
IBM® Distributed Debugger, Version 9

Distributed Debugger for Workstations

���

Edition notice

This edition applies to Version 9 of the IBM Distributed Debugger and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1999, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the general
information under Notices.

Contents

Chapter 1. Distributed Debugger 1
Distributed Debugger: Source and Control Panes . . 1
Distributed Debugger: Value Panes 2
Recursion and debugging 3

Chapter 2. Preparing a program for
debugging. 5
Writing a program for debugging 5
Compiling a program for debugging 5
UNIX call handling during debugging 5

exec() handling 5
fork() handling 5
system() handling. 6
Optimized code debugging 6

Chapter 3. Starting the Distributed
Debugger 9
Setting environment variables for the Debugger . . 9
Starting the debugger for local debugging 9
Starting the debugger for debugging compiled
languages remotely 9
Remote debugging 10
Starting the Distributed Debugger user interface
daemon. 11
Attaching to a running process 11

When to attach 11
Attaching to a local running process 11
Attaching to a remote running process 12

Chapter 4. Working with breakpoints 15
Breakpoints 15
Setting breakpoints 15

Setting a line breakpoint 15
Setting an address breakpoint 16
Setting a function breakpoint 16
Setting a storage change breakpoint 17
Setting a load occurrence breakpoint 17
Setting a conditional breakpoint 18
Setting a deferred breakpoint 18
Setting multiple breakpoints 18
Viewing set breakpoints 19
Modifying breakpoint properties 19
Enabling and disabling breakpoints 19
Deleting a breakpoint 20

Chapter 5. Controlling program
execution 23
Running a program. 23
Exception Handling 23

Selecting debugger recognized exceptions . . . 24
Stepping through a program. 24
Step commands 25
Skipping over sections of a program 26
Halting execution of a program. 27

Restarting a program 27

Chapter 6. Inspecting data 29
Inspecting variables 29

Adding a variable or expression to the Monitors
pane. 29
Viewing the contents of a variable or expression 29
Changing the contents of a variable 30

Inspecting registers 30
Viewing the contents of a register 30
Changing the contents of a register 31
Adding a register to the Monitors pane 31

Inspecting storage 32
Viewing a location in storage 32
Changing the representation of storage contents 33
Changing the contents of a storage location. . . 33
Adding a new Storage Monitor pane for an
expression or register 33
Heap errors 34

Enabling and disabling a monitored variable,
expression or register 36
Enabling tool tip evaluation for variables 36
Changing the representation of monitor contents . . 37

Appendix A. Distributed debugger
commands 39
idebug command 39

Warning: Temporary Level 3 Header 39
irmtdbgc command. 42

Appendix B. Optional breakpoint
parameters 45

Appendix C. Step commands 47

Appendix D. Environment variables . . 49
PATH environment variable 49
INCLUDE environment variable 49
LIBPATH environment variable. 49
DER_DBG_CASESENSITIVE environment variable 49
DER_DBG_PATH environment variable 49
DER_DBG_TAB environment variable 50
DER_DBG_TABGRID environment variable . . . 50
DER_DBG_DEEP_STEP_DEBUG 50

Appendix E. Postmortem debugging . . 51
Errors during UNIX workstation postmortem
debugging 51
Postmortem debugging on AIX 51
Debugging Dump Files 51

Appendix F. Limitations 53
Remote debug limitations 53

© Copyright IBM Corp. 1999, 2002 iii

Limitations during postmortem debugging 53
Unusual debugger behavior 53

Appendix G. Program profiles 55

Appendix H. C/C++ expressions
supported 57
C/C++ supported data types 57

C/C++ supported expression operands 57
C/C++ supported expression operators 58
C/C++ compiler options on workstation UNIX
platforms 59

Notices 61
Programming interface information 63
Trademarks and service marks 63

iv Distributed Debugger for Workstations

Chapter 1. Distributed Debugger

The Distributed Debugger is a client/server application that enables you to detect
and diagnose errors in your programs. This client/server design makes it possible
to debug programs running on systems accessible through a network connection as
well as debug programs running on your workstation.

The debugger server, also known as a debug engine, runs on the same system where
the program you want to debug runs. This system can be your workstation or a
system accessible through a network. If you debug a program running on your
workstation, you are performing local debugging. If you debug a program running
on a system accessible through a network connection, you are performing remote
debugging.

The Distributed Debugger client is a graphical user interface where you can issue
commands used by the debug engine to control the execution of your program. For
example, you can set breakpoints, step through your code and examine the
contents of variables. The Distributed Debugger user interface lets you debug
multiple applications, which may be written in different languages, from a single
debugger session. Each program you debug is shown on a separate program page
with a tab on each page displaying program identification information such as the
name of the program being debugged. The type of information displayed depends
on the debug engine that you are connected to.

Each program page is divided into different sections, called panes. Each pane
displays different information about your program. There are panes to display
your source code, breakpoints, the program’s call stack and various monitors. The
types of control and value panes available on a program page depend on the
program you are debugging.

For more information on the control and value panes available in the Distributed
Debugger user interface, see the related topics below.

Distributed Debugger: Source and Control Panes
Selected entries in the Control Panes have a direct relationship with what is
displayed in the Source Pane. For example, if you expand the stack view and click
on one of the entries, the source pane displays the source for the selected entry.
Similarly, if you click on a source file in the modules pane, that source file appears
in the source pane.

The types of control panes displayed when debugging a program depend on the
programming language used. The following control panes are available in the
Distributed Debugger user interface:

Stacks pane

The Stacks pane provides a view of the call stack for each thread in the program
you are debugging. Each thread in your program appears as a node in a tree list.
Expanding a node will display the names of active functions for that thread. The
thread you are debugging is highlighted. When debugging interpreted Java, the
name of the thread will be displayed.

© Copyright IBM Corp. 1999, 2002 1

Breakpoints pane

The Breakpoints pane contains a view of information about the breakpoints you
have set in the program you are debugging. Use the Breakpoints pane to view
breakpoints set in your program, modify their properties, enable or disable
breakpoints, delete them, or add new ones.

Source pane

The Source pane provides a view of the source code for the program you are
debugging. If your program was compiled with debugging information, you have
three choices as to how to view it: by its source code, its disassembled machine
code, or a combination of the two. To view source code, the source code must be
accessible to the debugger engine or the debugger user interface, either on a local
or network drive. If the source code file is not found, or your program was not
compiled with debugging information, only a disassembled machine code view is
available.

Note: Disassembly is only shown for compiled language programs.

Modules pane

The Modules pane displays a list of modules loaded while running your program.
The items in the list can be expanded to show compile units, files and functions.

The remaining panes are value panes. For more information on value panes, see
the related topics below.

Note: When viewing a Control pane with expandable items, choosing the Expand
All option from the pane’s menu in the debugger main menu bar will expand one
level of the tree at a time. You must choose Expand All for each subsequent level
of the tree that you wish to expand. Choosing Collapse All will collapse all levels
of the tree.

Distributed Debugger: Value Panes
Depending on the language you are debugging, the Distributed Debugger provides
you with value panes to observe various aspects of your program. The following
value panes are available in the Distributed Debugger user interface:

Variables and Expressions (Monitors pane)

The Monitors pane shows variables and expressions that you have selected to
monitor. You can enter the variables or expressions in a dialog box or select them
from the Source pane. Use the Monitors pane to monitor global variables or
variables you want to see at all times during your debugging session. From the
Monitors pane you can also modify the content of variables, or change the
representation of values.

Tip: Enabling tool tip evaluation for variables provides a quick way to view the
contents of variables in the Source pane. When you point at a variable, a pop-up
appears displaying the contents of that variable. If hover help for variables is
disabled and you want to enable it, see the related topic below.

Local Variables (Locals pane)

2 Distributed Debugger for Workstations

The Locals pane helps you monitor all local variables in scope at the current
execution point of your program. The Locals pane is updated after each Step or
Run command to show what variables are currently in scope and the contents of
those variables. It is also used to modify the content of variables or change the
representation of values.

Registers (Registers pane)

The Registers pane allows you to view and change the contents of processor
registers for the threads in your program. Registers values are unique for each
thread of your program. The registers are categorized, so you only need to expand
the category of registers that you wish to view.

Storage (Storage pane and Storage Monitor panes)

The Storage pane and Storage Monitor panes let you view and change the contents
of storage areas used by your program. You can also change the address range to
view and modify the contents of storage, and change the representation the debug
engine uses to display storage.

The initial Storage pane shows the storage areas used by your program at its
starting address.

You can add additional Storage Monitor panes that start at the address of storage
allocated to a register, variable, array, class object or expression.

Note: When viewing a Value pane with expandable items, choosing the Expand
All option from the pane’s menu in the debugger main menu bar will expand one
level of the tree at a time. You must choose Expand All for each subsequent level
of the tree that you wish to expand. Choosing Collapse All will collapse all levels
of the tree.

Recursion and debugging
Recursion does not have to involve a routine calling itself directly; for example:
FUNC1 calls FUNC2 calls FUNC3 calls FUNC1. After the call to FUNC3, each time
you step into one of these routines, the entry for that call shows a recursion count
one higher than the previous entry for that call on the Stacks pane.

You can use the recursion value in the stack frame properties box to detect
unintentionally recursive calls.

Limits to debugging recursive function calls

Only the copy of the variables from the most recent invocation of a function can be
monitored. Variables from previous invocations of the recursive function cannot be
monitored.

Chapter 1. Distributed Debugger 3

4 Distributed Debugger for Workstations

Chapter 2. Preparing a program for debugging

Writing a program for debugging
You can make your programs easier to debug by following these simple guidelines:
v Do not hand-tune your source code for performance until you have fully

debugged and tested the untuned version. Hand-tuning may make the logic of
your code harder to understand.

v Where possible, do not put multiple statements on a single line, because some
Distributed Debugger features operate on a line basis. For example, you cannot
step over or set line breakpoints on more than one statement on the same line.

v Assign intermediate expression values to temporary variables to make it easier
to verify intermediate results by monitoring the temporary variables.

To debug programs at the level of source code statements, you must specify the
compiler options that generate debug information. In some cases, you must specify
additional options that enable the debug engine to work properly with your code.

Compiling a program for debugging
In order to debug your program at the source code level, you need to compile
your program with certain compiler options that instruct the compiler to generate
symbolic information and debug hooks in the object file. See your compiler
reference documentation on how to compile your program with debug
information.

UNIX call handling during debugging

exec() handling
When a process calls exec(), a new program is loaded to replace the current
program.

The debugger suspends program execution at this point and opens a dialog, which
allows you to choose whether to debug program initialization or whether to use a
program profile. The name of the new program is shown, but, you cannot change
the name. After you select OK, the debugger stops at the first instruction of the
new program’s runtime (if you asked to debug program initialization), or at the
first instruction or statement in the new program.

fork() handling
When a process calls fork(), an exact copy of that process is created. The process
that forked is called the parent, and the new process is called the child. If a process
being debugged forks, the Distributed Debugger stops both the parent and child
processes, and opens a dialog box that lets you choose whether to continue
debugging the parent process or switch to the child process.

Whichever choice you make (Parent or Child), the Distributed Debugger ignores
the process you did not choose, and allows it to continue running. The debugger
will halt the selected process, which then allows you to perform debugging
activities, such as adding a breakpoint. The process remains halted until explicitly

© Copyright IBM Corp. 1999, 2002 5

restarted .Breakpoints set in the process you did not choose are ignored. Execution
stops in the process that you chose to debug.

If the process you did not choose performs an exec(), the Distributed Debugger
will allow
you to debug the new process. Look under the exec() handling related reference for
additional information.

system() handling
Restriction: This is supported on AIX and Solaris only.

When a program running in a UNIX environment starts another program using a
call to system(), the system() function calls both fork() and exec(). The following
describes the Distributed Debugger’s behavior after you perform a Step Over
command on a line containing a system()call, and tells you what actions you
should take to begin debugging the child process.
1. The system() function calls fork(). The Distributed Debugger stops execution

and raises a Process fork action dialog.
2. At this point you should choose to debug the child process. Once the Process

fork action dialog closes, issue the Run command to continue debugging the
child process.

3. The new child process calls exec()to load /bin/sh, and the debugger opens a
New process dialog and the active Distributed debugger Source pane shows a
disassembly view of the initial runtime entry point of /bin/sh.

4. Click OK to start debugging the child process.
5. The Distributed Debugger stops in the main function of /bin/sh.
6. Issue the Run command.

7. The /bin/sh process calls exec() to load the program specified in the
call to system() in the original program. The Distributed Debugger opens a
New process dialog and the active Distributed Debugger Source pane shows a
disassembly view of the initial runtime entry point of the program specified in
the call to system().

8. Click OK. The Distributed Debugger stops at main(). From here you can
continue debugging.

Optimized code debugging
Problems that only surface during optimization are often an indication of logic
errors or compile errors that are exposed by optimization, for example using a
variable that has not been initialized. If you encounter an error in your program
that only occurs in the optimized version, you can usually find the cause of the
error using a binary search technique to find the failing module:
1. Begin by optimizing half the modules and see if the error persists.
2. After each change in the number of optimized modules, if the error persists,

optimize fewer modules; if the error goes away, optimize more modules.
Eventually you will have narrowed the error down to a single module or a
small number of modules.

3. Debug the failing module. If possible, turn off the instruction scheduling
optimizations for that module. Look for problems such as reading from a
variable before it has been written to, and pointers or array indices exceeding
the bounds of storage allocated for the pointer or array.

6 Distributed Debugger for Workstations

When you debug optimized code, information in debugger panes may lead you to
suspect logic problems that do not actually exist. You should bear in mind the
points below:

Local variables are not always current

Do not rely on the Local variables monitor to show the current values of variables.
Numeric values, character values and pointers may be kept in processor registers.
In the optimized program, these values and pointers are not always written out to
memory; in some cases, they may be discarded because they are not needed.

Static and external variables are not always current

Within an optimized function, the values of static or external variables are not
always written out to memory.

Registers and Storage monitors are always current

The Registers and Storage monitors are correct. Unlike a monitor that shows actual
variables, such as the Locals Variables monitor, the Registers and Storage monitors
are always up-to-date as of the last time execution stopped.

Source statements may be optimized away

Using the disassembly view or mixed view to see the machine code for your
program, you may find, for example, that an assignment to a variable in your
source code does not result in any disassembly code being produced; this may
indicate that the variable’s value is never used after the assignment.

Chapter 2. Preparing a program for debugging 7

8 Distributed Debugger for Workstations

Chapter 3. Starting the Distributed Debugger

Setting environment variables for the Debugger
The Distributed Debugger user interface running on a workstation uses
environment variables to specify the settings for a variety of factors, such as the
location of source files for the client application, the location of the executable for
that application, and case-sensitivity when doing particular name comparisons.

You may want to set environment variables for the debug engine and Distributed
Debugger client. You can set the environment variables based on your operating
system. For instructions on setting environment variables refer to your operating
system manuals.

All variables listed in the related references below can be set on the host where the
debug engine is located. The following variables are also used by the Distributed
Debugger client: DER_DBG_PATH, CLASSPATH, and PATH.

Starting the debugger for local debugging
Restriction: Local debugging is supported on AIX and Windows

only.

To start debugging a program locally from the command line, issue the
idebugcommand with local debug parameters at a command line prompt.

If you issue the idebugcommand without any options, the debugger will prompt
you for the required information in the Load Program dialog.

Tip: If you have debugged a specific program before and do not want to use the
previous profile options, make sure that Use program profile is not selected or use
the -p- option of the idebug command.

Once the debugger user interface is running, you can debug other programs using
the same debugger session by selecting File > Load Program from the main
menubar.

Starting the debugger for debugging compiled languages remotely
Restriction: Remote debugging is only supported on AIX,

Solaris, HP-UX, and Windows.

The debugger allows you to run the debugger user interface and the debug engine
on separate machines. These separate machines can be running different operating
systems. When you start the debugger for remote debugging, you first start a
debug engine daemon. This daemon waits for a connection from the debugger user
interface. Once a connection is established, you can begin to debug your program.

To start debugging a remote program from the command line:
1. On the remote system, start the debug engine with the irmtdbgccommand at a

command line prompt. For information on irmtdbgccommand parameters, see
the related topic below.

© Copyright IBM Corp. 1999, 2002 9

2. On the local system, use the idebugcommand to start the Debugger user
interface and then select TCP/IP connection in the Load Program dialog and
enter the name of the host where you started the debug engine to make the
connection.

Alternatively, you can use a command line after starting the debug engine to
issue the idebugcommand, using the remote debug parameters. If you use
this method to make the connection, you must specify the -qhost parameter
and the -qlangparameter for the language you are debugging. For
information on the idebugcommand parameters, see the related topic below.

Tip: The debug engine is terminated if the debugger cannot load the program you
want to debug. Also, the debug engine is terminated when the program you are
debugging runs to completion or is terminated manually. To prevent the debug
engine from being terminated in these situations, use the -qdaemonoption of the
irmtdbgc command.

Remote debugging
Debugging a program running on one system while controlling the program from
another system is known as remote debugging. The debugger supports remote
debugging by allowing you to run the debugger user interface on one system,
while running the debug engine on another system. The system running the
debugger user interface is known as the local system. The system where the debug
engine runs is known as the remote system.

When debugging a program remotely, you can start the debugger in one of two
ways:
v Start a debug engine daemon, then start the debugger user interface.
v Start a debugger user interface daemon, then start a debug engine.

In both cases, a daemon will listen for a connection. Once a connection is made
you can begin to debug your program.

Why use remote debugging
You might want to use remote debugging for the following reasons:
v The program you are debugging is running on another user’s system, and is behaving

differently on that system than on your own.

You can use the remote debug feature to debug this program on the other
system, from your system. The user on the system running that program
interacts with the program as usual (except where breakpoints or step
commands introduce delays) and you are able to control the program and
observe the program’s internal behavior from your system.

v You want to debug a program that uses graphics or has a graphical user interface.

It is easier to debug an application that uses graphics or has a graphical user
interface when you keep the debugger user interface separate from that of the
application. Your interaction (or another user’s interaction) with the application
occurs on the remote system, while your interaction with the debugger occurs
on the local system.

v The program you are debugging was compiled for a platform that the debugger user
interface does not run on.

You can use the remote debug feature to take advantage of the debugger user
interface while debugging the remote application.

10 Distributed Debugger for Workstations

Restriction: This information applies to remote debugging between
workstation platforms only. For information for debugging an OS/390 or AS/400
program from a workstation, see the online for help for the Distributed Debugger
shipped with products that support OS/390 or AS/400.

Starting the Distributed Debugger user interface daemon
Start the Distributed Debugger user interface in daemon mode if you want the
Distributed Debugger user interface to appear only after you have started a debug
engine.

To start the Distributed Debugger user interface daemon, issue the following
command at a command line prompt:

idebug -qdaemon -quiport=<port>

where <port>is the port number where you want the Distributed Debugger user
interface daemon to listen for a debug engine.

When you start the debug engine that will connect to this
daemon, the port specified with the -quiportoption to the irmtdbgccommand must
be the same as the one specified with the -quiport option to the idebugcommand.

Attaching to a running process

When to attach
There are two main reasons for attaching the Debugger to a process or JVM:
v You anticipate a problem at a particular point in your program, and you do not

want to step through the program or set breakpoints. In this situation, you can
run your program, and during a program pause shortly before the anticipated
failure (for example, while the program is waiting for keyboard input), you
attach the Debugger. You can then provide the input, and debug from that point
on.

v You are developing or maintaining a program that hangs sporadically, and you
want to find out why it is hanging. In this situation, you can attach the
Debugger, and look for infinite loops or other problems that might be causing
your program to hang.

Note: You can attach the Debugger to an already running program or a running
Java Virtual Machine (JVM) where an error or failure has occurred.

Attaching to a local running process
Restriction: Attaching to a local running process is only supported

on AIX and Windows.

You can attach the debugger to a running process either by using the Attach dialog
or from a command line by using the -a option of the idebugcommand. See the
related topic below on when to attach to a running process.

To attach the debugger to a running process with the Attach dialog:
1. Select File > Attach to invoke the Attach dialog.
2. Select the Compiled tab.
3. Select the Local radio button.

Chapter 3. Starting the Distributed Debugger 11

4. Select the dominant language of the program.
5. Optionally, enter the full path name to the executable associated with the

process you want to attach, in the Process Path field.
6. If you do not know the Process ID of the process you want to attach to, click

Get Process List. The Process List dialog provides a list of the processes
running on the local machine. Select a process in the Process Path field and
click OK to close the Process List dialog.
or
If you know the Process ID, click the Enter Process ID radio button and enter
the Process ID in the Process ID field.

7. Click Use program profile if you want to use this feature.
8. Click Attach to attach to the process and close the Attach dialog.

To attach the debugger to a running process from a command line, enter the
following command:

idebug -a<process_id>

where <process_id> is a valid process id on your system.

Important: Do not attach to operating system processes or to the debugger’s own
processes. Attaching to such processes can cause unpredictable results.

The debugger detaches from the process on debugger exit. The Terminate
button can be used to terminate an attached process. To detach without exiting the
debugger, use the Detach button or select Debug> Detach from the menu bar.

You cannot restart a program that you have attached to.

Attaching to a remote running process
You can attach the debugger to a process running on a remote system either by
using the Attach dialog or from a command line by using the -a option of the
idebugcommand. See the related topic below on when to attach to a running
process.

To attach the debugger to a running process from a command line:
1. On the remote system, start the debug engine using the irmtdbgccommand. If

you specify the -qportoption, take note of it. You will need it later. The default
port is 8000.

2. On the local system, enter the following command:
idebug -qhost=<remote_host> [-qport=<host_port>][-qlang=<dominant
language>] -a<process_id>

where <remote_host>is the the TCP/IP name or address of the remote system, and
<process_id>is a valid process id on the remote system.

Important: Do not attach to operating system processes or to the debugger’s own
processes. Attaching to such processes can cause unpredictable results.

To attach the debugger to a running process on a remote system with the Attach
dialog:
1. Select File > Attach or issue idebug -a to invoke the Attach dialog.
2. Select the Compiled tab.

12 Distributed Debugger for Workstations

3. Select the Remote radio button. Make sure you have already started the engine.
Enter the host name and port number where the engine is listening.

4. Select the dominant language of the program.
5. Optionally, enter the full path name to the executable associated with the

process you want to attach, in the Process Path field.
6. If you do not know the Process ID of the process you want to attach to, click

Get Process List. The Process List dialog provides a list of the processes
running on the machine entered in the Process Path field. Select a process from
the list and click OK to close the Process List dialog.
or
If you know the Process ID, click the Enter Process ID radio button and enter
the Process ID in the Process ID field.

7. Click Use program profile if you want to use this feature.
8. Click Attach to attach to the process and close the Attach dialog.

The debugger detaches from the process on debugger exit. The
Terminate button can be used to terminate an attached process. To detach without
exiting the debugger, use the Detach button or select Debug> Detach from the
menu bar.

You cannot restart a program that you have attached to.

Chapter 3. Starting the Distributed Debugger 13

14 Distributed Debugger for Workstations

Chapter 4. Working with breakpoints

Breakpoints
Breakpoints are temporary markers you place in your executable program to tell the
Distributed Debugger to stop your program whenever execution reaches that point.
For example, if a particular statement in your program is causing problems, you
could set a breakpoint on the line containing the statement, then run your
program. Execution stops at the breakpoint before the statement is executed. You
can check the contents of variables, registers, storage, and the stack. You can then
step over (execute) the statement to see how the problem arises or you can choose
to skip the execution of the statement in question.

The Distributed Debugger supports the following types of breakpoints:
v Line breakpoints are triggered before the code at a particular line in a program

is executed.

v Function breakpoints are triggered when the function they apply
to is entered.

v Storage change breakpoints are triggered when storage at a specified address is
changed. Storage change breakpoints are not available when debugging
programs running on AIX.

v Load occurrence breakpoints are triggered when a DLL is loaded.

v Address breakpoints are triggered before the disassembly
instruction at a particular address is executed.

Setting breakpoints

Setting a line breakpoint
Line breakpoints can be set from either of the following:
v Source pane (page 15)
v Breakpoints menu (page 15).

To set a line breakpoint in the Source pane:
1. Ensure the Source pane is set to source view. To set the Source pane to a source

view, select Source > Source View.
2. Make sure the appropriate line is visible in the Source pane by using the scroll

bar or cursor keys to locate the line.
3. Do one of the following:

v Double-click on the line number in the prefix area of the line.
v Right-click on the line you want to set a breakpoint on, and select Set

Breakpoint from the pop-up menu.

To set a line breakpoint from the Breakpoints menu:
1. Select Breakpoints > Set Line from the menu bar.
2. Enter the name of the module or routine in which you want to set a breakpoint

in the Executable or Package entry field in the Line Breakpoint dialog. If this
module or routine is loaded, you can select it from the pulldown list in the
Executable or Package entry field.

© Copyright IBM Corp. 1999, 2002 15

3. Choose or enter the object, class or source file that is associated with the
module or routine specified in the Executable or Package entry field and
contains the line where the breakpoint is to be set from the Object pulldown
list.

4. Choose the source file containing the code for the object or class file from the
Source pulldown list. (This step is optional if you have not selected to defer the
breakpoint.)

5. Enter the line number within the source file where you want to place a
breakpoint in the Line entry field

6. If the module or routine you entered in the Executable or Package entry field
is not currently loaded, click on the Defer breakpoint check box.

7. Set any optional parameters that you want for the breakpoint.
8. Click OK to set the breakpoint and dismiss the Line Breakpoint dialog.

Alternatively, use the Set button to set the breakpoint without dismissing the
Line Breakpoint dialog.

Setting an address breakpoint
Restriction: This is supported for AIX and Windows only.

You can set an address breakpoint from the Source pane, and from the Breakpoints
menu.

To set an address breakpoint from the Source pane:
1. Ensure the Source pane is set to a disassembly or mixed view. To set the Source

pane to a disassembly view, select Source > Disassembly View. To set the
Source pane to a mixed view, select Source > Mixed View.

2. Make sure the appropriate line is visible in the pane by using the scroll bar or
cursor keys to locate the line.

3. Double-click on the address in the prefix area of the line, or right-click on the
Disassembly or Mixed view and select Set Breakpoint from the pop-up menu.

To set an address breakpoint from the Breakpoints menu:
1. Select Breakpoints > Set Address from the menu bar.
2. Enter either the address where you want to set the breakpoint or an expression

that evaluates to an address. The address must be entered in hexadecimal
notation.

3. Set any optional parameters that you want for the breakpoint.
4. Click OK to set the breakpoint and dismiss the Address Breakpoint dialog.

Alternatively, use the Set button to set the breakpoint without dismissing the
Address Breakpoint dialog.

Setting a function breakpoint
You can set function breakpoints from any of the following:
v Modules pane (page 16)
v Breakpoints menu (page 17)

To set a function breakpoint from the Modules pane:
1. Expand the list in the Modules pane until you see the function you want.
2. Right-click on that function and select Set Function Breakpoint from the

pop-up menu.

16 Distributed Debugger for Workstations

To set a function breakpoint from the Breakpoints menu:
1. Select Breakpoints > Set Function from the menu bar.
2. Enter the name of the executable which contains the function where you want

to set a breakpoint in the Executable entry field in the Function Breakpoint
dialog. This step is optional unless the executable is not loaded. If this
executable is loaded, you can select it from the pulldown list in the Executable
entry field.

3. Optionally, choose or enter the object, class or source file for the executable
specified in the Executable entry field from the Object pulldown list.

4. Enter the name of the function where the breakpoint is to be set in the
Function entry field in the Function Breakpoint dialog. If this function is
loaded, you can select it from the pulldown list in the Function entry field.

5. If the module or routine you entered in the Executable entry field is not
currently loaded, click on the Defer breakpoint check box.

6. Set any optional parameters that you want for the breakpoint.
7. Click OK to set the breakpoint and dismiss the Function Breakpoint dialog.

Alternatively, use the Set button to set the breakpoint without dismissing the
Function Breakpoint dialog.

Setting a storage change breakpoint
Restrictions: Storage change breakpoints are not supported on Solaris or when
debugging AIX data types other than 64-bit.

Storage change breakpoints halt execution of your program whenever storage at a
specific address is changed. For example, if a byte being watched contains X’40’
and the program writes X’40’ to that byte, the storage change breakpoint is not
triggered. If the program writes X’41’, the storage change breakpoint is triggered.

To set a storage change breakpoint from the Breakpoints menu:
1. Select Breakpoints > Set Storage Change from the menu bar.
2. Enter an address or expression that evaluates to an address in the Address or

Expression field.
Tip: You can enter the address of a variable by specifying the

variable name preceded by an ampersand (&).
3. Specify the number of bytes to be monitored in the Bytes to Monitor field.
4. Set any optional parameters that you want for the breakpoint.
5. Click OK to set the breakpoint and dismiss the Storage Change Breakpoint

dialog. Alternatively, use the Set button to set the breakpoint without
dismissing the Storage Change Breakpoint dialog.

Caution: If you set a storage change breakpoint for any address that is on the call
stack, be sure to remove the breakpoint before leaving the routine associated with
it. Otherwise, when you return from the routine, the routine’s stack frame will be
removed from the stack, but the breakpoint will still be active. Any other routine
that gets loaded on the stack will then contain the breakpoint.

Setting a load occurrence breakpoint
Load occurrence breakpoints halt execution of your program when the DLL or
dynamically loaded module specified is loaded into memory. You can set load
occurrence breakpoints from the Breakpoints menu.

To set a load occurrence breakpoint from the Breakpoints menu:

Chapter 4. Working with breakpoints 17

1. Select Breakpoints > Set Load Occurrence from the menu bar.
2. Enter the name of the DLL or dynamically loaded module to set the breakpoint

for.
3. Set any optional parameters that you want for the breakpoint.
4. Click OK to set the breakpoint and dismiss the Load Occurrence Breakpoint

dialog. Alternatively, use the Set button to set the breakpoint without
dismissing the Load Occurrence Breakpoint dialog.

Setting a conditional breakpoint
When you set a breakpoint, you can specify the parameters or conditions for that
breakpoint.

To set a conditional breakpoint:
1. Ensure the Source pane is set to source view. To set the Source pane to a source

view, select Source > Source View.
2. Use the Breakpoints menu to select the type of breakpoint that you want to set.
3. On the Breakpoint dialog complete any or all optional parameters that you

want as conditions for your breakpoint.
4. Click OK to set the conditional breakpoint and dismiss the dialog.

/a>

Setting a deferred breakpoint
A deferred breakpoint is a breakpoint set in a DLL, dynamically called routine,
executable, or package that is not currently loaded. You can defer the following
types of breakpoints:
v line breakpoints
v function breakpoints

To set a deferred breakpoint, click on the Defer breakpoint check box when setting
one of the above types of breakpoints. When you restart a program, the
breakpoints that were set in the previous debug session for classes not currently
loaded will be set as deferred breakpoints. These deferred breakpoints will be
enabled when the classes corresponding to the breakpoints are loaded.

Setting multiple breakpoints
You can set several breakpoints with the same optional parameters from any of the
breakpoint dialogs.

To set multiple occurrences of a type of breakpoint:
1. Select the type of breakpoints you want to set from the Breakpoints menu.
2. From the Breakpoint dialog, enter the required information for the first

breakpoint. Change any fields in the Optional Parameters section of the dialog,
as desired.

3. Click on Set. The settings are saved for the current breakpoint.
4. For each additional breakpoint, change the information for the new breakpoint

(for example, new line number, new function , or new address) and click on
Set.

5. After you have set the last breakpoint, click on Cancel to dismiss the dialog.

18 Distributed Debugger for Workstations

Viewing set breakpoints
A list of breakpoints you have set is kept in the Breakpoints pane for the process
you are debugging. This list is originally collapsed and can be expanded to show
your installed breakpoints. The list of breakpoints is divided into the types of
breakpoints you may have set. Expanding each type of breakpoint will provide
you with a list of breakpoints for that type.

To view the list of breakpoints:
1. Click on the Breakpoints tab for the process or program you are debugging.
2. Expand or collapse the list of breakpoints to display the breakpoints you want

to see.

To view the properties of a breakpoint, right-click on the desired breakpoint and
select Properties from the pop-up menu.

Modifying breakpoint properties
You can change the following properties of a breakpoint:
v Which threads the breakpoint applies to.
v How often the debugger should skip the breakpoint (the frequency).
v Whether to stop on the breakpoint only when a given expression is true.

Expressions can only be applied to the following breakpoints:
– line breakpoints
– function breakpoints
– address breakpoints

v Whether to defer the breakpoint. Only the following breakpoints can be
deferred:
– line breakpoints
– function breakpoints

You can also change the Required parameters fields for a breakpoint. Changing
these fields results in the existing breakpoint being deleted and a new breakpoint
being set.

To change a breakpoint’s properties:
1. Click on the Breakpoints tab to bring the Breakpoints pane to the foreground.
2. In the Breakpoints pane, expand the list of breakpoints until you see the

breakpoint you want to modify.
3. Right-click on the breakpoint you want to modify.
4. Select Modify Breakpoint from the pop-up menu. A Breakpoint dialog

corresponding to the breakpoint type appears displaying the current settings
for the breakpoint.

5. Change the breakpoint’s properties in the Breakpoint dialog.

Enabling and disabling breakpoints
You can disable a breakpoint so that it does not stop execution, and then later
enable it again. Information about the breakpoint (such as type, location, condition,
and frequency) is saved by the Distributed Debugger when the breakpoint is
disabled. Since this is not true when the breakpoint is deleted, the advantage of
disabling a breakpoint instead of deleting it is that it is easier to enable a

Chapter 4. Working with breakpoints 19

breakpoint than to recreate it. Enabled breakpoints are indicated with a red dot (

). Disabled breakpoints are indicated with a gray dot (
).

You can enable or disable breakpoints from the Breakpoints pane. Also, you can
enable or disable breakpoints from the Source pane.

To enable or disable a single breakpoint from the Breakpoints pane:
1. Click on the Breakpoints tab to bring the Breakpoints pane to the foreground.
2. In the Breakpoints pane, expand the list of breakpoints until you see the

breakpoint you want to enable or disable.
3. Right-click on the breakpoint you want to enable or disable.
4. Select Enable Breakpoint or Disable Breakpoint from the pop-up menu.

To enable or disable a breakpoint from the Source pane:
1. Scroll to the line which contains the breakpoint you want to enable or disable.
2. Right-click on the line which contains the breakpoint you want to enable or

disable.
3. Select Enable Breakpoint or Disable Breakpoint from the pop-up menu.

To enable all breakpoints, select Breakpoints > Enable All Breakpoints from the
menu bar.

To disable all breakpoints, select Breakpoints > Disable All Breakpoints from the
menu bar.

Deleting a breakpoint
You can delete single breakpoints from the Source pane and the Breakpoints pane.
All breakpoints can be deleted at once from the Breakpoints menu. If you delete a
breakpoint, all information on it is lost. If you do not want to lose your breakpoint
information, but do not want the breakpoint to stop execution, disable the
breakpoint instead. For information on disabling breakpoints, see the related topic
below.

To delete a single breakpoint in the Source pane:
1. Scroll to the line which contains the breakpoint you want to delete.
2. Do one of the following to delete the breakpoint:

v Double-click on the line number in the prefix area of the line to delete the
breakpoint.

v Right-click on the breakpoint and select Delete Breakpoint from the pop-up
menu.

To delete a single breakpoint in the Breakpoints pane:
1. Click on the Breakpoints tab to bring the Breakpoints pane to the foreground.
2. In the Breakpoints pane, expand the list of breakpoints by clicking on the plus

icons () until you see the breakpoint you want to delete.
3. Right-click on the breakpoint you want to delete.
4. Select Delete Breakpoint from the pop-up menu.

To delete all breakpoints, select Breakpoints > Delete All Breakpoints from the
menu bar.

20 Distributed Debugger for Workstations

If you want to temporarily prevent all breakpoints from stopping execution,
disable them instead by selecting Breakpoints > Disable All Breakpoints.

Chapter 4. Working with breakpoints 21

22 Distributed Debugger for Workstations

Chapter 5. Controlling program execution

Running a program
You can have a program run until one of the following occurs:
v end of program is reached
v an active breakpoint is hit
v a specific line number is reached
v an exception occurs.

v a fork(), exec(), or system() call is reached.

If you select Debug > Run, the program will run until the end of the program is
reached, an active breakpoint is hit, or an exception occurs if exception filtering is
set to a level other than NONE.

To run a program until an active breakpoint is hit, do one of the following:

v Click the run button ().
v Select Debug > Run from the menu bar.
v Press F5.

If you select Run to Location, the program will run to the statement selected
unless an active breakpoint is hit, an exception occurs or the end of the program is
reached.

To run a program to a specific line number:
1. Make sure the line to run to is visible in the Source pane by using the scroll bar

or cursor keys to locate the line.
2. Run the program to the line by doing one of the following:

v Right-click on the line to bring up the pop-up menu, then select Run To
Location.

v Click on the line to select it, then select Debug > Run To Location from the
menu bar.

Exception Handling
The Distributed Debugger allows you to investigate exceptions that occur while
you are debugging your program.

You can choose the types of exception or the level of exception you want the
debugger to recognize in the Exception Filter Preferences Setting field in
Applications Preferences dialog box. The types of exception or level of exception
you can select varies with the platform where you are running the program that
you are debugging. For example, the exceptions the debugger can handle for a
C++ program running on Windows NT are different from the exceptions the
debugger can handle for a C++ program running on AIX.

When the debugger encounters an exception that matches one of the exceptions
that are specified in the Exception Filter Preferences Settings dialog box, a dialog
box opens to warn you an exception occurred. Also, the line where the exception
occurred is highlighted in the Source pane.

© Copyright IBM Corp. 1999, 2002 23

After a program exception is encountered and the Application Exception Occurred
dialog box is closed, the following actions are available:

Step exception
Step exception causes the debugger to step into the first registered exception
handler (tracked by the operating system). Execution stops at the first executable
line of code in the exception handler. If your application does not have a registered
exception handler, the exception remains “unhandled” and the application may be
terminated.

Run exception
Run exception causes the debugger to run the exception handler that is registered
to handle the type of exception encountered. If your application does not have a
registered exception handler, the exception remains “unhandled,” and the
application may be terminated.

Examine/Retry exception

Examine/Retry exception discards the exception and allows you to investigate the
cause of the exception and, if desired, retry program execution at the statement
that triggered the exception. The debugger begins at this statement and attempts to
continue.

Selecting debugger recognized exceptions
You can choose the type of exceptions the Distributed Debugger recognizes for
processes you are debugging, so that stepping or execution will stop when one of
the selected exceptions is thrown. By default, all unhandled exceptions are
recognized by the Distributed Debugger.

To select the exceptions recognized by the Distributed Debugger:
1. Select File > Preferences from the menu bar.
2. Expand the Debug item in the left-hand window of the Application Preferences

dialog.
3. Locate the process you want to set the exceptions recognized for.
4. Click on Exception Filter Preferences Settings.

5. Check the type of exceptions you want the Distributed Debugger to recognize
or uncheck exceptions you want the Distributed Debugger to ignore.

6. Click OK to close the Application Preferences dialog.

To undo changes that you have made to the exception filter, click Reset.

To restore the exception filter preferences factory default settings, click Default.

To set your new exception filter preferences as the default for that programming
language, check the Debugger Defaults box before clicking OK.

Stepping through a program
You can use step commands to step through your program a single statement at a
time. The statements can be source code or disassembly instructions. For an
explanation of the step commands, see the related topic below.

To execute a Step Over command, do one of the following:

24 Distributed Debugger for Workstations

v Click the step over button () on the toolbar.
v Select Debug > Step Over from the menu bar.
v Press F8.

To execute a Step Into command, do one of the following:

v Click the step into button () on the toolbar.
v Select Debug > Step Into from the menu bar.
v Press F11.

To execute a Step Debug command, do one of the following:

v Click the step debug button () on the toolbar.
v Select Debug > Step Debug from the menu bar.
v Press F7.

To execute a Step Return command, do one of the following:

v Click the set return button () on the toolbar.
v Select Debug > Step Return from the menu bar.
v Press Shift+F11.

Step commands
You can use step commands to step through your program a single line or, on AIX
or Windows, one disassembly instruction at a time.

The following types of step commands are available:

Step Command Button Shortcut Description

Step Over

F8

Executes the current
line, without
stopping in any
functions or routines
called within the line.

Step Into

F11

Executes the current
line. If the current
line contains a call to
a function or routine,
execution stops in the
first line or
disassembly
instruction of the
called function or
routine. If the called
function or routine
was not compiled
with debug
information, the
function or routine is
shown in a
disassembly view.

Chapter 5. Controlling program execution 25

Step Command Button Shortcut Description

Step Debug

F7

Executes the current
line. Execution stops
at the next line
encountered for
which debug
information is
available. This could
be in the current
function or routine,
in the called function
or routine, or in a
function or routine
called within the
called function or
routine.

Step Return

Shift+F11

Executes from the
current execution
point up to the line
immediately
following the line
that called this
function or routine. If
you issue a Step
Return command
from the main entry
point (in C++, the
main() program), the
program runs to
completion.

Execution of your program may stop earlier than indicated in the step command
descriptions, if the Distributed Debugger encounters a breakpoint or an exception
occurs.

Tip: You can use combinations of step commands to step through multiple calls on
a single line.

Skipping over sections of a program
Restriction: When debugging interpreted Java programs, you cannot skip sections
of a program.

You can skip over sections of code to avoid executing certain statements or to
move to a position that certain statements can be executed again.

To skip over a section of code:
1. Scroll to the line where there are statements that you want to avoid executing

or you want to execute again.
2. Jump to the line by doing one of the following:

v Right-click on the line and select Jump to Location from the pop-up menu.
v Click on the line to select it, then select Debug > Jump to Location from the

menu bar.

26 Distributed Debugger for Workstations

Using Jump to Location can cause unpredictable results if you jump outside the
current function, jump over code that has side-effects (for example, calls to
functions whose results are assigned to variables, or functions that change the
contents of variables passed by reference), or jump into the middle of a block such
as a for loop.

Halting execution of a program
Halting a program stops the execution of the program without terminating the
execution of the program. It allows you to pause and examine the program’s
internal state and then continue execution without restarting the program.

To halt execution of a program that is currently running in the debugger, do one of
the following:

v Click on .
v Select Debug > Halt from the menu bar.
v Press Ctrl-F5.

You may find that execution halts in a function other than the one you are
debugging (for example, a system library routine). To run to the end of that routine
and stop in your own code, do one of the following:
v Issue a Step Return command.
v If the previous technique results in the debugger displaying the message

“Cannot determine return address”, issue the Step Debug command until
execution returns to your code

v If you know what line in your program will be the next to execute after the
current function returns, go to the source pane containing that line, set a
breakpoint on it, and issue the Run command.

Restarting a program
Restriction: Restarting a program is supported on AIX and

Windows only. It is not supported if you have attached to a process or JVM.

To start debugging your program from the beginning when your program is
stopped, do one of the following:

v Click in the toolbar.
v Select Debug > Restart from the menu bar.
v Press Ctrl+Shift+F5.

To start debugging your program again from the beginning when your program is
running:
1. Issue a Halt command by doing one of the following:

v Click in the toolbar.
v Press Ctrl+F5.
v Select Debug > Halt from the menu bar, if the program is currently

executing within the debugger.
2. Set a breakpoint at the location you want to run to, if it is not the beginning of

your program and you have not already set a breakpoint there.

3. Click in the toolbar or select Debug > Restart from the menu bar.

Chapter 5. Controlling program execution 27

If the previous run of your program produced side effects such as the creation of
an output file and the program logic will be changed by the existence of such files
from a previous debug session, you may want to erase these files before restarting.

28 Distributed Debugger for Workstations

Chapter 6. Inspecting data

Inspecting variables

Adding a variable or expression to the Monitors pane
If you want to keep track of the contents of variables and expressions during
program execution, add them to the Monitors pane. You can add variables and
expressions to the Monitors pane from the Source Pane or the Monitors menu.

Local variables that are in scope can also be monitored in the Locals pane. By
default, all local variables in scope are added to the Locals pane.

To add a variable or expression to the Monitors pane from the Source pane:
1. Ensure that the Source pane is set to source view. To set the Source pane to a

source view, select Source > Source View from the menu bar.
2. Do one of the following:

v Ensure that Add to program monitor in the Preferences > Debug menu is
selected and then double-click the variable or expression you want to
monitor.

v Double-click or highlight the variable or expression you want to monitor and
then right-click on the highlighted variable, and select Add to Program
Monitor from the pop-up menu.

To add a variable or expression to the Monitors pane from the Monitors menu:
1. Select Monitors > Monitor Expression from the menu bar.
2. In the dialog, enter the variable or expression you want to monitor.
3. Select the Program monitor radio button.
4. Click OK to add the variable or expression to the monitor and dismiss the

dialog.

To add multiple variables or expressions to the Monitors pane from the Monitors
menu:
1. Select Monitors > Monitor Expression from the menu bar.
2. In the dialog, enter the variable or expression you want to monitor.
3. Select the Program monitor radio button.
4. Click Monitor to add the variable to the monitor.
5. Repeat steps 2 to 4 until you have added all the variables or expressions you

want to monitor.
6. Click Cancel to close the dialog.

Viewing the contents of a variable or expression
You can view the contents of a variable or expression in the Locals pane or the
Monitors pane, if you have added the variable there. By default, all local variables
in scope for the selected stack entry are added to the Locals pane. Call stack
entries can be viewed or selected in the Stacks pane, and they include threads and,
depending on the language you are debugging, functions, methods, procedures, or
entry points.

© Copyright IBM Corp. 1999, 2002 29

To view the contents of a variable or expression in the Locals pane:
1. If the variable that you want to view is associated with a function, method,

procedure, or entry point call of a particular thread, go to the Stacks pane and
choose the appropriate call stack entry. This will update the Locals pane with
the value of the local variables of that particular call.
Selecting a thread in the Stacks pane is equivalent to selecting the top or first
entry for that thread (for example, the first function, method, procedure, or
entry point call). If the debug engine does not support locals monitoring for
secondary entries (entries other than the top entry), then the Locals pane thread
nodes for those secondary entries displays ″Locals not available″ when they are
selected.

2. Expand the thread in the Locals pane where the local variable you want to
view appears.

3. If necessary, use the scroll bars to scroll the pane until the variable is visible.
4. If your variable is a class, struct or array, it can be expanded to show its

individual elements.
5. If desired, change the representation of the variable: right-click on the variable

and select Representation from the pop-up menu. Then select the desired
representation from the Monitor Representation dialog box.

To view the contents of a variable or expression you have already added to the
Monitors pane:
1. Use the scroll bars to scroll the pane until the variable is visible.
2. If your variable is a class, struct or array, it can be expanded to show its

individual elements.
3. If desired, change the representation of the variable: right-click on the variable

and select Representation from the pop-up menu. Then select the desired
representation from the Monitor Representation dialog box.

If a variable or expression is not in scope, a message displays in the Monitors pane
instead of a value.

You can also view the contents of variables in the Source pane with Tool-tip
evaluation. To enable Tool-tip evaluation, see the related topic below.

Changing the contents of a variable
To change the contents of a variable in the Locals or Monitors pane:
1. Expand the monitor containing the variable whose value you want to modify.
2. If your variable is a class, struct or array, expand it to show its individual

elements.
3. Scroll down to the variable you want to change and do one of the following:

v Double-click on the variable or variable element.
v Right-click on the variable and select Edit from the pop-up menu.

4. Enter a new value for the variable or variable element.

Inspecting registers

Viewing the contents of a register
You can view the contents of a register from the Registers pane, the Monitors pane
if you have added the register there, or a Storage Monitor pane if you have added
the register there.

30 Distributed Debugger for Workstations

To view the contents of a register in the Registers pane:
1. Expand the thread for which you want to view the registers.
2. Expand the register category that contains the register you want to view.
3. If desired, use the scroll to scroll the pane until the register is visible.

To view the contents of a register you have already added to the Monitors pane:
1. If necessary, use the scroll bars to scroll the Monitors pane until the register is

visible.
2. If desired, change the representation of the register: right-click on the register

and select Representation from the pop-up menu. Then select the desired
representation from the Monitor Representation dialog box.

To view the contents of a register you have already added to a Storage pane:
1. If necessary, use the scroll bars or PageUp and PageDown keys to scroll the

Storage pane until the register is visible.
2. If desired, change the representation of the register: right-click on the register

and select Representation from the pop-up menu. Then select the desired
representation from the Monitor Representation dialog box.

Changing the contents of a register
To change the contents of a register in the Registers pane, Monitors pane or
Storage Monitor pane:
1. In the Registers pane, or Monitors pane expand the entry which contains the

register whose value you to want to change.
2. Scroll to the register you want to change and do one of the following:

v Double-click on the register.
v Select Edit from the pop-up menu.

3. Enter a value that is valid for the current representation of that register.
4. Press Enter to submit the change. The Distributed Debugger checks for a valid

value.

Adding a register to the Monitors pane
You can add a register to the Monitors pane if you want to monitor only a few
registers during the execution of your program. Registers can also be monitored in
the Registers pane and Storage Monitor panes. To monitor all registers during
program execution, use the Registers pane.

To add a register to the Monitors pane:
1. Do one of the following:

v Select Source > Monitor Expression from the menu bar.
v Press Shift+F9.
v Click on the Monitors tab and select Monitors > Monitor Expression from

the menu bar.
2. In the dialog, enter the name of the register you want to monitor. Check the

Registers pane to see a valid Registers name.
3. Select Program Monitor.
4. Click OK to add the register to the Expressions monitor and dismiss the dialog.

To add multiple registers to the Monitors pane:
1. Click on the Monitors tab and do one of the following:

Chapter 6. Inspecting data 31

v Select Source > Monitor Expression from the menu bar.
v Click on the Monitors tab and select Monitors > Monitor Expression from

the menu bar.
v Press Shift+F9.

2. In the dialog, enter the register you want to monitor.
3. Click Monitor to add the register to the monitor.
4. Repeat steps 2 and 3 until you have added all the registers you want to

monitor.
5. Click Cancel to dismiss the dialog.

Inspecting storage

Viewing a location in storage
You can view the contents of storage from the Storage pane or from a new Storage
Monitor pane that you have created.

To view the contents of storage from the Storage pane:
1. If desired, change the representation of the storage contents in the Storage

pane.
2. If necessary, use the scroll bar in the Storage pane to view storage locations

above or below the starting address of the Storage pane.
3. You can jump directly to an address in the Storage pane by doing the

following:
v Double-click on any address field in the Storage pane.
v Enter the address you want to view. This address can be an expression, for

example &x.
v Press Enter. The storage contents now shown in the Storage pane are

centered around the address you just entered.

To view the contents of storage from a Storage Monitor pane that you have
created:
1. If desired, change the representation of the storage contents in the Storage

Monitor pane.
2. If necessary, use the scroll bar in the Storage Monitor pane to view storage

locations above or below the starting address of the Storage Monitor pane.
3. Use the Go to Address button to return to the starting address of the Storage

Monitor pane.

To view the contents of a C or C++ variable (such as an integer) in
a Storage monitor, precede the variable with an ampersand (&), or select a pointer
that points to that variable. For example, given the following C or C++ source
code:
int i=10;
int* p=&i;

You can monitor the storage for the variable iby entering either &i or pin the
Monitor expression dialog, then selecting the Storage monitor radio button in that
dialog.

32 Distributed Debugger for Workstations

Changing the representation of storage contents
For each Storage or Storage Monitor pane you have, you can change the
representation of the storage and the number of columns shown in each pane.

These settings affect only the Storage or Storage Monitor pane you are viewing, so
you can have multiple Storage Monitor panes with different settings.
v Select the representation of storage for the Storage pane or Storage Monitor pane

you are viewing from the Content style pulldown list. The Content Style
pulldown list is at the bottom of the pane.

v Select the number of columns shown in a Storage pane or Storage Monitor pane
from the Columns Per Line pulldown list. The Columns Per Line pulldown list
is at the bottom of the pane.

Changing the contents of a storage location
To change the contents of a storage location in a Storage pane or Storage Monitor
pane:
1. Select the Storage pane or Storage Monitor pane where you want to make the

change.
2. Scroll down to the storage location you want to change.
3. Right click and select Edit or double-click on the value you want to change.
4. Enter a valid value for that storage location.
5. Press Enter to submit the change. The Distributed Debugger checks for a valid

value.

Adding a new Storage Monitor pane for an expression or
register

Registers can also be monitored in the Registers pane and the Monitors pane. To
monitor all registers during program execution, use the Registers pane.

You may wish to add a new Storage Monitor pane for an expression or a register if
you want to monitor specific locations in storage or only a few registers during the
execution. To monitor all locations in storage during program execution, use the
Storage pane.

You can also monitor all storage locations in a storage monitor, but it follows a
specific variable, expression, or register as it changes. Warning: If there is a
variable in scope which has the same name as the register that you are trying to
use, the variable will be used first.

To add a new Storage Monitor pane for an expression or register from the
Registers pane:
1. Highlight the expression or register for which you want to add a new Storage

Monitor pane.
2. Right-click the highlighted expression or register and select Add to Storage

Monitor from the pop-up menu. A new Storage Monitor pane will appear with
the expression or register appearing as the monitor’s tab title. The current value
of the expression or register will be highlighted.

To add a new Storage Monitor pane for an expression or register from the
Monitors pane:
1. Do one of the following:

Chapter 6. Inspecting data 33

v Select Source > Monitor Expression from the menu bar.
v Press Shift+F9.
v Click on the Monitors tab and select Monitors > Monitor Expression from

the menu bar.
2. In the dialog, enter the expression or register that you want to monitor.
3. Select the Storage Monitor radio button.
4. Click OK to add the new Storage Monitor pane.
5. A new Storage Monitor pane will appear with the expression or register

appearing in the monitor’s tab.

To add multiple new Storage Monitor panes from the Monitors pane:
1. Do one of the following:

v Select Source > Monitor Expression from the menu bar.
v Press Shift+F9.
v Click on the Monitors tab and select Monitors > Monitor Expression from

the menu bar.
2. In the dialog, enter the first expression or the name of the register that you

want to monitor.
3. Select the Storage Monitor radio button.
4. Click Monitor to add the new Storage Monitor pane for the expression or

register entered.
5. Repeat steps 2 to 4 until you have added all the storage locations or registers

that you want to monitor.
6. Click Cancel to close the dialog.

Tip: Check the Registers pane to see a valid register name.

Heap errors
Restriction: This information applies to debugging C or C++

programs on AIX, Windows, and OS/2 only.

Heap errors can occur when your code inadvertently overwrites control
information that the memory management functions use to control heap usage.
Each block of allocated storage within a heap consists of a data area, which starts
at the address returned by the allocating function, as well as a control area
adjacent to the data area, which is needed by the memory management functions
to free the storage properly when you deallocate the storage. If you overwrite a
control structure in the heap (for example, by writing to elements outside the
allocated bounds of an array, or by copying a string into too small a block of
allocated storage), the control information is corrupted and may cause incorrect
program behavior even if the data areas of other allocated blocks are not
overwritten.

You should consider the following points when you are trying to locate heap
errors:

Finding heap errors outside the debugger

To detect heap errors, you can compile your program to use the heap-checking
versions of memory management functions. When you run a program compiled
with this option, each call to a memory management function causes a heap check
to be performed on the default heap. This heap check involves checking the control

34 Distributed Debugger for Workstations

structures for each allocated block of storage within the heap, and ensuring that
none was overwritten. If an error is encountered, the program terminates and
information is written to standard error including the address where heap
corruption occurred, the source file and line number at which a valid heap state
was last detected, and the source file and line number at which the memory error
was detected.

Heap checking for default and other heaps

Heap checking is only enabled for the default heap used by each executable. If the
debug versions of the memory management functions do not report heap
corruption and you still suspect a problem, you may be using additional heaps
and corrupting them. You can debug usage of nondefault heaps by adding calls to
the _uheapchk C Library function to your source code. See your compiler
documentation for more information.

Pinpointing heap errors within the debugger

You can pinpoint the cause of a heap error from within the debugger, provided the
heap causing the error is known to be the default heap, by continually narrowing
down the gap between the last line at which the heap was valid, and the first line
at which corruption occurred. From within the Source pane, use a combination of
run commands, step commands, line and function breakpoints, and the Perform
Heap Check on Stop setting on the Debug menu, to narrow the scope of your
search.

Perform heap check on stop may expose other coding errors

For semantically incorrect programs, Perform Heap Check on Stop is intrusive in
that it may cause different results where a program is incorrectly accessing data on
the stack. This is because Perform Heap Check on Stop causes the process and
thread being debugged to call a heap check function each time execution stops,
and this heap check function affects the safe area of the stack by overwriting part
of that area with its stack frame. For example, if a called function returns the
address of a local variable, that local variable’s contents are accessible from the
calling function, and does not change, as long as the stack frame used by the called
function is not overwritten by a subsequent call. However, if you issue a Step
return command from the called function while Perform Heap Check on Stop is
enabled, the heap checking function is called immediately on return from the
called function, and the storage pointed to by the returned pointer may have been
overwritten by the stack frame of the heap checking function.

Perform heap check on stop affects performance

Heap checking within the debugger has a high overhead cost for step commands,
because the heap is checked after each step. If you are stepping through large
sections of code, or frequently stopping at breakpoints, and you find debug
performance too slow, try turning on Perform Heap Check on Stop only in those
areas you suspect are causing heap errors.

Notes on Perform Heap Check on Stop:

v For the Perform Heap Check on Stop choice to work, you have to compile your
application to use the heap-checking versions of memory management functions.
See your compiler reference for more information.

Chapter 6. Inspecting data 35

v If you enable the Check Heap on Stop choice and run your application to
termination, and the application contains a heap error, the heap check is not
made. To check the heap just before termination, set a breakpoint on the last line
of your application.

v If you are debugging a multiple thread program and a thread stops while
running in compiler memory management code that is holding a memory
semaphore, the heap check is not performed.

v If the stopping thread is running in 16-bit code, the heap check is not performed.

Enabling and disabling a monitored variable, expression or register
You can disable the monitoring of a variable, expression or register. The advantage
of disabling a monitored expression instead of deleting it is that it is easier to
enable a monitored expression than to recreate it.

You can enable or disable monitored variables, expressions or registers from either
the Monitor pane or Locals pane.

To enable or disable a monitored expression:
1. Locate the variable, expression or register you want to disable or enable in the

Monitors pane or Locals pane.
2. Right-click on the variable, expression or register you want to enable or disable.
3. Select Enable or Disable from the pop-up menu.

Enabling tool tip evaluation for variables
Tool tip evaluation of variables (“hover help for variables”) provides you with a
quick way to view the value of a variable in the Source pane. When you point at a
variable in the Source pane, the variable is evaluated and its value displays in a
manner similar to a tool tip. This feature is enabled by default when you first start
the debugger.

To enable tool tip evaluation of a variable, select Source > Allow Tool Tip
Evaluation from the menu bar.

A check mark appears next to the Allow Tool Tip Evaluation menu item when tool
tip evaluation for variables is enabled.

To enable tool tip evaluation for variables as the default:
1. Select File > Preferences from the main menu.
2. Select Debug from the list of preferences to set.
3. Select Allow Tool Tip Evaluation from the Debugger Defaults section.
4. Click OK to enable the tool tip monitor and dismiss the dialog.

Note: Tool tip evaluation uses spaces and punctuation to parse source and,
therefore, will only evaluate identifiers and not expressions. If you wish to
evaluate more complicated expressions with tool tip, highlight the entire
expression in the Source view and then position the mouse pointer to hover over
the highlighted expression and see the evaluation.

36 Distributed Debugger for Workstations

Changing the representation of monitor contents
You can change the representation of variables and expressions in the Monitors or
Locals panes. You can change the representation for existing entries or the default
representation for future entries in the Applications Preferences dialog.

To change the representation of a variable or expression:
1. Right-click on the variable or expression for which you want to change the

representation.
2. Select Representation from the pop-up menu. The Monitor Representation

dialog appears.
3. Select the representation you want from the list of available representations.
4. Click OK to change the representation and dismiss the Monitor Representation

dialog.

To change the default representation of variables or expressions:
1. Select File > Preferences from the main menu bar. The Application Preferences

dialog appears.
2. In the left-hand pane of the Application Preferences dialog, go to Debug >

program > language: Default Monitor Representation, where program is the
name of a program loaded in the Distributed Debugger you want to change the
default representation for and language is the language the program you are
debugging was written in.

3. Change the representations for variable types by clicking on the representation
associated with a variable type and selecting a representation from the list.

4. If you want these representations to become the default for the Distributed
Debugger to use when no program profile is available, select the Debugger
Defaults checkbox. If you want to restore the Debugger factory default settings,
click on the Default push button.

5. Click OK to change the default representations and dismiss the Application
Preferences dialog.

The default representations of variables and expressions in programs you have
previously debugged will not be affected by these changes.

Chapter 6. Inspecting data 37

38 Distributed Debugger for Workstations

Appendix A. Distributed debugger commands

idebug command
The idebugcommand starts both the Distributed Debugger

interface and the debug engine when debugging a program locally. When
debugging remotely, it is used to connect to a debug engine daemon on a remote
system or to start the Debugger user interface as a daemon on your local system.

The idebugcommand has the following syntax for AIX or
Windows:

idebug [idebug_options] [local_debug_parameters | remote_debug_parameters |
ui_daemon_parameters] [--] [program_name [program_parameters]]

This page contains discussions of the following categories of idebugparameters:
v “Basic idebug parameters”
v “Local debug parameters” on page 40
v “Remote debug parameters” on page 41
v “Parameters to use the Debugger user interface as a daemon” on page 41
v “Program name parameters” on page 42

Warning: Temporary Level 3 Header

Warning: Temporary Level 4 Header

Basic idebug parameters: The idebug_options are zero or more of the following:

Option Purpose

-a process_id Attach to the already running process
process_id.

-a Invoke the Attach dialog.

-s This option can only be used in conjunction
with -a.

Prevents the Debugger from stopping in the
first debuggable statement in the program.
Program execution only stops when the first
set breakpoint is encountered.

This option requires that the program you
want to debug has program profile
information available. If no program profile
information is available, or you specify the
-p- option, the program will run to
completion.

-h or -? Display help for the idebug command.

© Copyright IBM Corp. 1999, 2002 39

Option Purpose

-i Start the Debugger in the system
initialization code that precedes the call to
the main entry point for the program.

This can be useful if you need to
debug the constructors for static class
objects.

-p+ Use program profile information. The
Debugger will restore the monitors, fonts,
and breakpoints that were associated with
your program during its last debug session.
If you are debugging the program for the
first time, the Debugger windows start up
with their default appearance, and no
breakpoints are set.

Any changes you make to the monitors and
breakpoints are saved.

Note: If you add or delete lines in your
source file, recompile it, and then debug the
program again with a saved program
profile, line breakpoints may no longer
match the code they were initially set for
because line breakpoint information is saved
by line number, not by the content of the
line.

If the Debugger has saved a profile of the
breakpoint and monitor settings from a
previous debug session for this program, the
profile is used to restore those settings.

This is the default setting for the Debugger.

-p- Do not use program profile information. The
Debugger ignores any program profile
information, and the Debugger windows
start up with their default appearance, and
no breakpoints are initially set.

-qquiet Suppresses the splash screen when the
Debugger starts. Also suppresses the
Debugger daemon waiting dialog when
used with the -qdaemon and -quiport
options.

-qnewsession Starts a new debug session rather than
reusing an existing session.

-qterminate Closes any running Debugger user interfaces
or user interface daemons.

Local debug parameters: Use the local_debug_parameterswhen you want to start
debugging a program on your local system. If a parameter is not specified in the
command, the default is assumed.

The local_debug_parameters are:

40 Distributed Debugger for Workstations

Parameter Description

-qlang -qlang=dominant_language

Specifies the dominant programming
language to use for debugging. The valid
values are shown in the table below:

Value Use to when debugging:

c C programs

cpp C++ programs

Remote debug parameters: Use the remote_debug_parameterswhen you want to
connect to a debug engine daemon on a remote system. If a parameter is not
specified in the command, the default is assumed.

The remote_debug_parameters are:

Parameter Description

-qhost -qhost=remote_host

Required parameter that specifies the
TCP/IP name or address of the machine
where the debug engine is running.

-qport -qport=host_port

Specifies the port number on the machine
where the debug engine is running. The
default port is 8000. This port number must
match the port number used in the -qport
parameter of the irmtdbgc command.

-qlang -qlang=dominant_language

Specifies the dominant programming
language to use for debugging. The valid
values are shown in the table below:

Value Use when debugging:

c C programs

cpp C++ programs

Parameters to use the Debugger user interface as a daemon: The
ui_daemon_parametersare used when starting the Distributed Debugger user
interface as a daemon. When running as a daemon, the Distributed Debugger user
interface listens on a specific port number for a debug engine. Once a connection is
made, the Distributed Debugger user interface appears and you can begin
debugging your program. The ui_daemon_parameters are:

Parameter Description

-qdaemon Tells the Distributed Debugger user interface
to run as a daemon. You must use the
-quiport option when specifying -qdaemon.

If this option is not specified, the Distributed
Debugger does not listen for connections
from Debugger engines.

Appendix A. Distributed debugger commands 41

Parameter Description

-qlang -qlang=dominant_language

Specifies the dominant programming
language to use for debugging. The valid
values are shown in the table below:

Value

Use when debugging:

c C programs

cpp C++ programs

-quiport -quiport=port

Specifies the port numbers where the
Distributed Debugger user interface daemon
should listen for a debug engine. You can
specify a single port or multiple ports. When
specifying multiple ports, <port>must be a
comma-delimited list of port numbers.

This option is required when using the
-qdaemonoption. There is no default port
number.

One of the port numbers specified
here must be used as the port number for
the -quiportparameter of the irmtdbgc
command.

-qterminate Closes any running Debugger user interfaces
or user interface daemons.

Program name parameters: Use the “--” parameter to separate Debugger options
and parameters from the program name and parameters. Use this option if your
program name or parameters include forward slashes (“/”) or dashes (“-”). If you
do not use this option, anything preceded by a slash or a dash will be interpreted
as a Debugger option.

If you do not specify program_namewhen issuing the idebugcommand, the
Debugger will prompt you for the required information in the Load Program
dialog.

irmtdbgc command
Restriction: This is supported on AIX, Solaris, and

Windows only.

Requirement: You must have the debug engine installed on the remote system in
order to use this command. Check the install documentation for instructions on
how to install the debug engine on a remote system. This command can also be
used on the local system.

The irmtdbgccommand starts the debug engine on the remote system. If the debug
engine detects a Debugger user interface daemon, then you can start debugging
your program immediately. If no Debugger user interface daemon is detected, the

42 Distributed Debugger for Workstations

debug engine will run as a daemon until you start the Debugger user interface on
the local system with the idebug command.

Note: The Debugger can operate in the remote manner when the UI and engine
are on the same machine.

The irmtdbgc command has the following syntax:

irmtdbgc [irmtdbgc_parameters] [--] [program_name [program_parameters]]

where irmtdbgc_parameters are:

Parameter Description

-qport=<port> Specifies the TCP/IP port used for the
connection.

If you do not use the default port, specify
the same port number you use here in the
-qportparameter of the idebug command.
The default port is 8000.

Note: Do not use this parameter when
connecting to a Debugger user interface
daemon. You must use the -quiport option.

-quiport=<ui_daemon_port> Specifies the TCP/IP port used for
connecting to a Debugger user interface
daemon listening on another machine.

This port number must match the port
number used in the -quiport parameter of
the idebug command.

-qhost=<ui_daemon_host> Specifies the TCP/IP name or address of the
machine where the Debugger user interface
daemon is listening.

-qdaemon Tells the debug engine to run as a daemon.
The debug engine re-initializes itself and
waits for a new connection when the
program you are debugging runs to
completion or is terminated manually. The
debug engine must be terminated manually
on the remote system.

Without this option, the debug engine
terminates when the program you are
debugging runs to completion or is
terminated manually.

Use the “--” parameter to separate irmtdbgcparameters from the program name
and parameters. Use this option if your program name or parameters include
forward slashes (“/”) or dashes (“-”). If you do not use this option, anything
preceded by a slash or a dash will be interpreted as a Debugger option.

If you do not specify program_name when issuing the irmtdbgccommand, the
Debugger will prompt you for the required information in the Load Program
dialog of the Debugger user interface.

Appendix A. Distributed debugger commands 43

44 Distributed Debugger for Workstations

Appendix B. Optional breakpoint parameters

Optional breakpoint parameters are used to control the behavior of breakpoints.
You can set the following parameters when you set a breakpoint:

Optional breakpoint
parameter

Description Type of breakpoint
supported

Threads This parameter is supported by all breakpoint types.

Frequency This parameter is supported by all breakpoint types.

Expression You can enter an expression
into this field. The execution
of the program stops at the
breakpoint only if the
condition specified in this
field tests true.

For example, if you are
debugging a C++ program
you could type the
following:

(i==1) || (j==k) && (k!=5)

Line, function or method

Defer Select this check box if you
want to set a breakpoint in a
program module that is not
currently loaded.

If you enter an incorrect
source, file, function, or
program unit, the debugger
will not be able to activate
the breakpoint when the
program is loaded, and the
breakpoint will remain in the
deferred state.

Restriction: You cannot set a
deferred breakpoint in a
preloaded DLL or
dynamically called routine,
but you can set one in a
program that has some
preloaded DLLs or
dynamically called routines
and some dynamically
loaded ones.

Line, function or method

© Copyright IBM Corp. 1999, 2002 45

46 Distributed Debugger for Workstations

Appendix C. Step commands

You can use step commands to step through your program a single line or, on AIX
or Windows, one disassembly instruction at a time.

The following types of step commands are available:

Step Command Button Shortcut Description

Step Over

F8

Executes the current
line, without
stopping in any
functions or routines
called within the line.

Step Into

F11

Executes the current
line. If the current
line contains a call to
a function or routine,
execution stops in the
first line or
disassembly
instruction of the
called function or
routine. If the called
function or routine
was not compiled
with debug
information, the
function or routine is
shown in a
disassembly view.

Step Debug

F7

Executes the current
line. Execution stops
at the next line
encountered for
which debug
information is
available. This could
be in the current
function or routine,
in the called function
or routine, or in a
function or routine
called within the
called function or
routine.

© Copyright IBM Corp. 1999, 2002 47

Step Command Button Shortcut Description

Step Return

Shift+F11

Executes from the
current execution
point up to the line
immediately
following the line
that called this
function or routine. If
you issue a Step
Return command
from the main entry
point (in C++, the
main() program), the
program runs to
completion.

Execution of your program may stop earlier than indicated in the step command
descriptions, if the Distributed Debugger encounters a breakpoint or an exception
occurs.

Tip: You can use combinations of step commands to step through multiple calls on
a single line.

48 Distributed Debugger for Workstations

Appendix D. Environment variables

PATH environment variable
The PATH environment variable is used to locate the debugger executable and the
executable programs to be debugged, as well as any other executables being run
on the workstation.

INCLUDE environment variable
The INCLUDE environment variable is used by the debugger to locate include files
on the workstation.

The environment variable does not apply to languages that do not support include
files.

LIBPATH environment variable
Restriction: This is supported on AIX and OS/2 only.

The LIBPATH environment variable tells the debug engine where to look for
debugger DLLs on the workstation.

DER_DBG_CASESENSITIVE environment variable

The DER_DBG_CASESENSITIVE environment variable, if set to a non-null value
(for example, “yes”, 1, “true”, etc.) tells the debugger to compare part names and
module names on a case-sensitive basis. By default the debugger converts all
names to uppercase for comparison purposes. Note that this does not affect
filesystem accesses which are operating system dependent and not affected by
DER_DBG_CASESENSITIVE.

DER_DBG_PATH environment variable
The DER_DBG_PATH environment variable is used by the debug engine, the
debugger user interface, or both to locate debug source files on your client
workstation that are not stored in the same location as the executable being
debugged. For example, if your debug executable is stored in
F:\BUILDS\SANDDUNE\TEST but your source code is stored in F:\SOURCE and
F:\SOURCE\INCLUDE, you should set your DER_DBG_PATH variable as follows:
set DER_DBG_PATH=F:\SOURCE:F:\SOURCE\INCLUDE

You can set the DER_DBG_PATH environment variable on both client and server
systems. The search for source files starts on the server first.

Note: When using the DER_DBG_PATH environment variable with the Distributed
Debugger user interface or engine daemon, be sure to set the variable before
starting the daemon.

© Copyright IBM Corp. 1999, 2002 49

DER_DBG_TAB environment variable
The DER_DBG_TAB environment variable affects how the debugger expands tab
characters in a source or mixed view within a Source pane. The value for this
variable is an integer, indicating the number of spaces to convert a tab character
into. Unlike DER_DBG_TABGRID, DER_DBG_TAB does not cause the debugger to
place tabbed information in specific columns; it simply results in each tab in the
displayed files being converted to the indicated number of spaces.

Note: If DER_DBG_TABGRID has been set to a nonzero value, the setting of
DER_DBG_TAB has no effect.

DER_DBG_TABGRID environment variable
The DER_DBG_TABGRID environment variable affects how the debugger uses tab
characters to align tabs to columns in a source or mixed view within a Source
pane. The value of this variable is an integer indicating the starting position and
frequency of the tab. For example, if you set DER_DBG_TABGRID=6, the debugger
sets tab stops at 6, 12, 18, 24, and so on. If DER_DBG_TABGRID is set to a nonzero
value, the setting of DER_DBG_TAB has no effect.

DER_DBG_DEEP_STEP_DEBUG
The environment variable DER_DBG_DEEP_STEP_DEBUG allows you to bias the
step-debug behavior to favor either performance or function. The default
step-debug behavior favors better stepping performance by having the debugger
step over calls made to shared libraries that do not have any debug information.
This improves performance by ignoring libraries that are unlikely to lead to
debuggable code.

If the value of this environment variable is set to 1, step-debug will follow such
calls. This allows step-debug to reach callbacks from libraries that have no debug
information, at the cost of somewhat degraded stepping performance.

For example:

Modules A and C contain debug information, B does not.

line module A line module B line module C

100 call B()

5 call C()

500 do some stuff

510 return

6 do some stuff

20 return

101 do some stuff

A default step-debug executed at line 100 in module A will cause the debugger to
stop next at line 101 in module A. If the DER_DBG_DEEP_STEP_DEBUG
environment variable is set, then the debugger will stop at line 500 in module C.

50 Distributed Debugger for Workstations

Appendix E. Postmortem debugging

Errors during UNIX workstation postmortem debugging
You may experience two kinds of problems while debugging core files:
v Errors that prevent you from debugging the core file
v Unusual debugger behavior.

Postmortem debugging on AIX
Postmortem debugging is intended to help you isolate the causes of unanticipated
traps or unhandled exceptions, in programs that are already in production or
widespread use. There are three stages to the postmortem debugging process:
1. You compile the program with debug information, and ship the resulting object

code.
2. When the end user experiences a trap or unanticipated exception, AIX

automatically creates a core dump file with the name core, in the current
directory (provided that directory is writable).

3. You debug the core file instead of a live object code. Because the core file
contains information about the state of the application at the time of the trap or
exception, and is not a live object file, only a subset of debugger features are
available. For example, you can view memory and register contents, but you
cannot step or run the program or set breakpoints.

Debugging Dump Files
Note: Postmortem debugging is available on AIX and OS/2 only.

To start debugging a dump file, from the command shell type:

idebug [path]dumpfilename

where dumpfilenameis the name of the dump file you want to debug. You can also
enter the dump file name from the Startup dialog, by starting the debugger
without parameters, or by choosing File->Startup from the Source or Session
Control windows.

Once you have started debugging a dump file, you can use a subset of debugger
features to examine registers, storage, and code for the executable that caused the
trap. You can access all the debugger monitors (registers, call stack, storage, local
variables, program, private and popup), but you cannot change the contents of
items in these monitors (for example, registers in the registers monitor).

The following debugger commands are disabled, and icons for them are hidden or
greyed out, when you are debugging a dump file:
v Halt command
v Step commands
v Commands to set, clear, disable, enable, or delete breakpoints.

The Run command is available, but its only effect is to cause a redisplay of the
exception that caused the trap.

© Copyright IBM Corp. 1999, 2002 51

52 Distributed Debugger for Workstations

Appendix F. Limitations

Remote debug limitations
Remote debugging imposes the following limitations:
v Browse only displays the file system on the local system. The file system on the

remote system cannot be displayed.

Limitations during postmortem debugging
Once you have started debugging a dump file, you can use a subset of debugger
features to examine registers, storage (if available), and code for the executable that
caused the trap. You can access only the following debugger monitors:
v Registers monitor
v Storage monitor
v Call Stack monitor
v Local Variables monitor

You cannot change the contents of items in these monitors (for example, registers
in the registers monitor). Where the core file does not contain appropriate
information, question marks or messages such as “expression evaluation failed”
may appear in place of data. For example, if stack information was not saved, local
variable values may not be displayed, even though the names of those variables
are.

The following debugger commands are disabled, and icons for them are hidden or
greyed out, when you are debugging a dump file:
v Run and stop commands
v Step commands
v Commands to set, clear, disable, enable, or delete breakpoints.

Unusual debugger behavior
If the debugger behaves in unexpected ways when you are debugging core

files, it is usually an indication that the core file is missing necessary information,
or that modules cannot be located.

There are limitations during postmortem debugging regarding what subset of
debugging features and actions is normally available for core files. Missing core file
information and missing modules can further limit the debugger in the following
ways:
v The contents of local variables cannot be displayed or used in expression

evaluation. This indicates that the program stack is absent from the core file.
v No entries appear in the Call Stack monitor. This also indicates that the program

stack is absent from the core file. If some entries appear in the Call Stack
monitor but others are missing, this indicates that the process call stack has an
entry for a function contained within a module that is not available. This
situation causes the call stack to be truncated in the monitor; that is, only the
entries in the stack up to that entry are shown.

© Copyright IBM Corp. 1999, 2002 53

v Threads are missing. This indicates that the current execution location of a
thread is contained in a module that is not available. The debugger handles this
situation as if the thread never existed.

v You cannot use a variable of static storage duration in an expression (for
example, in the Monitor Expression dialog). This indicates that data segments
are missing from the core file.

v Memory in the storage window shows “??????” instead of the expected contents.
This indicates that the core file was missing those memory locations (for the
stack, data segments, and memory-mapped regions), or that the debugger could
not locate necessary modules (for code segment regions).

54 Distributed Debugger for Workstations

Appendix G. Program profiles

If you are debugging on AIX, user profiles are stored in the workstation, in
$HOME/.DbgProf.

Using program profiles means that the Distributed Debugger will restore debugger
fonts, monitor settings, and breakpoints for your program from the last time you
debugged the program. If you are debugging the program for the first time, the
debugger windows start up with their default appearance, and no breakpoints are
set.

When you use program profiles, any changes you make to the exception filter
settings, monitor settings, and breakpoints are saved. If the debugger has saved a
profile containing information on window, breakpoint, and monitor settings from a
previous debug session for a program, the profile is used to restore those settings.
To delete them you can use the Application Preferences dialog.

Attention: If you add or delete lines in your source file, recompile it, and then
debug the program again with a saved program profile, line breakpoints may no
longer match the code they were initially set for because line breakpoint
information is saved by line number, not by the content of the line.

© Copyright IBM Corp. 1999, 2002 55

56 Distributed Debugger for Workstations

Appendix H. C/C++ expressions supported

C/C++ supported data types
You can monitor an expression that includes a cast to any of the following types:
v 8-bit signed char
v 8-bit unsigned char
v 16-bit signed integer
v 16-bit unsigned integer
v 32-bit signed integer
v 32-bit unsigned integer
v 64-bit signed integer
v 64-bit unsigned integer
v 32-bit floating-point
v 64-bit floating-point
v pointers
v complex type
v user-defined types

These data types include int, short, char, and so on.

C/C++ supported expression operands

You can monitor an expression that uses the following types of operands only:

Operand Definition

Variable A variable used in your program.

Constant The constant can be one of the following
types:

v Fixed-point or floating-point constant
within the ranges supported by the
system the program you are debugging is
running on.

v A string constant, enclosed in double
quotation marks (for example, “mystring”)

v A character constant, enclosed in single
quote marks (for example, ’x’)

Register Any of the processor registers that can be
displayed in the Registers Monitor. In the
case of conflicting names, program variable
names take precedence over register names.
For conversions that are done automatically
when the registers display in mixed-mode
expressions, general-purpose registers are
treated as unsigned arithmetic items with a
length appropriate to the register. For
example, on Intel platforms EAX is 32-bits,
AX is 16-bits, and AL is 8-bits.

© Copyright IBM Corp. 1999, 2002 57

If you monitor an enumerated variable, a comment appears to the right of the
value. If the value of the variable matches one of the enumerated types, the
comment contains the name of the first enumerated type that matches the value of
the variable. If the length of the enumerated name does not fit in the monitor, the
contents appear as an empty entry field.

The comment (empty or not) lets you distinguish between a valid enumerated
value and an invalid value. An invalid value does not have a comment to its right.

You cannot update an enumerated variable by entering an enumerated type. You
must enter a value or expression. If the value is a valid enumerated value, the
comment to the right of it is updated.

You cannot look at macros that have been defined using the #define preprocessor
directive.

C/C++ supported expression operators
You can monitor an expression that uses the following operators only:

Operator Coded as

Global scope resolution ::a

Class or namespace scope resolution a::b

Subscripting a[b]

Member selection a.b or a->b

Size sizeof a or sizeof (type)

Logical not !a

Ones complement ~a

Unary minus -a

Unary plus +a

Dereference *a

Type cast (type) a

Multiply a * b

Divide a / b

Modulo a % b

Add a + b

Subtract a - b

Left shift a << b

Right shift a >> b

Less than a < b

Greater than a > b

Less than or equal to a <= b

Greater than or equal to a >= b

Equal a == b

Not equal a != b

Bitwise AND a & b

Bitwise OR a | b

58 Distributed Debugger for Workstations

Operator Coded as

Bitwise exclusive OR a ^ b

Logical AND a && b

Logical OR a || b

C/C++ compiler options on workstation UNIX platforms
Compile your C/C++ programs with the -g option (to generate debugging
information) if you want to be able to debug your program at the source code
statement level. You should also consider using the following options:

Option Purpose

-qnoopt Compiles your program with optimization
off. This is the default. (Some optimizations
reorder the execution sequence of your
program, while others may eliminate
expressions whose result is never used. You
may find it confusing to debug a program
compiled with optimization, because
statements may execute in a nonsequential
fashion or not at all.)

-Q! Compiles your program with inlining off.
This is the default.

Note: If you use the -bstabcmpct linker option when compiling programs that use
DirectToSom or C++ namespaces, you should only specify a value of 1 (the
default) or 0 (for example, -bstabcmpct:0) for versions of the program you intend
to debug. If you specify -bstabcmpct:2 you will not be able to debug such
programs.

Appendix H. C/C++ expressions supported 59

60 Distributed Debugger for Workstations

Notices

Note to U.S. Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this
Documentation in other countries. (In this notice, Documentation includes the
product, in whole or in part, (including but not limited to source code files and
object code files) and its associated materials whether in electronic or print form.)
Consult your local IBM representative for information on the products and services
currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead.
However, it is the user’s responsibility to evaluate and verify the operation of any
non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this Documentation. The furnishing of this Documentation does not
give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states
do not allow disclaimer of express or implied warranties in certain transactions,
therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 1999, 2002 61

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd. Laboratory
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this Documentation and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

62 Distributed Debugger for Workstations

(C) (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. (C) Copyright IBM Corp. 1997, 2002. All rights reserved.

Programming interface information
Programming interface information is intended to help you create application
software using this program.

General-use programming interfaces allow you to write application software that
obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and service marks
The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States, or other countries, or both:
v AFS
v DB2
v DB2 Extenders
v DB2 Universal Database
v CICS
v IBM
v IMS
v OS/390
v OS/400
v VisualAge
v WebSphere
v WorkPad

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

ActiveX, Microsoft, Windows, Windows NT, and the Windows logo are trademarks
or registered trademarks of Microsoft Corporation in the United States, or other
countries, or both.

UNIX is a registered trademark of The Open Group

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

(c) Copyright IBM Corp. 2000, 2002. All Rights Reserved.

Notices 63

	Contents
	Chapter 1. Distributed Debugger
	Distributed Debugger: Source and Control Panes
	Distributed Debugger: Value Panes
	Recursion and debugging

	Chapter 2. Preparing a program for debugging
	Writing a program for debugging
	Compiling a program for debugging
	UNIX call handling during debugging
	exec() handling
	fork() handling
	system() handling
	Optimized code debugging

	Chapter 3. Starting the Distributed Debugger
	Setting environment variables for the Debugger
	Starting the debugger for local debugging
	Starting the debugger for debugging compiled languages remotely
	Remote debugging
	Starting the Distributed Debugger user interface daemon
	Attaching to a running process
	When to attach
	Attaching to a local running process
	Attaching to a remote running process

	Chapter 4. Working with breakpoints
	Breakpoints
	Setting breakpoints
	Setting a line breakpoint
	Setting an address breakpoint
	Setting a function breakpoint
	Setting a storage change breakpoint
	Setting a load occurrence breakpoint
	Setting a conditional breakpoint
	Setting a deferred breakpoint
	Setting multiple breakpoints
	Viewing set breakpoints
	Modifying breakpoint properties
	Enabling and disabling breakpoints
	Deleting a breakpoint

	Chapter 5. Controlling program execution
	Running a program
	Exception Handling
	Selecting debugger recognized exceptions

	Stepping through a program
	Step commands
	Skipping over sections of a program
	Halting execution of a program
	Restarting a program

	Chapter 6. Inspecting data
	Inspecting variables
	Adding a variable or expression to the Monitors pane
	Viewing the contents of a variable or expression
	Changing the contents of a variable

	Inspecting registers
	Viewing the contents of a register
	Changing the contents of a register
	Adding a register to the Monitors pane

	Inspecting storage
	Viewing a location in storage
	Changing the representation of storage contents
	Changing the contents of a storage location
	Adding a new Storage Monitor pane for an expression or register
	Heap errors

	Enabling and disabling a monitored variable, expression or register
	Enabling tool tip evaluation for variables
	Changing the representation of monitor contents

	Appendix A. Distributed debugger commands
	idebug command
	Warning: Temporary Level 3 Header
	Warning: Temporary Level 4 Header

	irmtdbgc command

	Appendix B. Optional breakpoint parameters
	Appendix C. Step commands
	Appendix D. Environment variables
	PATH environment variable
	INCLUDE environment variable
	LIBPATH environment variable
	DER_DBG_CASESENSITIVE environment variable
	DER_DBG_PATH environment variable
	DER_DBG_TAB environment variable
	DER_DBG_TABGRID environment variable
	DER_DBG_DEEP_STEP_DEBUG

	Appendix E. Postmortem debugging
	Errors during UNIX workstation postmortem debugging
	Postmortem debugging on AIX
	Debugging Dump Files

	Appendix F. Limitations
	Remote debug limitations
	Limitations during postmortem debugging
	Unusual debugger behavior

	Appendix G. Program profiles
	Appendix H. C/C++ expressions supported
	C/C++ supported data types
	C/C++ supported expression operands
	C/C++ supported expression operators
	C/C++ compiler options on workstation UNIX platforms

	Notices
	Programming interface information
	Trademarks and service marks

