AS/400 Toolbox for Java: Graphical
Toolbox and PCML

<|II

AS/400 Toolbox for Java: Graphical
Toolbox and PCML

<|II

© Copyright International Business Machines Corporation 1998, 1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Chapter 1. Graphical Toolbox
Overview.
Benefits of the Graphrcal Toolbox
Graphical Toolbox tools
Getting started with the Graphical TooIbox
Explanation of the Toolbox Widgets .
Setting up the Graphical Toolbox .

Installing the Graphical Toolbox on your Workstatlon .

Setting your classpath .
Using the Graphical Toolbox
Creating your user interface.
Running the GUI Builder .
Types of user interface resources.
Generated files
Running the Resource Scrrpt Converter
Options
Mapping Windows Resources to PDML
Displaying your panels at runtime.
Graphical Toolbox Example .
Constructing the panel.
Generated files
Constructing the applrcatron
Running the application
Summary
PDML tags and syntax
Required PDML tags
Optional PDML tags.

Chapter 2. Program Call Markup Language
Overview. . .
Benefits . .

Platform requrrements

Topics for more information . . .

Building AS/400 program calls with PCML
Using PCML source files . .o
Using serialized PCML files .

PCML source files vs. serialized PCML frles
Qualified names . .
Accessing data in arrays .
Debugging .
PCML syntax .
The program tag .
The struct tag .
The data tag

Example of using the Program CaII Markup Language .

License information .

Simple example of retrieving data

Example of retrieving a list of information .
Example of retrieving multidimensional data .

© Copyright IBM Corp. 1998, 1999

QOO NNOODOOOOUTOITOTWWNREF R BP-

R e S e e e e el
OCOWVWOOOUIWNNO

57
57
57
57
57
57
58
58
59
59
60
60
61
62
63
70
81
81
81
84
87

iV AS/400 Toolbox for Java: Graphical Toolbox and PCML

Chapter 1. Graphical Toolbox

Overview

The Graphical Toolbox contains tools to help you create custom user interface
panels in Java. You can incorporate the panels into your Java applications,
applets, or Operations Navigator plugins. The panels may contain data obtained
from the AS/400, or data obtained from another source such as a file in the local file
system or a program on the network.

The GUI Builder is a WYSIWYG visual editor for creating Java dialogs, property
sheets and wizards. With the GUI Builder you can add, arrange, or edit user
interface controls on a panel, and then preview the panel to verify that the layout
behaves the way you expected. You can use the panel definition in a dialog, insert
panels into property sheets and wizards, or arrange the panels in splitter panes,
deck panes and tabbed panes.

The Resource Script Converter converts Windows user interface elements into a
form usable by Java programs. With the Resource Script Converter you can
process Windows resource scripts (RC files) from your existing Windows
applications and produce definitions of dialogs, property sheets and wizards that
can be displayed in Java.

Underlying these two tools is a new technology called the Panel Definition Markup
Language , or PDML. PDML is based on the Extensible Markup Language (XML)
and defines a platform-independent language for describing the layout of user
interface elements. Once your panels are defined in PDML, you can use the
runtime API provided by the Graphical Toolbox to display them. The API displays
your panels by interpreting the PDML and rendering your user interface using the
Java Foundation Classes.

Benefits of the Graphical Toolbox

With the Graphical Toolbox you have the ability to create Java-based user
interfaces quickly and easily. The GUI Builder lets you have precise control over
the layout of Ul elements on your panels. Because the layout is described in
PDML, you are not required to develop any Java code for the user interface, and
you do not need to recompile code in order to make changes. As a result,
significantly less time is required to create and maintain your Java applications.
The Resource Script Converter lets you migrate large numbers of Windows panels
to Java quickly and easily.

Defining user interfaces in PDML creates some additional benefits. Because all of
a panel’s information is consolidated in a formal markup language, the tools can be
enhanced to perform additional services on behalf of the developer. For example,
both the GUI Builder and the Resource Script Converter are capable of generating
HTML skeletons for the panel's online help. The tools scan the PDML markup for a
panel and automatically determine what help topics are required. Anchor tags for
the help topics are built right into the help skeleton, which frees the help writer to
focus on developing appropriate content. The Graphical Toolbox runtime
environment automatically displays the correct help topic in response to a user’s
request.

© Copyright IBM Corp. 1998, 1999 1

In addition, PDML provides tags that associate each control on a panel with a
property on a Java bean. Once you have identified the bean classes that will
supply data to the panel and have associated a property name with each of the
appropriate controls, you can request that the tools generate Java source code
skeletons for the bean objects. At runtime, the Graphical Toolbox automatically
transfers data between the beans and the controls on the panel that you identified.

The Graphical Toolbox runtime environment provides support for event handling,
user data validation, and common types of interaction among the elements of a
panel. The correct platform look and feel for your user interface is automatically
set based on the underlying operating system, and the GUI Builder lets you toggle
the look and feel so that you can evaluate how your panels will look on different
platforms.

Graphical Toolbox tools

The Graphical Toolbox provides you with two tools and, therefore, two ways of
automating the creation of your user interfaces. You can use the GUI Builder to
quickly and easily create new panels from scratch, or you can use the Resource
Script Converter to convert existing Windows-based panels to Java. Both tools
support internationalization for different locales.

GUI Builder . Three windows are displayed when you invoke the GUI Builder for
the first time, as shown below.

Use the main GUI Builder window, shown in Figure 1, to create, edit and manage
your PDML files, and to manage the elements of each panel.

Figure 1. GUI Builder window

Use the Properties window, shown in Figure 2, to view or change the properties of
the currently selected control.

Figure 2. Properties window

Use the Toolbox window to select the next user interface control to be added to a
panel. The Toolbox window also provides facilities for aligning groups of controls,
for previewing the panel, and for requesting online help for a GUI Builder function.
See Explanation of the Toolbox Widgets for a description of what each icon does.

Figure 3. Toolbox window

The panel being edited is typically displayed in the lower right portion of the GUI
Builder workspace.

2 AS/400 Toolbox for Java: Graphical Toolbox and PCML

Resource Script Converter . The Resource Script Converter consists of a
two-paned tabbed dialog as shown in Figure 4. On the Convert pane you specify
the name of the Microsoft or VisualAge for Windows RC file that is to be converted
to PDML. You can specify the name of the target PDML file and associated Java
resource bundle that will contain the translated strings for the panels. In addition,
you can request that online help skeletons be generated for the panels, generate
Java source code skeletons for the objects that supply data to the panels, and
serialize the panel definitions for improved performance at runtime. The
Converter’s online help provides a detailed description of each input field on the
Convert pane.

Figure 4. Resource Script Converter

After the conversion has run successfully, you can use the View pane to view the
contents of your newly-created PDML file, and preview your new Java panels. You
can use the GUI Builder to make minor adjustments to a panel if needed. The
Converter always checks for an existing PDML file before performing a conversion,
and attempts to preserve any changes in case you need to run the conversion
again later.

Getting started with the Graphical Toolbox

Use the following topics to to learn more about the Graphical Toolbox:
» Setting up the Graphical Toolbox

» Creating your user interface

» Displaying your panels at runtime

» Graphical Toolbox example

» Using the Graphical Toolbox in a browser

* PDML tags and syntax

¥

[Legal | AS/400 Glossary]

Explanation of the Toolbox Widgets

Below is the Java GUI Editor’s toolbox and an explanation of what each icon does
when selected:

The pointer button allows you to move and resize a component on a panel.
The label widget allows you to insert a static label on a panel.

The text widget allows you to insert a text box on a panel.

The button widget allows you to insert a button on a panel.

The combo box widget allows you to insert a drop down list box on a panel.
The list box widget allows you to insert a list box on a panel.

The radio button widget allows you to insert a radio button on a panel.

Chapter 1. Graphical Toolbox 3

The check box widget allows you to insert a check box on a panel.

The image widget allows you to insert an image on a panel.

The group box widget allows you to insert a labeled group box on a panel.
The tree widget allows you to insert an hierarchical tree on a panel.

The table widget allows you to insert a table on a panel.

The slider widget allows you to insert an adjustable slider on a panel.

The progress bar widget allows you to insert a progress bar on a panel.

cOMBAS HALR BY RN YR 'BaSELR AFRK dgPa L APE e} deck pane
on8H SR RORRWIRES LA WG VSR Stk ARhRane on a panel. A split pane is
pdNE LARREAPLANGHALEEH PR LR B ShiERPGRRARP R APEIE: A HRRRed

The tabbed pane displays the collection of panels as a series of tabs and the user
selects a tab to display a panel. The panel’s title is used as the text for a tab.

cgpﬁ) &Hg}]?rgnwédggﬁ glllows you to insert a custom-defined user interface

The grid widget allows you to enable a grid on a panel.

to-Eh&ﬂg’Bft%pnggﬁﬁ,%IPB’ﬁrHQ&t% &H%%ﬁ@mt_iple components on a panel with the
the"BRASHA BAYL BN ERRARNS, S 88 BBl components on a panel with
OB SRALEE IR RUERD H12 4P dGHCor Piflizs NG RPERERL multiple

rJgﬁvge{&t?ﬁ é’%%iﬁgl!y button allows you to center a selected component vertically

The margin button allows you to view the panel’s margins.

| JPSG%'LQBf"aftsBag.?i'a,%'PB’M&M%&H%N&HWP'e components on a panel with the
Ie?pgoﬁlggf@gbggﬁenoarllsmg&u é&ﬁlﬂgﬂéﬂﬂltiple components on a panel with the
wﬁﬂ%ﬁeqb\ﬁéiﬁ? gyigtg&%qﬁa Sp%\lﬁﬁq(yi%’l, tcooﬁ]%%z?.l'&%.the width of multiple components
hgngoﬁ%ke/rrge{%%n{glm glﬁté?]rélgllows you to center a selected component

The preview button allows you to preview what a panel will look like.
Tg&%&lp thon allows you to get more specific information on the Graphical

[Legal | AS/400 Glossary]

4 AS/400 Toolbox for Java: Graphical Toolbox and PCML

Setting up the Graphical Toolbox

Installing the Graphical Toolbox on your workstation

To develop Java programs using the Graphical Toolbox, you should install the
Graphical Toolbox JAR files on your workstation. There are two ways to do this.

If you have already installed the AS/400 Toolbox for Java licensed program on an
AS/400, you can copy the JAR files from the directory
/QIBM/ProdData/HTTP/Public/jt400/lib. You can use FTP to do this (ensure that
you transfer the files in binary mode), or use Client Access/400 to map a network
drive. The AS400ToolboxInstaller class that comes with the AS/400 Toolbox for
Java can also be used to install the Graphical Toolbox JAR files - specify the
package name “OPNAV”. For more information, see Client installation and update
classes.

You can also install the Graphical Toolbox when you install Client Access Express.
The AS/400 Toolbox for Java is now shipped as part of Client Access Express. |If
you are installing Client Access Express for the first time, choose Custom Install
and select the AS/400 Toolbox for Java component on the install menu. If you
have already installed Client Access Express, you can use the Selective Setup
program to install this component if it is not already present.

Setting your classpath

The Graphical Toolbox is delivered as a set of JAR files:
* uitools.jar Contains the GUI Builder and Resource Script Converter tools.

* jui400.jar Contains the runtime API for the Graphical Toolbox. Java programs
use this API to display the panels constructed using the tools. These classes
may be redistributed with applications.

» data400.jar Contains the runtime API for the Program Call Markup Language
(PCML). Java programs use this API to call AS/400 programs whose parameters
and return values are identified using PCML. These classes may be
redistributed with applications.

» util400.jar Contains utility classes for formatting AS/400 data and handling
AS/400 messages. These classes may be redistributed with applications.

* x4j400.jar Contains the XML parser used by the API classes to interpret PDML
and PCML documents.

To use the Graphical Toolbox, you must add these JAR files to your CLASSPATH
environment variable (or specify them on the classpath option on the command
line). For example, if you have copied the files to the directory C:\jt400\lib on your
workstation, you must add the following path names to your classpath:

C:\jt400\1ib\uitools.jar;

C:\jt400\1ib\jui400.jar;

C:\jt400\1ib\datad00.jar;

C:\jt400\1ib\uti1400.jar;

C:\jt400\1ib\x4j400.jar;

If you have installed the Graphical Toolbox using Client Access Express, the JAR
files will all reside in the directory \Program Files\Ibm\Client Access\jt400\lib on
the drive where you have installed Client Access Express. The path names in your
classpath should reflect this.

Chapter 1. Graphical Toolbox 5

Note: Internationalized versions of the GUI Builder and Resource Script Converter tools are
available. To run a non-U.S. English version you must add the correct version of uitools.jar
for your language and country to your Graphical Toolbox installation. These JAR files are
available on the AS/400 in /QIBM/ProdData/HTTP/Public/jt400/Mri29xx , where 29xx is the
4-digit OS/400 NLV code corresponding to your language and country. (The names of the
JAR files in the various MRI29xx directories include the correct 2-character Java language
and country code suffixes.) This additional JAR file should be added to your classpath
ahead of uitools.jar in the search order.

Using the Graphical Toolbox

Once you have installed the Graphical Toolbox, follow these links to learn how to
use the tools:

[Legal | AS/400 Glossary |

Creating your user interface

Running the GUI Builder

To start the GUI Builder, invoke the Java interpreter as follows:
java com.ibm.as400.ui.tools.GUIBuilder [-plaf look and feel | -translate]

If you did not set your CLASSPATH environment variable to contain the Graphical
Toolbox JAR files, then you will need to specify them on the command line using
the classpath option. See Setting Up the Graphical Toolbox.

Options

-plaf look and feel

The desired platform look and feel. This option lets you override the
default look and feel that is set based on the platform you are developing
on, so you can preview your panels to see how they will look on different
operating system platforms. See the Swing 1.0.3 documentation for the
various look and feel names.

-translate

This option is used to restrict the actions allowable in the GUI Builder to
those which only make sense when producing a version of the panel for
another locale. Users will be able to move and resize panel elements, but
they will not be allowed to change any properties.

6 AS/400 Toolbox for Java: Graphical Toolbox and PCML

Types of user interface resources

When you start the GUI Builder for the first time you will create a new PDML file by
clicking New File on the File pulldown. Once you have created your new PDML
file, you can define any of the following types of Ul resources to be contained within
it.

Panel The fundamental resource type. It describes a rectangular area within
which Ul elements are arranged. The Ul elements may consist of simple
controls, such as radio buttons or text fields, images, animations, custom
controls, or more sophisticated subpanels (see Split Pane, Deck Pane and
Tabbed Pane below). A panel may define the layout for a stand-alone
window or dialog, or it may define one of the subpanels that is contained in
another Ul resource.

Property Sheet
A stand-alone window or dialog consisting of a tabbed pane and OK,
Cancel, and Help buttons. Panel resources define the layout of each
tabbed window.

Wizard
A stand-alone window or dialog consisting of a series of panels that are
displayed to the user in a predefined sequence, with Back, Next, Cancel,
Finish, and Help buttons. The wizard window may also display a list of
tasks to the left of the panels which track the user’s progress through the
wizard.

Split Pane
A subpane consisting of two panels separated by a splitter bar. The panels
may be arranged horizontally or vertically.

Tabbed Pane
A subpane consisting of the tabbed control that forms part of a property
sheet.

Deck Pane
A subpane consisting of the collection of panels which forms part of a
wizard. At runtime any of the panels may be displayed in response to a
given user action.

String Table
A collection of string resources and their associated resource identifiers.

Generated files

The translatable strings for a panel are not stored in the PDML file itself, but in a
separate Java resource bundle. The tools let you specify how the resource bundle
is defined, either as a Java PROPERTIES file or as a ListResourceBundle
subclass. A ListResourceBundle subclass is a compiled version of the translatable
resources, which enhances the performance of your Java application. However, it
will slow down the GUI Builder’s preview feature, since the resources must be
recompiled each time you preview a panel. Therefore it's best to start with a
PROPERTIES file (the default setting) until you're satisfied with the design of your
user interface.

You can use the tools to generate HTML skeletons for each panel in the PDML

file. At runtime, the correct help topic is displayed when the user clicks on the
panel’'s Help button or presses F1 while the focus is on one of the panel’'s

Chapter 1. Graphical Toolbox 7

controls. You should insert your help content at the appropriate points in the
HTML, within the scope of the <helpcontent> and </helpcontent> tags. Text within
these tags is guaranteed to be preserved should you discover that you need to
regenerate the skeleton after making a change to the panel’'s layout.

You can generate source code skeletons for the JavaBeans that will supply the data
for a panel. Use the Properties window of the GUI Builder to fill in the
DATACLASS and ATTRIBUTE properties for the controls which will contain data.
The DATACLASS property identifies the class name of the bean, and the
ATTRIBUTE property specifies the name of the gettor/settor methods that the bean
class implements. Once you've added this information to the PDML file, you can
use the GUI Builder to generate Java source code skeletons and compile them. At
runtime, the appropriate gettor/settor methods will be called to fill in the data for the
panel.

Note: The number and type of gettor/settor methods is dependent on the type of
Ul control with which the methods are associated. The method protocols for each
control are documented in PDML Tags and Syntax.

Finally, you can serialize the contents of your PDML file. Serialization produces a
compact binary representation of all of the Ul resources in the file. This greatly
improves the performance of your user interface, because the PDML file does not
have to be interpreted in order to display your panels.

To summarize: If you have created a PDML file named MyPanels.pdml , the
following files will also be produced based on the options you have selected on the
tools:

* MyPanels.properties if you have defined the resource bundle as a
PROPERTIES file

* MyPanels.java and MyPanels.class if you have defined the resource bundle as
a ListResourceBundle subclass

* <panel name>.html for each panel in the PDML file, if you have elected to
generate online help skeletons

» <dataclass name>.java and <dataclass name>.class for each unique bean
class that you have specified on your DATACLASS properties, if you have
elected to generate source code skeletons for your JavaBeans

* <resource name>.pdml.ser for each Ul resource defined in the PDML file, if
you've elected to serialize its contents.

Note: As you can see from the above, you will have problems if you use the same
name for both a PDML file and a JavaBean class because two like-named class
files will be produced, and at runtime you will see some very cryptic error
messages. Be aware of this problem when choosing names for your PDML files.

Running the Resource Script Converter

To start the Resource Script Converter, invoke the Java interpreter as follows:
java com.ibm.as400.ui.tools.PDMLViewer
If you did not set your CLASSPATH environment variable to contain the Graphical

Toolbox JAR files, then you will need to specify them on the command line using
the classpath option. See Setting Up the Graphical Toolbox.

8 AS/400 Toolbox for Java: Graphical Toolbox and PCML

Options

You can also run the Resource Script Converter in batch mode using the following
command:

java com.ibm.as400.ui.tools.RC2XML file [options]

Where file is the name of the resource script (RC file) to be processed.

=X name
The name of the generated PDML file. Defaults to the name of the RC file
to be processed.

-p name
The name of the generated PROPERTIES file. Defaults to the name of the
PDML file.

=r name
The name of the generated ListResourceBundle subclass. Defaults to the
name of the PDML file.

-package name
The name of the package to which the generated resources will be
assigned. If not specified, no package statements will be generated.

-1 locale
The locale in which to produce the generated resources. If a locale is
specified, the appropriate 2-character ISO language and and country codes
will be suffixed to the name of the generated resource bundle.

-h Generate HTML skeletons for online help.
-d Generate source code skeletons for JavaBeans.
-s Serialize all resources.

Mapping Windows Resources to PDML

All dialogs, property sheets, wizards and string tables found in the RC file will be
converted to the corresponding Graphical Toolbox resources in the generated PDML
file. You can also define DATACLASS and ATTRIBUTE properties for Windows
controls that will be propagated to the new PDML file by following a simple naming
convention when you create the identifiers for your Windows resources. These
properties will be used to generate source code skeletons for your JavaBeans when
you run the conversion.

The naming convention for Windows resource identifiers is:
IDCB_<class name>_<attribute>

where <class name> is the fully-qualified name of the bean class that you wish to
designate as the DATACLASS property of the control, and <attribute> is the name
of the bean property that you wish to designate as the ATTRIBUTE property of the
control.

For example, a Windows text field with the resource 1D
IDCB_com_MyCompany_MyPackage_MyBean_SampleAttribute would produce a
DATACLASS property of com.MyCompany.MyPackage.MyBean and an
ATTRIBUTE property of SampleAttribute . If you elect to generate JavaBeans
when you run the conversion, the Java source file MyBean.java would be
produced, containing the package statement package

Chapter 1. Graphical Toolbox 9

Displaying your

com.MyCompany.MyPackage , and gettor and settor methods for the
SampleAttribute property.

¥

[Legal | AS/400 Glossary]

panels at runtime

The Graphical Toolbox provides a redistributable API that your Java programs can
use to display user interface panels defined using PDML. The API displays your
panels by interpreting the PDML and rendering your user interface using the Java
Foundation Classes.

The Graphical Toolbox runtime environment provides the following services:

» Handles all data exchanges between user interface controls and the JavaBeans
that you identified in the PDML.

» Performs validation of user data for common integer and character data types,
and defines an interface that allows you to implement custom validation. If data
is found to be invalid, an error message is displayed to the user.

» Defines standardized processing for Commit, Cancel and Help events, and
provides a framework for handling custom events.

* Manages interactions between user interface controls based on state information
defined in the PDML. (For example, you may want to disable a group of controls
whenever the user selects a particular radio button.)

The package com.ibm.as400.ui.framework.java contains the Graphical Toolbox
runtime API.

The elements of the Graphical Toolbox runtime environment are shown in Figure
1. Your Java program is a client of one or more of the objects in the Runtime
Managers box.

Figure 1. Graphical Toolbox Runtime Environment

Examples

Assume that the panel MyPanel is defined in the file TestPanels.pdml , and that a
properties file TestPanels.properties is associated with the panel definition. Both
files reside in the directory com/ourCompany/ourPackage , which is accessible
either from a directory defined in the classpath or from a ZIP or JAR file defined in
the classpath. The following code creates the panel and displays it:

import com.ibm.as400.ui.framework.java.*;

// Create the panel manager. Parameters:

// 1. Resource name of the panel definition
// 2. Name of panel

// 3. List of DataBeans omitted

try {

PanelManager pm = new PanelManager("com.ourCompany.ourPackage.TestPanels",
"MyPanel",
null);

10 AS/400 Toolbox for Java: Graphical Toolbox and PCML

}

catch (DisplayManagerException e) {
e.displayUserMessage(null);
System.exit(-1);

}

// Display the panel
pm.setVisible(true);

Once the DataBeans that supply data to the panel have been implemented and the
attributes have been identified in the PDML, the following code may be used to
construct a fully-functioning dialog:

import com.ibm.as400.ui.framework.java.*;
import java.awt.Frame;

// Instantiate the objects which supply data to the panel
TestDataBeanl dbl = new TestDataBeanl();
TestDataBean2 db2 = new TestDataBean2();

// Initialize the objects
dbl.load();
db2.7oad();

// Set up to pass the objects to the UI framework
DataBean[] dataBeans = { dbl, db2 };

// Create the panel manager. Parameters:

// 1. Resource name of the panel definition
// 2. Name of panel

// 3. List of DataBeans

// 4. Owner frame window

Frame owner;

try {

PanelManager pm = new PanelManager("com.ourCompany.ourPackage.TestPanels",
"MyPanel",
dataBeans,
owner) ;

}

catch (DisplayManagerException e) {
e.displayUserMessage(null);
System.exit(-1);

}

// Display the panel
pm.setVisible(true);

¥

[Legal | AS/400 Glossary]

Chapter 1. Graphical Toolbox 11

Graphical Toolbox Example

To demonstrate how to use the Graphical Toolbox to build your user interface, this
example constructs a simple panel that illustrates the basic features and operation
of the Graphical Toolbox environment. Then the example shows to build a small
Java application that displays the panel. When the user enters data in the text field
and clicks on the Close button, the application will echo the data to the Java
console.

Constructing the panel

When we invoke the GUI Builder, we create a new PDML file called MyGUI.pdml .
We insert a new panel PANEL_1 into this file, which has a title of “Simple
Example”. We have already added three elements to this panel using the buttons
in the Toolbox window: a label, a text field, and a pushbutton.

We entered the text for the label in the correct field in the Properties window, which
displays when the label is selected.

Next we consider the text field. Because the text field will contain data, we can set
several properties that will allow the GUI Builder to perform some additional work
on our behalf. We set the Data Class property to the name of a bean class named
SampleBean that will supply the data for this text field.

We set the Attribute property to the name of the bean property, UserData, that will
contain the data.

In effect, we are binding the UserData property to this text field. At run-time, the
Graphical Toolbox obtains the initial value for this field by calling
SampleBean.getUserData, and the modified value is sent back to the application
when the panel closes by calling SampleBean.setUserData.

Now we want to set some data validation on the text field. We specified that the
user is required to supply some data, and that it must be a string with a maximum
length of 15 characters.

Finally, we indicated that the context-sensitive help for the text field should be the
help topic associated with the label “Enter some data”.

For the pushbutton, we modified the style property to give it default emphasis.

We have also set the Action property to COMMIT. This causes the setUserData
method on the bean to be called when the button is pressed.

12 AS/400 Toolbox for Java: Graphical Toolbox and PCML

Generated files

Before saving the panel, we set properties at the level of the PDML file to generate
both the online help skeleton and the JavaBean. Then we saved the file by
clicking on the icon in the main GUI Builder window.

Now that we have saved the panel definition, let us look at the files produced by the
GUI Builder. First, we show the contents of MyGUl.pdml to give you a flavor of
how the Panel Definition Markup Language works. Because all of your dealings
with PDML are through the tools provided by the Graphical Toolbox, it is not
necessary to understand the format of this file in detail.

<l- Generated by GUIBUILDER —
<PDML version="1.0" source="JAVA" basescreensize="1280x1024">

<PANEL name="PANEL_1">

<TITLE>PANEL 1</TITLE>
<SIZE>351,162</SI1ZE>

<LABEL name="LABEL_1" disabled="no">
<TITLE>LABEL 1</TITLE>
<LOCATION>18,36</LOCATION>
<SIZE>94,18</S1ZE>

</LABEL>

<TEXTFIELD name="TEXT 1" masked="no" editable="yes" disabled="no">
<TITLE>TEXT_1</TITLE>
<LOCATION>125,31</LOCATION>
<SI1ZE>191,26</SIZE>
<DATACLASS>Samp1eBean</DATACLASS>
<ATTRIBUTE>UserData</ATTRIBUTE>
<STRING minlength="0" maxlength="15" required="yes"/>
<HELPALIAS>LABEL 1</HELPALIAS>
</TEXTFIELD>

<BUTTON name="BUTTON_1" disabled="no">
<TITLE>BUTTON 1</TITLE>
<LOCATION>125,100</LOCATION>
<SIZE>100,26</SIZE>
<STYLE>DEFAULT</STYLE>
<ACTION>COMMIT</ACTION>

</BUTTON>

</PANEL>

</PDML>

Associated with every PDML file is a resource bundle. In this case we chose to
save the translatable resources in a PROPERTIES file, which is called
MyGUI.properties . You will notice that the PROPERTIES file also contains
customization data for the GUI Builder.

##Generated by GUIBUILDER
BUTTON_1=Close

TEXT 1=

@GenerateHelp=1

Chapter 1. Graphical Toolbox 13

@Serialize=0

@GenerateBeans=1

LABEL_l=Enter some data:
PANEL_1.Margins=18,18,18,18,18,18
PANEL_1=Simple Example

Recall that we generated a Java source code skeleton for the JavaBean object.
Here are the contents of SampleBean.java .

import com.ibm.as400.ui.framework.java.*;

pubTic cTass SampleBean extends Object
implements DataBean

{

private String m_sUserData;

public String getUserData()
{

}

return m_sUserData;

public void setUserData(String s)
{

}

m_sUserData = s;

public Capabilities getCapabilities()
{

}

return null;

public void verifyChanges()
{
}

public void save()
{
}

public void Toad()
{

}

m_sUserData = "";

}

Note that the skeleton already contains an implementation of the gettor and settor
methods for the UserData property. The other methods are defined by the DataBean
interface and are, therefore, required.

The GUI Builder has already invoked the Java compiler for the skeleton and
produced the corresponding class file. For the purposes of our simple example, we
do not need to modify the bean implementation. In a real Java application you
would typically modify the Toad and save methods to transfer data from an external
data source. The default implementation of the other two methods is often
sufficient. For more information, see the documentation on the DataBean interface in
the package com.ibm.as400.ui.framework.java.

14 AS/400 Toolbox for Java: Graphical Toolbox and PCML

Constructing the application

Now that we have saved the panel definition and the generated files, we are ready
to construct our application. All we really need is a new Java source file that will
contain our main entry point for the application. This file will be called
SampleApplication.java . It contains the following code:

import com.ibm.as400.ui.framework.java.*;
import java.awt.Frame;

public cTass SampleApplication
{
public static void main(String[] args)
{
// Instantiate the bean object that supplies data to the panel
SampleBean bean = new SampleBean();

// Initialize the object
bean.load();

// Set up to pass the bean to the panel manager
DataBean[] beans = { bean };

// Create the panel manager. Parameters:

// 1. PDML file as a resource name

// 2. Name of panel to display

// 3. List of data objects that supply panel data
// 4. An AWT Frame to make the panel modal

PanelManager pm = null;
try { pm = new PanelManager("MyGUI", "PANEL 1", beans, new
Frame()); }

catch (DisplayManagerException e)

{
// Something didn't work, so display a message and exit
e.displayUserMessage(null);
System.exit(1);

}

// Display the panel - we give up control here
pm.setVisible(true);

// Echo the saved user data
System.out.printTn("SAVED USER DATA: '" + bean.getUserData() + "'");

// Exit the application
System.exit(0);

}

It is the responsibility of the calling program to initialize the bean object or objects
by calling Toad. If the data for a panel is supplied by multiple bean objects, then
each of the objects must be initialized before passing them to the Graphical Toolbox
environment.

Chapter 1. Graphical Toolbox 15

The class com.ibm.as400.ui.framework.java.PanelManager supplies the API for
displaying standalone windows and dialogs. The name of the PDML file as
supplied on the constructor is treated as a resource name by the Graphical Toolbox
- the directory, ZIP file, or JAR file containing the PDML must be identified in the
classpath.

Because a Frame object is supplied on the constructor, the window will behave as a
modal dialog. In a real Java application, this object might be obtained from a
suitable parent window for the dialog. Because the window is modal, control does
not return to the application until the user closes the window. At that point, the
application simply echoes the modified user data and exits.

Running the application

Summary

Here is what the window looks like when the application is compiled and run:

If the user presses F1 while focus is on the text field, the Graphical Toolbox will
display a help browser containing the online help skeleton that the GUI Builder
generated.

We could edit the HTML if we chose, and add actual help content for the help
topics shown.

If the data in the text field is not valid (for example, if the user clicked on the Close
button without supplying a value), the Graphical Toolbox will display an error
message and return focus to the field so that data can be entered.

That is it for our initial example. To give you an overview of the how the Graphical
Toolbox works, we have left out a great many features that you can build into a
panel. And we have not even brought up the topic of property sheets or wizards.
We encourage you to experiment, using the GUI Builder’s online help as a guide.

For information on how to run this sample as an applet, see Using the Graphical
Toolbox in a Browser.

¥
Using the Graphical Toolbox in a browser

You can use the Graphical Toolbox to build panels for Java applets that run in a
web browser. This section describes how to convert the simple panel from the
Graphical Toolbox Example to run in a browser. The minimum browser levels
supported are Netscape 4.05 and Internet Explorer 4.0. In order to avoid having to
deal with the idiosyncrasies of individual browsers, we recommend that your applets
run using Sun’s Java Plug-in. Otherwise, you will need to construct signed JAR files
for Netscape, and separate signed CAB files for Internet Explorer.

Constructing the applet: The code to display a panel in an applet is nearly
identical to the code used in the Java application example, but, of course, the code
must be repackaged in the init method of a JApplet subclass. Also, we must add

16 AS/400 Toolbox for Java: Graphical Toolbox and PCML

some code to ensure that the applet panel is sized to the dimensions specified in
the panel's PDML definition. Here is the source code for our example applet,
SampleApplet.java .

import com.ibm.as400.ui.framework.java.*;
import com.sun.java.swing.x;

import java.awt.=;

import java.applet.x*;

import java.util.*;

public class SampleApplet extends JApplet

{
// The following are needed to maintain the panel's size
private PanelManager m_pm;
private Dimension m_panelSize;

// Define an exception to throw in case something goes wrong
class SampleAppletException extends RuntimeException {}
public void init()
{
System.out.printIn("In init!");
// Trace applet parameters
System.out.printin("SampleApplet code base=" + getCodeBase());
System.out.printin("SampleApplet document base=" + getDocumentBase());
// Do a check to make sure we're running a JVM that's compatible with Swing 1.0.3
if (System.getProperty("java.version").compareTo("1.1.5") < 0)
throw new I1legalStateException("SampleApplet cannot run on Java VM version " +
System.getProperty("java.version") + " - require
// Instantiate the bean object that supplies data to the panel
SampleBean bean = new SampleBean();
// Initialize the object
bean.load();
// Set up to pass the bean to the panel manager
DataBean[] beans = { bean };
// Update the status bar
showStatus("Loading the panel definition...");
// Create the panel manager. Parameters:
// 1. PDML file as a resource name
// 2. Name of panel to display
// 3. List of data objects that supply panel data
// 4. The content pane of the applet
try { m_pm = new PanelManager("MyGUI", "PANEL 1", beans, getContentPane()); }
catch (DisplayManagerException e)
{
// Something didn't work, so display a message and exit
e.displayUserMessage(null);
throw new SampleAppletException();
}
// ldentify the directory where the online help resides
m_pm.setHelpPath("http://MyDomain/MyDirectory/");
// Display the panel
m_pm.setVisible(true);
1
public void start()
{
System.out.printIn("In start!");
// Size the panel to its predefined size
m_panelSize = m_pm.getPreferredSize();
if (m_panelSize != null)
{
System.out.printin("Resizing to " + m_panelSize);
resize(m_panelSize);
1
else
System.err.printIn("Error: getPreferredSize returned null");
1
public void stop()

{
System.out.printin("In stop!");

Chapter 1. Graphical Toolbox 17

public void destroy()

{
System.out.printin("In destroy!");

public void paint(Graphics g)
{
// Call the parent first
super.paint(g);
// Preserve the panel's predefined size on a repaint
if (m_panelSize != null)
resize(m_panelSize);

}

The applet’s content pane is passed to the Graphical Toolbox as the container to be
laid out. In the start method, we size the applet pane to its correct size, and we
override the paint method in order to preserve the panel’s size when the browser
window is resized.

When running the Graphical Toolbox in a browser, the HTML files for your panel’s
online help cannot be accessed from a JAR file. They must reside as separate
files in the directory where your applet resides. The call to
PanelManager.setHelpPath identifies this directory to the Graphical Toolbox, so that
your help files can be located.

HTML tags: Because we recommend the use of Sun’s Java Plug-in to provide the
correct level of the Java runtime environment, the HTML for identifying a Graphical
Toolbox applet is not as straightforward as we would like. Fortunately, the same
HTML template may be reused, with only slight changes, for other applets. The
markup is designed to be interpreted in both Netscape Navigator and Internet
Explorer, and it generates a prompt for downloading the Java Plug-in from Sun’s
web site if it's not already installed on the user’'s machine. For detailed information
on the workings of the Java Plug-in see the Java Plug-in HTML Specification. _@

Here is our HTML for the sample applet, in the file MyGUIL.html :

<html>

<head>

<title>Graphical Toolbox Demo</title>

</head>

<body>

<h1>Graphical Toolbox Demo Using Java(tm) Plug-in</hl1>

<p>

<!— BEGIN JAVA(TM) PLUG-IN APPLET TAGS —>

<l- The following tags use a special syntax which allows both Netscape and Internet Explorer to Toa
<l— the Java Plug-in and run the applet in the Plug-in's JRE. Do not modify this syntax.

<!— For more information see http://java.sun.com/products/jfc/tsc/swingdoc-current/java plug_in.htm
<O0BJECT classid="c1sid:8AD9C840-044E-11D1-B3E9-00805F499D93"

width="400"

height="200"

align="Tleft"

codebase="http://java.sun.com/products/plugin/1.1.1/jinstal1-111-win32.cab#Version=1,1,1,0"
<PARAM name="code" value="SampleApplet">

<PARAM name="codebase" value="http://w3.rchland.ibm.com/ dpetty/applets/">
<PARAM name="archive" value="MyGUI.jar,jui400.jar,util400.jar,x4j400.jar">
<PARAM name="type" value="application/x-java-applet;version=1.1">
<COMMENT>
<EMBED type="application/x-java-applet;version=1.1"

width="400"

height=200"

align="Teft"

code="SampTeApplet"

18 AS/400 Toolbox for Java: Graphical Toolbox and PCML

codebase="http://w3.rchland.ibm.com/ dpetty/applets/"
archive="MyGUI.jar,jui400.jar,uti1400.jar,x4j400.jar"
pluginspage="http://java.sun.com/products/plugin/1.1.1/plugin-install.html">
<NOEMBED>
</COMMENT>
No support for JDK 1.1 applets found!
</NOEMBED>
</EMBED>
</0BJECT>
<!— END JAVA(TM) PLUG-IN APPLET TAGS —>
<p>
</body>
</html>

It is important that the version information be set for 1.1.1. The 1.2 version of the
Java Plug-in will not work with the Graphical Toolbox, unless you choose to include
the Swing 1.0.3 JAR file in the archive statement.

Note: In this example, we have chosen to store the XML parser JAR file,
x4j400.jar , on the web server. This is required only when you include your PDML
file as part of your applet’s installation. For performance reasons, you would
normally serialize your panel definitions so that the Graphical Toolbox does not
have to interpret the PDML at runtime. This greatly improves the performance of
your user interface by creating compact binary representations of your panels. For

more information see the description of tGenerated files” an page 7,

Installing and running the applet: Install the applet on your favorite web server
by performing the following steps:

« Compile SampleApplet.java .

* Create a JAR file named MyGUIl.jar to contain the applet binaries. These include
the class files produced when you compiled SampleApplet.java and
SampleBean.java , the PDML file MyGUI.pdml , and the resource bundle
MyGUIl.properties .

» Copy your new JAR file to a directory of your choice on your web server. Copy
the HTML files containing your online help into the server directory.

» Copy the Graphical Toolbox JAR files into the server directory.

» Finally, copy the HTML file MyGUI.html containing the imbedded applet into the
server directory.

Now you are ready to run the applet. Point your web browser to MyGUI.html on the
server. If you do not already have the Java Plug-in installed, you will be asked if
you want to install it. Once the Plug-in is installed and the applet is started, your
browser display should look similar to the following:

Tip: When testing your applets, ensure that you have removed the Graphical
Toolbox jars from the CLASSPATH environment variable on your workstation.
Otherwise, you will see error messages saying that the resources for your applet
cannot be located on the server. ¥

PDML tags and syntax

Panel Definition Markup Language (PDML) tags are case-sensitive and must be
coded by defining attribute tags, for example, <TITLE></TITLE> and
<SIZE></SIZE>, in a predefined, consecutive order.

Chapter 1. Graphical Toolbox 19

In addition to a set of required tags, PDML defines optional tags that allow you to
add functionality and formatting to your panels.

Required PDML tags

Just as the Hyper-Text Markup (HTML) and Standard Generalized Markup (SGML)
languages require that you include certain tags within each HTML and SGML coded
page (for example, <html>/</html>, <body>/</body>, and the base document
element), the PDML tag structure requires a starting and ending PDML tag and a
starting and ending panel tag, with title and size attribute tags enclosed within the
panel tag.

The following is the general layout of all required PDML tags:

<PDML version=version source=%atform basescreensize=screensize> <PANELname=name>
<SIZE> (page Bd)size/SIZE> (page Bd) </PANEL></PDML>

Optional PDML tags

Just as HTML provides you with tags that format your web pages and make them
interactive (for example, tables, radio buttons, and text fields), you can use PDML
tags to format and activate your panels.

Three sets of PDML tags perform formatting and user interaction:

» Panel component tags create elements on a panel for accepting a user’s request
for a specific action to be performed (for example, a radio button), navigation (for
example, a slider), and text formatting (for example, a table).

» Property sheet tags add hyperlinked icons to a panel that serve as entry points to
other panels when the icons are clicked.

* Wizard tags present a series of consecutively ordered windows so that when the
windows are followed in order, they aid the user in performing a specific task.

The following is an example of the general layout of all PDML tags, including
representatives of panel component, wizard, and property sheet tags:

<PDML>
<PANEL>
<PANEL COMPONENT> </PANEL COMPONENT> </PANEL>
<PROPSHEET> <PANEL>
<PANEL COMPONENT> </PANEL COMPONENT>
</PROPSHEET> <WIZARD> <PANEL>
<PANEL COMPONENT> </PANEL COMPONENT>
</WIZARD></PDML>
¥
[Legal | AS/400 Glossary]
PDML tag

The PDML tag is the basic Panel Definition Markup Language tag and, therefore,
must be both the first and the last tag within a PDML document. The PDML tag
takes the following form:

20 AS/400 Toolbox for Java: Graphical Toolbox and PCML

<PDML version=version

source=platform

basescreensize=screensize

</PDML>

NAME VALUE DESCRIPTION

<PDML> version The version of PDML used in
the document; currently, 1.0
is the only version.

platform While other platforms may be

supported in the future, you
need to indicate one of the
following two platforms as the
platform on which the panels
were originally defined:

Windows:

The PDML is
assumed to have
been generated by
the Resource Script
Converter tool. The
logical panel
coordinates
contained in the
PDML are
interpreted as
Windows dialog
logical units.

Java: The PDML is
assumed to have
been generated by
the Graphical
Toolbox, or created
manually. The
logical panel
coordinates
contained in the
PDML will be
interpreted as pixels.

basescreensize The width and height
dimensions in pixels of the
device on which the panels
were originally defined, for
example, “1024x768".
Y

[Legal | AS/400 Glossary]

Panel components

The panel component tags are optional user interface components that are used to
enhance your Panel Definition Markup Language (PDML) files. The nhames you
assign to the components must be unique within the scope of a given panel
definition. Below are the definitions of the panel component tags:

Chapter 1. Graphical Toolbox 21

» Action tag defines events that occur when the user makes a selection. (See
button, checkbox, choice, combobox, item, and tree tags.)

* Button tag creates a pushbutton on the panel.

» Buttongroup tag defines a group of buttons, radio buttons, or check boxes on a
panel, only one of which may be selected at a time.

» Checkbox tag creates a check box on the panel.

* Choice tag allows the user to make more than one choice from a drop down list.
(See combobox tag.)

* Column tag defines the columns within a table. (See table tag.)

» Combobox tag creates a drop down list box on the panel. You may define the
combo box as editable .

» Custom tag adds a user-defined AS/400 user interface component to a panel.

» Deselected tag helps define the user’s choice. (See checkbox, combobox, item,
list, radiobutton, and table tags.)

* Groupbox tag creates a labeled box on a panel.

* Image tag enables you to display an image on a panel.

* Item tag allows the user to make more than one choice from a list (See list tag.)
* Label tag creates a static text component on a panel.

e List tag creates a list box on a panel.

* Progressbar tag creates a progress indicator on a panel.

» Radiobutton tag creates a radio button on a panel.

* Root and node tag defines the hierarchy for a tree.

» Selected tag helps define the user’s choice. (See checkbox, combobox, item, list,
radiobutton, and table tags.)

» Slider tag enables you to create a horizontal or vertical adjustable slider control.

* Subpanel tags are tags that must be created within the scope of the panel tag
and can be nested within each other. Subpanel tags cannot be defined in a
standalone window or dialog. There are three types of subpanel tags:

— Deckpane tag stacks, or “decks,” a series of windows that can be opened one
at a time.

— Splitpane tag defines two windows separated by a graphical divider.
— Tabbedpane tag enables you to browse windows through tabbed panes.
» Table tag creates a multi column table on a panel.
» Textarea tag creates an editable multi line text entry field on a panel.
» Textfield tag creates an editable text entry field on a panel.
» Tree tag displays an hierarchical tree on a panel.

¥
[Legal | AS/400 Glossary]
Button tag

The following is the basic syntax of the button tag :
<BUTTON name =name>

where name identifies the button programmatically.

22 AS/400 Toolbox for Java: Graphical Toolbox and PCML

The button tag can be expanded with the following elements:

<BUTTON name=name>
<TITLE>title</TITLE>

<SIZE>size</SIZE>
<STYLE>style</STYLE>
<ACTION>action</ACTION>
<FLYOVER>helptext</FLYOVER>

<LOCATION>location</LOCATION>

<HELPALIAS>component_name</HELPALIAS>

ATTRIBUTE

VALUE

DESCRIPTION

<TITLE>

title

Defines the key for loading
the text string from the
resource bundle. If the string
is not found, the title string
will appear as it does in the
Panel Definition Markup
Language (PDML) source
file.

Use the “%” character to
make the character that
immediately follows the “%”
the “mnemonic” or “keyboard
shortcut key” for the using a
button. Use “%%" to use “%”
as a literal character.

This tag is required.

<LOCATION>

location

Expresses the x- and
y-coordinates of the panel's
location from the top left
corner in logical units.

This tag is required.

<SIZE>

size

Expresses the width and
height, respectively, of the
component in logical units.

This tag is required.

<STYLE>

style

Sets the style for the button’s
appearance. DEFAULT status
creates a button with a
predefined appearance, and
whose action is performed
upon pressing the Enter key.

Chapter 1. Graphical Toolbox 23

<ACTION>

action

Initiates the desired action
once the button is clicked.

Possible action values are:

» Commit makes changes to
the data objects on the
panel by calling the save
method for each object.
Performing this action
closes the window.

» Cancel closes the panel
window. No changes are
saved.

» Help accesses the help
browser window.

However, you may also
define the action as the
name of a handler class,
which will receive control
when the button is clicked.
The class will use the
EventHandler class and the
java.awt.event.ActionListener
interface. The framework will
automatically create an
object of the desired class
and call its actionPerformed
method.

<FLYOVER>

helptext

Creates a help window that
hovers over the label.

Helptext defines the key for
loading the text string from
the resource bundle. If the
string is not found, the
helptext string will appear as
it does in the PDML source
code.

<HELPALIAS>

component_name

An optional tag where the
help topic should be
displayed when context help
is requested for this
component.

¥

[Legal | AS/400 Glossary]

Buttongroup tag

The following is the basic syntax of the buttongroup tag :

<RADIOBUTTON name= name>

where name identifies the button group programmatically.

24 AS/400 Toolbox for Java: Graphical Toolbox and PCML

The buttongroup tag can be expanded with the following elements:

<BUTTONGROUP name=name>
<DATACLASS>class_name</DATACLASS>

<ATTRIBUTE>attribute_name</ATTRIBUTE>

</BUTTONGROUP>

ATTRIBUTE VALUE DESCRIPTION

<DATACLASS> class_name Expresses the state of the
button group.

<ATTRIBUTE> attribute_name Specifies whether or not the

button has been selected.
GETTOR PROTOCOLS:

String
get<attribute_name>()

where the return value is
the name of the button
component that should be
selected

SETTOR PROTOCOLS:

void
set<attribute_name>(String
selected)

where selected identifies
the name of the button
component that is currently
selected.

The buttongroup tag supports the radio button and check box components within
the dataclass and attribute tags. However, the button group does not support the

deselected tag for buttons. ¥

[Legal | AS/400 Glossary]

Choice tag

The following is the basic syntax of the choice tag :

<CHOICE name= name>

where name identifies the choice programmatically.

The choice tag can be expanded with the following elements:

<CHOICE name=name>
<TITLE>title</TITLE>
<ENABLE></ENABLE>
<DISABLE></DISABLE>
<SHOW></SHOW>
<HIDE></HIDE>
<REFRESH></REFRESH>
<DISPLAY></DISPLAY>
</CHOICE>

ATTRIBUTE VALUE

DESCRIPTION

Chapter 1. Graphical Toolbox 25

<TITLE> title Inserted into the drop down
list box.

Title defines the key for
loading the text string from
the resource bundle. If the
string is not found, the title
string will appear as it does
in the PDML source file.

This is a required tag.

<ENABLE> See the action tag
<DISABLE> See the action tag
<SHOW> See the action tag
<HIDE> See the action tag
<REFRESH> See the action tag
<DISPLAY> See the action tag

If one or more choice tags are specified, the choices gettor (page E) is not called.

¥

[Legal | AS/400 Glossary |

Combobox tag

The following is the basic syntax of the combobox tag:
<COMBOBOX name= name editable = “yes”|“no">
where name identifies the combo box programmatically.

The combobox tag can be expanded with the following elements:

<COMBOBOX name=name>
<LOCATION>!ocation</LOCATION>
<SIZE>size</SIZE>
<DATACLASS>class_name</DATACLASS>
<ATTRIBUTE>attribute name</ATTRIBUTE>
<CHOICE></CHOICE>

<SHORT></SHORT>

<INTEGER></INTEGER>

<LONG></LONG>

<FLOAT></FLOAT>

<STRING></STRING>

<FORMAT></FORMAT>
<FLYOVER>helptext</FLYOVER>
<HELPALIAS>component_name</HELPALIAS>

</COMBOBOX>
ATTRIBUTE VALUE DESCRIPTION
<LOCATION> location Expresses the x- and

y-coordinates of the panel's
location from the top left
corner in logical units.

This tag is required.

26 AS/400 Toolbox for Java: Graphical Toolbox and PCML

<SIZE> size Expresses the width and
height, respectively, of the
component in logical units.
This tag is required.

<DATACLASS> class_name Supplies the data for the

combobox using the
DataBean interface.

<ATTRIBUTE>

attribute_name

Contains the data for the
combobox. If the dataclass
tag is present, the attribute
tag must be used.

GETTOR PROTOCOLS:
where the return
value either
identifies the name
of the drop down list
choice that should
be selected or
supplies the text
string to be inserted
if the combo box is
editable.

ChoiceDescriptor]]

get<attribute_name>Choices()
where the return
value is an array of
ChoiceDescriptor's,
each of which
describes a choice
in the combo box’s
drop down list. If
choice tags statically
define the combo
box element, the
gettor is not
necessary.

SETTOR PROTOCOLS:

void

set<attribute_name>(String

selected)
where selected
either identifies the
name of the
currently selected
choice or the text
string entered by the
user if the combo
box is editable.

<CHOICE> See the choice tag.

<SHORT> See the data format tags.
<LONG> See the data format tags.
<FLOAT> See the data format tags.
<STRING> See the data format tags.

Chapter 1. Graphical Toolbox 27

<FORMAT>

See the data format tag.

<FLYOVER>

helptext

Should be displayed when
context help is requested for
this component.

<HELPALIAS>

component_name

Should be displayed when
context help is requested for
this component.

As the panel designer, you may want a particular action performed when a combo

box choice is selected. L

[Legal | AS/400 Glossary]

Column tag

The following is the basic syntax of the column tag :

<COLUMN editable = “yes”|*no”>

The column tag can be expanded with the following elements:

<ITEM></ITEM>
</COLUMN>

<COLUMN name=name>
<TITLE>title</TITLE>
<DEFAULTWIDTH>width</DEFAULTWIDTH>
<DATACLASS>class_name</DATACLASS>
<ATTRIBUTE>attribute_name</ATTRIBUTE>

ATTRIBUTE

VALUE

DESCRIPTION

<TITLE>

title

Displays the column header.

The title defines the key for
loading the text string from
the resource bundle. If the
string is not found, the title
string will appear as it does
in the Panel Definition
Markup Language (PDML)
source file.

This tag is required.

<DEFAULTWIDTH>

width

Expresses the width of the
column in logical units. If the
tag is omitted, columns will
have equal widths.

<DATACLASS>

class_name

Supplies the data for the
column by using the
DataBean interface.

28 AS/400 Toolbox for Java: Graphical Toolbox and PCML

<ATTRIBUTE>

attribute_name

Contains the data for the
column. If the dataclass tag
is used, the attribute tag
must be used.

GETTOR PROTOCOLS:

ItemDescriptor(]

get<attribute_name>List()
where the return
value is an array of
ItemDescriptor's,
each of which
describes an
element in the
column. If the item
tag statically defines
the column
elements, the gettor
does not need to be
used.

String[]

get<attribute_name>()Selectio
where the return
value is an array of
names that identify
the column elements
that should be
selected. If not
used, items will not
be selected when
the table is
displayed.

SETTOR PROTOCOLS:

void

set<attribute_nme>List(ltemDg

values)
where values is an
array of
ItemDescriptor's,
each of which
describes an
element in the
column.

void
set<attribute_name>(String(]
items)Selection
where jtems is an
array of names that
identifies the column
elements selected
by the user.

<ITEM>

See the item tag.

=)

¥

[Legal | AS/400 Glossary]

Chapter 1. Graphical Toolbox 29

scriptor(]

Custom tag

The following is the basic syntax of the custom tag:
<CUSTOM name=name>
where name identifies the component programmatically.

The custom tag can be expanded with the following elements:

<CUSTOM name=name>

<LOCATION>!ocation</LOCATION>

<SIZE>size</SIZE>

<MANAGERCLASS>class_name</MANAGERCLASS>

</CUSTOM>

ATTRIBUTE VALUE DESCRIPTION

<LOCATION> location Expresses the x- and
y-coordinates of the panel's
location from the top left
corner in logical units.
This tag is required.

<SIZE> size Expresses the width and
height, respectively, of the
component in logical units.
This tag is required.

<MANAGERCLASS> class_name Serves as the class name of
the manager class which will
manage the component on
behalf of the AS/400 user
interface framework, using
the ComponentManager
interface.
This tag is required.

¥

[Legal | AS/400 Glossary |

Deckpane tag

The following is the basic syntax of the deckpane tag :
<DECKPANE name= name orientation=“horizontal”|“vertical”>
where name identifies the split pane programmatically.

The deckpane tag can be expanded with the following elements:

<DECKPANE name=name orientation="horizontal"|"vertical">
<TITLE>title<TITLE>

<LOCATION>location<LOCATION>

<PANE resource=resource_name name=panel_name type="deck">
</DECKPANE>

30 AS/400 Toolbox for Java: Graphical Toolbox and PCML

ATTRIBUTE

VALUE

DESCRIPTION

<TITLE>

title

Displays the text string as the
contained tab. Therefore, the

title tag is only needed when

this subpanel is nested within
a tabbed pane.

Title defines the key for
loading the text string from
the resource bundle. If the
string is not found, the title
string will appear as it does
in the Panel Definition
Markup Language (PDML)
source file.

<LOCATION>

location

Expresses the x- and
y-coordinates of the panel’s
location from the top left
corner of the panel in logical
units. The tag is required
when the deck pane tag is
declared within the scope of
the panel tag.

<PANE>
source=
name=

type=

resource_name
Resource bundle
name associated
with the panel

panel_name
Name of the panel
specified in the
PDML document

type Provides the AS/400
user interface
framework with an
indication of the
pane type (panel,
split, deck, or tab)

Identifies the panel for each
window

The tabbed pane’s largest constituent part determines the tabbed pane’s size. ¥

[Legal | AS/400 Glossary]

Data formatter class package

To validate data using the formatter class, refer to the package contents below:

Chapter 1. Graphical Toolbox 31

AS400CharFormatter
AS400CnameFormatter
AS400CnamelBMFormatter
AS400Formatter
AS400NameFormatter
AS400NamelBMFormatter
AS400SQLNameColumnFormatter
AS400SQLNameFormatter
AS400SnameFormatter
AS400SnamelBMFormatter
DetailButtonHandler
MessageViewer
MessagesBean
ResourcelLoader

¥

[Legal | AS/400 Glossary |

Groupbox tag

The following is the basic syntax of the groupbox tag :
<GROUPBOX name= name>

where name identifies the group box programmatically.

The groupbox tag can be expanded with the following elements:

<GROUPBOX name=name>

<TITLE>title</TITLE>

<LOCATION>location</LOCATION>

<SIZE>size</SIZE>

<HELPALIAS>component _name</HELPALIAS>

</GROUPBOX>

ATTRIBUTE VALUE DESCRIPTION

<TITLE> title Displays the text string as the
group box label.
Title defines the key for
loading the text string from
the resource bundle. If the
string is not found, the title
string will appear as it does
in the Panel Definition
Markup Language (PDML)
source file.
This tag is required.

<LOCATION> location Expresses the x- and
y-coordinates of the panel's
location from the top left
corner in logical units.
This tag is required.

32 AS/400 Toolbox for Java: Graphical Toolbox and PCML

<SIZE> size Expresses the width and
height, respectively, of the
component in logical units.

This tag is required.

<HELPALIAS> component_name Should be displayed when
context help is requested for
this component.

¥

[Legal | AS/400 Glossary]

Image tag

The following is the basic syntax of the image tag:
<IMAGE name =name>

where name identifies the image programmatically.

The image tag can be expanded with the following elements:

<IMAGE name=name>
<TITLE>title</TITLE>
<LOCATION>location</LOCATION>
<SIZE>size</SIZE>
<FLYOVER>helptext<FLYOVER>
</IMAGE>

ATTRIBUTE VALUE DESCRIPTION

<TITLE> title Creates the resource key of
the filename string in the
panel’s resource bundle. The
resource bundle identifies the
binary file containing the
image to be displayed.

This tag is required.

<LOCATION> location Expresses the x- and
y-coordinates of the panel's
location from the top left
corner in logical units.

This tag is required.

<SIZE> size Expresses the width and
height, respectively, of the
image in logical units. If a
size is specified, the size
defined in the image file will
be overridden and the image
will be scaled to the size
specified.

Chapter 1. Graphical Toolbox 33

<FLYOVER> helptext Creates a help window that
hovers over the label.

Helptext defines the key for
loading the text string from
the resource bundle. If the
string is not found, the
helptext string will appear as
it does in the Panel Definition
Markup Language (PDML)
source file.

¥

[Legal | AS/400 Glossary]
Item tag

The following is the basic syntax of the item tag :
<ITEM name= name>
where name identifies the item programmatically.

The item tag can be expanded with the following elements:

<ITEM name=name>

<TITLE>title</TITLE>

<ENABLE></ENABLE>

<DISABLE></DISABLE>

<SHOW></SHOW>

<HIDE></HIDE>

<REFRESH></REFRESH>

<DISPLAY></DISPLAY>

</ITEM>

ATTRIBUTE VALUE DESCRIPTION

<TITLE> title Displays the text string in the
listbox.

Title defines the key for

loading the text string from

the resource bundle. If the

string is not found, the title
string will appear as it does
in the Panel Definition

Markup Language (PDML)

source file.

This tag is required.
<ENABLE> See the action tag.
<DISABLE> See the action tag.
<SHOW> See the action tag.
<HIDE> See the action tag.
<REFRESH> See the action tag.
<DISPLAY> See the action tag.

34 AS/400 Toolbox for Java: Graphical Toolbox and PCML

If one or more item tags are defined, the list gettor/settor will not be used. ¥

[Legal | AS/400 Glossary]

Label tag

The following is the basic syntax of the label tag:

<LABEL name =name>

where name identifies the label programmatically.

The label tag can be expanded with the following elements:

<LABEL name=name>

<TITLE>title</TITLE>

<LOCATION>!ocation</LOCATION>

<SIZE>size</SIZE>

<FLYOVER>helptext</FLYOVER>

<HELPALIAS>component name</HELPALIAS>

</LABEL>

ATTRIBUTE VALUE DESCRIPTION

<TITLE> title Displays the text string as
static text.
Title defines the key for
loading the text string from
the resource bundle. If the
string is not found, the title
string will appear as it does
in the Panel Definition
Markup Language (PDML)
source file.
This tag is required.

<LOCATION> location Expresses the x- and
y-coordinates of the panel's
location from the top left
corner of the panel in logical
units.
This tag is required.

<SIZE> size Expresses the width and
height, respectively, of the
label in logical units.
This tag is required.

<DATACLASS> class_name Supplies the data for the
label, using the DataBean
interface.

Chapter 1. Graphical Toolbox 35

<ATTRIBUTE> attribute_name Contains the data for the
label.

GETTOR PROTOCOLS:

String

get<attribute_name>()
where the return
value is the string to
be inserted into the
text field.

SETTOR PROTOCOLS:

void

set<attribute_name>(String

text) where text is the
string that was
extracted from the
text field.

<FLYOVER> helptext Creates a help window that
hovers over the label.

Helptext defines the key for
loading the text string from
the resource bundle. If the
string is not found, the
helptext string will appear as
it does in the PDML source
file.

<HELPALIAS> component_name Should be displayed when
context help is requested for
this component.

¥

[Legal | AS/400 Glossary]

List tag

The following is the basic syntax of the list tag :

<LIST name=name selection= “single” | “single interval” | “multi-interval™>

where name identifies the list box programmatically.

36 AS/400 Toolbox for Java: Graphical Toolbox and PCML

The list tag can be expanded with the following elements:

<LIST name=name>
<LOCATION>Iocation</LOCATION>
<SIZE>size</SIZE>
<DATACLASS>class_name</DATACLASS>
<ATTRIBUTE>attribute_name</ATTRIBUTE>
<ITEM></ITEM>
<SELECTED>selected</SELECTED>
<DESELECTED>deselected</DESELECTED>
<DOUBLECLICK>class_name</DOUBLECLICK>
<FLYOVER>helptext</FLYOVER>
<HELPALIAS>component_name</HELPALIAS>
</LIST>

ATTRIBUTE VALUE

DESCRIPTION

<LOCATION> location

Expresses the x- and

location from the top left
corner in logical units.

This tag is required.

y-coordinates of the list box’s

<SIZE> size

Expresses the width and
height, respectively, of the
component in logical units.

This tag is required.

<DATACLASS> class _name

box.

Supplies the data for the list

Chapter 1. Graphical Toolbox

37

<ATTRIBUTE>

attribute_name

Supplies the data for the list
box. If the dataclass tag is
used, the attribute tag must
be used.

GETTOR PROTOCOLS:

ItemDescriptor[]

get<attribute_name>List()
where the return
value is an array of
ItemDescriptors,
each of which
describes an item in
the list. If the item
tag defines the
listbox elements
statically, the gettor
is not necessary.

String(]

get<attribute_name>()Selectio
where the return
value is an array of
names which
identify the list items
that should be
selected. If not
implemented, no list
items will be
selected when the
list is displayed.

SETTOR PROTOCOLS:

void

set<attribute_name>List(ItemD

values)
where values is an
array of
ItemDescriptor's,
each of which
describes an item in
the list.

void

set<attribute_name>(String(]
items)Selection
where jtems is an
array of names
which identify the list
items selected by

the user.
<ITEM> See the item tag.
<SELECTED> See the selected tag.
<DESELECTED> See the deselected tag.

<DOUBLECLICK>

class _name

Notifies the
DoubleClickListener class
when the user double-clicks

=)

escriptor[]

on an entry in the list.

38 AS/400 Toolbox for Java: Graphical Toolbox and PCML

<FLYOVER> helptext Should be displayed when
context help is requested for
this component.

The helptext defines the key
for loading the text string
from the resource bundle. If
the string is not found, the
helptext string will appear as
it does in the Panel Definition
Markup Language (PDML)
source file.

<HELPALIAS> component_name Should be displayed when
context help is requested for
this component.

¥

[Legal | AS/400 Glossary]
Panel tag

The panel tag creates the actual panel within a Panel Definition Markup Language
(PDML) document. More than one panel tag can be included within a document,
depending on how many panels need to be created. For the form of the panel tag
within the scope of an entire document, see the PDML syntax. The panel tag, itself,
takes the following form:

<PANEL name= name>
where name is the name of the panel. The name of the panel must be unique to
the document it is found in because the name is used to identify the panel

programmatically.

The panel tag can be expanded upon with the following elements:

<PANEL name=name>

<TITLE>title</TITLE>

<SIZE>size</SIZE>

<ICON>icon</ICON>

<ACTIVATE>class_name</ACTIVATE>

</PANEL>

NAME VALUE DESCRIPTION

<TITLE> title Displays the text string in the
title bar of the panel.

<SIZE> size Expresses the width and

height, respectively, of the
panel in logical units.

<ICON> icon Provides the width and
height, respectively, in logical
units of the panel.

Chapter 1. Graphical Toolbox 39

<ACTIVATE> class_name Serves as the qualified name
of a handler class that
receives control when the
panel is initially displayed.
The class must extend the
EventHandler class, and
implement the interface
java.awt.event.ActionListener.
The framework automatically
creates an object of the
specified class, and calls its
actionPerformed method.

¥

[Legal | AS/400 Glossary |
Progressbar tag

The following is the basic syntax of the progressbar tag :
<PROGRESSBAR name= name>
where name identifies the progress bar programmatically.

The progressbar tag can be expanded with the following elements:

<PROGRESSBAR name=name>
<LOCATION>location</LOCATION>
<SIZE>size</SIZE>
<MINVALUE>value</MINVALUE>
<MAXVALUE>value</MAXVALUE>
<FLYOVER>helptext<FLYOVER>
<HELPALIAS>component_name</HELPALIAS>

ATTRIBUTE VALUE DESCRIPTION

<LOCATION> location Expresses the x- and
y-coordinates of the panel's
location from the top left
corner in logical units.

This tag is required.

<SIZE> size Expresses the width and
height, respectively, of the
component in logical units.

This tag is required.

<MINVALUE> value Defines the lowest value on
the progress bar.

This tag is required.

<MAXVALUE> value Defines the highest value on
the progress bar.

This tag is required.

40 AS/400 Toolbox for Java: Graphical Toolbox and PCML

<FLYOVER> helptext Should be displayed when
context help is requested for
this component.

Helptext defines the key for
loading the text string from
the resource bundle. If the
string is not found, the
helptext string will appear as
it does in the Panel Definition
Markup Language (PDML)
source file.

<HELPALIAS> component_name Should be displayed when
context help is requested for
this component.

The progress bar component does not exchange data with its associated data
object at predefined times. Instead, changes to the progress bar must be made by
a handler object with another component on the panel, or with the activation
handler for the panel. See AS/400 user interface framework. ¥

[Legal | AS/400 Glossary]

Radiobutton tag

The following is the basic syntax of the radiobutton tag :
<RADIOBUTTON name= name>

where name identifies the radio button programmatically.

The radiobutton tag can be expanded with the following elements:

<RADIOBUTTON name=name>
<TITLE>title</TITLE>
<LOCATION>Iocation</LOCATION>
<SIZE>size</SIZE>
<DATACLASS>class_name</DATACLASS>
<ATTRIBUTE>attribute_name</ATTRIBUTE>
<SELECTED>selected</SELECTED>
<DESELECTED>deselected</DESELECTED>
<FLYOVER>helptext</FLYOVER>
<HELPALIAS>component_name</HELPALIAS>
</RADIOBUTTON>

ATTRIBUTE VALUE DESCRIPTION

Chapter 1. Graphical Toolbox 41

<TITLE>

title

Displays the text string as the
radio button label

The title defines the key for
loading the text string from
the resource bundle. If the
string is not found, the title
string will appear as it does
in the Panel Definition
Markup Language (PDML)
source code.

Use the “%” character to
make the character that
immediately follows the
“%7quot; the "mnemonic” or
"keyboard shortcut key*; for
the using a button. Use "%%"
to use "%" as a literal
character.

This tag is required.

<LOCATION>

location

Expresses the x- and
y-coordinates of the panel's
location from the top left
corner in logical units.

This tag is required.

<SIZE>

size

Expresses the width and
height, respectively, of the
component in logical units.

This tag is required.

<DATACLASS>

class_name

Expresses whether the radio
button is selected or not.

42 AS/400 Toolbox for Java: Graphical Toolbox and PCML

<ATTRIBUTE> attribute_name Contains the state of the
radio button

GETTOR PROTOCOLS
The gettor does not have
to be used if the choice tag
statically defines the
combo box elements.

boolean

is<attribute_name>()
where the return
value indicates
whether the radio
button is selected or
not.

SETTOR PROTOCOLS

void
set<attribute_name>(boolean
selected)
where selected
indicates whether
the radio button is
selected or not.

<SELECTED> Please see the selected tag.
<DESELECTED> Please see the deselected
tag.

<FLYOVER> helptext Should be displayed when
context help is requested for
this component.

The helptext defines the key
for loading the text string
from the resource bundle. If
the string is not found, the
helptext string will appear as
it does in the PDML source
code.

<HELPALIAS> component_name Should be displayed when
context help is requested for
this component.

¥

[Legal | AS/400 Glossary]

Root and node tags

The following is the basic syntax of the root and node tags :
<ROOT|NODE name= name>

where name identifies the node programmatically.

Chapter 1. Graphical Toolbox 43

The root and node tags can be expanded with the following elements:

<ROOT |NODE name=name>
<TITLE>title</TITLE>
<ICON>image</ICON>
<ENABLE></ENABLE>
<DISABLE></DISABLE>
<SHOW></SHOW>
<HIDE></HIDE>
<REFRESH></REFRESH>
<DISPLAY></DISPLAY>
<NODE></NODE>

</ROOT |NODE>

ATTRIBUTE VALUE DESCRIPTION
<TITLE> title Displays the text string in a
tree.

Title defines the key for
loading the text string from
the resource bundle. If the
string is not found, the title
string will appear as it does
in the Panel Definition
Markup Language (PDML)
source file.

This tag is required.

<ICON> image Identifies the filename of the
image file to be displayed to
the left of the item’s text
string.

This tag is required.

<ENABLE> See the actions tag.
<DISABLE> See the actions tag.
<SHOW> See the actions tag.
<HIDE> See the actions tag
<REFRESH> See the actions tag.
<DISPLAY> See the actions tag.
<NODE> A child node that may be

coded, and the nodes may
be nested to any depth.

When using the root tag, do not use gettor/settor methods. ¥

[Legal | AS/400 Glossary |
Slider tag
The following is the basic syntax of the slider tag :

<SLIDER name=name orientation= “horizontal”|“vertical">

where name identifies the text area programmatically.

44 AS/400 Toolbox for Java: Graphical Toolbox and PCML

The slider tag can be expanded with the following elements:

<SLIDER name=name orientation="horizontal"|"vertical">
<LOCATION>location</LOCATION>
<SIZE>size</SIZE>
<DATACLASS>class_name</DATACLASS>
<ATTRIBUTE>attribute_name</ATTRIBUTE>
<MINVALUE>value</MINVALUE>
<MAXVALUE>value</MAXVALUE>
<MAJORTICKS>interval</MAJORTICKS>
<MINORTICKS>interval</MINORTICKS>
<ADJUST>class_name</ADJUST>
<FLYOVER>helptext</FLYOVER>
<HELPALIAS>component_name</HELPALIAS>
</SLIDER>

ATTRIBUTE VALUE DESCRIPTION

<LOCATION> location Expresses the x- and
y-coordinates of the panel's
location from the top left
corner in logical units.

This tag is required.

<SIZE> size Expresses the width and
height, respectively, of the
component in logical units.

This tag is required.

<DATACLASS> class_name Supplies data displayed on
the slider, using the
DataBean interface.

<ATTRIBUTE> attribute_name Contains the data for the
slider. If the dataclass tag is
present, the attribute tag
must be present.

GETTOR PROTOCOLS:

int get<attribute_name>()
where the return
value is the integer
setting for the slider.
The value must be
greater than or
equal to minvalue
and less than or
equal to maxvalue.

SETTOR PROTOCOLS:

void
set<attribute_name>(boolean
selected)
where value is the
current integer
setting for the slider.

Chapter 1. Graphical Toolbox 45

<MINVALUE> value Defines the lowest value on
the slider.
This tag is required.

<MAXVALUE> value Defines the highest value on
the slider.

This tag is required.

<MAJORTICKS> interval Marks the slider in major
increments. When the tag is
included, snap-to-ticks is
automatically on.

<MINORTICKS> interval Sets unlabelled
minor-markers on the slider.
When the tag is included,
snap-to-ticks is automatically
on.

<ADJUST> class_name Allows the user to adjust the
slider. The class must extend
the EventHandler class and
use the interface
com.sun.java.swing.event.ChanhgeListener.
The framework will
automatically create an
object of the specified class
and call its stateChanged
method.

<FLYOVER> helptext Should be displayed when
context help is requested for
this component.

Helptext defines the key for
loading the text string from
the resource bundle. If the
string is not found, the
helptext string will appear as
it does in the Panel Definition
Markup Language (PDML)
source file.

<HELPALIAS> component_name Should be displayed when
context help is requested for
this component.

¥

[Legal | AS/400 Glossary |

Splitpane tag

The following is the basic syntax of the splitpane tag :
<SPLITPANE name= name orientation=“horizontal”|“vertical">

where name identifies the split pane programmatically.

46 AS/400 Toolbox for Java: Graphical Toolbox and PCML

The splitpane tag can be expanded with the following elements:

<SPLITPANE name=name orientation= "horizontal"|"vertical">
<TITLE>title</TITLE>

<LOCATION>Iocation</LOCATION>

<PANE resource=resource_name name=panel_name type="split">

</SPLITPANE>
ATTRIBUTE VALUE DESCRIPTION
<TITLE> title Displays the text string as the
containing tab. Therefore,
this tag is used only when
this subpanel is nested within
a tabbed pane.
Title defines the key for
loading the text string from
the resource bundle. If the
string is not found, the title
string will appear as it does
in the Panel Definition
Markup Language (PDML)
source file.
<LOCATION> location Expresses the x- and
y-coordinates of the panel's
location from the top left
corner of the panel in logical
units. This tag is required
when you define a split pane
within the scope of the panel
tag.
<PANE> resource name Identifies the panel for each
resource= - . window.
name= where is the
type= resource bur_1d|e
name associated
with the panel
panel_name
where is the name
of the panel
specified in the
PDML document
type where provides the
AS/400 user
interface framework
with an indication of
the pane type
(panel, split, deck,
or tab)

The size of a split pane is set by the size of the panels that the pane is included in.
When the split pane is displayed, the panels appear in the order declared within the
splitpane tag. W

[Legal | AS/400 Glossary]

Chapter 1. Graphical Toolbox 47

Tabbedpane tag
The following is the basic syntax of the tabbedpane tag :

<TABBEDPANE name= name orientation=*“horizontal”|*

vertical”>

where name identifies the tabbed pane programmatically.

The tabbedpane tag can be expanded with the following

elements:

<TITLE>title</TITLE>
<LOCATION>Iocation</LOCATION>

</TABBEDPANE>

<TABBEDPANE name=name placement="top"|"bottom"|"Teft"|"right">

<PANE resource=resource_name name=panel_name type="tab">

ATTRIBUTE VALUE

DESCRIPTION

<TITLE> title

Displays the text string as the
containing tab. Therefore, the
tag is only necessary when
you are nesting one tabbed
pane within another tabbed
pane.

Title defines the key for
loading the text string from
the resource bundle. If the
string is not found, the title
string will appear as it does
in the Panel Definition
Markup Language (PDML)
source file.

<LOCATION> location

Expresses the x- and
y-coordinates of the panel's
location from the top left
corner of the panel in logical
units. This tag is only
necessary when the tabbed
pane is declared within the
scope of the panel tag.

48 AS/400 Toolbox for Java: Graphical Toolbox and PCML

<PANE>
name=
placement=

type=

resource_name
where is the
resource bundle
name associated
with the panel

panel_name
where is the name
of the panel
specified in the
PDML document

type where provides the
AS/400 user
interface framework
with an indication of
the pane type
(panel, split, deck,
or tab)

Identifies the panel for each
window.

When the tabbed pane is displayed, the tabbed panels appear in the order declared
within the tabbedpane tag. W

[Legal | AS/400 Glossary]

Table tag

The following is the basic syntax of the table tag :

<TABLE name= name selection= “single” | “singleinterval” | “multi-interval”>

where name identifies the table programmatically.

The table tag can be expanded with the following elements:

<TABLE name=name selection="single" | "singleinterval" | "multi-interval">
<LOCATION>!ocation</LOCATION>
<SIZE>size</SIZE>

<COLUMN></COLUMN>
<SELECTED></SELECTED>
<DESELECTED></DESELECTED>
<DOUBLECLICK>class_name</DOUBLECLICK>
<FLYOVER>helptext</FLYOVER>
<HELPALIAS>component_name</HELPALIAS>

</TABLE>
ATTRIBUTE VALUE DESCRIPTION
<LOCATION> location Expresses the x- and
y-coordinates of the panel’s
location from the top left
corner in logical units.
This tag is required.
<SIZE> size Expresses the width and

height, respectively, of the
component in logical units.

This tag is required.

Chapter 1. Graphical Toolbox 49

<COLUMN>

See the column tag.

<SELECTED>

See the selected tag.

<DESELECTED>

See the deselected tag.

<DOUBLECLICK> class_name

Signals the
DoubleClickListener interface
class when the user
double-clicks on an entry in
the table.

<FLYOVER> helptext

Should be displayed when
context help is requested for
this component.

Helptext defines the key for
loading the text string from
the resource bundle. If the
string is not found, the
helptext string will appear as
it does in th Panel Definition
Markup Language (PDML)
source file.

<HELPALIAS> component_name

Should be displayed when
context help is requested for
this component.

¥

[Legal | AS/400 Glossary |

Tree tag

The following is the basic syntax of the tree tag :

<TREE name= name>

where name identifies the tree programmatically.

The tree tag can be expanded with the following elements:

<TREE name=name>
<LOCATION>location</LOCATION>
<SIZE>size</SIZE>
<DATACLASS>class_name</DATACLASS>
<ATTRIBUTE>attribute_name</ATTRIBUTE>
<R0OOT></ROOT>
<DOUBLCLICK>class_name</DOUBLECLICK>
<FLYOVER>helptext</FLYOVER>
<HELPALIAS>component_name</HELPALIAS>

</TREE>
ATTRIBUTE VALUE DESCRIPTION
<LOCATION> location Expresses the x- and

y-coordinates of the panel's
location from the top left
corner in logical units.

This tag is required.

50 AS/400 Toolbox for Java: Graphical Toolbox and PCML

<SIZE> size Expresses the width and
height, respectively, of the
component in logical units.
This tag is required.

<DATACLASS> class_name Supplies the data for the

tree, using the DataBean
interface.

<ATTRIBUTE>

attribute_name

Supplies the data for the
tree. The tag must be present
if the dataclass tag is used.

SETTOR PROTOCOL: The
settor method is always
called first to identify

which parent node child
elements are to be
supplied.

void

set<attribute_name>TreePare

parent) where parentis the
name of the parent
node for which
children should be
supplied when the
gettor is called.

GETTOR PROTOCOL:

NodeDescriptor[]

get<attribute_name>Children(
where the return
value is an array of
NodeDescriptor's,
each of which
describes a child
element in the tree.
If the node tags
statically define the
tree elements, the
gettor is not
necessary.

<ROOT>

See the root tag.

<DOUBLECLICK>

class _name

Notifies the listener class
when the user double-clicks
on an item in the tree, using
the DoubleClickListener

interface.

Chapter 1. Graphical Toolbox 51

t(String

<FLYOVER> helptext Should be displayed when
context help is requested for
this component. Helptext
defines the key for loading
the text string from the
resource bundle. If the string
is not found, the helptext
string will appear as it does
in the Panel Definition
Markup Language (PDML)
source file.

<HELPALIAS> component_name Should be displayed when
context help is requested for
this component.

At this time, user-modifiable trees are not supported, nor are selection
gettors/settors.

[Legal | AS/400 Glossary |

Textarea tag

The following is the basic syntax of the textarea tag :
<TEXTAREA name= name>

where name identifies the text area programmatically.

The textarea tag can be expanded with the following elements:

<TEXTAREA name=name>
<TITLE>title</TITLE>
<LOCATION>Iocation</LOCATION>
<SIZE>size</SIZE>
<DATACLASS>class_name</DATACLASS>
<ATTRIBUTE>attribute_name</ATTRIBUTE>
<SHORT></SHORT>

<INTEGER></INTEGER>

<LONG></LONG>

<FLOAT></FLOAT>

<STRING></STRING>

<FORMAT></FORMAT>
<FLYOVER>helptext</FLYOVER>
<HELPALIAS>component name</HELPALIAS>

</TEXTAREA>
ATTRIBUTE VALUE DESCRIPTION
<TITLE> title Displays the text string in the

text area label.

Title defines the key for
loading the text string from
the resource bundle. If the
string is not found, the title
string will appear as it does
in the Panel Definition
Markup Language (PDML)
source file.

52 AS/400 Toolbox for Java: Graphical Toolbox and PCML

<LOCATION>

location

Expresses the x- and
y-coordinates of the panel’s
location from the top left
corner in logical units.

This tag is required.

<SIZE>

size

Expresses the width and
height, respectively, of the
component in logical units.

This tag is required.

<DATACLASS>

class _name

Supplies the data for the text
area, using the DataBean
interface.

<ATTRIBUTE>

attribute_name

Contains the data for the text
area. If the dataclass tag is
used, the attribute tag must
be used.

GETTOR PROTOCOLS:

String

get<attribute_name>()
where the return
value is the string to
be inserted into the
text area.

SETTOR PROTOCOLS:

void

set<attribute_name>(String

text) where text is the
string that was
extracted from the

text area.
<SHORT> See the data format tags.
<INTEGER> See the data format tags.
<LONG> See the data format tags.
<FLOAT> See the data format tags.
<STRING> See the data format tags.
<FORMAT> See the data format tags.
<FLYOVER> helptext Should be displayed when
context help is requested for
this component.
<HELPALIAS> component_name Should be displayed when
context help is requested for
this component.
¥

[Legal | AS/400 Glossary]

Chapter 1. Graphical Toolbox 53

Textfield tag

The following is the basic syntax of the textfield tag :
<TEXTFIELD name=name>

where name identifies the text field programmatically.

The textfield tag can be expanded with the following elements:

<TEXTFIELD name=name>

<TITLE>title</TITLE>

<LOCATION>ocation</LOCATION>

<SIZE>size</SIZE>

<DATACLASS>class_name</DATACLASS>

<ATTRIBUTE>attribute_name</ATTRIBUTE>

<SHORT></SHORT>

<INTEGER></INTEGER>

<LONG></LONG>

<FLOAT></FLOAT>

<STRING></STRING>

<FORMAT></FORMAT>

<FLYOVER>helptext</FLYOVER>

<HELPALIAS>component_name</HELPALIAS>

</TEXTFIELD>

ATTRIBUTE VALUE DESCRIPTION

<TITLE> title Displays the text string in the
text field label.
Title defines the key for
loading the text string from
the resource bundle. If the
string is not found, the title
string will appear as it does
in the Panel Definition
Markup Language (PDML)
source file.

<LOCATION> location Expresses the x- and
y-coordinates of the panel's
location from the top left
corner in logical units.
This tag is required.

<SIZE> size Expresses the width and
height, respectively, of the
component in logical units.
This tag is required.

<DATACLASS> class_name Supplies the data for the text
field, using the DataBean
interface.

54 AS/400 Toolbox for Java: Graphical Toolbox and PCML

<ATTRIBUTE> attribute_name Contains the data for the text
field.

GETTOR PROTOCOLS:

String

get<attribute_name>()
where the return
value is the string to
be inserted into the
text field.

SETTOR PROTOCOLS:

void

set<attribute_name>(String

text) where text is the
string that was
extracted from the

text field.
<SHORT> See the data format tags.
<INTEGER> See the data format tags.
<LONG> See the data format tags.
<FLOAT> See the data format tags.
<STRING> See the data format tags.
<FORMAT> See the data format tags.
<FLYOVER> helptext Should be displayed when

context help is requested for
this component.

Helptext defines the key for
loading the text string from
the resource bundle. If the
string is not found, the
helptext string will appear as
it does in the PDML source
file.

<HELPALIAS> component_name should be displayed when
context help is requested for
this component.

¥

[Legal | AS/400 Glossary]

Property Sheets

The propsheet tag creates the window that is loaded when you click on a particular
icon. The AS/400 user interface framework automatically sets the correct platform

look and feel for the propsheets, just as it does for individual panels. The following
is the basic syntax of the propsheet tag:

Chapter 1. Graphical Toolbox 55

<PROPSHEET name=name>

<TITLE>title</TITLE>
<ICON>icon</ICON>
<Page resource=resource_name name=panel_name>
</PROPSHEET>
ATTRIBUTE VALUE DESCRIPTION
<TITLE> title Supplies the title bar for the
property sheet window. If the
tag is omitted, the title should
be supplied using the setTitle
method of the
PropertySheetManager class.
<ICON> icon Serves as the resource key
that identifies the image to be
used as the icon for the
property sheet. If you omit
this tag, the standard Java
window icon will be used.
<PAGE> resource hame The tag that identifies each
resource= - panel within the property
hame= the resource bundle sheet page
name associated
with the panel
panel_name
the name of the
panel specified in
the Panel Definition
Markup Language
(PDML) document
¥

[Legal | AS/400 Glossary]

56 AS/400 Toolbox for Java: Graphical Toolbox and PCML

Chapter 2. Program Call Markup Language

Overview
Program Call Markup Language (PCML) is a tag language that helps you call
AS/400 programs, but with writing less Java code. PCML is based upon the
Extensible Markup Language (XML), a tag syntax you write to describe the input
and output parameters for AS/400 programs. PCML enables you to define tags that
fully describe AS/400 programs that will be called by your Java application.
Benefits

Ordinarily, in the Java environment, you have to write additional lines of code in
your Java applications to construct AS/400 Toolbox for Java class objects for
connecting to and retrieving information from an AS/400 and for performing the
appropriate data translation.

However, by using PCML, your calls to the AS/400 with the AS/400 Toolbox for
Java classes are automatically handled by the PCML class objects. The PCML
class objects are generated from the PCML tags, the PCML-coded description of
AS/400 programs, helping minimize the amount of code you need to write in order
to call AS/400 programs from your application.

You use the AS/400 distributed program call (DPC) server, an established
generalized server, to support your remote requests to call programs on an AS/400.

Platform requirements

While PCML was designed to support distributed program calls to AS/400 program
objects from a Java platform, you can also use PCML to make calls to an AS/400
program from within an AS/400 environment as well.

Topics for more information

Refer to the following topics on how to use PCML:
» Call programs with the help of PCML

» Build program calls with PCML tags

* A PCML example

¥

[Legal | AS/400 Glossary]

Building AS/400 program calls with PCML

To build AS/400 program calls with PCML, you must start by creating the following:
» Java application
* PCML source file

© Copyright IBM Corp. 1998, 1999 57

Depending upon your design process, you must write one or more PCML source
files where you describe the interfaces to the AS/400 programs that will be called by
your Java application. Refer to PCML syntax for a detailed description of the
language.

Then, your Java application, shown in yellow in Figure 1 below, interacts with the
ProgramcCallDocument class. The ProgramCallDocument class uses your PCML
source file to pass information between your Java application and the AS/400
programs.

Figure 1. Making program calls to the AS/400 using PCML

When your application constructs the ProgramCallDocument object, the IBM XML
parser reads and parses the PCML source file.

After the ProgramCallDocument class has been created, the application program
uses the ProgramCallDocument class’s methods to retrieve the necessary
information from the AS/400 through the AS/400 distributed program call (DPC)
server.

To increase run-time performance, the ProgramCallDocument class can be
serialized during your product build time. The ProgramCallDocument is then
constructed using the serialized file. In this case, the IBM XML parser is not used at

run-time. Refer to lUsing serialized PCMI files/].

Using PCML source files

Your Java application uses PCML by constructing a ProgramCallDocument with a
reference to the PCML source file. The ProgramCallDocument considers the PCML
source file to be a Java resource. Consequently, the PCML source file is found
using the Java CLASSPATH.

The following Java code constructs a ProgramCallDocument:

AS400 as400 = new AS400();
ProgramCallDocument pcmlDoc = new ProgramCallDocument(as400, "myPcmlDoc");

The ProgramCallDocument will look for your PCML source in a file called
myPcm1Doc.pcml. Notice that the .pcml extension is not specified on the constructor.

If you are developing a Java application in a Java “package,” you can
package-qualify the name of the PCML resource:

AS400 as400 = new AS400();
ProgramCallDocument pcmlDoc = new ProgramCallDocument(as400, "com.company.package.myPcmlDoc");

Using serialized PCML files

To increase run-time performance, you can use a serialized PCML file. A serialized
PCML file contains serialized Java objects representing the PCML. The objects that
are serialized are the same objects that are created when you construct the
ProgramCallDocument from a source file as described above.

Using serialized PCML files gives you better performance because the IBM XML
parser is not needed at run-time to process the PCML tags.

58 AS/400 Toolbox for Java: Graphical Toolbox and PCML

The PCML can be serialized using either of the following methods:
* From the command line:

java com.ibm.as400.ProgramcallDocument -serialize mypcm]l

This method is helpful for having batch processes to build your application.
* From within a Java program:

ProgramCallDocument pcmiDoc; // Initialized elsewhere
pcmlDoc.serialize();

If your PCML is in a source file named myDoc.pcml, the result of serialization is a file
named myDoc.pcml.ser.

PCML source files vs. serialized PCML files

Consider the following code to construct a ProgramCallDocument:

AS400 as400 = new AS400();
ProgramCallDocument pcmlDoc = new ProgramCallDocument (as400, "com.mycompany.mypackage.myPcml|

The ProgramCallDocument constructor will first try to find a serialized PCML file
named myPcm1Doc.pcml.ser in the com.mycompany.mypackage package in the Java
CLASSPATH. If a serialized PCML file does not exist, the constructor will then try to
find a PCML source file named myPcm1Doc.pcml in the com.mycompany .mypackage
package in the Java CLASSPATH. If a PCML source file does not exist, an
exception is thrown.

Qualified names

Your Java application uses the ProgramCallDocument.setValue() method to set
input values for the AS/400 program being called. Likewise, your application uses
the ProgramCallDocument.getValue() method to retrieve output values from the
AS/400 program.

When accessing values from the ProgramCallDocument, you must specify the fully
qualified name of the document element or <data> tag. The qualified name is a
concatenation of the names of all the containing tags with each name separated by
a period.

For example, given the following PCML source, the qualified name for the
“nbrPolygons” item is “polytest.parml.nbrPolygons” . The qualified name for
accessing the “x” value for one of the points in one of the polygons is
“polytest.parml.polygon.point.x”

If any one of the elements needed to make the qualified name is unnamed, all
descendents of that element do not have a qualified hame. Any elements that do
not have a qualified name cannot be accessed from your Java program.

<pcml version="1.0">
<program name="polytest" path="/QSYS.1ib/MYLIB.1ib/POLYTEST.pgm">
<!— Parameter 1 contains a count of polygoins along with an array of polygons —>
<struct name="parml" usage="inputoutput">
<data name="nbrPolygons" type="int" length="4" init="5" />
<!- Each polygon contains a count of the number of points along with an array of points —>
<struct name="polygon" count="nbrPolygons">
<data name="nbrPoints" type="int" length="4" init="3" />
<struct name="point" count="nbrPoints" >
<data name="x" type="int" length="4" init="100" />
<data name="y" type="int" length="4" init="200" />

Chapter 2. Program Call Markup Language 59

</struct>
</struct>
</struct>
</program>
</pcml>

Accessing data in arrays

Debugging

Any <data> or <struct > element can be defined as an array using the count
attribute. Or, a <data> or <struct > element can be contained within another
<struct > element that is defined as an array.

Furthermore, a <data> or <struct > element can be in a multidimensional array if
more than one containing element has a count attribute specified.

In order for your application to set or get values defined as an array or defined
within an array, you must specify the array index for each dimension of the array.
The array indices are passed as an array of int values. Given the source for the
array of polygons shown above, the following Java code can be used to retrieve the
information about the polygons:

ProgramCallDocument polytest; // Initialized elsewhere

Integer nbrPolygons, nbrPoints, pointX, pointY;

nbrPolygons = (Integer) polytest.getValue("polytest.parml.nbrPolygons");

System.out.printIn("Number of polygons:" + nbrPolygons);

indices = new int[2];

for (int polygon = 0; polygon < nbrPolygons.intValue(); polygon++)

indices[0] = polygon;

nbrPoints = (Integer) polytest.getValue("polytest.parml.polygon.nbrPoints", indices)

System.out.printIn(" Number of points:" + nbrPoints);
for (int point = 0; point < nbrPoints.intValue(); point++)

indices[1] = point;

pointX = (Integer) polytest.getValue("polytest.parml.polygon.point.x", indices);
pointY = (Integer) polytest.getValue("polytest.parml.polygon.point.y", indices);

System.out.printin(" X:" + pointX + " Y:" + pointY);

When you use PCML to call programs with complex data structures, it is easy to
have errors in your PCML that result in exceptions from the ProgramCallDocument
class. If the errors are related to incorrectly describing offsets and lengths of data,
the exceptions can be difficult to debug.

The com.ibm.as400.data.PcmIMessagelLog class allows you to turn on a tracing
function that prints to the standard output stream information that can be helpful in
problem determination. You can call the following method to turn the tracing function
on:

com.ibm.as400.data.PcmiMessagelog.setTraceEnabled(true);

When the tracing function is turned on, the following types of information are printed
to the standard output stream:

* A dump of the hexadecimal data being transferred between the Java application
and the AS/400 program. This shows the program input parameters after

60 AS/400 Toolbox for Java: Graphical Toolbox and PCML

character data is converted to EBCDIC and integers are converted to big-endian.
It also shows the output parameters before they are converted to the Java
environment.

The data is shown in a typical hexadecimal dump format with hexadecimal digits
on the left and a character interpretation on the right. The following is an
example of this dump format:

qgyolobj[6]
Offset : 0....... b, 8uvurnn. Covurnnn Oennn.. boo..... 8urinn.. Covnnnn
0 : 5CE4E2D9 D7DIC640 4040

In the above example, the dump shows the seventh parameter has 10 bytes of
data set to “*USRPRF ".

For output parameters, following the hexadecimal dump is a description of how
the data has been interpreted for the document.

/QSYS.1ib/QGY.11b/QGYOLOBJ.pgm[2]

Offset : O....... 4
0 : 0000000A 0O00OOOA 00000001 00000068 D7FOFIF9 FOF1FLF5 F1FAF2F6 F2F5F400
20 : 00000410 00000001 0OOOOOOO COOOOOOO 0OOOOOOO 0OOOOOOO 0000 00000000
40 : 00000000 00000000 0OOOOOOO 0OOOOOOO

Reading data — Offset: O Length: 4 Name: "qgyolobj.listInfo.totalRcds"

Byte data: 0000000A

Reading data — Offset: 4 Length: 4 Name: "qgyolobj.listInfo.rcdsReturned"

Byte data: 0000000A

Reading data — Offset: 8 Length: 4 Name: "qgyolobj.listInfo.rgsHandle"

Byte data: 00000001

Reading data — Offset: c Length: 4 Name: "qgyolobj.listInfo.rcdLength"

Byte data: 00000068

Reading data — Offset: 10 Length: 1 Name: "qgyolobj.listInfo.infoComplete"

Byte data: D7

Reading data — Offset: 11 Length: 7 Name: "qgyolobj.listInfo.dateCreated"

Byte data: FOF9F9FOF1F1F5

Reading data — Offset: 18 Length: 6 Name: "qgyolobj.listInfo.timeCreated"

Byte data: F1F4F2F6F2F5

Reading data — Offset: le Length: 1 Name: "qgyolobj.listInfo.listStatus"

Byte data: F4

Reading data — Offset: 1f Length: 1 Name: "qgyolobj.listInfo.[8]" Byte data: 00

Reading data — Offset: 20 Length: 4 Name: "qgyolobj.listInfo.lengthOfInfo"

Byte data: 00000410

Reading data — Offset: 24 Length: 4 Name: "qgyolobj.listInfo.firstRecord"

Byte data: 00000001

Reading data — Offset: 28 Length: 40 Name: "qgyolobj.listInfo.[11]"

0...4...8..
**USRPRF
0...4...8

Byte data: 00

The above messages can be very helpful in diagnosing cases where the output
data coming from the AS/400 program does not match the PCML source. This
can easily occur when you are using dynamic lengths and offsets.

¥

[Legal | AS/400 Glossary]

PCML syntax

PCML consists of the following tags, each of which has its own attribute tags:

The program tag begins and ends code that describes one program

The struct tag defines a named structure which can be specified as an argument
to a program or as a field within another named structure. A structure tag
contains a data or a structure tag for each field in the structure.

The data tag defines a field within a program or structure.

Chapter 2. Program Call Markup Language 61

For example, below, the PCML syntax describes one program with one category of
data and some isolated data.

<program>
<struct>
<data> </data>
</struct>

<data> </data>
</program>

¥

[Legal | AS/400 Glossary |

The program tag

The program tag can be expanded with the following elements:

<program name="name"
[path="path-name"]
[parseorder="name-list"] >

</program>

Attribute Value Description

name= name Specifies the name of the
program.

path= path-name Specifies the path to the

program object.

The default value is to
assume the program is in the
QSYS library.

62 AS/400 Toolbox for Java: Graphical Toolbox and PCML

The struct tag

parseorder=

name-list

Specifies the order in which
output parameters will be
processed. The value
specified is a blank
separated list of parameter
names in the order in which
the parameters are to be
processed. The names in the
list must be identical to the
names specified on the
name attribute of tags
belonging to the <program> .
The default value is to
process output parameters in
the order the tags appear in
the document.

Some programs return
information in one parameter
that describes information in
a previous parameter. For
example, assume a program
returns an array of structures
in the first parameter and the
number of entries in the array
in the second parameter. In
this case, the second
parameter must be
processed in order for the
ProgramCallDocument to
determine the number of
structures to process in the
first parameter.

¥

[Legal | AS/400 Glossary]

The structure tag can be expanded with the following elements:

<struct name="name"

[maxvrm="version-string"”]
[minvem="version-string”]

[count="{number | data-name }"]

[offset="{number | data-name }" 1]
[offsetfrom="{number | data-name | struct-name }"]

[outputsize="{number | data-name }"]

[usage="{ inherit | input | output | inputoutput }" 1>

</struct>
Attribute Value Description
name= name Specifies the name of the

<struct> element

Chapter 2. Program Call Markup Language 63

count= number Specifies that the element is
where number defines a an array and identifies the
fixed, never-changing sized | number of entries in the
array. array.
data-name If this attribute is omitted, the
where data-name defines the |element is not defined as an
name of a <data> element array, although it may be
within the PCML document contained within another
that will contain, at runtime, element that is defined as an
the number of elements in array.
the array. The data-name
specified can be a fully
qualified name or a name
that is relative to the current
element. In either case, the
name must reference a
<data> element that is
defined with type= “int”. See
M for more information
on how relative names are
resolved.

maxvrm= version-string Specifies the highest AS/400

version on which the element
exists. If the AS/400 version
is greater than the version
specified on the attribute, the
element and its children, if
any exist, will not be
processed during a call to a
program. The maxvrm
element is helpful for defining
program interfaces which
differ between releases of
AS/400.

The syntax of the version
string must be “VvRrMm,”
where the capitals letters “V,”
“R,” and “M” are literal
characters and “v,” “r,” and
“m” are one or more digits
representing the version,
release and modification
level, respectively. The value
for “v” must be from 1 to 255
inclusively. The value for “r’
and “m” must be from 0 to
255, inclusively.

64 AS/400 Toolbox for Java: Graphical Toolbox and PCML

minvrm=

version-string

Specifies the lowest AS/400
version on which this element
exists. If the AS/400 version
is less than the version
specified on this attribute,
this element and its children,
if any exist, will not be
processed during a call to a
program. This attribute is
helpful for defining program
interfaces which differ
between releases of AS/400.

The syntax of the version
string must be “VvRrMm,”
where the capitals letters “V,”
“R,” and “M” are literal
characters and “v,” “r,” and
“m” are one or more digits
representing the version,
release and modification
level, respectively. The value
for “v” must be from 1 to 255,
inclusively. The value for “r"
and “m” must be from 0 to
255, inclusively.

Chapter 2. Program Call Markup Language 65

offset=

number
where number defines a
fixed, never-changing offset.

data-name

where data-namedefines the
name of a <data> element
within the PCML document
that will contain, at runtime,
the offset to the element. The
data-name specified can be
a fully qualified name or a
name that is relative to the
current element. In either
case, the name must
reference a <data> element
that is defined with

type= “int”. See m
telative names” on page 69

for more information on how
relative names are resolved.

Specifies the offset to the
<struct> element within an
output parameter.

Some programs return
information with a fixed
structure followed by one or
more variable length fields or
structures. In this case, the
location of a variable length
element is usually specified
as an offset or displacement
within the parameter. The
offset attribute is used to
describe the offset to this
<struct> element.

Offset is used in conjunction
with the offsetfrom attribute.
If the offsetfrom attribute is
not specified, the base
location for the offset
specified on the offset
attribute is the parent of the
element. See
bifsets” on page 69 for more
information on how to use
the offset and offsetfrom
attributes.

The offset and offsetfrom
attributes are only used to
process output data from a
program. These attributes do
not control the offset or
displacement of input data.

If the attribute is omitted, the
location of the data for the
element is immediately
following the preceding
element in the parameter, if
any.

66 AS/400 Toolbox for Java: Graphical Toolbox and PCML

offsetfrom=

number

where number defines a
fixed, never-changing base
location. A number attribute is
most typically used to specify
number= “0” indicating that
the offset is an absolute
offset from the beginning of
the parameter.

data-name

where data-name defines the
name of a <data> element to
be used as a base location
for the offset. The element
name specified must be the
parent or an ancestor of this
element. The value from the
offset attribute will be relative
to the location of the element
specified on this attribute.
The data-name specified can
be a fully qualified name or a
name that is relative to the
current element. In either
case, the name must
reference an ancestor of this
element. See

for more information on how
relative names are resolved.

struct-name

where struct-name defines
the name of a <struct>
element to be used as a
base location for the offset.
The element name specified
must be the parent or an
ancestor of this element. The
value from the offset
attribute will be relative to the
location of the element
specified on this attribute.
The struct-name specified
can be a fully qualified name
or a name that is relative to
the current element. In either
case, the name must
reference an ancestor of this
element. See

for more information on how
relative names are resolved.

Specifies the base location
from which the offset
attribute is relative.

If the offsetfrom attribute is
not specified, the base
location for the offset
specified on the offset

attribute is the parent of this
element. See Egperm
bffsets” on page 69 for more
information on how to use
the offset and offsetfrom

attributes.

The offset and offsetfrom
attributes are only used to
process output data from a
program. These attributes do
not control the offset or
displacement of input data.

Chapter 2. Program Call Markup Language 67

outputsize=

number

where number defines a
fixed,never-changing number
of bytes to reserve.

data-name
where data-name defines the
name of a <data> element
within the PCML document
that will contain, at runtime,
the number of bytes to
reserve for output data. The
data-name specified can be a
fully qualified name or a
name that is relative to the
current element. In either
case, the name must
reference a <data> element
that is defined with

type= “int”. See

for more information on how
relative names are resolved.

Specifies the number of
bytes to reserve for output
data for the element. For
output parameters which are
variable in length, the
outputsize attribute is
needed to specify how many
bytes should be reserved for
data to be returned from the
AS/400 program. Outputsize
can be specified on all
variable length fields and
variable sized arrays, or it
can be specified for an entire
parameter that contains one
or more variable length fields.

Outputsize is not necessary
and should not be specified
for fixed-size output
parameters.

The value specified on the
attribute is used as the total
size for the element including
all children of the element.
Therefore, the outputsize
attribute is ignored on any
children or descendants of
the element.

If the attribute is omitted, the
number of bytes to reserve
for output data is determined
at runtime by adding the
number of bytes to reserve
for all of the children of the
<struct> element.

usage=

inherit

Usage is inherited from the
parent element. If the
structure does not have a
parent, usage is assumed to
be inputoutput .

input

The structure is an input
value to the host program.
For character and numeric
types, the appropriate
conversion is performed.

output

The structure is an output
value from the host program.
For character and numeric
types, the appropriate
conversion is performed.

inputoutput

The structure is both and
input and an output value.

68 AS/400 Toolbox for Java: Graphical Toolbox and PCML

Resolving relative names

Several attributes allow you to specify the name of another element, or tag, within
the document as the attribute value. The name specified can be a name that is
relative to the current tag.

Names are resolved by seeing if the name can be resolved as a child or
descendent of the tag containing the current tag. If the name cannot be resolved at
this level, the search continues with the next highest containing tag. This resolution
must eventually result in a match of a tag that is contained by the <pcml > tag, in
which case the name is considered to be an absolute name, not a relative name.

<pcml version="1.0">
<program name="polytest" path="/QSYS.1ib/MYLIB.1ib/POLYTEST.pgm">
<!- Parameter 1 contains a count of polygoins along with an array of polygons —>
<struct name="parml" usage="inputoutput">
<data name="nbrPolygons" type="int" length="4" init="5" />
<l- Each polygon contains a count of the number of points along with an array of points —>
<struct name="polygon" count="nbrPolygons">
<data name="nbrPoints" type="int" length="4" init="3" />
<struct name="point" count="nbrPoints" >
<data name="x" type="int" length="4" init="100" />
<data name="y" type="int" length="4" init="200" />
</struct>
</struct>>
</struct>
</program>
</pcml>

Specifying offsets

Some programs return information with a fixed structure followed by one or more
variable length fields or structures. In this case, the location of a variable length
element is usually specified as an offset or displacement within the parameter.

An offset is the distance in bytes from a the beginning of the parameters to the
beginnning of a field or structure. A displacement is the distance in bytes from the
beginning of one structure to the beginning of another structure.

For offsets, since the distance is from the beginning of the parameter, you should
specify offsetfrom= "0". The following is an example of an offset from the beginning
of the parameter:

<pcml version="1.0">
<program name="myprog" path="/QSYS.1ib/MYLIB.1ib/MYPROG.pgm">
<l- receiver variable contains a path —>
<struct name="reciever" usage="output" outputsize="2048">
<data name="pathType" type="int" length="4" />
<data name="offsetToPathName" type="int" length="4" />
<data name="lengthOfPathName" type="int" length="4" />
<data name="pathName" type="char" Tength="1engthOfPathName"
offset="offsetToPathName" offsetfrom="0"/>
</struct>
</program>
</pcml>

For displacements, since the distance is from the beginning of another structure,
you specify the name of the structure to which the offset is relative. The following is
an example of an displacement from the beginning of a named structure:
<pcml version="1.0">
<program name="myprog" path="/QSYS.1ib/MYLIB.1ib/MYPROG.pgm">
<!— receiver variable contains an object —>
<struct name="reciever" usage="output" >

Chapter 2. Program Call Markup Language 69

<data name="objectName" type="char" Tlength="10" />

<data name="TibraryName" type="char" Tlength="10" />
<data name="objectType" type="char" Tlength="10" />
<struct name="pathInfo" usage="output" outputsize="2048" >

<data name="pathType" type="int" Tlength="4" />

<data name="offsetToPathName" type="int" Tength="4" />
<data name="lengthOfPathName" type="int" Tlength="4" />

<data name="pathName" type="char" length="1engthOfPathName"
offset="offsetToPathName" offsetfrom="pathInfo"/>
</struct>
</struct>
</program>
</pcml>
¥

[Legal | AS/400 Glossary]
The data tag

The data tag can have the following attributes. Attributes enclosed in brackets,],
indicate that the attribute is optional. If you specify an optional attribute, do not
include the brackets in your source. Some attribute values are shown as a list of
choices enclosed in braces, {}, with possible choices separated by vertical bars, |.
When you specify one of these attributes, do not include the braces in your source
and only specify one of the choices shown.

<data type="{ char | int | packed | zoned | float | byte | struct }"
[ccsid="{ number | data-name }" 1]

[count="{ number | data-name }"]

[init="string"]

[length="{ number | data-name }"]

[maxvem="version-string”]

[minvem="version-string”]

[name="name"]

[offset="{ number | data-name }"]

[offsetfrom="{ number | data-name | struct-name }"]

[outputsize="{ number | data-name | struct-name }"]

[precision="number"]

[struct="struct-name"]

[usage="{ inherit | input | output | inputoutput }" 1>

</data>

Attribute }\/alue Pescription

70 AS/400 Toolbox for Java: Graphical Toolbox and PCML

type=

char

where char indicates a
character value. The length
attribute specifies the number
of bytes of data which may
be different than the number
of characters. A char data
value is returned as a
java.lang.String.

int

where int is an integer value.
The length attribute specifies
the number of bytes, “2” or
“4". The precision attribute
specifies the number of bits
of precision. For example,

length= “2” precision= “15”
Specifies a 16-bit
signed integer. An
int data value with
these specifications
is returned as a
java.lang.Short.

length= “2” precision= “16”"
Specifies a 16-bit
unsigned integer. An
int data value with
these specifications
is returned as a
java.lang.Integer.

length= “4” precision= “31”
Specifies a 32-bit
signed integer. An
int data value with
these specifications
is returned as a
java.lang.Integer.

length= “4” precision= “32”
Specifies a 32-bit
unsigned integer. An
int data value is
returned as a
Java.lang.Long.

For length= “2”, the default
precision is “15”. For
length= “4”, the default
precision is “31".

packed

where packed is a packed
decimal value. The length
attribute specifies the number
of digits. The precision
attribute specifies the number
of decimal positions. A
packed data value is returned
as a java.math.BigDecimal.

zoned
where zoned is a%‘m{ﬁr 2. pro
decimal value. The length

Indicates the type of data
being used (character,
integer, packed, zoned,
floating point, byte, or struct).

gram Call Markup Language 71

attribute specifies the number

where number defines a
fixed, never-changing number
of elements in a sized array.

data-name

where data-name defines the
name of a <data> element
within the PCML document
that will contain, at runtime,
the number of elements in
the array. The data-name
specified can be a fully
qualified name or a name
that is relative to the current
element. In either case, the
name must reference a
<data> element that is
defined with type= “int”. See

w for more information

on how relative names are
resolved.

ccsid= number Specifies the host Coded
where number defines a Character Set ID (CCSID) for
fixed, never-changing CCSID. | character data for the <data>

element. The ccsid attribute

data-name can be specified only for
where data-name defines the | <data> elements with
name that will contain, at type= “char”.
runtime, the CCSID of the
character data. The If this attribute is omitted,
data-name specified can be a | character data for this
fully qualified name or a element is assumed to be in
name that is relative to the the default CCSID of the host
current element. In either environment.
case, the name must
reference a <data> element
that is defined with
type= “int”. See
for more information on how
relative names are resolved.

count= number Specifies that the element is

an array and identifies the
number of entries in the
array.

If the count attribute is
omitted, the element is not
defined as an array, although
it may be contained within
another element that is
defined as an array.

72 AS/400 Toolbox for Java: Graphical Toolbox and PCML

init= string Specifies an initial value for
the <data> element. The init
value is used if an initial
value is not explicitly set by
the application program when
<data> elements with
usage= “input” or
usage= “inputoutput” are
used.
The initial value specified is
used to initialize scalar
values. If the element is
defined as an array or is
contained within a structure
defined as an array, the initial
value specified is used as an
initial value for all entries in
the array.
length= number Specifies the length of the
where number defines a data element. Usage of this
fixed, never-changing length. |attribute varies depending on
the data type.
data-name
where data-name defines the
name of a <data> element
within the PCML document
that will contain, at runtime,
the length. A data-name can
be specified only for <data>
elements with type= “char” or
type= “byte”. The data-name
specified can be a fully
qualified name or a name
that is relative to the current
element. In either case, the
name must reference a
<data> element that is
defined with type= “int”. See
m for more information
on how relative names are
resolved.
Data Type Description
type= “char” The length attribute specifies

the number of bytes, of data
for this element. Note that
this is not necessarily the
number of characters. A
literal number or data-name
must be specified.

Chapter 2. Program Call Markup Language /3

type= “int”

The length attribute specifies
the number of bytes, “2” or
“4” of data for this element.
The precision attribute is
used to specify the number
of bits of precision and
indicates whether the integer
is signed or unsigned. A
literal number must be
specified.

type= “packed”

The length attribute specifies
the number of numeric digits
of data for this element. The
precision attribute is used to
specify the number of
decimal digits. A literal
number must be specified.

type= “zoned”

The length attribute specifies
the number of numeric digits
of data for this element. The
precision attribute is used to
specify the number of
decimal digits. A literal
number must be specified.

type= “float”

The length attribute specifies
the number of bytes, 4 or 8,
of data for this element. A
literal number must be
specified.

type: ubyteu

The length attribute specifies
the number of bytes of data
for this element. A literal
number or data-name must
be specified.

type= “struct”

The length attribute is not
allowed.

74 AS/400 Toolbox for Java: Graphical Toolbox and PCML

maxvrm=

version-string

Specifies the highest AS/400
version on which this element
exists. If the AS/400 version
is greater than the version
specified on this attribute,
this element and its children,
if any exist, will not be
processed during a call to a
program. This attribute is
helpful for defining program
interfaces which differ
between releases of AS/400.

The syntax of the version
string must be “VvRrMm”,
where the capitals letters “V,”
“R,” and “M” are literal
characters and “v,” “r,” and
“m” are one or more digits
representing the version,
release and modification
level, respectively. The value
for “v” must be from 1 to 255
inclusively. The value for “r"
and “m” must be from 0 to
255, inclusively.

minvrm=

version-string

Specifies the lowest AS/400
version on which this element
exists. If the AS/400 version
is less than the version
specified on this attribute,
this element and its children,
if any exist, will not be
processed during a call to a
program. This attribute is
helpful for defining program
interfaces which differ
between releases of AS/400.

The syntax of the version
string must be “VvRrMm,”
where the capitals letters “V,”
“‘R,” and “M” are literal
characters and “v,” “r,” and
“m” are one or more digits
representing the version,
release and modification
level, respectively. The value
for “v” must be from 1 to 255
inclusively. The value for “r"
and “m” must be from 0 to
255, inclusively.

name=

name

Specifies the name of the
<data> element.

Chapter 2. Program Call Markup Language 75

offset=

number
where number defines a
fixed, never-changing offset.

data-name

where data-name defines the
name of a <data> element
within the PCML document
that will contain, at runtime,
the offset to this element.
The data-name specified can
be a fully qualified name or a
name that is relative to the
current element. In either
case, the name must
reference a <data> element
that is defined with

type= “int”. See m
telative names” on page 69

for more information on how
relative names are resolved.

Specifies the offset to the
<data> element within an
output parameter.

Some programs return
information with a fixed
structure followed by one or
more variable length fields or
structures. In this case, the
location of a variable length
element is usually specified
as an offset or displacement
within the parameter.

An offset attribute is used in
conjunction with the
offsetfrom attribute. If the
offsetfrom attribute is not
specified, the base location
for the offset specified on the
offset attribute is the parent
of this element. See

m for more information

on how to use the offset and
offsetfrom attributes.

The offset and offsetfrom
attributes are only used to
process output data from a
program. These attributes do
not control the offset or
displacement of input data.

If this attribute is omitted, the
location of the data for this
element is immediately
following the preceding
element in the parameter, if
any.

76 AS/400 Toolbox for Java: Graphical Toolbox and PCML

offsetfrom=

number

where number defines a
fixed, never-changing base
location. Number is most
typically used to specify
number= “0” indicating that
the offset is an absolute
offset from the beginning of
the parameter.

data-name

where data-name defines the
name of a <data> element
used as a base location for
the offset. The element name
specified must be the parent
or an ancestor of this
element. The value from the
offset attribute will be relative
to the location of the element
specified on this attribute.
The data-name specified can
be a fully qualified name or a
name that is relative to the
current element. In either
case, the name must
reference an ancestor of this
element. See

for more information on how
relative names are resolved.

struct-name

where struct-name defines
the name of a <struct>
element used as a base
location for the offset. The
element name specified must
be the parent or an ancestor
of this element. The value
from the offset attribute will
be relative to the location of
the element specified on this
attribute. The struct-name
specified can be a fully
qualified name or a name
that is relative to the current
element. In either case, the
name must reference an
ancestor of this element. See

M for more information

on how relative names are
resolved.

Specifies the base location
from which the offset
attribute is relative.

If the offsetfrom attribute is
not specified, the base
location for the offset
specified on the offset

attribute is the parent of this
element. See Egperm
bffsets” on page 69 for more
information on how to use
the offset and offsetfrom

attributes.

The offset and offsetfrom
attributes are only used to
process output data from a
program. These attributes do
not control the offset or
displacement of input data.

Chapter 2. Program Call Markup Language 77

outputsize= number Specifies the number of
where a number defines a bytes to reserve for output
fixed, never-changing number | data for the element. For
of bytes to reserve. output parameters which are
variable in length, the
data-name outputsize attribute is
where data-name defines the needed to specify how many
name of a <data> element | pytes should be reserved for
within the PCML document | data to be returned from the
that will contain, at runtime, | AS/400 program. An
the number of bytes to outputsize attribute can be
reserve for output data. The specified on all variable
data-name specified can be a | |ength fields and variable
fully qualified name or a sized arrays, or it can be
name that is relative to the Specified for an entire
current element. In either parameter that contains one
case, the name must or more variable length fields.
reference a <data> element
that is defined with Outputsize is not necessary
type= “int”. See and should not be specified
i z for fixed-size output
for more information on how | parameters.
relative names are resolved.
The value specified on this
attribute is used as the total
size for the element including
all the children of the
element. Therefore, the
outputsize attribute is
ignored on any children or
descendants of the element.
If outputsize is omitted, the
number of bytes to reserve
for output data is determined
at runtime by adding the
number of bytes to reserve
for all of the children of the
<struct> element.
precision= number Specifies the number of
bytes of precision for some
numeric data types.
Data Type Description
type= “int” Use precision= “15”for a
length= "2” signed 2-byte integer. Use
precision= “16” for an
unsigned 2-byte integer. The
default value is “15”".
type= ‘“int” Use precision="31" for a
length= “4” signed 4-byte integer. Use
precision="32" for an
unsigned 4-byte integer.

78 AS/400 Toolbox for Java: Graphical Toolbox and PCML

type= “zoned”

The precision specifies the
number of decimal digits. The
number specified must be
greater than or equal to zero
and less than or equal to the
total number of digits
specified on the length
attribute.

type= “zoned” The precision specifies the
number of decimal digits. The
number specified must be
greater than or equal to zero
and less than or equal to the
total number of digits
specified on the length
attribute.
struct= name Specifies the name of a
<struct> element for the
<data> element. A struct
attribute can be specified
only for <data> elements
with type= “struct”.
usage= inherit Usage is inherited from the
parent element. If the
structure does not have a
parent, usage is assumed to
be inputoutput.
input Defines an input value to the
host program. For character
and numeric types, the
appropriate conversion is
performed.
output Defines an output value from
the host program. For
character and numeric types,
the appropriate conversion is
performed.
inputoutput Defines both and input and

an output value.

Resolving relative names

Several attributes allow you to specify the name of another element, or tag, within
the document as the attribute value. The name specified can be a name that is

relative to the current tag.

Names are resolved by seeing if the name can be resolved as a child or
descendent of the tag containing the current tag. If the name cannot be resolved at
this level, the search continues with the next highest containing tag. This resolution
must eventually result in a match of a tag that is contained by the <pcml > tag, in
which case the name is considered to be an absolute name, not a relative name.

<pcml version="1.0">

<program name="polytest" path="/QSYS.1ib/MYLIB.1ib/POLYTEST.pgm">
<l- Parameter 1 contains a count of polygoins along with an array of polygons —
<struct name="parml" usage="inputoutput">

Chapter 2. Program Call Markup Language 79

<data name="nbrPolygons" type="int" length="4" init="5" />
<!- Each polygon contains a count of the number of points along with an array of points —>
<struct name="polygon" count="nbrPolygons">
<data name="nbrPoints" type="int" length="4" init="3" />
<struct name="point" count="nbrPoints" >
<data name="x" type="int" length="4" init="100" />
<data name="y" type="int" length="4" init="200" />
</struct>
</struct>
</struct>
</program>
</pcml>

Specifying offsets

Some programs return information with a fixed structure followed by one or more
variable length fields or structures. In this case, the location of a variable length
element is usually specified as an offset or displacement within the parameter.

An offset is the distance in bytes from the beginning of the parameters to the
beginnings of a field or structure. A displacement is the distance in bytes from the
beginning of one structure to the beginning of another structure.

For offsets, since the distance is from the beginning of the parameter, you should
specify offsetfrom="0" . The following is an example of an offset from the beginning
of the parameter:

<pcml version="1.0">
<program name="myprog" path="/QSYS.1ib/MYLIB.1ib/MYPROG.pgm">
<l- receiver variable contains a path —>
<struct name="receiver" usage="output" outputsize="2048">
<data name="pathType" type="int" length="4" />
<data name="offsetToPathName" type="int" length="4" />
<data name="lengthOfPathName" type="int" length="4" />

<data name="pathName" type="char" length="1engthOfPathName"
offset="offsetToPathName" offsetfrom="0"/>
</struct>
</program>
</pcml>

For displacements, since the distance is from the beginning of another structure,
you specify the name of the structure to which the offset is relative. The following is
an example of an displacement from the beginning of a named structure:
<pcml version="1.0">
<program name="myprog" path="/QSYS.1ib/MYLIB.1ib/MYPROG.pgm">
<l— receiver variable contains an object —
<struct name="receiver" usage="output" >

<data name="objectName" type="char" length="10" />
<data name="TlibraryName" type="char" length="10" />
<data name="objectType" type="char" Tlength="10" />
<struct name="pathInfo" usage="output" outputsize="2048" >

<data name="pathType" type="int" length="4" />

<data name="offsetToPathName" type="int" Tlength="4" />
<data name="lengthOfPathName" type="int" length="4" />

<data name="pathName" type="char" Tength="1lengthOfPathName"
offset="offsetToPathName" offsetfrom="pathInfo"/>
</struct>
</struct>
</program>
</pcml>
¥

80 AS/400 Toolbox for Java: Graphical Toolbox and PCML

[Legal | AS/400 Glossary]

Example of using the Program Call Markup Language

Below are some examples of using Program Call Markup Language to call OS/400
APIs. Each example shows the PCML source followed by a Java program.

Note that in order to run these examples, the person running the program must sign
on with a user profile that has proper authority to do the following:

» Call the OS/400 API in the example
» Access the information being requested

The proper authority for each example varies but may include specific object
authorities and special authorities.

License information

IBM grants you a nonexclusive license to use this as an example from which you
can generate similar function tailored to your own specific needs. This sample is
provided in the form of source material which you may change and use.

DISCLAIMER

This sample code is provided by IBM for illustrative purposes only. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. All
programs contained herein are provided to you “AS IS” without any warranties of
any kind. ALL WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, ARE EXPRESSLY DISCLAIMED.

Your license to this sample code provides you no right or licenses to any IBM
patents. IBM has no obligation to defend or indemnify against any claim of
infringement, including but not limited to: patents, copyright, trade secret, or
intellectual property rights of any kind.

COPYRIGHT

Simple example of retrieving data

This example shows the PCML source and Java program needed to retrieve
information about a user profile on the AS/400. The API being called is the Retrieve
User Information (QSYRSURI) API.

Chapter 2. Program Call Markup Language 81

PCML source for calling QSYRUSRI

<pcml version="1.0">

<!- Format AUTUO150 - Other formats are available —>
<struct name="usri0100">

<data name="bytesReturned" type="int" length="4"
<data name="bytesAvailable" type="int" length="4"
<data name="userProfile" type="char" length="10"
<data name="previousSignonDate" type="char" length="7"
<data name="previousSignonTime" type="char" length="6"
<data type="byte" length="1"
<data name="badSignonAttempts" type="int" length="4"
<data name="status" type="char" length="10"
<data name="passwordChangeDate" type="byte" length="8"
<data name="noPassword" type="char" length="1"
<data type="byte" length="1"
<data name="passwordExpirationInterval" type="int" length="4"
<data name="datePasswordExpires" type="byte" Tlength="8"
<data name="daysUntilPasswordExpires" type="int" length="4"
<data name="setPasswordToExpire" type="char" length="1"
<data name="displaySignonInfo" type="char" length="10"
</struct>

<!- Program QSYRUSRI and its parameter list for retrieving USRIO100
<program name="gsyrusri" path="/QSYS.1ib/QSYRUSRI.pgm">

<data name="receiver" type="struct"
struct="usri0100"/>

<data name="receiverLength" type="int" length="4"

<data name="format" type="char" length="8"
init="USRI0O100"/>

<data name="profileName" type="char" length="10"
init="*CURRENT"/>

<data name="errorCode" type="int" length="4"
init="0"/>

</program>
</pcml>

<!— PCML source for calling "Retreive user Information" (QSYRUSRI) API —>

usage="output
usage="output
usage="output
usage="output
usage="output
usage="output
usage="output
usage="output
usage="output
usage="output
usage="output
usage="output
usage="output
usage="output
usage="output
usage="output

format —
usage="output

usage="input"
usage="input"

usage="input"

usage="input"

I/>
I/>
I/>
I/>
I/>
I/>
I/>
I/>
I/>
I/>
I/>
I/>
I/>
I/>
I/>
I/>

82 AS/400 Toolbox for Java: Graphical Toolbox and PCML

Java program source for calling QSYRUSRI

import
import
import
import

com.
com.
com.
com.

// Example
public class gsyrusri {
public gsyrusri() {

}

ibm.as400.data.ProgramCallDocument;
ibm.as400.data.PcmlException;

ibm.as400.access.AS400;

ibm.as400.access.AS400Message;

program to call "Retrieve User Information" (QSYRUSRI) API

public static void main(String[] argv)

{

try

AS400 as400System; // com.ibm.as400.access.AS400
ProgramCallDocument pcml; // com.ibm.as400.data.ProgramCallDocument
boolean rc = false; // Return code from ProgramCallDocument.callProg
String msgld, msgText; // Messages returned from AS/400

Object value; // Return value from ProgramCallDocument.getValu

System.setErr(System.out);

/1

Construct AS400 without parameters, user will be prompted

as400System = new AS400();

{

// Uncomment the following to get debugging information
//com.ibm.as400.data.PcmiMessagelog.setTraceEnabled(true);
System.out.printin("Beginning PCML Example..");
System.out.printin(" Constructing ProgramCallDocument for QSYRUSRI A
// Construct ProgramCallDocument
// First parameter is system to connect to
// Second parameter is pcml resource name. In this example,
// serialized PCML file "gsyrusri.pcml.ser" or
// PCML source file "gsyrusri.pcml" must be found in the classpath.
pcml = new ProgramCallDocument (as400System, "gsyrusri");
// Set input parameters. Several parameters have default values
// specified in the PCML source. Do not need to set them using Java cod
System.out.printIn(" Setting input parameters...");
pcml.setValue("gsyrusri.receiverLength", new Integer((pcml.getOutputsiz
// Request to call the API
// User will be prompted to sign on to the system
System.out.printin(" Calling QSYRUSRI API requesting information for
rc = pcml.callProgram("gsyrusri");
// If return code is false, we received messages from the AS/400
if(rc == false)
{
// Retrieve list of AS/400 messages
AS400Message[] msgs = pcml.getMessagelist("gsyrusri");
// Iterate through messages and write them to standard output
for (int m = 0; m < msgs.length; m++)
{
msgld = msgs[m].getID();
msgText = msgs[m].getText();
System.out.printin(" "+ msgld + " - " + msgText);
}
System.out.printIn("+% Call to QSYRUSRI failed. See messages above
System.exit(0);
1
// Return code was true, call to QSYRUSRI succeeded
// Write some of the results to standard output
else
{
value = pcml.getValue("qgsyrusri.receiver.bytesReturned");
System.out.printin(" Bytes returned: "+ value);
value = pcml.getValue("qgsyrusri.receiver.bytesAvailable");
System.out.printin(" Bytes available: "+ value);
value = pcml.getValue("gsyrusri.receiver.userProfile");
System.out.printin(" Profile name: "+ value);
value = pcml.getValue("qgsyrusri.receiver.previousSignonDate");
System.out.printin(" Previous signon date:" + value);
value = pcml.getValue("gsyrusri.receiver.previousSignonTime");
} System.out.printin(" CrEYIAY Slyigm Elllevarkuy thiGlage 83

ram ()

e ()

PT...");

=

e ("gsyrusri.y

the sign-on

k') s

catch (PcmlException e)

}

Example of retrig

84 AS/400 Toolbox for Ja

2ving a list of information

This example shows the PCML source and Java program needed to retrieve a list
of authorized users on an AS/400. The API being called is the Open List of
Authorized Users (QGYOLAUS) API.

This example illustrates how to access an array of structures returned by an AS/400
program.

va: Graphical Toolbox and PCML

PCML source for calling QGYOLAUS

<pcml version="1.0">
<!— PCML source for calling "Open List of Authorized Users" (QGYOLAUS) API —>
<!— Format AUTUO150 - Other formats are available —>

<struct name="autu0150">
<data name="name" type="char" length="10" />
<data name="userOrGroup" type="char" length="1" />
<data name="groupMembers" type="char" length="1" />
<data name="description" type="char" length="50" />
</struct>

<l- List information structure (common for "Open List" type APIs) —>

<struct name="1istInfo">
<data name="totalRcds" type="int" Tlength="4" />
<data name="rcdsReturned" type="int" 1length="4" />
<data name="rgsHandle" type="byte" length="4" />
<data name="rcdLength" type="int" Tlength="4" />
<data name="infoComplete" type="char" length="1" />
<data name="dateCreated" type="char" length="7" />
<data name="timeCreated" type="char" length="6" />
<data name="1istStatus" type="char" length="1" />
<data type="byte" length="1" />
<data name="lengthOfInfo" type="int" length="4" />
<data name="firstRecord" type="int" Tlength="4" />
<data type="byte" length="40" />

</struct>

<!— Program QGYOLAUS and its parameter list for retrieving AUTUO150 format —>
<program name="qgyolaus" path="/QSYS.1ib/QGY.1ib/QGYOLAUS.pgm" parseorder="1listIn
<data name="receiver" type="struct" struct="autu0150" usage="output"
count="TistInfo.rcdsReturned" outputsize="receiverLength" />

<data name="receiverLength" type="int" length="4" usage="input" init="163
<data name="listInfo" type="struct" struct="1istInfo" usage="output" />
<data name="rcdsToReturn" type="int" length="4" usage="input" init="264
<data name="format" type="char" length="10" usage="input" init="AUT
<data name="selection" type="char" length="10" usage="input" init="xUS
<data name="member" type="char" length="10" usage="input" init="*NO
<data name="errorCode" type="int" length="4" wusage="input" init="0"
</program>

<!— Program QGYGTLE returned additional "records" from the Tist
created by QGYOLAUS. —>
<program name="qgygtle" path="/QSYS.1ib/QGY.1ib/QGYGTLE.pgm" parseorder="TistInfo

<data name="receiver" type="struct" struct="autu0150" usage="output"
count="TistInfo.rcdsReturned" outputsize="receiverLength" />

<data name="receiverLength" type="int" length="4" usage="input" init="1638
<data name="requestHandle" type="byte" length="4" usage="input" />

<data name="listInfo" type="struct" struct="1istInfo" usage="output" />
<data name="rcdsToReturn" type="int" length="4" usage="input" init="264"
<data name="startingRcd" type="int" length="4" usage="input" />

<data name="errorCode" type="int" length="4" usage="input" init="0" /

</program>

<I- Program QGYCLST closes the 1ist, freeing resources on the AS/400 —>
<program name="qgyclst" path="/QSYS.1ib/QGY.1ib/QGYCLST.pgm" >

<data name="requestHandle" type="byte" length="4" usage="input" />
<data name="errorCode" type="int" length="4" usage="input" init="0" /
</program>
</pcml>

fo receiver"s

34" />

I />
J0150" />
ER" />

Ell />

>

receiver">

1" />

/>

Chapter 2. Program Call Markup Language

85

Java program source for calling QGYOLAUS

86 AS/400 Toolbox for J

import com.ibm.as400.data.ProgramCallDocument;

import com.ibm.as400.data.PcmlException;

import com.ibm.as400.access.AS400;

import com.ibm.as400.access.AS400Message;

// Example program to call "Retrieve List of Authorized Users" (QGYOLAUS) API
public class qgyolaus

{

public static void main(String[] argv)

{
AS400 as400System; // com.ibm.as400.access.AS400
ProgramCallDocument pcml; // com.ibm.as400.data.ProgramCallDocument
boolean rc = false; // Return code from ProgramCallDocument.callProgram(
String msgld, msgText; // Messages returned from AS/400
Object value; // Return value from ProgramCallDocument.getValue()
int[] indices = new int[1]; // Indices for access array value
int nbrRcds, // Number of records returned from QGYOLAUS and QGY

nbrUsers; // Total number of users retrieved

String listStatus; // Status of Tist on AS/400

byte[] requestHandle = new byte[4];
System.setErr(System.out);
// Construct AS400 without parameters, user will be prompted
as400System = new AS400();
try
{
// Uncomment the following to get debugging information
//com.ibm.as400.data.PcmiMessagelog.setTraceEnabled(true);
System.out.printin("Beginning PCML Example..");
System.out.printin(" Constructing ProgramCallDocument for QGYOLAUS API..."
// Construct ProgramCallDocument
// First parameter is system to connect to
// Second parameter is pcml resource name. In this example,
// serialized PCML file "qgyolaus.pcml.ser" or
// PCML source file "qgyolaus.pcml" must be found in the classpath.
pcml = new ProgramCallDocument (as400System, "qgyolaus");
// A1l input parameters have default values specified in the PCML source.
// Do not need to set them using Java code.
// Request to call the API
// User will be prompted to sign on to the system
System.out.printin(" Calling QGYOLAUS API requesting information for the s
= pcml.callProgram("qgyolaus");
// If return code is false, we received messages from the AS/400
if(rc == false)
{
// Retrieve list of AS/400 messages
AS400Message[] msgs = pcml.getMessagelist("qgyolaus");
// Tterate through messages and write them to standard output
for (int m = 0; m < msgs.length; m++)
{
msgld = msgs[m].getID();
msgText = msgs[m].getText();
System.out.printin(" "+ msgld + " - " + msgText);
}
System.out.printIn("*x Call to QGYOLAUS failed. See messages above **");
System.exit(0);
1
// Return code was true, call to QGYOLAUS succeeded
// Write some of the results to standard output
else
{
boolean doneProcessinglList = false;
String programName = "qgyolaus";
nbrUsers = 0;
while (!doneProcessingList)
{
nbrRcds = pcml. getIntVa]ue(programName + ".TistInfo.rcdsReturned");
requestHandle = (byte[]) pcml.getValue(programName + ".TistInfo.rgsHandle

va: Graphma/fo&%ﬁ&@%ﬁjE?ﬁ?ﬂgh Tist of users

indice 0; indices[0] < nbrRcds; indices[0]++)

value = pcml.getValue(programName + ".receiver.name", indices);

hTLE

gn-on user.");

')

}

Example of retrig

2ving multidimensional data

This example shows the PCML source and Java program needed to retrieve a list
Network File System (NFS) exports from an AS/400. The API being called is the
Retrieve NFS Exports (QZNFRTVE) API.

This example illustrates how to access arrays of structures within an array of
structures.

Chapter 2. Program Call Markup Language 87

88 AS/400 Toolbox for Jz

PCML source for calling QZNFRTVE

<pcml version="1.0">
<struct name="receiver">
<data name="lengthOfEntry" type="int" Tlength="4" />
<data name="dispToObjectPathName" type="int" length="4" />
<data name="lengthOfObjectPathName" type="int" Tlength="4" />
<data name="ccsid0fObjectPathName" type="int" Tlength="4" />
<data name="readOnlyFlag" type="int" Tlength="4" />
<data name="nosuidFlag" type="int" length="4" />
<data name="dispToReadWriteHostNames" type="int" Tlength="4" />
<data name="nbrOfReadWriteHostNames" type="int" Tlength="4" />

<data name="dispToRootHostNames" type="int" length="4" />
<data name="nbrOfRootHostNames" type="int" length="4" />
<data name="dispToAccessHostNames" type="int" length="4" />
<data name="nbrOfAccessHostNames" type="int" Tlength="4" />
<data name="dispToHostOptions" type="int" Tlength="4" />
<data name="nbrOfHostOptions" type="int" Tlength="4" />
<data name="anonUserID" type="int" Tlength="4" />
<data name="anonUsrPrf" type="char" length="10" />
<data name="pathName" type="char" Tength="1engthOfObjectPathNam

offset="dispToObjectPathName" offsetfrom="receiver" />
<struct name="rwAccessList" count="nbrOfReadWriteHostNames"
offset="dispToReadWriteHostNames" offsetfrom="receiver">

<data name="lengthOfEntry" type="int" length="4" />
<data name="TengthOfHostName" type="int" Tlength="4" />
<data name="hostName" type="char" length="1engthOfHostName" />
<data type="byte" Tength="0"
offset="1engthOfEntry" />
</struct>

<struct name="rootAccessList" count="nbrOfRootHostNames"
offset="dispToRootHostNames" offsetfrom="receiver">

<data name="lengthOfEntry" type="int" Tlength="4" />
<data name="1lengthOfHostName" type="int" length="4" />
<data name="hostName" type="char" length="1engthOfHostName" />
<data type="byte" Tength="0"
offset="1engthOfEntry" />
</struct>

<struct name="accessHostNames" count="nbr0fAccessHostNames"
offset="dispToAccessHostNames" offsetfrom="receiver" >

<data name="lengthOfEntry" type="int" length="4" />
<data name="TengthOfHostName" type="int" length="4" />
<data name="hostName" type="char" length="1engthOfHostName" />
<data type="byte" length="0"
offset="1engthOfEntry" />
</struct>
<struct name="hostOptions" offset="dispToHostOptions" offsetfrom="receiver" cou
<data name="lengthOfEntry" type="int" Tlength="4" />
<data name="dataFileCodepage" type="int" Tlength="4" />
<data name="pathNameCodepage" type="int" Tlength="4" />
<data name="writeModeFlag" type="int" Tlength="4" />
<data name="TengthOfHostName" type="int" Tlength="4" />
<data name="hostName" type="char" length="1engthOfHostName" />
<data type="byte" Tength="0"
offset="1engthOfEntry" />
</struct>
<data type="byte" Tength="0" offset="1engthOfEntry" />
</struct>
<struct name="returnedRcdsFdbkInfo">
<data name="bytesReturned" type="int" length="4" />
<data name="bytesAvailable" type="int" length="4" />
<data name="nbrOfNFSExportEntries" type="int" length="4" />
<data name="handle" type="int" length="4" />
</struct>

<program name="gznfrtve" path="/QSYS.1ib/QZNFRTVE.pgm" parseorder="returnedRcdsFd

D

nt="nbr0fHostOp

bkInfo receiver

<data name="receiver" type="struct" struct="receiver" usage="output|
count="returnedRcdsFdbkInfo.nbrOfNFSExportEntries" outputsize="receiverLength|/>
va:Gr gap?&&b"§q£&]¥qﬁggngth" type="int" length="4" usage="input" init="4096" />
ta name=' returnedRcdstkanfo" type="struct" struct="returnedRcdsFdbkInfo" usage="output" /:
<data name="formatName" type="char" Tlength="8" usage="input" init="EXPEO100" />
<data name="objectPathName" type="char" length="1engthObjPathName" usage="input" init=

</pcml>

Chapter 2. Program Call Markup Language

89

Java program source for calling QZNFRTVE

90 AS/400 Toolbox for J

import com.ibm.as400.data.ProgramCallDocument;

import com.ibm.as400.data.PcmlException;

import com.ibm.as400.access.AS400;

import com.ibm.as400.access.AS400Message;

// Example program to call "Retrieve NFS Exports" (QZNFRTVE) API
public class gznfrtve

{

public static void main(String[] argv)

{

AS400 as400System; // com.ibm.as400.access.AS400

ProgramCallDocument pcml; // com.ibm.as400.data.ProgramCallDocument

boolean rc = false; // Return code from ProgramCallDocument.callProgram(
String msgld, msgText; // Messages returned from AS/400

Object value; // Return value from ProgramCallDocument.getValue()

System.setErr(System.out);
// Construct AS400 without parameters, user will be prompted
as400System = new AS400();
int[] indices = new int[2]; // Indices for access array value

int nbrExports; // Number of exports returned

int nbrOfReadWriteHostNames, nbrOfRWHostNames,
nbrOfRootHostNames, nbrOfAccessHostnames, nbrOfHostOpts;

try

{

// Uncomment the following to get debugging information
// com.ibm.as400.data.PcmiMessagelog.setTraceEnabled(true);
System.out.printin("Beginning PCML Example..");
System.out.printin(" Constructing ProgramCallDocument for QZNFRTVE API..."
// Construct ProgramCallDocument
// First parameter is system to connect to
// Second parameter is pcml resource name. In this example,
// serialized PCML file "gznfrtve.pcml.ser" or
// PCML source file "gznfrtve.pcml" must be found in the classpath.
pcml = new ProgramCallDocument(as400System, "gznfrtve");
// Set input parameters. Several parameters have default values
// specified in the PCML source. Do not need to set them using Java code.
System.out.printin(" Setting input parameters...");
pcml.setValue("gznfrtve.receiverLength", new Integer((pcml.getOutputsize("q
// Request to call the API
// User will be prompted to sign on to the system
System.out.printin(" Calling QZNFRTVE API requesting NFS exports.");
rc = pcml.callProgram("qgznfrtve");
if (rc == false)
{
// Retrieve list of AS/400 messages
AS400Message[] msgs = pcml.getMessageList("gznfrtve");
// Iterate through messages and write them to standard output
for (int m = 0; m < msgs.length; m++)

{

msgld = msgs[m].getID();

msgText = msgs[m].getText();

System.out.printin(" "+ msgld + " - " + msgText);
1

System.out.printIn("*x Call to QZNFRTVE failed. See messages above **");
System.exit(0);

1

// Return code was true, call to QZNFRTVE succeeded

// Write some of the results to standard output

else

nbrExports = pcml.getIntValue("gznfrtve.returnedRcdsFdbkInfo.nbrOfNFSExport
// Iterate through 1ist of exports
for (indices[0] = 0; indices[0] < nbrExports; indices[0]++)
{
value = pcml.getValue("qznfrtve.receiver.pathName", indices);
System.out.printIn("Path name = " + value);
// Tterate and write out Read Write Host Names for this export

va'GraphmaP?E%B%QQQNTFﬁ?u?StNames = pcml.getIntValue("gznfrtve.receiver.nbrOfReadhr
' for(1 1

indices = 0; indices[1] < nbrOfReadWriteHostNames; indices[1]++)

{

rnfrtve.receive

Entries");

teHostNames", -

value = pcml.getValue("qgznfrtve.receiver.rwAccessList.hostName", indices);

Chapter 2. Program Call Markup Language

91

Printed in U.S.A.

