

IBM WebSphere Development Studio client for

iSeries

CODE - Selected Advanced Topics

Session Id 404595
Agenda Key 36LF

Inge Weiss and the iSeries Team
iweiss@ca.ibm.com

 CODE - Advanced Topics 1 © Copyright IBM Corp. 1998 , 2002
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

IBM Toronto Laboratory

Version 4 SP 2

homepage: http://www.ibm.com/software/ad/iseries
newsgroup: news://news.software.ibm.com/ibm.software.code400

 CODE - Advanced Topics 2 © Copyright IBM Corp. 1998 , 2002
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Eighth Edition (September, 2002)

The information contained in this document has not been submitted to any formal IBM test and is distributed on an
“as is" basis without any warranty either express or implied. The use of this information or the implementation of any
of these techniques is a customer responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have been reviewed by IBM for accuracy in
a specific situation, there is no guarantee that the same or similar results will result elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their own risk.

Comments concerning this notebook and its usefulness for its intended purpose are welcome. You may send written
comments to:

IBM Canada Ltd.

8200 Warden Avenue, Markham, Ontario, L6G 1C7

Attention: Inge Weiss, CODE Advanced Topics

or e-mail to: iweiss@ca.ibm.com

Technical Information

For more technical information on CODE/or WebSphere Development Studio client for iSeries contact either
Dave Slater at slater@ca.ibm.com
Claus Weiss at weiss@ca.ibm.com

Education

CODE courses:

S6186 CODE/400 for iSeries - Basic (2 days)
S6205 CODE/400 for iSeries - Advanced (1 day)

S6286 iSeries Application Development using WDSc for iSeries - Basic (2 days)

 CODE - Advanced Topics 3 © Copyright IBM Corp. 1998 , 2002
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Trademarks
IBM is a registered trademark of International Business Machines Corporation.

The following are trademarks of International Business Machines Corporation.

iSeries
DB2/400
ILE
Integrated Language Environment
IBM
OS/400
RPG/400
Visual Age
WebSphere

Trademarks of other companies as shown

'Intel' ‘Intel Corporation'

'Microsoft' 'Microsoft Corporation'

‘Windows’ 'Microsoft Corporation'

Copyright International Business Machines Corporation 2002. All rights reserved.
This material may not be reproduced in whole or in part without the prior written permission of IBM.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

 CODE - Advanced Topics 4 © Copyright IBM Corp. 1998 , 2002
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Overall Lab Guide
The objective of the lab CODE - Selected Advanced Topics is to explore some of the
customization possibilities that are available in the CODE Editor. At the end of the
lab, the student should know how to create REXX macros, menu items, toolbar
buttons, and popup menus. The Lab also shows how to make these changes
persistent by adding them to the appropriate editor profile. Part two of this lab shows
how to create an Lpexlet, an extension to the editor written in Java.
The lab also gives the student an opportunity to work with the Remote Systems
Explorer, learn how to invoke the CODE tools from there and, as an optional
exercise, learn how to create filters and user actions.

The exercises should be completed in sequence.

Note: The pictures in these labs show similar tasks. Some of the names and
directories may be different from the environment you are working with.

 CODE - Advanced Topics 5 © Copyright IBM Corp. 1998 , 2002
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Prerequisites

The participants should be familiar with CODE. They should be able to use the
CODE Editor. Also, it is helpful if the student is familiar with basic MS Windows
operations such as working with the desktop and basic mouse operations such as
opening folders and performing drag-and-drop operations.

 CODE - Advanced Topics 6 © Copyright IBM Corp. 1998 , 2002
 Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

64Event Driven Programming in Java
64Event Driven Programming in GUI Systems
63

Step 2. Creating the “RPG Procedure Template”
dialog box - RPGProcFame class

57Step 1. Creating an RPGProc Lpexlet Class
55Java Applications
54Java Applets
54Section Introduction
54The Lab - Section 2: Lpexlets
51Step 9. CODE editor profiles
48

Step 8. CODESRV - remote execution
command

46
Step 7. Updating the editor’s toolbar and popup
menu

44Step 6. Updating the editor’s menu bar
43

Optional exercise - prefilling the procedure
name entry field

35Step 5. Creating an RPGPROC macro
30Step 4. Executing existing REXX macros
29

Step 3. Associating source types with language
profiles

27
Step 2. Associating name patterns with source
types

23
Selecting an iSeries object in the RSE
perspective

21
Now you are ready to create a
Connection

20
Open the Remote Systems Explorer
perspective

17
Using the WebSphere Studio
workbench to invoke the CODE Editor

16Step 1. The Remote Systems Explorer (RSE)
14Step 0. Connecting to the iSeries
12

CODE Editor Programming (ultimate
customization)

12Basic Editor Features
12Section Introduction
12

The Lab - Section 1: Customizing the CODE
Editor

11Installing CODE
11The Tool
11The Goal

9Introduction
6Prerequisites
5Overall Lab Guide

Table of Contents

 CODE - Advanced Topics 7 Copyright IBM Corp. 199 8 , 2002
 Course material may not be reproduced in whole or in part

 without th e prior written permission of IBM.

96Appendix B
95

Appendix A - The RPG Procedure
SmartGuide

93Running commands from the RSE
87Creating a user action
82Lets now create an object filter
76

Selecting an iSeries object in the RSE
perspective

75
Optional Exercise: WebSphere Studio
Workbench

71
Step 4. Creating the RPGPROCJAVA macro
and running the Lpexlet

69
Step 3. Using CODE to compile your Java
classes

Table of Contents

 CODE - Advanced Topics 8 Copyright IBM Corp. 199 8 , 2002
 Course material may not be reproduced in whole or in part

 without th e prior written permission of IBM.

Introduction
The IBM WebSphere Development Studio for iSeries product is a suite of e-business enabling
technologies including host and workstation components:

Host Components
! ILE RPG
! ILE COBOL
! ILE C
! ILE C++
! Application Development ToolSet (ADTS) includes PDM, SEU, SDA, RLU

Workstation Components (WebSphere Development Studio client, WDSc)
! WebSphere Studio Site Developer Advanced

++++ iSeries Plugins
! Remote Systems Explorer
! WebFacing

! Classic Tools
! CODE
! VisualAge RPG

The CoOperative Development Environment, better known as CODE, is a set of integrated
development tools that allow you to: create, edit, compile, and maintain your source code; debug
programs using a PC connected to an iSeries; and completely organize your programming
projects.

The CODE product includes the following tools:
! CODE Editor

A powerful language-sensitive editor that you can easily customize. Token highlighting
of source makes the various program elements stand out. It has SEU- like specification
prompts for RPG and DDS to help enter column-sensitive fields. Local syntax checking
and semantic verification for your RPG, COBOL and DDS source makes sure it will
compile cleanly the first time on an iSeries. If there are verification errors, an Error List
lets you locate and resolve problems quickly. On-line programming guides, language
references, and context-sensitive help make finding the information you need just a
keystroke away.

! CODE Program Generator
An interface that allows you to submit requests to the iSeries to compile, bind, or build
objects on the host. The tool gives you easy access to all the compile options available
for all the supported create commands (CRTxxx).

! CODE Designer

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 9 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

A rich graphical interface that makes designing or maintaining display file screens,
printer file reports and physical files easy and fun.

! IBM Distributed Debugger
A source-level debugger that allows you to debug an application running on a host iSeries
from your workstation. It provides an interactive graphical interface that makes it easy to
debug and test your host programs.

! CODE Project Organizer
An enhanced and more flexible workstation version of the Program Development
Manager (PDM). It ties all the parts of CODE together and allows you to quickly access
all the power of CODE and to effectively manage and organize your development
projects.
The functionality of CPO is being replaced by the WebSphere Studio workbench. In this
lab you will have a chance to use the Explorer perspective, instead of CPO to reflect this
fact.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 10 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

The Goal
In this session, you will learn some nontrivial features and functionality of the CODE tools. You
will learn how to customize the LPEX editor by using predefined functions and extending its
capability with REXX macros and Java Lpexlets. You will also find out how productive you can
be with CODE even when there is no connection to the iSeries host. We are confident that CODE
will save you time and effort in your day-to-day programming tasks. It will make you a more
efficient and effective programmer. At the same time, it will save cycles on your iSeries. Now
let’s spend a couple of hours playing and see if you agree.

The Tool
Installing CODE
The CODE tool of the WebSphere Development Studio client for iSeries (WDSc) product
consists of two parts:

1. The ‘back-end’ which resides on the iSeries.
This part is responsible for handling all the workstation requests such as getting or saving
source members, etc. The back-end is shipped with the WDS product.

2. The ‘front-end’ which is installed on your workstation.
These workstation files can be installed from:

! a local CD drive
! a LAN drive (assuming that an installable image has been set up on the LAN)
! an iSeries (assuming that the workstation files have been copied into the iSeries ifs).

The workstation install uses the Windows Installer.

The minimum hardware requirements for CODE are an Intel® Pentium II processor or faster with
128MB of memory, a SVGA 800 x 600 monitor, CD-ROM drive, and a mouse or pointing
device. The recommended workstation hardware when using the WebSphere Studio workbench
with the CODE tools is a workstation with 256MB of memory and a SVGA 1024 x 768 monitor.
An install of WDSc uses about 1.4GB of disk space.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 11 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

The Lab - Section 1: Customizing the
CODE Editor

Section Introduction
Basic Editor Features
The CODE Editor has all the basic functions that you would expect in any serious editor:

! Cut, copy, and paste
! Block marking of lines, characters, or rectangles with copy, move, overlay, and delete
operations.
! Powerful find and replace functionality.
! Unlimited undo and redo.
! Automatic backup and recovery.

In addition there are a few more functions that you may not have seen in a workstation editor:
! Token highlighting -- different language constructs are highlighted using different colors
and fonts to help identify them in a program. This highlighting is completely customizable
(see the menu item Options" Token attributes...).
! SEU- like format-line rulers to show the purpose of each column for column-sensitive
languages like RPG and DDS. These rulers can automatically update themselves to reflect
the current specification.
! SEU-like specification prompting for RPG and DDS.
! Sequence numbers which allow SEU-style commands in the prefix area.
! Intelligent tabbing between columns for column-sensitive languages.
! Automatic uppercasing for languages that expect uppercase (RPG and DDS).
! For column-sensitive languages there is the CODE FIELDS ON command that simplifies
text insertions and deletions.
! On-line language reference help.

CODE Editor Programming (ultimate customization)
Despite its rich functionality, the CODE editor may still lack features that suit the needs of a
particular iSeries shop, or even individual programmers. Therefore, we provide a means of
customizing the editor to your liking. You can:

! Specify default editor settings.
! Add editor functions and your own macros to the menus and toolbar.
! Assign/re-assign keys and/or line commands to editor functions and your own macros.
! Interact with the host via the CODESRV command.
! Implement and execute REXX macros and Java Lpexlets.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 12 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

In this section we will introduce you to:

! Associating name patterns with source types.

! Associating source types with language profiles.

! CODE editor commands.

! REXX macros for the CODE editor.

! Adding and updating editor menus and popup menus.

! Updating the editor toolbar.

! The CODESRV command.

! Working with various editor profiles.

You will:

! 1. Associate the RPGLE file type with all local files that have the extension .RPG.

! 2. Learn, execute and master various LPEX editor commands.

! 3. Write and execute the RPGPROC REXX editor macro (that uses a prompt box).

! 4. Update the editor menu, popup menu, and toolbar.

! 5. Use CODESRV to submit remote commands.

! 6. Understand editor profiles, and create an RPGLE400.LXU profile.

Now let’s begin our journey into the wonderful world of CODE...

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 13 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Step 0. Connecting to the iSeries
PURPOSE

Communication between the iSeries and your workstation can be configured for:
!TCP/IP using the native Windows built in TCP/IP support. You can use any 5250 emulator
that supports TCP/IP.
! SNA (System Network Architecture) / APPC (advanced program-to-program
communications). This setup requires either: Client Access Express; Personal
Communications; or RUMBA to handle the communications.

For this lab session, you will use TCP/IP communications. On the workstation, the CODE
daemon needs to be running in order to allow TCP/IP communication with the iSeries. When
your PC is restarted after the CODE installation, the CODE daemon is started for you. If you
closed the daemon or want to start it manually, you can do so from Start " Programs " IBM
Websphere Development Tools for iSeries " Communications " Communication Daemon.

INSTRUCTIONS

1a. Ensure that the Communication daemon is running.
 This program waits and listens for an iSeries to contact
 it on a specific TCP/IP port and then makes a connection.
 You should see an icon in your system tray (bottom right of your screen).
 You can interact with CODE communications by using the pop-up menu of this icon.

1b. Start a 5250-emulation session.

1c. Sign on to the iSeries. Your userid and password should both be WDSCLABxx where xx
 is your workstation number (01, 02, etc.).

Note:
Instead of the Enter key you may have to use the Ctrl key in your 5250-emulation
session.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 14 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

1d. At the iSeries command line type:

 STRCODE RMTLOCNAME(*RESOLVE) CMNTYPE(*TCPIP)

The *RESOLVE keyword will get the IP address of your work station and with this
information the CODE server will communicate with the CODE daemon that runs on
your workstation.

You should see a screen that has EVFCLOGO in the upper left-hand corner. The CODE server
is now active and waiting for commands from the workstation.

There is a different way to start the CODE server; just for your information we describe it
here as well.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 15 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

If you know your workstations IP hostname, you could specify it directly in the STRCODE
command:

STRCODE RMTLOCNAME(PC_hostname) CMNTYPE(*TCPIP)

The PC_hostname would be either the TCP/IP host name of your PC or its dotted IP address
in quotes. For example ‘9.21.99.99’. You can determine your PC host name, by typing :

hostname
at a DOS command line.

Note:
If you are still on an OS/400 version lower than V5, the *Resolve keyword is not
supported, you could instead use the STRCODETCP command.

This will call a CL program which automatically figures out which IP address your
emulator is using and invokes the STRCODE command that is shipped with the
product. This CL program can be found in the QCLSRC source file in the
CODELABxx library.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 16 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Step 1. The Remote Systems Explorer (RSE)

CODE invocation choices

The new WDSc product with its workbench gives the programmer some more choices how to

invoke the editor. You have the choice to either work with the CODE tools in a stand alone

environment, or you could use the new WebSphere Studio workbench capabilities of accessing

iSeries objects directly and then invoke the CODE tools from the workbench.

Using the WebSphere Studio workbench to invoke the CODE Editor

In this Lab we will use the WebSphere Studio workbench to access iSeries objects, and then

start the CODE tools from the workbench.

Before you start using WebSphere Development Studio Client, you will need to reset it. This will

delete any changes to the environment due to previous use of the tool on the PC you are

working on.

The instructor will tell you how to reset the WebSphere Development Studio Client environment

by removing the WORKSPACE folder from the WDSC folder.

Warning:
If you work on your own system, be careful as this will remove all project information stored
in the workbench. You will loose your work if you reset the workbench!

After you have reset the workbench go ahead and start WDSc

Invoking WebSphere Development Studio client (WDSc)

To start Development Studio client,

! Press the Start button on the task bar of your desktop

! Choose Start""""Programs""""IBM WebSphere Development Studio Client for

iSeries -> IBM WebSphere Studio Site Developer Advanced

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 17 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

! After a few moments of loading, the workbench appears

If the workbench has previously been used, it will look different than in the figure

above. In case you didn’t reset the workbench some pictures will differ from your real

lab environment.

You will be working with the Remote Systems Explorer (RSE) perspective in the

workbench.

A perspective is a specific arrangement of views and tools in the workbench,

depending on what role the workbench user has, he/she will use a different

perspective. A web developer will use the web perspective, a Java developer will

use the Java perspective, an iSeries developer will use the Remote Systems

Explorer perspective.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 18 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

The workbench most likely will already show the Remote Systems Explorer

perspective, you might see a different perspective already open in the workbench or

no perspective.

! Check for the name of the perspective, the arrow in the figure above indicates where

to look for the perspective name.

If the active perspective is already the Remote Systems Explorer perspective

skip the next steps until you see the heading

 Now you are ready to create a connection

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 19 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Open the Remote Systems Explorer perspective

If there is no perspective open or a different perspective open, go through the

following steps:

! Start the Remote Systems Explorer perspective, by selecting the Perspective

menu item on the workbench Menu bar.

! Then Select the Open choice from the pull down menu.

! Select the Remote Systems Explorer (RSE) option from the sub menu.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 20 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Now you are ready to create a Connection

! Go thru the following steps to create a connection to the iSeries server we will

work with in this Lab.

! Locate the New Connection node.

! Double click on the New Connection node.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 21 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

The New Connection wizard will appear.

! Leave the parent profile as is, don’t change it.

! Specify the Connection name, this is the same as your iSeries host name.

! Specify the System type, which is: iSeries.

! Specify the Host name, if you don’t know it ask your instructor.

! Specify the Default User ID, which is WDSCLABxx,

 xx being your group number, if you are group/team 70, your userid would be

 WDSCLAB70

! Press the Finish push button.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 22 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Selecting an iSeries object in the RSE perspective
Back in the RSE perspective, you now need to get to the iSeries object you want to
work with.

First you will need to specify the library you want to work with:

! Expand the connection node that connects to your iSeries host, by clicking on

the + sign beside it.

! Expand the iSeries Objects node.

! Expand the Library list node.

We have setup your Userid so that your group/team library has been added to the

library list automatically.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 23 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

You will be prompted to sign on to the iSeries server

! Use Userid WDSCLABxx and password WDSCLABxx

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 24 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Back in the workbench in the RSE perspective you will see the libraries in your

job’s library list.

! Locate library CODELABxx, xx being your group number, and expand it.

Note:
If you see 2 CODELABxx library entries in the list, don’t worry, one entry

represents the current library, the other shows the same library, but in the library

list.

You will see all objects in this library appear in the expanded list.

! Locate the QDDSSRC source file and expand it.

! Locate the QRPGLESRC source file and expand it as well.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 25 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Now you can access the members in these 2 source files.

! Right mouse click on member MSTDSP in the QDDSSRC source file.

! Select the Open with menu option from the pop up menu.

! Select the CODE Editor option from the sub menu.

The CODE editor window will show up with this member loaded.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 26 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Step 2. Associating name patterns with
source types

PURPOSE

For the following exercises we will need to create an ILE RPG file and store it on a local drive.
Most local source files have both a file name and a file extension. The CODE editor uses the file
extension to determine what type of source is in the file. For example, files that have a file
extension .RPG are assumed to contain RPG/400 while files with an .IRP extension are assumed
to be ILE RPG. It’s easy for us to change these default settings. In the following exercise you
will associate the name pattern *.RPG with ILE RPG instead of RPG/400.

INSTRUCTIONS

2a. The CODE editor should be open already, if you skipped the exercises in Step 1, you can now
start the CODE editor from the Windows Start menu. Select Start" Programs" IBM
WebSphere Development Tools for iSeries" IBM CODE400 " CODE Editor. The
CODE Editor appears.
2b. From the editor’s ‘Options’ menu, select ‘Associations’ -> ‘Name pattern’. The
 ‘Name Pattern Association’ dialog comes up.

2c. From the ‘Name pattern’ list box pick the *.RPG pattern. Select the RPGLE value from
 the ‘Source type’ list box.
2d. Press the ‘Change’ button to make the changes take effect.
 From now on when we open a file with a .RPG extension, the editor will treat it as an ILE
 RPG file.

NOTE: You can associate source types with name patterns for host files as well. For example,
associating a */QRPGSRC(*) pattern with the RPG source type tells the editor to treat any
member from the QRPGSRC file as an RPG/400 file.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 27 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Now let’s get a bit creative. We will invent a new name pattern called ‘MySource’ and associate
it with the CBLLE (which stands for ILE COBOL).

2e. In the ‘Name pattern’ entry field type: *.MySource and then select CBLLE from the
 ‘Source type’ list box.

2f. Press the ‘Add’ button to complete the association.

2g. Press the ‘OK’ button to dismiss the ‘Name Pattern Association’ dialog.

If we now create a file with the extension .MySource, the editor will treat it as ILE COBOL.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 28 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Step 3. Associating source types with language
profiles

PURPOSE

In the following exercise you will see the importance of being able to associate name patterns
with source types. The CODE editor gives you the flexibility to execute editor commands and
macros when a file gets loaded into the editor. Moreover, different commands and macros get
executed for different ‘language profiles’. Therefore, it is very important that file source types are
associated with the appropriate language profiles. Guess what, CODE provides you with such a
feature!

INSTRUCTIONS

3a. From the editor’s ‘Options’ menu, select ‘Associations’ -> ‘Source types’. The
 ‘Source Type Association’ dialog comes up

3b. From the ‘Source type’ list box (on the left) select the RPGLE source type. Notice how the
 RPGLE400 language profile gets selected in the ‘Language profile’ list box (on the right).

3c. Press the ‘OK’ button to dismiss the ‘Source Type Association’ dialog

NOTE: In Step 2 of this section you associated the RPGLE source type with the *.RPG name
pattern. We also just saw that the RPGLE source type is associated with the RPGLE400
language profile. This actually means that whenever we open a local file with the .RPG
extension, editor commands and macros in the RPGLE400 language profile get executed!

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 29 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Step 4. Executing existing REXX macros
PURPOSE

To get comfortable with running REXX macros from the CODE editor you will now execute two
macros that are currently shipped with the WDT/400 product. In order to execute a REXX
macro you have to switch to the editor’s command line. Use the ‘ESC’ key to switch between the
source editing area and the command line.

REXX macros are run from the command line by typing: MACRO MacroName.
If you are certain that there is no other editor command that matches the name of your macro
then the MACRO directive can be omitted.

INSTRUCTIONS

Part1: Running a simple REXX macro
4aI. Press the Esc key to go to the editor’scommand line.

4bI. Type MACRO EXTRAS ON and then press Enter.

You have just run your first editor macro! The EXTRAS macro is used to update the path
that the editor searches when an editor command or macro is executed. By issuing the command,
"EXTRAS ON" the editor will search product directory\EXTRAS and then
product directory\MACROS. It remains on until it is explicitly turned off (EXTRAS OFF). The
EXTRAS directory contains the additional macros that you are about to play with. Once the
editor window gets refreshed, for example after an Open, you will see a new menu item called
‘Extras’.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 30 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

4cI. Use the RSE to open PAYROLL in the editor. Expand the library CODELABxx, expand
QRPGLESRC and click mouse button two on the member PAYROLL. Select CODE Editor
from the context menu.
Alternatively, you could use the Editor’s Open dialog (File -> Open, expand OS400, expand
CODELABxx, select QRPGLESRC and select PAYROLL) or type the following command in
the editor command line

LX <OS400>CODELABxx/QRPGLESRC(PAYROLL)

 where ‘xx’ is your workstation number and press the Enter key. LX is the editor command
 used to open a file.

NOTE: Clicking the down arrow in the right hand corner of the editor command line will give
you a selection list of the recently-issued editor commands. Just click on a command to recall it
and press Enter to re-submit it with or without prior modification.

4dI. Enter about 10 lines of text into the file. It doesn’t matter what it is.

4eI. Go to the fifth line and delete it by pressing Ctrl+Backspace.
 Notice that the sequence numbers now skip the number of the deleted line.

4fI. On the editor command line type MACRO RESEQ and then press Enter.
 This will resequence the file using the values in the Set Resequence Options dialog
 available from the ‘Options ‘ -> ‘Resequencing’ pull down.
 Notice that the lines are in sequential order again.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 31 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

4gI. RESEQ is a macro written in REXX. Type:
LX RESEQ.LX

 and then press Enter to open the macro and see what it does.

This is what the macro RESEQ looks like. It may seem a little cryptic now, but once we take a
closer look, macros will not seem mysterious any more.

Switching between files:
Multiple files can be loaded into the CODE editor simultaneously. In order to switch from one
file to another, there is a drop-down list which is located directly under the toolbar. When you
click on the down arrow on the right, the entire list shows up and you can select the file from
there.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 32 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Part 2: Running a REXX macro with prompt
At times it may be required to prompt the user for some information. REXX in conjunction with
the CODE editor commands allow for a simple, one-line prompt box, which is good enough for
many cases. Let’s try an example:

4aII. Notice that EXTRAS is still ON from the previous exercise. Play with the options that are
 available from the ‘Extras’ menu. You can get more information about the supplied ‘extra
 features’ by exploring the ‘CODE/400Tips and Techniques’ available from the ‘Extras’ ->
 ‘Information’ menu.

4bII. Press the Esc key to go to the command line if you are not already there.

4cII. Type MACRO RENAME and then press Enter. The following dialog box comes up:

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 33 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

4dII. Enter RENAMED.DAT in the 'Rename File’ entry field for the new file name and then
 press the ‘OK’ button.

4eII. The 'Rename File’ dialog disappears, and the file that is currently loaded in the editor gets
 the new name - RENAMED.DAT

4fII. As you might have suspected already, RENAME is another REXX macro. Type:
LX RENAME.LX

 and then press the Enter key to bring up its source in the editor.

4gII. While looking through the source, pay particular attention to the following lines

'set lineread.title Rename File'
'set lineread.prompt Enter new name:'
'lineread 255'

These lines mean:
1) Set the dialog title to “Rename File”
2) Create a dialog label called “Enter new name:”
3) Read up to 255 characters from the entry field.

You will use similar code in the following exercises when the need for a prompt dialog box
arises.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 34 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Step 5. Creating an RPGPROC macro
PURPOSE

Commenting code is seldom done well. Programmers are usually too busy just trying to write the
code and make it work to ever have time to go back and add comments. But leaving out
comments makes code maintenance difficult. What if we could somehow automate this process?
Let’s write a little REXX macro that prompts the user for the procedure name and then generates
an appropriate procedure template that includes lovely comments!

INSTRUCTIONS

5a. Press the Esc key to go to the command line if you are not already there.

5b. Open a new file called RPGPROC.LX by typing
LX RPGPROC.LX

and then press the Enter key.

5c. It is necessary to start every REXX program with a comment. The first few lines will give a
 brief description of what our macro will do. Type them in:

5d. At this point you should save the file. Use the ‘File’->’Save as...’ command and add the file
 to the WDT/400 macros directory:

x:\WDSC\MACROS\RPGPROC.LX
 (x is the drive where CODE is installed).
Now you can actually run this new macro. Of course, it won’t do anything yet because the macro
only contains comments.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 35 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

5e. Switch to the command line (press the Esc key) and type MACRO RPGPROC and press
 Enter. Nothing happens, the macro does not do anything yet.

5f. Just to get more comfortable with the REXX environment, let’s make a syntax error in the
 REXX program. On the first line remove the first forward slash ‘/’ character, so that the line
 becomes:

 ***/

 Notice that as soon as you move the cursor away from the first line, the line is highlighted in
red indicating that there is a REXX syntax error.

5g. Save the file - this time use the ‘Save’ icon on the toolbar.
 It looks like this:

 Switch to the command line (press the ESC key) and type MACRO RPGPROC and press
 Enter. You will get the following error message that indicates that there is a problem with
 your REXX program.

NOTE: If you want more information about an error when running a macro, select Macro Log

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 36 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

from the editor’s Windows menu.

5h. Correct the error by putting the ‘/’ character back at the beginning of the first line.

Now we will write some REXX code that will show a prompt dialog box that will look like the
following

As a matter of fact, we have already seen similar code in the previous exercise, but at this point it
would be very helpful to learn a bit more about the lineread editor command.

5i. From the editor’s ‘Help’ menu select the ‘Editor reference’ option. The online Editor
 Reference manual comes up in a browser and displays the navigation page Editor Commands
 and Parameters. We are interested in information about the command and parameter
 lineread. Click on ‘Commands Summary’ and page down. Click on the ‘lineread’ command
 to display the description and carefully read the documentation and example.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 37 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

5j. Use the Back button in the browser’s tool bar to get back to the command selection. Page all
 the way up and press the Synchronize button in the top right corner. An index and a search
 entry field appear. Type ‘lineread ’ in the search field and press Enter. Select the entry
 ‘Editor - lineread parameter. Read the documentation and examples. Minimize the help
 window, we will need it again later.

The following lines of REXX code will set up the dialog box title, a prompt label, and an entry
field of length 10:

'set lineread.title RPG Procedure name'
'set lineread.prompt Enter the name of the procedure: '
'lineread 10 '

5k. Now that we understand how to show a dialog box, we still need to figure out how to read the
 procedure name that the user has entered, and which button, OK or Cancel, was pressed. We
 will not worry about the ‘Help’ button. You could find out how to do this by reading the
 Editor Reference for the ‘lastline’ and ‘lastkey’ commands. Or you could simply use the
 following two lines:

'extract lastline' /* Read in the text from the entry field */
'extract lastkey' /* Read in the last key pressed */

Once the dialog is dismissed the variable lastline will contain the procedure name and the
variable lastkey will indicate which button was pressed.
NOTE: The ‘Esc’ key corresponds to the ‘Cancel’ button press.

5l. Some error checking never hurts. Let’s make sure that the user actually entered the procedure
 name and pressed the OK button, otherwise generate an error message.

if ((lastline = ‘’) | (lastkey = 'ESC')) then do
 'msg Request canceled'
 exit
end

Notice that we used the if - then REXX construct. REXX documentation is available for those
who are not very comfortable with the REXX language. From the editor’s ‘Help’ menu select the
‘REXX help’ option. You will find the ‘Programming guide’ and ‘Reference’ manuals.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 38 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

NOTE: We have gathered all the required information from the user, and are ready to create an
RPG procedure template. We will use the insert editor command and so it is a good idea to read
the appropriate page of the Editor Reference.

5m. Since RPG is a positional language it is important to make sure that the length of the
 procedure name variable is no longer than 10 characters. The following code will pad the
 procedure name entered by the user with blanks (to exactly 10 chars).

procName = lastline
/* Pad procName with blanks to make it 10 characters long */
do procLength = length(lastline) to 9
 procName = procName' '
 end

5n. Any REXX substitution variables should be placed outside the quotes, while editor
commands and strings should be surrounded by single quotes. The final template generation part
of the macro will look like this:

/* The procName is 10 characters long including blanks */
'insert D* --'
'insert D* Prototype for procedure: 'procName
'insert D* --'
'insert D 'procName' PR'
'insert '
'insert P* --'
'insert P* Procedure Name: 'procName
'insert P* Purpose: '
'insert P* --'
'insert P 'procName' B'
'insert D 'procName' PI'
'insert '
'insert C* Your calculation code goes here'
'insert '
'insert C RETURN'
'insert P 'procName' E'

Note: Since the macro will later insert these lines into an RPG source file, the spacing should be
exactly as shown to match the RPG columns. There are 6 blanks between insert and the
specification entry.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 39 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

After putting all the pieces together your code should look like this:

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 40 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Once the file is saved, we are ready to test out the new RPGPROC macro!
NOTE: Because executing the macro will actually alter the contents of the current file, it is a
good idea to create a brand new local RPG file, say TESTFILE.RPG in the editor.
NOTE: If you have not performed Step 3 of this lab “Associating name patterns with source
types”, please do so now. It is important to make sure that the editor views the TESTFILE.RPG
as an ILE RPG file (the default is RPG/400)!

5o. On the editor command line type LX TESTFILE.RPG and then press Enter.
 A new file, called TESTFILE.RPG is opened.

5p. To make sure that the CODE editor thinks of it as an ILE RPG file, bring up the ‘File
 Properties’ dialog from the ‘File’ -> ‘Properties...’ editor menu.

Notice that the field ‘Source type’ contains the value RPGLE. This means that the currently
loaded file is an ILE RPG file. If necessary the value could be changed right here.

5q. Click the ‘Cancel’ button to dismiss the dialog.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 41 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

5r. To run the RPGPROC macro, go to the editor command line and type MACRO RPGPROC
 and press the Enter button.
 The dialog box comes up prompting the user for a procedure name:

5s. Type MyProc in the entry field to specify a procedure name and then click ‘OK’. As a result,
 a procedure template is generated. Notice that the name of the procedure is MyProc. WOW!

Note: If any of the lines are marked by an error message, your template is causing a syntax error.
Most likely the columns are misaligned. Correct the error and move the cursor off that line to get
the syntax checked again. Don’t forget to change the corresponding line in the macro!

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 42 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Optional exercise - prefilling the procedure name entry field

This exercise is for those who feel fairly comfortable with REXX programming and the editor
commands. It’s okay to skip this part.

PURPOSE

Notice that when the prompt comes up (instruction 5r), the ‘Procedure Name’ entry field is
empty. Sometimes it is useful to prefill an entry field with some default value.

INSTRUCTIONS

Modify your REXX macro so that the ‘Procedure Name’ entry field contains the value
MYFOO

when the prompt dialog comes up.

HINT

Read the lineread editor command in the ‘Editor Reference’ manual.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 43 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Step 6. Updating the editor’s menu bar
PURPOSE

Once the REXX macro is written you can invoke it from the editor command line. However, for
frequent use this may become tedious. In such cases, we can use the editor commands to create
new menu items. One of the command’s parameters is the name of your macro. When the menu
item is selected, the macro is run.

In this exercise you will create the menu item: ‘Extras’ -> ‘COMMON’ -> ‘RPGPROC’.
You will associate the RPGPROC macro with it and then set the ‘Ctrl + Z’ key combination as
its shortcut.

INSTRUCTIONS

6a. Use the ACTIONBAR editor command to create a new menu item. This is a good time to
 browse the ‘Parameters Summary’ of the ‘Editor Reference’ manual and get familiar with
 this command.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 44 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

6b. Switch to the editor command line and type the following command:
 SET ACTIONBAR.E~xtras.~COMMON.RPG~PROC\tCtrl+Z MACRO RPGPROC
 and press Enter.

The resulting menu item will be:

COOL!

NOTE: The ‘~’ character creates a mnemonic for the menu item, while ‘\t’ defines an
 accelerator key for the menu item. Interestingly enough, ‘RPG~PROC’ and

 ‘RPGP~ROC ‘ are considered to be different menu items.

6c. At this point you can play with the newly created menu item, and the shortcut key. Make sure
 that they behave the way you expect them to!

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 45 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Step 7. Updating the editor’s toolbar and
popup menu

PURPOSE

Sometimes programmers like to get fancy and impress their bosses and colleagues. For such
occasions, the CODE editor gives you commands that allow you to update the editor’s toolbar
and popup menu with the items of newly created macros.
In this exercise you will add a new button to the editor’s toolbar and a new item to the popup
menu. Both of them will again invoke our famous RPGPROC macro.

INSTRUCTIONS

7a. Use the TOOLBAR editor command to add a button to the CODE editor toolbar.
 Browse the ‘Editor Reference’ manual to get familiar with this command.

7b. Go to the editor command line and type the following command:
SET TOOLBAR.RPGPROC BITMAP _33 HELP "RPG proc template" 4 MACRO
RPGPROC
 and then press Enter.

The following toolbar item appears in the fifth position from the left:

Notice that in this example you used the value _33 for the BITMAP option. Bitmaps shipped by
CODE are in the range _1 to _38 (the underscore character ‘_’ is important). Bitmaps can also be
loaded from your own resource DLL. See the ‘Editor Reference' for more details.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 46 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Popup Menu: An example of a popup menu is the menu list that is displayed when the right
mouse button is pressed while the mouse pointer is inside the CODE editor. The menu list
contains various editing menu items. For example: ‘Cut’, ‘Paste’, ‘Find selection’, etc.
This list can be modified by the user. You will do that next.

7c. Use the POPUPMENU editor command to add items to the CODE editor popup menu.
 Browse the ‘Editor Reference’ manual to learn about this command.

7d. Go to the editor command line and type the following command:
 SET POPUPMENU.RPG~PROC MACRO RPGPROC

 and then press Enter.

Now, when we bring up the popup menu the item RPGPROC is added:

7e At this point you can play with the newly created toolbar button and popup menu item.
 Make sure they both behave the way you expect them to! Cool stuff!

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 47 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Step 8. CODESRV - remote execution
command

PURPOSE

The CODESRV command is a workstation command that can be used to:
! Get a list of the active host CODE servers
! Send commands to the iSeries
! Download and upload source
! Get lists of objects that match a specified filter.

The CODESRV command is just like any other DOS command. You can imbed the command in
your files and do all sorts of interesting things.

In order for the CODESRV command to become really useful, we must make sure that the
CODE communication server is started (see Step 0).

To see how CODESRV works, open an MS-DOS Prompt window and follow the exercises on
the next page.

NOTE: In the following exercises when we refer to the library CODELABxx you should
substitute xx with your workstation number (i.e. 01, 02, 03, ..., etc.).

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 48 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

INSTRUCTIONS

8a. In the MS-DOS prompt ensure that you are in directory x:\WDSC (x is the drive where
 WDSc is installed). To see the list of active CODE servers type:

CODESRV SERVER
 and then press Enter. Your list should have OS400 in it; there may be additional entries.

8b. To print the MSTDSP source member using SEU, type at the MS-DOS prompt:
CODESRV EXEC OS400 STRSEU OPTION(6)

 SRCFILE(CODELABxx/QDDSSRC) SRCMBR(MSTDSP)
 A spool file of MSTDSP is created on the iSeries.

8c. To list all the source members in CODELABxx/QDDSSRC type:
CODESRV LIST OS400 “CODELABxx/QDDSSRC(*)”

 The result should be:
EMPMST MSTDSP PRJMST REFMST RSNMST End of file or list.

8d. Type CODESRV ? to get to help for the command.

If you are really ambitious, use CODESRV GET OS400... and CODESRV PUT OS400... to
download and upload members to the iSeries. Notice in the help that you can also use the
CODESRV command to shut down all servers (you can have up to twenty connections at a time)
or the connection to a specific server.

NOTE: You can also invoke CODE tools from the iSeries. The simplest way is to create a
user-defined option in PDM. For example, to invoke the CODE Editor on a source member you
would use the following syntax:

CALL QDEVTOOLS/EVFCFDBK PARM('37' 'Y' 'OS400' '<LOCAL> CODEEDIT
 "<server>lib/file(member)"')

If your iSeries is running V4R5, use:
CALL QCODE/EVFCFDBK PARM('37' 'Y' 'OS400' '<LOCAL> CODEEDIT
 "<server>lib/file(member)"')

More Importantly:
The CODESRV command can be used in your macros to execute remote commands! Let’s take a
closer look at a macro called SEUPRINT which uses the CODESRV command in order to print
the current member being edited on the host.

8e. From the editor command line run the LX SEUPRINT.LX command.
 The file SEUPRINT.LX is loaded into the editor:

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 49 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

/* SEUPRINT - macro to print the current member being edited on the host. It uses the*/
/* SEU print option. */

/* Blank out the message line */
'msg' ' '

/* Get full name of file being edited */
'extract name'

/* Get the name of the server, file and member */
parse var name '<' server '>' fn '(' mn ')'

/* Drop /ADM from server name if it exists */
parse var server host '/' junk

/* Issue error if this is a LOCAL file... */
if host = 'LOCAL' then do
 'msg Host Print is not valid for local files.'
 'ALARM'
 exit
end

/* Prompt user to save source, then print it on host... */
'SAVEALL PROMPT START CODESRV EXEC 'host' STRSEU SRCFILE('fn')
SRCMBR('mn') OPTION(6) (LOG'

'msg Member printed using STRSEU. See Command Shell for status.'

Notice that the CODESRV command is used to submit the SEU print option (OPTION (6)) to
the iSeries host.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 50 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Step 9. CODE editor profiles
PURPOSE

The menu items, toolbar buttons, and shortcuts that you created in the previous exercises will
only work for the current edit session. If you open a different file or start a new edit session the
menu items will not exist and the shortcuts will do nothing. To make these changes to the editor
more permanent you can use ‘profiles’. A profile is nothing more than a text file containing
editor commands. Some of the profiles supplied with the editor provide specific editing features
and run automatically at specific times.

YesWhenever a file of type xxx is saved.xxx.LXS

YesThe last profile run before each file is
loaded.

PROFILE.LX

Yes. Add your own xxx
specific commands here.

After xxx.LXL but before the file is
loaded.

xxx.LXU

NoAfter PROFSYS.LXU, but before a file of
type xxx is loaded.

xxx.LXL; xxx = cbl,
rpgle400, etc.

YesJust before each file is loaded.PROFSYS.LXU
YesWhen the editor starts.PROFINIT.LXU

Can I change it ?When does it run?Profile

We will take a closer look at the RPGLE400.LXL profile, and will create an RPGLE400.LXU
profile, adding all of our menu and toolbar button creation commands to it.

INSTRUCTIONS

9a. From the editor command line execute the LX RPGLE400.LXL command to load the file
RPGLE400.LXL into the editor. Alternatively, you could use the open dialog by selecting File
-> Open... expand Local, expand the drive where WDSc is installed, expand WDSC, click on
macros, scroll down to rpgle400.lxl and double click on it.

9b. Look through the file. It contains various editor commands that run when an ILE RPG file
gets loaded into the editor. Let us take a closer look at some of them:

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 51 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Setup initial fonts for various language constructs...

'SET FULLPARSE SUBMIT READ STOP "Parsing file" ILEPAR ALL'
'SET PARSER ILEPAR'

Parse the file using parser type ILEPAR...

'SET ACTIONBAR.LP_VIEW.S~how. 2 ;'
'SET HELP. 16054'
'SET ACTIONBAR.LP_VIEW.S~how.~Control ;INCLUDE CONTROL;SET E

Create some menu items...

'SET ACTIONPREFIX.F ;SET PREFIXENTRY;ILEPAR Q'
'SET ACTIONPREFIX.F? ;SET PREFIXENTRY;ILEPAR O'
'SET ACTIONPREFIX.P ;SET PREFIXENTRY;ILEPAR PROMPT'

Create ILE RPG specific prefix area commands.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 52 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

/* initial fonts settings */
'SET FONT.A BLACK/WHITE "Page"'
'SET FONT.B GREY/WHITE "Line"'
'SET FONT.C BRIGHT RED/WHITE "Spec"’
 ..
 ..

9c. At this point we will create an RPGLE400.LXU profile. It runs after RPGLE400.LXL, but
before an ILE RPG file is loaded. We will use this profile to add the menu options and toolbar
buttons associated with the RPGPROC macro whenever an ILE RPG file is loaded!
On the editor command line type:

LX RPGLE400.LXU
and then press the Enter key.

9d. Add the following familiar lines to the file.

9e. Save the file in directory
 x:\WDSC\MACROS
 Close the editor using the ‘File’ -> ‘Exit’ menu option.

9f. Bring up an MS-DOS Prompt window and run the following command:
 CODEEDIT COMMON.RPG
 which brings up the editor and creates a new file COMMON.RPG.

The menu items, popup menu item and toolbar button associated with the RPGPROC macro are
available now. The RPGLE400.LXU profile that you just created ran just before the editor loaded
the ILE RPG file! Remember that in step 2 of the exercises we associated the name pattern
*.RPG with the source type RPGLE and that the source type RPGLE is associated with the
RPGLE400 language profile.

NOTE: It is not a good idea to make changes to the xxx.LXL files because they get replaced
once the workstation is updated with a new release of CODE. xxx.LXU files on the other hand
are left untouched and that way your changes ‘survive’ the CODE update!

9g. Close the CODE editor.
This section of the lab is complete!

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 53 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

The Lab - Section 2: Lpexlets

Section Introduction
In this section we will learn how to program the CODE editor using the Java language.
Java is an object oriented programming language that is, compared to other OO languages like
C++, relatively “easy to digest”. Over the course of the past few years a large number of Java -
related terms have emerged:

! Java Beans
! Cookies
! Applets
! Servlets

So, not to fall far behind, CODE added its own Java - related term: Lpexlets.
They are extensions to the CODE editor written in Java that allow a much richer set of GUI
components than REXX macros. In this section we will write a very simple Lpexlet that provides
the GUI interface for the RPGPROC macro. The Lpexlet will only take care of gathering the
information from the user and will then call a REXX macro to generate an RPG procedure
template. (The REXX part has already been implemented in the previous section).
To run your Lpexlet, you use the RUNJAVA Lpexlet_Class_Name command.

As a CODE user, Java applies to you in the following ways:

! As a language that helps you customize the CODE editor via Lpexlets.
! As a programming language for your client user interfaces.
! (Since V4R2), as a programming language on the iSeries.

Java Applets

Java can be used to write applets, which are small programs that can only run inside web
browsers such as Netscape Navigator or Microsoft Internet Explorer. These are
mini-programs, but they have full user interface capabilities. They run right inside the browser.
Java is traditionally an interpreted language, like Visual Basic and Smalltalk, and the web
browsers today all include a Java interpreter engine.

Java applets can be used inside a traditional HTML (HyperText Markup Language) web page to
add logic, graphics or user interaction. They can even be used to access data from a host, such as
DB2/400.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 54 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

The key things to remember about applets are:

! They only run inside a browser. They have no “main window” of their own, but rather use the
real estate of the web browser.

! They physically live on the same server as the web page itself. The web browser, upon
encountering an HTML “APPLET” tag inside the HTML source for a web page will return to
the server to retrieve the applet (as pointed to by the APPLET tag), and download it into
memory where it will be run.

! They are not permitted to access the local client’s hard drive or run programs on the local
client. They are also not allowed to communicate back to any host server except the one they
came from (the restrictions can be waived with “signed” applets that are run by consenting
users).

Java applets can target iSeries data and programs. This can be done using built-in Java
communications support for TCP/IP sockets programming, or it can be done using the iSeries
Toolbox for Java set of classes written by IBM Rochester. This Java code offers a significantly
easier means to access iSeries services than raw communications coding.

Java Applications

While the early excitement around Java was due to its unique ability to program web pages with
live code, this is not Java’s only role. It is also a full fledged application programming language,
and can be used effectively to write full applications, which are invoked from the command line
as with traditional language applications.

Using Java to write applications offers all the functionality and portability benefits of Java
applets, but:

! Removes the security “sandbox” restrictions that applets have.
! Does not offer, yet, the exceptional benefit of being loaded on demand that applets enjoy.

This means distribution and maintenance are bigger considerations, for client Java
applications.

NOTE: The iSeries Toolbox for Java code can be used for Java applications or applets;
 The iSeries Toolbox for Java classes are shipped with WDT/400.

To run a Java application on a particular operating system, you must have a Java Virtual Machine
(JVM - interpreter) on that operating system. All current operating systems have now, or will
soon have, a JVM built into them.
The Java Development Kit (JDK) is required to develop Lpexlets. The JDK or Java Runtime
Environment (JRE) is required to run them. Both are available from JavaSoft's web site
www.javasoft.com.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 55 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

You will:

! Create an RPGProc Java class that extends the LpexCommand class - a must for every
Lpexlet.

! Create another new class called RPGProcFrame, that extends JFrame which is a
Java-supplied class for putting up a dialog and which implements a Java-supplied interface
for handling GUI events.

! Compile Java classes using the CODE Java class generation mechanism.
! Write an RPGPROCJAVA macro that reads in data provided by the Lpexlet and generates

an RPG procedure template.
! Run your Lpexlet from the CODE editor and see the results.
! Play with the ‘RPG Procedure’ SmartGuide.

This lab is not intended to teach you how to program in Java, however, we will give you pointers
about relevant language constructs along the way. So, if you see Java Reference and END Java
Reference tags, that is where you find Java language bits.

Ready? Let us continue on our journey to CODE Lpexlets...

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 56 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Step 1. Creating an RPGProc Lpexlet Class
Java Reference:

! Comments in Java come in two forms:
! Multiple lines: These start with “/*” and continue until an ending “*/” pair is found.
! Single line: To put a comment on a line or end of a line, start it with //

! Classes. These, like iSeries ILE RPG modules, allow you to divide your source code into
functions (methods in Java, procedures and subroutines in RPG) and variables those
functions need. These are typically self-contained groupings. Classes contain multiple fields
(variables) and methods.

! Methods. These, like iSeries ILE RPG procedures and subroutines, contain all the actual
code your program or application will use. Unlike RPG, in Java executable code can only
exist in methods. And methods can only exist inside classes.

What is a class? It is a key construct in Java: all code and all variables exist only inside classes.
In fact, code must exist inside methods which must exist inside classes.

Java classes are similar to ILE RPG modules! Modules contain variables and RPG procedures
and subroutines. Java classes contain variables and methods. Methods are like RPG procedures

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 57 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

A class in Java typically looks like this:

NOTE the keyword class, and the braces delimiting the beginning and end of the class. In this
example, “MyClass” is the user-supplied name of the class. The Java keyword public indicates
this class is accessible by everyone. This is an optional keyword - without it only other classes in
this package have access to this class.

! Inheritance. One of the main features of every Object Oriented language is the ability to
easily extend already existing code. In Java, this feature is implemented by the means of
Inheritance. You can write a class (call it BaseClass) that provides some basic services. (By
services I mean Java methods or ILE RPG procedures/subroutines). If a new class that you
are implementing (call it SophisticatedClass) needs to provide the same basic services, and
perhaps even more, SophisticatedClass can inherit all basic services from the BaseClass, and
only implement new functionality.
In Java we use the extends keyword to indicate the inheritance. Here is a typical example:

!
Polymorphism is another cornerstone concept of Object Oriented languages. When your
SophisticatedClass inherits from the BaseClass there maybe some methods implemented by
the BaseClass whose behavior you would like to alter. You can override a method. If your
BaseClass provides a method MyMethod(), your SophisticatedClass can also implement
MyMethod() which behaves differently than the inherited one. At run time Java decides
which method to use appropriately. This feature of the Java language is called
polymorphism.

END Java Reference

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 58 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

public class MyClass
{

// variables
// methods

}

public class SophisticatedClass extends BaseClass
{

// variables
// methods

} // end SophisticatedClass

PURPOSE

CODE ships a set of Java classes. Information is available from the ‘Help’ -> ‘Java help’ ->
‘Lpex Java readme’ menu option. Note that you have to open a Java file for ‘Java help’ option
to be available. One of the classes that CODE ships is called LpexCommand class. This class is
your interface to writing Lpexlets. In this section we will implement an RPGProc class that will
inherit from the LpexCommand class, as must every Lpexlet. In addition, every Lpexlet must
override the method lpexEntry() - a main entry point into the Lpexlet. This method gets called by
the CODE editor when the ‘RUNJAVA Lpexlet_Class_Name’ command is run.

In our case Lpexlet_Class_Name will be RPGProc and hence the command becomes
‘RUNJAVA RPGProc’. Don’t run anything yet!

The RPGProc Lpexlet will put up a nice dialog prompting the user for the Procedure Name and
the Programmer Name.

Once all information is entered, the Lpexlet will call a REXX macro to generate the procedure
template. The reason for this is very simple - we already have code that does this job. So we will
reuse a part of the RPGPROC macro.

INSTRUCTIONS

1a. Start up the CODE editor and open the file RPGProc.java. Remember that in Java file names
 are case sensitive!

x:\CODELAB\RPGProc.java

1b. Below is the code for the RPGProc class.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 59 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 60 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

public class RPGProc extends LpexCommand
{
 static RPGProcFrame rpgProcFrame = null;

 /* lpexEntry() - main entry point from LPEX. Overrides LpexCommand's. */
 public static int lpexEntry (String arg)
 {
 if(rpgProcFrame == null)
 rpgProcFrame = new RPGProcFrame();

 rpgProcFrame.setVisible(true);
 return 0;
 } // end lpexEntry()

 // Once the OK button is pressed, need to set DOCVARs
 public static int setDocVars(String procName, String pgmrName)
 {
 lpexCommand("SET DOCVAR.PROCNAME " + procName);
 lpexCommand("SET DOCVAR.PGMRNAME " + pgmrName);

 lpexCommand("MACRO RPGPROCJAVA");
 return 0;
 } // end setDocVars()

 /* lpexNotify() - tell LPEX to notify us on exit.
 public static int lpexNotify()
 {
 return LPEX_NOTIFY_EXIT;
 } // end of lpexNotify()

 /* lpexExit() - we're being terminated, dispose of the toolbar */
 public static int lpexExit (String arg)
 {
 rpgProcFrame.dispose(); // get rid of the dialog
 return 0;
 } // end of lpexExit

} // end class RPGProc

Java Reference:

Typically you have only one class per source file (.java), and the name of the class corresponds
to the name of the source file (not counting the .java extension). The source file will be
compiled into one ByteCode (.class) file with the same name as the class. The compiler is called
JAVAC and it converts source into easily interpreted ByteCode.

CODE automates this compilation step, just like for any other supported language. We will see
this feature later in this lab.

! Objects. These are “instances” of classes, and are necessary to use classes that contain
non-static methods or variables. They are created by defining a variable, specifying the class
as the type, and equating the variable to an instance or allocation of the class using the new
operator in Java.

! Instance variables. These are non-static variables declared at the class level and available to
all methods in the class. Each instance (object) of the class gets its own copy of these
variables. Compare to global variables in RPG.

! Local variables. These are variables declared inside a method and are local to that method.
They are only “alive” as long as the method is running.

! Constructors. These are special methods that each class can optionally have that are called
by Java when the class is first “instantiated” (an instance is allocated). They are used to
initialize variables and state, similar to RPG’s *INZSR subroutine. They are identified by
their name - it is the same as the class.

END Java Reference

NOTE: The import statement in Java is like /COPY in RPG. Hence import RPGProcFrame
means that the file RPGProcFrame.java (which probably defines an RPGProcFrame class) is
included in our RPGProc.java file. As a matter of fact, the RPGProcFrame class defines the
user interface part of this Lpexlet. We will develop this class in Step 2 of this section.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 61 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

NOTE: In our implementation of the lpexEntry() function (remember that every Lpexlet has to
override this function!) we create a new RPGProcFrame object and then make it visible using the
setVisible() method.

NOTE: We will create a setDocVars() method which will be called by the RPGProcFrame
class. We will then use the lpexCommand() method of the LpexCommand class to execute the
CODE editor commands. In order to pass the values of the procedure and programmer name to
the REXX macro we need to save these values in the editor variables. They will be retrieved later
by the REXX macro:

lpexCommand("SET DOCVAR.PROCNAME " + procName);
lpexCommand("SET DOCVAR.PGMRNAME " + pgmrName);

Last but not least we will use the lpexCommand() function to call the REXX macro
RPGPROCJAVA. This macro - a shortened version of RPGPROC - will be implemented later
in this lab.

Help for the LpexCommand class is available from ‘Help’ -> ‘Java help’ ->
‘LpexCommand help ’ menu option.

NOTES ABOUT TYPING:

! Case is important. Java names are case sensitive. “MyVar” does not equal “myvar”.
! White space is not important. Leave/insert as many blanks as you like.
! Watch for the semi-colons (;) at the end of executable lines of code! They are important.

1c. Take a close look at the code of RPGProc.java. Pay special attention to the statements that set
 the editor variables PROCNAME and PGMRNAME.

1d. Save your file in directory x:\WDSC\JAVA by going to the editor command line and
typing:

SAVE “x:\WDSC\JAVA\RPGProc.java”
 and then pressing Enter.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 62 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Step 2. Creating the “RPG Procedure
Template” dialog box - RPGProcFame class

PURPOSE

In the lpexEntry() method of the RPGProc class we create an rpgProcFrame object of type
RPGProcFrame that is responsible for putting up the dialog box. Now is the time to implement
the RPGProcFrame class.

Java Reference.

Some Java-supplied classes
The RPGProcFrame class will inherit from the class JFrame. JFrame is a Java-supplied class. It
is responsible for putting up the dialog window and border. Other Java-supplied classes that are
used by the RPGProcFrame class are:
! JPane. The Object of this class fills in the space provided by the JFrame. It also looks after

the placement of all other user interface components.
! JButton. Objects of this class are pushbuttons. (OK, Cancel, and Clear in our case).
! JLabel. Objects of this class are text labels.
! JTextField. Objects of this class are entry fields where the user types in the input.

Interfaces
 Many Object Oriented languages provide the ability to inherit services from multiple classes.
This feature is called multiple inheritance. Due to some efficiency and complexity
considerations, Java does not directly support multiple inheritance. However, every once in a
while, a need for such construct arises. To overcome this difficulty, Java supports a concept
similar to a class, called an interface. An interface does not provide services, it only defines
them. A class can implement an interface. Implementing an interface, means implementing all
services/methods that a particular interface defines. A class can extend another class and
implement interfaces at the same time. Here is a typical example:

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 63 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

public class SophisticatedClass extends BaseClass

implements BaseInterface
{

// variables
// methods

} // end SophisticatedClass

Event Driven Programming in GUI Systems
In RPG you display a screen by writing to one or more record formats, and retrieve data entered
by the user by reading a record format. Reading a display file will return data in the fields and
indicators (which indicate which key was pressed). This is Screen-driven programming. Your
program writes and reads screens of information.

In GUI environments, it is different. Your program gets “notified” of every single user action -
pressing a key, pushing a button, moving the mouse, etc.. These actions are called events.
Your program can choose to process individual events or let the system do its default action for
them (usually nothing). This is called event-driven programming

Event Driven Programming in Java
In Java, “events” are Java objects (instances of Java classes) that are sent to your own class if you
tell Java to!

How do I tell Java to send events to my class?

You have to do three things (don’t do these yet, just read):

1. Indicate that your class is capable of responding to these events by including the code
“implements xxxListener” on the class definition, where xxx indicates the events you want
to be informed of. For example, “implements ActionListener” will cause the system to
inform you of action events (versus say, typing events or mouse move events).

2. Supply a method in your class that will be called for specific events. These methods have to
use the exact names and parameter types that Java defines for each event. For example, for
action events it requires the method “public void actionPerformed(ActionEvent event)”.

3. For each GUI component, such as a push button, after creating it you must “register” that it is
to send its events to your class. Do this using the “addActionListener(
instance-of-your-class)” method that all input-capable Java components support.

END Java Reference.

INSTRUCTIONS

2a. In the CODE editor open the file RPGProcFrame.java
x:\CODELAB\RPGProcFrame.java

2b. The next few pages contain the source code for the RPGProcFrame class.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 64 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 65 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;

/* RPGProcFrame.java This class creates and handles the UI for the RPGProc Lpexlet */
public class RPGProcFrame extends JFrame implements ActionListener
{
 private JPanel contentPane = null;
 private JButton cancelButton = null;
 private JButton clearButton = null;
 private JButton okButton = null;
 private JLabel pgmrNameLabel = null;
 private JLabel procNameLabel = null;
 private JTextField pgmrNameTextField = null;
 private JTextField procNameTextField = null;

 /* RPGProcFrame class constructor */
 public RPGProcFrame()
 {
 super();
 setSize(426, 240);
 setTitle("RPG Procedure Template");

 // Create OK button object
 okButton = new JButton("OK");
 okButton.setBounds(42, 170, 85, 25);
 okButton.addActionListener(this);

 // Create cancel button object
 cancelButton = new JButton("Cancel");
 cancelButton.setBounds(169, 170, 85, 25);
 cancelButton.addActionListener(this);

 // Create clear button object
 clearButton = new JButton("Clear");
 clearButton.setBounds(296, 170, 85, 25);
 clearButton.addActionListener(this);
 // --

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 66 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 // Create text label for procedure name
 procNameLabel = new JLabel("Procedure Name");
 procNameLabel.setBounds(35, 27, 146, 20);

 // Create text label for programmer name
 pgmrNameLabel = new JLabel("Programmer Name");
 pgmrNameLabel.setBounds(35, 74, 147, 20);
 // --

 // Creating an entry field for procedure name
 procNameTextField = new JTextField();
 procNameTextField.setBounds(218, 27, 169, 19);

 // Creating an entry field for programmer name
 pgmrNameTextField = new JTextField();
 pgmrNameTextField.setBounds(218, 74, 169, 19);
 // --

 // Construct the JPanel object - client canvas and add all controls
 contentPane = new JPanel();
 contentPane.setLayout(null);
 // --

 // Add all entry controls and corresponding Labels to the client pane
 contentPane.add(procNameLabel, procNameLabel.getName());
 contentPane.add(pgmrNameLabel, pgmrNameLabel.getName());
 contentPane.add(procNameTextField, procNameTextField.getName());
 contentPane.add(pgmrNameTextField, pgmrNameTextField.getName());

 // Add all button controls to the client pane
 contentPane.add(okButton, okButton.getName());
 contentPane.add(cancelButton, cancelButton.getName());
 contentPane.add(clearButton, clearButton.getName());
 // --

 // --
 // Now that everything is constructed, set the client pane to contentPane
 // --
 setContentPane(contentPane);
 // --

 } // end constructor()

NOTE: As we pointed out before, this lab is not intended to teach you the Java language. But
we still would like to highlight a few key points.
! The RPGProcFrame class inherits from the Java-supplied JFrame class and implements the

Java-supplied ActionListener interface.
! The RPGProcFrame class implements only two methods: a class constructor

RPGProcFrame() and actionPerformed().

REMEMBER: A CONSTRUCTOR IS A METHOD THAT HAS THE SAME NAME AS
THE CLASS, AND HAS NO RETURN TYPE.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 67 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 /**
 * Override actionPerformed() method of the ActionListener interface
 * If any registered button is pressed, this method gets invoked
 */
 public void actionPerformed(ActionEvent evt)
 {
 // First of all figure which button was just pressed
 String arg = evt.getActionCommand();

 if(arg.equals("OK")) // OK button is pressed
 {
 // Update DOCVARs to be used by the REXX macro
 RPGProc.setDocVars(procNameTextField.getText(),
 pgmrNameTextField.getText());
 dispose(); // close the dialog
 } // end if(OK button is pressed)
 else if(arg.equals("Cancel")) // Cancel button is pressed
 {
 dispose(); // close the dialog
 } // end if(Cancel button is pressed)
 else if(arg.equals("Clear")) // Clear button is pressed
 {
 procNameTextField.setText(""); // Clear the procNameTextField
 pgmrNameTextField.setText(""); // Clear the prmrNameTextField
 } // end if(Clear button is pressed)
 } // end actionPerformed()

} // end class RPGProcFrame
// --

In the class constructor we create the dialog window, all dialog controls, and place these controls
inside the dialog window. We also “register” all buttons with our RPGProcFrame class.
Whenever a button is pressed, an event is sent to the RPGProcFrame class.

Note: “this” is a special Java built-in keyword that represents the current instance of the current
class. So, for example, a reference to an instance variable, as in x=10 is equivalent to
this.x=10

The actionPerformed() method is defined by the ActionListener interface. Since the
RPGProcFrame class implements the ActionListener interface, it must provide an
implementation of this method. Whenever a button is pressed, an event is sent to the
RPGProcFrame class and an actionPerformed() method gets called. We figure out which button:
‘OK’, ‘Cancel’, or ‘Clear’ caused the event to be generated, and act accordingly...

2c. Read through the code. Try to find all the pieces we talked about.

2d. Save your file in directory x:\WDSC\JAVA by going to the editor command line and
 typing:

SAVE x:\WDSC\JAVA\RPGProcFrame.java
and then pressing Enter.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 68 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

// Make sure client is listening to the button press events
okButton.addActionListener(this);
cancelButton.addActionListener(this);
clearButton.addActionListener(this);

Step 3. Using CODE to compile your Java
classes

PURPOSE

The CODE editor provides a set of Verify/Compile/Debug actions for any supported iSeries
language including Java. However, Java classes can run on your PC and on your iSeries. CODE
targets both: one for Lpexlet development and the other for iSeries Java development. We
therefore provide two sets of Compile/Run/Debug actions: local and remote.

In this exercise we are developing Lpexlets and will therefore concentrate on local actions.

INSTRUCTIONS

3a. Make sure your current file is RPGProcFrame.java.

3b. From the editor’s ‘Actions’ menu select the ‘Compile local’ -> ‘Prompt...’ option.
 After a few seconds (be patient - this is Java) the following dialog comes up.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 69 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

This dialog has several pages of Java compiler settings. You can use the ‘Next>>’ and
‘Previous>>’ buttons to navigate between pages. Get familiar with the dialog. You will need to
use it quite a bit once you get into serious Lpexlet development!

3c. The defaults are just fine for now. Press the ‘Final’ button and watch how RPGProcFrame
class gets compiled. You will notice a ‘Compiling...’ message in the editor message area (just
above the editor command line).

NOTE: Once the compile is completed, and if no errors are detected, you will get a ‘Compiled
clean’ message in the editor message area. If your Java class contains errors, an ‘Error list’
window comes up indicating all of the compile errors. Double clicking on an error message takes
you to the line that causes the problem.

3d. In the CODE editor switch to the RPGProc.java file.

3e. This time we will use a no prompt compile option. From the ‘Actions’ menu select
 ‘Compile local’ -> ‘No prompt’ option and watch the RPGProc class compiling.

Now all of your Java classes are compiled and .class files are generated. Wasn’t that easy?

WOW!

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 70 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Step 4. Creating the RPGPROCJAVA macro
and running the Lpexlet

PURPOSE

We are almost ready to test out our first Lpexlet but there is one piece of the puzzle still missing.
Remember, we need to call the RPGPROCJAVA macro to generate the procedure template. As
a matter of fact, we can reuse most of the REXX code from the RPGPROC macro.
After that, the testing stage begins!

INSTRUCTIONS

4a. Open a new file RPGPROCJAVA.LX by typing: LX RPGPROCJAVA.LX on the editor
command line and then press the Enter key.

4b. The REXX code on the next page should look very familiar. The only trick is the use of two
DOCVARs:

Remember, we did a ‘SET DOCVAR’ in the RPGProc class? The ‘EXTRACT DOCVAR‘ is
how we retrieved values stored in the DOCVARs. This is the data exchange mechanism between
Lpexlets and REXX macros.

4c. Type in the following REXX code and save the file in x:\wdsc\macros.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 71 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

/* Read in the DOCVARs that are set by the Lpexlet */
'EXTRACT DOCVAR.PROCNAME INTO 'procName
'EXTRACT DOCVAR.PGMRNAME INTO 'pgmrName

All the pieces are ready now and we can start testing the Lpexlet.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 72 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

/***/
/* RPGPROCJAVA.LX

*/
/*

*/
/* This macro builds up an RPG procedure call

*/
/* template.

*/
/* It uses RPGProc Lpexlet for prompting...

*/
/***/

/* Read in the DOCVARs that are set by the Lpexlet */
'EXTRACT DOCVAR.PROCNAME INTO 'procName
'EXTRACT DOCVAR.PGMRNAME INTO 'pgmrName

/* Pad procName with blanks to make it 10 characters long
*/
do procLength = length(procName) to 9

procName = procName' '
end

/* The procName is 10 characters long including blanks */
'insert D* --'
'insert D* Prototype for procedure: 'procName
'insert D* --'
'insert D 'procName' PR'
'insert '
'insert P* --'
'insert P* Procedure Name: 'procName
'insert P* Purpose: '
'insert P* Written by: 'pgmrName
'insert P* --'
'insert P 'procName' B'
'insert D 'procName' PI'
'insert '
'insert C* Your calculation code goes here'
'insert '
'insert C RETURN'
'insert P 'procName' E'

'TRIGGER FULLPARSE'

4d. Open a new ILE RPG file COMMON2.RPG by typing: LX COMMON2.RPG on the
editor command line and then press the Enter key.

4e. Go to the editor command line and type:
 RUNJAVA RPGProc
 and then press the Enter key.
 Note the case is important when you call a Java class.

The following Java dialog comes up prompting the user for the procedure name and the
programmer name:

W O W!!!

4f. Enter the following values in the entry fields:
In Procedure Name field enter: MyProc

 In Programmer Name field enter: MyName
 and press the OK button.

The resulting procedure template is shown on the next page:

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 73 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Notice that the generated template is very similar to the one created by the RPGPROC macro.
This time, however, the template also contains the programmer’s name. It would be fairly easy to
add other entry fields to the existing dialog to prompt the user for other important pieces of
information.

4g. From the ‘File’ menu select ‘Exit’ to close the CODE editor.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 74 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Optional Exercise: WebSphere Studio
Workbench

Most of the functionality of the CODE Project Organizer has been replaced by WebSphere

Studio functionality with the exception of accessing ADM parts.

The Remote Systems Explorer is the replacement for PDM (Program Development Manager)

on the workstation. It currently doesn’t have all the functions of PDM but will over time be a full

replacement for PDM.

 The RSE allows you to:

! Simplify your work by giving you quick access to lists of iSeries libraries, objects,

members, IFS files, Unix files, and local files.

! Use the context-sensitive pop-up menus on these lists to perform actions such as start the

CODE Editor, CODE Designer, or Distributed Debugger or other common iSeries actions.

! Use the Work with User Actions option to create and manage your own user-defined

actions and have them appear in the pop up menus.

! Use the command support to increase your productivity by allowing you to enter and repeat

iSeries or local commands without switching to an emulator session.

In the following exercise you will use the Remote Systems Explorer (RSE) perspective to work

with the iSeries objects that you used in the previous exercises. You will also see how easy it is

to perform actions and define your own actions. In short, you’ll see how the Remote Systems

Explorer can organize and integrate your work and make that work easier.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 75 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Selecting an iSeries object in the RSE perspective
In the RSE perspective, you now need to get to the iSeries objects you want to work
with

In the previous exercises you have worked with the library list filter, now you will

create your own library filter.

First you will need to specify the library you want to work with:

! Expand the connection node that connects to your iSeries host, by clicking on

the + sign beside it.

! Expand the iSeries Objects node.

To create a new library filter

! Expand the Your libraries... Node.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 76 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

You see this dialog show up

You are going to create a filter to specify the libraries you want to work with, so

they will show in the RSE object list. We want you to create a filter that shows all

libraries on the iSeries with the name CODExxxxxx and VARxxxxxxx, xxx being

any character.

! Specify a name for this filter by keying into the Filter name entry field:

All CODE and VAR libraries

! Press the Add... push button, beside the Filter Strings list

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 77 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

The following dialog will come up

! Specify the first filter string that selects the libraries starting with CODE, by keying

into the Library: entry field CODE* , using the * wild card character.

! Press the Finish push button

Back in the New Library Filter dialog:

! Press the Add push button again.

The New Library Filter string dialog shows up again.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 78 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

! This time, specify the Filter string to select all libraries starting with VAR*

! Press the Finish push button.

The Library Filter dialog will now show the 2 Filter strings you specified:

! Press the Finish push button on this dialog.

You are now back in the main workbench dialog.

You will see the list in the RSE perspective being expanded to include your filter.

! Expand your new filter.

If this is your first attempt to use this connection, you will be prompted to Sign on to

the iSeries.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 79 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Use Userid WDSCLABxx and password WDSCLABxx

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 80 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Back in the workbench in the RSE perspective you will see the libraries in your

filter.

Now you can work with the libraries directly and can drill down to the object you

want to work with.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 81 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Lets now create an object filter

In the RSE list, under the connection node you are using,

! Find the Your objects... Node,

! Expand it.

This will show the New Object Filter dialog.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 82 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Create a filter to show all your source files in your CODELABxx library

! Specify the Filter name: My source files

! Press the Add... Push button, beside the Filter strings list

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 83 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

 In the Object Filter string dialog

! Specify your library: CODELABxx

! For object leave the * wild card character since we want you to list all source files.

! Press the Add... Push button, beside the Type and attributes to subset by list .

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 84 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

In the Add Object Type and Attribute dialog

! Select *FILE as the Object type to be chosen.

! Select PF-SRC as the Object attribute to be chosen.

! Press the OK push button on this dialog.

! Press the Finish push button on the Object Filter String dialog.

! Press the Finish push button on the New Object Filter dialog.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 85 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

The new filter will show up in the RSE list

You got the idea how to create filters and tailor your development environment.

Filters can also be specified for non iSeries servers and your local system.

Now you will work with the objects you have in your RSE list.

Assuming you want to edit the member Payroll, you just:

! Right mouse click on the member Payroll.

! From the pop up menu select Open with.

! From the sub menu select LPEX editor.

This will download the source member and open the editor with this member.

After you have edited the member you could save it and then compile it from the RSE

list by using the pop up menu options on this member.

You can also create your own actions in addition to the default actions.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 86 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Creating a user action
In the RSE perspective, locate your connection node and the iSeries Objects node

underneath it.

! Right mouse click on the iSeries Objects node.

! Select the Work with option from the pop up menu.

! Select the User Actions option from the sub menu.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 87 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

You will see the Work with User Actions dialog

! Expand the New node in the list.

! Click on the Object node.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 88 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

The New User Action dialog appears

We want you to create a user action that copies a source file with data to a new

source file.

! Enter a name for the user action in the Action entry field: Copy source file

! Enter a comment in the Comment entry field.

! Key in the COMMAND to execute

CRTDUPOBJ OBJ(&N) FROMLIB(&L) OBJTYPE(&T) NEWOBJ(QJUNKSRC)

DATA(*YES)
The name of the new source file is QJUNKSRC

! Select the Refresh after check box.

! Press the Finish push button.

You will be back at the Work with User Action dialog.

! Press the Change... push button, in the middle of the dialog.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 89 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

The Type selection dialog will show up

 Since we want this User Action only to show up for source files, you will have to

remove *ALL from the Selected types list and add File_SRC to it.

! Select FILE-SRC in the left list box.

! Press the Add>> push button in the middle between the list boxes to add it to the

Selected types.

! Select *All in the right list box.

! Press the <<Remove push button in the middle between the list boxes.

! Press the OK push button.

Now, only when you right mouse click on a source file, will this user action appear on

the pop up menu selected, for any other object type it will not appear.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 90 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Back in the workbench and the RSE perspective, give it a try.

! Locate your filter My Source files.

! Expand the filter, if it is not already expanded.

! Right mouse click on the QRPGLESRC file.

! Select User Actions from the pop up menu.

! Select Copy source file from the sub menu.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 91 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

The file gets duplicated and the list gets refreshed, your new source file will show in

the list.

You can check the messages of the CL commands you are running in the RSE job

by looking at the Commands view that by default shows up in the right hand side

pane of the work bench. The arrow in the figure above points to it.

To delete the source file QJUNKSRC that you just created:

! Right mouse click on its node in the list.

! Select Delete from the pop up menu.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 92 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Running commands from the RSE
The Commands view should be up in the workbench

If not

! Click on the Perspective menu option in the workbench.

! Select Show view from the sub menu .

! Select Commands from the sub menu if it is available

! Otherwise select Other... from the sub menu,

! Expand the Remote Systems node in the Show view dialog,

! Select Command in the expanded branch of Remote Systems,

! Press the OK push button in the Show view dialog.

Now in the Command view you can select the iSeries server you want to run the

command on, the left arrow in figure above points to the combo box.

! Select your server in the combo box.

! Key in an iSeries command for example ?ADDLIBLE

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 93 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

The question mark is there to display a prompt screen

In the prompt dialog

! Key in CODELAB00, that will add this library to the library list of your RSE job on

the iSeries server.

You could also use the iSeries commands node in the RSE view underneath the

iSeries objects node and run predefined commands or define your own commands.

We hope this exercise gave you a first taste of the capabilities the RSE perspective

provides to iSeries Application Developers.

*** Congratulations! ***
You have successfully completed the Advanced CODE lab. Programming the CODE editor may
have left you bewildered, but you made it. Soon enough you will impress your boss and
colleagues with some cool extensions to the CODE editor!

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 94 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Appendix A - The RPG Procedure
SmartGuide

This section is not part of the core lab. We just want to show you how fancy you can get with
Lpexlets. CODE ships a Java-based SmartGuide framework The documentation is available from
the editor’s ‘Help’ menu: ‘Java help’ -> ‘SmartGuide framework’.

One of the samples that comes with CODE is a SmartGuide to generate an RPG procedure
template.

a. Open an ILE RPG file (you can even use COMMON.RPG).

b. From the ‘Actions’ menu select ‘SmartGuides’ -> ‘Create Procedure...’. The following
dialog comes up:

Notice how additional pages appear if you increase the number of parameters or indicate that the
procedure has a return value. Entry fields colored in yellow must be filled in, the others are
optional.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 95 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Appendix B
Extending the LPEX Editor in WebSphere Development Studio

Client v4.0

In the CODE Editor of WebSphere Development Studio Client v4.0 (WDSC), users can
customize their edit experience by adjusting the settings of the editor as well as by writing their
own extensions to the editor. These extensions are commonly REXX macros or Java ‘lpexlets’.
The LPEX Editor in WDSC is based on the CODE Editor and also has the ability to be extended
by users. Since WDSC is based on the Eclipse platform, these extensions are provided via
plug-ins. Within a plug-in, Java classes which implement specific interfaces provided by the
LPEX Editor are written to provide new functionality. The LPEX Editor itself is actually a
plug-in as is other functionality provided in WDSC. This article will lead you through creating
your own extension (a user command) to the LPEX Editor.

A brief outline of the steps that we will be progressing through:
Creating your plug-in
Creating your ‘Hello World’ user command
Testing your ‘Hello World’ user command
Adding another user command
Packaging your plug-in

Note: Java classes are case-sensitive! It is important to enter text with the same case as specified in the steps.
Note: In some of the code examples, lines of the code wrap to the next line due to formatting of the document. They
should not be on separate lines in the actual code. In most cases, you can just copy the code and paste it where
needed.
Note: You do not need to know Java or Eclipse to follow the steps though it would be beneficial. You should be
familiar with working with WDSC and the Remote Systems Explorer perspective in particular.

Creating your plug-in:
In Eclipse, functionality is provided via plug-ins. So, after you start WDSC, select
Perspective>Open>Other... and select 'Plug-in Development Environment' to open a
perspective which is designed for people who want to develop plug-ins. Then, select
File>New>Project. In the New Project wizard, select ‘Plug-in Development’ in the left pane
and then ‘Plug-in Project’ in the right pane.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 96 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Click Next and on the ‘Plug-in Project Name’ page specify ‘com.yourcompany.lpexextensions’
as the project name. Click Next twice to get to the ‘Plug-in Code Generators’ page. Select the
‘Create plug-in using a template wizard’ and select the ‘Default Plug-in Generator’. Then click
Next. You can update the plug-in name and provider if you want. Then click Finish to create the
plug-in and have it automatically generate the initial files required for a plug-in.

You should see your new plug-in (com.yourcompany.lpexextensions) in the Navigator view on
the left side and your 'Lpexextensions Plugin' file open in the center.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 97 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

The 'Lpexextensions Plugin' that is open in the center is actually the 'plugin.xml' file that was
generated for you by the New Project wizard. We need to update it so that it knows our plug-in
requires the LPEX Editor plug-in and to register that we want to be able to contribute user
commands to the LPEX Editor. To do this, go to the Source tab of the 'Lpexextensions Plugin'
and add the lines indicated in the image.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 98 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Select File>Save Lpexextensions Plugin to save the file.

Now, we need to update the '.classpath' file which is in the plug-in. This file is used when the
Java source which we will write is compiled. We need to update the file to indicate that we will
be calling some of the LPEX Editor classes. In the Navigator view, double-click on the
'.classpath' file to open and then add the following line before the '</classpath>' which is at the
bottom.

<classpathentry kind="var"
path="ECLIPSE_HOME/plugins/com.ibm.lpex/lpex.jar"/>

The file should look like the following:

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 99 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Select File>Save .classpath to save the file.

These are all the updates that we need to do to configure the plug-in. The plug-in is now created
and the next step is to create an LPEX Editor user command.

Creating the ‘Hello World’ user command:
For our first LPEX Editor user command, we will create one in the plug-in we just created which
when run will display a 'Hello World!' message. Each LPEX Editor user command is a Java
class which implements a specific interface. To create the class, select File>New>Other... In
the New wizard, select 'Java' in the right pane and 'Java class' in the left pane.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 100 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Click Next and specify the following information to create the new class:
Folder: /com.yourcompany.lpexextensions/LPEXEXTENSIONS Plugin
Package: com.yourcompany.lpexextensions
Name: HelloWorld

Click on Add..., type 'LpexCommand' in entry field and then click OK. This should add
'com.ibm.lpex.core.LpexCommand' to the Extended Interfaces box. Java classes that implement
the com.ibm.lpex.core.LpexCommand interface are LPEX Editor user commands. Then check
the 'Inherited abstract methods' checkbox near the bottom of the page. The New Java Class
wizard should look like the following:

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 101 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Click Finish to have the class created. The class should be automatically opened for you to edit
it.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 102 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

In an LPEX Editor user command class, the real work is done in the doCommand() method.
This is where we will have the 'Hello World!' message issued. One of the input parameters to the
doCommand() method is an LpexView object. With this object, we can call it's doCommand()
which lets us run regular editor commands. In this case, we will use the 'set messageText' editor
command to update the message line. So to issue the message, update the doCommand() method
to the following:

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 103 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Select File>Save HelloWorld.java to save the file. When the file is saved, it is automatically
compiled. If there are errors, a will appear beside the line with the error. If this happens,
hover the mouse pointer over the to have an error message shown. Now that the user
commands exists, we still need to do one more step and that is to register it. In general, for each
plug-in there is an actual corresponding Java class. It is this class that actually registers the user
command. In this case, the plug-in class is the 'LpexextensionsPlugin.java' file which is in the
same directory as our user command. If you do not see the file in the Navigator view, expand the
'LPEXEXTENSIONS Plugin' node under the 'com.yourcompany.lpexextensions' node until you
see the file. Double-click on the file to open it.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 104 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

To register the user command that we just created we need to add a new method called 'startup'.
The Eclipse platform will automatically call this method when the LPEX Editor is started
because in our plug-in we registered that we want to add user commands. Add the following text
before the last '}' in the file to add the method.

public void startup() throws CoreException {
super.startup();
String newUserCommands = "HelloWorld

com.yourcompany.lpexextensions.HelloWorld";
String userCommands =

LpexView.globalQuery("current.updateProfile.userCommands");
if (userCommands == null)

LpexView.doGlobalCommand("set
default.updateProfile.userCommands " + newUserCommands);

else if (userCommands.indexOf(newUserCommands) < 0)
LpexView.doGlobalCommand("set

default.updateProfile.userCommands " + newUserCommands + " " + userCommands);
}

Also, we need to add 'import com.ibm.lpex.core.*; ' after the 'package
com.yourcompany.lpexextensions; ' which is near the top of the file. After your changes,
your class should be similar to the following:

package com.yourcompany.lpexextensions;

import com.ibm.lpex.core.*;
import org.eclipse.ui.plugin.*;
import org.eclipse.core.runtime.*;
import org.eclipse.core.resources.*;
import java.util.*;

/**
* The main plugin class to be used in the desktop.
*/

public class LpexextensionsPlugin extends AbstractUIPlugin {
//The shared instance.
private static LpexextensionsPlugin plugin;

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 105 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

//Resource bundle.
private ResourceBundle resourceBundle;

/**
* The constructor.
*/

public LpexextensionsPlugin(IPluginDescriptor descriptor) {
super(descriptor);
plugin = this;
try {

resourceBundle=
ResourceBundle.getBundle("com.yourcompany.lpexextensions.LpexextensionsPluginR
esources");

} catch (MissingResourceException x) {
resourceBundle = null;

}
}

/**
* Returns the shared instance.
*/

public static LpexextensionsPlugin getDefault() {
return plugin;

}

/**
* Returns the workspace instance.
*/

public static IWorkspace getWorkspace() {
return ResourcesPlugin.getWorkspace();

}

/**
* Returns the string from the plugin's resource bundle,
* or 'key' if not found.
*/

public static String getResourceString(String key) {
ResourceBundle bundle=

LpexextensionsPlugin.getDefault().getResourceBundle();
try {

return bundle.getString(key);
} catch (MissingResourceException e) {

return key;
}

}

/**
* Returns the plugin's resource bundle,
*/

public ResourceBundle getResourceBundle() {
return resourceBundle;

}

public void startup() throws CoreException {
super.startup();
String newUserCommands = "HelloWorld

com.yourcompany.lpexextensions.HelloWorld";
String userCommands =

LpexView.globalQuery("current.updateProfile.userCommands");
if (userCommands == null)

LpexView.doGlobalCommand("set
default.updateProfile.userCommands " + newUserCommands);

else if (userCommands.indexOf(newUserCommands) < 0)
LpexView.doGlobalCommand("set

default.updateProfile.userCommands " + newUserCommands + " " + userCommands);

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 106 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

}

}

Select File>Save LpexextensionsPlugin.java to save the file. When the file is saved, it is
automatically compiled.

Testing the ‘Hello World’ user command:
We have now written the user command and had it registered. Now you can test to see that it
works. Eclipse provides a mechanism for you to test the plug-ins that you are developing. It
actually enables you to start another WDSC window with your plug-in code activated. It does
this by running your plug-in in the 'Runtime Workbench'. To do this, first select your plug-in in
the Navigator view. Then select the down-arrow beside the running man toolbar button and then
Run>Runtime Workbench.

This will start a second WDSC window (in the first window, you will probably have the Debug
perspective automatically opened, you can navigate back to your Plug-in Development

perspective using the icon along the left edge of the window). In the second WDSC
window, open the Remote Systems Explorer perspective from the Perspective>Open>Other...
dialog if it is not already open. Expand the 'Local Files' under the 'Local' connection. Under
'Local Files', expand 'Drives' and then expand the drive where WDSC is installed (usually C:).

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 107 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Then expand the WDSC directory. Scroll down to the 'sample.irp' file. Right-click on the file
and select Open with>LPEX Editor. The file will be opened in the LPEX Editor. Now we just
need to run our user command from the LPEX Editor command line to test it. The LPEX Editor
command line is at the bottom of the editor view. Enter 'HelloWorld' in the command line.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 108 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

You should see the message 'Hello World!' displayed on the LPEX Editor message line!

Adding another user command:
So far, you have created a plug-in, created a user command in the plug-in, and registered the user
command. A plug-in can contain as many user commands as you want. You just need to create a
class following the steps listed in the "Creating the ‘Hello World’ user command" section except
give it a different name. Then you update the doCommand() method in the class for what you
want to do. Once that is done, you update the startup() method in the LpexextensionsPlugin.java
to register the user command.

Create a new user command and give it a name of 'Center'. In it's doCommand() method, use the
following:

/**
* Center the text on the line
*
* @see LpexCommand#doCommand(LpexView, String)
*/

public boolean doCommand(LpexView view, String arg1) {

// get the text of the current element
int currElement = view.currentElement();
String text = view.elementText(currElement);

LpexLog.log("center: existing text is " + text);

int length = 0;
String textLimit = view.query("save.textLimit");
if (!textLimit.equals("default"))

length = view.queryInt("save.textLimit");
else

length = text.length();

LpexLog.log("center: maximum length of line is " + length);

text = text.trim();

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 109 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

int textlength = text.length();

// center the text
if (textlength < length) {

int spaces = (length - textlength) / 2;
if (spaces > 0) {

int i = 0;
String newtext = text;
String blank = " ";
for (i = 0; i < spaces; i++)

newtext = blank.concat(newtext);
view.setElementText(currElement, newtext);
LpexLog.log("center: new line is " + newtext);

}
view.doDefaultCommand("set messageText Line has been

centered.");
} // end if text length < text limit

// true indicates parameters are valid
return true;

} // end of doCommand

Remember to save the file.

Update the startup() method LpexextensionsPlugin.java file to register your new user command.
To do this, you just need to update one line of the method to also list the new command ('Center')
and class ('com.yourcompany.lpexextensions.Center).

String newUserCommands = "HelloWorld
com.yourcompany.lpexextensions.HelloWorld Center
com.yourcompany.lpexextensions.Center";

Remember to save the file. To test it, you should close the second WDSC window and then
follow the steps in the "Testing the ‘Hello World’ user command" section except type 'Center'
instead of 'HelloWorld' to run the new user command. The user command just centers text on
the line but does demonstrate some of the capabilities that you have available in a user command.
It queries information from the editor, performs some manipulation, logs messages to a file, and
updates the editor's message line.

Packaging your plugin:
Now that you have a working plugin, you will want to be able to share it with others. So far, we
have been running it in the Plug-in Development Environment which is used for testing your
work. To share it with others we need to package it. The first step is the create a JAR file
(which is essentially a zip file) for your Java classes that you have written. When we created the
plugin, one of the settings was for the runtime library name which defaulted to
'lpexextensions.jar'. We need to create jar with this name in your plugin directory and have it
contain your Java classes. To do this, select File>Export.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 110 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Select JAR file and click Next. On the JAR Package Specification page, expand the
'com.yourcompand.lpexextensions' node and click twice on the checkbox beside
'LPEXEXTENSIONS Plugin'. Then in the JAR file field specify
'c:\WDSC\WSSD\workspace\com.yourcompany.lpexextensions\lpexextensions.jar' if c:\WDSC
is where you have WDSC installed.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 111 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

Click Finish to have the JAR file generated. If you change the Java files after packaging, you
will need to do this packaging step again. Now to share your plugin with others, they would need
to create a directory called 'com.yourcompany.lpexextensions' under their
c:\WDSC\WSSD\plugins directory. In that new directory, they would need to place your
plugin.xml file and the lpexextensions.jar file. After they restart WDSC, they should be able to
use your user commands in the LPEX Editor.

Conclusion:
This just shows a fraction of the capabilities that you have by writing your own extensions to the
LPEX Editor. For more information about the LPEX Editor, you can browse the online help. It
has full documentation on the default editor commands available as well as the API reference for

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 112 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

people writing their own user commands. In addition to user commands, the LPEX Editor also
enables you to write your own user actions and document parsers. As with the CODE Editor, the
LPEX Editor offers complete control over your editing experience.

 CODE - Advanced topics: Hands On Lab

 CODE - Advanced Topics 113 © Copyright IBM Corp. 1998 , 2002
Course material may not be reproduced in whole or in part

 without the prior written permission of IBM.

