

WOSA

(Windows�symbol 228 \f "Symbol" \s 10 \h�� Open Services Architecture)

Extensions for Financial Services

A Client-Server Architecture for �Financial Enterprise Computing under Microsoft® Windows

Magnetic Stripe Reader/Writer�Device Class Interface

–––––––––––––––––––––––––––––––––––

Programmer’s Reference

Revision 1.11

February 3, 1995

Developed by the members of the Banking Solutions Vendor Council

�Revision History:

	1.0		May 24, 1993		Initial release of API and SPI specification

	1.01		June 11, 1993		Minor updates to BSVC member contact list

	1.1		April 14, 1994		Major updates and additions

	1.11		February 3, 1995		Separation of specification into separate documents�						for API/SPI and service class definitions; with updates�						NOTE: Changes from Revision 1.1 are marked.

The information in this document was contributed by members of the Banking Solutions Vendor Council and represents its current views on the issues discussed as of the date of publication. It is furnished for informational purposes only and is subject to change without notice. The Banking Solutions Vendor Council makes no warranty, express or implied, with respect to this document.

Microsoft is a registered trademark, and Windows and Windows NT are trademarks of Microsoft Corporation.

Apple and Macintosh are registered trademarks of Apple Computer, Inc.

IBM and NetView are registered trademarks of International Business Machines Corporation.

UNIX is a registered trademark of UNIX Systems Laboratories.

�Table of Contents

� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc316397588 � PAGEREF _Toc316397588 �1��

1.1 WOSA/XFS Service-Specific Programming	� GOTOBUTTON _Toc316397589 � PAGEREF _Toc316397589 �1��

2. Magnetic Stripe Readers and Writers	� GOTOBUTTON _Toc316397590 � PAGEREF _Toc316397590 �2��

3. Info Commands	� GOTOBUTTON _Toc316397591 � PAGEREF _Toc316397591 �3��

3.1 WFS_INF_IDC_STATUS	� GOTOBUTTON _Toc316397592 � PAGEREF _Toc316397592 �3��

3.2 WFS_INF_IDC_CAPABILITIES	� GOTOBUTTON _Toc316397593 � PAGEREF _Toc316397593 �5��

4. Execute Commands	� GOTOBUTTON _Toc316397594 � PAGEREF _Toc316397594 �7��

4.1 WFS_CMD_IDC_READ_TRACK	� GOTOBUTTON _Toc316397595 � PAGEREF _Toc316397595 �7��

4.2 WFS_CMD_IDC_WRITE_TRACK	� GOTOBUTTON _Toc316397596 � PAGEREF _Toc316397596 �8��

4.3 WFS_CMD_IDC_EJECT_CARD	� GOTOBUTTON _Toc316397597 � PAGEREF _Toc316397597 �9��

4.4 WFS_CMD_IDC_RETAIN_CARD	� GOTOBUTTON _Toc316397598 � PAGEREF _Toc316397598 �10��

4.5 WFS_CMD_IDC_RESET_COUNT	� GOTOBUTTON _Toc316397599 � PAGEREF _Toc316397599 �10��

4.6 WFS_CMD_IDC_SETKEY	� GOTOBUTTON _Toc316397600 � PAGEREF _Toc316397600 �12��

5. Events	� GOTOBUTTON _Toc316397601 � PAGEREF _Toc316397601 �13��

5.1 WFS_EXEE_IDC_INVALIDTRACKDATA	� GOTOBUTTON _Toc316397602 � PAGEREF _Toc316397602 �13��

5.2 WFS_EXEE_IDC_MEDIAINSERTED	� GOTOBUTTON _Toc316397603 � PAGEREF _Toc316397603 �13��

5.3 WFS_EXEE_IDC_MEDIAREMOVED	� GOTOBUTTON _Toc316397604 � PAGEREF _Toc316397604 �13��

5.4 WFS_EXEE_IDC_INVALIDMEDIA	� GOTOBUTTON _Toc316397605 � PAGEREF _Toc316397605 �14��

5.5 WFS_SRVE_IDC_CARDACTION	� GOTOBUTTON _Toc316397606 � PAGEREF _Toc316397606 �14��

5.6 WFS_USRE_IDC_RETAINBINFULL	� GOTOBUTTON _Toc316397607 � PAGEREF _Toc316397607 �14��

5.7 WFS_SRVE_IDC_CARDTAKEN	� GOTOBUTTON _Toc316397608 � PAGEREF _Toc316397608 �14��

6. Form Description	� GOTOBUTTON _Toc316397609 � PAGEREF _Toc316397609 �15��

�

�Introduction

This is Revision 1.11 of the service class specifications for magnetic stripe readers and writers; part of the Windows Open Services Architecture, Extensions for Financial Services (WOSA/XFS). The other relevant specifications are the overall API/SPI specification and the other four service class specifications (banking printers, PIN pads, cash dispensers and check readers/scanners) that have been defined thus far. These specifications are part of the Software Development Kit (SDK), which supplies the components and tools to allow the implementation of compliant applications and services. These specifications are distributed to the financial services community for continuing review and comment, to allow them to provide input to the ongoing enhancement of WOSA/XFS.

The members of the Banking Solutions Vendor Council encourage banks and other financial services companies world-wide, as well as their technology suppliers, to get updated information on the status of the project, and to submit comments, questions, and requests for the specification and SDK. This may be done via one of the Council members or on CompuServe—see the WOSA/XFS message section and library in the Windows Extensions forum (“GO WINEXT”). Note that the most recent versions of the WOSA/XFS specifications may be downloaded from this library.

The Banking Solutions Vendor Council is accepting applications for affiliate membership; interested parties should contact one of the Council members, post a message in the WOSA/XFS message section on CompuServe, or send email to bsvc@microsoft.com.

WOSA/XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes, messages, etc. These commands are used to request functions that are specific to one or more classes of service providers, but not all of them, and therefore are not in included in the common API for basic or administration functions.

When a service-specific command is common among two or more classes of service providers, the syntax of the command is as similar as possible across all services, since a major objective of the WOSA Extensions for Financial Services is to standardize command codes and structures for the broadest variety of services. For example, using the WFSExecute function, the commands to read data from various services are as similar as possible to each other in their syntax and data structures.

In general, the specific command set for a service class is defined as the union of the specific capabilities likely to be provided by the developers of the services of that class; thus any particular device will normally support only a subset of the defined command set.

There are three cases in which a service provider may receive a service-specific command that it does not support:

�symbol 183 \f "Symbol" \s 10 \h��	The requested capability is defined for the class of service providers by the WOSA/XFS specification, the particular vendor implementation of that service does not support it, and the unsupported capability is not considered to be fundamental to the service. In this case, the service provider returns a successful completion, but does no operation. An example would be a request from an application to turn on a control indicator on a passbook printer; the service provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the service provider does no operation and returns a successful completion to the application.

�symbol 183 \f "Symbol" \s 10 \h��	The requested capability is defined for the class of service providers by the WOSA/XFS specification, the particular vendor implementation of that service does not support it, and the unsupported capability is considered to be fundamental to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error is returned to the calling application. An example would be a request from an application to a cash dispenser to dispense coins; the service provider recognizes the command but, since the cash dispenser it is managing dispenses only notes, returns this error.

�symbol 183 \f "Symbol" \s 10 \h��	The requested capability is not defined for the class of service providers by the WOSA/XFS specification. In this case, a WFS_ERR_INVALID_COMMAND error is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify their behavior accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP_COMMAND error returns to make decisions as to how to use the service.

Magnetic Stripe Readers and Writers

This section describes the functions provided by a generic magnetic stripe card reader/writer service, also referred to as an ID card (IDC) unit. These descriptions include definitions of the service-specific commands that can be issued, using the WFSAsyncExecute, WFSExecute, WFSGetInfo and WFSAsyncGetInfo functions.

This service allows for the operation of the following categories of units:

motor driven card reader/writer

pull through card reader (writing facilities only partially included)

dip reader

hybrid reader (first step only ID card operations)

The magnetic stripe card service is capable of dealing with ID cards and can be expanded for smart card operation. Magnetic stripes on one side of the card, the number of which varies according to national standards, allow for modifiable data to be recorded.

The following tracks and the corresponding international standards are taken into account in this document:

Track 1		ISO 7811

Track 2		ISO 7811

Track 3		ISO 7811 / ISO 4909.

National standards like Transac for France or Watermark for Sweden are not considered, but can be easily included via the forms mechanism (see Section 6, Form Definition).

In addition to the pure reading of the tracks mentioned above, security boxes can be used via this service to check the data of writable tracks for manipulation. These boxes (such as CIM or MM) are sensor-equipped devices that are able to check some other information on the card and compare it with the track data.

�Info Commands

WFS_INF_IDC_STATUS

Description	This command reports the full range of information available, including the information that is provided either by the device handler or, if present, by any of the security modules. In addition to that, the number of cards retained is transmitted for motor driven card reader/writer (for devices of the other categories this number is always set to zero).

Input Param	None.

Output Param	LPWFSIDCSTATUS	lpStatus; as defined below.

typedef struct _wfs_idc_status �	{�	WORD			fwDevice;�	WORD			fwMedia;�	WORD			fwRetainBin;�	WORD			fwSecurity;�	USHORT			usCards;�	WORD			fwResetAct;�	WORD			fwPowerOnAct;�	WORD			fwPowerOffAct;�	LPSTR			lpszExtra;	�	} WFSIDCSTATUS, * LPWFSIDCSTATUS;

	fwDevice�Specifies the state of the ID card device as one of the following flags:

Value	Meaning

WFS_IDC_DEVONLINE	The device is present, powered on and online (i.e., operational, not busy processing a request and not in an error state).

WFS_IDC_DEVOFFLINE	The device is present and powered on, but offline (not operational–e.g., an operator has switched it offline).

WFS_IDC_DEVPOWEROFF	The device is present but powered off.

WFS_IDC_DEVBUSY	The device is present and is busy processing an Execute request.

WFS_IDC_DEVNODEVICE	There is no device connected.

WFS_IDC_DEVUSERERROR	The device is present but a person is preventing proper device operation. The application should suspend the device operation or remove the ATM from service until the service provider generates a device state change event indicating the condition of the device has changed e.g.the error is removed (WFS_IDC_DEVONLINE) or a permanent error condition has occurred (WF_IDC_DEVHWERROR).

WFS_IDC_DEVHWERROR	The device is present but inoperable due to a hardware fault that prevents it from being usederror.

	fwMedia�Specifies the state of the ID card unit as one of the following flags:

Value	Meaning

WFS_IDC_MEDIAPRESENT	Media is presentinserted in the device, not in the entering position and not jammed.

WFS_IDC_MEDIANOTPRESENT	Media is not presentinserted in the device and not at the entering position.

WFS_IDC_MEDIAJAMMED	Media is jammed in the device; operator intervention is required.

WFS_IDC_MEDIANOTSUPP	Capability to report media position is not supported by the device (e.g., a typical swipe reader).

WFS_IDC_MEDIAUNKNOWN	The media stateCapability cannot be determined with the device in its current state (e.g., the value of fwDevice is WFS_IDC_DEVNODEVICE, WFS_IDC_DEVPOWEROFF, WFS_IDC_DEVOFFLINE, or WFS_IDC_DEVHWERROR).

WFS_IDC_MEDIAENTERING	Media is at the entry/exit slot of a motorized device.Media is in the entering position (shutter).

	fwRetainBin�Specifies the state of the ID card unit retain bin as one of the following flags:

Value	Meaning

WFS_IDC_RETAINBINOK	The retain bin of the ID card unit is not fullOK.

WFS_IDC_RETAINBINFULL	The retain bin of the ID card unit is full.

WFS_IDC_RETAINNOTSUPP	The ID card unit does not support retain capability.

	fwSecurity�Specifies the state of the security unit as one of the following flags:

Value	Meaning

WFS_IDC_SECOPEN	The security module is open and ready to process cards.

WFS_IDC_SECNOTREADY	The security module is not ready to process cards.

WFS_IDC_SECNOTSUPP	No security module is available.

	usCards�The number of cards retainedkept back; applicable only to motor driven ID card units. This value is persistent (i.e., it survives power failures, opens, and closes): it is reset to zero by the WFS_CMS_IDC_RESET_COUNT command.

	fwResetAct�defines what to do with an inserted card at reset. Possible values are one of the following:

Value	Meaning

WFS_IDC_RESETEJECTCARD	Default action is to eject the card.

WFS_IDC_RESETRETAINCARD	Default action is to retain the card.

	fwPowerOnAct�Specifies the action that is performed with an inserted card at power-on (or opening of service); applicable only to motor driven ID card units. Possible values are those for fwResetAct.

	fwPowerOffAct�Specifies the action that is performed with an inserted card at power off (or closing of service); applicable only to motor driven ID card units. Possible values are those for fwResetAct.

	lpszExtra�Points to a list of vendor-specific, or any other extended, information. The information is returned as a series of "key=value" strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.

Error Codes	There are no additional error codes generated by this command.

Comments	Applications which require or expect specific information to be present in the lpszExtra parameter may not be device or vendor-independent.

�WFS_INF_IDC_CAPABILITIES

Description	This command is used to retrieve the capabilities of the ID card unit.

Input Param	None.

Output Param	LPWFSIDCCAPS	lpCaps; as defined below.

typedef struct _wfs_idc_caps�	{�	WORD			wClass;�	WORD			fwType;�	BOOL			bCompound;�	WORD			fwReadTracks;�	WORD			fwWriteTracks;�	USHORT			usCards;�	WORD			fwSecType;�	WORD			fwPowerOnOption;�	WORD			fwPowerOffOption;�	LPSTR			lpszExtra;	�	} WFSIDCCAPS, * LPWFSIDCCAPS;

	wClass�Specifies the logical service class; value is WFS_SERVICE_CLASS_IDC

	fwType�Specifies the type of the ID card unit as one of the following flags:

Value	Meaning

WFS_IDC_TYPEMOTOR	The ID card unit is a motor driven card unit.

WFS_IDC_TYPESWIPEPULLTRU	The ID card unit is a swipe (pull-through) card unit .

WFS_IDC_TYPEDIP	The ID card unit is a dip card unit.

WFS_IDC_TYPEHYBRID	The ID card unit is a hybrid card unit, such as one that includes magnetic stripe and smart/chip card capabilities.

	bCompound�Specifies whether the logical device is part of a compound physical device and is either TRUE or FALSE.

	fwReadTracks�Specifies the tracks that can be read by the ID card unit as a combination of the following flags:

Value	Meaning

WFS_IDC_TRACK1	The ID card unit can access track 1.

WFS_IDC_TRACK2	The ID card unit can access track 2.

WFS_IDC_TRACK3	The ID card unit can access track 3.

	fwWriteTracks�Specifies the tracks that can be written by the ID card unit (as a combination of the flags specified in the description of fwReadTracks).

	usCards�Specifies the maximum numbers of cards that the retain bin can hold (zero if not available).

	fwSecType�Specifies the type of security module used as one of the following flags:

Value	Meaning

WFS_IDC_SECNOTSUPP	Device has no security module.

WFS_IDC_SECMMBOX	Security module of device is MMBox.

WFS_IDC_SECCIM86	Security module of device is CIM86

	fwPowerOnOptions�Specifies the power-on capabilities of the device hardware, as one of the following flags; applicable only to motor driven ID card units.

Value	Meaning

WFS_IDC_NOACTION		No power on actions are supported by the device.

WFS_IDC_EJECT		The card will be ejected on power-on (or off, see fwPowerOffOptions below).

WFS_IDC_RETAIN	The card will be retained on power-on (off).

WFS_IDC_EJECTTHENRETAIN	The card will be ejected for a specified time on power-on (off), then retained if not taken. The time for which the card is ejected is vendor dependent.

	fwPowerOffOptions�Specifies the power-off capabilities of the device hardware, as one of the flags specified for fwPowerOnOptions; applicable only to motor driven ID card units.

	lpszExtra�Points to a list of vendor-specific, or any other extended information. The information is returned as a series of "key=value" strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.

Error Codes	There are no additional error codes generated by this command.

Comments	Applications which require or expect specific information to be present in the lpszExtra parameter may not be device or vendor-independent.

�Execute Commands

WFS_CMD_IDC_READ_TRACK

Description	For motor driven card readers, the ID card unit checks whether a card has been inserted. If so, the tracks are read immediately as described in the form specified by the lpFormsName parameter.

	If no card has been inserted, and for all other categories of card readers, the ID card unit waits for thea specified period of time specified in the WFSExecute call for a card to be either inserted or pulled through. Again the next step is reading the tracks specified in the form (see Section 6, Form Definition, for a more detailed description of the forms mechanism). In addition to that, the results of a security check via a security module (i.e., MM, CIM86) are specified and added to the track data.

Input Param	LPSTR	lpstrFormsName;

	lpstrFormsName�Points to the name of the form that defines the behavior for the reading of tracks (see Section 6, Form Definition)

Output Param	LPSTR	lpstrTrackData;

	lpstrTrackData�Points to the data read successfully from the selected tracks (and value of security module if available).

Error Codes	The following additional error codes can be generated by this command:

Value	Description

WFS_ERR_IDC_MEDIAJAM	The card is jammed. Operator intervention is required.

WFS_ERR_IDC_INVALIDDATA	The read operation specified by the forms definition could not be completed successfully due to invalid track data. This is returned if all tracks in an ‘or’ (|) operation cannot be read or if any track in an ‘and’ (&) operation cannot be read. lpstrTrackData points to data from the successfully read tracks (if any). One execute event (WFS_EXEE_IDC_INVALIDTRACKDATA) is generated for each specified track which could not be read successfully. See the form description for the rules defining how tracks are specified. None of the tracks could be read successfully.

WFS_ERR_IDC_NOMEDIA	No card was inserted within the specified time. For motor driven devices, the read is disabled; i.e., a card can not be inserted after a timeout.

WFS_ERR_IDC_INVALIDMEDIA	No track found; card may have been inserted or pulled through the wrong way.

WFS_ERR_IDC_FORMNOTFOUND	The specified form can not be found.

WFS_ERR_IDC_FORMINVALID	The specified form definition is invalid (e.g., syntax error).

WFS_ERR_DEV_NOT_READY	device not ready

Execute Events	The following events are generated before the command completion:

WFS_EXEE_IDC_INVALIDTRACKDATA�One event is generated for each blank track (no data) or invalid track (either data error reading the track or the data does not conform to the specified form definition).

WFS_EXEE_IDC_MEDIAINSERTED�This event is generated when a card is detected in the device, giving early warning of card entry to an application, allowing it to remove a user prompt and/or do other processing while the card is being read.

WFS_EXEE_IDC_MEDIAREMOVED�This event is generated when a card is removed before completion of a read operation.

WFS_EXEE_IDC_NOMEDIA

WFS_EXEE_IDC_INVALIDMEDIA

The user is attempting to insert the media in the wrong orientation. The card has not been accepted into the device. The device is still ready to accept a card inserted in the correct orientation.

Comments	The track data is preceded by the keyword for the track, separated by a ‘:’. The field data is always preceded by the corresponding keyword, separated by a ‘=’. The fields are separated by 0x00. The data of the different tracks is separated by an additional 0x00. The end of the buffer is marked by another additional 0x00 (see also example below). Data encoding is defined in Section 6, Form Definition.

Example	example of lpstrTrackData:�TRACK2:ALL=47..\0\0TRACK3:MII=59\0PAN=500..\0\0\0

WFS_CMD_IDC_WRITE_TRACK

Description	Only one track at a time can be written. For motor-driven card readers, the ID card unit checks whether a card has been inserted. If so, the data is written to the track as described in the form specified by the lpstrFormName parameter, and the other parameters.

	If no card has been inserted, and for all other categories of devices, the ID card unit waits for the period of time specified in the WFSExecute call for a card to be either inserted or pulled through. The next step is writing the data defined by the form and the parameters to the respective track (see Section 6, Form Definition, for a more detailed description of the forms mechanism).

	This procedure is followed by data verification (which can be performed several times for the same set).

Input Param	LPWFSIDCWRITETRACK	lpWriteTrack, as defined below.

struct _wfs_idc_write_track�	{�	LPSTR			lpstrFormName;�	LPSTR			lpstrTrackData;�	} WFSIDCWRITETRACK, * LPWFSIDCWRITETRACK;

	lpstrFormName�Points to the name of the form name to be used.

	lpstrTrackData�Points to the data to be used in the form.

Output Param	None.

Error Codes	The following additional error codes can be generated by this command:

Value	Meaning

WFS_ERR_IDC_MEDIAJAM	The card is jammed. Operator intervention is required.

WFS_ERR_IDC_NOMEDIA	A card was not inserted within the specified time.

WFS_ERR_IDC_INVALIDDATA	An error occurred while writing the track.The write data is invalid.

WFS_ERR_IDC_DATASYNTAX	The syntax of the data pointed to by lpstrTrackData is in error, or does not conform to the form definition.

WFS_ERR_IDC_INVALIDMEDIA	No track found; card may have been inserted or pulled through the wrong way.

WFS_ERR_IDC_FORMNOTFOUND	The specified form can not be found.

WFS_ERR_IDC_FORMINVALID	The specified form definition is invalid (e.g., syntax error).

WFS_ERR_DEV_NOT_READY	device not ready

Execute Events	The following events are generated before the command completion message.

WFS_EXEE_IDC_NOMEDIA

WFS_EXEE_IDC_MEDIAINSERTED�This event is generated when a card is detected in the device, giving early warning of card entry to an application, allowing it to remove a user prompt and/or do other processing while the card is being written.

WFS_EXEE_IDC_MEDIAREMOVED�This event is generated when a card is removed before completion of a write operation.

Comments	The field data is always preceded by the corresponding keyword, separated by an ‘=’. Fields are separated by 0x00. The end of the buffer is marked with an additional 0x00. (See the example below and Section 6, Form Definition.) This is a fundamental capability of an ID card unit; thus if a write request is received by a device with no write capability, the WFS_ERR_UNSUPP_COMMAND error is returned.

Example	Example of lpstrTrackData:�RETRYCOUNT=3\0DATE=3132\0..\0\0\0)

WFS_CMD_IDC_EJECT_CARD

Description	The card is driven to the exit slot from where the user can remove it. returned to the customer; applicable only to motor driven card readers. After successful completion of this command, a service event message is generated to inform the application when the card is taken. The actual card withdrawal is subject to timer supervision, using the timer defined in the WFSExecute call. If the card is not withdrawn within the specified period of time, an echo is given. The card remains in position for withdrawal until either it is taken or the application sends a WFS_CMD_IDC_RETAIN command to retain the card internally.

Input Param	None.

Output Param	None.

Error Codes 	The following additional error codes can be generated by this command:

Value	Meaning

WFS_ERR_IDC_MEDIAJAM	The card is jammed. Operator intervention is required.

WFS_ERR_IDC_MEDIALEFT	The card was not taken within the specified time.

WFS_ERR_IDC_NOMEDIA	No card is present.

WFS_ERR_IDC_MEDIARETAINED	The card has been retained during attempts to eject it. The device is clear and can be used.

WFS_ERR_DEV_NOT_READY	device not ready

User Events 	The following user event can be generated by this command:

WFS_USRE_IDC_RETAINBINFULL	The retain bin is full; operator intervention is required. Note that this event is sent only once, at the point at which the bin becomes full.

 WFS_SRVE_IDC_CARDTAKEN	The card has been taken by the user.

Comments	This is a fundamental capability of an ID card unit; thus if an eject request is received by a device with no eject capability, the WFS_ERR_UNSUPP_COMMAND error is returned.The timer defined for the WFSExecute call must be greater than the timer defined in the configuration data for the WFS_CMD_IDC_EJECT_CARD command.

WFS_CMD_IDC_RETAIN_CARD

Description	The card is removed from its present position (card inserted into device, card entering, unknown position) and stored in the retain bin an ID card box; applicable to motor-driven card readers only. The ID card unit sends an event, if the storage capacity of the retain binID card box for retained cards is reached. If the storage capacity has already been reached, and the command cannot be executed, an error is returned and the card remains in its present position.

If the execution of this command is performed without errors, the total number of cards retained includes the current card. If, however, an error occurs during the execution, the total number of cards retained does not include the current card.

Input Param	None.

Output Param	LPWFSIDCRETAINCARD	lpRetainCard, as defined below.

typedef struct _wfs_idc_retain_card�	{�	USHORT		usCount;�	WORD		fwPosition;�	} WFSIDCRETAINCARD, * LPWFSIDCRETAINCARD;

	usCount�Total Nnumber of ID cards retained up to and including this operation, since the last WFS_CMD_IDC_RESET_COUNT command was executed.

	fwPosition�Position of card; only relevant if card could not be retained. Possible positions:

Value	Meaning

WFS_IDC_MEDIAUNKNOWN	The position of the card can not be determined with the device in its current state.

WFS_IDC_MEDIAPRESENT	The card is present in the reader.

WFS_IDC_MEDIAENTERING	The card is in the entering position (shutter).

User Events 	The following user event can be generated by this command (only after successful command completion):

WFS_USRE_IDC_RETAINBINFULL	The retain bin is full; operator intervention is required. Note that this event is sent only once, at the point at which the bin becomes full.

Error Codes	The following additional error codes can be generated by this command:

Value	Meaning

WFS_ERR_IDC_MEDIAJAM	The card is jammed. Operator intervention is required.

WFS_ERR_IDC_NOMEDIA	No card has been inserted. The fwPosition parameter has the value WFS_IDC_MEDIAUNKNOWN.

WFS_ERR_IDC_RETAINBINFULL	The retain bin is full; no more cards can be retained. The current card is still in the device.

WFS_ERR_DEV_NOT_READY	The device is not ready.

Comments	This is a fundamental capability of an ID card unit; thus if a retain request is received by a device with no retain capability, the WFS_ERR_UNSUPP_COMMAND error is returned.

WFS_CMD_IDC_RESET_COUNT

Description	This function resets the present value for number of cards retained to zero. The function is possible for motor-driven card readers only.

The number of cards retained is controlled by the service and can be requested before resetting via the WFS_INF_IDC_STATUS.

Input Param	None.

Output Param	None.

Error Codes	There are no additional error codes generated by this command.

Comments	This is a fundamental capability of an ID card unit; thus if this request is received by a device with no retain capability, the WFS_ERR_UNSUPP_COMMAND error is returned.

WFS_CMD_IDC_RESET

Description	The ID card unit is reset after a failure. The action performed if a card is present in the ID card unit at reset is specified by the fwResetAct input parameter.

	If no input parameter is transferred, the default action defined in the configuration is performed.

	The action performed if a card is present in the ID card unit on the next closing or power on or power off of the ID card unit can also be specified.

Input Param	LPWFSIDCRESET	lpReset, as defined below.

typedef struct _wfs_idc_reset�	{�	WORD		fwResetAct;�	WORD		fwPowerOnAct;�	WORD		fwPowerOffAct;�	} WFSIDCRESET, * LPWFSIDCRESET;

	fwResetAct�Action to be performed ifwith a card is present in the ID card unit on resetting. Possible values are:

Value	Meaning

WFS_IDC_RESETDEFAULTONTCHANGE	Perform the Ddefault action indicated by the fwResetAct configuration parameter returned by WFS_INF_IDC_STATUS. is not changed.

WFS_IDC_RESETEJECTCARD	Eject the card.Default action with card is eject.

WFS_IDC_RESETRETAINCARD	Retain the card.Default action with card is retain.

WFS_IDC_EJECTTHENRETAIN	Eject the card; if not taken within a configuration-specified time, retain the card.

WFS_IDC_NOACTION	Do nothing with the card.

	fwPowerOnAct�Action to be performed with a card present ininside the ID card unit at the on next power on (or opening). For possible values see fwResetAct.

	fwPowerOffAct�Action to be performed with a card present ininside the ID card unit at the on next power off (or closing). For possible values see fwResetAct.

Output Param	None.

Events 	The following events can be generated by this command (only after successful command completion):

WFS_USRE_IDC_RETAINBINFULL	The retain bin is full; operator intervention is required. Note that this event is sent only once, at the point at which the bin becomes full.

WFS_SRVE_IDC_CARDACTION	The card was successfully retained or ejected.

Error Codes	The following additional error codes can be generated by this command:

Value	Meaning

WFS_ERR_IDC_MEDIAJAM	The card is jammed. Operator intervention is required.

WFS_ERR_IDC_RETAINBINFULL	The retain bin is full; no more cards can be retained. The current card is still in the device.

WFS_ERR_DEV_NOT_READY	The device is not ready.

Comments	None.

WFS_CMD_IDC_SETKEY

Description	This command is used for setting the DES key that is necessary for operating a CIM86 module. The command must be executed before the first read command is issued to the card reader.

Input Param	LPWFSIDCSETKEY	lpSetkey; as defined below.

typedef struct _wfs_idc_setkey�	{�	USHORT		usKeyLen;�	LPBYTE		lpbKeyValue;�	}	WFSIDCSETKEY, *LPWFSIDCSETKEY;

usKeyLen

Specifies the length of the following key value.

lpbKeyValue

Pointer to a byte array containing the CIM86 DES key.

This key is supplied by the vendor of the CIM86 module.

Output Param	None.

Error Codes	None.

�EventsMessages

WFS_EXEE_IDC_INVALIDTRACKDATA

Description	This execute event specifies that a track contained invalid or no data.

Event Param	LPWFSIDCTRACKEVENT	lpTrackEvent; as defined below.

struct _wfs_idc_track_event�	{�	WORD			fwStatus;�	LPSTR			lpstrTrack;�	LPSTR			lpstrData;�	} WFSIDCTRACKEVENT, * LPWFSIDCTRACKEVENT

	fwStatus�Status of reading the track. Possible values are :

Value	Meaning

WFS_IDC_DATAMISSING	The track is blank.

WFS_IDC_DATAINVALID	The data contained on the track is invalid.

WFS_IDC_DATATOOLONG	The data contained on the track is too long.

WFS_IDC_DATATOOSHORT	The data contained on the track is too short.

	lpstrTrack�Points to the keyword of the track on which the error occurred.

	lpstrData�Points to the data that could be read (that may be only a fragment of the track), terminated by a null character. This data is simply a stream of characters; it does not contain keywords.

WFS_EXEE_IDC_NOMEDIA

Description	This event specifies that a read/write request was issued, but no card was inserted.

Event Param	None.

WFS_EXEE_IDC_MEDIAINSERTED

Description	This execute event specifies that a card was inserted into the device.

Event Param	None.

WFS_EXEE_IDC_MEDIAREMOVED

Description	This execute event specifies that the inserted card was manually removed by the user during the processing of a read/write command.

Event Param	None.

WFS_EXEE_IDC_INVALIDMEDIA

Description	This execute event specifies that the media the user is attempting to insert is not a valid card or it is a card but it is in the wrong orientation.

Event Param	None.

WFS_SRVE_IDC_CARDACTION

Description	This service event specifies that a card has been retained or ejected by either the automatic power on or power off action of the device.

Event Param	LPWFSIDCCARDACT		lpCardAct; as defined below.

typedef struct _wfs_idc_card_act�	{�	WORD			wAction;�	WORD			wPosition;�	WORD			wReason;�	} WFSIDCCARDACT, * LPWFSIDCCARDACT

	wAction�Specifies which action has been performed with the card. Possible values are :

Value	Meaning

WFS_IDC_RESETRETAINCARDRETAINED	The card has been retained.

WFS_IDC_RESETEJECTCARDEJECTED	The card has been ejected.

	wPosition�Position of card before being retained or ejected. Possible values are :

Value	Meaning

WFS_IDC_MEDIAUNKNOWN	The position of the card can not be determined.

WFS_IDC_MEDIAPRESENT	The card washas is present in the reader.

WFS_IDC_MEDIAENTERING	The card has just been was enteringed the reader.

	wReason�Reason for retaining the card. Possible values are :

Value	Meaning

WFS_IDC_DEVRESET	Card was retained because of a device reset.

WFS_IDC_DEVOPEN	Card was retained because of a device open.

WFS_IDC_DEVCLOSE	Card was retained because of a device close.

WFS_USRE_IDC_RETAINBINFULL

Description	This user event specifies that the retain bin holding the retained cards is full, requiring operator intervention.

Event Param	LPUSHORT	lpusCount;

	lpusCount�Points to the number of cards contained in the retain bin.

WFS_SRVE_IDC_CARDTAKEN

Description	This service event is generated when a card is taken by the user after an eject operation has completed.

Event Param	None.

�Form Description

This section describes the forms mechanism used to define the tracks to be read or written. The fForms are contained in a single file, with contains one section for each defined form. The name of each section is the form name parameter in the WFS_CMD_IDC_READ_TRACK and WFS_CMD_IDC_WRITE_TRACK commands.

The currently active ID card unit (IDCU) form file is configured through the following key

WFS_CFG_HKEY_XFS_ROOT

	FORMS

		IDCU

			formfile=<path><filename>

The read form defines which tracks should be read in the WFS_CMD_IDC_READ_TRACK command and what the response should be to a read failure. The read form can also be used to define logical track data, i.e. fields like “account number,” “issuer identifier,” and their position within the physical track data. For example, the output parameter of the WFS_CMD_IDC_READ_TRACK command with input parameter lpstrFormName = READTRACK3GERMAN could look like (see examples 1 below):��	"TRACK3:MII=59\0ISSUERID=50050500\0ACCOUNTNUMBER=1234567890\0LUHNT3=1\0\0\0"

The write form defines which tracks isare to be written,. Here it is possible, as it is in the read forms, to define the logical track data that is handed over in the WFS_CMD_IDC_WRITE_TRACK command, and how the write data is to be converted to the physical data to be written.

Reserved Keywords/Operands	Meaning

[]	form name delimiters

TRACK1	keyword to identify track 1

TRACK2	keyword to identify track 2

TRACK3	keyword to identify track 3

FIELDSEPT1	value of field separator of track 1

FIELDSEPT2	value of field separator of track 2

FIELDSEPT3	value of field separator of track 3

READ	description of read action; the TRACKn keywords are processed left to right

WRITE	description of write action

ALL	read or write the complete track

SECURE	do the security check via the security module (CIM86 or MM)

&	read all tracks specified, abort reading on read failure

|	read at least one of the tracks specified, continue reading on read failure

FIELDSEPPOSn	position of the nth occurrence of field separator on track

,	separator in a list of logical fields

DEFAULT	default substitution of track data to be written, that is not defined explicitly

?	substitute track data to write with its value read before

Notes

The & and | operands may be combined in a single READ statement; for example:

read track3 or track2, trying track3 first:�		READ= TRACK3 | TRACK2

read track 3 and at least one of track2 or track1:�		READ= TRACK3 & (TRACK2 | TRACK1)�	or:�		READ= TRACK2 | TRACK1 & TRACK3

Example 1	Reading tracks:

[READTRACK3GERMAN]

	FIELDSEPT1= = 		/* field separator of track 1 */

	FIELDSEPT2= =		/* field separator of track 2 */

	FIELDSEPT3= =		/* field separator of track 3 */

	READ= TRACK3 & TRACK1 & TRACK2		/* all tracks must be read */

TRACK3= MII, ISSUERID, ACCOUNT, LUHNT3, SECURE	/* read logical fields as defined below; also check the security */

	MII= FIELDSEPPOS1 + 1, FIELDSEPPOS1 + 2

	ISSUERID= FIELDSEPPOS1 + 3, FIELDSEPPOS1 + 10

	ACCOUNT= FIELDSEPPOS1 + 11, FIELDSEPPOS2 - 2

	LUHNT3= FIELDSEPPOS2 - 1, FIELDSEPPOS2 - 1

	TRACK2= ALL		/* return track2 complete, �				 don't return logical fields */

	TRACK1= ALL		/* return track1 complete, �				 don't return logical fields */

	All tracks must be read (‘READ’), that is, the reading is to be aborted fails if an error occurs on reading any one of the tracks (the ‘&’ operand). The field “major industry identifier” (‘MII’) is located after the first field separator (‘FIELDSEPPOS1’) and its length is two bytes. The “issuer identifier” field (‘ISSUERID’) is located after the MII field, with a length of eight bytes. The next field, “account number” (‘ACCOUNT’) is variable length; it ends before the luhn digit field (‘LUHNT3’) that is the last digit in front of the second field separator (‘FIELDSEPPOS2’).

Example 2	Write a track:

[WRITETRACK3]

FIELDSEPT3= =

DEFAULT= ?	/* fields not specified in the write form are to be left unchanged, i.e., read and the same data written back to them read track and write fields not explicitly specified as read */

WRITE= TRACK3

TRACK3= RETRYCOUNT, DATE

RETRYCOUNT= FIELDSEPPOS2, + 22, FIELDSEPPOS2 + 22

DATE= FIELDSEPPOS5 + 1, FIELDSEPPOS5 + 4

	Track 3 is to be written. In the example only the retry counter and the date of the last transaction are updated, the other fields are unchanged. (If the field ALL is defined, the data passed in the WFS_CMD_IDC_WRITE_TRACK command is written one by one to the physical track without formatting.)

WOSA/XFS Magnetic Stripe Reader/Writer Device Class Specification, Revision 1.11	February 3, 1995	� PAGE �iii�

�PAGE �

WOSA/XFS Magnetic Stripe Reader/Writer Device Class Specification, Revision 1.11	February 3, 1995	� PAGE �1�

