. A ListResourceBundle subclass is a compiled version of the
translatable resources, which enhances the performance of your Java application. However, it will slow
down the GUI Builder’s saving process, because the ListResourceBundle will be compiled in each save
operation. Therefore it's best to start with a PROPERTIES file (the default setting) until you're satisfied
with the design of your user interface.

You can use the tools to generate HTML skeletons for each panel in the PDML file. At runtime, the
correct help topic is displayed when the user clicks on the panel’'s Help button or presses F1 while the
focus is on one of the panel’'s controls. You should insert your help content at the appropriate points in
the HTML, within the scope of the <!— HELPDOC:SEGMENTBEGIN —> and <!— HELPDOC:SEGMENTEND —>
tags. For more specific help information see Editing Help Documents generated by GUI builder.

You can generate source code skeletons for the JavaBeans that will supply the data for a panel. Use the
Properties window of the GUI Builder to fill in the DATACLASS and ATTRIBUTE properties for the controls
which will contain data. The DATACLASS property identifies the class name of the bean, and the
ATTRIBUTE property specifies the name of the gettor/settor methods that the bean class implements.
Once you've added this information to the PDML file, you can use the GUI Builder to generate Java
source code skeletons and compile them. At runtime, the appropriate gettor/settor methods will be called
to fill in the data for the panel.

Note: The number and type of gettor/settor methods is dependent on the type of Ul control with which
the methods are associated. The method protocols for each control are documented in the class
description for the DataBean class.

Finally, you can serialize the contents of your PDML file. Serialization produces a compact binary
representation of all of the Ul resources in the file. This greatly improves the performance of your user
interface, because the PDML file does not have to be interpreted in order to display your panels.

To summarize: If you have created a PDML file named MyPanels.pdml, the following files will also be
produced based on the options you have selected on the tools:

* MyPanels.properties if you have defined the resource bundle as a PROPERTIES file

* MyPanels.java and MyPanels.class if you have defined the resource bundle as a ListResourceBundle
subclass

« <panel name>.html for each panel in the PDML file, if you have elected to generate online help
skeletons

» <dataclass name>.java and <dataclass name>.class for each unique bean class that you have
specified on your DATACLASS properties, if you have elected to generate source code skeletons for
your JavaBeans

» <resource name>.pdml.ser for each Ul resource defined in the PDML file, if you've elected to serialize
its contents.

Note: The conditional behavior functions (SELECTED/DESELECTED) will not work if the panel name is
the same as the one in which the conditional behavior function is being attached. For instance, if PANEL1
in FILE1 has a conditional behavior reference attached to a field that references a field in PANEL1 in
FILE2, the conditional behavior event will not work. To fix this, simply rename PANELL1 in FILE2 and then
update the conditional behavior event in FILEL to reflect this change.

144 AS/400 Toolbox for Java

Running the Resource Script Converter
To start the Resource Script Converter, invoke the Java interpreter as follows:
java com.ibm.as400.ui.tools.PDMLViewer

If you did not set your CLASSPATH environment variable to contain the Graphical Toolbox JAR files, then
you will need to specify them on the command line using the classpath option. See Setting Up the
Graphical Toolbox.

You can also run the Resource Script Converter in batch mode using the following command:
java com.ibm.as400.ui.tools.RC2XML file [options]

Where file is the name of the resource script (RC file) to be processed.

Options

-X name
The name of the generated PDML file. Defaults to the name of the RC file to be processed.

-p name
The name of the generated PROPERTIES file. Defaults to the name of the PDML file.

-r name
The name of the generated ListResourceBundle subclass. Defaults to the name of the PDML file.

-package name
The name of the package to which the generated resources will be assigned. If not specified, no
package statements will be generated.

-1 locale
The locale in which to produce the generated resources. If a locale is specified, the appropriate
2-character 1SO language and and country codes will be suffixed to the name of the generated
resource bundle.

-h Generate HTML skeletons for online help.
-d Generate source code skeletons for JavaBeans.
-s Serialize all resources.

Mapping Windows Resources to PDML

All dialogs, menus, and string tables found in the RC file will be converted to the corresponding Graphical
Toolbox resources in the generated PDML file. You can also define DATACLASS and ATTRIBUTE
properties for Windows controls that will be propagated to the new PDML file by following a simple naming
convention when you create the identifiers for your Windows resources. These properties will be used to
generate source code skeletons for your JavaBeans when you run the conversion.

The naming convention for Windows resource identifiers is:
IDCB <class name> <attribute>

Chapter 9. Graphical Toolbox 145

where <class name> is the fully-qualified name of the bean class that you wish to designate as the
DATACLASS property of the control, and <attribute> is the name of the bean property that you wish to
designate as the ATTRIBUTE property of the control.

For example, a Windows text field with the resource 1D
IDCB_com_MyCompany_MyPackage_MyBean_SampleAttribute would produce a DATACLASS property of
com.MyCompany.MyPackage.MyBean and an ATTRIBUTE property of SampleAttribute. If you elect to
generate JavaBeans when you run the conversion, the Java source file MyBean.java would be produced,
containing the package statement package com.MyCompany.MyPackage, and gettor and settor methods
for the SampleAttribute property.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Displaying your panels at runtime

The Graphical Toolbox provides a redistributable API that your Java programs can use to display user
interface panels defined using PDML. The API displays your panels by interpreting the PDML and
rendering your user interface using the Java Foundation Classes.

The Graphical Toolbox runtime environment provides the following services:

» Handles all data exchanges between user interface controls and the JavaBeans that you identified in
the PDML.

» Performs validation of user data for common integer and character data types, and defines an interface
that allows you to implement custom validation. If data is found to be invalid, an error message is
displayed to the user.

» Defines standardized processing for Commit, Cancel and Help events, and provides a framework for
handling custom events.

* Manages interactions between user interface controls based on state information defined in the PDML.
(For example, you may want to disable a group of controls whenever the user selects a particular radio
button.)

The package com.ibm.as400.ui.framework.java contains the Graphical Toolbox runtime API.

The elements of the Graphical Toolbox runtime environment are shown in Figure 1. Your Java program is
a client of one or more of the objects in the Runtime Managers box.

Figure 1. Graphical Toolbox Runtime Environment

Examples

Assume that the panel MyPanel is defined in the file TestPanels.pdml, and that a properties file
TestPanels.properties is associated with the panel definition. Both files reside in the directory
com/ourCompany/ourPackage, which is accessible either from a directory defined in the classpath or
from a ZIP or JAR file defined in the classpath. The following code creates the panel and displays it:

import com.ibm.as400.ui.framework.java.*;

// Create the panel manager. Parameters:

// 1. Resource name of the panel definition
// 2. Name of panel

// 3. List of DataBeans omitted

PanelManager pm = null;

146 AS/400 Toolbox for Java

try {

pm = new PanelManager(”com.ourCompany.ourPackage.TestPanels”,
"MyPanel”,
null);

}

catch (DisplayManagerException e) {

e.displayUserMessage(null);

System.exit(-1);

}

// Display the panel
pm.setVisible(true);

Once the DataBeans that supply data to the panel have been implemented and the attributes have been
identified in the PDML, the following code may be used to construct a fully-functioning dialog:

import com.ibm.as400.ui.framework.java.*;
import java.awt.Frame;

// Instantiate the objects which supply data to the panel
TestDataBeanl dbl = new TestDataBeanl();
TestDataBean2 db2 = new TestDataBean2();

// Initialize the objects
dbl.load();
db2.1o0ad();

// Set up to pass the objects to the UI framework
DataBean[] dataBeans = { dbl, db2 };

// Create the panel manager. Parameters:

// 1. Resource name of the panel definition
// 2. Name of panel

// 3. List of DataBeans

// 4. Owner frame window

Frame owner;

PanelManager pm = null;

try {

pm = new PanelManager(”com.ourCompany.ourPackage.TestPanels”,
"MyPanel”,
dataBeans,
owner) ;

}

catch (DisplayManagerException e) {
e.displayUserMessage(null);
System.exit(-1);

}

// Display the panel
pm.setVisible(true);

A new service has been added to the existing panel manager. The dynamic panel manager dynamically
sizes the panel at runtime. Let's look at the MyPanel example again, using the dynamic panel manager:

Chapter 9. Graphical Toolbox 147

import com.ibm.as400.ui.framework.java.*;

// Create the dynamic panel manager. Parameters:
// 1. Resource name of the panel definition

// 2. Name of panel

// 3. List of DataBeans omitted

DynamicPanelManager dpm = null;

try {

pm = new DynamicPanelManager ("com.ourCompany.ourPackage.TestPanels”,
"MyPanel”,
null);

}

catch (DisplayManagerException e) {
e.displayUserMessage (null);
System.exit(-1);

}

// Display the panel
pm.setVisible(true);

When you instantiate this panel application you can see the dynamic sizing feature of the panels. Move
your cursor to the edge of the GUI's display and, when you see the sizing arrows, you can change the
size of the panel. The display changes without changing the size of the text.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Graphical Toolbox examples

We have provided examples to show you how to implement the tools within graphical toolbox for your
own Ul programs.

» Construct and display a panel: Shows you how to construct a simple panel. The example then shows
you how to build a small Java application that displays the panel. When the user enters data in the text
field and clicks on the Close button, the application will echo the data to the Java console. This example
illustrates the basic features and operation of the Graphical Toolbox environment as a whole.

. [2d: shows you how to create and display a panel when the panel and properties file are in the same
directory.

* Construct a fully-functional dialog (page E): Once the DataBeans that supply data to the panel have
been implemented and the attributes have been identified in the PDML this example shows you how to
construct a fully-functioning dialog

» Size a panel using the dynamic panel manager: The dynamic panel manager dynamically sizes the
panel at runtime.

» Editable combobox: Shows you a data bean coding example for an editable combobox.

The following examples show you how the GUIBuilder can help you to create:

» Panels: Shows you how to create a sample panel and the data bean code that runs the panel

* Deckpanes: Shows you how to create a deckpane and what a final deckpane may look like

* Property sheets: Shows you how to create a property sheet and what a final property sheet may look
like

» Split panes: Shows you how to create a split pane and what a final split pane may look like

* Tabbed panes: Shows you how to create a tabbed pane and what a final tabbed pane may look like

148 AS/400 Toolbox for Java

* Wizards: Shows you how to create a wizard and what the final product may look like
» Toolbars: Shows you how to create a tool bar and what a final tool bar may look like
* Menu bars: Shows you how to create a menu bar and what a final menu bar may look like

* Help: Shows how a Help Document is generated and ways to split the Help Document into topic pages.
Also, see Editing Help Documents generated by GUI builder

» Sample: Shows what a whole PDML program may look like, including panels, a property sheet, a
wizard, select/deselect, and menu options.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Graphical Toolbox Example

This example demonstrates how to use the Graphical Toolbox by constructing a simple panel. It is an
overview that illustrates the basic features and operation of the Graphical Toolbox environment. After
showing you how to construct a panel, the example goes on to show you how to build a small Java
application that displays the panel. In this example, the user enters data in a text field and clicks on the
Close button. The application then echos the data to the Java console.

Constructing the panel

When you invoke the GUI Builder, the Properties and GUI Builder windows appear. Create a new file
named "MyGUI.pdml”. For this example, insert a new panel. Click the "Insert Panel” icon in File Builder
window. Its name is "PANEL1". Change the title by modifying information in the Properties window; type
"Simple Example” in the "Title” field. Remove the three default buttons by selecting them with your mouse
and pressing "Delete”. Using the buttons in the Panel Builder window, add the three elements shown in
the figure below: a label, a text field, and a pushbutton.

By selecting the label, you can change its text in the Properties window.
Text field: The text field will contain data and, therefore, you can set several properties that will allow the
GUI Builder to perform some additional work. For this example, you set the Data Class property to the

name of a bean class named SampleBean. This databean will supply the data for this text field.

Set the Attribute property to the name of the bean property that will contain the data. In this case, the
name is UserData.

Following the above steps binds the UserData property to this text field. At run-time, the Graphical Toolbox
obtains the initial value for this field by calling SampleBean.getUserData. The modified value is then sent
back to the application when the panel closes by calling Samp1eBean.setUserData.

Specify that the user is required to supply some data, and that the data must be a string with a maximum
length of 15 characters.

Indicate that the context-sensitive help for the text field will be the help topic associated with the label
"Enter some data”.

Button: Modify the style property to give the button default emphasis.

Set the ACTION property to COMMIT, which causes the setUserData method on the bean to be called
when the button is selected.

Before you save the panel, set properties at the level of the PDML file to generate both the online help

skeleton and the JavaBean. Then you save the file by clicking on the icon in the main GUI Builder window.
When prompted, specify a file name of MyGUI.pdml.

Chapter 9. Graphical Toolbox 149

Generated files
After you save the panel definition, you can look at the files produced by the GUI Builder.

PDML file: Here is the content of MyGUI.pdml to give you an idea of how the Panel Definition Markup
Language works. Because you use PDML only through the tools provided by the Graphical Toolbox, it is
not necessary to understand the format of this file in detail:

<!- Generated by GUIBUILDER —>
<PDML version="2.0" source="JAVA” basescreensize="1280x1024">

<PANEL name="PANEL1">
<TITLE>PANEL1</TITLE>
<SIZE>351,162</SIZE>

<LABEL name="LABEL1"">
<TITLE>PANEL1.LABEL1</TITLE>
<LOCATION>18,36</LOCATION>
<SIZE>94,18</SIZE>
<HELPLINK>PANEL1.LABEL1</HELPLINK>
</LABEL>

<TEXTFIELD name="TEXTFIELD1">
<TITLE>PANEL1.TEXTFIELD1</TITLE>
<LOCATION>125,31</LOCATION>
<SI1ZE>191,26</SIZE>
<DATACLASS>Samp1eBean</DATACLASS>
<ATTRIBUTE>UserData</ATTRIBUTE>
<STRING minlength="0" maxlength="15"/>
<HELPALIAS>LABEL1</HELPALIAS>
</TEXTFIELD>

<BUTTON name="BUTTON1">
<TITLE>PANEL1.BUTTON1</TITLE>
<LOCATION>125,100</LOCATION>
<SIZE>100,26</SIZE>
<STYLE>DEFAULT</STYLE>
<ACTION>COMMIT</ACTION>
<HELPLINK>PANEL1.BUTTONI</HELPLINK>
</BUTTON>

</PANEL>

</PDML>

Resource bundle: Associated with every PDML file is a resource bundle. In this example, the
translatable resources were saved in a PROPERTIES file, which is called MyGUI.properties. Notice that
the PROPERTIES file also contains customization data for the GUI Builder.

##Generated by GUIBUILDER
BUTTON_1=Close

TEXT 1=

@GenerateHelp=1

@Serialize=0

@GenerateBeans=1

LABEL 1=Enter some data:

PANEL 1.Margins=18,18,18,18,18,18
PANEL_1=Simple Example

150 AS/400 Toolbox for Java

JavaBean: The example also generated a Java source code skeleton for the JavaBean object. Here is
the content of SampleBean.java:

import com.ibm.as400.ui.framework.java.*;

pubTic class SampleBean extends Object
implements DataBean

{

private String m_sUserData;

public String getUserData()
{

}

return m_sUserData;

public void setUserData(String s)
{

}

m_sUserData = s;

public Capabilities getCapabilities()
{

}

return null;

public void verifyChanges()
{
}

public void save()
{
}

public void Toad()
{

}

n,

m_sUserData = "";

}

Note that the skeleton already contains an implementation of the gettor and settor methods for the
UserData property. The other methods are defined by the DataBean interface and, therefore, are required.

The GUI Builder has already invoked the Java compiler for the skeleton and produced the corresponding
class file. For the purposes of this simple example, you do not need to modify the bean implementation.
In a real Java application you would typically modify the Toad and save methods to transfer data from an
external data source. The default implementation of the other two methods is often sufficient. For more
information, see the documentation on the DataBean interface in the javadocs for the PDML runtime
framework.

Help file: The GUI Builder also creates an HTML framework called a Help Document. Help writers can
easily manage help information by editing this file. For more information, see the following topics:

» Creating the Help Document
» Editing Help Documents generated by GUI builder

Chapter 9. Graphical Toolbox 151

Constructing the application

Once the panel definition and the generated files have been saved, you are ready to construct the
application. All you need is a new Java source file that will contain the main entry point for the
application. For this example, the file is called SampleApplication.java. It contains the following code:

import com.ibm.as400.ui.framework.java.x*;
import java.awt.Frame;

pubTic class SampleApplication
{
public static void main(String[] args)
{
// Instantiate the bean object that supplies data to the panel
SampleBean bean = new SampleBean();

// Initialize the object
bean.load();

// Set up to pass the bean to the panel manager
DataBean[] beans = { bean };

// Create the panel manager. Parameters:

// 1. PDML file as a resource name

// 2. Name of panel to display

// 3. List of data objects that supply panel data
// 4. An AWT Frame to make the panel modal

PanelManager pm = null;
try { pm = new PanelManager("MyGUI", "PANEL 1", beans, new Frame()); }
catch (DisplayManagerException e)
{
// Something didn't work, so display a message and exit
e.displayUserMessage(null);
System.exit(1);
}

// Display the panel - we give up control here
pm.setVisible(true);

// Echo the saved user data
System.out.printin("SAVED USER DATA: '" + bean.getUserData() + "");

// Exit the application
System.exit(0);

}

It is the responsibility of the calling program to initialize the bean object or objects by calling Toad. If the
data for a panel is supplied by multiple bean objects, then each of the objects must be initialized before
passing them to the Graphical Toolbox environment.

The class com.ibm.as400.ui.framework.java.PanelManager supplies the API for displaying standalone
windows and dialogs. The name of the PDML file as supplied on the constructor is treated as a resource
name by the Graphical Toolbox - the directory, ZIP file, or JAR file containing the PDML must be identified
in the classpath.

152 AS/400 Toolbox for Java

Because a Frame object is supplied on the constructor, the window will behave as a modal dialog. In a
real Java application, this object might be obtained from a suitable parent window for the dialog. Because
the window is modal, control does not return to the application until the user closes the window. At that
point, the application simply echoes the modified user data and exits.

Running the application

Here is what the window looks like when the application is compiled and run:

If the user presses F1 while focus is on the text field, the Graphical Toolbox will display a help browser
containing the online help skeleton that the GUI Builder generated.

You can edit the HTML and add actual help content for the help topics shown.

If the data in the text field is not valid (for example, if the user clicked on the Close button without
supplying a value), the Graphical Toolbox will display an error message and return focus to the field so
that data can be entered.

For information on how to run this sample as an applet, see Using the Graphical Toolbox in a Browser.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Editable Comboboxes

When the bean generator creates a gettor and settor for an Editable ComboBox, by default it returns a
String on the settor and takes a string parameter on the gettor. It can be useful to change the settor to
take an Object class and the gettor to return an Object type. This allows you to determine the user
selection using ChoiceDescriptors.

If a type of Object is detected for the gettor and settor, the system will expect either a ChoiceDescriptor or
a type Object instead of a formatted string.

Example

Assume that Editable is an editable ComboBox which has either a Double value, uses a system value, or
is not set.

public Object getEditable()

{
if (m_setting == SYSTEMVALUE)
{
return new ChoiceDescriptor("choicel","System Value");
}
else if (m_setting == NOTSET)
{
return new ChoiceDescriptor("choice2","Value not set");
}
else
{
return m_doubleValue;
}
}

Similarly, when a type of Object is detected for the gettor and settor, the system will return an Object
which is either a ChoiceDescriptor containing the selected choice or a type Object.

public void setEditable(Object item)
{

if (ChoiceDescriptor.class.isAssignableForm(obj.getClass()))

Chapter 9. Graphical Toolbox 153

}

{

if (((ChoiceDescriptor)obj).getName().equalsIgnoreCase("choicel"))

m_setting = SYSTEMVALUE;
else
m_setting = NOTSET;

else if (Double.class.isAssignableFrom(obj.getclass()))

{
m_setting = VALUE;
m_doubleValue = (Double)obj;
}
else
{ /* error processing */ }

[Information Center Home Page | Feedback]

Creating a panel with GUIBuilder

[Legal | AS/400 Glossary]

Creating a panel with GUIBuilder is simple. From the GUIBuilder menu bar, select File, then select New
File. Then select the "Insert New Panel” icon: The icons in the toolbar represent various components that
you can add to the panel. Select the component you want and then click on the place you want to position

it.

The following picture shows a panel that has been created with several of the options available to you:

This sample panel uses the following DataBean code to bring together the various components:

import com.ibm.as400.ui.framework.java.*;
public class PanelSampleDataBean extends Object

{

implements DataBean

private String m_sName;

private Object m_oFavoriteFood;

private ChoiceDescriptor[] m_cdFavoriteFood;
private Object m_oAge;

private String m_sFavoriteMusic;

public String getName()

{

return m_sName;

public void setName(String s)

{

1
public Object getFavoriteFood()

{

m_sName = s;

return m_oFavoriteFood;

public void setFavoriteFood(Object o)
{

m_oFavoriteFood = o;

public ChoiceDescriptor[] getFavoriteFoodChoices()

{

return m_cdFavoriteFood;
public Object getAge()
{

return m_oAge;

public void setAge(Object o)
{

}

m_oAge = 0;

154 AS/400 Toolbox for Java

public String getFavoriteMusic()
{

return m_sFavoriteMusic;

public void setFavoriteMusic(String s)

{

}
public Capabilities getCapabilities()
{

m_sFavoriteMusic = s;

return null;

public void verifyChanges()
{

1

public void save()

{

System.out.printin("Name = " + m_sName);
System.out.printin("Favorite Food = " + m_oFavoriteFood);
System.out.printin("Age = " + m_oAge);

String sMusic = "";

if (m_sFavoriteMusic != null)
{
if (m_sFavoriteMusic.equals("RADIOBUTTON1"))
sMusic = "Rock";
else if (m_sFavoriteMusic.equals("RADIOBUTTON2"))
sMusic = "Jazz";
else if (m_sFavoriteMusic.equals("RADIOBUTTON3"))
sMusic = "Country";

}

System.out.printIn("Favorite Music = " + sMusic);
public void Tload()
{

m_sName = "Sample Name";

m_oFavoriteFood = null;

m_cdFavoriteFood = new ChoiceDescriptor[0];

m_oAge = new Integer(50);

m_sFavoriteMusic = "RADIOBUTTON1";

}

The panel is the most simple component available within the GUIBuilder, but from a simple panel, you can
build great Ul applications.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Creating a deck pane with GUIBuilder

GUIBuilder makes creating a deckpane simple. From the GUIBuilder menu bar, select File, then select
New File.

Select the "Insert Deckpane” icon . The GUIBuilder creates a panel builder where you can insert the
components for your deckpane:

When you have created the deckpane, use the icon to preview it. A deckpane looks plain until you select
view menu:

From there, for this example, you can select to view the panelsample:

You can also choose to view TABBEDPANE1:

Chapter 9. Graphical Toolbox 155

You can also choose to view the TablePanel:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Creating a property sheet with GUIBuilder

GUIBuilder makes creating a property sheet simple. From the GUIBuilder menu bar, select File, then
select New File.

Select the "Insert Property Sheet” icon: The GUIBuilder creates a panel builder where you can insert the
components for your property sheet:

When you have created the property sheet, use the icon to preview it. For this example, you can choose
from three tabs:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Creating a tabbed pane with GUIBuilder

GUIBuilder makes creating a tabbed pane simple. From the GUIBuilder menu bar, select File, then select
New File.

Select the "Insert Tabbed Pane” icon: The GUIBuilder creates a panel builder where you can insert the
components for your tabbed pane:

For this example, the tabbed pane looks like this:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Creating a wizard with GUIBuilder

GUIBuilder makes creating a wizard interface simple. From the GUIBuilder menu bar, select File, then
select New File.

Select the "Insert Wizard” icon:
The GUIBuilder creates a panel builder where you add panels to the wizard:

When you have created the wizard, use the icon to preview the wizard. For this example, the following
panel will be displayed first:

If the user were to select "Rock” and push "Next”, this panel will display:

Pushing "Next” produces the final panel:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Creating a toolbar with GUIBuilder

GUIBuilder makes creating a toolbar simple. From the GUIBuilder menu bar, select File, then select New
File.

Select the "Insert Tool Bar” icon. The GUIBuilder creates a panel builder where you can insert the
components for your toolbar:

When you have created the toolbar, use the icon to preview it. For this example, you can choose to either
display a property sheet or wizard from the toolbar:

156 AS/400 Toolbox for Java

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Creating a menubar with GUIBuilder

GUIBuilder makes creating a menubar simple. From the GUIBuilder menu bar, select File, then select
New File.

Select the "Insert Menu” icon. The GUIBuilder creates a panel builder where you can insert the
components for your menu:

When you have created the menu, use the icon to preview it. From the top bar, select "Launch”. For this
example, you can choose to display either a property sheet or a wizard:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Example: Creating the Help Document

Creating help files with GUIBuilder is simple. On the properties panel for the file you are working with, set
"Generate help” to true:

The GUI Builder creates an HTML framework called a Help Document, which you can edit.

In order to be used at runtime, the topics within the PDML file need to be separated into individual HTML
files. When you run Help Document to HTML Processing, the topics are broken into individual files and
put into a subdirectory named after the Help Document and PDML file. The runtime environment expects
the individual HTML files to be in a subdirectory with the same name as the Help Document and PDML
file. The Help Document to HTML Processing dialog gathers the information needed and calls the
HelpDocSplitter program to do the processing:

The Help Document to HTML Processing is started from a command prompt by typing:

jre com.ibm.as400.ui.tools.hdoc2htmViewer

Running this command requires that your classpath be set up correctly.

To use the Help Document to HTML Processing, you first select the Help Document that has the same
name as the PDML file. Next, you specify a subdirectory with the same name as the Help Document and
PDML file for output. Select "Process” to complete the processing.

You can split up the help document from the command line with the following command:

jre com.ibm.as400.ui.tools.HelpDocSplitter "helpdocument.htm” [output directory]

This command runs the processing that breaks up the file. You provide the name of the Help Document as
input along with an optional output directory. By default, a subdirectory of the same name as the Help

Document is created and the resulting files are put in that directory.

This is an example of what a help file may look like:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Chapter 9. Graphical Toolbox 157

Spinner

The spinner class is a component of the Graphical Toolbox. It has two small direction buttons that let the
user scroll a list of predetermined values and select one. In some instances, the user may enter a new
legal value.

There are several specific spinner classes that you can use:
» Calendar spinner

» Date spinner

* Time spinner

* Numeric spinner

Properties

Property Description Data Type Flags* Default Value Valid Value

background The background |java.awt.Color R, W, B java.awt.Color.whiteany instance of
color of this Color
component. Note:
This property
does not apply to
ObjectListSpinner
unless it is in edit
mode.

foreground The foreground java.awt.Color R, W, B java.awt.Color.blackany instance of
color of this Color
component.
Note:This
property does not
apply to
ObjectListSpinner
unless it is in edit
mode.

font The font of this java.awt.Font R, W, B new any instance of
component. java.awt.Font("dialogront

Note:This java.awt.Font.PLAIN,
property does not 12)
apply to
ObjectListSpinner
unless it is in edit
mode.

opaque Marks whether boolean R, W, B True True - opaque
this component is False - not
opague. opagque
Note:This
property does not
apply to
ObjectListSpinner
unless it is in edit
mode.

158 AS/400 Toolbox for Java

columns

The columns of
the input field,
which is used to
validate the
layout. Note:
columns is a
property derived
from Swing
JTextField. The
function of
columns in
Spinner is similar
to its function in
Swing JTextField.
This property
does not apply to

ObjectListSpinner.

int

20

columns>0

enabled

Marks whether
this component is
enabled.

boolean

True

True - enabled
False - disabled

editable

Marks whether
this component is
editable.

boolean

True

True - editable
False - not
editable

incrButtonArrowCo

orhe color of the
increment arrow
button.

java.awt.Color

java.awt.Color.blac

Any instance of
Color

decrButtonArrowCqg

[®he color of the
decrement arrow
button.

java.awt.Color

java.awt.Color.blac

Any instance of
Color

orientation

The orientation of
the arrow button.

int

0 -
SPIN_VERTICAL
(display name:
VERTICAL)

1 -
SPIN_HORIZONTA
(display name:
HORIZONTAL)

Chapter 9. Graphical Toolbox

159

wrap

Marks whether
the wrap action is
allowed. If wrap is
true, the wrap
action is allowed.
In this case,
assume Spinner’'s
value is set to the
maximum. If
Spinner is
scrolled up, the
value will change
to its minimum.
Assuming
Spinner’s value is
set to the
minimum, if
Spinner is
scrolled down, the
value will change
to its maximum.

If wrap is false,
the wrap action is
forbidden. If
Spinner’s value is
set to the
maximum, it
cannot be scrolled
up. If Spinner’s
Value is set to the
minimum, it
cannot be scrolled
down.

boolean

True

True - the wrap
action is allowed
False - the wrap
action is forbidden

* R = read, W = write, B = bound, E = expert

Events

The spinner bean suite fires the following events:

* ChangeEvent

— The change event notifies its registered listeners when the value of Spinner changes.

Listener method: stateChanged
increased(javax.swing.event.ChangeEvent)

decreased(javax.swing.event.ChangeEvent)
* SpinnerErrorEvent

— The SpinnerErrorEvent is used to notify you that some internal error has occurred. From the error
code and error message, you can identify the error.

Listener method:

internalError(com.ibm.spinner.SpinnerErrorEvent)

* PropertyChangeEvent
— The PropertyChangeEvent is fired whenever the new spinner is different from the old one.

Listener method:

propertyChange(java.beans.PropertyChangeEvent)

160 AS/400 Toolbox for Java

Methods

The spinner bean suite implements the following methods:
» public void scrollUp(): Increments the spinner’s value
* public void scrollDown(): Decrements the spinner’s value

Vertical Button Screen
The vertical button orientation spinner bean is shown below at its default orientation.

Horizontal Button Screen
The vertical button orientation spinner bean shown below is an example of after you set the "orientation”
property to "HORIZONTAL".

The value that is currently selected is displayed in an input field. You can set the current value either by

clicking on the arrow buttons or by typing a string into the input field.

[Information Center Home Page | Feedback]

Calendar spinner

[Legal | AS/400 Glossary]

The calendar spinner displays and spins the date and time. The date and time values can be changed by
clicking on different sub fields and spinning on them. Alternatively, you can type in a date string to set the

current value.

Properties

Property

Description

Data Type

Flags*

Default Value

Valid Value

wrapAssociated

Marks whether
the changes of
different field
values of the date
are associated.
For example if
wrapAssociated is
true and the
current value is
"1998,12", the
year will change
from 1998 to
1999 when the
value of the
month is
incremented.

boolean

R, W, B

True

True - different
field values are
associated
False - different
field values are
not associated

timeZone

Represents a time
zone offset. It is
also makes
changes for
daylight savings
time.

String

The system’s

local time zone.

valid time zone
string

year

The year

int

R, W, B, E

The system’s
current year.

valid year

Chapter 9. Graphical Toolbox 161

However, to keep
compatible with
Webrunner API, it
cannot be
eliminated.
Therefore, it is a
hidden property
and can only be
manipulated by
the set/get
methods.

month The month int R, W, B, E The system’s integer from 1 to
Note: the property current month. 12
value of month is
from O to 11, but
it displays 1 to 12
as its value in the
Ul. This is to keep
it consistent with
WebRunner and
JDK
day The day. int R, W, B, E The system’s valid day
current day.
hour The hour int R, W, B, E The system’s valid hour
current hour.
minute The minute int R, W, B, E The system’s valid minute
current minute.
second The second int R, W, B, E The system’s valid second
current second.
formatString The user-defined | String R, W, B "dd-MMM-yy FULL -
pattern string for h:mm:ss a” "EEEE,MMMM
formatting and d,yyyy h:mm:ss
parsing date and 'o’clock’ a z”
time. LONG - "MMMM
d,yyyy hmm:ss a
2"
MEDIUM -
"dd-MMM-yy
h:mm:ss a”
SHORT - "M/dlyy
h:mm a”
formattingStyle The ID of the int R, W, B, H 2 0 - FULL
format string. 1-LONG
Note:This 2 - MEDIUM
property is the 3 - SHORT
same as the
formatString
property.

162 AS/400 Toolbox for Java

caretPos

The caret position
representing the
current field to be
changed. It can
be one of YEAR,
MONTH, DATE,
HOUR, MINUTE,
and SECOND.
Note:The
"caretPos”
property of
CalendarSpinner
is not similar to
the caret position
defined in the
TextField.
Therefore, when
you manipulate
CalendarSpinner,
the caret position
displayed in the
input field may
not be consistent
with the value of
the caret position
displayed in the
property sheet.

int

0 - YEAR

1- MONTH
2 - DATE

3 - HOUR

4 - MINUTE
5 - SECOND

datePartValue

The date value in
long.

long

The current
system date.

minimum<datePart
<maximum

Value

timePartValue

The time value in
long.

long

The current
system time.

minimum<timePart
<maximum

Value

calendar

The calendar
value

java.util.Calendar

The current

system calendar.

any instance of
Calendar

value

The calendar
value in long.

long

The current
system calendar
in long.

minimum<value<m

aximum

maximum

The maximum
value.

java.util.Calendar

12/31/2050
11:59:59 PM

maximum:>minimur]

minimum

The minimum
value.

java.util.Calendar

01/01/1950
12:00:00 AM

any instance of
Calendar

dateString

The date and time
shown in the
entry field.

String

The current
system date.

the instance of
date string

date

The current date
and time.

java.util.Date

R, W, B, H

The current
system date and
time.

any instance of
Date

* R = read, W = write, B = bound,E =expert, H = hidden

Events

The CalendarSpinner fires the DateChangedEvent. The listener method for this event is

dateChanged(com.ibm.spinner.DateChangedEvent)

User interface

This section shows what the CalendarSpinner bean looks like and how to use it at runtime.

Chapter 9. Graphical Toolbox

163

The currently selected value is displayed in an input field. The following picture shows what this may look
like:

You can change the date or time value by clicking on different sub fields within the input field and using
the arrow buttons to spin them. Or you can set the values by typing a date or time string into the input
field. If the input is invalid, the CalendarSpinner restores the previous value after you press the "Enter” or
"Tab” key or when you change the focus to another component.

SHORT Style Screen: The SHORT Style CalendarSpinner Bean is shown below. This bean appears
when you set the "formatString” property to "SHORT".

The short style includes six sub fields:
* Month

* Day

* Year

e Hour

* Minute

* AM/PM

The first five sub fields show digital values and can be changed by either by scrolling or by inputting a
digital value. The AM/PM subfield can only be changed by scrolling.

MEDIUM Style Screen: The MEDIUM Style CalendarSpinner Bean is shown below. This bean appears
when you set the "formatString” property to "MEDIUM".

The medium style includes seven sub fields:
* Day

* Month

* Year

* Hour

* Minute

« Second

* AM/PM

The "day”, "year”, "hour”, "minute”, and "second” values can be changed either by scrolling or by
inputting a digital value. The "month” and "PM_AM" values can only be changed by scrolling.

LONG Style Screen: The LONG Style CalendarSpinner Bean is shown below. This bean appears when
you set the "formatString” property to "LONG".

The long style includes eight sub fields.
* Month

* Day

* Year

* Hour

* Minute

* Second

* AM/PM

* Time zone

164 AS/400 Toolbox for Java

The "day”, "year”, "hour”, "minute”, and "second” values can be changed either by scrolling or by
inputting a digital value. The "month”, "PM_AM", and "time zone” values can be changed only by scrolling.

FULL Style Screen: The FULL Style CalendarSpinner Bean is shown below. This bean appears when
you set the "formatString” property to "FULL".

The full style includes nine sub fields.
» Day of the week

* Month

* Day

* Year

* Hour

* Minute

* Second

« AM/PM

* Time zone

The "day”, "year”, "hour”, "minute”, and "second” values can be changed either by scrolling or by
inputting a digital value. The "day of week”, "month”, "PM_AM" and "time zone” values can only be
changed by scrolling.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Date spinner

The date spinner displays and spins the date. You can change the date value by clicking on different sub
fields and spinning on them. You can also type in a date string to set the current value.

Properties

Property Description Data Type Flags* Default Value Valid Value

wrapAssociated Marks whether boolean R, W, B True True - field values
the changes of are associated
different field False - field
values are values are not
associated. For associated
example if
wrapAssociated is
true and the
current value is
"1998,12", the
year will change
from 1998 to
1999 when the
value of the
month is
incremented.

year The year. int R, W, B, E The current valid year
system year.

Chapter 9. Graphical Toolbox 165

However, to keep
compatible with
Webrunner API, it
cannot be
eliminated.
Therefore, it is a
hidden property
and can only be
manipulated by
the set/get
methods.

month The month. int R, W, B, E The current integer from 1 to
Note: the property system month. 12
value of month is
from O to 11, but
it displays 1 to 12
as its value in the
Ul. This is to keep
it consistent with
WebRunner and
JDK
day The day int R, W, B, E The current valid days
system day.
formatString The user-defined | String R, W, B "dd - MMM -yy” | FULL -
pattern string for "EEEE,MMMM
formatting and d,yyyy”
parsing the date. LONG - "MMMM
dyyyy”
MEDIUM -
"dd-MMM-yy”
SHORT - "M/dlyy”
formattingStyle The ID of format |int R, W, B, H 2 0 - FULL
string. 1-LONG
Note:This 2 - MEDIUM
property is the 3 - SHORT
same as the
formatString
property.

166 AS/400 Toolbox for Java

caretPos

The caret position
which represents
the current field to
be changed. It
can be one of
YEAR, MONTH,
or DATE.
Note:The
"caretPos”
property of
DateSpinner not
similar to the
caret position
defined in the
TextField.
Therefore, when
you manipulate
DateSpinner, the
caret position
displayed in the
input field may
not be consistent
with the value of
the caret position
displayed in the
property sheet.

nt

0 - YEAR
1- MONTH
2 - DATE

value

The calendar
value in long.

long

The current
system calendar
in long.

minimum<value
<maximum

calendar
(display
name:Date)

The calendar
value in calendar.

java.util.Calendar

The current

system calendar.

any instance of
Calendar

maximum

The maximum
value.

java.util.Calendar

12/31/2050

maximum>minimuri

minimum

The minimum
value.

java.util.Calendar

01/01/1950

any instance of
Calendar

dateString

The date shown
in the entry field.

String

The current
system date.

any instance of
valid date string

* R = read, W = write, B=bound, E =expert, H = hidden

Events

The date spinner fires the DateChangedEvent. The listener method for this event is
dateChanged(com.ibm.spinner.DateChangedEvent)

User interface

The currently selected value is displayed in an input field. The following picture shows what this may look
like: You can change the date value by clicking on different sub fields within the input field and using the
arrow buttons to spin them. You can also set the values by typing a date string into the input field. If the
input is invalid, the DateSpinner restores the previous value after you press the "Enter” or "Tab” key or
when you change the focus to another component.

[Information Center Home Page |

[Legal | AS/400 Glossary]

Chapter 9. Graphical Toolbox

167

Time spinner

The time spinner displays and spins the time. You can change the time value by clicking on different
subfields and spinning on them. You can also type in a time string to set the current value.

Properties
Property Description Data Type Flags* Default Value Valid Value
wrapAssociated Marks whether boolean R, W, B True True - different
the different field field values are
values are associated
associated. False - different
field values are
not associated
timeZone Represents a time | String R, W, B system'’s local valid time zone
zone offset. It is time zone string
also makes
changes for
daylight savings
time.
hour The hour int R, W, B, E The current valid hour
system hour.
minute The minute int R, W, B, E The current valid minute
system minute.
second The second int R, W, B, E The current valid second
system second.
formatString The user-defined | String R, W, B "h:mm:ss a" FULL - " h:mm:ss
pattern string for 'o’clock’ a z”
formatting and LONG - "h:mm:ss
parsing time. az"
MEDIUM -
"h:mm:ss a”
SHORT - "h:mm
a"
formattingStyle The ID of format |int R, W, B, H 2 0 - FULL
string. 1-LONG
Note:This 2 - MEDIUM
property is the 3 - SHORT
same as the
formatString
property.

However, to keep
compatible with
Webrunner API, it
cannot be
eliminated.
Therefore, it is a
hidden property
and can only be
manipulated by
the set/get
methods.

168 AS/400 Toolbox for Java

caretPos

The caret position
which represents
the current field to
be changed. It
can be one of:
HOUR, MINUTE,
and SECOND.
Note:The
"caretPos”
property of
TimeSpinner is
not similar to the
caret position
defined in the
TextField.
Therefore, when
you manipulate
TimeSpinner, the
caret position
displayed in the
input field may
not be consistent
with the value of
the caret position
displayed in the
property sheet.

nt

3 - HOUR
4 - MINUTE
5 - SECOND

value

The calendar
value in long.

long

The current
system calendar
in long.

minimum<value<
maximum

calendar
(display
name:Time)

The calendar
value in calendar.

java.util.Calendar

The current

system calendar.

any instance of
Calendar

maximum

The maximum
value.

java.util.Calendar

11:59:59 PM

maximum>minimuri

minimum

The minimum
value.

java.util.Calendar

00:00:00 AM

any instance of
Calendar

dateString

The time shown
in the entry field.

String

The current
system time.

any instance of
valid time string

* R = read, W = write, B = bound, E = expert, H = hidden

Events

The time spinner fires the DateChangedEvent. The listener method for this event is
dateChanged(com.ibm.spinner.DateChangedEvent)

User interface

The currently selected value is displayed in an input field. The following picture shows what this may look

like:

You can change the time value by clicking on different subfields within the input field and using the arrow
buttons to spin them. You can also set the values by typing a time string into the input field. If the input is
invalid, the TimeSpinner restores the previous value after you press the "Enter” or "Tab” key or when you
change the focus to another component.

Chapter 9. Graphical Toolbox

169

[Information Center

Home Page |

Numeric spinner

[Legal

| AS/400 Glossary |

The numeric spinner scrolls through a list of integers within a bounded range. The current selected value
is displayed in a text field. You can also enter an integer value as the current value.

del

=minimum

Properties
Property Description Data Type Flags* Default Value Valid Value
model The data model com.sun.java.swing.BpWwid@dRangeMogdalnew instance of |any instance of
used in the com.sun.java.swing.BoundedRangeMo
Numeric Spinner. DefaultBoundedRapngeModel
(0,0,0,100)
increment The step value by |int R, W, B 1 increment>0
which the value is
changed every
time.
value The current value. | int R, W, B 0 maximum>=value>|
minimum The minimum int R, W, B 0 minimum<=maximyim
value.
maximum The maximum int R, W, B 100 maximum>=minimym
value.

* R = read, W = write, B = bound, E = expert

User interface

The currently selected value is displayed in an input field. The following picture shows what this may look

like:

You can change the numeric value by clicking on different subfields within the input field and using the
arrow buttons to spin them. You can also set the values by typing a number into the input field. If the input
is invalid, the NumericSpinner restores the previous value after you press the "Enter” or "Tab” key or
when you change the focus to another component.

[Information Center Home Page |

[Legal | AS/400 Glossary]

Using the Graphical Toolbox in a browser

You can use the Graphical Toolbox to build panels for Java applets that run in a web browser. This section
describes how to convert the simple panel from the Graphical Toolbox Example to run in a browser. The

minimum browser levels supported are Netscape 4.05 and Internet Explorer 4.0.

In order to avoid having

to deal with the idiosyncrasies of individual browsers, we recommend that your applets run using Sun’s
Java Plug-in. Otherwise, you will need to construct signed JAR files for Netscape, and separate signed
CAB files for Internet Explorer.

Constructing the applet

The code to display a panel in an applet is nearly identical to the code used in the Java application
example, but first, the code must be repackaged in the init method of a JApplet subclass. Also, we must
add some code to ensure that the applet panel is sized to the dimensions specified in the panel's PDML
definition. Here is the source code for our example applet, SampleApplet.java.

170 AS/400 Toolbox for Java

import com.ibm.as400.ui.framework.java.*;
import com.sun.java.swing.x;

import java.awt.=;

import java.applet.*;

import java.util.*;

public class SampleApplet extends JApplet

{
// The following are needed to maintain the panel's size
private PanelManager m_pm;
private Dimension m_panelSize;

// Define an exception to throw in case something goes wrong
class SampleAppletException extends RuntimeException {}
public void init()
{
System.out.printIn("In init!");
// Trace applet parameters
System.out.printin("SampleApplet code base=" + getCodeBase());
System.out.printin("SampleApplet document base=" + getDocumentBase());
// Do a check to make sure we're running a Java virtual machine that's compatible with Swing 1.1
if (System.getProperty("java.version").compareTo("1.1.5") < 0)
throw new I1legalStateException("SampleApplet cannot run on Java VM version " +
System.getProperty("java.version") + " - requires 1.1.5 or higher");
// Instantiate the bean object that supplies data to the panel
SampleBean bean = new SampleBean();
// Initialize the object
bean.load();
// Set up to pass the bean to the panel manager
DataBean[] beans = { bean };
// Update the status bar
showStatus("Loading the panel definition...");
// Create the panel manager. Parameters:
// 1. PDML file as a resource name
// 2. Name of panel to display
// 3. List of data objects that supply panel data
// 4. The content pane of the applet
try { m_pm = new PanelManager("MyGUI", "PANEL 1", beans, getContentPane()); }
catch (DisplayManagerException e)
{
// Something didn't work, so display a message and exit
e.displayUserMessage(null);
throw new SampleAppletException();

// ldentify the directory where the online help resides
m_pm.setHelpPath("http://MyDomain/MyDirectory/");

// Display the panel

m_pm.setVisible(true);

public void start()
{
System.out.printIn("In start!");
// Size the panel to its predefined size
m_panelSize = m_pm.getPreferredSize();
if (m_panelSize != null)
{
System.out.printin("Resizing to " + m_panelSize);
resize(m_panelSize);
}
else
System.err.printin("Error: getPreferredSize returned null");

public void stop()
{

}
public void destroy()

{

System.out.printin("In stop!");

System.out.printin("In destroy!");

Chapter 9. Graphical Toolbox 171

1
public void paint(Graphics g)
{
// Call the parent first
super.paint(g);
// Preserve the panel's predefined size on a repaint
if (m_panelSize != null)
resize(m_panelSize);

}

The applet’s content pane is passed to the Graphical Toolbox as the container to be laid out. In the start
method, we size the applet pane to its correct size, and we override the paint method in order to preserve
the panel's size when the browser window is resized.

When running the Graphical Toolbox in a browser, the HTML files for your panel’s online help cannot be

accessed from a JAR file. They must reside as separate files in the directory where your applet resides.
The call to PanelManager.setHelpPath identifies this directory to the Graphical Toolbox, so that your help
files can be located.

HTML tags

Because we recommend the use of Sun’s Java Plug-in to provide the correct level of the Java runtime
environment, the HTML for identifying a Graphical Toolbox applet is not as straightforward as we would
like. Fortunately, the same HTML template may be reused, with only slight changes, for other applets. The
markup is designed to be interpreted in both Netscape Navigator and Internet Explorer, and it generates a
prompt for downloading the Java Plug-in from Sun’s web site if it's not already installed on the user’s
machine. For detailed information on the workings of the Java Plug-in see the Java Plug-in HTML
Specification.

Here is our HTML for the sample applet, in the file MyGUI.html:

<html>

<head>

<title>Graphical Toolbox Demo</title>

</head>

<body>

<hl>Graphical Toolbox Demo Using Java(tm) Plug-in</h1>

<p>

<!— BEGIN JAVA(TM) PLUG-IN APPLET TAGS —>

<l- The following tags use a special syntax which allows both Netscape and Internet Explorer to load —>

<l- the Java Plug-in and run the applet in the Plug-in's JRE. Do not modify this syntax. —>
<!— For more information see http://java.sun.com/products/jfc/tsc/swingdoc-current/java_plug_in.html. —
<OBJECT classid="c1sid:8AD9C840-044E-11D1-B3E9-00805F499D93"

width="400"

height="200"

align="1left"

codebase="http://java.sun.com/products/plugin/1.1.1/jinstal1-111-win32.cab#Version=1,1,1,0">

<PARAM name="code" value="SampleApplet">

<PARAM name="codebase" value="http://w3.rchland.ibm.com/ dpetty/applets/">
<PARAM name="archive" value="MyGUI.jar,jui400.jar,util400.jar,x4j400.jar">
<PARAM name="type" value="application/x-java-applet;version=1.1">
<COMMENT>
<EMBED type="application/x-java-applet;version=1.1"
width="400"
height=200"
align="Tleft"
code="SampTeApplet")
codebase="http://w3.rchland.ibm.com/ dpetty/applets/"
archive="MyGUI.jar,jui400.jar,util1400.jar,x4j400.jar"
pluginspage="http://java.sun.com/products/plugin/1.1.1/plugin-install.html">
<NOEMBED>
</COMMENT>

172 AS/400 Toolbox for Java

No support for JDK 1.1 applets found!
</NOEMBED>
</EMBED>

</0BJECT>

<!— END JAVA(TM) PLUG-IN APPLET TAGS —>

<p>

</body>

</html>

It is important that the version information be set for 1.1.1. The 1.2 version of the Java Plug-in will not
work with the Graphical Toolbox, unless you choose to include the Swing 1.0.3 JAR file in the archive
statement.

Note: In this example, we have chosen to store the XML parser JAR file, x4j400.jar, on the web server.
This is required only when you include your PDML file as part of your applet’s installation. For
performance reasons, you would normally serialize your panel definitions so that the Graphical Toolbox
does not have to interpret the PDML at runtime. This greatly improves the performance of your user
interface by creating compact binary representations of your panels. For more information see the
description of L ileg”

Installing and running the applet

Install the applet on your favorite web server by performing the following steps:
» Compile SampleApplet.java.

* Create a JAR file named MyGUI.jar to contain the applet binaries. These include the class files
produced when you compiled SampleApplet.java and SampleBean.java, the PDML file MyGUl.pdml,
and the resource bundle MyGUI.properties.

» Copy your new JAR file to a directory of your choice on your web server. Copy the HTML files
containing your online help into the server directory.

» Copy the Graphical Toolbox JAR files into the server directory.
* Finally, copy the HTML file MyGUIL.html containing the imbedded applet into the server directory.

Tip: When testing your applets, ensure that you have removed the Graphical Toolbox jars from the
CLASSPATH environment variable on your workstation. Otherwise, you will see error messages saying
that the resources for your applet cannot be located on the server.

Now you are ready to run the applet. Point your web browser to MyGUIL.html on the server. If you do not
already have the Java Plug-in installed, you will be asked if you want to install it. Once the Plug-in is
installed and the applet is started, your browser display should look similar to the following:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Explanation of the Toolbox Widgets

Below is the Java GUI Editor’s toolbox and an explanation of what each icon does when selected:
The pointer button allows you to move and resize a component on a panel.

The label widget allows you to insert a static label on a panel.

The text widget allows you to insert a text box on a panel.

The button widget allows you to insert a button on a panel.

The combo box widget allows you to insert a drop down list box on a panel.

Chapter 9. Graphical Toolbox 173

The list box widget allows you to insert a list box on a panel.

The radio button widget allows you to insert a radio button on a panel.
The check box widget allows you to insert a check box on a panel.

The spinner widget allows you to insert a spinner on a panel.

The image widget allows you to insert an image on a panel.

The image widget allows you to insert a menu bar on a panel.

The group box widget allows you to insert a labeled group box on a panel.
The tree widget allows you to insert an hierarchical tree on a panel.
The table widget allows you to insert a table on a panel.

The slider widget allows you to insert an adjustable slider on a panel.
The progress bar widget allows you to insert a progress bar on a panel.

The deck pane widget allows you to insert a deck pane on a panel. A deck pane contains a stack of
panels and only one is visually displayed at a time.

The split pane widget allows you to insert a split pane on a panel. A split pane is one pane divided into
two horizontal or vertical panes.

The tabbed pane widget allows you to insert a tabbed pane on a panel. A tabbed pane contains a
collection of panels and only one is visually displayed at a time. The tabbed pane displays the collection of
panels as a series of tabs and the user selects a tab to display a panel. The panel’s title is used as the
text for a tab.

The custom widget allows you to insert a custom-defined user interface component on a panel.

The tool bar widget allows you to insert a tool bar on a panel.

The toggle grid widget allows you to enable a grid on a panel.

The align top button allows you to align multiple components on a panel with the top edge of a specific, or
primary, component.

The align bottom button allows you to align multiple components on a panel with the bottom edge of a
specific, or primary, component.

The equalize height button allows you to equalize the height of multiple components with the height of a
specific, or primary, component.

The center vertically button allows you to center a selected component vertically relative to the panel.
The toggle margins button allows you to view the panel’'s margins.

The align left button allows you to align multiple components on a panel with the left edge of a specific, or
primary, component.

174 AS/400 Toolbox for Java

The align right button allows you to align multiple components on a panel with the left edge of a specific,
or primary, component.

The equalize width button allows you to equalize the width of multiple components with the width of a
specific, or primary, component.

The center horizontally button allows you to center a selected component horizontally relative to the panel.
The cut button allows you to cut panel components.

The copy button allows you to copy panel components.

The paste button allows you to paste panel components between different panels or files.

The undo button allows you to undo the last action.

The redo button allows you to redo the last action.

The tab order button allows you to control the selection order of each panel component; it's implemented
when the user hits the tab key to navigate through the panel.

The preview button allows you to preview what a panel will look like.

The help button allows you to get more specific information on the Graphical Toolbox.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Chapter 9. Graphical Toolbox 175

176 AS/400 Toolbox for Java

Chapter 10. Program Call Markup Language

Overview

Program Call Markup Language (PCML) is a tag language that helps you call AS/400 programs, with less
Java code. PCML is based upon the Extensible Markup Language (XML), a tag syntax you use to
describe the input and output parameters for AS/400 programs. PCML enables you to define tags that fully
describe AS/400 programs called by your Java application. For more information about XML, see the XML
reference (page P59d) section.

A huge benefit of PCML is that it allows you to write less code. Ordinarily, extra code is needed to
connect, retrieve, and translate data between an AS/400 and Toolbox objects. However, by using PCML,
your calls to the AS/400 with the AS/400 Toolbox for Java classes are automatically handled. PCML class
objects are generated from the PCML tags and help minimize the amount of code you need to write in
order to call AS/400 programs from your application.

Platform requirements

Although PCML was designed to support distributed program calls to AS/400 program objects from a Java
platform, you can also use PCML to make calls to an AS/400 program from within an AS/400 environment
as well.

Topics for more information

Refer to the following topics on how to use PCML:
» Call programs with the help of PCML

» Build program calls with PCML tags

* A PCML example

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Building AS/400 program calls with PCML

To build AS/400 program calls with PCML, you must start by creating the following:
» Java application
* PCML source file

Depending upon your design process, you must write one or more PCML source files where you describe
the interfaces to the AS/400 programs that will be called by your Java application. Refer to PCML syntax
for a detailed description of the language.

Then, your Java application, shown in yellow in Figure 1 below, interacts with the ProgramCallDocument
class. The ProgramCallDocument class uses your PCML source file to pass information between your
Java application and the AS/400 programs.

Figure 1. Making program calls to the AS/400 using PCML.

When your application constructs the ProgramCallDocument object, the IBM XML parser reads and parses
the PCML source file.

© Copyright IBM Corp. 1998, 1999 177

After the ProgramCallDocument class has been created, the application program uses the
ProgramCallDocument class’s methods to retrieve the necessary information from the AS/400 through the
AS/400 distributed program call (DPC) server.

To increase run-time performance, the ProgramCallDocument class can be serialized during your product
build time. The ProgramCallDocument is then constructed using the senallzed file. In this case, the IBM
XML parser is not used at run-time. Refer to L

Using PCML source files

Your Java application uses PCML by constructing a ProgramCallDocument object with a reference to the
PCML source file. The ProgramCallDocument object considers the PCML source file to be a Java
resource. Consequently, the PCML source file is found using the Java CLASSPATH.

The following Java code constructs a ProgramCallDocument object:

AS400 as400 = new AS400();
ProgramCallDocument pcmlDoc = new ProgramCallDocument(as400, "myPcmlDoc");

The ProgramCallDocument object will look for your PCML source in a file called myPcm1Doc.pcml. Notice
that the .pcml extension is not specified on the constructor.

If you are developing a Java application in a Java "package,” you can package-qualify the name of the
PCML resource:

AS400 as400 = new AS400();
ProgramCallDocument pcmlDoc = new ProgramCallDocument (as400, "com.company.package.myPcmlDoc");

Using serialized PCML files

To increase run-time performance, you can use a serialized PCML file. A serialized PCML file contains
serialized Java objects representing the PCML. The objects that are serialized are the same objects that
are created when you construct the ProgramCallDocument from a source file as described above.

Using serialized PCML files gives you better performance because the IBM XML parser is not needed at
run-time to process the PCML tags.

The PCML can be serialized using either of the following methods:
* From the command line:

java com.ibm.as400.ProgramcallDocument -serialize mypcml

This method is helpful for having batch processes to build your application.
* From within a Java program:

ProgramCallDocument pcmiDoc; // Initialized elsewhere
pcmiDoc.serialize();

If your PCML is in a source file named myDoc.pcml, the result of serialization is a file named
myDoc.pcml.ser.

PCML source files vs. serialized PCML files

Consider the following code to construct a ProgramCallDocument:

AS400 as400 = new AS400();
ProgramCallDocument pcmlDoc = new ProgramCallDocument(as400, "com.mycompany.mypackage.myPcmlDoc");

178 AS/400 Toolbox for Java

The ProgramCallDocument constructor will first try to find a serialized PCML file named
myPcmlDoc.pcml.ser in the com.mycompany.mypackage package in the Java CLASSPATH. If a serialized
PCML file does not exist, the constructor will then try to find a PCML source file named myPcm1Doc.pcml in
the com.mycompany .mypackage package in the Java CLASSPATH. If a PCML source file does not exist, an
exception is thrown.

Qualified names

Your Java application uses the ProgramCallDocument.setValue() method to set input values for the
AS/400 program being called. Likewise, your application uses the ProgramCallDocument.getValue()
method to retrieve output values from the AS/400 program.

When accessing values from the ProgramCallDocument class, you must specify the fully qualified name of
the document element or <data> tag. The qualified name is a concatenation of the names of all the
containing tags with each name separated by a period.

For example, given the following PCML source, the qualified name for the "nbrPolygons” item is
"polytest.parml.nbrPolygons”. The qualified name for accessing the "x" value for one of the points in
one of the polygons is "polytest.parml.polygon.point.x”.

If any one of the elements needed to make the qualified name is unnamed, all descendants of that
element do not have a qualified name. Any elements that do not have a qualified nhame cannot be
accessed from your Java program.

<pcml version="1.0">
<program name="polytest" path="/QSYS.1ib/MYLIB.1ib/POLYTEST.pgm">
<l- Parameter 1 contains a count of polygons along with an array of polygons —>
<struct name="parml" usage="inputoutput">
<data name="nbrPolygons" type="int" length="4" init="5" />
<l- Each polygon contains a count of the number of points along with an array of points —>
<struct name="polygon" count="nbrPolygons">
<data name="nbrPoints" type="int" length="4" init="3" />
<struct name="point" count="nbrPoints" >
<data name="x" type="int" length="4" init="100" />
<data name="y" type="int" length="4" init="200" />
</struct>
</struct>
</struct>
</program>
</pcml>

Accessing data in arrays

Any <data> or <struct> element can be defined as an array using the count attribute. Or, a <data> or
<struct> element can be contained within another <struct> element that is defined as an array.

Furthermore, a <data> or <struct> element can be in a multidimensional array if more than one containing
element has a count attribute specified.

In order for your application to set or get values defined as an array or defined within an array, you must
specify the array index for each dimension of the array. The array indices are passed as an array of int
values. Given the source for the array of polygons shown above, the following Java code can be used to
retrieve the information about the polygons:

ProgramCallDocument polytest; // Initialized elsewhere

Integer nbrPolygons, nbrPoints, pointX, pointY;

nbrPolygons = (Integer) polytest.getValue("polytest.parml.nbrPolygons");

System.out.printIn("Number of polygons:" + nbrPolygons);

indices = new int[2];

for (int polygon = 0; polygon < nbrPolygons.intValue(); polygon++)

Chapter 10. Program Call Markup Language 179

indices[0] = polygon;
nbrPoints = (Integer) polytest.getValue("polytest.parml.polygon.nbrPoints", indices);
System.out.printin(" Number of points:" + nbrPoints);
for (int point = 0; point < nbrPoints.intValue(); point++)
{
indices[1] = point;
pointX = (Integer) polytest.getValue("polytest.parml.polygon.point.x", indices);
pointY = (Integer) polytest.getValue("polytest.parml.polygon.point.y", indices);
System.out.printin(" X:" + pointX + " Y:" + pointY);

)
Debugging

When you use PCML to call programs with complex data structures, it is easy to have errors in your
PCML that result in exceptions from the ProgramCallDocument class. If the errors are related to incorrectly
describing offsets and lengths of data, the exceptions can be difficult to debug.

The com.ibm.as400.data.PcmIMessagelog class allows you to turn on a tracing function that prints to the
standard output stream information that can be helpful in problem determination. You can call the following
method to turn the tracing function on:

com.ibm.as400.data.PcmIMessagelLog.setTraceEnabled(true);

When the tracing function is turned on, the following types of information are printed to the standard output
stream:

* A dump of the hexadecimal data being transferred between the Java application and the AS/400
program. This shows the program input parameters after character data is converted to EBCDIC and
integers are converted to big-endian. It also shows the output parameters before they are converted to
the Java environment.

The data is shown in a typical hexadecimal dump format with hexadecimal digits on the left and a
character interpretation on the right. The following is an example of this dump format:

qgyolobj[6]
Offset : 0....... booi.... 8uvurnn. Covunnnn 0euen.. booo.... 8t Covurnnn 0...4...8...C...0...4...8...C...
0 : 5CE4E2D9 D7DIC640 4040 **SRPRF *

In the above example, the dump shows the seventh parameter has 10 bytes of data set to "*USRPRF ".

* For output parameters, following the hexadecimal dump is a description of how the data has been
interpreted for the document.

/QSYS.1ib/QGY.11b/QGYOLOBJ. pgm[2]

Offset : 0....... doo..... [T Covrnnnn (O 4ol < T Covunnn 0...4...8...C...0...4...8...C...
0 : 0000000A 0000O0OA 00000001 00000068 D7FOFIF9 FOF1F1F5 F1FAF2F6 F2F5F400 *................ PO9901151426254 . %
20 : 00000410 00000001 0OOOOOOO 0OOOOOO 0OOOOCOO 000000 00000000 OOOOOOOD *....eiieeiieiiiiiiieeneennnnns *
40 : 00000000 00000000 0OOOOOOO OOOOOOOO K iieeeiaeeaas *

Reading data — Offset: 0 Length:
Reading data — Offset: 4 Length:
Reading data — Offset: 8 Length:
Reading data — Offset: ¢ Length:
Reading data — Offset: 10 Length:
Reading data — Offset: 11 Length:
Reading data — Offset: 18 Length:
Reading data — Offset: le Length:
Reading data — Offset: 1f Length:
Reading data — Offset: 20 Length:
Reading data — Offset: 24 Length:
Reading data — Offset: 28 Length:

Name: "qgyolobj.listInfo.totalRcds" Byte data: 0000000A
Name: "qgyolobj.listInfo.rcdsReturned" Byte data: 0000000A
Name: "qgyolobj.listInfo.rgsHandle" Byte data: 00000001
Name: "qgyolobj.listInfo.rcdLength" Byte data: 00000068
Name: "qgyolobj.listInfo.infoComplete" Byte data: D7
Name: "qgyolobj.listInfo.dateCreated" Byte data: FOF9F9FOF1F1F5
Name: "qgyolobj.listInfo.timeCreated" Byte data: F1F4F2F6F2F5
Name: "qgyolobj.listInfo.listStatus" Byte data: F4
Name: "qgyolobj.listInfo.[8]" Byte data: 00
Name: "qgyolobj.listInfo.lengthOfInfo" Byte data: 00000410
Name: "qgyolobj.listInfo.firstRecord" Byte data: 00000001

0 Name: "qgyolobj.listInfo.[11]" Byte data: 000000000000000000000000000000000000

PR RONRL,DEEEEDDS

180 AS/400 Toolbox for Java

The above messages can be very helpful in diagnosing cases where the output data coming from the
AS/400 program does not match the PCML source. This can easily occur when you are using dynamic

lengths and offsets.

[Information Center Home Page | Feedback]

[Legal | AS/400 Glossary]

PCML syntax

PCML consists of the following tags, each of which has its own attribute tags:
* The program tag begins and ends code that describes one program

* The struct tag defines a named structure which can be specified as an argument to a program or as a
field within another named structure. A structure tag contains a data or a structure tag for each field in

the structure.

* The data tag defines a field within a program or structure.

For example, below, the PCML syntax describes one program with one category of data and some

isolated data.

<program>
<struct>
<data> </data>
</struct>
<data> </data>
</program>

[Information Center Home Page | Feedback]

The program tag

The program tag can be expanded with the following elements:

[Legal | AS/400 Glossary]

<program name="name”

[entrypoint="entry-point-name”] [path="path-name” | [parseorder="name-list"] > [returnvalue="{ void | integer }"]

</program>
Attribute Value Description
entrypoint= entry-point-name Specifies the name of the entry point
within a service program object that is
the target of this program call.
name= name Specifies the name of the program.

Chapter 10. Program Call Markup Language

181

path=

path-name

Specifies the path to the program
object.

The default value is to assume the
program is in the QSYS library.

The path must be a valid IFS path
name to a *PGM or *SRVPGM object.
If a *SRVPGM object is called, the
entrypoint attribute must be specified
to indicate the name of the entrypoint
to be called.

If the entrypoint attribute is not
specified, the default value for this
attribute is assumed to be a *PGM
object from the QSYS library. If the
entrypoint attribute is specified, the
default value for this attribute is
assumed to be a *SRVPGM object in
the QSYS library.

The path name should be specified
as all uppercase characters.

parseorder=

name-list

Specifies the order in which output
parameters will be processed. The
value specified is a blank separated
list of parameter names in the order
in which the parameters are to be
processed. The names in the list must
be identical to the names specified on
the name attribute of tags belonging
to the <program>. The default value
is to process output parameters in the
order the tags appear in the
document.

Some programs return information in
one parameter that describes
information in a previous parameter.
For example, assume a program
returns an array of structures in the
first parameter and the number of
entries in the array in the second
parameter. In this case, the second
parameter must be processed in
order for the ProgramCallDocument
to determine the number of structures
to process in the first parameter.

returnvalue=

void
The program does not return a value.

integer
The program returns a 4-byte signed
integer.

Specifies the type of value, if any, that
is returned from a service program
call. This attribute is not allowed for
*PGM object calls.

[Information Center Home Page | Feedback]

182 AS/400 Toolbox for Java

[Legal | AS/400 Glossary]

The struct tag

The structure tag can be expanded with the following elements:

<struct name="name"

[maxvrm="version-string"]
[minvem="version-string"]

[offsetfrom="{number
[outputsize="{number

[count="{number | data-name }"]

[offset="{number | data-name }"]

data-name | struct-name }"]
data-name }"]

[usage="{ inherit | input | output | inputoutput }" 1>

</struct>

Attribute Value Description

name= name Specifies the name of the <struct>

element

count= number Specifies that the element is an array
where number defines a fixed, and identifies the number of entries in
never-changing sized array. the array.
data-name If this attribute is omitted, the element
where data-name defines the name of | is not defined as an array, although it
a <data> element within the PCML may be contained within another
document that will contain, at runtime, | element that is defined as an array.
the number of elements in the array.
The data-name specified can be a
fully qualified name or a name that is
relative to the current element. In
either case, the name must reference
a <data> element that is defined with
type="int". See Resolving Relative
Names for more information on how
relative names are resolved.

maxvrm= version-string Specifies the highest AS/400 version

on which the element exists. If the
AS/400 version is greater than the
version specified on the attribute, the
element and its children, if any exist,
will not be processed during a call to
a program. The maxvrm element is
helpful for defining program interfaces
which differ between releases of
AS/400.

The syntax of the version string must
be "VVRrMm,” where the capitals
letters "V,” "R,” and "M" are literal
characters and "v,” "r,” and "m” are
one or more digits representing the
version, release and modification
level, respectively. The value for "v”
must be from 1 to 255 inclusively. The
value for "r" and "m” must be from 0
to 255, inclusively.

Chapter 10. Program Call Markup Language

183

minvrm=

version-string

Specifies the lowest AS/400 version
on which this element exists. If the
AS/400 version is less than the
version specified on this attribute, this
element and its children, if any exist,
will not be processed during a call to
a program. This attribute is helpful for
defining program interfaces which
differ between releases of AS/400.

The syntax of the version string must
be "VVRrMm,” where the capitals
letters "V,” "R,” and "M" are literal
characters and "v,” "r,” and "m” are
one or more digits representing the
version, release and modification
level, respectively. The value for "v"
must be from 1 to 255, inclusively.
The value for "r" and "m” must be
from 0 to 255, inclusively.

offset=

number
where number defines a fixed,
never-changing offset.

data-name

where data-namedefines the name of
a <data> element within the PCML
document that will contain, at runtime,
the offset to the element. The
data-name specified can be a fully
qualified name or a name that is
relative to the current element. In
either case, the name must reference
a <data> element that is defined with
type="int". See Resolving Relative
Names for more information on how
relative names are resolved.

Specifies the offset to the <struct>
element within an output parameter.

Some programs return information
with a fixed structure followed by one
or more variable length fields or
structures. In this case, the location of
a variable length element is usually
specified as an offset or displacement
within the parameter. The offset
attribute is used to describe the offset
to this <struct> element.

Offset is used in conjunction with the
offsetfrom attribute. If the offsetfrom
attribute is not specified, the base
location for the offset specified on the
offset attribute is the parent of the
element. See tSpecifying offsets” ad

for more information on
how to use the offset and offsetfrom
attributes.

The offset and offsetfrom attributes
are only used to process output data
from a program. These attributes do

not control the offset or displacement
of input data.

If the attribute is omitted, the location
of the data for the element is
immediately following the preceding
element in the parameter, if any.

184 AS/400 Toolbox for Java

offsetfrom=

number

where number defines a fixed,
never-changing base location. A
number attribute is most typically
used to specify number="0"
indicating that the offset is an
absolute offset from the beginning of
the parameter.

data-name

where data-name defines the name of
a <data> element to be used as a
base location for the offset. The
element name specified must be the
parent or an ancestor of this element.
The value from the offset attribute
will be relative to the location of the
element specified on this attribute.
The data-name specified can be a
fully qualified name or a name that is
relative to the current element. In
either case, the name must reference
an ancestor of thls element. See

m for more information on

how relative names are resolved.

struct-name

where struct-name defines the name
of a <struct> element to be used as
a base location for the offset. The
element name specified must be the
parent or an ancestor of this element.
The value from the offset attribute
will be relative to the location of the
element specified on this attribute.
The struct-name specified can be a
fully qualified name or a name that is
relative to the current element. In
either case, the name must reference
an ancestor of thls element See

m for more information on

how relative names are resolved.

Specifies the base location from
which the offset attribute is relative.

If the offsetfrom attribute is not
specified, the base location for the
offset specified on the offset attribute
is the parent of this element. See
ESpecifying offsets” on page 187 for
more information on how to use the
offset and offsetfrom attributes.

The offset and offsetfrom attributes
are only used to process output data
from a program. These attributes do

not control the offset or displacement
of input data.

Chapter 10. Program Call Markup Language 185

outputsize= number Specifies the number of bytes to

where number defines a reserve for output data for the

fixed,never-changing number of bytes | element. For output parameters which

to reserve. are variable in length, the outputsize
attribute is needed to specify how

data-name many bytes should be reserved for

where data-name defines the name of | data to be returned from the AS/400

a <data> element within the PCML program. Outputsize can be

document that will contain, at runtime, | specified on all variable length fields

the number of bytes to reserve for and variable sized arrays, or it can be

output data. The data-name specified | specified for an entire parameter that

can be a fully qualified name or a contains one or more variable length

name that is relative to the current fields.

element. In either case, the name

must reference a <data> element that | Outputsize is not necessary and

is defined with type="int". See should not be specified for fixed-size

LResalving relative names’l for more | output parameters.

information on how relative names

are resolved. The value specified on the attribute is
used as the total size for the element
including all children of the element.
Therefore, the outputsize attribute is
ignored on any children or
descendants of the element.
If the attribute is omitted, the number
of bytes to reserve for output data is
determined at runtime by adding the
number of bytes to reserve for all of
the children of the <struct> element.

usage= inherit Usage is inherited from the parent

element. If the structure does not
have a parent, usage is assumed to
be inputoutput.

input The structure is an input value to the
host program. For character and
numeric types, the appropriate
conversion is performed.

output The structure is an output value from
the host program. For character and
numeric types, the appropriate
conversion is performed.

inputoutput The structure is both and input and

an output value.

Resolving relative names

Several attributes allow you to specify the name of another element, or tag, within the document as the
attribute value. The name specified can be a name that is relative to the current tag.

Names are resolved by seeing if the name can be resolved as a child or descendent of the tag containing
the current tag. If the name cannot be resolved at this level, the search continues with the next highest
containing tag. This resolution must eventually result in a match of a tag that is contained by the <pcml|>
tag, in which case the name is considered to be an absolute name, not a relative name.

<pcml version="1.0">

<program name="polytest" path="/QSYS.1ib/MYLIB.1ib/POLYTEST.pgm">
<!- Parameter 1 contains a count of polygoins along with an array of polygons —>
<struct name="parml" usage="inputoutput">

186 AS/400 Toolbox for Java

<data name="nbrPolygons" type="int" length="4" init="5" />
<!- Each polygon contains a count of the number of points along with an array of points —
<struct name="polygon" count="nbrPolygons">
<data name="nbrPoints" type="int" length="4" init="3" />
<struct name="point" count="nbrPoints" >
<data name="x" type="int" length="4" init="100" />
<data name="y" type="int" length="4" init="200" />
</struct>
</struct>
</struct>
</program>
</pcml>

Specifying offsets

Some programs return information with a fixed structure followed by one or more variable length fields or
structures. In this case, the location of a variable length element is usually specified as an offset or
displacement within the parameter.

An offset is the distance in bytes from a the beginning of the parameters to the beginning of a field or
structure. A displacement is the distance in bytes from the beginning of one structure to the beginning of
another structure.

For offsets, since the distance is from the beginning of the parameter, you should specify offsetfrom="0".
The following is an example of an offset from the beginning of the parameter:

<pcml version="1.0">
<program name="myprog" path="/QSYS.1ib/MYLIB.1ib/MYPROG.pgm">
<l- receiver variable contains a path —>
<struct name="reciever" usage="output" outputsize="2048">
<data name="pathType" type="int" Tlength="4" />
<data name="offsetToPathName" type="int" length="4" />
<data name="TengthOfPathName" type="int" Tlength="4" />
<data name="pathName" type="char" Tength="1lengthOfPathName"
offset="offsetToPathName" offsetfrom="0"/>
</struct>
</program>
</pcml>

For displacements, since the distance is from the beginning of another structure, you specify the name of
the structure to which the offset is relative. The following is an example of an displacement from the
beginning of a named structure:
<pcml ="1.0">

<program name="myprog" path="/QSYS.1ib/MYLIB.1ib/MYPROG.pgm">

<l— receiver variable contains an object —
<struct name="reciever" usage="output" >

<data name="objectName" type="char" Tlength="10" />
<data name="TlibraryName" type="char" Tlength="10" />
<data name="objectType" type="char" Tlength="10" />
<struct name="pathInfo" usage="output" outputsize="2048" >

<data name="pathType" type="int" Tlength="4" />

<data name="offsetToPathName" type="int" length="4" />
<data name="lengthOfPathName" type="int" 1length="4" />
<data name="pathName" type="char" length="1engthOfPathName"
offset="offsetToPathName" offsetfrom="pathInfo"/>
</struct>
</struct>
</program>
</pcml>

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Chapter 10. Program Call Markup Language 187

The data tag

The data tag can have the following attributes. Attributes enclosed in brackets, [], indicate that the attribute
is optional. If you specify an optional attribute, do not include the brackets in your source. Some attribute
values are shown as a list of choices enclosed in braces, {}, with possible choices separated by vertical
bars, |. When you specify one of these attributes, do not include the braces in your source and only
specify one of the choices shown.

<data type="{ char | int | packed | zoned | float | byte | struct }"
[ccsid="{ number | data-name }"]
[count="{ number | data-name }"]
[init="string"]
[length="{ number | data-name }"]
[maxvrm="version-string”]
[minvem="version-string”]
[name="name”
[offset="{ number | data-name }"]
[offsetfrom="{ number | data-name | struct-name }"]
[outputsize="{ number | data-name | struct-name }"]

[passby="{ reference | value }"] [precision="number”] [struct="struct-name”] [usage="{ inherit | input | output |
inputoutput }” 1> </data>

Attribute |Va|ue Description

188 AS/400 Toolbox for Java

type=

char

where char indicates a character
value. The length attribute specifies
the number of bytes of data which
may be different than the number of
characters. A char data value is
returned as a java.lang.String.

int

where int is an integer value. The
length attribute specifies the number
of bytes, "2" or "4". The precision
attribute specifies the number of bits
of precision. For example,

length="2" precision="15"
Specifies a 16-bit signed
integer. An int data value
with these specifications is
returned as a
java.lang.Short.

length="2" precision="16"
Specifies a 16-bit unsigned
integer. An int data value
with these specifications is
returned as a
java.lang.Integer.

length="4" precision="31"
Specifies a 32-bit signed
integer. An int data value
with these specifications is
returned as a
java.lang.Integer.

length="4" precision="32"
Specifies a 32-bit unsigned
integer. An int data value is
returned as a java.lang.Long.

For length="2", the default precision
is "15". For length="4", the default
precision is "31".

packed

where packed is a packed decimal
value. The length attribute specifies
the number of digits. The precision
attribute specifies the number of
decimal positions. A packed data
value is returned as a
java.math.BigDecimal.

zoned

where zoned is a zoned decimal
value. The length attribute specifies
the number of digits. The precision
attribute specifies the number of
decimal positions. A zoned data value
is returned as a
java.math.BigDecimal.

float

where float is a floating point value.
The length attribute specifies tHehapter
number of bytes, "4” or "8". For
length="4", the float data value is
returned as a iava lana Float For

Indicates the type of data being used
(character, integer, packed, zoned,
floating point, byte, or struct).

10. Program Call Markup Language 189

ccsid= number Specifies the host Coded Character
where number defines a fixed, Set ID (CCSID) for character data for
never-changing CCSID. the <data> element. The ccsid

attribute can be specified only for

data-name <data> elements with type="char".
where data-name defines the name
that will contain, at runtime, the If this attribute is omitted, character
CCSID of the character data. The data for this element is assumed to
data-name specified can be a fully be in the default CCSID of the host
qualified name or a name that is environment.
relative to the current element. In
either case, the name must reference
a <data> element that is defined with
type="int". See Resolving Relative
Names for more information on how
relative names are resolved.

count= number Specifies that the element is an array
where number defines a fixed, and identifies the number of entries in
never-changing number of elements | the array.
in a sized array.

If the count attribute is omitted, the
data-name element is not defined as an array,
where data-name defines the name of | although it may be contained within
a <data> element within the PCML another element that is defined as an
document that will contain, at runtime, | array.
the number of elements in the array.

The data-name specified can be a
fully qualified name or a name that is
relative to the current element. In
either case, the name must reference
a <data> element that is defined with
type="int". See Resolving Relative
Names for more information on how
relative names are resolved.
init= string Specifies an initial value for the

<data> element. The init value is
used if an initial value is not explicitly
set by the application program when
<data> elements with usage="input”
or usage="inputoutput” are used.

The initial value specified is used to
initialize scalar values. If the element
is defined as an array or is contained
within a structure defined as an array,
the initial value specified is used as
an initial value for all entries in the
array.

190 AS/400 Toolbox for Java

length=

number
where number defines a fixed,
never-changing length.

data-name

where data-name defines the name of
a <data> element within the PCML
document that will contain, at runtime,
the length. A data-name can be
specified only for <data> elements
with type="char” or type="byte". The
data-name specified can be a fully
qualified name or a name that is
relative to the current element. In
either case, the name must reference
a <data> element that is defined with
type="int". See Resolving Relative
Names for more information on how
relative names are resolved.

Chapter

Specifies the length of the data
element. Usage of this attribute varies
depending on the data type.

Data Type
Description

type="char”
The length attribute
specifies the number of
bytes, of data for this
element. Note that this is not
necessarily the number of
characters. A literal number
or data-name must be
specified.

type="int"
The length attribute
specifies the number of
bytes, "2" or "4", of data for
this element. The precision
attribute is used to specify
the number of bits of
precision and indicates
whether the integer is signed
or unsigned. A literal number
must be specified.

type="packed”
The length attribute
specifies the number of
numeric digits of data for this
element. The precision
attribute is used to specify
the number of decimal digits.
A literal number must be
specified.

type="zoned”
The length attribute
specifies the number of
numeric digits of data for this
element. The precision
attribute is used to specify
the number of decimal digits.
A literal number must be
specified.

type="float”
The length attribute
specifies the number of
bytes, 4 or 8, of data for this
element. A literal number
must be specified.

type="byte"”
The length attribute
specifies the number of
bytes of data for this
element. A literal number or
data-name must be
specified.

type="struct”

The length attribute is no_;l_
10. Prograg)Ga/k)arkup Language 191

maxvrm=

version-string

Specifies the highest AS/400 version
on which this element exists. If the
AS/400 version is greater than the
version specified on this attribute, this
element and its children, if any exist,
will not be processed during a call to
a program. This attribute is helpful for
defining program interfaces which
differ between releases of AS/400.

The syntax of the version string must
be "VVRrMm”, where the capitals
letters "V,” "R,” and "M" are literal
characters and "v,” "r,” and "m” are
one or more digits representing the
version, release and modification
level, respectively. The value for "v"
must be from 1 to 255 inclusively. The
value for "r" and "m"” must be from 0
to 255, inclusively.

minvrm=

version-string

Specifies the lowest AS/400 version
on which this element exists. If the
AS/400 version is less than the
version specified on this attribute, this
element and its children, if any exist,
will not be processed during a call to
a program. This attribute is helpful for
defining program interfaces which
differ between releases of AS/400.

The syntax of the version string must
be "VVRrMm,” where the capitals
letters "V,” "R,” and "M" are literal
characters and "v,” "r,” and "m” are
one or more digits representing the
version, release and modification
level, respectively. The value for "v”
must be from 1 to 255 inclusively. The
value for "r" and "m” must be from 0
to 255, inclusively.

name=

name

Specifies the name of the <data>
element.

192 AS/400 Toolbox for Java

offset=

number
where number defines a fixed,
never-changing offset.

data-name

where data-name defines the name of
a <data> element within the PCML
document that will contain, at runtime,
the offset to this element. The
data-name specified can be a fully
qualified name or a name that is
relative to the current element. In
either case, the name must reference
a <data> element that is defined with
type="int". See Resolving Relative
Names for more information on how
relative names are resolved.

Specifies the offset to the <data>
element within an output parameter.

Some programs return information
with a fixed structure followed by one
or more variable length fields or
structures. In this case, the location of
a variable length element is usually
specified as an offset or displacement
within the parameter.

An offset attribute is used in
conjunction with the offsetfrom
attribute. If the offsetfrom attribute is
not specified, the base location for
the offset specified on the offset
attribute is the parent of this element.
See [Specifying offsets” on page 187
for more information on how to use
the offset and offsetfrom attributes.

The offset and offsetfrom attributes
are only used to process output data
from a program. These attributes do

not control the offset or displacement
of input data.

If this attribute is omitted, the location
of the data for this element is
immediately following the preceding
element in the parameter, if any.

Chapter 10. Program Call Markup Language 193

offsetfrom=

number

where number defines a fixed,
never-changing base location.
Number is most typically used to
specify number="0" indicating that
the offset is an absolute offset from
the beginning of the parameter.

data-name

where data-name defines the name of
a <data> element used as a base
location for the offset. The element
name specified must be the parent or
an ancestor of this element. The
value from the offset attribute will be
relative to the location of the element
specified on this attribute. The
data-name specified can be a fully
qualified name or a name that is
relative to the current element. In
either case, the name must reference
an ancestor of this element. See

lhage 184 for more information on

how relative names are resolved.

struct-name

where struct-name defines the name
of a <struct> element used as a
base location for the offset. The
element name specified must be the
parent or an ancestor of this element.
The value from the offset attribute
will be relative to the location of the
element specified on this attribute.
The struct-name specified can be a
fully qualified name or a name that is
relative to the current element. In
either case, the name must reference
an ancestor of this element. See

m for more information on

how relative names are resolved.

Specifies the base location from
which the offset attribute is relative.

If the offsetfrom attribute is not
specified, the base location for the
offset specified on the offset attribute
is the parent of this element. See
tSpecifying offsets” an page 187 for
more information on how to use the
offset and offsetfrom attributes.

The offset and offsetfrom attributes
are only used to process output data
from a program. These attributes do

not control the offset or displacement
of input data.

194 AS/400 Toolbox for Java

outputsize= number Specifies the number of bytes to

where a number defines a fixed, reserve for output data for the

never-changing number of bytes to element. For output parameters which

reserve. are variable in length, the outputsize
attribute is needed to specify how

data-name many bytes should be reserved for

where data-name defines the name of | gata to be returned from the AS/400

a <data> element within the PCML | program. An outputsize attribute can

document that will contain, at runtime, be specified on all variable length

the number of bytes to reserve for fields and variable sized arrays, or it

output data. The data-name specified | can be specified for an entire

can be a fully qualified name or a parameter that contains one or more

name that is relative to the current variable length fields.

element. In either case, the name

must reference a <data> element that | OQutputsize is not necessary and

is defined with type="int". See should not be specified for fixed-size

LResalving relative names” aorl output parameters.

w for more information on

how relative nhames are resolved. The value SpeCified on this attribute is
used as the total size for the element
including all the children of the
element. Therefore, the outputsize
attribute is ignored on any children or
descendants of the element.
If outputsize is omitted, the number
of bytes to reserve for output data is
determined at runtime by adding the
number of bytes to reserve for all of
the children of the <struct> element.

passby= reference Specifies whether the parameter is

where reference indicates that the
parameter will be passed by
reference. When the program is
called, the program will be passed a
pointer to the parameter value.

value

where value indicates an integer
value. This value is allowed only
when

type= "int” and length="4" is
specified.

passed by reference or passed by
value. This attribute is allowed only
when this element is a child of a
<program> element defining a
service program call.

Chapter 10. Program Call Markup Language 195

precision=

number

Specifies the number of bytes of
precision for some numeric data
types.

Data Type
Description

type="int"

length="2"
Use precision="15" for a
signed 2-byte integer. Use
precision="16" for an
unsigned 2-byte integer. The
default value is "15".

type="int"

length="4"
Use precision="31" for a
signed 4-byte integer. Use
precision="32" for an
unsigned 4-byte integer.

type="zoned”
The precision specifies the
number of decimal digits.
The number specified must
be greater than or equal to
zero and less than or equal
to the total number of digits
specified on the length
attribute.

type="zoned”
The precision specifies the
number of decimal digits.
The number specified must
be greater than or equal to
zero and less than or equal
to the total number of digits
specified on the length
attribute.

struct=

name

Specifies the name of a <struct>
element for the <data> element. A
struct attribute can be specified only
for <data> elements with
type="struct".

196 AS/400 Toolbox for Java

usage= inherit Usage is inherited from the parent
element. If the structure does not
have a parent, usage is assumed to
be inputoutput.

input Defines an input value to the host
program. For character and numeric
types, the appropriate conversion is
performed.

output Defines an output value from the host
program. For character and numeric
types, the appropriate conversion is
performed.

inputoutput Defines both and input and an output
value.

Resolving relative names

Several attributes allow you to specify the name of another element, or tag, within the document as the
attribute value. The name specified can be a name that is relative to the current tag.

Names are resolved by seeing if the name can be resolved as a child or descendent of the tag containing
the current tag. If the name cannot be resolved at this level, the search continues with the next highest
containing tag. This resolution must eventually result in a match of a tag that is contained by the <pcml|>
tag, in which case the name is considered to be an absolute name, not a relative name.

<pcml version="1.0">
<program name="polytest" path="/QSYS.1ib/MYLIB.1ib/POLYTEST.pgm">
<!— Parameter 1 contains a count of polygoins along with an array of polygons —>
<struct name="parml" usage="inputoutput">
<data name="nbrPolygons" type="int" length="4" init="5" />
<l- Each polygon contains a count of the number of points along with an array of points —>
<struct name="polygon" count="nbrPolygons">
<data name="nbrPoints" type="int" length="4" init="3" />
<struct name="point" count="nbrPoints" >
<data name="x" type="int" length="4" init="100" />
<data name="y" type="int" length="4" init="200" />
</struct>
</struct>
</struct>
</program>
</pcml>

Specifying offsets

Some programs return information with a fixed structure followed by one or more variable length fields or
structures. In this case, the location of a variable length element is usually specified as an offset or
displacement within the parameter.

An offset is the distance in bytes from the beginning of the parameters to the beginnings of a field or
structure. A displacement is the distance in bytes from the beginning of one structure to the beginning of
another structure.

For offsets, since the distance is from the beginning of the parameter, you should specify offsetfrom="0".
The following is an example of an offset from the beginning of the parameter:

<pcml version="1.0">
<program name="myprog" path="/QSYS.1ib/MYLIB.1ib/MYPROG.pgm">
<l- receiver variable contains a path —>
<struct name="receiver" usage="output" outputsize="2048">
<data name="pathType" type="int" Tlength="4" />
<data name="offsetToPathName" type="int" Tlength="4" />

Chapter 10. Program Call Markup Language 197

<data name="lengthOfPathName" type="int" length="4" />
<data name="pathName" type="char" length="1engthOfPathName"
offset="offsetToPathName" offsetfrom="0"/>
</struct>
</program>
</pcml>

For displacements, since the distance is from the beginning of another structure, you specify the name of
the structure to which the offset is relative. The following is an example of an displacement from the
beginning of a named structure:
<pcml version="1.0">

<program name="myprog" path="/QSYS.1ib/MYLIB.1ib/MYPROG.pgm">

<l- receiver variable contains an object —
<struct name="receiver" usage="output" >

<data name="objectName" type="char" Tlength="10" />
<data name="TibraryName" type="char" Tlength="10" />
<data name="objectType" type="char" Tlength="10" />
<struct name="pathInfo" usage="output" outputsize="2048" >

<data name="pathType" type="int" Tlength="4" />

<data name="offsetToPathName" type="int" length="4" />
<data name="lengthOfPathName" type="int" Tlength="4" />
<data name="pathName" type="char" length="1engthOfPathName"
offset="offsetToPathName" offsetfrom="pathInfo"/>
</struct>
</struct>
</program>
</pcml>

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Program Call Markup Language (PCML) examples

Some examples of using Program Call Markup Language to call OS/400 APlIs are listed below. The

explanation of each example links to a page that shows the PCML source followed by a Java program.

» Simple example of retrieving data: Shows the PCML source and Java program needed to retrieve
information about a user profile on the AS/400. The API being called is the Retrieve User Information
(QSYRSURI) APL.

» Retrieving a list of information: Shows the PCML source and Java program needed to retrieve a list of
authorized users on an AS/400. The API being called is the Open List of Authorized Users
(QGYOLAUS) API. This example illustrates how to access an array of structures returned by an AS/400
program.

» Retrieving multidimensional data Shows the PCML source and Java program needed to retrieve a list
Network File System (NFS) exports from an AS/400. The API being called is the Retrieve NFS Exports
(QZNFRTVE) API. This example illustrates how to access arrays of structures within an array of
structures.

Note: In order to run these examples, you must sign on with a user profile that has authority to do the following:
» Call the OS/400 API in the example
» Access the information being requested

The proper authority for each example varies but may include specific object authorities and special authorities.

License information
IBM grants you a nonexclusive license to use these as examples from which you can generate similar

function tailored to your own specific needs. These samples are provided in the form of source material
which you may change and use.

198 AS/400 Toolbox for Java

DISCLAIMER

This sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs. All programs contained herein are provided to you "AS 1S" without any
warranties of any kind. ALL WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
EXPRESSLY DISCLAIMED.

Your license to this sample code provides you no right or licenses to any IBM patents. IBM has no
obligation to defend or indemnify against any claim of infringement, including but not limited to: patents,
copyright, trade secret, or intellectual property rights of any kind.

COPYRIGHT

5769-JC1 (C) Copyright IBM CORP. 1998, 1999
All rights reserved.

US Government Users Restricted Rights -

Use, duplication or disclosure restricted

by GSA ADP Schedule Contract with IBM Corp.
Licensed Material - Property of IBM

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Chapter 10. Program Call Markup Language 199

Simple example of retrieving data

PCML source for calling QSYRUSRI

<struct
<data
<data
<data
<data
<data
<data
<data
<data
<data
<data
<data
<data
<data
<data
<data
<data

<data

<data
<data

<data

<data

</pcml>

<pcml version="1.0">
<!— PCML source for calling "Retreive user Information" (QSYRUSRI) API —>
<!— Format USRIO150 - Other formats are available —>

name="usri0100">
name="bytesReturned"
name="bytesAvailable"
name="userProfile"
name="previousSignonDate"
name="previousSignonTime"

name="badSignonAttempts"
name="status"
name="passwordChangeDate"
name="noPassword"

name="passwordExpirationInterval"

name="datePasswordExpires"

name="daysUntilPasswordExpires"

name="setPasswordToExpire"
name="displaySignonInfo"

</struct>
<!— Program QSYRUSRI and its parameter list for retrieving USRIO100
<program name="gsyrusri" path="/QSYS.1ib/QSYRUSRI.pgm">

name="receiver"
struct="usri0100"/>
name="receiverLength"
name="format"
init="USRI0100"/>
name="profileName"
init="*CURRENT"/>
name="errorCode"
init="0"/>

</program>

type="int"
type="int"
type="char"
type="char"
type="char"
type="byte"
type="int"
type="char"
type="byte"
type="char"
type="byte"
type="int"
type="byte"
type="int"
type="char"
type="char"

type="struct"

type="int"
type="char"

type="char"

type="int"

length="4"
length="4"
length="10"
length="7"
length="6"
length="1"
length="4"
length="10"
length="8"
length="1"
length="1"
length="4"
length="8"
length="4"
length="1"
length="10"

length="4"
length="8"

length="10"

Tength="4"

usage="output"/>
usage="output"/>
usage="output"/>
usage="output"/>
usage="output"/>
usage="output"/>
usage="output"/>
usage="output"/>
usage="output"/>
usage="output"/>
usage="output"/>
usage="output"/>
usage="output"/>
usage="output"/>
usage="output"/>
usage="output"/>

format —>
usage="output"

usage="input" />
usage="input"

usage="input"

usage="input"

200 AS/400 Toolbox for Java

Java program source for calling QSYRUSRI

import
import
import
import

com.
com.
com.
com.

// Example
public class gsyrusri {
public gsyrusri() {

ibm.as400.data.ProgramCallDocument;
ibm.as400.data.PcmlException;

ibm.as400.access.AS400;

ibm.as400.access.AS400Message;

program to call "Retrieve User Information" (QSYRUSRI) API

public static void main(String[] argv)

{

AS4
Pro
boo
Str
Obj
Sys
//

00 as400System; // com.ibm.as400.access.AS400

gramCallDocument pcml; // com.ibm.as400.data.ProgramCallDocument

lean rc = false; // Return code from ProgramCallDocument.callProgram()
ing msgld, msgText; // Messages returned from AS/400

ect value; // Return value from ProgramCallDocument.getValue()
tem.setErr(System.out);

Construct AS400 without parameters, user will be prompted

as400System = new AS400();

try
{

}

// Uncomment the following to get debugging information
//com.ibm.as400.data.PcmiMessagelog.setTraceEnabled(true);
System.out.printin("Beginning PCML Example..");
System.out.printin(" Constructing ProgramCallDocument for QSYRUSRI API...");
// Construct ProgramCallDocument
// First parameter is system to connect to
// Second parameter is pcml resource name. In this example,
// serialized PCML file "gsyrusri.pcml.ser" or
// PCML source file "gsyrusri.pcml" must be found in the classpath.
pcml = new ProgramCallDocument (as400System, "gsyrusri");
// Set input parameters. Several parameters have default values
// specified in the PCML source. Do not need to set them using Java code.
System.out.printIn(" Setting input parameters...");
pcml.setValue("gsyrusri.receiverLength", new Integer((pcml.getOutputsize("gsyrusri.receiver"))
// Request to call the API
// User will be prompted to sign on to the system
System.out.printin(" Calling QSYRUSRI API requesting information for the sign-on user.");
rc = pcml.callProgram("gsyrusri");
// 1f return code is false, we received messages from the AS/400
if(rc == false)
{
// Retrieve list of AS/400 messages
AS400Message[] msgs = pcml.getMessagelist("gsyrusri");
// Iterate through messages and write them to standard output
for (int m = 0; m < msgs.length; m++)
{
msgld = msgs[m].getID();
msgText = msgs[m].getText();
System.out.printin(" "+ msgld + " - " + msgText);
1
System.out.printIn("+* Call to QSYRUSRI failed. See messages above *x");
System.exit(0);
1
// Return code was true, call to QSYRUSRI succeeded
// Write some of the results to standard output
else
{

value = pcml.getValue("gsyrusri.receiver.bytesReturned");

System.out.printin(" Bytes returned: "+ value);

value = pcml.getValue("gsyrusri.receiver.bytesAvailable");

System.out.printin(" Bytes available: "+ value);

value = pcml.getValue("gsyrusri.receiver.userProfile");

System.out.printin(" Profile name: "+ value);

value = pcml.getValue("qgsyrusri.receiver.previousSignonDate");

System.out.printin(" Previous signon date:" + value);

value = pcml.getValue("gsyrusri .receiver.previou@%m@,ni(jmp'r‘agram Call Markup Language 201
System.out.printin(" Previous signon time:" + value);

}

));

A~at+trh (DArmIEveoantinan o)

}

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Example of retrieving a list of information

PCML source for calling QGYOLAUS

<pcml version="1.0">
<!— PCML source for calling "Open List of Authorized Users" (QGYOLAUS) API —>
<!— Format AUTUO150 - Other formats are available —>
<struct name="autu0150">
<data name="name" type="char" length="10" />
<data name="userOrGroup" type="char" length="1" />
<data name="groupMembers" type="char" length="1" />
<data name="description" type="char" length="50" />
</struct>
<I- List information structure (common for "Open List" type APIs) —>
<struct name="listInfo">
<data name="totalRcds" type="int" Tlength="4" />
<data name="rcdsReturned" type="int" length="4" />
<data name="rgsHandle" type="byte" length="4" />
<data name="rcdLength" type="int" length="4" />
<data name="infoComplete" type="char" length="1" />
<data name="dateCreated" type="char" length="7" />
<data name="timeCreated" type="char" length="6" />
<data name="1istStatus" type="char" length="1" />
<data type="byte" length="1" />
<data name="lengthOfInfo" type="int" Tlength="4" />
<data name="firstRecord" type="int" Tlength="4" />
<data type="byte" length="40" />
</struct>
<!- Program QGYOLAUS and its parameter list for retrieving AUTUO150 format —>
<program name="qgyolaus" path="/QSYS.1ib/QGY.1ib/QGYOLAUS.pgm" parseorder="listInfo receiver">

<data name="receiver" type="struct" struct="autu0150" usage="output"
count="1istInfo.rcdsReturned" outputsize="receiverLength" />

<data name="receiverLength" type="int" length="4" usage="input" init="16384" />

<data name="listInfo" type="struct" struct="listInfo" usage="output" />

<data name="rcdsToReturn" type="int" length="4" usage="input" init="264" />

<data name="format" type="char" length="10" usage="input" init="AUTUO150" />

<data name="selection" type="char" length="10" usage="input" init="*USER" />

<data name="member" type="char" length="10" usage="input" init="*NONE" />

<data name="errorCode" type="int" length="4" usage="input" init="0" />
</program>

<!— Program QGYGTLE returned additional "records" from the Tist
created by QGYOLAUS. —>
<program name="qgygtle" path="/QSYS.1ib/QGY.1ib/QGYGTLE.pgm" parseorder="1istInfo receiver">
<data name="receiver" type="struct" struct="autu0150" usage="output"
count="TistInfo.rcdsReturned" outputsize="receiverLength" />
<data name="receiverLength" type="int" length="4" usage="1input" init="16384" />
<data name="requestHandle" type="byte" length="4" usage="input" />

<data name="listInfo" type="struct" struct="listInfo" usage="output" />

<data name="rcdsToReturn" type="int" length="4" usage="input" init="264" />

<data name="startingRcd" type="int" length="4" usage="input" />

<data name="errorCode" type="int" length="4" usage="input" init="0" />
</program>

<!— Program QGYCLST closes the list, freeing resources on the AS/400 —>
<program name="qgyclst" path="/QSYS.1ib/QGY.1ib/QGYCLST.pgm" >
<data name="requestHandle" type="byte" Tlength="4" usage="input" />
<data name="errorCode" type="int" length="4" usage="input" init="0" />
</program>
</pcml>

202 AS/400 Toolbox for Java

Java program source for calling QGYOLAUS

import com.ibm.as400.data.ProgramCallDocument;

import com.ibm.as400.data.PcmlException;

import com.ibm.as400.access.AS400;

import com.ibm.as400.access.AS400Message;

// Example program to call "Retrieve List of Authorized Users" (QGYOLAUS) API
public class qggyolaus

{

public static void main(String[] argv)

{
AS400 as400System; // com.ibm.as400.access.AS400
ProgramCallDocument pcml; // com.ibm.as400.data.ProgramCallDocument
boolean rc = false; // Return code from ProgramCallDocument.callProgram()
String msgld, msgText; // Messages returned from AS/400
Object value; // Return value from ProgramCallDocument.getValue()
int[] indices = new int[1]; // Indices for access array value
int nbrRcds, // Number of records returned from QGYOLAUS and QGYGTLE

nbrUsers; // Total number of users retrieved

String listStatus; // Status of 1ist on AS/400

byte[] requestHandle = new byte[4];
System.setErr(System.out);
// Construct AS400 without parameters, user will be prompted
as400System = new AS400();
try
{
// Uncomment the following to get debugging information
//com.ibm.as400.data.PcmiMessagelog.setTraceEnabled(true);
System.out.printin("Beginning PCML Example..");
System.out.printin(" Constructing ProgramCallDocument for QGYOLAUS API...");
// Construct ProgramCallDocument
// First parameter is system to connect to
// Second parameter is pcml resource name. In this example,
// serialized PCML file "qgyolaus.pcml.ser" or
// PCML source file "qgyolaus.pcml" must be found in the classpath.
pcml = new ProgramCallDocument (as400System, "qgyolaus");
// A11 input parameters have default values specified in the PCML source.
// Do not need to set them using Java code.
// Request to call the API
// User will be prompted to sign on to the system

System.out.printin(" Calling QGYOLAUS API requesting information for the sign-on user.");

rc = pcml.callProgram("qggyolaus");
// If return code is false, we received messages from the AS/400
if(rc == false)
{
// Retrieve list of AS/400 messages
AS400Message[] msgs = pcml.getMessagelist("qgyolaus");
// Iterate through messages and write them to standard output
for (int m = 0; m < msgs.length; m++)

{

msgld = msgs[m].getID();

msgText = msgs[m].getText();

System.out.printin(" "+ msgld + " - " + msgText);
1

System.out.printIn("*x Call to QGYOLAUS failed. See messages above **");
System.exit(0);
}
// Return code was true, call to QGYOLAUS succeeded
// Write some of the results to standard output
else
{
boolean doneProcessinglList = false;
String programName = "qgyolaus";
nbrUsers = 0;
while (!doneProcessingList)
{

nbrRcds = pcml.getIntValue(programName + ".TistInfo.rcdsReturned");

requestHandle = (byte[]) pcml.getValue(programName + "chisitdn{e. prsgiand teal) Markup Language

// Iterate through 1ist of users
for (indices[0] = 0; indices[0] < nbrRcds; indices[0]++)

valita = nem]l Ac+VYValiiol nvardavamNama + ' vvaratuvay namall S wmAds-~ac) .

203

}

[Information Center Home Page | Feedback]

204 AS/400 Toolbox for Java

[Legal | AS/400 Glossary]

Example of retrieving multidimensional data

PCML source for calling QZNFRTVE

<pcml version="1.0">

<struct name="receiver">
<data name="TengthOfEntry" type="int" Tlength="4" />
<data name="dispToObjectPathName" type="int" Tlength="4" />
<data name="lengthOfObjectPathName" type="int" Tength="4" />
<data name="ccsid0fObjectPathName" type="int" Tlength="4" />
<data name="readOnlyFlag" type="int" length="4" />
<data name="nosuidFlag" type="int" Tlength="4" />
<data name="dispToReadWriteHostNames" type="int" Tlength="4" />
<data name="nbrOfReadWriteHostNames" type="int" Tength="4" />
<data name="dispToRootHostNames" type="int" Tlength="4" />
<data name="nbrOfRootHostNames" type="int" Tlength="4" />
<data name="dispToAccessHostNames" type="int" Tlength="4" />
<data name="nbrOfAccessHostNames" type="int" Tlength="4" />
<data name="dispToHostOptions" type="int" Tlength="4" />
<data name="nbrOfHostOptions" type="int" Tlength="4" />
<data name="anonUserID" type="int" Tlength="4" />
<data name="anonUsrPrf" type="char" length="10" />
<data name="pathName" type="char" length="1engthOfObjectPathName"
offset="dispToObjectPathName" offsetfrom="receiver" />
<struct name="rwAccessList" count="nbrOfReadWriteHostNames"
offset="dispToReadWriteHostNames" offsetfrom="receiver">
<data name="TlengthOfEntry" type="int" Tlength="4" />
<data name="TengthOfHostName" type="int" Tlength="4" />
<data name="hostName" type="char" length="1engthOfHostName" />
<data type="byte" length="0"
offset="1engthOfEntry" />
</struct>
<struct name="rootAccessList" count="nbrOfRootHostNames"
offset="dispToRootHostNames" offsetfrom="receiver">
<data name="TlengthOfEntry" type="int" Tlength="4" />
<data name="1lengthOfHostName" type="int" Tlength="4" />
<data name="hostName" type="char" length="1engthOfHostName" />
<data type="byte" length="0"
offset="1engthOfEntry" />
</struct>
<struct name="accessHostNames" count="nbrOfAccessHostNames"
offset="dispToAccessHostNames" offsetfrom="receiver" >
<data name="lengthOfEntry" type="int" Tlength="4" />
<data name="TengthOfHostName" type="int" length="4" />
<data name="hostName" type="char" length="1engthOfHostName" />
<data type="byte" length="0"
offset="1engthOfEntry" />
</struct>
<struct name="hostOptions" offset="dispToHostOptions" offsetfrom="receiver"
<data name="lengthOfEntry" type="int" Tlength="4" />
<data name="dataFileCodepage" type="int" Tlength="4" />
<data name="pathNameCodepage" type="int" Tlength="4" />
<data name="writeModeFlag" type="int" Tlength="4" />
<data name="1engthOfHostName" type="int" Tlength="4" />
<data name="hostName" type="char" length="1engthOfHostName" />
<data type="byte" length="0"
offset="1engthOfEntry" />
</struct>

<data type="byte" length="0" offset="1engthOfEntry" />
</struct>

<struct name="returnedRcdsFdbkInfo">
<data name="bytesReturned" type="int" length="4" />
<data name="bytesAvailable" type="int" length="4" />
<data name="nbrOfNFSExportEntries" type="int" length="4" />
<data name="handle" type="int" length="4" />
</struct>

<program name="qznfrtve" path="/QSYS.1ib/QZNFRTVE.pgm" parseorder="returnedRcdsFdbkInfo receiver" >
type="struct" struct="recethapleusagPrdgubpidll Markup Language

<data name="receiver"

count="returnedRcdstkanfo.nbrOfNFSExportEntries" outputsize="receiverLength"/>

<data
<data

g

name="receiverLength" type="int"

I T - Y 11 2L nean

MmMe am s s

length="4" usage="input" init="4096" />
name="returnedRcdsFdbkInfo" type—"struct" struct="returnedRcdsFdbkInfo" usage="output" />

nNrvearatsnnn 7o

count="nbr0fHostOptions">

205

</pcml>

206 AS/400 Toolbox for Java

Java program source for calling QZNFRTVE

import com.ibm.as400.data.ProgramCallDocument;

import com.ibm.as400.data.PcmlException;

import com.ibm.as400.access.AS400;

import com.ibm.as400.access.AS400Message;

// Example program to call "Retrieve NFS Exports" (QZNFRTVE) API
public class gznfrtve

{

public static void main(String[] argv)
{
AS400 as400System; // com.ibm.as400.access.AS400
ProgramCallDocument pcml; // com.ibm.as400.data.ProgramCallDocument
boolean rc = false; // Return code from ProgramCallDocument.callProgram()
String msgld, msgText; // Messages returned from AS/400
Object value; // Return value from ProgramCallDocument.getValue()

System.setErr(System.out);
// Construct AS400 without parameters, user will be prompted
as400System = new AS400();
int[] indices = new int[2]; // Indices for access array value

int nbrExports; // Number of exports returned

int nbrOfReadWriteHostNames, nbrOfRWHostNames,
nbrOfRootHostNames, nbrOfAccessHostnames, nbrOfHostOpts;

try

{

// Uncomment the following to get debugging information
// com.ibm.as400.data.PcmIMessagelLog.setTraceEnabled(true);
System.out.printin("Beginning PCML Example..");
System.out.printin(" Constructing ProgramCallDocument for QZNFRTVE API...");
// Construct ProgramCallDocument
// First parameter is system to connect to
// Second parameter is pcml resource name. In this example,
// serialized PCML file "gznfrtve.pcml.ser" or
// PCML source file "gznfrtve.pcml" must be found in the classpath.
pcml = new ProgramCallDocument(as400System, "gznfrtve");
// Set input parameters. Several parameters have default values
// specified in the PCML source. Do not need to set them using Java code.
System.out.printin(" Setting input parameters...");
pcml.setValue("qznfrtve.receiverLength", new Integer((pcml.getOutputsize("gznfrtve.receiver"))));
// Request to call the API
// User will be prompted to sign on to the system
System.out.printin(" Calling QZNFRTVE API requesting NFS exports.");
rc = pcml.callProgram("qgznfrtve");
if (rc == false)
{
// Retrieve list of AS/400 messages
AS400Message[] msgs = pcml.getMessagelist("gznfrtve");
// Iterate through messages and write them to standard output
for (int m = 0; m < msgs.length; m++)

{

msgld = msgs[m].getID();

msgText = msgs[m].getText();

System.out.printin(" "+ msgld + " - " + msgText);
1

System.out.printIn("*x Call to QZNFRTVE failed. See messages above **");
System.exit(0);

}

// Return code was true, call to QZNFRTVE succeeded

// Write some of the results to standard output

else

nbrExports = pcml.getIntValue("qgznfrtve.returnedRcdsFdbkInfo.nbrOfNFSExportEntries");
// Iterate through list of exports
for (indices[0] = 0; indices[0] < nbrExports; indices[0]++)
{
value = pcml.getValue("qznfrtve.receiver.pathName", indices);
System.out.printin("Path name = " + value);

// Iterate and write out Read Write Host Names for thigrepRerto. Program Call Marku Language 207
, indices);

nbrOfReadWriteHostNames = pcml.getIntValue("qznfrtve.receiver.nbrOfReadWriteHostNames
for(indices[1] = 0; indices[1] < nbrOfReadWriteHostNames; indices[1]++)

wvaliie = neml An+FValiial("Asnfrtyuen vorotiver vwwlArerocel e+ hac+tNamal! sndscroc).

}

[Information Center Home Page | Feedback]

208 AS/400 Toolbox for Java

[Legal | AS/400 Glossary]

Chapter 11. Java Security

The AS/400 Toolbox for Java gives you security classes. You use the security classes to provide secured
connections to an AS/400 system, verify a user’s identity, and associate a user with the operating system
thread when running on the local AS/400 system. The security services included are:

» Secure Sockets Layer (SSL): Provides secure connections both by encrypting the data exchanged
between a client and an AS/400 server session and by performing server authentication.

» Authentication Services: Provide the ability to:
— Authenticate a user identity and password against the native OS/400 user registry.
— Ability to assign an identity to the current OS/400 thread.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Secure Sockets Layer

Secure Sockets Layer (SSL) provides secure connections by encrypting the data exchanged between a
client and an AS/400 server session and by performing server authentication. There is an increased cost in
performance with SSL because SSL connections perform slower than connections without encryption. SSL
can be used only with an SSL capable AS/400 running OS/400, V4R4 or later. You use SSL connections
when the sensitivity of the data transferred merits the increased cost in performance, for example, credit
card or bank statement information.

SSL versions

AS/400 Toolbox for Java does not contain the algorithms needed to encrypt and decrypt data. These
algorithms are shipped with AS/400 licensed programs 5769-CE1, 5769-CE2, and 5769-CE3. You need to
order one of the 5769-CEx product versions of SSL depending on the country in which you live. Contact
your IBM representative for more information or to order:

* AS/400 Client Encryption (40-bit), 5769-CEL1, is used in France.

* AS/400 Client Encryption (56-bit), 5769-CEZ2, is used in countries other than the US, Canada or France.
Note that the 5769-CE2 client encryption is only 40-bit within AS/400 Toolbox for Java.

* AS/400 Client Encryption (128-hit), 5769-CE3, is used only in the United States and Canada.

Before you begin using SSL with AS/400 Toolbox for Java:

* You must understand your legal responsibilities.

* You must meet some prerequisites.

* You must download the class files containing the SSL algorithms and point to them within the
CLASSPATH. The zip file that must be put in your CLASSPATH is below, listed by SSL version:
— For 5769-CE1 and 5769-CE2, download sslightx.zip
— For 5769-CE3, download sslightu.zip

* You must install a Cryptographic Access Provider licensed program (5769-AC1, 5769-AC2, or
5769-AC3). The 5769-CE products provide encryption capabilities on the client side. You also need
encryption on the AS/400 side, which is provided by the 5769-AC products. Contact your IBM
representative for more information.

Using SSL certificates

Once you point to SSL in your CLASSPATH, the server certificate authenticates the connection with the
AS/400. Without a certificate, SSL will not work. You can use two types of certificates: certificates from a
trusted authority or certificates that you build.

© Copyright IBM Corp. 1998, 1999 209

If you are using certificates issued by a trusted authority, you need to do a few steps. Afterward, the
certificate keyring is set up for you, the connection is secure, and SSL is working for you.

AS/400 Toolbox for Java supports certificates issued by the following trusted authorities:
* \eriSign, Inc

* Integrion Financial Network

* IBM World Registry

* Thawte Consulting

* RSA Data Security, Inc.

If you choose not to use a certificate from a trusted authority, you can also build your own certificate. You
should only build your own certificate if you are concerned with cost, need more control than a trusted
authority certificate would give you, or are just using it to put together a local intranet.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

SSL legal responsibilities

IBM AS/400 Client Encryption products provide SSL Version 3.0 encryption support using nonexportable
128-bit (designated U.S. and Canada use only) and exportable 40-bit encryption algorithms for
international use.

In customer configurations where client encryption products might be downloaded across national
boundaries, the customer is responsible to assure that the nonexportable client encryption products are
not made available outside the U.S. and Canada. Both the non-exportable and exportable Client
Encryption products can be used in combination to allow the appropriate Client Encryption product to be
downloaded based on different URLSs.

You and your users must comply with other country’s import/export laws.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

SSL requirements
SSL prerequisites

Before you can use SSL with AS/400 Toolbox for Java, you must follow the steps outlined below:

1. Install the Cryptographic Access Provider licensed program for AS/400 (5769-AC1, 5769-AC2, or
5769-AC3) on your AS/400

2. Install the AS/400 Client Encryption licensed program (5769-CE1, 5769-CE2, or 5769-CE3) on your
AS/400

3. You should control authorization of the users to the files. To help you to meet the SSL legal
responsibilities, you must change the authority of the directory that contains the SSL files to control
user access to the files. In order to change the authority, you must follow the steps below:

* Enter the command: wrkink '/QIBM/ProdData/HTTP/Public/jt400/*
* Select option 9 in the directory (SSL40, SSL56, or SSL128)
* Ensure *PUBLIC has *EXCLUDE authority.

* Give users who need access to the SSL files *RX authority to the directory. You can authorize
individual users or groups of users.

Note: Users with *ALLOBJ special authority cannot be denied access to the SSL files.
4. Get and configure the server certificate. To do this, you need to do the following:
a. Install the following products:

210 AS/400 Toolbox for Java

* IBM HTTP Server for AS/400 (5769-DG1) licensed program
* Base operating system option 34 (Digital Certificate Manager)
b. Get a server certificate:
* From a trusted authority
* Build your own
5. Apply the certificate to the following AS/400 servers that are used by AS/400 Toolbox for Java:
* QIBM_0OS400_QZBS_SVR_CENTRAL
* QIBM_0OS400_QZBS SVR_DATABASE
+ QIBM_0S400_QZBS_SVR_DTAQ
* QIBM_0OS400_QZBS_SVR_NETPRT
* QIBM_0S400_QZBS_SVR_RMTCMD
* QIBM_0OS400_QZBS_SVR_SIGNON
* QIBM_0OS400_QZBS_SVR_FILE
+ QIBM_0S400_ QRW_SVR_DDM_DRDA

SSL requirements

After you are sure that your AS/400 meets the requirements for SSL, follow the steps outlined below to
use SSL on your workstations.

1. Copy the proper SSL encryption algorithms: either sslightu.zip or sslightx.zip
2. Update the CLASSPATH

3. Download your certificate if you have built your own

4. Use the AS/400 Secure Class within your application

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Using a certificate from a trusted authority

AS/400 Toolbox for Java ships a keyring file that supports server certificates from a set of trusted
authorities. You can get a certificate from one of the following companies:

» VeriSign, Inc

* Integrion Financial Network
* IBM World Registry

* Thawte Consulting

* RSA Data Security, Inc.

If you get your certificate from one of these trusted authorities, you must do the following steps to use this
certificate with SSL:

1. Install the certificate authority certificate on the AS/400

2. Apply the certificate to your host servers

3. Download the version of SSL that you want to use:
» sslightx.zip (used with the licensed programs 5769-CE1 and 5769-CE2)
 sslightu.zip (used with the licensed program 5769-CE3)

Download the files from the following paths:

* For 5769-CE1 from /QIBM/ProdData/HTTP/Public/jt400/SSL40
e For 5769-CE2 from /QIBM/ProdData/HTTP/Public/jt400/SSL56
* For 5769-CE3 from /QIBM/ProdData/HTTP/Public/jt400/SSL128

Chapter 11. Java Security 211

4. Add either sslightx.zip or sslightu.zip (depending on the country in which you live) to your CLASSPATH
statement.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
Building your own certificate

If you choose not to use a certificate from a trusted authority, you can build your own certificate to be used
on an AS/400. The certificate is built using the digital certificate manager, and the steps that follow
describe how to download and use the certificate with AS/400 Toolbox for Java:

1. Create the certificate authority on the AS/400

Assign which host servers will trust the certificate authority you created
Create a system certificate from the certificate authority you created
Assign which host servers will use the system certificate you created
Download the version of SSL that you want to use:

» sslightx.zip (used with the licensed programs 5769-CE1 and 5769-CE2)
» sslightu.zip (used with the licensed program 5769-CE3)

a s~ DN

Download the files from the following paths:

* For 5769-CE1 from /QIBM/ProdData/HTTP/Public/jt400/SSL40
e For 5769-CE2 from /QIBM/ProdData/HTTP/Public/jt400/SSL56
* For 5769-CE3 from /QIBM/ProdData/HTTP/Public/jt400/SSL128

6. From the same directory that you downloaded either sslightx.zip or sslightu.zip, download
SSLTools.zip

7. Add SSLTools.zip and either sslightx.zip or sslightu.zip to your CLASSPATH statement

8. Create a directory on your client named com/ibm/as400/access. This directory needs to be a
subdirectory of your current directory.

9. Run the following command from a command prompt on your client:
java com.ibm.sslight.nlstools.keyrng com.ibm.as400.access.KeyRing connect <systemname>:<port>

The server port can be any of the host servers to which you have access. For example, you can use
9476, which is the default port for the secure sign-on server on the AS/400.

Notes: You must use com.ibm.as400.access.KeyRing because it is the only location that the AS/400 Toolbox for Java
will look for your certificates.

When you are prompted to enter a password, you must enter toolbox. This is the only password that works.

The SSL tool then connects to the AS/400 and lists the certificates it finds.

10. Type the number of the Certificate Authority (CA) certificate that you want to add to your AS/400. Be
sure to add the CA certificate and not the site certificate. A message is issued stating that the
certificate is being added to com.ibm.as400.access.KeyRing.class. Note: For each certificate that you
want to add, you must rerun the command:

java com.ibm.sslight.nlstools.keyrng com.ibm.as400.access.KeyRing connect <systemname>:<port>

You must download a certificate for each CA certificate you create. Each certificate is added to the

KeyRing class. After adding one or more certificates, you must update your CLASSPATH statement.

Your CLASSPATH must list the KeyRing.class file that resides in the directory that you created in

Step 4 before jt400.zip. After this step, you are done using the sslight tool and can delete it.
Alternative method for building a certificate:

As an alternative to the method outlined above, use the following steps:

212 AS/400 Toolbox for Java

1. Extract the KeyRing.class file from jt400.zip

2. Run the following command to add the certificate to the KeyRing.class file that comes with the AS/400
Toolbox for Java:

java com.ibm.sslight.nlstools.keyrng com.ibm.as400.access.KeyRing
connect <systemname>:<port>

3. Put the KeyRing.class back into jt400.zip

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Authentication Services

Classes are provided by the AS/400 Toolbox for Java that interact with the security services provided by
0S/400. Specifically, support is provided to authenticate a user identity, someitmes referred to as a
principal, and password against the native OS/400 user registry. A credential representing the
authenticated user can then be established. You can use the credential to alter the identity of the current
0S/400 thread to perform work under the authorities and permissions of the authenticated user. In effect,
this swap of identity results in the thread acting as if a signon was performed by the authenticated user.

Note: The services to establish and swap credentials are only supported for AS/400 systems at release V4AR5MO or
greater.

Overview of support provided

The AS400 object now provides authentication for a given user profile and password against the AS/400
system. You can also retrieve credentials representing authenticated user profiles and passwords for the
system. To do this, you use the getProfileToken() methods to retrieve instances of the
ProfileTokenCredential class. Think of profile tokens as a representation of an authenticated user profile
and password for a specific AS/400 system. Profile tokens expire based on time, up to one hour, but can
be refreshed in certain cases to provide an extended life span.

Setting thread identities

You can establish a credential on either a remote or local context. Once created, you can serialize or
distribute the credential as required by the calling application. When passed to a running process on the
associated AS/400, a credential can be used to modify or swap the OS/400 thread identity and perform
work on behalf of the previously authenticated user.

A practical application of this support might be in a two tier application, with authentication of a user profile
and password being performed by a graphical user interface on the first tier (i.e. a PC) and work being
performed for that user on the second tier (the AS/400). By utilizing ProfileTokenCredentials, the
application can avoid directly passing user IDs and passwords over the network. The profile token can
then be distributed to the program on the second tier, which can perform the swap() and operate under the
0OS/400 authorities and permissions assigned to the user.

Note: While inherently more secure than passing a user profile and password due to limited life span, profile tokens
should still be considered sensitive information by the application and handled accordingly. Since the token
represents an authenticated user and password, it could potentially be exploited by a hostile application to perform
work on behalf of that user. It is ultimately the responsibility of the application to ensure that credentials are accessed
in a secure manner.

Example

Refer to this code for an example of how to use a profile token credential to swap the OS/400 thread
identity and perform work on behalf of a specific user.

Chapter 11. Java Security 213

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Security example

The following code example shows you how to use a profile token credential to swap the OS/400 thread
identity and perform work on behalf of a specific user:

// Prepare to work with the Tocal AS/400 system.
AS400 system = new AS400("Tocalhost”, "*CURRENT”, "+*CURRENT");

// Create a single-use ProfileTokenCredential with a 60 second timeout.
// A valid user ID and password must be substituted.
ProfileTokenCredential pt = new ProfileTokenCredential();
pt.setSystem(system);

pt.setTimeoutInterval (60);
pt.setTokenType(ProfileTokenCredential.TYPE_SINGLE_USE);
pt.setToken("USERID”, "PASSWORD");

// Swap the 0S/400 thread identity, retrieving a credential to
// swap back to the original identity later.
AS400Credential cr = pt.swap(true);

// Perform work under the swapped identity at this point.

// Swap back to the original 0S/400 thread identity.
cr.swap();

// Clean up the credentials.
cr.destroy();
pt.destroy();

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

HTML Classes

AS/400 Toolbox for Java HTML classes assist you in setting up forms and tables for HTML pages. The
HTML classes implement the HTMLTagElement interface. Each class produces an HTML tag for a specific
element type. The tag may be retrieved using the getTag() method and can then be imbedded into any
HTML document. The tags you generate with the HTML classes are consistent with the HTML 3.2
specification.

The HTML classes can work with servlet classes to get data from the AS/400 server. However, they can
also be used alone if you supply the table or form data.

The HTML classes make it easier to make HTML forms, tables, and other elements:
* HTML form classes help you make forms more easily than CGI scripting.

* HTML Hyperlink class helps you create links within your HTML page.

* HTML Text class allows you to access the font properties within your HTML page.
* HTML table classes help you make tables for your HTML pages.

* URLEnNcoder class encodes delimiters to use in a URL string.

NOTE: The jt400Servlet.jar file includes both the HTML and Servlet classes. You must update your CLASSPATH to
point to the jt400Servlet.jar file if you want to use the classes in the com.ibm.as400.util.html package.

214 AS/400 Toolbox for Java

To find out more information about HTML, see the reference page.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

HTML form classes

The HTMLForm class represents an HTML form. This class allows you to:
* Add an element, like a button, hyperlink or HTML table to a form
* Remove an element from a form

* Set other form attributes, such as which method to use to send form contents to the server, the hidden
parameter list, or the action URL address

The constructor for the HTMLForm object takes a URL address. This address is referred to as an action
URL. It is the location of the application on the server that will process the form input. The action URL can
be specified on the constructor or by setting the address using the setURL() method. Form attributes are
set using various set methods and retrieved using various get methods.

Any HTML tag element may be added to an HTMLForm object using addElement() and removed using
removeElement(). The HTML tag element classes that you can add to an HTML form follow:

* Form Input classes: represent input elements for an HTML form

* HTMLText: encapsulates the various text options you can use within an HTML page

* HTMLHyperlink: represents an HTML hyperlink tag

» Layout Form Panel classes: represent a layout of form elements for an HTML form

» TextAreaFormElement: represents a text area element in an HTML form

» LabelFormElement: represents a label for an HTML form element

» SelectFormElement: represents a select input type for an HTML form

» SelectOption: represents an option for a SelectFormElement object in an HTML form

» RadioFormInputGroup: represents a group of radio input objects which allow a user to select one from a
group

* HTMLTable: represents an HTML table tag

For more information on creating a form using the HTMLForm class, see this example and the resulting
output.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

HTML class example output

These are some possible sample outputs you may get from running the HTML class example:

» Customer Name: Fred Flinstone
Email address: flinstone@bedrock.com
Currently Using Toolbox: yes
Requested More Information: yes
Multiple Versions: v4r2,v4r4
Using Java or Interested In: applications,servlets
Platforms: NT,Linux
Number of AS/400’s: three
Comments: The Toolbox is being used by our entire Programming department to build customer
applications!
Attachment File: U:\wiedrich\servlet\temp.htm|
(C) Copyright IBM Corp. 1999, 1999

Chapter 11. Java Security 215

Customer Name: Barney Rubble
Email address: rubble@bedrock.com
Currently Using Toolbox: yes

AS400 Version: var4

Using Java or Interested In: servlets
Platforms: OS2

Number of AS/400’s: FiveOrMore
(C) Copyright IBM Corp. 1999, 1999

Customer Name: George Jetson

Email address: jetson@sprocket.com

Requested More Information: yes

AS400 Version: v4r2

Using Java or Interested In: applications

Platforms: NT,Other

Other Platforms: Solaris

Number of AS/400’s: one

Comments: This is my fist time using this! Very Cool!
(C) Copyright IBM Corp. 1999, 1999

Customer Name: Clark Kent

Email address: superman@krypton.com
AS400 Version: v4r2

Number of AS/400's: one

(C) Copyright IBM Corp. 1999, 1999

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Form Input classes

The Forminput class allows you to:

Get and set the name of an input element
Get and set the size of an input element
Get and set the initial value of an input element

The FormlInput class is extended by the classes listed below, classes that provide a way to create specific
types of form input elements and allow you to get and set various attributes or retrieve the HTML tag for
the input element:

ButtonForminput: Represents a button element for an HTML form
FileFormInput: Represents a file input type, for an HTML form
HiddenFormInput: Represents a hidden input type for an HTML form
ImageForminput: Represents an image input type for an HTML form.
ResetForminput: Represents a reset button input for an HTML form
SubmitFormInput: Represents a submit button input for an HTML form

TextFormInput: Represents a single line of text input for an HTML form where you define the maximum
number of characters in a line. For a password input type, you use PasswordForminput, which extends
TextFormInput and represents a password input type for an HTML form

ToggleForminput: Represents a toggle input type for an HTML form. The user can set or get the text
label and specify whether the toggle should be checked or selected. The toggle input type can be one
of two:

— RadioFormInput: Represents a radio button input type for an HTML form. Raido buttons may be
placed in groups with the RadioFormInputGroup class; this creates a group of radio buttons where
the user selects only one of the choices presented.

216 AS/400 Toolbox for Java

— CheckboxForminput: Represents a checkbox input type for an HTML form where the user may select
more than one from the choices presented, and where the checkbox is initialized as either checked
or unchecked.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

ButtonForminput class

The ButtonForminput class represents a button element for an HTML form.

The following example shows you how to create a ButtonForminput object:

ButtonFormInput button = new ButtonFormInput("buttonl", "Press Me", "test()");
System.out.printin(button.getTag());

This example produces the following tag:
<input type="button” name="buttonl” value="Press Me" onclick="test()" />

When you use this tag in an HTML page, it looks like this:
[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

FileFormInput class

The FileFormInput class represents a file input type in an HTML form.

The following code example shows you how to create a new FileForminput object

FileFormInput file = new FileFormInput("myFile");
System.out.printin(file.getTag());

The above code creates the following output:
<input type="file" name="myFile" />

When you use this tag in an HTML page, it looks like this:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

ImageForminput class

The ImageFormInput class represents an image input type in an HTML form.

You can retrieve and update many of the attributes for the ImageForminput class by using the methods
provided.

* Get or set the source

* Get or set the alignment

* Get or set the height

* Get or set the width

The following code example shows you how to create an ImageForminput object:
ImageFormInput image = new ImageFormInput("myPicture", "pc_100.gif");
image.setAlignment (HTMLConstants.TOP);

image.setHeight (81);
image.setWidth(100);

The above code example generates the following tag:
<input type="image" name="MyPicture” src="pc_100.gif" align="top” height="81" width="100" />

Chapter 11. Java Security 217

When you use this tag in an HTML form, it looks like this:
[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
ResetFormIinput class

The ResetFormlInput class represents a reset button input type in an HTML form.

The following code example shows you how to create a ResetForminput object:

ResetFormInput reset = new ResetFormInput();
reset.setValue("Reset");
System.out.printin(reset.getTag());

The above code example generates the following HTML tag:
<input type="reset” value="Reset" />

When you use this tag in an HTML form, it looks like this:

SubmitForminput class

The SubmitForminput class represents a submit button input type in an HTML form.

The following code example shows you how to create a SubmitForminput object:

SubmitFormInput submit = new SubmitFormInput();
submit.setValue("Send");
System.out.printIn(submit.getTag());

The code example above generates the following output:
<input type="submit” value="Send" />
When you use this tag in an HTML form, it looks like this:

TextForminput class

The TextFormlnput class represents a single line text input type in an HTML form. The TextFormInput
class provides methods that let you get and set the maximum number of characters a user can enter in
the text field.
The following example shows you how to create a new TextFormInput object:

TextFormInput text = new TextFormInput("userID");

text.setSize(40);
System.out.printin(text.getTag());

The code example above generates the following tag:
<input type="text” name="userID" size="40" />

When you use this tag in an HTML form, it looks like this:
Name:

PasswordForminput class

The PasswordForminput class represents a password input field type in an HTML form.

The following code example shows you how to create a new PasswordForminput object:

218 AS/400 Toolbox for Java

PasswordFormInput pwd = new PasswordFormInput("password");
pwd.setSize(12);
System.out.printin(pwd.getTag());

The code example above generates the following tag:
<input type="password” name="password” size="12" />

When you use this tag in an HTML form, it looks like this:

Password:

CheckboxForminput class

The CheckboxForminput class represents a checkbox input type in an HTML form. The user may select
more than one of the choices presented as checkboxes within a form.

The following example shows you how to create a new CheckboxFormInput object:

CheckboxFormInput checkbox = new CheckboxFormInput("uscitizen", "yes", "textLabel", true);
System.out.printin(checkbox.getTag());

The code above produces the following output:
<input type="checkbox” name="uscitizen” value="yes" checked="checked” /> textLabel
When you use this tag in an HTML form, it looks like this:

textLabel

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

HTML Text class

The HTMLText class allows you to access text properties for your HTML page. Using the HTMLText class,
you can get, set and check the status of many text attributes, including:

* Get or set the size of the font

» Set the bold attribute on (true) or off (false) or determine if it is already on

» Set the underscore attribute on (true) or off (false) or determine if it is already on
* Get or set the text’s horizontal alignment.

The following example shows you how to create an HTMLText object and set its bold attribute on and its
font size to 5.

HTMLText text = new HTMLText("IBM");
text.setBold(true);

text.setSize(5);
System.out.printin(text.getTag());

The print statement produces the following tag:
IBM

When you use this tag in an HTML page, it looks like this:

IBM

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Chapter 11. Java Security 219

HTMLHyperlink class

The HTMLHyperlink class represents an HTML hyperlink tag. You use the HTMLHyperlink class to create
a link within your HTML page. You can get and set many attributes of hyperlinks with this class, including:

e Get or set the Uniform Resource ldentifier for the link
e Get or set the title for the link
* Get or set the target frame for the link

The HTMLHyperlink class can print the full hyperlink with defined properties so that you can use the output
in your HTML page.

The following is an example for HTMLHyperlink:

// Create an HTML hyperlink to the AS/400 Toolbox for Java home page.

HTMLHyperlink toolbox = new HTMLHyperlink("http://www.ibm.com/as400/toolbox", "AS/400 Toolbox for Java home page");
// Display the toolbox link tag.

System.out.printIin(toolbox.toString());

The code above produces the following tag:
AS/400 Toolbox for Java home page

When you use this tag in an HTML page, it looks like this:

AS/400 Toolbox for Java home page

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

LayoutFormPanel class

The LayoutFormPanel class represents a layout of form elements for an HTML form. You can use the
methods that LayoutFormPanel provides to add and remove elements from a panel or to get the number
of elements in the layout. You may choose to use one of two layouts:

» GridLayoutFormPanel: Represents a grid layout of form elements for an HTML form.
* LineLayoutFormPanel: Represents a line layout of form elements for an HTML form.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

GridLayoutFormPanel

The GridLayoutFormPanel class represents a grid layout of form elements. You use this layout for an
HTML form where you specify the number of columns for the grid.

The following example creates a GridLayoutFormPanel object with two columns:

// Create a text form input element for the system.
LabelFormETement sysPrompt = new LabelFormElement("System:");
TextFormInput system = new TextFormInput("System");

// Create a text form input element for the userlId.
LabelFormETement userPrompt = new LabelFormElement("User:");
TextFormInput user = new TextFormInput("User");

// Create a password form input element for the password.
LabelFormETement passwordPrompt = new LabelFormElement("Password:");
PasswordFormInput password = new PasswordFormInput("Password");

// Create the GridLayoutFormPanel object with two columns and add the form elements.
GridLayoutFormPanel panel = new GridLayoutFormPanel(2);
panel.addElement (sysPrompt);
panel.addElement (system);
panel.addETement (userPrompt);

220 AS/400 Toolbox for Java

panel.addElement (user);
panel.addElement (passwordPrompt) ;
panel.addElement (password);

// Create the submit button to the form.
SubmitFormInput TogonButton = new SubmitFormInput("Togon", "Logon");

// Create HTMLForm object and add the panel to it.
HTMLForm form = new HTMLForm(servletURI);
form.addElement (panel);
form.addETlement (TogonButton);

This example produces the following HTML code:

<form action=servletURI method="get">

<table border="0">

<tr>

<td>System:</td>

<td><input type="text” name="System” /></td>

</tr>

<tr>

<td>User:</td>

<td><input type="text” name="User" /></td>

</tr>

<tr>

<td>Password:</td>

<td><input type="password” name="Password" /></td>
</tr>

</table>

<input type="submit” name="logon"” value="Logon" />
</form>

When you use this HTML code in a webpage, it looks like this:

System:
User:
Password:

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

LineLayoutFormPanel class

The LineLayoutFormPanel class represents a line layout of form elements for an HTML form. The form
elements are arranged in a single row within a panel.

This example creates a LineLayoutFormPanel object and adds two form elements.
CheckboxFormInput privacyCheckbox = new CheckboxFormInput("confidential", "yes", "Confidential", true);

CheckboxFormInput mailCheckbox = new CheckboxFormInput("mailingList", "yes", "Join our mailing list", false);

LineLayoutFormPanel panel = new LinelLayoutFormPanel();
panel.addElement (privacyCheckbox)

panel.addElement (mailCheckbox);

String tag = panel.getTag();

The code example above generates the following HTML code:

<input type="checkbox” name="confidential” value="yes" checked="checked” /> Confidential <input
type="checkbox” name="mailingList” value="yes" /> Join our mailing list

When you use this HTML code in a webpage, it looks like this:

Chapter 11. Java Security 221

Confidential Join our mailing list

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

TextAreaFormElement class

The TextAreaFormElement class represents a text area element in an HTML form. You determine the size
of the text area by setting the number of rows and columns. You can determine the size that a text area
element is set for with the getRows() and getColumns() methods.

You set the initial text within the text area with the setText() method. You use the getText() method to see
what the initial text has been set to.

The following example shows you how to create a TextAreaFormElement:

TextAreaFormElement textArea = new TextAreaFormElement("foo", 3, 40);
textArea.setText("Default TEXTAREA value goes here");
System.out.printin(textArea.getTag());

The code example above generates the following HTML code:

<form>

<textarea name="foo"” rows="3" cols="40">
Default TEXTAREA value goes here
<[textarea>

</form>

When you use this in an HTML form, it looks like this:

Default TEXTAREA value goes here

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

LabelFormElement

The LabelFormElement class represents a label for an HTML form element. You use the
LabelFormElement class to label elements of an HTML form such as a text area or password form input .
The label is one line of text that you set using the setLabel() method. This text does not respond to user
input and is there to make the form easier for the user to understand.

The following code example shows you how to create a LabelFormElement object:

LabelFormETement label = new LabelFormElement("Account Balance");
System.out.printin(label.getTag());

This example produces the following output:
Account Balance

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

SelectFormElement

The SelectFormElement class represents a select input type for an HTML form. You can add and remove
various options within the select element.

SelectFormElement has methods available that allow you to view and change attributes of the select
element:

* Use setMultiple() to set whether or not the user can select more than one option

222 AS/400 Toolbox for Java

» Use getOptionCount() to determine how many elements are in the option layout

* Use setSize() to set the number of options visible within the select element and use getSize() to
determine the number of visible options.

The following example creates a SelectFormElement object with three options. The SelectFormElement
object named list, is highlighted. The first two options added specify the option text, name, and select
attributes. The third option added is defined by a SelectOption object.

SelectFormElement 1ist = new SelectFormElement("1istl");
SelectOption optionl = Tist.addOption("Optionl", "optl");
SelectOption option2 = Tist.addOption("Option2", "opt2", false);
SelectOption option3 = new SelectOption("Option3", "opt3", true);
list.addOption(option3);

System.out.printIn(list.getTag());

The above code example produces the following HTML code:

<select name="list1">

<option value="optl">Optionl</option>

<option value="opt2">0Option2</option>

<option value="opt3" selected="selected”>Option3</option>
</select>

When you use this code in an HTML page, it looks like this:

Option1 Option2 Option3

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

SelectOption

The SelectOption class represents an option in an HTML option form element. You use the option form
element in a select form.

Methods are provided that you can use to retrieve and set attributes within a SelectOption. For instance,
you can set whether or not the option defaults to being selected. You can also set the input value it will
use when the form is submitted.

The following example creates three SelectOption objects within a select form. Each SelectOption object
below is highlighted. They are named optionl, option2 and option3. The option3 object is initially selected.

SelectFormETement list = new SelectFormElement("1istl");

SelectOption optionl = 1ist.addOption("Optionl", "optl");

SelectOption option2 = Tist.addOption("Option2", "opt2", false);

SelectOption option3 = new SelectOption("Option3", "opt3", true);

list.addOption(option3);

System.out.printIn(list.getTag());

The above code example produces the following HTML tag:
<select name="list1">

<option value="optl">Optionl</option>

<option value="opt2">Option2</option>

<option value="opt3" selected="selected”>Option3</option>
</select>

When you use this tag in an HTML form, it looks like this:

Chapter 11. Java Security 223

Optionl Option2 Option3

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

RadioForminputGroup class

The RadioFormInputGroup class represents a group of RadioFormInput objects. A user can select only
one of the RadioForminput objects from a RadioFormInputGroup.

The RadioFormInputGroup class methods allow you to work with various attributes of a group of radio
buttons. With these methods, you can:

e Add a radio button
* Remove a radio button
* Get or set the name of the radio group

The following example creates a radio button group:

// Create some radio buttons.

RadioFormInput radio® = new RadioFormInput("age", "kid", "0-12", true);
RadioFormInput radiol = new RadioFormInput("age", "teen", "13-19", false);
RadioFormInput radio2 = new RadioFormInput("age", "twentysomething", "20-29", false);
RadioFormInput radio3 = new RadioFormInput("age", "thirtysomething", "30-39", false);
// Create a radio button group and add the radio buttons.

RadioFormInputGroup ageGroup = new RadioFormInputGroup("age");

ageGroup.add(radio0);

ageGroup.add(radiol);

ageGroup.add(radio?2);

ageGroup.add(radio3);

System.out.printin(ageGroup.getTag());

The code example above generates the following HTML code:

<input type="radio” name="age" value="kid" checked="checked” /> 0-12
<input type="radio” name="age"” value="teen” /> 13-19

<input type="radio” name="age" value="twentysomething” /> 20-29
<input type="radio” name="age" value="thirtysomething” /> 30-39

When you use this code in an HTML form, it looks like this:

0-12 13-19 20-29 30-39

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

HTML Table classes

The HTMLTable class allows you to easily set up tables that you can use in HTML pages. This class
provides methods to get and set various attributes of the table, including:

* Get and set the width of the border

* Get the number of rows in the table

* Add a column or row to the end of the table

* Remove a column or row at a specified column or row position

The HTMLTable class uses other HTML classes to make creating a table easier. The other HTML classes
that work to create tables are:

« HTMLTableCell: Creates a table cell
« HTMLTableRow: Creates a table row
¢ HTMLTableHeader: Creates a table header cell

224 AS/400 Toolbox for Java

* HTMLTableCaption: Creates a table caption

An example has been provided to show you how the HTMLTable classes work.

[Information Center Home Page | Feedback]

HTMLTable example

The following example shows you how the HTMLTable classes work:

// Create a default HTMLTable object.
HTMLTable table = new HTMLTable();
// Set the table attributes.
table.setAlignment (HTMLTable.CENTER);
table.setBorderWidth(1);
// Create a default HTMLTableCaption object and set the caption text.
HTMLTableCaption caption = new HTMLTableCaption();
caption.setElement ("Customer Account Balances - January 1, 2000");
// Set the caption.
table.setCaption(caption);
// Create the table headers and add to the table.
HTMLTableHeader account_header = new HTMLTableHeader(new HTMLText ("ACCOUNT"));
HTMLTableHeader name_header = new HTMLTableHeader(new HTMLText("NAME"));
HTMLTableHeader balance_header = new HTMLTableHeader(new HTMLText ("BALANCE"));
table.addColumnHeader(account_header);
table.addColumnHeader(name_header);
table.addColumnHeader(balance_header);
// Add rows to the table. Each customer record represents a row in the table.
int numCols = 3;
for (int rowIndex=0; rowIndex< numCustomers; rowIndex++)
{
HTMLTableRow row = new HTMLTableRow();
row.setHorizontalAlignment (HTMLTableRow.CENTER);
HTMLText account = new HTMLText (customers[rowIndex].getAccount());
HTMLText name = new HTMLText (customers[rowIndex].getName());
HTMLText balance = new HTMLText (customers[rowIndex].getBalance());
row.addColumn(new HTMLTableCel1 (account));
row.addColumn(new HTMLTableCell(name));
row.addColumn(new HTMLTableCell(balance));
// Add the row to the table.
table.addRow(row);
1
System.out.printin(table.getTag());

The code example above generates the following HTML code:

<table align="center" border="1">
<caption>Customer Account Balances - January 1, 2000</caption>
<tr>

<th>ACCOUNT</th>

<th>NAME</th>

<th>BALANCE</th>

</tr>

<tr align="center">
<td>0000001</td>
<td>Customerl</td>
<td>100.00</td>

</tr>

<tr align="center">
<td>0000002</td>
<td>Customer2</td>
<td>200.00</td>

</tr>

<tr align="center">
<td>0000003</td>

[Legal | AS/400 Glossary]

Chapter 11. Java Security

225

<td>Customer3</td>
<td>550.00</td>
</tr>

</table>

When you use this HTML code in a webpage, it looks like this: ...

Table 1. Customer Account Balances - January 1, 2000

ACCOUNT NAME BALANCE
0000001 Customerl 100.00
0000002 Customer2 200.00
0000003 Customer3 550.00
[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

HTMLTableCell class

The HTMLTableCell class takes any HTMLTagElement object as input and creates the table cell tag with
the specified element. The element can be set on the constructor or through either of two setElement()
methods.

Many cell attributes can be retrieved or updating using methods that are provided in the HTMLTableCell
class. Some of the actions you can do with these methods are:

* Get or set the row span
* Get or set the cell height
» Set whether or not the cell data will use normal HTML line breaking conventions

The following example creates an HTMLTableCell object and displays the tag:

//Create an HTMLHyperlink object.

HTMLHyperlink Tink = new HTMLHyperlink("http://www.ibm.com",
"IBM Home Page");

HTMLTableCell cell = new HTMLTableCell(1ink);

cell.setHorizontalAlignment (HTMLConstants.CENTER);

System.out.printin(cell.getTag());

The getTag() method above gives the output of the example:

<td align="center”>IBM Home Page</td>

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

HTMLTableRow class

The HTMLTableRow class creates a row within a table. This class provides various methods for getting
and setting attributes of a row. Some things you can do with these methods are:

* Add or remove a column from the row

* Get column data at the specified column Index

e Get column index for the column with the specified cell.
* Get the number of columns in a row

» Set horizontal and vertical alignments

The following is an example for HTMLTableRow:

// Create a row and set the alignment.

HTMLTabTeRow row = new HTMLTableRow();

row.setHorizontalAlignment (HTMLTableRow.CENTER) ;

// Create and add the column information to the row.

HTMLText account = new HTMLText(customers_[rowIndex].getAccount());

226 AS/400 Toolbox for Java

HTMLText name = new HTMLText(customers_ [rowIndex].getName());

HTMLText balance = new HTMLText (customers_[rowIndex].getBalance());
row.addColumn(new HTMLTableCell (account));

row.addColumn(new HTMLTableCel1(name));

row.addColumn(new HTMLTableCell(balance));

// Add the row to an HTMLTable object (assume that the table already exists).
table.addRow(row);

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

HTMLTableHeader

The HTMLTableHeader class inherits from the HTMLTableCell class. It creates a specific type of cell, the
header cell, giving you a <th> cell instead of a <td> cell. Like the HTMLTableCell class, you call various
methods in order to update or retreive attributes of the header cell.

The following is an example for HTMLTableHeader:

// Create the table headers.

HTMLTableHeader account_header = new HTMLTableHeader(new HTMLText("ACCOUNT"));
HTMLTableHeader name_header = new HTMLTableHeader(new HTMLText ("NAME"));
HTMLTableHeader balance_header = new HTMLTableHeader();

HTMLText balance = new HTMLText ("BALANCE");

balance_header.setElement (balance);

// Add the table headers to an HTMLTable object (assume that the table already exists).
table.addColumnHeader(account_header);

table.addColumnHeader(name_header);

table.addColumnHeader(balance_header);

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

HTMLTableCaption

The HTMLTableCaption class creates a caption for your HTML table. The class provides methods for
updating and retrieving the attributes of the caption. For example, you can use the setAlignment() method
to specify to which part of the table the caption should be aligned. The following is an example for
HTMLTableCaption:

// Create a default HTMLTableCaption object and set the caption text.

HTMLTableCaption caption = new HTMLTableCaption();

caption.setElement ("Customer Account Balances - January 1, 2000");

// Add the table caption to an HTMLTable object (assume that the table already exists).
table.setCaption(caption);

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Servlet classes

The servlet classes that are provided with AS/400 Toolbox for Java work with the access classes, which
are located on the webserver, to give you access to information located on the AS/400 server. You decide
how to use the servlet classes to assist you with your own servlet projects.

The following diagram shows how the servlet classes work between the browser, webserver, and AS/400

data. A browser connects to the webserver that is running the servlet. jt400Servlet.jar and jt400Access.jar
files reside on the webserver because the servlet classes use some of the access classes to retrieve the

data and the HTML classes to present the data. The webserver is connected to the AS/400 system where
the data is.

There are three types of servlet classes included with AS/400 Toolbox for Java:
* RowData classes

* RowMetaData classes

» Converter classes

Chapter 11. Java Security 227

NOTE: The jt400Servlet.jar file includes both the HTML and Servlet classes. You must update your CLASSPATH to
point to both the jt400Servlet.jar and the jt400Access.jar if you want to use classes in the com.ibm.as400.util.html
and com.ibm.as400.util.servlet packages.

For more information about servlets in general, see the reference (page @) section.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

RowData class

The RowData class is an abstract class that provides a way to describe and access a list of data.

The RowData classes allow you to:

* Get and set the current position

* Get the row data at a given column using the getObject() method
* Get the meta data for the row

» Get or set the properties for an object at a given column

* Get the number of rows in the list using the length() method.

There are three main classes within the RowData class that have many of the same properties:
* ListRowData

* RecordListRowData

* SQLResultSetRowData

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

ListRowData class

The ListRowData class allows you to do the following:

* Add and remove rows to and from the result list.

» Get and set the row

* Get the result set metadata with the getMetaData() method
» Set meta data with the setMetaData() method

The ListRowData class represents a list of data. ListRowData can represent many types of information,
including the following, through AS/400 Toolbox for Java access classes:

* Adirectory in the integrated file system
* Alist of jobs

* Alist of messages in a message queue
* Alist of users

» Alist of printers

* Alist of spooled files

This example shows you how ListRowData and HTMLTableConverter work. It shows the java code, HTML
code, and HTML look and feel.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

List row data example: The following is the code that creates a ListRowData object:

// Access an existing non-empty data queue

KeyedDataQueue dq = new KeyedDataQueue(systemObject , "/QSYS.LIB/MYLIB.LIB/MYDQ.DTAQ");
// Create a metadata object.

ListMetaData metaData = new ListMetaData(2);

228 AS/400 Toolbox for Java

// Set first column to be the customer ID.
metaData.setColumnName (0, "Customer ID");
metaData.setColumnLabel (0, "Customer ID");
metaData.setColumnType(0, RowMetaDataType.STRING_DATA TYPE);
// Set second column to be the order to be processed.
metaData.setColumnName (1, "Order Number");
metaData.setColumnLabel (1, "Order Number");
metaData.setColumnType(1l, RowMetaDataType.STRING_DATA TYPE);
// Create a ListRowData object.

ListRowData rowData = new ListRowData();
rowData.setMetaData(metaData);

// Get the entries off the data queue.

KeyedDataQueueEntry data = dq.read(key, 0, "EQ");

while (data != null)

{

// Add queue entry to row data object.

Object[] row = new Object[2];

row[0] = new String(key);

row[1] = new String(data.getData());

rowData.addRow(row) ;

// Get another entry from the queue.

data = dq.read(key, 0, "EQ");
}
// Create an HTML converter object and convert the rowData to HTML.
HTMLTableConverter conv = new HTMLTableConverter();
conv.setUseMetaData(true);
HTMLTable[] html = conv.convertToTables(rowData);
// Display the output from the converter.
System.out.printin(html[0]);

The following code is generated from the code example above:

<table>

<tr>

<th>Customer ID</th>
<th>0Order Number</th>
</tr>

<tr>
<td>777-53-4444</td>
<td>12345-XYZ</td>
</tr>

<tr>
<td>777-53-4444</td>
<td>56789-ABC</td>
</tr>

</table>

The following table shows how the above HTML code will look in a webpage:

Customer ID Order Number
777-53-4444 12345-XYZ
777-53-4444 56789-ABC

[Information Center Home Page | Feedback]

RecordListRowData class

The RecordListRowData class allows you to do the following:
* Add and remove rows to and from the record list.

* Get and set the row

» Set the record format with the setRecordFormat method

* Get the metadata.

[Legal | AS/400 Glossary]

Chapter 11. Java Security

229

The RecordListRowData class represents a list of records. A record can be obtained from the AS/400
system in different formats, including:

* Arecord to be written to or read from an AS/400 file

* An entry in a data queue

* The parameter data from a program call

* Any data return that needs to be converted between AS/400 format and Java format

This example shows you how RecordListRowData and HTMLTableConverter work. It shows the java code,
HTML code, and HTML look and feel.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

RecordListRowData example: The following example shows you how the RecordListRowData class
works:

// Create an AS/400 system object.

AS400 mySystem = new AS400 ("mySystem.myComp.com");

// Get the path name for the file.

QSYSObjectPathName file = new QSYSObjectPathName(myLibrary, myFile, "%first%", "mbr");
String ifspath = file.getPath();

// Create a file object that represents the file.

SequentialFile sf = new SequentialFile(mySystem, ifspath);

// Retrieve the record format from the file.

AS400FileRecordDescription recordDescription = new AS400FileRecordDescription(mySystem, ifspath);
RecordFormat recordFormat = recordDescription.retrieveRecordFormat()[0];

// Set the record format for the file.

sf.setRecordFormat (recordFormat);

// Get the records in the file.

Record[] records = sf.readAl11();

// Create a RecordListRowData object and add the records.

RecordListRowData rowData = new RecordListRowData(recordFormat);

for (int i=0; i < records.length; i++)

{
}

// Create an HTML converter object and convert the rowData to HTML.
HTMLTableConverter conv = new HTMLTableConverter();
conv.setMaximumTableSize(3);

HTMLTable[] html = conv.convertToTables(rowData);

// Display the first HTML table generated by the converter.
System.out.printin(htmi[0]);

rowData.addRow(records[i]);

The code example above generates the following HTML code through the HTMLTableConverter:

<table>

<tr>
<th>CUSNUM</th>
<th>LSTNAM</th>
<th>INIT</th>
<th>STREET</th>
<th>CITY</th>
<th>STATE</th>
<th>ZIPCOD</th>
<th>CDTLMT</th>
<th>CHGCOD</th>
<th>BALDUE</th>
<th>CDTDUE</th>
</tr>

<tr>
<td>938472</td>
<td>Henning </td>
<td>G K</td>
<td>4859 ETm Ave </td>
<td>Dallas</td>
<td>TX</td>

230 AS/400 Toolbox for Java

<td align="right">75217</td>
<td align="right">5000</td>
<td align="right">3</td>

<td align="right">37.00</td>
<td align="right">0.00</td>
</tr>

<tr>

<td>839283</td>

<td>Jones </td>

<td>B D</td>

<td>21B NW 135 St</td>
<td>Clay </td>

<td>NY</td>

<td align="right">13041</td>
<td align="right">400</td>
<td align="right">1</td>

<td align="right">100.00</td>
<td align="right">0.00</td>
</tr>

<tr>

<td>392859</td>

<td>Vine </td>

<td>S S</td>

<td>P0 Box 79 </td>
<td>Broton</td>

<td>VT</td>

<td align="right">5046</td>
<td align="right">700</td>
<td align="right">1</td>

<td align="right">439.00</td>
<td align="right">0.00</td>
</tr>

</table>

When you use this code in an HTML page, it looks like this:

CUSNUM LSTNAM INIT STREET CITY STATE ZIPCOD CDTLMT CHGCOD BALDUE CDTDUE

938472 Henning GK 4859 Dallas TX 75217 5000 3 37.00 0.00
Elm Ave

839283 Jones BD 21B NW Clay NY 13041 400 1 100.00 0.00
135 St

392859 Vine SS PO Box Broton VT 5046 700 1 439.00 0.00
79

SQLResultSetRowData class

The SQLResultSetRowData class represents an SQL result set as a list of data. This data is generated by
an SQL statement through JDBC. With methods provided, you can get and set the result set metadata.

This example shows you how ListRowData and HTMLTableConverter work. It shows the java code, HTML
code, and HTML look and feel.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

SQLResultSetRowData example: The following example shows you how the SQLResultSetRowData
class works:

// Create an AS/400 system object.

AS400 mySystem = new AS400 ("mySystem.myComp.com");

// Register and get a connection to the database.

DriverManager.registerDriver(new com.ibm.as400.access.AS400JDBCDriver());

Connection connection = DriverManager.getConnection("jdbc:as400://" + mySystem.getSystemName());
// Execute an SQL statement and get the result set.

Statement statement = connection.createStatement();

statement.execute("select * from giws.qcustcdt");

Chapter 11. Java Security 231

ResultSet resultSet = statement.getResultSet();

// Create the SQLResultSetRowData object and initialize to the result set.

SQLResultSetRowData rowData = new SQLResultSetRowData(resultSet);

// Create an HTML table object to be used by the converter.

HTMLTable table = new HTMLTable();

// Set descriptive column headers.

String[] headers = {"Customer Number", "Last Name", "Initials",
"Street Address", "City", "State", "Zip Code",
"Credit Limit", "Charge Code", "Balance Due",
"Credit Due"};

table.setHeader(headers);

// Set several formatting options within the table.

table.setBorderWidth(2);

table.setCel1Spacing(1);

table.setCel1Padding(1);

// Create an HTML converter object and convert the rowData to HTML.

HTMLTableConverter conv = new HTMLTableConverter();

conv.setTable(table);

HTMLTable[] html = conv.convertToTables(rowData);

// Display the HTML table generated by the converter.

System.out.printin(htmi[0]);

The code example above generates the following HTML code:

<table border="2" cellpadding="1" cellspacing="1">
<tr>

<th>Customer Number</th>
<th>Last Name</th>
<th>Initials</th>

<th>Street Address</th>
<th>City</th>

<th>State</th>

<th>Zip Code</th>

<th>Credit Limit</th>
<th>Charge Code</th>
<th>Balance Due</th>
<th>Credit Due</th>

</tr>

<tr>

<td>938472</td>

<td>Henning </td>

<td>G K</td>

<td>4859 Elm Ave </td>
<td>Dallas</td>

<td>TX</td>

<td align="right">75217</td>
<td align="right">5000</td>
<td align="right">3</td>

<td align="right">37.00</td>
<td align="right">0.00</td>
</tr>

<tr>

<td>839283</td>

<td>Jones </td>

<td

>B D</td>

<td>21B NW 135 St</td>
<td>Clay </td>

<td>NY</td>

<td align="right">13041</td>
<td align="right">400</td>
<td align="right">1</td>

<td align="right">100.00</td>
<td align="right">0.00</td>
</tr>

<tr>

<td>392859</td>

232 AS/400 Toolbox for Java

<td>Vine </td>

<td>S S</td>

<td>P0 Box 79 </td>
<td>Broton</td>

<td>VT</td>

<td align="right">5046</td>
<td align="right">700</td>
<td align="right">1</td>

<td align="right">439.00</td>
<td align="right">0.00</td>
</tr>

<tr>

<td>938485</td>

<td>Johnson </td>

<td>J A</td>

<td>3 Alpine Way </td>
<td>Helen </td>

<td>GA</td>

<td align="right">30545</td>
<td align="right">9999</td>
<td align="right">2</td>

<td align="right">3987.50</td>
<td align="right">33.50</td>
</tr>

<tr>

<td>397267</td>

<td>Tyron </td>

<td>W E</td>

<td>13 Myrtle Dr </td>
<td>Hector</td>

<td>NY</td>

<td align="right">14841</td>
<td align="right">1000</td>
<td align="right">1</td>

<td align="right">0.00</td>
<td align="right">0.00</td>
</tr>

<tr>

<td>389572</td>

<td>Stevens </td>

<td>K L</td>

<td>208 Snow Pass</td>
<td>Denver</td>

<td>C0</td>

<td align="right">80226</td>
<td align="right">400</td>
<td align="right">1</td>

<td align="right">58.75</td>
<td align="right">1.50</td>
</tr>

<tr>

<td>846283</td>

<td>Alison </td>

<td>J S</td>

<td>787 Lake Dr </td>
<td>Isle </td>

<td>MN</td>

<td align="right">56342</td>
<td align="right">5000</td>
<td align="right">3</td>

<td align="right">10.00</td>
<td align="right">0.00</td>
</tr>

<tr>

<td>475938</td>

<td>Doe </td>

<td>J W</td>

Chapter 11. Java Security

233

<td>59 Archer Rd </td>
<td>Sutter</td>

<td>CA</td>

<td align="right">95685</td>
<td align="right">700</td>
<td align="right">2</td>

<td align="right">250.00</td>
<td align="right">100.00</td>
</tr>

<tr>

<td>693829</td>

<td>Thomas </td>

<td>A N</td>

<td>3 Dove Circle</td>
<td>Casper</td>

<td>WY</td>

<td align="right">82609</td>
<td align="right">9999</td>
<td align="right">2</td>

<td align="right">0.00</td>
<td align="right">0.00</td>
</tr>

<tr>

<td>593029</td>
<td>Williams</td>

<td>E D</td>

<td>485 SE 2 Ave </td>
<td>Dallas</td>

<td>TX</td>

<td align="right">75218</td>
<td align="right">200</td>
<td align="right">1</td>

<td align="right">25.00</td>
<td align="right">0.00</td>
</tr>

<tr>

<td>192837</td>

<td>Lee </td>

<td>F L</td>

<td>5963 Oak St </td>
<td>Hector</td>

<td>NY</td>

<td align="right">14841</td>
<td align="right">700</td>
<td align="right">2</td>

<td align="right">489.50</td>
<td align="right">0.50</td>
</tr>

<tr>

<td>583990</td>

<td>Abraham </td>

<td>M T</td>

<td>392 Mill St </td>
<td>Isle </td>

<td>MN</td>

<td align="right">56342</td>
<td align="right">9999</td>
<td align="right">3</td>

<td align="right">500.00</td>
<td align="right">0.00</td>
</tr>

</table>

234 AS/400 Toolbox for Java

When you use this code in an HTML page, it looks like this:

Customer Last Initials Street City State Zip Credit Charge |Balance |Credit

Number |Name Address Code Limit Code Due Due

938472 |Henning |G K 4859 Dallas TX 75217 5000 3 37.00 0.00
Elm Ave

839283 |Jones B D 21B NW |Clay NY 13041 400 1 100.00 0.00
135 St

392859 |Vine SS PO Box |Broton VT 5046 700 1 439.00 0.00
79

938485 |Johnson |JA 3 Alpine |Helen GA 30545 9999 2| 3987.50 33.50
Way

397267 |Tyron W E 13 Myrtle | Hector NY 14841 1000 1 0.00 0.00
Dr

389572 |[Stevens |K L 208 Denver |CO 80226 400 1 58.75 1.50
Snow
Pass

846283 | Alison JS 787 Lake | Isle MN 56342 5000 3 10.00 0.00
Dr

475938 |Doe JW 59 Sutter CA 95685 700 2 250.00 100.00
Archer
Rd

693829 |Thomas |AN 3 Dove |Casper |WY 82609 9999 2 0.00 0.00
Circle

593029 |Williams |E D 485 SE | Dallas TX 75218 200 1 25.00 0.00
2 Ave

192837 |Lee FL 5963 Hector NY 14841 700 2 489.50 0.50
Oak St

583990 |Abraham |[MT 392 Mill |Isle MN 56342 9999 3 500.00 0.00
St

RowData position: There are several methods that allow you to get and set the current position within a
list

Set methods Get methods
absolute() next() getCurrentPosition()
afterLast() previous() isAfterLast()
beforeFirst() relative() isBeforeFirst()
first() isFirst()
last() isLast()
[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

RowMetaData classes

The RowMetaData class defines an interface that you use to find out information about the columns of a
RowData object.

With the RowMetaData classes you can do the following:
* Get the number of columns

* Get the name, type, or size of the column

* Get or set the column label

Chapter 11. Java Security 235

* Get the precision or scale of the column data
* Determine if the column data is text data

There are three main classes that implement the RowMetaData class. These classes provide all the
RowMetaData functions listed above in addition to having their own specific functions:

e ListMetaData
e RecordFormatMetaData
* SQLResultSetMetaData

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

ListMetaData class

The ListMetaData lets you get information about and change settings for the columns in a ListRowData
class. It uses the setColumns() method to set the number of columns, clearing any previous column
information. Alternatively, you can also pass the number of columns when you set the constructor's
parameters.

This example shows you how ListMetaData, ListRowData and HTMLTableConverter work. It shows the
java code, HTML code, and HTML look and feel.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

RecordFormatMetaData class

The RecordFormatMetaData makes use of the AS/400 Toolbox for Java RecordFormat class. It allows you
to provide the record format when you set the constructor's parameters or use the get and set methods to
access the record format.

The following example shows you how to create a RecordFormatMetaData object:

// Create a RecordFormatMetaData object from a sequential file's record format.
RecordFormat recordFormat = sequentialFile.getRecordFormat();
RecordFormatMetaData metadata = new RecordFormatMetaData(recordFormat);

// Display the file's column names.

int numberOfColumns = metadata.getColumnCount();

for (int column=0; column < numberOfColumns; column++)

{
}

System.out.printin(metadata.getColumnName(column));

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

SQLResultSetMetaData

The SQLResultSetMetaData returns information about the columns of an SQLResultSetRowData object.
You can either provide the result set when you set the constructor's parameters or use the get and set
methods to access the result set meta data.

The following example shows you how to create an SQLResultSetMetaData object:

// Create an SQLResultSetMetaData object from the result set's metadata.
SQLResultSetRowData rowdata = new SQLResultSetRowData(resultSet);
SQLResultSetMetaData sqlMetadata = rowdata.getMetaData();
// Display the column precision for non-text columns.
String name = null;
int numberOfColumns = sqlMetadata.getColumnCount();
for (int column=0; column < numberOfColumns; column++)
{
name = sqlMetadata.getColumnName(column);
if (sqlMetadata.isTextData(column))

236 AS/400 Toolbox for Java

System.out.printin("Column: " + name + " contains text data.");

}

else

{

System.out.printIn("Column: " + name + " has a precision of " + sqlMetadata.getPrecision(column));
1
}

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Converter classes

You use the converter classes to convert row data into formatted string arrays. The result is in HTML
format and ready for presentation on your HTML page. The following classes take care of the conversion
for you:

» StringConverter
¢ HTMLFormConverter
* HTMLTableConverter

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

StringConverter class

The StringConverter class is an abstract class that represents a row data string converter. It provides a
convert() method to convert row data. This returns a string array representation of that row’'s data.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

HTMLFormConverter class

The HTMLFormConverter classes extends StringConverter by providing an additional convert method
called convertToForms(). This method converts row data into an array of single-row HTML tables. You can
use these table tags to display the formatted information on a browser.

You can tailor the appearance of the HTML form by using the various get and set methods to view or
change the attributes of the form. Some of the attributes that you can access include:

* Alignment

* Cell spacing

* Header hyperlinks
* Width

To see how the HTMLFormConverter works, compile and run this example with a webserver running.
[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

HTMLTableConverter class

The HTMLTableConverter class extends StringConverter by providing an a convertToTables() method.
This method converts row data into an array of HTML tables that a servlet can use to display the list on a
browser.

You can use the getTable() and setTable() methods to choose a default table that will be used during
conversion. You can set table headers within the HTML table object or you can use the meta data for the
header information by setting setUseMetaData() to true.

The setMaximumTableSize() method allows you to limit the number of rows in a single table. If the row

data does not all fit within the specified size of table, the converter will produce another HTML table object
in the output array. This will continue until all row data has been converted.

Chapter 11. Java Security 237

Several examples apply to the HTMLTableConverter class:
» ListRowData

* RecordListRowData

* SQLResultSetRowData

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Tips for programming

This section features pointers for programming with the AS/400 Toolbox for Java. Select the links below to
view the tips.

1. Find out how to properly shut down your Java program.

2. Use integrated file system path names in your programs. This section covers integrated file system
path names, parameters, and special values.

3. Follow these tips on managing connections to an AS/400. See how to use the AS400 class to start
and end socket connections.
NOTE: If your application is an Enterprise Java Bean, consider turning off Toolbox thread support.
Your application will be slower but will be compliant with the Enterprise Java Bean specification.

4. Read about running AS/400 Toolbox for Java classes on the Java virtual machine for AS/400. This
section covers how to best access AS/400 resources, how to run the classes, and what sign-on
factors to consider.

5. When programming with the AS/400 Toolbox for Java access classes, use the exception classes to
handle errors.

6. When programming with the graphical user interface (GUI) classes, use the error events classes to
handle errors.

7. See how to use the Trace class in your programs.
8. Find out how to optimize your program for better performance.

9. Use the install and update section for information about the AS400ToolboxInstaller class and
managing AS/400 Toolbox for Java classes on a client.

10. Read about AS/400 Toolbox for Java and Java national language support.
11. See these resources for AS/400 Toolbox for Java Service and support.
12. Use the JarMaker class and create faster loading Java Toolbox JAR files.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
Shutting down your Java program

To ensure that your program shuts down properly, issue System.exit(0) as the last instruction before your
Java program ends.

AS/400 Toolbox for Java connects to the AS/400 with user threads. Because of this, a failure to issue
System.exit(0) may keep your Java program from properly shutting down.

Using System.exit(0) is not a requirement, but a precaution. There are times that you must use this
command to exit a Java program and it is not problematic to use System.exit(0) when it is not necessary.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

238 AS/400 Toolbox for Java

Integrated file system path names for AS/400 objects

Your Java program must use integrated file system names to refer to AS/400 objects, such as programs,
libraries, commands, or spooled files. The integrated file system name is the name of an AS/400 object as
it would be accessed in the library file system of the integrated file system on the AS/400.

The path name may consist of the following pieces:

library The library in which the object resides. The library is a
required portion of an integrated file system path
name. The library name must be 10 or fewer
characters and be followed by .lib.

object The name of the object that the integrated file system path
name represents. The object is a required portion of an
integrated file system path name. The object name must
be 10 or fewer characters and be followed by .type,
where type is the type of the object. Types can be found
by prompting for the OBJTYPE parameter on commands,
such as WRKOBJ.

type The type of the object. The type of the object must be
specified when specifying the object. (See object above.)
The type name must be 6 or fewer characters.

member The name of the member that this integrated file system
path name represents. The member is an optional portion
of an integrated file system path name. It can be specified
only when the object type is FILE. The member name
must be 10 or fewer characters and followed by .mbr.

Follow these conditions when determining and specifying the integrated file system name:

* The forward slash (/) is the path separator character.

* The root-level directory, called QSYS.LIB, contains the AS/400 library structure.

* Objects that reside in the AS/400 library QSYS have the following format:
/QSYS.LIB/object.type

* Objects that reside in other libraries have the following format:
/QSYS.LIB/1ibrary.LIB/object.type

* The object type extension is the AS/400 abbreviation used for that type of object.

To see a list of these types, enter an AS/400 command that has object type as a parameter and press
F4 (Prompt) for the type. For example, the AS/400 command Work with Objects (WRKOBJ) has an
object type parameter.

Below are some commonly used types:

Abbreviation Object

.CMD command
.DTAQ data queue
.FILE file

.FNTRSC font resource
.FORMDF form definition
.LIB library

.MBR member

.OVL overlay
.PAGDFN page definition
PAGSET page segment
.PGM program
.OUTQ output queue
.SPLF spooled file

Chapter 11. Java Security 239

Use these examples to determine how to specify integrated file system path names:

Description Integrated file system name

Program MY_PROG /QSYS.LIB/MY_LIB.LIBIMY_PROG.PGM
in library MY_LIB

on the AS/400

Data queue MY_QUEUE /QSYS.LIB/MY_LIB.LIB/IMY_QUEUE.DTAQ
in library MY_LIB

on the AS/400

Member JULY /QSYS.LIB/YEAR1998.LIB/MONTH.FILE/JULY.MBR
in file MONTH

in library YEAR1998

on the AS/400

Special values that the AS/400 Toolbox for Java recognizes in the integrated file
system

In an integrated file system path name, special values that normally begin with an asterisk, such as *ALL,
are depicted without the asterisk. Instead, use leading and trailing percent signs (%ALL%). In the
integrated file system, an asterisk is a wildcard character.

The AS/400 Toolbox for Java classes recognize the following special values:

With Use (Instead Of)
Library name %ALL% (*ALL)
%ALLUSR% (*ALLUSR)
%CURLIB% (*CURLIB)
%LIBL% (*LIBL)
%USRLIBL% (*USRLIBL)
Object name %ALL% (*ALL)
Member name %ALLY% (*ALL)
%FILE% (*FILE)
%FIRST% (*FIRST)
%LAST% (*LAST)

See the QSYSObjectPathName class for information about building and parsing integrated file system
names.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Managing connections

Creating, starting, and ending a connection to an AS/400 are discussed below, and some code examples
are provided as well.

To connect to an AS/400 system, your Java program must create an AS400 object. The AS400 object
contains up to one socket connection for each AS/400 server type. A service corresponds to a job on the
AS/400 and is the interface to the data on the AS/400.

NOTE: If you are creating Enterprise Java Beans, you need to comply with the EJB specification of not
allowing AS/400 Toolbox for Java threads during your connection.

Every connection to each server has its own job on the AS/400. A different server supports each of the
following:

« JDBC
* Program call and command call
* Integrated file system

240 AS/400 Toolbox for Java

* Network print
» Data queue
* Record-level access

Note: The print classes use one socket connection per AS400 object if the application does not try to do two things
that require the network print server at the same time.

A print class creates additional socket connections to the network print server if needed. The extra conversations are
disconnected if they are not used for 5 minutes.

The Java program can control the number of connections to the AS/400. To optimize communications
performance, a Java program can create multiple AS400 objects for the same AS/400 system as shown in
Figure 1 (page @b This creates multiple socket connections to the AS/400.

Figure 1. Java program creating multiple AS400 objects and socket connections for the same
AS/400 system

To conserve AS/400 resources, create only one AS400 object as shown in Figure 2 (page @b. This
approach reduces the number of connections, which reduces the amount of resource used on the AS/400
system.

Figure 2. Java program creating a single AS400 object and socket connection for the same AS/400
system

The following examples show how to create and use the AS400 class:

Example 1: In the following example, two CommandCall objects are created that send commands to the
same AS/400 system. Because the CommandCall objects use the same AS400 object, only one
connection to the AS/400 system is created.

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create two command call objects that use
// the same AS400 object.
CommandCall cmdl = new CommandCall(sys,"myCommandl");
CommandCall cmd2 = new CommandCall(sys,"myCommand2");
// Run the commands. A connection is made when the
// first command is run. Since they use the same
// AS400 object the second command object will use
// the connection established by the first command.
cmdl.run();
cmd2.run();

Example 2: In the following example, two CommandCall objects are created that send commands to the
same AS/400 system. Because the CommandCall objects use different AS400 objects, two connections to
the AS/400 system are created.

// Create two AS400 objects to the same AS/400 system.
new AS400("mySystem.myCompany.com");
new AS400("mySystem.myCompany.com");
// Create two command call objects. They use
// different AS400 objects.
CommandCall cmdl = new CommandCall(sys1,"myCommandl");
CommandCall cmd2 = new CommandCall(sys2,"myCommand2");
// Run the commands. A connection is made when the
// first command is run. Since the second command

AS400 sysl
AS400 sys2

Chapter 11. Java Security 241

// object uses a different AS400 object, a second

// connection is made when the second command is run.
cmdl.run();
cmd2.run();

Example 3: In the following example, a CommandCall object and an IFSFilelnputStream object are
created using the same AS400 object. Because the CommandCall object and the IFSFilelnput Stream
object use different services on the AS/400 system, two connections are created.
// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create a command call object.
CommandCall cmd = new CommandCall(sys,"myCommandl");
// Create the file object. Creating it causes the
// AS400 object to connect to the file service.
IFSFileInputStream file = new IFSFileInputStream(sys,"/myfile");
// Run the command. A connection is made to the
// command service when the command is run.
cmd.run();

Starting and ending connections

The Java program can control when a connection is started and ended. By default, a connection is started
when information is needed from the AS/400. You can control exactly when the connection is made by
preconnecting to the AS/400 by calling the connectService() method on the AS400 object.

The following examples show Java programs connecting and disconnecting to the AS/400.

Example 1: This example shows how to preconnect to the AS/400:

// Create an AS400 object.
AS400 systeml = new AS400("mySystem.myCompany.com");
// Connect to the command service. Do it now
// instead of when data is first sent to the
// command service. This is optional since the
// AS400 object will connect when necessary.
systeml.connectService(AS400.COMMAND) ;

Example 2: Once a connection is started, the Java program is responsible for disconnecting, which is
done either implicitly by the AS400 object, or explicitly by the Java program. A Java program disconnects
by calling the disconnectService() method on the AS400 object. To improve performance, the Java
program should disconnect only when the program is finished with a service. If the Java program
disconnects before it is finished with a service, the AS400 object reconnects—if it is possible to
reconnect—when data is needed from the service.

Figure 3 (page m) shows how disconnecting the connection for the first integrated file system object
connection ends only that single instance of the AS400 object connection, not all of the integrated file
system object connections.

Figure 3. Single object using its own service for an instance of an AS400 object is disconnected

This example shows how the Java program disconnects a connection:

// Create an AS400 object.

AS400 systeml = new AS400("mySystem.myCompany.com");
// ... use command call to send several commands
// to the AS/400. Since connectService() was not
// called, the AS400 object automatically

242 AS/400 Toolbox for Java

// connects when the first command is run.

// A11 done sending commands so disconnect the

// connection.
systeml.disconnectService(AS400.COMMAND) ;

Example 3: Multiple objects that use the same service and share the same AS400 object share a
connection. Disconnecting ends the connection for all objects that are using the same service for each
instance of an AS400 object as is shown in Figure 4 (page @)

Figure 4. All objects using the same service for an instance of an AS400 object are disconnected

For example, two CommandCall objects use the same AS400 object. When disconnectService() is called,
the connection is ended for both CommandCall objects. When the run() method for the second
CommandCall object is called, the AS400 object must reconnect to the service:

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");

// Create two command call objects.
CommandCall cmdl = new CommandCall(sys,"myCommandl");
CommandCall cmd2 = new CommandCall(sys,"myCommand2");

// Run the first command
cmdl.run();

// Disconnect from the command service.
sys.disconnectService(AS400.COMMAND) ;

// Run the second command. The AS400 object

// must reconnect to the AS/400.
cmd2.run();

// Disconnect from the command service. This

// is the correct place to disconnect.
sys.disconnectService(AS400.COMMAND) ;

Example 4: Not all AS/400 Toolbox for Java classes automatically reconnect. Some method calls in the
integrated file system classes do not reconnect because the file may have changed. While the file was
disconnected, some other process may have deleted the file or changed its contents. In the following
example, two file objects use the same AS400 object. When disconnectService() is called, the connection
is ended for both file objects. The read() for the second IFSFilelnputStream object fails because it no
longer has a connection to the AS/400.

// Create an AS400 object.
AS400 sys = new AS400("mySystem.myCompany.com");
// Create two file objects. A connection to the
// AS/400 is created when the first object is
// created. The second object uses the connection
// created by the first object.
IFSFileInputStream filel = new IFSFileInputStream(sys,"/filel");
IFSFileInputStream file2 = new IFSFileInputStream(sys,"/file2");
// Read from the first file, then close it.
int i1 = filel.read();
filel.close();
// Disconnect from the file service.
sys.disconnectService(AS400.FILE);
// Attempt to read from the second file. This
// fails because the connection to the file service
// no longer exists. The program must either
// disconnect later or have the second file use a
// different AS400 object (which causes it to
// have its own connection).
int i2 = file2.read();
// Close the second file.
file2.close();
// Disconnect from the file service. This
// is the correct place to disconnect.
sys.disconnectService(AS400.FILE);

Chapter 11. Java Security 243

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Java virtual machine for AS/400

Beginning with Version 4 Release 2 (V4R2), AS/400 has a Java virtual machine that implements the JDK
1.1 specification.

Because the AS/400 Toolbox for Java classes run on any platform that supports JDK 1.1, the AS/400
Toolbox for Java classes run on the Java virtual machine for AS/400.

When you run AS/400 Toolbox for Java classes on the Java virtual machine for AS/400, do the following:

* Choose whether to use the Java virtual machine for AS/400 or the AS/400 Toolbox for Java classes to
access AS/400 resources when running in the Java virtual machine for AS/400.

* Check out Running AS/400 Toolbox for Java classes on the Java virtual machine for AS/400.
* Read about setting system name, user ID, and password in the Java virtual machine for AS/400.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
Java virtual machine for AS/400 versus the AS/400 Toolbox for Java classes

You always have at least two ways to access an AS/400 resource when your Java program is running on
the Java virtual machine for AS/400. You can use either of the following interfaces:

* Facilities built into Java
* An AS/400 Toolbox for Java class

When deciding which interface to use, consider the following factors:

* Location - Where a program runs is the most important factor in deciding which interface set
to use. Does the program do the following:

— Run only on the client?
— Run only on the server?

— Run on both client and server, but in both cases the resource is an AS/400
resource?

— Run on one Java virtual machine for AS/400 and access resources on another
AS/4007?

— Run on different kinds of servers?

If the program runs on both client and server (including the AS/400 as a client to a
second AS/400) and accesses only AS/400 resources, it may be best to use the AS/400
Toolbox for Java interfaces.

If the program must access data on many types of servers, it may be best to use native
Java interfaces.

— Consistency / Portability - The ability to run AS/400 Toolbox for Java classes on
AS/400 means that the same interfaces can be used for both client programs and
server programs. When you have only one interface to learn for both client programs
and server programs, you can be more productive.

Writing to AS/400 Toolbox for Java interfaces makes your program less server
portable, however.

If your program must run to an AS/400 as well as other servers, you may find it
better to use the facilities that are built into Java.

— Complexity - The AS/400 Toolbox for Java interface is built especially for easy
access to an AS/400 resource. Often, the only alternative to using the AS/400

244 AS/400 Toolbox for Java

Toolbox for Java interface is to write a native program that accesses the resource
and communicates with that program through Java Native Interface (INI).

You must decide whether it is more important to have better Java neutrality and write
a native program to access the resource, or to use the AS/400 Toolbox for Java
interface, which is less portable.

— Function - The AS/400 Toolbox for Java interface often provides more function than
the Java interface. For example, the IFSFileOutputStream class of the AS/400
Toolbox for Java licensed program has more function than the FileOutputStream
class of java.io. Using IFSFileOutputStream makes your program specific to the
AS/400, however. You lose server portability by using the AS/400 Toolbox for Java
class.

You must decide whether portability is more important or whether you want to take
advantage of the additional function.

— Resource - When running on the Java virtual machine for AS/400, many of the
AS/400 Toolbox for Java classes still make requests through the host servers.
Therefore, a second job (the server job) carries out the request to access a
resource.

This request may take more resource than a native Java interface that runs under
the job of the Java program.

— AS/400 as a client - If your program runs on the AS/400 and accesses data on a
second AS/400, your best choice may be to use AS/400 Toolbox for Java classes.
These classes provide easy access to the resource on the second AS/400.

An example of this is Data Queue access. The Data Queue interfaces of the AS/400
Toolbox for Java licensed program provide easy access to the data queue resource.

Using the AS/400 Toolbox for Java also means your program works on both a client
and server to access an AS/400 data queue. It also works when running on one
AS/400 to access a data queue on another AS/400.

The alternative is to write a separate program (in C, for example) that accesses the
data queue. The Java program calls this native program when it needs to access the
data queue.

This method is more server-portable; you can have one Java program that handles
data queue access and different versions of the native program for each server you
support.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Running AS/400 Toolbox for Java classes on the Java virtual machine for AS/400

Below are special considerations for running the AS/400 Toolbox for Java classes on the Java virtual
machine for AS/400:

Java Database Connectivity (JDBC)

Two IBM-supplied JDBC drivers are available to programs running on the Java virtual machine for AS/400:
* The AS/400 Toolbox for Java JDBC driver
* The native JDBC-DB2 for AS/400 driver

The AS/400 Toolbox for Java JDBC driver is best to use when the program is running in a client/server
environment.

The native JDBC-DB2 for AS/400 driver is best to use when the program is running on AS/400.

If the same program runs on both the workstation and the AS/400, you should load the correct driver
through a system property instead of coding the driver name into your program.

Chapter 11. Java Security 245

Program call

Two common ways to call a program are as follows:
* The ProgramCall class of the AS/400 Toolbox for Java
* Through a Java Native Interface (JNI) call

The ProgramCall class of the AS/400 Toolbox for Java licensed program has the advantage that it can call
any AS/400 program.

You may not be able to call your AS/400 program through JNI. An advantage of JNI is that it is more
portable across server platforms.

Command call

Two common ways to call a command are as follows:
* The CommandCall class of the AS/400 Toolbox for Java
* java.lang.runtime.exec()

The CommandCall class generates a list of messages that are available to the Java program once the
command completes. This list of messages is not available through java.lang.runtime.exec().

java.lang.runtime.exec() is portable across many platforms, so if your program must access files on
different types of servers, java.lang.runtime.exec() is a better solution.

Integrated file system

The two common ways to access a file in the integrated file system of the AS/400 are as follows:
* The IFSFile classes of the AS/400 Toolbox for Java licensed program
* The file classes that are a part of java.io

The AS/400 Toolbox for Java integrated file system classes have the advantage of providing more function
than the java.io classes. The AS/400 Toolbox for Java classes also work in applets, and they do not need
a method of redirection (such as Client Access for AS/400) to get from a workstation to the server.

The java.io classes are portable across many platforms, which is an advantage. If your program must
access files on different types of servers, java.io is a better solution.

If you use java.io classes on a client, you need a method of redirection (such as Client Access/400) to get
to the AS/400 file system.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Setting system name, user ID, and password with an AS400 object in the Java
virtual machine for AS/400

The AS400 object allows special values for system name, user ID, and password when the Java program
is running on the Java virtual machine for AS/400.

When you run a program on the Java virtual machine for AS/400, be aware of some special values and
other considerations:

» If system name, user ID, or password is not set on the AS400 object, the AS400 object connects
to the current AS/400 by using the user ID and password of the job that started the Java program.
A password must be supplied when using record-level access while connecting to v4r3 and
earlier machines. When connecting to a v4r4 or later machine, it can propagate the
signed-on user’s password like the rest of the Toolbox components.

246 AS/400 Toolbox for Java

* The special value, localhost, can be used as the system name. In this case, the AS400 object
connects to the current AS/400.

+ The special value, *current?, can be used as the user ID or password on the AS400 object. In this
case, the user ID or password (or both) of the job that started the Java program is used.

+ The special value, *current®, can be used as the user ID or password on the AS400 object when
the Java program is running on the Java virtual machine of one AS/400, and the program is
accessing resources on another AS/400. In this case, the user ID and password of the job that
started the Java program on the source system are used when connecting to the target system.

1 The Java program cannot set the password to "*current” if you are using record-level access and V4R3 or earlier.
When you use record-level access, "localhost” is valid for system name and "*current” is valid for user ID; however,
the Java program must supply the password.

*current works only on systems running at Version 4 Release 3 (V4R3) and later. Password and user ID must be
specified on system running on V4R2 systems.

* User ID and password prompting is disabled when the program runs on the AS/400.

For more information about user ID and password values in the AS/400 environment, see
Summary of user ID and password values on an AS400 object.

The following examples show how to use the AS400 object with the Java virtual machine for AS/400.

Example 1. When a Java program is running in the Java virtual machine for AS/400, the program
does not have to supply a system name, user ID, or password.

A password must be supplied when using record-level access.

If these values are not supplied, the AS400 object connects to the local system by using the user ID
and password of the job that started the Java program.

When the program is running on the Java virtual machine for AS/400, setting the system name to
localhost is the same as not setting the system name. The following example shows how to connect
to the current AS/400:

// Create two AS400 objects. If the Java program is
// running in the Java virtual machine for AS/400,
// the behavior of the
// two objects is the same. They will connect to the
// current AS/400 using the user ID and password of
// the job that started the Java program.

new AS400()

new AS400("Tocalhost")

AS400 sys
AS400 sys?

Example 2: The Java program can set a user ID and password even when the program is running
on the Java virtual machine for AS/400. These values override the user ID and password of the job
that started the Java program.

In the following example, the Java program connects to the current AS/400, but the program uses a
user ID and password that differs from those of the job that started the Java program.

// Create an AS400 object. Connect to the current

// AS/400 but do not use the user ID and password

// of the job that started the program. The

// supplied values are used.
AS400 sys = new AS400("localhost", "USR2", "PSWRD2")

Example 3: A Java program that is running on one AS/400 can connect to and use the resources of
other AS/400 systems.

Chapter 11. Java Security 247

If *current is used for user ID and password, the user ID and password of the job that started the
Java program is used when the Java program connects to the target AS/400.

In the following example, the Java program is running on one AS/400, but uses resources from
another AS/400. The user ID and password of the job that started the Java program are used when
the program connects to the second AS/400.

// Create an AS400 object. This program will run on

// one AS/400 but will connect to a second AS/400

// (called "target"). Since *current is used for

// user ID and password, the user ID and password

// of the job that started the program will be used

// when connecting to the second AS/400.

// second AS/400.

AS400 target = new AS400("target", "xcurrent", "xcurrent")

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
Summary of User ID and Password Values on an AS400 Object

The following table summarizes how the user ID and password values on an AS400 object are handled by
a Java program running on an AS/400 system versus a Java program running on a client:

Values on AS400 Object Java Program Java Program Running on a Client
Running on an AS/400

System name, user ID, and password Connect to the current AS/400 using Prompt for system, user ID, and

not set the user ID and password of the job password
that started the program

System name = localhost Connect to the current AS/400 using Error: localhost is not valid when the
System name = localhost the user ID and password of the job Java program is running on a client
User ID = *current that started the program

System name = localhost
User ID = *current
Password ID = *current

System name = "sys” Connect to AS/400 "sys” using the Prompt for user ID and password
user ID and password of the job that
started the program. "sys” can be the
current AS/400 or another AS/400

System name = localhost Connect to the current AS/400 using Error: localhost is not valid when the
User ID = "UID" the user ID and password specified by Java program is not running on a
Password ID = "PWD" the Java program instead of the user client

ID and password of the job that
started the program

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

AS/400 optimization

The AS/400 Toolbox for Java licensed program is "Pure Java” so it runs on any platform with a certified
Java virtual machine. "Pure Java” also means the AS/400 Toolbox for Java classes function in the same
way no matter where they run.

Additional classes come with OS/400 that enhance the behavior of the AS/400 Toolbox for Java when it is
running on the Java virtual machine for AS/400. Sign-on behavior and performance are improved when
running on the Java virtual machine for AS/400 and connecting to the same AS/400. The additional
classes are part of OS/400 starting at Version 4 Release 3.

248 AS/400 Toolbox for Java

The classes that modify the behavior of the AS/400 Toolbox for Java are in directory
/QIBM/ProdData/Java400/com/ibm/as400/access on the AS/400. If you want the Pure Java behavior of
the AS/400 Toolbox for Java when you are running it on the Java virtual machine for AS/400, delete the
classes in this directory.

Sign-on considerations

With the additional classes provided by OS/400, Java programs have additional options for providing
system name, user ID and password information to the AS/400 Toolbox for Java.

When accessing an AS/400 resource, the AS/400 Toolbox for Java classes must have a system name,
user ID and password.

When running on a client, the system name, user ID and password are provided by the Java program,
or the AS/400 Toolbox for Java retrieves these values from the user through a sign-on dialog.

The Java program can only set the password to "*current” if you are using record-level access V4R4 or later.
Otherwise, when you use record-level access, "localhost” is valid for system name and "*current” is valid for user ID;
however, the Java program must supply the password.

When running on the Java virtual machine for AS/400, the AS/400 Toolbox for Java has one more option.
It can send requests to the current (local) AS/400 using the user ID and password of the job that started
the Java program.

With the additional classes, the user ID and password of the current job also can be used when a Java
program that is running on one AS/400 accesses the resources on another AS/400. In this case, the Java
program sets the system name, then uses the special value "*current” for the user ID and password.

A Java program sets system name, user ID, and password values in the AS400 object.

To use the job’s user ID and password, the Java program can use "*current” as user ID and password, or
it can use the constructor that does not have user ID and password parameters.

To use the current AS/400, the Java program can use "localhost” as the system name or use the default
constructor. That is,

AS400 system = new AS400();

is the same as

AS400 system = new AS400("localhost", "xcurrent", "current");

Two AS400 objects are created in the following example. The two objects have the same behavior: they
both run a command to the current AS/400 using the job’s user ID and password. One object uses the
special value for the user ID and password, while the other uses the default constructor and does not set
user ID or password.

// Create an AS400 object. Since the default
// constructor is used and system, user ID and
// password are never set, the AS400 object sends
// requests to the local AS/400 using the job's
// user ID and password. If this program were run
// on a client, the user would be prompted for
// system, user ID and password.

new AS400();
// Create an AS400 object. This object sends
// requests to the local AS/400 using the job's
// user ID and password. This object will not work
// on a client.

new AS400("localhost", "xcurrent", "xcurrent");
// Create two command call objects that use the
// AS400 objects.

AS400 sysl

AS400 sys2

Chapter 11. Java Security 249

CommandCall cmdl = new CommandCall(sysl,"myCommandl");

CommandCall cmd2 = new CommandCall(sys2,"myCommand2");
// Run the commands.

cmdl.run();

cmd2.vrun();

In the following example an AS400 object is created that represents a second AS/400 system. Since
*current is used, the job’s user ID and password from the AS/400 running the Java program are used on
the second (target) AS/400.
// Create an AS400 object. This object sends
// requests to a second AS/400 using the user ID
// and password from the job on the current AS/400.
AS400 sys = new AS400("mySystem.myCompany.com", "#current", "xcurrent");
// Create a command call object to run a command
// on the target AS/400.
CommandCall cmd = new CommandCall(sys,"myCommandl");
// Run the command.
cmd.run();

Performance improvements

With the additional classes provided by OS/400, Java programs running on the Java virtual machine for
AS/400 will experience improved performance. Performance is improved in some cases because less
communication function is used, and in other cases, an AS/400 API is used instead of calling the server
program.

Shorter download time

In order to download the minimum number of AS/400 Toolbox for Java class files, use the proxy server
with the JarMaker tool.

Faster communication

For all AS/400 Toolbox for Java functions except JDBC and integrated file system access, Java programs
running on the Java virtual machine for AS/400 will run faster. The programs run faster because less
communication code is used when communicating between the Java program and the server program on
the AS/400 that does the request.

JDBC and integrated file system access were not optimized because facilities already exist that make
these functions run faster. When running on the AS/400, you can use the JDBC driver for AS/400 instead
of the JDBC driver that comes with the AS/400 Toolbox for Java. To access files on the AS/400, you can
use Java.io instead of the integrated file system access classes that come with the AS/400 Toolbox for
Java.

Directly calling AS/400 APIs

Performance of the record-level database access, data queue, user space, and digital certificate classes of
the AS/400 Toolbox for Java is improved because these classes directly call AS/400 APIs instead of calling
a server program to carry out the request. APIs are directly called only if the user ID and password are the
user ID and password of the job running the Java program. To get the performance improvement, the user
ID and password must match the user ID and password of the job that starts the Java program. For best
results, use "localhost” for system name, "*current” for user ID, and "*current” for password.

Port mapping changes
The port mapping system has been changed, which makes accessing a port faster. Before this change, a

request for a port would be sent to the port mapper. From there, the AS/400 would determine which port
was available and return that port to the user to be accepted. Now, you can either tell the AS/400 which

250 AS/400 Toolbox for Java

port to use or specify that the default ports be used. This option eliminates the wasted time of the AS/400
determining the port for you. You use the AS/400 command WRKSRVTBLE to view or change the list of
ports for the server.

For the port mapping improvement, a few methods have been added to AS/400 access class:
* getServicePort

* setServicePort

» setServicePortsToDefault

MRI changes

MRI files are now shipped within the AS/400 Toolbox for Java program as class files instead of property
files. The AS/400 finds messages in class files faster than in property files. ResourceBundle.getString()
now runs faster because the MRI files are stored in the first place that the computer searches. Another
advantage of changing to class files is that the AS/400 can find the translated version of a string faster.

Converters

Two classes have been added that allow faster, more efficient conversion between Java and the AS/400:
* Binary Converter: Converts between Java byte arrays and Java simple types.
» Character Converter: Converts between Java string objects and AS/400 native code packages.

Performance tip regarding the Create Java Program (CRTJVAPGM) command

If your Java program runs on the Java virtual machine of AS/400, you can significantly improve
performance if you create a Java program from AS/400 Toolbox for Java zip file or jar file. Enter the
CRTJVAPGM command on an AS/400 command line to create the program. (See the online help
information for the CRTJVAPGM command for more information.) By using the CRTJVAPGM command,
you save the Java program that is created (and that contains the AS/400 Toolbox for Java classes) when
your Java program starts. Saving the Java program that is created allows you to save startup processing
time. You save startup processing time because the Java program on AS/400 does not have to be
re-created each time your Java program is started.

If you are using the V4R2 or V4R3 version of AS/400 Toolbox for Java, you cannot run the CRTJVAPGM
command against the jt400.zip file because it is too big; however, you may be able to run it against the
jt400.jar file. At VAR5, AS/400 Toolbox for Java licensed program includes an additional file,
jt400Access.zip. jt400Access.zip contains only the access classes, not the visual classes. If your Java
program is running on AS/400, you should use jt400Access.zip, because you probably only need the
access classes. The CRTIVAPGM command has already been run against jt400Access.zip.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Java national language support

Java supports a set of national languages, but it is a subset of the languages that the AS/400 system
supports.

When a mismatch between languages occurs, for example, if you are running on a local workstation that is
using a language that is not supported by Java, the AS/400 Toolbox for Java licensed program may issue
some error messages in English.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Chapter 11. Java Security 251

Service and support for the AS/400 Toolbox for Java

Use the following resources for service and support:

» Use the online information provided at:
http://www.as400.ibm.com/ under the topic "Support” for more information.

» Use the trouble-shooting information found on the AS/400 Toolbox for Java page located off of the
AS/400 home page at:
http://www.as400.ibm.com/ .

* Use IBM Support Services for 5763-JC1, AS/400 Toolbox for Java, provided at:
http://www.as400.ibm.com/toolbox .

Support Services for the AS/400 Toolbox for Java, 5763-JC1, are provided under the usual terms and
conditions for AS/400 software products. Support services include program services, voice support, and
consulting services. Point your web browser to http://www.as400.ibm.com/ or contact your local IBM
representative for more information.

Resolving AS/400 Toolbox for Java program defects is supported under program services and voice
support, while resolving application programming and debugging issues is supported under consulting
services.

AS/400 Toolbox for Java application program interface (API) calls are supported under consulting services
unless any of the following are true:

* Itis clearly a Java API defect, as demonstrated by re-creation in a relatively simple program.
* Itis a question asking for documentation clarification.
* Itis a question about the location of samples or documentation.

All programming assistance is supported under consulting services including those program samples
provided in the AS/400 Toolbox for Java licensed program. Additional samples may be made available on
the Internet at http://www.as400.ibm.com/ on an unsupported basis.

Problem solving information is provided with the AS/400 Toolbox for Java Licensed Program Product. If
you believe there is a potential defect in the AS/400 Toolbox for Java API, a simple program that
demonstrates the error will be required.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Code Examples

The following table is the entry point for all of the examples used throughout the AS/400 Toolbox for Java
information. The examples from the Tutorial section are not included below.

Access Classes GUI Classes
Utility Classes JavaBeans
PCML Graphical Toolbox
Servlet classes HTML classes
Security classes Tips for Programming
[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Code examples from the access classes

This section lists the code examples that are provided throughout the documentation of the access
classes.

252 AS/400 Toolbox for Java

Command call
* Example: Using the CommandCall class to run a command on AS/400 (page ﬁ)
« Example: Using CommandCall to prompt for the name of the AS/400, command to run, and print the

result

Data area
* Example: Creating and writing to a decimal data area (page E)

Data conversion and description
» Example: How to use RecordFormat and Record with the data queue classes

Data queues
* Example: Create a DataQueue object, read data, and disconnect (page E)

Digital certificate
« Example: List the digital certificates that belong to a user

Exceptions
» Example: Catching a thrown exception, retrieving the return code, and displaying the exception text

(page

FTP
« Example: Copy a set of files from a directory on a server with FTP class

Example

B1)

: Copy a set of files from a directory on a server with AS400FTP subclass

Integrated file system

Example: Using the integrated file system classes to copy a file from one directory to another on the

AS/400
Example
Example

JDBC

Example
Example

: How to use IFSJavaFile instead of java.io.File (page BZ)
: Using the integrated file system classes to list the contents of a directory on the AS/400

: Using the JDBC driver to create and populate a table
: Using the JDBC driver to query a table and output its contents

JavaApplicationCall
* Example: Running a program on the AS/400 from the client that outputs "Hello World!".

Jobs

Example:
Example:
Example:
Example:
Example:
Example:

Message

Example:
Example:
Example:
Example:

Retrieving and changing job information using the cache (page E3)

Listing all active jobs (page m)

Printing all of the messages in the job log for a specific user (page E)

Listing the job identification information for a specific user

Getting a list of jobs on the AS/400 and output the job’s status followed by a job identifier
Displaying messages in the job log for a job that belongs to the current user

gqueue
How to use the message queue object
Printing the contents of the message queue
How to retrieve and print a message

Listing the contents of the message queue

Chapter 11. Java Security

253

Network print

» Example: Creating a spooled file on an AS/400 from an input stream

« Example: Generating an SCS data stream using the SCS3812Writer class
* Example: Reading an existing AS/400 spooled file

« Example: Asynchronously listing all spooled files on a system and how to use the
PrintObjectListListener interface to get feedback as the list is being built

« Example: Asynchronously listing all spooled files on a system without using the PrintObjectListListener
interface

« Example: Synchronously listing all spooled files on a system

Permission
« Example: Set the authority of an AS/400 object (page E)

Program call
* Example: Using the ProgramCall class (page)
» Example: Passing parameter data with a Programparameter object (page ﬂ)

QSYSObjectPathName
* Example: Building an integrated file system name (page E)
* Example: Using toPath() to build an AS/400 object name (page E)

. Examp%: How to use the QSYSObjectPathName class to parse the integrated file system path name
(page I23)

Record-level access

* Example: Accessing an AS/400 file sequentially

* Example: Using the record-level access classes to read an AS/400 file

« Example: Using the record-level access classes to read records by key from an AS/400 file

Service program call
* Example: Using ServiceProgramCall to call a procedure.

System Status
* Example: Use caching with the SystemStatus class

System Pool
* Example: Set the maximum faults size for a system pool

System Values

Trace
» Example: Using the setTraceOn() method (page m)
* Example: Preferred way of using trace (page m)

User Groups
» Example: Retrieving a list of users
* Example: Listing all the users of a group

User Space
» Example: How to create a user space (page ﬂ)

254 AS/400 Toolbox for Java

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Code examples using the GUI classes

This section lists the code examples that are provided throughout the documentation of the graphical user
interface (GUI) classes.

AS/400 panes

» Example: Creating an AS400DetailsPane to present the list of users defined on the
systemAS400DetailsPane (page @)

* Example: Loading the contents of a details pane before adding it to a frame (page E)

* Example: Using an AS400 ListPane to present a list of users

» Example: Using an AS400DetailsPane to display messages returned from a command call
* Example: Using an AS400TreePane to display a tree view of a directory

* Example: Using an AS400ExplorerPane to present various network print resources

Command call
* Example: Creating a CommandCallButton (page)

* Example: Adding the ActionCompletedListener to process all AS/400 messages that a command
generates (page ﬁ)

* Example: Using the CommandCallMenultem

Data queues
« Example: Creating a DataQueueDocument (page bd)
» Example: Using a DataQueueDocument

Error events

» Example: Handling error events (page)

« Example: Defining an error listener (page)

* Example: Using a customized handler to handle error events (page)

JDBC
* Example: Using the JDBC driver to create and populate a table
» Example: Using the JDBC driver to query a table and output its contents

JavaApplicationCall
* Example:

Jobs
» Example: Creating a VJobList and presenting the list in an AS400ExplorerPane
» Example: Presenting a list of jobs in an explorer pane

Program call

* Example: Creating a ProgramCallMenultem (page @)

» Example: Processing all program generated AS/400 messages (page E)
* Example: Adding two parameters (page @)

* Example: Using a ProgramCallButton in an application

Record-level access
* Example: Creating a RecordListTablePane object to display all records less than or equal to a key (page

%)

Chapter 11. Java Security 255

SpooledFileViewer
» Example: Creating a Spooled File Viewer to view a spooled file previously created on an AS/400 (page

b4

System Values

Users and groups
» Example: Creating a VUserList with the AS400DetailsPane (page @)

» Example: Using an AS400ListPane to create a list of users for selection

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]
Code examples from the utility classes

This section lists the code examples that are provided throughout the documentation of the utility classes.

AS/400 Toolbox Installer
* Example: Using the AS400ToolboxInstaller class (page @)

« Example: Installing the AS/400Toolbox with the AS400ToolboxInstaller
« Example: Installing the ACCESS package from the command line.

* Example: Working with the Graphical Toolbox class from the command line.

JarMaker
» Example: Extracting AS400.class and all its dependent classes from jt400.jar (page @)

« Example: Splitting jt400.jar into a set of 300K files (page [29)
» Example: Removing unused files from a JAR file (page @)

« Example: Creating a 400K byte smaller JAR file by omitting the conversion tables with the -ccsid
parameter (page

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Code examples from the JavaBeans topics

This section lists the code examples that are provided throughout the documentation of the JavaBean

topics.

« Example: Using listeners to print a comment when you connect and disconnect to the system and run
commands

* Example: Using applets and IBM VisualAge for Java to create buttons that run commands

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Examples from the HTML classes

The following examples show you some of the ways that you can use the HTML classes:
* Example: Using the HTML form classes
* Form input class examples:

— Example: Creating a ButtonFormInput object

— Example: Creating a FileFormInput object

— Example: Creating a HiddenFormInput object

— Example: Creating an ImageForminput object

256 AS/400 Toolbox for Java

— Example: Creating a ResetForminput object
— Example: Creating a SubmitFormInput object
— Example: Creating a TextFormInput object
— Example: Creating a PasswordForminput object
— Example: Creating a RadioForminput object
— Example: Creating a CheckboxFormInput object
* Example: Using the HTMLText class
» Example: Using the HTMLHyperlink class
» Layout form classes:
— Example: Using the GridLayoutFormPanel class
— Example: Using the LineLayoutFormPanel class
* Example: Using the TextAreaFormElement class
* Example: Using the LabelFormOutput class
« Example: Using the SelectFormElement class
» Example: Using the SelectOption class
» Example: Using the RadioFormInputGroup class
« Example: Using the RadioForminput class
* Example: Using the HTMLTable classes
Example: Using the HTMLTableCell class
Example: Using the HTMLTableRow class
Example: Using the HTMLTableHeader class
Example: Using the HTMLTableCaption class

You can also use the HTML and servlet classes together, like in this example.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Examples from the servlet classes

The following examples show you some of the ways that you can use the servlet classes:
» Example: Using the ListRowData class

« Example: Using the RecordListRowData class

* Example: Using the SQLResultSetRowData class

» Example: Using the HTMLFormConverter class

* Example: Using the ListMetaData class

* Example: Using the SQLResultSetMetaData class

You can also use the servlet and HTML classes together, like in this example.

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Security example

The following code example shows you how to use a profile token credential to swap the OS/400 thread
identity and perform work on behalf of a specific user:

// Prepare to work with the Tocal AS/400 system.
AS400 system = new AS400("Tocalhost”, "*CURRENT”, "*CURRENT");

Chapter 11. Java Security 257

// Create a single-use ProfileTokenCredential with a 60 second timeout.

// A valid user ID and password must be substituted.
ProfileTokenCredential pt = new ProfileTokenCredential();
pt.setSystem(system);

pt.setTimeoutInterval (60);
pt.setTokenType(ProfileTokenCredential.TYPE_SINGLE USE);
pt.setToken("USERID”, "PASSWORD");

// Swap the 0S/400 thread identity, retrieving a credential to
// swap back to the original identity later.
AS400Credential cr = pt.swap(true);

// Perform work under the swapped identity at this point.

// Swap back to the original 0S/400 thread identity.
cr.swap();

// Clean up the credentials.
cr.destroy();
pt.destroy();

[Information Center Home Page | Feedback]

Tips for Programming

[Legal | AS/400 Glossary]

This section lists the code examples that are provided throughout the documentation of the managing

connections topic.

Managing connections

» Example: Making a connection to the AS/400 with a CommandCall object (page m)
* Example: Making two connections to the AS/400 with a CommandCall object (page @l)
» Example: Creating CommandCall and IFSFilelnputStream objects with an AS400 object (page @)

+ Example: How a Java program preconnects to the AS/400 (page P4d)
» Example: How a Java program disconnects from the AS/400 (page @)

« Example: How a Java program disconnects and reconnects to the AS/400 with disconnectService() and

run() (page E)

* Example: How a Java program disconnects from the AS/400 and fails to reconnect (page m)

Exceptions
* Example: Using exceptions (page ﬂ)

Error events
« Example: Handling error events (page)
* Example: Defining an error listener (page)

* Example: Using a customized handler to handle error events (page)

Trace
* Example: Using trace (page E)
* Example: Using setTraceOn() (page)

258 AS/400 Toolbox for Java

Optimization
« Example: How to create two AS400 objects (page P49)
» Example: How an AS400 object is used to represent a second AS/400 system (page @)

Install and update
* Example: Using the AS400Toolbox Installer class (page @)

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

Javadoc

To view the Javadoc for a specific package, select one of the following:
* Access classes
* Vaccess (GUI) classes

» Utility classes
e HTML classes

* Servlet classes
* Program Call Markup Language classes
* Graphical Toolbox Java framework classes and utility classes

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

AS/400 Toolbox for Java reference links

While we do expect that most developers who are using AS/400 Toolbox for Java know and understand
HTML, XHTML, Java, and Servlets, this section is provided as a brief overview of these topics. These links
give you a source for additional learning.

HTML

HTML (HyperText Markup Language) is the most popular language for publishing documents on the World
Wide Web. There are many good sites for learning HTML. Some of these are:

* The World Wide Web Consortium: W3C sets standards for publishing on the web. This site contains
some HTML instruction and information about current standards for publishing on the World Wide Web

* HTMLCompendium.org: HTMLCompendium provides information on coding HTML, including definitions
of common tags and events

* HTML Tag List: Provides definitions for various HTML tags

XHTML

XHTML is touted as the successor to HTML 4.0. It is based on HTML 4.0, but incorporates the extensibility
of XML. Sites that provide information on XHTML and XML are provided below:

e |IBM: Provides a site dedicated to the work IBM does with XML and how it works to facilitate
e-commerce

* The Web Developer’s Virtual Library: Gives a good overview of XHTML and how it works with HTML
and XML for web authoring

* The World Wide Web Consortium: Provides an introduction to XHTML and reasons web developers
would want to turn to this markup language as a standard

* XML.com: Journal that provides updated information on XML in the computer industry

Chapter 11. Java Security 259

» CommerceNet's XML Exchange: Forum where developers can discuss XML and the ways they use it
for e-commerce

Java
* IBM Java Home Page: Information about how Java developers are using IBM products for e-commerce
* IBM VisualAge for Java and AS/400: Provides information on the IBM VisualAge for Java product

* "The Source for Java Technology” from Sun Microsystems: Information about the various uses for Java,
including new technologies

» AS/400 Partners in Development Java Home Page: Provides information about Java and the ways IBM
business partners can and are using it

Servlets

* IBM Websphere Application Server: Servlet-based web application server
» Java Servlet API: Information from Sun about servlets

* Qi Servlet World: Offers tutorials and articles about servlets

» Servlet Central: Information about servlets and their uses

Other references
* IBM HTTP Server for AS/400: Information about the HTTP server IBM can provide

* AS/400 Client Access home page: Information about AS/400 Client Access and how it works with
various Java products

¢ |IBM Host On-Demand: A browser-based 5250 emulator

[Information Center Home Page | Feedback] [Legal | AS/400 Glossary]

260 AS/400 Toolbox for Java

Printed in U.S.A.

	Contents
	Chapter 1. AS/400 Toolbox for Java
	Warning: Temporary Level 2 Header
	What it is
	How it works
	How to use these pages
	How to get additional information:
	How to see what's new or changed:

	Chapter 2. What's new for V4R5
	Additional access and visual classes
	Additional new functions
	Additional functions and features in Graphical Toolbox
	Compatibility
	How to see what's new or changed

	Chapter 3. Setting up AS/400 Toolbox for Java
	Workstation requirements for AS/400 Toolbox for Java
	OS/400 requirements for running AS/400 Toolbox for Java
	Installing AS/400 Toolbox for Java on the AS/400
	Configuring an HTTP server for use with AS/400 Toolbox for Java
	Performance considerations related to installation location
	Copying the AS/400 Toolbox for Java class files on your workstation

	Chapter 4. AS/400 Toolbox for Java access classes
	AS400 class
	Managing default user IDs
	Using a password cache
	Prompting for user IDs and passwords
	Prompting, default user ID, and password caching summary
	Secure AS/400 Class

	Command call
	Example

	Data area
	CharacterDataArea
	DecimalDataArea
	LocalDataArea
	LogicalDataArea
	DataAreaEvent
	DataAreaListener

	Data conversion and description
	Data types
	Conversion specifying a record format
	Example
	Numeric conversion
	Text conversion
	Composite types
	Field descriptions
	Record format
	Record
	Retrieving the contents of a field
	Setting the contents of a field

	Data queues
	Sequential and keyed data queues
	Sequential data queues
	Examples
	Keyed data queues
	Examples

	Digital certificates
	Listing certificates

	Exceptions
	Exceptions thrown by the AS/400 Toolbox for Java access classes
	Inheritance structure for exceptions

	FTP class
	FTP subclass

	Integrated file system
	Examples
	IFSFile
	IFSJavaFile
	IFSFileInputStream
	IFSKey
	File sharing mode
	IFSTextFileInputStream
	IFSFileOutputStream
	IFSTextFileOutputStream
	IFSRandomAccessFile
	IFSFileDialog

	JavaApplicationCall
	Example

	JDBC
	Examples
	Registering the JDBC driver
	Using the JDBC driver to connect to an AS/400 database
	Running SQL statements with Statement objects
	Statement interface
	PreparedStatement interface
	CallableStatement interface
	DatabaseMetaData interface
	AS400JDBCBlob interface
	AS400JDBCBlobLocator interface
	AS400JDBCClob interface
	AS400JDBCClobLocator interface
	JDBC Properties

	Jobs
	Examples
	Job
	JobList
	JobLog

	Messages
	AS400Message
	Examples
	QueuedMessage

	MessageFile
	MessageQueue

	Network print
	Examples
	Listing Print objects
	Examples
	Working with Print objects
	Retrieving PrintObject attributes
	setAttributes method
	PrintParameterList class
	Creating new spooled files
	Data stream types in spooled files
	Examples
	Generating an SCS data stream
	Reading spooled files and AFP resources
	Example
	Reading spooled files using PrintObjectPageInputStream andPrintObjectTransformedInputStream
	SpooledFileViewer class
	Using the SpooledFileViewer class
	Using the SpooledFileViewer
	SpooledFileViewer Toolbar Explanation

	Permission classes
	Permission class
	Example

	UserPermission class
	Example

	DLOPermission
	Warning: Temporary Level 4 Header

	RootPermission
	Warning: Temporary Level 4 Header

	QSYSPermission
	Warning: Temporary Level 4 Header

	Program call
	Using ProgramParameter objects

	QSYSObjectPathName class
	Record-level access
	Examples
	AS400File
	Creating and deleting files and members
	Commitment control
	Reading and writing records
	Locking files
	Using record blocking
	Setting the cursor position

	KeyedFile
	Specifying the key
	SequentialFile
	AS400FileRecordDescription
	Creating Java source code for subclasses of RecordFormat to represent therecord format of AS/400 files
	Creating RecordFormat objects to represent the record format of AS/400 files

	System Status
	Example
	SystemPool
	Example

	System values
	System value list
	Examples of using the SystemValue and SystemValueList classes

	Trace (Serviceability)
	Users and groups
	Retrieving information about users and groups
	Example

	User space
	AS/400 server access points

	Chapter 5. Graphical user interface classes
	Graphical user interface classes
	AS/400 Panes
	AS/400 resources
	Setting the root
	Loading the contents
	Actions and properties panes
	Models
	Examples

	Command Call
	Examples

	Data queues
	Examples

	Error events
	Integrated file system
	File dialogs
	Example
	Directories in AS/400 panes
	Example
	Text file documents
	Example

	VJavaApplicationCall
	JDBC
	SQL connections
	Buttons and menu items
	Documents
	Result set form panes
	Result set table panes
	Example
	Result set table models
	SQL query builders
	Example

	Jobs
	Examples

	Messages
	Message lists
	Example
	Message queues
	Example

	Network Print
	VPrinters
	Example
	VPrinter
	Example
	VPrinter Example
	Printer output
	Example
	VPrinterOutput Example

	Permission
	Program call
	Parameters
	Examples

	Record-Level Access
	Keyed access
	Record list form panes
	Example
	Record list table panes
	Record list table models

	System status
	System pool
	System status pane

	System values
	Example

	Users and groups
	Other Examples

	Chapter 6. Utility classes
	Client installation and update classes
	Using the AS400ToolboxInstaller
	Embedding the AS400ToolboxInstaller class in your program
	Running the AS400ToolboxInstaller class from the command line

	AS400ToolboxJarMaker
	Flexibility of AS400ToolboxJarMaker
	Using AS400ToolboxJarMaker
	Uncompressing a JAR file
	Splitting up a single JAR file into multiple, smaller JAR files
	Removing unused files from a JAR file

	RunJavaApplication

	Chapter 7. Proxy Support
	How it works
	Classes available
	Example: Running a Java application using Proxy Support
	Example: Running a Java applet using proxy support

	Chapter 8. JavaBeans
	Examples
	JavaBeans code example
	Visual bean builder code example

	Chapter 9. Graphical Toolbox
	Overview
	Benefits of the Graphical Toolbox
	Inside the Graphical Toolbox
	Getting started with the Graphical Toolbox
	Setting up the Graphical Toolbox
	Installing the Graphical Toolbox on your workstation
	Setting your classpath
	JAR File Descriptions
	Using the Graphical Toolbox

	Creating your user interface
	Running the GUI Builder
	Options

	Types of user interface resources
	Generated files
	Running the Resource Script Converter
	Options

	Displaying your panels at runtime
	Examples

	Graphical Toolbox examples
	Graphical Toolbox Example
	Constructing the panel
	Generated files
	Constructing the application
	Running the application

	Editable Comboboxes
	Example

	Creating a panel with GUIBuilder
	Creating a deck pane with GUIBuilder
	Creating a property sheet with GUIBuilder
	Creating a tabbed pane with GUIBuilder
	Creating a wizard with GUIBuilder
	Creating a toolbar with GUIBuilder
	Creating a menubar with GUIBuilder
	Example: Creating the Help Document

	Spinner
	Properties
	Events
	Methods
	Calendar spinner
	Properties
	Events
	User interface

	Date spinner
	Properties
	Events
	User interface

	Time spinner
	Properties
	Events
	User interface

	Numeric spinner
	Properties
	User interface

	Using the Graphical Toolbox in a browser
	Constructing the applet
	HTML tags
	Installing and running the applet

	Explanation of the Toolbox Widgets

	Chapter 10. Program Call Markup Language
	Overview
	Platform requirements
	Topics for more information
	Building AS/400 program calls with PCML
	Using PCML source files
	Using serialized PCML files
	PCML source files vs. serialized PCML files
	Qualified names
	Accessing data in arrays
	Debugging

	PCML syntax
	The program tag
	The struct tag
	Resolving relative names
	Specifying offsets

	The data tag
	Resolving relative names
	Specifying offsets

	Program Call Markup Language (PCML) examples
	License information
	Simple example of retrieving data
	Example of retrieving a list of information
	Example of retrieving multidimensional data

	Chapter 11. Java Security
	Secure Sockets Layer
	SSL versions
	Using SSL certificates
	SSL legal responsibilities
	SSL requirements
	SSL prerequisites
	SSL requirements

	Using a certificate from a trusted authority
	Building your own certificate

	Authentication Services
	Overview of support provided
	Setting thread identities
	Example
	Security example

	HTML Classes
	HTML form classes
	HTML class example output
	Form Input classes
	ButtonFormInput class
	FileFormInput class
	ImageFormInput class
	ResetFormInput class
	SubmitFormInput class
	TextFormInput class
	PasswordFormInput class
	CheckboxFormInput class

	HTML Text class
	HTMLHyperlink class
	LayoutFormPanel class
	GridLayoutFormPanel
	LineLayoutFormPanel class

	TextAreaFormElement class
	LabelFormElement
	SelectFormElement
	SelectOption
	RadioFormInputGroup class
	HTML Table classes
	HTMLTable example
	HTMLTableCell class
	HTMLTableRow class
	HTMLTableHeader
	HTMLTableCaption

	Servlet classes
	RowData class
	ListRowData class
	RecordListRowData class
	SQLResultSetRowData class

	RowMetaData classes
	ListMetaData class
	RecordFormatMetaData class
	SQLResultSetMetaData

	Converter classes
	StringConverter class
	HTMLFormConverter class
	HTMLTableConverter class

	Tips for programming
	Shutting down your Java program
	Integrated file system path names for AS/400 objects
	Special values that the AS/400 Toolbox for Java recognizes in the integrated filesystem

	Managing connections
	Starting and ending connections

	Java virtual machine for AS/400
	Java virtual machine for AS/400 versus the AS/400 Toolbox for Java classes
	Running AS/400 Toolbox for Java classes on the Java virtual machine for AS/400
	Setting system name, user ID, and password with an AS400 object in the Javavirtual machine for AS/400
	Summary of User ID and Password Values on an AS400 Object

	AS/400 optimization
	Sign-on considerations

	Performance improvements
	Shorter download time
	Faster communication
	Directly calling AS/400 APIs
	Port mapping changes
	MRI changes
	Converters
	Performance tip regarding the Create Java Program (CRTJVAPGM) command

	Java national language support
	Service and support for the AS/400 Toolbox for Java

	Code Examples
	Code examples from the access classes
	Command call
	Data area
	Data conversion and description
	Data queues
	Digital certificate
	Exceptions
	FTP
	Integrated file system
	JDBC
	JavaApplicationCall
	Jobs
	Message queue
	Network print
	Permission
	Program call
	QSYSObjectPathName
	Record-level access
	Service program call
	System Status
	System Pool
	System Values
	Trace
	User Groups
	User Space

	Code examples using the GUI classes
	AS/400 panes
	Command call
	Data queues
	Error events
	JDBC
	JavaApplicationCall
	Jobs
	Program call
	Record-level access
	SpooledFileViewer
	System Values
	Users and groups

	Code examples from the utility classes
	AS/400 Toolbox Installer
	JarMaker

	Code examples from the JavaBeans topics
	Examples from the HTML classes
	Examples from the servlet classes
	Security example
	Tips for Programming
	Managing connections
	Exceptions
	Error events
	Trace
	Optimization
	Install and update

	Javadoc
	AS/400 Toolbox for Java reference links
	HTML
	XHTML
	Java
	Servlets
	Other references

