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1     Introduction

1.1   Related documents

 The following documents may be useful in understanding the terms and concepts used in this specification. The documents
are for general background purposes only and are not incorporated into and do not form a part of this specification.

 [A]     IEEE Std 1394-1995, Standard for a High Performance Serial Bus
 

 [B]     ISO/IEC 13213:1994, Control and Status Register Architecture for Microcomputer Busses
 

 [C]     IEEE Std 1394a-2000, Standard for a High Performance Serial Bus – Amendment 1
 
 [D]    IEEE P1394b, Draft Standard for a High Performance Serial Bus – Amendment 2
 
 [E]    IEEE P1394.1, Draft Standard for High Performance Serial Bus Bridges.
 

 All references using “IEEE 1394” and “1394” in this document refer to IEEE Std 1394-1995, as amended by IEEE Std
1394a-2000 and IEEE P1394b, unless otherwise specified.

 Following IEEE conventions, the term “quadlet” is used throughout this document to specify a 32-bit word.

1.2   Overview

 The 1394 Open Host Controller Interface (Open HCI) is an implementation of the link layer protocol of the IEEE 1394
Serial Bus, with additional features to support the transaction and bus management layers. The 1394 Open HCI also includes
DMA engines for high-performance data transfer and a host bus interface.

 IEEE 1394 (and the 1394 Open HCI) supports two types of data transfer: asynchronous and isochronous. Asynchronous data
transfer puts the emphasis on guaranteed delivery of data, with less emphasis on guaranteed timing. Isochronous data transfer
is the opposite, with the emphasis on the guaranteed timing of the data, and less emphasis on delivery.

1.2.1   Asynchronous functions

 The 1394 Open HCI can transmit and receive all of the defined 1394 packet formats. Packets to be transmitted are read out of
host memory and received packets are written into host memory, both using DMA. The 1394 Open HCI can also be
programmed to act as a bus bridge between the host bus and 1394 by directly executing 1394 read and write requests as reads
and writes to host bus memory space.
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1.2.2   Isochronous functions

 The 1394 Open HCI is capable of performing the cycle master function as defined by IEEE 1394. This means it contains a
cycle timer and counter, and can queue the transmission of a special packet called a “cycle start” after every rising edge of the
8 kHz cycle clock. The 1394 Open HCI can generate the cycle clock internally (required) or use an external reference
(optional). When not the cycle master, the 1394 Open HCI keeps its internal cycle timer synchronized with the cycle master
node by correcting its own cycle timer with the reload value from the cycle start packet.

 Conceptually, the 1394 Open HCI supports one DMA controller each for isochronous transmit and isochronous receive. Each
DMA controller may be implemented to support up to 32 different DMA channels, referred to as DMA contexts within this
document.

 The isochronous transmit DMA controller can transmit from each context during each cycle. Each context can transmit data
for a single isochronous channel.

 The isochronous receive DMA controller can receive data for each context during each cycle. Each context can be configured
to receive data from a single isochronous channel. Additionally, one context can be configured to receive data from multiple
isochronous channels.

1.2.3   Miscellaneous functions

 Upon detecting a bus reset, the 1394 Open HCI automatically flushes all packets queued for asynchronous transmission.
Asynchronous packet reception continues without interruption, and a }token appears in the received request packet stream to
indicate the occurrence of the bus reset. When the PHY provides the new local node ID, the 1394 Open HCI loads this value
into its Node ID register. Asynchronous packet transmit will not resume until directed to by software. Because target node ID
values may have changed during the bus reset, software will not generally be able to re-issue old asynchronous requests until
software has determined the new target node IDs.

 Isochronous transmit and receive functions are not halted by a bus reset; instead they restart as soon as the bus initialization
process is complete.

 The 1394 Open HCI also implements a number of management functions:

 a) A global unique ID register of 64 bits that can only be written once. For full compliance with higher level standards,
this register shall be written before the boot block is read. To make this implementation simpler, the 1394 Open HCI
optionally has an interface to an external hardware global unique ID (GUID, also known as the IEEE EUI-64).

b) Four registers that implement the compare-swap operation needed for isochronous resource management.

1.3   Hardware description

 Figure 1-1 provides a conceptual block diagram of the 1394 Open HCI, and its connections in the host system. The 1394
Open HCI attaches to the host via the host bus. The host bus is assumed to be at least 32 bits wide with adequate performance
to support the data rate of the particular implementation (100Mbit/sec or higher plus overhead for DMA structures) as well as
bounded latency so that the FIFOs can have a reasonable size.
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Figure 1-1 – 1394 Open HCI conceptual block diagram

1.3.1 Host bus interface

 This block acts both as a master and a slave on the host bus. As a slave, it decodes and responds to register access within the
1394 Open HCI. As a master, it acts on behalf of the 1394 Open HCI DMA units to generate transactions on the host bus.
These transactions are used to move streams of data between system memory and the devices, as well as to read and write the
DMA command lists.
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1.3.2   DMA

 The 1394 Open HCI supports seven types of DMA. Each type of DMA has reserved register space and can support at least
one distinct logical data stream referred to as a DMA context.

Table 1-1 – DMA controller types and contexts
DMA controller type Number of contexts

Asynchronous Transmit 1 Request, 1 Response
Asynchronous Receive 1 Request, 1 Response
Isochronous Transmit 4 minimum, 32 maximum
Isochronous Receive 4 minimum, 32 maximum

Self-ID Receive 1
Physical Receive &
Physical Response

0 (not programmable like those above)

Each asynchronous and isochronous context is comprised of a buffer descriptor list called a DMA context program, stored in
main memory. Buffers are specified within the DMA context program by DMA descriptors. Although there are some
differences from controller to controller as to how the DMA descriptors are used, all DMA descriptors use the same basic
format. The DMA controller sequences through its DMA context program(s) to find the necessary data buffers. The
mechanism for sequencing through DMA contexts differs somewhat from one controller to the next and is described in detail
for each type of DMA in its respective chapter.

The Self-ID receive controller does not utilize a DMA context program and consists instead of a pair of registers; one to be
configured by software, and one to be maintained by hardware.

The 1394 Open HCI also has a physical request DMA controller that processes incoming requests that read directly from host
memory. This controller does not have a DMA context; it is instead controlled by dedicated registers.

1.3.2.1   Asynchronous transmit DMA

 Asynchronous transmit DMA (AT DMA) utilizes three data streams, one each for AT DMA request, AT DMA response, and
the Physical Response Unit. These three functions can share resources.

 AT DMA request and AT DMA response move transmit packets from buffers in memory to the corresponding FIFO (request
transmit FIFO or response transmit FIFO). For each packet sent, it waits for the acknowledge to be returned. If the
acknowledge is busy, the DMA context will resend the packet up to a software-configurable number of times for single-phase
retry, or up to a software-configurable time limit for dual-phase retry. If out-of-order AT is implemented, the Host Controller
can make forward progress in the context program attempting packets beyond one acknowledged with busy. The busied
packets are retried according to a configurable retry limit, but not necessarily back-to-back.

 When the receive DMA indicates that a physical read has been received, the Physical Response Unit takes over to send the
response packet. The Physical Response Unit can only interrupt the AT DMA response controller or AT DMA request
controller between packets.

 The asynchronous transmit DMA supports either the single-phase retry protocol (retry_X) or the dual-phase retry protocol
(retry_1/retry_A/retry_B). See IEEE Std 1394a-2000 for more information on the dual-phase retry protocol.
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1.3.2.2   Asynchronous receive DMA

 The asynchronous receive DMA (AR DMA), contains two DMA controllers: the Physical Request Unit and the AR DMA
controller.

 The Physical Request Unit takes control when a request with a physical address is received. There are three types of physical
addresses: host memory addresses (corresponding to the 4Gbyte address of a typical 32-bit CPU), compare-swap
management addresses, and the bus_info_block.

 The AR DMA controller handles all incoming asynchronous packets not handled by the other functions in the AR DMA. It
consists of two contexts, one for asynchronous response packets, and one for asynchronous request packets. Each packet is
copied into the buffers described by the corresponding DMA context program. Note that received lock requests not targeted
to one of the four compare-swap management registers are always handled by the AR DMA request context.

 It is recommended that Open HCI asynchronous receive support dual-phase retry.

1.3.2.3   Isochronous transmit DMA

 The isochronous transmit DMA controller supports a minimum of four isochronous transmit DMA contexts and may be
implemented to support up to 32 isochronous transmit DMA contexts. Each context is used to transmit data for a single
isochronous channel. Data can be transmitted from each IT DMA context during each isochronous cycle.

1.3.2.4   Isochronous receive DMA

 The isochronous receive DMA controller supports a minimum of four isochronous receive DMA contexts and may be
implemented to support up to 32 isochronous receive DMA contexts. All but one IR DMA context is used to receive packets
from a single isochronous stream (channel). One context, as selected by software, can be used to receive packets from
multiple isochronous streams (channels).

 Isochronous packets in the receive FIFO are processed by the context configured to receive their respective isochronous
channel numbers. Each DMA context can be configured to strip packet headers or include the headers and trailers when
moving the packets into the buffers. In addition, each DMA context can be configured to receive exactly one packet per
buffer (packet-per-buffer), concatenate packets into a stream that completely fills each of a series of buffers (buffer-fill), or
concatenate a first portion of payload of each packet into one series of buffers and a second portion of payload into another
separate series of buffers (dual-buffer mode).

1.3.2.5   Self-ID receive DMA

 Self-ID packets (received during the bus initialization self-ID phase) are automatically routed to a single designated host
memory buffer by 1394 Open HCI self-ID receive DMA. Each time bus initialization occurs, the new self-ID packets will be
written into the self-ID buffer from the beginning of the buffer, thereby overwriting the old self-ID packets.
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1.3.3   Global unique ID (GUID) interface

 The optional GUID (EUI-64) interface is intended to interface to an external ROM device from which the IEEE 1394 64-bit
"node_unique_ID" may be loaded. If this interface is provided and an external device is present, the GUID_ROM bit in the
Version Register is set and the GUID shall be automatically written from the external ROM device following a hardware
reset. This interface is required for Host Controllers that are intended to be used on add-in cards. The specifics of the
interface to the external ROM device are outside the scope of this specification.

 Annex F., “Extended Configuration ROM Entries,” specifies a format of the GUID ROM, if implemented, to provide vendor
specific configuration ROM information and extended entries through the GUID ROM interface.

1.3.4   FIFOs

 Data quadlets entering or leaving the FIFOs are conditionally byte-swapped. The 1394 Open HCI is designed to run in both
little endian environments (x86/PCI) and byte swapped big endian environments (PowerMac/PCI). Note, however, that IEEE
1394 specifies that data be treated as big endian, with the most significant byte of a doublet, quadlet, or octlet transmitted
first. This means that the data coming through the FIFOs may be byte swapped if it is intended for a byte swapped little
endian PCI bus, such as the PowerMac’s (two byte swap operations leaves the data in the original big endian IEEE 1394
format). Little endian x86 systems may or may not want the data byte swapped, so there is an Open HCI control flag to
enable byte swapping for 1394 packet data.

1.3.4.1   Asynchronous transmit FIFOs

 The asynchronous transmit FIFOs are temporary storage for non-isochronous packets that will be sent from the Host
Controller to devices on 1394. The asynchronous request FIFO is loaded by the asynchronous request DMA unit, the
asynchronous response FIFO is loaded by the asynchronous response DMA unit and the physical response FIFO is loaded by
the physical DMA response unit.

 It is not required that these FIFOs be implemented as separate physical entities. A single FIFO may be used for all asyn-
chronous transmit packets as long as the implementation prevents pending asynchronous requests and asynchronous
responses from blocking each other. For example, if a read request is being sent to a 1394 device that is returning ack_busy,
this shall not prevent responses from either the physical DMA unit or the asynchronous response unit from being sent.
Furthermore, a busied response from the asynchronous response unit shall not block responses from the physical DMA unit.
Other sections of this specification will provide implementation guidelines that will help ensure that the non-blocking
requirements can be met with a single asynchronous transmit FIFO.

1.3.4.2   Isochronous transmit FIFO

 The isochronous transmit FIFO is temporary storage for the isochronous transmit data. It is filled by the ITDMA and is
emptied by the transmitter.

1.3.4.3   Receive FIFOs

 Conceptually there are several receive FIFOs for handling incoming asynchronous requests, asynchronous responses,
isochronous packets and self-ID packets. The FIFOs are used as a staging area for packets that will be routed to the
appropriate handler. There is no requirement on the number of hardware FIFOs that shall be implemented to provide the
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required functionality set forth in this document. However, any specific FIFO implementation shall ensure that physical
requests, asynchronous requests, asynchronous responses, isochronous packets, and self-ID receive contexts proceed
independently and do not block each other.

 For example, if a unified receive FIFO is used and the transaction layer request queue is busy or stopped, all other received
packet types (physical requests, asynchronous responses, isochronous packets, and self-ID packets) shall still pass through
the FIFO and be delivered to the transaction layer or host bus interface. Other sections of this specification will provide
implementation guidelines that will help ensure that the non-blocking requirements can be met with a single receive FIFO.

1.3.5   Link

 The link module sends packets which appear at the transmit FIFO interfaces, and places correctly addressed packets into the
receive FIFO. It includes the following features.

•  Transmits and receives correctly formatted 1394 serial bus packets
•  Generates the appropriate acknowledge for all received asynchronous packets, including support for both the single and

dual phase retry protocol for received packets
•  Performs the function of cycle master
•  Generates and checks 32-bit CRC
•  Detects missing cycle start packets
•  Interfaces to 1394 PHY registers
•  Receives isochronous packets at all times (does not ignore isochronous packets received outside of the expected period

between cycle start and a subaction gap). This supports asynchronous streams and allows isochronous data to be received
even if there is a CRC error in a received cycle start

•  Ignores asynchronous packets received during the isochronous phase (such packets are not acked and isochronous phase
continues).

 The acknowledges generated by the link depend on the type of received packet, the address and the state of the Open HCI
FIFOs:

Table 1-2 – Link generated acknowledges
Acknowledge Condition
ack_complete A packet with good CRC in both the header and data block (if there is one) and which also falls into

one of the following classifications:
a) Any response that is accepted from 1394.
b) A write request with the offset address between 48'h01 and the configurable

(optional)PhysicalUpperBound-1 or 48'0000_FFFF_FFFF when i) posted writes are enabled,
ii) the request will be handled as a physical request, and iii) the number of outstanding posted
writes is within the implementation specific limit.

c) A write request with the offset address between either the configurable (optional)
PhysicalUpperBound or 48'h0001_0000_0000, and 48'hFFFE_FFFF_FFFF, that can be fully
copied into the host memory receive buffer.

NOTE:  For further information on implementation requirements for posted writes see Section 3.3.3.

                                                          
1 Numeric notation description is given in section 2.1.2.
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Table 1-2 – Link generated acknowledges
Acknowledge Condition
ack_pending A packet with good CRC in both the header and data block (if there is one) and which also falls into

one of the following classifications:
a) Any read request that can be fully loaded into the receive buffer.
b) Any lock request that can be fully loaded into the receive buffer.
c) Any block request with a non-zero extended tcode.
d) A write request with the offset address between 48'hFFFF_0000_0000 and

48'hFFFF_FFFF_FFFF (the top 4GB, which includes the register space) that can be fully
loaded into the receive buffer.

ack_busy_X,
ack_busy_A,
ack_busy_B

Any received packet with a good CRC in both the header and data block (if there is one) that cannot be
fully loaded into the receive buffer. This acknowledge is also sent when a packet is received with a
valid header CRC and either an invalid data CRC or a data length err. The choice of _X, _A, or _B
depends on the choice of acknowledge algorithm and the particular “rt” value of the received packet.

ack_data_error Open HCI's compliant with Release 1.1 shall not send ack_data_error (see section 8.4.2.2).
ack_type_error For a block write request with a good CRC in both the header and data block, this error ack:

•  May be returned when the data_length is larger than the size indicated in the max_rec field of
the bus_info_block of the Host Controller.

•  Shall be returned if data_length is larger than max_rec and the request is not handled by the
physical response unit.

For a block read request with a good CRC in the header, this error ack may be returned when the data
length is larger than the size indicated in the max_rec field of the bus_info_block of the Host Controller
and the request is handled by the physical response unit.
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1.4   Software interface overview

 There are three basic means by which software communicates with the 1394 Open HCI: registers, DMA, and interrupts.

1.4.1   Registers

 The host architecture (PCI, for example) is responsible for mapping the 1394 Open HCI's registers into a portion of the host's
address space.

 In the normal operation of some systems, the clock signal from the PHY may not be present. The Host Controller may be
unable to service requests to certain registers without the clock signal. If a register access fails because the clock signal is not
present, the Host Controller will set IntEvent.regAccessFail to communicate this error. When a register access fails the Host
Controller shall not signal a host bus error. Failed read operations return undefined values, and failed write operations shall
have no effects.

1.4.2   DMA operation

 DMA transfers in the 1394 Open HCI are accomplished through one of two methods:

 a) DMA. Memory resident data structures are used to describe lists of data buffers. The 1394 Open HCI automatically
sequences through this buffer descriptor list. This data structure also contains status information regarding the
transfers. Upon completion of each data transfer, the DMA controller conditionally updates the corresponding DMA
Context Command and conditionally interrupts the processor so it can observe the status of the transaction. A set of
registers within the 1394 Open HCI is used to initialize each DMA context and to perform control actions such as
starting the transfer.

 b) Physical response DMA. The 1394 Open HCI can be programmed to accept 1394 read and write transactions as reads
and writes to host memory space. In this mode, the 1394 Open HCI acts as a bus bridge from 1394 into host memory.

 The formats for the data sent and received in all these modes are specified in the applicable chapters.

1.4.3   Interrupts

 When any DMA transfer completes (or aborts) an interrupt can be sent to the host system. In addition to the interrupt sources
that correspond to each DMA context completion, there is also a set of interrupts that correspond to other 1394 Open HCI
functions/units. For example, one of these interrupts could be sent when a selfID packet stream has been received.

 The processor interrupt line is controlled by the IntEvent and IntMask registers. The IntEvent register indicates which
interrupt events have occurred, and the IntMask register is used to enable selected interrupts. Software writes to the
IntEventClear register to clear interrupt conditions in IntEvent.

 In addition, there are registers used by the isochronous transmit and isochronous receive controllers to indicate interrupt
conditions for each context.
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1.5   1394 Open HCI Node Offset (Address) Map

 Open HCI divides the 48-bit node offset space, as depicted below:

Figure 1-2 – Node Offset Map

Low Address Space is from 48'h0 up to physicalUpperBound. Asynchronous read and write requests into this range can be
handled by the Physical Request/Physical Response units, providing an efficient mechanism for moving asynchronous data.
Whether or not a request can be handled in this manner depends on a set of criteria as described in section 12. For write
requests which are handled by the Physical Request unit, the Host Controller may issue an ack_complete immediately, even
before the data has been written to host memory, to maximize packet transaction efficiency (this is referred to as a Posted
Write). Or, depending on circumstances, the Host Controller may instead issue an ack_pending for such requests.

The physicalUpperBound is an optional register that some Host Controllers may implement which provides a means to
change the upper bound of the low address space. If not implemented, the Host Controller shall use a default physical upper
bound of 48'h0001_0000_0000, which provides a physical range of 4GB. If implemented, systems use the
physicalUpperBound register to increase the size of the Physical Range.

Middle Address Space is from physicalUpperBound through 48'hFFFE_FFFF_FFFF. Packets with destination offsets within
this range are not candidates for handling by the Physical Request/Response units, and are instead passed to software for
processing. Although there will be added latency while software performs processing, the Host Controller nevertheless issues
an ack_complete for all write requests within this range which normally require an ack (e.g., broadcast write requests are
never ack'ed). This is to maximize packet transaction efficiency. However, although the node that issued the write request is
informed (via the ack_complete) that the write succeeded, it is possible that an error occurred and that the write did not in fact
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reach its destination. This address range is best suited to protocols such as TCP/IP for example which have their own
mechanisms for detecting and recovering from lost packets.

Upper Address Space is from 48'hFFFF_0000_0000 to 48'hFFFF_EFFF_FFFF. Packets with destination offsets within this
range are not candidates for handling by the Physical Request/Response units, and are instead passed to software for
processing. The Host Controller shall respond to write requests to this range with an ack_pending, and software should issue
a write response with resp_complete only after the data has been written to its specified destination. This range is best suited
to protocols that do not tolerate lost packets.

CSR Space is from 48'hFFFF_F000_0000 to 48'FFFF_FFFF_FFFF providing a range of 256MB. This range is the reserved
register space as specified in ISO/IEC 13213:1994.  Most packets with destination offsets within this range are not candidates
for handling by the Physical Request/Response units, and are instead passed to software for processing. Some however are
handled directly by the Host Controller without involving software and are listed in section 12.

1.6   System Requirements

 This Host Controller specification is intended to be largely independent of the type of system to which it is attached. The
intent is that Host Controller designs that follow this specification may be built for many different types of systems and still
adhere to the same programming model. The required system facilities are:

 a) Host Controller shall be able to initiate accesses of host system memory,
 b) Host Controller shall be able to modify system memory with byte granularity,
 c) Host Controller shall be able to signal an exception/interrupt to the host CPU,
 d) Access of 32-bit entities in either system memory or on the Host Controller shall be endian neutral and atomic. No 8-

bit or 16-bit access to Host Controller registers is supported.

 The 1394 Open HCI does not preclude a system from having multiple 1394 Open HCI controllers.

1.7   Alignment

1.7.1   Data alignment

 The 1394 Open HCI shall perform these two alignment functions:

 a) Translate between the byte alignments of the host-based data and the quadlet aligned FIFO. For instance, if a 5 byte
1394 data packet is to be stored at host bus address 6, then the first two bytes of the first data quadlet in the FIFO
shall be stored at host bus address 6 and 7 using a single quadlet write, then the next two bytes of the first quadlet in
the FIFO combined with the first byte of the next quadlet in the FIFO are written to host bus address 8, 9, and 10.

b) Stuff extra zero bytes into the transmit FIFO when the number of bytes to transmit is not an integral number of
quadlets.

1.7.2   Memory structure and buffer alignment
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 Alignment requirements for host memory data structures and host memory buffers can be found in sections of this document
where those elements are described.

1.7.2.1 Beta Mode Packet Formats

 1394b defines an optimized packet format that is used when all connections between the source node and the destination
node are running in Beta-mode.  When the PHY receives a packet that has the Beta format, it indicates this to the link in the
byte that immediately precedes the packet data.  When the link wants to send a packet in Beta format, it sends a request to the
PHY indicating that they PHY should use the Beta format for the packet.

 Software must not cause the link to make a Beta request unless it is known that the path is all Beta.  Software may assume
that if a request is received using Beta format, it is safe to send a response to that node in Beta format (in fact it is required
that it do so).

 Normally, it is not required that software determine the format to use for requests.  The B PHY tracks the selfID packets and
can determine from them the fastest non-Beta speed of any connection on the bus.  When the link makes a request to send a
non-Beta formatted packet, the PHY will determine if the speed of the packet is faster than the fastest non-Beta connection.
If it is, the PHY will automatically upgrade the request and send the packet using Beta format.  Because of the action of the
PHY in automatically upgrading the request, there is little performance benefit in having software try to determine if a
request can be safely sent using Beta format.
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2     Conventions - Notation and Terms

2.1   Notation

2.1.1   Conformance glossary

 Several keywords are used to distinguish among different levels of requirements and options, as defined below. These key
words shall take the following definitions for normative sections of this specification.

 expected: A keyword used to describe the behavior of the hardware or software in the design models assumed by this
standard. Other hardware and software design models may also be implemented.

 ignored: A keyword that describes bits, bytes, quadlets, octlets or fields whose values are not checked by the recipient.

 may: A keyword that indicates flexibility of choice with no implied preference.

 shall: A keyword indicating a mandatory requirement. Designers are required to implement all such mandatory requirements
to ensure interoperability with other products conforming to this standard.

 should: A keyword indicating flexibility of choice with a strongly preferred alternative. Equivalent to the phrase “is
recommended.”

 undefined: A keyword that defines the condition of a bit which software shall take no action on (whether it be zero or one).
If software requires a specific action for the bit definition, then software shall initialize the bit.

2.1.2   Numeric Notation

 Unless otherwise specified, numbers will be represented in Verilog language style. In particular, numbers with a “
Wednesday, July 18, 2001h” prefix are hexadecimal, “Wednesday, July 18, 2001b” are binary, and “
Wednesday, July 18, 2001d”, or those without a prefix, are decimal. If a number precedes the “ ' ”, then it indicates the length
of the number in bits. For example, 4'h8 is the binary number 'b1000.

2.1.3   Bit Notation

 So that the size and location of fields can be better understood, the bits within quadlet registers are labeled, where bit 31
corresponds to the most-significant bit and bit 0 corresponds to the least-significant bit. They do not correspond to the
transmission order on the 1394 bus.

 All registers and data structures in this document have the most significant bit (msb - bit 31) shown on the far left.
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2.1.4   Register Notation

 There are two types of registers described in this document; read/write registers and set and clear registers. The notation used
for each is described below, as well as notation used for register reset values and reserved fields and registers.

2.1.1.12.1.4.1   Read/Write registers

 Read/write registers are registers for which a single address is defined and for which fields may be defined with one or more
of the following attributes:

Table 2-1 – read/write register field access tags
Access tag (rwu) Name Meaning
r read field may be read
w write field may be written from the host bus
u update field may be autonomously updated by Open HCI hardware

2.1.1.22.1.4.2   Set and Clear registers

 Throughout this document there are Host Controller registers that are identified as Set and Clear registers. These registers
have the property of having two addresses by which they may be referenced by the host. Unless otherwise stated in the
description of the register, a host read of either address will return the current contents of the register. Host writes, however,
have different effects when addressing the different addresses.

 When the host writes to the Set address the value written is taken as a bit mask indicating which bits in the underlying
register are to be set to one. A one bit in the value written indicates that the corresponding bit in the register is to be set to
one, while a zero bit in the value written indicates that the corresponding bit in the register is not to be changed. Similarly,
host writes to the Clear address specify a value that is a bit mask of bits to clear to zero in the underlying register, a one bit
means to clear the corresponding bit while a zero bit means to leave the corresponding bit unchanged. It is intended that
writing zero bits to these addresses have no effect on the corresponding bits in the underlying register, including transient
effects that could affect the operation of the Host Controller.

 There are several reasons to use this type of register:

 ! The host doesn't need to do both a read and a write to affect only a single bit.
 ! The host doesn't risk the Host Controller modifying a bit while the host does a read-modify-write operation, thus

causing unintended effects.
 ! The host doesn't have to serialize its access to frequently used registers in order to ensure that conflict with another

process doesn't cause unintended effects.

 For set and clear registers that have an undefined value following a reset, it is recommended that software write all ones to
the Clear address to ensure the register has a known value.

Table 2-2 - Set and Clear register field access tags
Access tag (rscu) Name Meaning
r read field may be read
s set field may be set from the host bus
c clear field may be cleared from the host bus
u update field may be autonomously updated by Open HCI hardware
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2.1.1.32.1.4.3 Register Reset Values

 Register field descriptions may be tagged with one or more of the following reset values. This column indicates the value of
the field immediately following a soft reset or hardware reset. Except where otherwise noted, the results from a soft reset and
hardware reset are the same. Note that the reset column is for software and hardware resets only and does not include bus
reset values (those are discussed as needed in the applicable text).

Table 2-3 – Register field reset values
Reset value Meaning

x'by or x'hy Indicates the value (in binary or hexadecimal) of the field upon completion of a reset. For a
description of Verilog notation see section 2.1.2.

undef Following a reset, the value of this field is undefined and may contain (any combination of)
zero(s) or one(s). Software shall initialize bits that reset to “undef” before it uses them.

N/A Not applicable. A reset does not have any effect on this field.

Unless otherwise specified, all fields will remain unchanged after a 1394 bus reset.

2.1.1.42.1.4.4   Reserved fields

 All reserved fields (indicated by a hatched or grayed-out pattern) are read as zeros, shall be ignored by software, and shall be
written as zeros.

2.1.1.52.1.4.5   Reserved registers

 Addresses within the host bus Open HCI Register Address space that are marked as reserved shall return zeros when read and
shall ignore the write data value.

2.1.1.62.1.4.6   Register field notation

 In descriptions that refer to specific register fields, the notation Rrrrr.fffff will be used where Rrrrr refers to the register name
and fffff refers to the referenced field within that register.
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2.2   Terms

Ack_busy* Any of the “busy” acknowledgments: ack_busy_X, ack_busy_A, ack_busy_B.
AR DMA Asynchronous Receive DMA.
AR DMA Request Refers to the asynchronous receive DMA context that handles all incoming request packets not

handled by the physical request unit.
AR DMA Response Refers to the asynchronous receive DMA context that handles all incoming response packets.
asynchronous stream
packet

A stream packet for which only a channel has been reserved at the isochronous resource
manager. An asynchronous stream packet shall be transmitted during the asynchronous period
and not during the isochronous period. For the same channel number, there is no restriction on
multiple talkers, nor upon a single talker sending multiple asynchronous stream packets. Fair
arbitration rules govern the transmission of these packets. See also isochronous stream packet
and stream packet.

AT DMA Asynchronous Transmit DMA.
AT DMA Request Unit Refers to the asynchronous transmit DMA subunit which moves transmit packets from buffers in

memory to the request transmit FIFO.
AT DMA Response
Unit

Refers to the asynchronous transmit DMA subunit which moves transmit packets from buffers in
memory to the response transmit FIFO.

back-out A process by which a flawed received packet that has been placed in a set of received buffers is
removed. The Open HCI backs-out a packet by ensuring that reported buffer space availability
does not reflect flawed packet reception.

big endian A term used to describe the arithmetic significance of data bytes within a multiple data-byte
value; the data byte with the largest address is the least significant.

bridge A hardware adapter that forwards transactions between buses.
1

buffer-fill mode A receive mode in which packet data is concatenated into receive buffers
channel Refers to an isochronous channel number.
CSR architecture ISO/IEC 13213:1994, Information technology - Microprocessor systems - Control and Status

Registers (CSR) Architecture for microcomputer buses. The CSR architecture supports the
concept of bus bridges, which can transparently forward transactions from one compliant bus to
another.

config ROM A portion of a node's 1394 address space defined by clause 8 of ISO/IEC 13213:1994. The
region contains information describing the node and its units. The region is read-only to other
1394 nodes. See also GUID ROM and PCI Expansion ROM.

DMA context A distinct logical stream (not necessarily physical) through the Open HCI which can be
described by a DMA context program and a minimum of two registers: ContextControl and
CommandPtr.

DMA context program A list of DMA descriptors that identify buffers used for data transfer.
DMA controller Refers to the mechanism used in support of a specific DMA function. Each controller utilizes

and maintains its own set of registers to perform its specified functionality.
DMA descriptor A data structure used to describe buffers and buffer-list control.
DMA descriptor block A group of DMA descriptors that are contiguous in host memory and can therefore be prefetched

by the Host Controller. The last DMA descriptor in a block contains the address of the next
block as well as a count of the number of descriptors contained in the next block. This count is
referred to as the Z value.

dual-buffer-mode An isochronous receive mode in which a packet is divided into two portions each concatenated
into independent sets of receive buffers

EUI-64 Extended Unique Identifier. See Global Unique ID below.
generic software Generic software is software that has no specific knowledge of a particular implementation.
Global Unique ID See GUID.

                                                          
1 PCI Local Bus Specification – Revision 2.2, December 18, 1998. PCI Special Interest Group
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GUID Global Unique ID -A 64-bit node unique identifier, comprised of a 24-bit node company ID and
a 40-bit chip ID

GUID ROM A hardware component that holds the EUI-64 of the node and is automatically loaded into the
GlobalUniqueID registers of the controller when power is applied. Additional information may
be stored in the GUID ROM and is available via the controller's GUID ROM register. See also
Config ROM and PCI Expansion ROM.

hardware reset Refers to a host power reset.
HC Host Controller. The device whose interface is defined by this specification.
HCI Host Controller Interface. The interface defined by this specification.
INPUT_* Abbreviated notation for INPUT_MORE and INPUT_LAST DMA descriptor commands.
INPUT_LAST* Abbreviated notation for INPUT_LAST and INPUT_LAST-Immediate descriptor commands.
INPUT_MORE* Abbreviated notation for INPUT_MORE and INPUT_MORE-Immediate descriptor commands.
IR DMA Isochronous Receive DMA.
isochronous channel Within the packet header of a 1394 isochronous packet there is a 6 bit channel number.

Receivers “listen” for packets transmitted with particular channel number(s).
isochronous stream
packet

A stream packet for which both channel and bandwidth have been reserved at the isochronous
resource manager. Only one talker may transmit an isochronous stream packet during a single
isochronous cycle. Isochronous stream packets shall not be transmitted outside of the
isochronous period. See also asynchronous stream packet and stream packet.

IT DMA Isochronous Transmit DMA.
link layer (LINK) The layer, in a stack of three protocol layers defined for the Serial Bus, that provides the service

to the transaction layer of one-way data transfer with confirmation of reception. The link layer
also provides addressing, data checking, and data framing. The link layer also provides an isoch-
ronous data transfer service directly to the application. 

b

little endian A term used to describe the arithmetic significance of data-byte addresses. With little-endian, the
data byte with the smallest address is the least significant.

Node ID This is a unique 16-bit number, which distinguishes the node from other nodes in the system.
 b

OHCI Open Host Controller Interface.
OUTPUT_* Abbreviated notation for OUTPUT_MORE and OUTPUT_LAST DMA descriptor commands.
OUTPUT_LAST* Abbreviated notation for OUTPUT_LAST and OUTPUT_LAST-Immediate descriptor

commands.
OUTPUT_MORE* Abbreviated notation for OUTPUT_MORE and OUTPUT_MORE-Immediate descriptor

commands.
packet-per-buffer
mode

An isochronous receive mode in which each isochronous packet is placed into its own set of
buffers independent of other packets

PCI Peripheral Component Interconnect. The PCI Local Bus Specification defines a 32-bit or 64-bit
bus with multiplexed address and data lines. The specification defines the protocol, electrical,
mechanical, and configuration for PCI components and expansion boards. The bus is intended
for use as an interconnect mechanism between highly-integrated peripheral controller
components, peripheral add-in boards, and processor/memory systems.

 2

PCI Expansion ROM A hardware component on a PCI add-in card that contains the x86 BIOS and/or Open Firmware
required by the device. See also Config ROM and GUID ROM.

PHY Abbreviation for the physical layer.
 b

PHY clock The clock signal from the PHY to the Link.

                                                          
b IEEE Standard for a High Performance Serial Bus, Std 1394-1995, The Institute of Electrical and Electronics Engineers,
Inc., New York, N.Y.
b IEEE Standard for a High Performance Serial Bus, Std 1394-1995, The Institute of Electrical and Electronics Engineers,
Inc., New York, N.Y.
2 PCI Local Bus Specification – Revision 2.2, December 18, 1998. PCI Special Interest Group
b IEEE Standard for a High Performance Serial Bus, Std 1394-1995, The Institute of Electrical and Electronics Engineers,
Inc., New York, N.Y.
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physical layer The layer, in a stack of three protocol layers defined for the Serial Bus, that translates the logical
symbols used by the link layer into electrical signals on the different Serial Bus media. The
physical layer guarantees that only one node at a time is sending data and defines the mechanical
interfaces for the 1394 Serial Bus. 

b

Physical Request Unit Physical Request Unit. Refers to the asynchronous receive DMA subunit that handles physical
requests.

Physical Response Unit Refers to the asynchronous transmit DMA subunit that handles physical responses.
posted write A write request received by the Host Controller for which the Host Controller sends an

ack_complete before the data is actually written to system memory.
ROM Read Only Memory. See Config ROM, GUID ROM and PCI Expansion ROM.
stream packet A 1394 primary packet with transaction code 4'hA. See also asynchronous stream packet and

isochronous stream packet.
quadlet A 32-bit word.
soft reset Refers to a Host Controller reset that occurs when host software sets HCControl.softReset. See

section 5.7, “HCControl registers (set and clear).”
Z block See DMA descriptor block.

.

                                                          
b IEEE Standard for a High Performance Serial Bus, Std 1394-1995, The Institute of Electrical and Electronics Engineers,
Inc., New York, N.Y.
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3     Common DMA Controller Features

 The 1394 Open HCI provides several types of DMA functionality:

 a) General-purpose DMA handling asynchronous transmit and receive packets and isochronous transmit and receive
packets.

 b) An inbound bus bridge function that allows 1394 devices to directly access system memory called “physical DMA.”
 c) A separate write buffer for the received self-ID packets.
 d) A mapping between a 1K byte block in system memory and the first 1K of 1394 Configuration ROM.

 This section describes the common controller features and attributes.

3.1   Context Registers

 A context provides the basic information to the Host Controller to allow it to fetch and process descriptors for one of the
several DMA controllers. All contexts (except for SelfID) minimally have a ContextControl Register and a CommandPtr
Register. The format of the ContextControl Registers is DMA controller specific but all ContextControl registers minimally
have the bits as shown in figure 3-1 and described in table 3-1. The CommandPtr Registers for all controllers are the same
and follow the format shown in figure 3-2 and described in table 3-3.

3.1.1   ContextControl register

Figure 3-1 – ContextControl (set and clear) register format

Table 3-1 – ContextControl (set and clear) register description

Field rscu Reset Description
run rscu 1'b0 The run bit is set by software to enable descriptor processing for a context and cleared by

software to stop descriptor processing. The Host Controller shall only change this bit on a
hardware reset or software reset; in both cases it shall clear this bit. See section 3.1.1.1 for
details.

wake rsu undef Software sets this bit to 1 to cause the Host Controller to continue or resume descriptor
processing. The Host Controller shall clear this bit on every descriptor fetch. See
section 3.1.1.2 for details.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

active
run

dead
wake

betaFrame

event
codespd
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Field rscu Reset Description
dead ru 1'b0 The Host Controller sets this bit when it encounters a fatal error. The Host Controller clears

this bit when software clears the run bit. See section 3.1.1.4 for details.
active ru 1'b0 The Host Controller sets this bit to 1 when it is processing descriptors. See section 3.1.1.3

for details.
betaFrame ru 1’b0 The Host Controller sets this bit to 1 when the PHY indicates that the packet used Beta

format.  A response to a request sent using Beta format should also use Beta format.
spd ru undef This field indicates the speed at which the packet was received. 3'b000 = 100 Mbits/sec,

3'b001 = 200 Mbits/sec, 3'b010 = 400 Mbits/sec, 3'b011 = 800 Mbits/sec, 3'b100 = 1600
Mbits/sec and 3'b101 = 3200 Mbits/sec. All other values are reserved. Spd only contains
meaningful information for receive contexts.
Software should not attempt to interpret the contents of this field while the
ContextControl.active or ContextControl.wake bits are set.

event code ru undef This field holds the acknowledge sent by the Link core for this packet, or an internally
generated error code (evt_*) if the packet was not transferred successfully. All possible
event codes are shown in Table 3-2, “Packet event codes,” below.

The packet event codes shown in the table below are possible values for the five-bit ContextControl.event field. This field
shall contain either an IEEE 1394 defined ack code or an Open HCI generated event code. As described later in this
document, bits 0-15 of the ContextControl register can be written into host memory to indicate packet and/or DMA
descriptor status. However, all possible event codes that can appear in a particular context's ContextControl register are not
necessarily ever written into host memory for a packet or DMA descriptor status, depending on circumstances and the
functionality of the context.

1394 ack codes are denoted by the high (fifth) bit set to 1 followed by the 1394 four-bit ack code as received from 1394 (e.g.,
1394 ack_pending = 4'h2, Open HCI ack_pending = 5'h12). The list of ack codes provided in the table below is informative
not normative; i.e., for asynchronous packets the event code can be set to any ack code specified in current and future 1394
standards.

Open HCI generated event codes typically have an “evt_” prefix denoted by a code with the high (fifth) bit equal to 0. In
some cases, such as ack_data_error for isochronous receive, Open HCI generates a 1394 style “ack” code for ContextCon-
trol.event.

Table 3-2 – Packet event codes
Code Name DMA Meaning
5'h00 evt_no_status AT,AR

IT,IR
No event status.

5'h01 reserved
5'h02 evt_long_packet IR The received data length was greater than the buffer's data_length.
5'h03 evt_missing_ack AT A subaction gap was detected before an ack arrived or the received ack had

a parity error.
5'h04 evt_underrun AT Underrun on the corresponding FIFO. The packet was truncated.
5'h05 evt_overrun IR A receive FIFO overflowed during the reception of an isochronous packet.
5'h06 evt_descriptor_read AT,AR

IT,IR
An unrecoverable error occurred while the Host Controller was reading a
descriptor block.

5'h07 evt_data_read AT, IT An error occurred while the Host Controller was attempting to read from
host memory in the data stage of descriptor processing.
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5'h08 evt_data_write AR,IR
IT

An error occurred while the Host Controller was attempting to write to host
memory
either in the data stage of descriptor processing (AR, IR), or when
processing a single 16-bit host memory write (IT).

5'h09 evt_bus_reset AR Identifies a PHY packet in the receive buffer as being the synthesized bus
reset packet. (See section 8.4.2.3).

5'h0A evt_timeout AT, IT Indicates that the asynchronous transmit response packet expired and was
not transmitted, or that an IT DMA context experienced a skip processing
overflow (See section 9.3.4).

5'h0B evt_tcode_err AT, IT A bad tCode is associated with this packet. The packet was flushed.
5'h0C-
5'h0D

reserved

5'h0E evt_unknown AT,AR
IT,IR

An error condition has occurred that cannot be represented by any other
event codes defined herein.

5'h0F evt_flushed AT Sent by the link side of the output FIFO when asynchronous packets are
being flushed due to a bus reset.

5'h10 reserved Reserved for definition by future 1394 standards.
5'h11 ack_complete AT,AR

IT,IR
For asynchronous request and response packets, this event indicates the
destination node has successfully accepted the packet. If the packet was a
request subaction, the destination node has successfully completed the
transaction and no response subaction shall follow.
The event code for transmitted or received PHY, isochronous,
asynchronous stream and broadcast packets, none of which yield a 1394
ack code, shall be set by hardware to ack_complete unless an event occurs.

5'h12 ack_pending AT,AR The destination node has successfully accepted the packet. If the packet
was a request subaction, a response subaction should follow at a later time.
This code is not returned for a response subaction.

5'h13 reserved Reserved for definition by future 1394 standards.
5'h14 ack_busy_X AT The packet could not be accepted after max ATRetries (see section 5.4)

attempts, and the last ack received was ack_busy_X.
5'h15 ack_busy_A AT The packet could not be accepted after max ATRetries (see section 5.4)

attempts, and the last ack received was ack_busy_A.
5'h16 ack_busy_B AT The packet could not be accepted after max AT Retries (see section 5.4)

attempts, and the last ack received was ack_busy_B.
5'h17 -
5'h1A

reserved Reserved for definition by future 1394 standards.

5'h1B ack_tardy AT The destination node could not accept the packet because the link and
higher layers are in a suspended state.

5'h1C reserved Reserved for definition by future 1394 standards.
5'h1D ack_data_error AT,IR An AT context received an ack_data_error, or an IR context in packet-per-

buffer mode detected a data field CRC or data_length error.
5'h1E ack_type_error AT,AR A field in the request packet header was set to an unsupported or incorrect

value, or an invalid transaction was attempted (e.g., a write to a read-only
address).

5'h1F reserved Reserved for definition by future 1394 standards.
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3.1.1.1   ContextControl.run

 The ContextControl.run bit is set by software when the Host Controller is to begin processing descriptors for the context.
Before software sets ContextControl.run, ContextControl.active shall not be set, and the CommandPtr Register for the
context shall contain a valid descriptor block address and a Z value that is appropriate for the descriptor block address.

 Software may stop the Host Controller from further processing of a context by clearing ContextControl.run. When a
ContextControl.run is cleared, the Host Controller shall stop processing of the context in a manner that shall not impact the
operation of any other context or DMA controller. The Host Controller may require a significant amount of time to safely
stop processing for a context but when the Host Controller does stop, it shall clear ContextControl.active. If software clears a
ContextControl.run for an isochronous context while the Host Controller is processing a packet for the context, the Host
Controller shall continue to receive or transmit the packet and update descriptor status. The Host Controller, however, stops
at the conclusion of that packet. If ContextControl.run is cleared for a non-isochronous context, the Host Controller shall stop
processing at the next convenient point that guarantees the context and descriptors end up in a consistent state (e.g., status
updated if a packet was sent and acknowledged).

 Clearing ContextControl.run can cause side effects that are DMA controller dependent. These effects are described in the
chapters that cover each of the DMA controllers.

 When software clears ContextControl.run and the Host Controller has stopped, the Host Controller is not necessarily in a
state that can be restarted simply by setting ContextControl.run. Software shall ensure that CommandPtr.descriptorAddress
and CommandPtr.Z are set to valid values before setting ContextControl.run.

3.1.1.2   ContextControl.wake

 When software adds to a list of descriptors for a context, the Host Controller may have already read the descriptor that was at
the end of the list before it was updated. The value that the Host Controller read may contain a Z value of zero indicating the
end of the descriptor list. The ContextControl.wake bit provides a simple semaphore to the hardware to indicate that software
has appended to the descriptor list by changing a zero Z value to a non-zero Z value. If the last descriptor fetched by the Host
Controller contained (when fetched) a branch or skip address with a Z value of zero, and the wake bit is set, then the Host
Controller shall reread the appropriate pointer value for that descriptor. If the Host Controller is not at the end of the list then
no action is taken when ContextControl.wake is set.

 For transmit contexts, and receive contexts in buffer-fill mode (a mode described later in which a context can receive multiple
packets into one data buffer), if the Z value is still zero, then the end of the list has been reached and the Host Controller
should clear ContextControl.active. For receive contexts in buffer-fill mode, if the Z value is still zero on the reread, then the
packet shall not be accepted. For asynchronous contexts, the Host Controller shall return the appropriate ack_busy* code. In
addition, the Host Controller shall “back out” the packet by not updating the buffer's byte count (resCount), and shall flush
the packet from the FIFO. The Host Controller shall not go inactive, as there is still buffer space available, and it is expected
that software is attempting to provide more buffer space.

 An IT context can fetch its next descriptor from either the branch address or the skip address in the last descriptor processed,
and shall keep track of which address was used when it fetches a Z value of zero. The same address shall be used for the IT
context when the next descriptor is reread because ContextControl.wake is set.
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 For both transmit and receive contexts, if the Z value is now non-zero, the Host Controller shall continue processing.

 In order to ensure that a wake condition is not missed, the Host Controller shall clear ContextControl.wake before it reads or
rereads a descriptor.

 ContextControl.wake shall be ignored when ContextControl.run is zero.

3.1.1.3   ContextControl.active

 ContextControl.active is set and cleared only by the Host Controller. It shall be set when the Host Controller receives an
indication from software that a valid descriptor is available for processing. This indication shall occur sometime after
software setting the ContextControl.run or by software setting ContextControl.wake while ContextControl.run is set. There
are four cases in which the Host Controller shall clear ContextControl.active: when a branch is indicated by a descriptor but
the Z value of the branch address is 0; when software clears ContextControl.run and the Host Controller has reached a safe
stopping point; while ContextControl.dead is set; and after a hardware reset or software reset of the Host Controller.
Additionally, for the asynchronous transmit contexts (request and response), the Host Controller shall clear
ContextControl.active when a bus reset occurs.

 Exceptions and clarifications to the ContextControl.active rules stated above for AT contexts that support out-of-order
pipelining are:

 1) ContextControl.active remains set when the end of a context program is reached (i.e. a Z value of the branch
address is 0) until all outstanding fetched descriptors are retired.

 2) ContextControl.active remains set when software clears ContextControl.run until all outstanding fetched
descriptors are retired.

 3) ContextControl.active remains set when a bus reset is detected until packet completion status, evt_flushed, or
evt_missing_ack (see section 7.2.3.1) has been written to all outstanding fetched descriptors.

 When ContextControl.active is cleared and ContextControl.run is already clear, the Host Controller shall set the IntEvent bit
for the context. This interrupt is the same interrupt that would have been generated by the context if a completed descriptor
had indicated that an interrupt should be generated.

 Advisory note:  The value of the ContextControl.active bit is unpredictable when a receive context runs out of buffers
(because this value depends on whether the buffer was exactly filled or not).  But, if software appends a new descriptor and
sets the ContextControl.wake bit, the DMA will correctly process it regardless of the state of the ContextControl.active bit.
Examining the active bit from software, therefore, is not likely to be useful.

3.1.1.4   ContextControl.betaFrame

 ContextControl.betaFrame is used to indicate that the incoming packet is formatted for beta mode timing.  When this field is
set to a one, it indicates that the received packet used Beta-mode formatting.  When this field is set on a received request,
then the associated response should be sent with the betaFrame field in the packet control information set to 1’b1.  This
causes the link to send a Beta request of the appropriate type (asynchronous or isochronous) to the PHY.
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3.1.1.5   ContextControl.dead

 ContextControl.dead is used to indicate a fatal error in processing a descriptor or an IT DMA skip processing overflow as
described in section 9.3.4. When the Host Controller sets ContextControl.dead, ContextControl.active is immediately cleared
but ContextControl.run remains set. In addition, setting ContextControl.dead causes an unrecoverableError interrupt event
(see Table 6-1) and blocks a normal context event interrupt from being set.

 ContextControl.dead is immediately cleared when software clears ContextControl.run or by either a hardware reset or
software reset of the Host Controller.

 Software can determine the cause of a context going dead by checking the ContextControl.event code (table 3-2). The defined
reasons for the Host Controller to set ContextControl.dead are described in section 3.1.2.1 and section 13., “Host Bus Errors.
” AT contexts that support out-of-order pipelining shall hold off setting ContextControl.dead when any of these conditions
occur until the dying context has normally processed all outstanding fetched descriptors to completion and write status. Once
AT activity is complete for the dying AT context, it shall set ContextControl.dead.

3.1.2   CommandPtr register

Figure 3-2 - CommandPtr register format

Table 3-3 – CommandPtr register description
Field rwu Reset Description
descriptorAddress rwu undef Contains the upper 28 bits of the address of a 16-byte aligned descriptor block.
Z rwu undef Indicates the number of contiguous 16-byte aligned blocks at the address

pointed to by descriptorAddress. If Z is 0, it indicates that the
descriptorAddress is not valid.
Valid values for Z are context specific. Handling of invalid Z values is
described in section 3.1.2.1.

Software initializes CommandPtr.descriptorAddress to contain the address of the first descriptor block that the Host
Controller accesses when software enables the context by setting ContextControl.run. Software also initializes
CommandPtr.Z to indicate the number of descriptors in the first descriptor block. Software shall only write to this register
when both ContextControl.run and ContextControl.active are zero. The Host Controller is not required to enforce this rule.

The Host Controller utilizes the CommandPtr register while processing a context. Software may read the CommandPtr and
the contents of CommandPtr are described in the table below (X='don't care'):

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

descriptorAddress [31:4] Z
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Table 3-4 – CommandPtr read values
ContextControl fields

run dead active wake CommandPtr.descriptorAddress Value

0 0 0 X Points to the last descriptor executed or the next descriptor to be executed.

0 0 1 X Contents unspecified.
0

0 0 0
Refers to the descriptor block that contains the Z=0 that caused the Host Controller to set
active to 0.

1
0 0 1 Contents unspecified.

1 0 1 X Points to the current descriptor block being processed or the next descriptor block to be
processed.

1 1 0 X For AT DMA contexts, this field points to the descriptor block furthest in the list that was
accessed. For all other contexts, this field points to the descriptor block where a fatal error
occurred.

If ContextControl.run and ContextControl.dead are both set, then descriptorAddress points to a descriptor within the
descriptor block in which an unrecoverable error occurred, except in the case of out-of-order AT pipelining in which
CommandPtr.descriptorAddress points to the descriptor block furthest in the list (i.e. closest to the end) that was fetched.

Except for the case where software initializes CommandPtr, the value of CommandPtr.Z is undefined and Z may contain a
value that is implementation dependent.

The value of CommandPtr is undefined after a hardware reset or software reset of the Host Controller.

3.1.2.1   Bad Z Value

 When software sets ContextControl.run to 1 and CommandPtr.Z contains an invalid value for the controller and context, or if
a Z value is invalid for a fetched descriptor block in a running context, the Host Controller:

 !Shall set ContextControl.dead to 1
 !Shall set ContextControl.event to evt_unknown and
 !Shall not process any descriptors in that context.
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3.2   List Management

 All contexts use an identical method for controlling the processing of descriptors associated with the context. This presents a
uniform interface to controlling software and allows reuse of hardware on the Host Controller.

3.2.1   Software Behavior

3.2.1.1   Context Initialization

 Software initializes the context by first checking to see that ContextControl.run, ContextControl.active and
ContextControl.dead are all 0. Then, CommandPtr.descriptorAddress is written to point to a valid descriptor block and
CommandPtr.Z shall be set to a value that is consistent with the descriptor block. Then ContextControl.run may be set.

3.2.1.2   Appending to Running List

 Software may append to a list of descriptors at any time. Software may append either a single descriptor or a linked list of
descriptors. When the to-be-appended list is properly formatted, software updates the branch address and Z value of the
descriptor that was at the end of the list being processed by the Host Controller.

 When software completes linking process it shall set ContextControl.wake for the context. This ensures that the Host
Controller resumes operation if it had previously reached the end of the list and gone inactive.

3.2.1.3   Stopping a Context

 Software may stop a running context by clearing ContextControl.run. The context may not stop immediately. To ensure that
the context has stopped, software shall wait for ContextControl.active to be cleared by the Host Controller. This indicates that
the Host Controller has completed all processing associated with the context.

3.2.1.4   Hardware Behavior

 The Host Controller has several DMA controllers each of which has one or more contexts. Each DMA controller shall
examine each of its contexts on a periodic basis and make operational decisions based on the context state contained in
ContextControl. The flowchart for how a DMA controller uses the ContextControl state to govern descriptor processing is
shown below. This process shall be executed once each time a context is ‘scheduled'. Scheduling of a context is dependent on
the DMA controller.
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Figure 3-3 – Flow Chart for Processing a DMA Context
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3.3     Asynchronous Receive
1) The Host Controller accepts 1394 transactions and groups them as follows: Physical requests - physical requests,

including physical read, physical write and lock requests to some CSR registers (section 5.5), are handled
directly by the Host Controller without assistance by system software. DMA contexts and controllers that are
used in a Host Controller for the physical request unit are implementation specific. This specification places no
limits on the physical response unit other than its effective address range and the requirement that the Host
Controller shall not block processing of other transaction types while dealing with physical requests. Chapter 12., 
“Physical Requests,” provides details on which requests can be processed as physical.

2) Self-ID phase packets - PHY packets with the selfID format can be received at any time. However, only those
packets that are received during the selfID phase of bus initialization that immediately follows a bus reset are
considered to be selfID phase packets and shall be stored in the selfID buffer. The Host Controller can be
programmed to accept or ignore selfID phase packets. When selfID phase packets are accepted, they are stored in
a special memory buffer  that has a dedicated controller and context. Because of this special memory buffer,
selfID phase packets can never get ‘stuck' in a FIFO. See chapter 11., “Self ID Receive,” for more information.

3) Asynchronous responses - when the host system initiates a request through the asynchronous transmit request
context, any response shall be handled by the asynchronous receive response context. The fact that host system
software initiates the process and the fact that the Host Controller has a separate context for responses allows
system software to budget for all responses, which ensures that the Host Controller will always have a place in
system memory to store a response when it arrives. In the unlikely event that the Host Controller does not have a
place for the response it is allowed to drop the response when it arrives. This causes a split-transaction timeout.

4) Asynchronous requests - a request may arrive at the Host Controller at any time. Additionally, a request can be
of any size up to the limits imposed by the max_rec field in the Bus_Info_Block. Due to the unpredictable nature
of this transaction type, it is impractical for the system software to ensure that there is always sufficient buffer
space defined in the asynchronous request receive request buffers. If the FIFO that is receiving requests becomes
full, all subsequent requests shall be busied until there is room to receive them.

3.3.1 FIFO Implementation (informative)

 The limitations and requirements for handling each of the transaction types suggest some ways of simplifying the hardware
implementation so that a FIFO is not needed for each of the input transaction types. One simplification would be to place
asynchronous requests into a first FIFO and then send all other transaction types (except for physical reads) through a second
FIFO. This two FIFO scheme provides the necessary non-blocking behavior because the Host Controller will be able to
remove transactions from the second FIFO whether or not buffer space exists for the transaction. The selfID, isochronous and
asynchronous response transactions will either have a buffer defined for the transaction or it is permissible to discard the
transaction if no buffer exists to receive it. This leaves requests to be sent to the first FIFO. When that FIFO fills, additional
requests will receive ack_busy until system software makes space available to the Host Controller by adding descriptors to
the context.

 An alternative implementation is to use a single physical FIFO, but ensure that it provides the behavior of the multiple FIFOs.
This is a bit more complex than the dual FIFO case, but may produce a net savings in hardware. The key to using a single
physical FIFO for all incoming transactions is to make sure that no request is placed in the FIFO unless there is a place for it
in system memory. There are several ways of accomplishing this; one is given as an example here:

 A counter is maintained on the link side of the input. This counter is initialized to 0 when, for the AR DMA request context,
ContextControl.run is not set. When the system side of the FIFO reads a request descriptor, the reqCount value from the
descriptor is passed to the link side of the FIFO. The link side then adds this value to the current count value. When the count
value on the link side is greater than zero, the link can accept request data and place it into the FIFO. After each request
quadlet is placed in the FIFO, other than those for a physical write request, the link side decrements the counter. When the
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counter reaches 1, the link checks to see if the end of packet has been reached. If it has, the link uses the last entry for the
footer value (cycleCount, speed and ackSent.) If the end of the packet has not been reached, the link places an error value in
the last quadlet to indicate that the packet was not totally received and then the link returns an ack_busy to the requestor. The
system side of the FIFO can indicate that additional space has been made available by writing a new value to the link side.
The link side adds these values to the current count value.

 The system side of the FIFO sends count values to the link side on two occasions. The first is when a descriptor is initially
fetched and the reqCount in the descriptor is sent to the link side. It is required that the Host Controller have a look ahead of
at least one descriptor (current plus next). If the Host Controller does not look ahead, the link side cannot accept packets that
cross descriptor boundaries.

 The second instance when the system side of the input FIFO sends a count value to the link side is when the system side sees
a packet that has an error. Packets that contain errors (e.g., CRC) are 'backed out' of the buffer when the context is in buffer
fill or dual buffer modes. The AR DMA request context can only be in buffer fill mode so all bad packets will be 'backed
out'. When a packet is backed out, the space that was allocated for that packet is made available for other packets and the link
side of the FIFO will be informed of the amount of data that has been backed out. A simple implementation of this is to
maintain a counter on the system side of the FIFO that is reset at the beginning of each packet. As each quadlet is removed
from the FIFO, the counter is incremented. At the end of the packet, the Host Controller checks the error code. If it indicates
that there was an error, and the packet was a request, the count value is sent to the link side of the FIFO to indicate the
amount of space that has been 'reclaimed'.

 The reqCount field in a descriptor can indicate a size as large as 65,532 bytes (16,383 quadlets.) If quadlet counts are
maintained this means that 14 bits are required to indicate the maximum number of quadlets (14'h3FFF). To allow for look
ahead, the link side counter should be able to hold a value equal to two maximum sized buffers, which is 32,766 (15'h7FFE)
quadlets or 15 bits. Since the system software is required to allocate buffers that are sized to accept the maximum sized
packet (as described in max_rec of the Bus_Info_Block) the Host Controller need only do one level of look ahead on the
buffer descriptors to make sure that the maximum sized packet can be accepted.

3.3.1.1   Unrecoverable Error (informative)

 If an unrecoverable error occurs when the Host Controller is writing to an AR DMA buffer, a fail indication is sent to the link
side of the FIFO. This indicates that the link side can busy further requests or responses that are destined for that AR DMA
context.

 If the AR DMA request context has an unrecoverable error, the system side of the FIFO will continue to unload the FIFO
even though the AR DMA request context is dead. All asynchronous requests that would have been sent to the AR DMA
request queue shall be dropped and no responses for them shall be sent to the initiating node. Dropping requests destined for
the AR DMA request queue is acceptable because i) AR DMA read requests are always split transactions (ack_pended), ii)
write requests within the physical range have been ack_pended and iii) write requests above the physical range which have
been posted (ack_completed) are by definition permitted to fail.

 If the AR DMA response context has an unrecoverable error, the system side of the FIFO will continue to unload the FIFO
even though the AR DMA response context is dead.
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3.3.2   Ack Codes for Write Requests

 For write requests that are to be handled by the Physical Request controller, the Host Controller may send an ack_complete
before the data is actually written to system memory. For a full description of which requests are candidates for Physical
Requests, refer to Chapter 12.

 The ack_code sent for write requests to offsets in the range of PhysicalUpperBound to 48'hFFFE_FFFF_FFFF when not
busied shall be ack_complete. The ack_code sent for requests to offsets in the range 48'hFFFF_0000_0000 to
48'hFFFF_FFFF_FFFF and for block requests with a non-zero extended tcode shall be ack_pending.

3.3.3  Posted Writes

 A write request that is handled by the Physical Request controller or a write request in the address range
PhysicalUpperBound to 48'hFFFE_FFFF_FFFF and handled by the Asynchronous Request Unit, may generate an
ack_complete before the data is actually written to the designated system memory location. These writes are referred to as
posted writes.

 Write requests to the physical memory range of the host may be posted if the host controller supports the
PostedWriteAddressLo/Hi error registers (see section 13.2.8.1) and software has enabled posted writes (see section 5.7). If
posting is not enabled/supported, the Host Controller shall not return a complete indication (ack_complete or resp_complete)
until the data has been successfully written to the addressed location in physical memory.

 If posting of physical writes is supported and enabled, then the Host Controller may return ack_complete to a physical write
request with certain restrictions.

 ! A Host Controller implementation is allowed to support any number of posted writes. However, for error reporting
purposes a posted write is considered pending until the write is actually completed to the offset address. For each
pending physical posted write, there shall be an error reporting register to hold the request's source node ID and 48-bit
offset address if that posted write fails. If the maximum allowed posted writes are pending, the Host Controller shall
return either ack_pending or ack_busy* for subsequent posted write request candidates and shall only return
resp_complete when those writes have actually been performed.

 ! Read and write requests within the Asynchronous Request FIFO shall not pass any posted writes, whether posted in the
Physical or Asynchronous Request FIFOs.

 ! Within the Physical Request FIFO, read requests may coherently pass posted writes, but writes requests and posted
writes shall not pass other writes posted in the Physical Request FIFO. A physical read request may pass a physical
posted write if the read request address range does not include addresses affected by the posted writes, or if the physical
read response returns data to be written by the posted physical write. Physical read and write requests may pass writes
posted to the Asynchronous Request FIFO.

 In conjunction with the ordering rules set forth above for Host Controller implementations, the following protocol restrictions
shall be adhered to so that proper ordering and therefore data integrity is maintained. The term visible side-effect is used to
mean an indirect action caused by a request or response which results in the alteration of the contents or usage of host
memory outside the address scope of the request or response.

 ! Write requests within the range PhysicalUpperBound to 48'hFFFE_FFFF_FFFF shall not have 1394 visible side effects.
 ! Read or write requests within the range 48'h0 to PhysicalUpperBound -1, whether handled by the Physical Request

controller or not, shall not have 1394 visible side effects.
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 ! Read requests to CSR addresses that are processed autonomously by the Host Controller (see section 5.5) shall not have
1394 visible side effects

 If an error occurs in writing the posted physical write data packet, then the Host Controller sets an interrupt event to notify
software and provides information about the failed write in an error reporting register. For more information about error
handling of posted physical writes, refer to section 13.2.8.

 Data write errors that occur when transferring posted write requests from the asynchronous receive FIFO are handled
differently than posted physical writes. Refer to section 13.2.5 for more information.

3.3.4   Retries

 For asynchronous receive, the Host Controller should support dual-phase retry for packets that are busied.

 For asynchronous transmit, Host Controller implementations shall support the single-phase retry protocol and may optionally
support the dual-phase retry protocol. The implemented retry mechanism shall be managed by hardware and invisible to
software. Refer to section 7.6 and table 7-12 for details.

3.4   DMA Summary

 The following chapters provide details about Open HCI registers and interrupts, and about all the supported DMA types. The
table below is a summary of DMA information for reference purposes. Each DMA type is fully described in the indicated
chapter.

Table 3-5 - DMA Summary
DMA Contexts Per Context

Registers
Per Context
Interrupts

Receive
mode

DMA commands
Z

tcodes
(4'hx)

1 Request ContextControl
CommandPtr

reqTxComplete 0, 1, 4, 5, 9,
A,E

Asynchronous
Transmit

(section 7.)
1 Response ContextControl

CommandPtr
respTxComplete

OUTPUT_MORE
OUTPUT_MORE-Immediate
OUTPUT_LAST
OUTPUT_LAST-Immediate

2-8
2, 6, 7, B

1 Request ContextControl
CommandPtr

ARRQ
RQPkt

0, 1, 4, 5, 9,
E*Asynchronous

Receive
(section 8.) 1 Response ContextControl

CommandPtr
ARRS
RSPkt

buffer-fill INPUT_MORE 1
2, 6, 7, B

Isochronous
Transmit

(section 9.)
4-32 ContextControl

CommandPtr

isochTx
isoXmitIntEventn
isoXmitIntMaskn

OUTPUT_MORE
OUTPUT_MORE-Immediate
OUTPUT_LAST
OUTPUT_LAST-Immediate
STORE_VALUE

1-8 A

packet-per-
buffer

INPUT_MORE
INPUT_LAST

1-8

buffer-fill INPUT_MORE 1

Isochronous
Receive

(section 10.)
4-32

ContextControl
CommandPtr
ContextMatch

isochRx
isoRecvIntEventn
isoRecvIntMaskn dual-buffer DUALBUFFER 2

A

Self-ID
(section 11.)

1 SelfIDBuffer
SelfIDCount

SelfIDComplete buffer-fill N/A

E* - this may include certain PHY packets and the synthesized PHY (bus_reset) packet.
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For transmit, software may use the tcodes as specified in the table above. The Host Controller hardware shall allow any 1394
tcode except tcode “8” (cycle start) to be transmitted by any asynchronous transmit context.

For receive, the Host Controller shall only receive packets that have tcodes that are defined by an approved IEEE 1394
standard. Packets with undefined tcodes shall be dropped.
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4 Register addressing

The registers in the 1394 Open HCI occupy a 2048 byte address space. This 2048 byte space is allocated to control registers,
common DMA controller registers and individual DMA context registers, as indicated below. Registers shall be accessed as
32-bit entities; 8-bit or 16-bit access to Host Controller registers is not supported. Writes to reserved addresses of the 1394
Open HCI address space may have unexpected results and are disallowed. Reads of reserved addresses are undefined. Host
processors shall only access Host Controller registers with quadlet reads or writes on quadlet boundaries.

Host Controller registers which are accessed through the physical DMA unit yield unspecified results.
 When HCControl.LPS is 0, the clock signal from the PHY may not be present, and access to registers implemented in the
PHY clock domain is undefined. Only the following registers may reside in the PHY clock domain. Access to these registers
is undefined until the clock signal from the PHY is received after HCControl.LPS is set to 1.

Table 4-1 -- 1394 Open HCI register map
Offset (binary)                           Register
11'h00C CSRReadData
11'h010 CSRCompareData
11'h014 CSRControl
11'h070 IRMultiChanMaskHiSet
11'h074 IRMultiChanMaskHiClear
11'h078 IRMultiChanMaskLoSet
11'h07C IRMultiChanMaskLoClear
11'h0DC Fairness Control
11'h0E0 LinkControlSet
11'h0E4 LinkControlClear
11'h0E8 NodeID
11'h0EC PHY Control
11'h0F0 Isochronous Cycle Timer
11'h100 AsynchronousRequestFilterHiSet
11'h104 AsynchronousRequestFilterHiClear
11'h108 AsynchronousRequestFilterLoSet
11'h10C AsynchronousRequestFilterLoClear
11'h110 PhysicalRequestFilterHiSet
11'h114 PhysicalRequestFilterHiClear
11'h118 PhysicalRequestFilterLoSet
11'h11C PhysicalRequestFilterLoClear
11'h400 + 32*n IRContextControlSet
11'h404 + 32*n IRContextControlClear

In the normal operation of some systems, the clock signal from the PHY might not be active at all times when
HCControl.LPS is set to 1. Software shall verify accesses to the Open HCI registers listed above against IntEvent.regAc-
cessFail to guarantee successful completion. Refer to section 1.4.1 for more information.

 All addresses within this 2KB address space are reserved for Open HCI and not for vendor defined registers.

 Annex A. describes how this memory space is accessed from PCI.
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Table 4-2 -- 1394 Open HCI register space map
Offset (binary)                           Space
00R_RRRR_RR00
(11'h000 to 11'h17C)

Control register space
 R_RRRR_RR selects register

001_1ccR_RR00
(11'h180 to 11'h1FC)

Asynchronous DMA context register space
 cc = 2'h0-2'h3 selects DMA context
 R_RR selects DMA context register

01t_tttt_RR00
(11'h200 to 11'h3FC)

Isochronous Transmit DMA context register space
 t_tttt = 5'h00-5'h1F selects IT DMA context
 RR selects DMA context register

1vv_vvvR_RR00
(11'h400 to 11'7FC)

Isochronous Receive DMA context register space
 vv_vvv = 5'h00-5'h1F selects IR DMA context
 R_RR selects DMA context register

For the isochronous transmit contexts, t_tttt represents IT contexts numbered 0-31.
For the isochronous receive contexts, vv_vvv represents IR contexts numbered 0-31.

4.1   DMA Context Number Assignments

The 1394 Open HCI contains up to 68 DMA contexts, 4 for asynchronous and 8 to 64 for isochronous. The controller number
assignments for asynchronous DMA are illustrated below. Note that these numbers correspond to the ”cc”” DMA controller
select values in the table above.

Table 4-3-- Asynchronous DMA Context number assignments
DMA Context

Number
Context Name

2'h0 Asynchronous Transmit Request
2'h1 Asynchronous Transmit Response
2'h2 Asynchronous Receive Request
2'h3 Asynchronous Receive Response
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4.2   Register Map

Table 4-4 -- Register addresses
Offset DMA Context Read value Write value See clause
11'h000 Version - 5.2
11'h004 GUID_ROM GUID_ROM 5.3
11'h008 ATRetries ATRetries 5.4
11'h00C CSRReadData CSRWriteData 5.5.1
11'h010 CSRCompareData CSRCompareData 5.5.1
11'h014 CSRControl CSRControl 5.5.1
11'h018 ConfigROMhdr ConfigROMhdr 5.5.2
11'h01C BusID - 5.5.3
11'h020 BusOptions BusOptions 5.5.4
11'h024
11'h028

GUIDHi
GUIDLo

GUIDHi
GUIDLo

5.5.5
5.5.5

11'h02C Reserved Reserved
11'h030 Reserved Reserved
11'h034 ConfigROMmap ConfigROMmap 5.5.6
11'h038
11'h03C

PostedWriteAddressLo
PostedWriteAddressHi

PostedWriteAddressLo
PostedWriteAddressHi

13.2.8.1

11'h040 Vendor ID - 5.6
11'h044 -
11'h04C

Reserved Reserved

11'h050
11'h054

HCControl HCControlSet
HCControlClear

5.7
5.7

11'h058 -
11'h05C

Reserved Reserved

11'h060
11'h064
11'h068
11'h06C

Self ID Reserved
}SelfIDBuffer
SelfIDCount
Reserved

Reserved
SelfIDBuffer

Reserved

11.1
11.2

11'h070
11'h074
11'h078
11'h07C

IRMulti}ChanMaskHi
IRMultiChanMaskLo

IRMultiChanMaskHiSet
IRMultiChanMaskHiClear
IRMultiChanMaskLoSet
IRMultiChanMaskLoClear

10.4.1.1

11'h080
11'h084
11'h088
11'h08C
11'h090
11'h094
11'h098
11'h09C
11'h0A0
11'h0A4
11'h0A8
11'h0AC

IntEvent
(IntEvent & IntMask)
IntMask

IsoXmitIntEvent
(IsoXmitIntEvent & IsoXmitIntMask)
IsoXmitIntMask

IsoRecvIntEvent
(IsoRecvIntEvent & IsoRecvIntMask)
IsoRecvIntMask

IntEventSet
IntEventClear
IntMaskSet
IntMaskClear
IsoXmitIntEventSet
IsoXmitIntEventClear
IsoXmitIntMaskSet
IsoXmitIntMaskClear
IsoRecvIntEventSet
IsoRecvIntEventClear
IsoRecvIntMaskSet
IsoRecvIntMaskClear

6.1

6.2

6.3.1

6.3.2

6.4.1

6.4.2

11'h0B0 InitialBandwidthAvailable InitialBandwidthAvailable 5.8



Register Addressing            1394 Open Host Controller Interface Specification / Release 1.2                         Printed 07/18/01

Copyright   1996-2001.  All rights reserved.                                                                                                                    Page 4

Table 4-4 -- Register addresses
Offset DMA Context Read value Write value See clause
11'h0B4 InitialChannelsAvailableHi InitialChannelsAvailableHi 5.8
11'h0B8 InitialChannelsAvailableLo InitialChannelsAvailableLo 5.8
11'h0BC-
11'h0D8

Reserved Reserved

11'h0DC Fairness Control Fairness Control 5.9
11'h0E0
11'h0E4

LinkControl LinkControlSet
LinkControlClear

5.10

11'h0E8 Node ID Node ID 5.11
11'h0EC PhyControl PhyControl 5.12
11'h0F0 Isochronous Cycle Timer Isochronous Cycle Timer 5.13
11'h0F4-
11'h0FC

Reserved Reserved

11'h100
11'h104
11'h108
11'h10C

AsynchronousRequestFilterHi
AsynchronousRequestFilterLo

AsynchronousRequestFilterHiSet
AsynchronousRequestFilterHiClear
AsynchronousRequestFilterLoSet
AsynchronousRequestFilterLoClear

5.14.1

11'h110
11'h114
11'h118
11'h11C

PhysicalRequestFilterHi
PhysicalRequestFilterLo

PhysicalRequestFilterHiSet
PhysicalRequestFilterHiClear
PhysicalRequestFilterLoSet
PhysicalRequestFilterLoClear

5.14.2

11'h120 PhysicalUpperBound PhysicalUpperBound 5.15
11’h124 PhysicalSplitTimeout PhysicalSplitTimeout 5.16
11'h128-
11'h17C

Reserved Reserved

11'h180
11'h184
11'h188
11'h18C

Async transmit
request

ContextControl
Reserved

ContextControlSet
ContextControlClear
Reserved
CommandPtr

3.1, 7.2.2

11'h190-
11'h19C

Reserved Reserved

11'h1A0
11'h1A4
11'h1A8
11'h1AC

Async transmit
response

ContextControl
Reserved

ContextControlSet
ContextControlClear
Reserved
CommandPtr

3.1, 7.2.2

11'h1B0-
11'h1BF

Reserved Reserved

11'h1C0
11'h1C4
11'h1C8
11'h1CC

Async receive
request

ContextControl

Reserved

ContextControlSet
ContextControlClear
Reserved
CommandPtr

3.1, 8.3.2

11'h1D0-
11'h1DF

Reserved Reserved

11'h1E0
11'h1E4
11'h1E8
11'h1EC

Async receive
response

ContextControl

Reserved

ContextControlSet
ContextControlClear
Reserved
CommandPtr

3.1, 8.3.2

11'h1F0-
11'h1FF

Reserved Reserved
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Table 4-4 -- Register addresses
Offset DMA Context Read value Write value See clause
11'h200
+ 16*n
11'h204+
16*n
11'h208+
16*n
11'h20C
+ 16*n

Isoch transmit n,
where “n” = 0
for context 0, 1
for context 1,
etc...

ContextControl

Reserved

ContextControlSet
ContextControlClear
Reserved
CommandPtr

3.1, 9.2.2

11'h400
+ 32*n
11'h404
+ 32*n
11'h408
+ 32*n
11'h40C
+ 32*n
11'h410+
32*n
11'h414+
32*n
11'h418+
32*n
11'h41C
+32*n

Isoch receive n,
where “n” = 0
for context 0, 1
for context 1,
etc.

ContextControl
Reserved
CommandPtr
ContextMatch
Reserved
Reserved

ContextControlSet
ContextControlClear
Reserved
CommandPtr
ContextMatch
Reserved
Reserved
Reserved

3.1, 10.3.2

3.1.2,
10.3.1
10.3.3
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5   1394 Open HCI Registers

5.1   Register Conventions

 Unless otherwise specified, all register fields will initialize as zeros. For software, reads of reserved locations (indicated by a
hatched or grayed-out pattern) yield undefined results.

 Similarly, unless otherwise specified, all fields will remain unchanged after a 1394 bus reset.

 Refer to Section 2.1.4 for an explanation of register notation.

5.2   Version Register

 This register contains a 32 bit value that indicates the version and capabilities of the interface. The register is expected to be
used to indicate the level of functionality present in the 1394 Open HCI. This register is read only.

Open HCI Offset 11'h000

Figure 5-1 – Version Register

Table 5-1 – Version register fields
Field rwu Reset Description
GUID_ROM r N/A When set to one, a GUID ROM is present and shall be accessible through the

GUID_ROM register, and the third and fourth quadlets of the bus_info_block
shall be automatically loaded on hardware reset.

version r N/A Major version of the Open HCI. This field contains the BCD encoded value
representing the major version of the highest numbered 1394 Open HCI
specification with which this controller is compliant. For example, a Host
Controller implemented to this specification (Release 1.1) will have a version
value of 8'h01 and a Host Controller implemented to version 2.15 of this
specification will have a value of 8'h02.

revision r N/A Minor version of the Open HCI. This field contains the BCD encoded value
representing the minor version of the highest numbered 1394 Open HCI
specification with which this controller is compliant. For example, a Host
Controller implemented to this specification (Release 1.1) will have a revision
value of 8'h10 and a Host Controller implemented to version 2.15 of this
specification will have a value of 8'h15.
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version

GUID_ROM
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5.3   GUID ROM register (optional)

 The GUID ROM register is used to access the GUID ROM, and shall be present if the Version.GUID_ROM bit is set.

Open HCI Offset 11'h004

Figure 5-2 – GUID ROM register

Table 5-2 – GUID ROM register fields
Field rwu Reset Description

addrReset rsu 1'b0 Software sets this bit to one to reset the GUID ROM address to zero. When the
Host Controller completes the reset, it clears addrReset to zero. Upon resetting
the GUID ROM address, the host controller does not automatically fill rdData
with the data from byte address 0.

 rdStart rsu 1'b0 A read of the currently addressed GUID ROM byte is started on the transition
of this bit from a zero to a one. When the Host Controller completes the read, it
clears rdStart to zero and advances the GUID ROM byte address by one byte.

 rdData ru undef The data read from the GUID ROM.
 miniROM r N/A The Host Controller indicates the first byte location of the miniROM image in

the GUID ROM through this field. The Host Controller returns a value of zero
in this field to indicate that no miniROM is implemented.
See Annex F., “Extended Config ROM Entries,” for more information on the
miniROM.

To initialize the GUID ROM read address, software sets GUIDROM.addrReset to one. Once software detects that
GUIDROM.addrReset is zero, indicating that the reset has completed, then software sets GUIDROM.rdStart to read a byte.
Upon the completion of each read, the Host Controller places the read byte into GUIDROM.rdData, advances the GUID
ROM address by one byte to set up for the next read, and clears GUIDROM.rdStart to 0 to indicate to software that the
requested byte has been read.

5.4   ATRetries Register

 The AT rRetries register Register holds the number of times the 1394 Open HCI can attempt to do a retry for asynchronous
DMA request transmit and for asynchronous physical and DMA response transmit.a retry for the asynchronous transmit
request, asynchronous transmit response, and physical response DMA. Receipt of a “busy” acknowledge shall cause a retry
subject to the ATRetries Register even if an underrun occurred during a packet transmission resulting in a “busy” ack from
the target destination node. A packet shall not be retried under any other circumstance, including receipt of evt_missing_ack.

 Note: earlier versions of Open HCI required a retry on ack_data_error, in violation of IEEE Std 1394-1995.  This revision of
Open HCI now prohibits retry after ack_data_error.
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 .
Open HCI Offset 11'h008

Figure 5-3 – ATRetries register

Table 5-3 – ATRetries register fields
Field rwu Reset Description

secondLimit

cycleLimit

ru
or
rwu

3'h0

13'h0

Together the secondLimit and cycleLimit fields define a time limit for retry
attempts when the outbound dual-phase retry protocol is in use. The
secondLimit field represents a count in seconds modulo 8, and cycleLimit
represents a count in cycles modulo 8000.
If the retry time expires for a physical response, the packet is discarded by
the Host Controller. Software is not notified.
If outbound dual-phase retry is not implemented, both fields shall be read-
only and shall read as 16'h0.
If outbound dual-phase retry is implemented, both fields shall be
read/write, and a value of 0 written to both fields shall disable dual phase
retry.

maxPhysRespRetries rw undef The maxPhysRespRetries field tells the Physical Response Unit how many
times to attempt to retry the transmit operation for the response packet.
Note that this value is used only for responses to physical requests.
If the retry count expires for a physical response, the packet is discarded by
the Host Controller. Software is not notified.

maxATRespRetries rw undef The maxATRespRetries field tells the Asynchronous Transmit Response
Unit how many times to attempt to retry the transmit operation for a
software transmitted (non-physical) asynchronous response packet.

maxATReqRetries rw undef The maxATReqRetries field tells the Asynchronous Transmit Request Unit
how many times to attempt to retry the transmit operation for an
asynchronous request packet.

The Host Controller is required to pace the retries of both requests and responses using fairness intervals as described in
IEEE 1394 standards.  In particular, a packet that receives ack_busy may not be retried in the same fairness interval.

The interrelationship between retries and packet transmission is as follows:

! Retried requests shall not block responses.
! Retried requests may block other requests.
! Retried responses should not block requests.
! Retried AT DMA responses shall not block physical responses.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0
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maxATRespRetries
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! Retried responses may block AT DMA responses.
! Retried physical responses may block other physical responses.
! A bus reset shall prevent retries for any packet first attempted prior to that bus reset

5.5    Autonomous CSR Resources

 The 1394 Open HCI implements a number of autonomous CSR resources. In particular, the 1394 compare-swap bus
management registers are implemented in hardware, as is the config ROM header, the bus_info_block and access to the first
1K bytes of the configuration ROM. The DMA units handle external 1394 bus requests to these resources automatically, and
the following registers manage this function for the local host

5.5.1   Bus Management CSR Registers

 IEEE 1394 requires certain 1394 bus management resource registers to be accessible only via "quadlet read” and “quadlet
lock" (compare-and-swap) transactions. For other transaction types, ack_type_error shall be sent. These special bus manage-
ment resource registers are implemented internal to the 1394 Open Host Controller to allow atomic compare-and-swap access
from either the host system or from the 1394 bus. The Host Controller shall implement the algorithms described in IEEE Std
1394a-2000, clause 10.30

Table 5-4 – Serial Bus Registers
CSR address csrSel Description 1394-1995

Section #
Hardware reset,

soft reset, or
bus reset

48'hFFFF_F000_021C 2'h0 BUS_MANAGER_ID 8.3.2.3.6 6'h3F
48'hFFFF_F000_0220 2'h1 BANDWIDTH_AVAILABLE 8.3.2.3.7 InitialBand-

widthAvailable
(section 5.8)

48'hFFFF_F000_0224 2'h2 CHANNELS_AVAILABLE_HI 8.3.2.3.8 InitialChannels-
AvailableHi
(section 5.8)

48'hFFFF_F000_0228 2'h3 CHANNELS_AVAILABLE_LO 8.3.2.3.8 InitialChannels-
AvailableLo
(section 5.8)

.

When these bus management resource registers are accessed from the 1394 bus, the atomic compare-and-swap transaction
shall be autonomous, without software intervention. If ack_complete is not received to end the transaction for the generated
lock response, IntEvent.lockRespErr (table 6-1) shall be triggered.

To access these bus management resource registers from the host, the following registers are used.
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Open HCI Offset 11'h00C

Figure 5-4 – CSR data register

Open HCI Offset 11'h010

Figure 5-5 – CSR compare register

Open HCI Offset 11'h014

Figure 5-6 – CSR control register

Table 5-5 – CSR registers fields
Field rwu Reset Description
csrData rwu undef At start of operation, the data to be stored if the compare is successful.
csrCompare rw undef The data to be compared with the existing value of the CSR resource.
csrDone ru 1'b1 This bit shall be set when a compare-swap operation is completed. It shall be

cleared whenever this register is written.
csrSel rw undef This field selects the CSR resource:

2'h0 - BUS_MANAGER_ID
2'h1 - BANDWIDTH_AVAILABLE
2'h2 - CHANNELS_AVAILABLE_HI
2'h3 - CHANNELS_AVAILABLE_LO

To access these bus management resource registers from the host bus, first load the CSRData register with the new data value
to be loaded into the appropriate resource. Then load the CSRCompare register with the expected value. Finally, write the
CSRControl register with the selector value of the resource. A write to the CSRControl register initiates a compare-and-swap
operation on the selected resource. When the compare-and-swap operation is complete, the CSRControl register csrDone bit
shall be set, and the CSRData register shall contain the value of the selected resource prior to the host initiated compare-and-
swap operation.
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5.5.2   Config ROM header

 The config ROM header register is a 32-bit number that externally maps to the 1st quadlet of the 1394 configuration ROM
(offset 48'hFFFF_F000_0400). This register is written locally at Open HCI offset 11'h018, and the field names match the
1394 names.

 Software shall ensure this register is valid whenever HCControl.linkEnable is set. The Open HCI shall reload this register
with updated data when ConfigROMmap changes value and HCControl.linkEnable is set as discussed in section 5.5.6.

Figure 5-7 – Config ROM header register

Table 5-6 – Config ROM header register fields
Field rwu Hardware reset Soft  reset Description
info_length rwu 8'h0 N/A 1394 bus management field.
crc_length rwu 8'h0 N/A 1394 bus management field.
rom_crc_value rwu 16'h0 N/A 1394 bus management field.

For a clarification of the meaning of Configuration ROM versus GUID ROM versus PCI Expansion ROM, see section 2.2.

5.5.3   Bus identification register

 The bus identification register is a 32-bit number that externally maps to the first quadlet of the Bus_Info_Block. This
register is read locally at the following register:

Open HCI Offset 11’h018

rom_crc_valuecrc_lengthinfo_length
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Open HCI Offset 11'h01C

Figure 5-8 – Bus ID register

Table 5-7 – Bus ID register fields
Field rwu Reset Description
busID r N/A Contains the constant 32'h31333934, which is the ASCII value for “1394”.

5.5.4   Bus options register

 The bus options register is a 32-bit number that externally maps to the 2nd quadlet of the Bus_Info_Block. This register is
written locally at Open HCI offset 11'h020, and the field names match the 1394 names.

 Software shall ensure this register is valid whenever HCControl.linkEnable is set. The Open HCI shall reload this register
with updated data when ConfigROMmap changes value and HCControl.linkEnable is set as discussed in section 5.5.6.

Open HCI Offset 11'h020

Figure 5-9 –Bus options register

Table 5-8 – Bus options register fields
Field rwu Reset Description
max_rec rw ** 1394 bus management field. Hardware shall initialize max_rec to the

maximum value supported by the implementation, which shall be 512 or
greater. Software may change max_rec, however this field shall be valid at any
time the }HCControl.linkEnable bit is set to 1.
Block write request packets received by the AR DMA with a length greater
than max_rec shall not be accepted. If appropriate, ack_type_error shall be
returned for such packets. As an example, it is inappropriate to give an
acknowledgment to a broadcast packet.
** Reset values: For a hardware reset, max_rec is set to the maximum value
supported by the implementation, 512 or greater. For a soft reset, max_rec is
not changed.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

busID
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link_spdmax_rec(see table 5-8) (see table 5-8)
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Table 5-8 – Bus options register fields
Field rwu Reset Description
link_spd rwu

or
ru

** Link speed.
**On a hardware reset, link_spd is set by the Host Controller to the maximum
speed the link can send and receive. The Host Controller shall support the
maximum size asynchronous and isochronous packets for the reported speed.
If implemented as read/write, software may change link_spd to a lower value,
which shall cause the link to ignore packets arriving at higher speeds.
Link_spd may also be implemented as read-only.
**On a soft reset, the value of link_spd is undefined.

bits 3-11 and 16-31 rw undef These read-writable bits are used by software and provide no additional
hardware functionality. Refer to IEEE1394 standards for definitions of these
bits.Software shall set these bits per IEEE 1394a-2000, clause 8.3.2.5.4.  The
settings of these bits do not directly affect the operation of the host controller.

5.5.5   Global Unique ID

 The global unique ID (GUID) is a 64-bit number that externally maps to the third and fourth quadlets of the Bus_Info_Block.
These registers are written locally at the following registers (the field names match the 1394 names):

Open HCI Offset 11'h024

Figure 5-10 – GlobalUniqueIDHi register

Open HCI Offset 11'h028

Figure 5-11 – GlobalUniqueIDLo register

Table 5-9 – GlobalUniqueID register fields
Field rw

u
Reset Description

node_vendor_ID,
chip_ID_hi, chip_ID_lo

rw **see
comments

1394 bus management fields. Firmware or hardware shall ensure this register
is valid whenever HCControl.linkEnable bit is set.
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**The Global Unique ID (GUID) Registers are reset to 0 after a host power (hardware) reset. A value of 0 is an illegal value.
These registers are not affected by a soft reset. These GUID registers shall be written only once after host power reset, by
either

1) an autonomous load operation from a local, un-modifiable resource (i.e., local GUID ROM or local parallel
ROM) performed by the 1394 OHCI hardware, or

2) a single host write to each register performed only by firmware that is always executed on a hardware reset
which affects the Host Controller.

{ Hunter:  what hardware resets don’t affect the Host Controller?  Or does item 2) above only need re-parsing? }

After one of these load mechanisms has executed, the GUID registers are read-only.

5.5.6   Configuration ROM mapping register

 The configuration ROM mapping register contains the start address within host bus space that is mapped to the start address
of the 1394 configuration ROM for this node. Since the low order 10 bits of this address are reserved and assumed to be zero,
the system address for the config ROM shall start on a 1K byte boundary. The first five quadlets of the 1394 configuration
ROM space are mapped to the configuration ROM header and the bus_info_block, and quadlet accesses are handled directly
by the 1394 Open Host Controller returning data directly from the hardware registers described in sections 5.5.2, 5.5.3, 5.5.4
and 5.5.5.

 By default, the Open HCI shall respond to quadlet read requests within the 1K config ROM, and send ack_type_error to any
block read requests. When enabled via HCControl.BIBimageValid, the Open HCI shall respond to block read requests to the
configuration ROM utilizing the physical response unit. The ability to handle block config ROM read requests can increase
1394 and host bus efficiency.

 The Open HCI shall obtain response data to quadlet read accesses to the bus_info_block from registers implemented in Open
HCI hardware (section 5.5.5). However, response data for all block read requests, including those that contain any portion of
the bus_info_block, shall be acquired from host bus space when HCControl.BIBimageValid is set. Before Open HCI software
sets HCControl.BIBimageValid it shall ensure that the first five quadlets of host configuration ROM are valid in the host bus
space mapped by the ConfigROMmap register.

 Designers of 1394 devices that read the configuration ROM of an Open HCI node are advised that only quadlet reads to the
GUID registers are guaranteed to be accurate and invariant. Block read responses that include part or all of the GUID
registers may have been generated by software, and so may contain incorrect data by means of malicious or faulty software.

 Software shall ensure that the ConfigROMmap register is valid whenever HCControl.linkEnable to one.

 When HCControl.linkEnable and HCControl.BIBimageValid are set, the host controller provides a mechanism for atomic
update of the configuration ROM through a unique access scheme involving a shadow register. The shadow register,
ConfigROMmapNext, contains the next value to load to the ConfigROMmap register. Host writes to the ConfigROMmap
OHCI register address update the ConfigROMmapNext register, and host reads from that address always return the value of
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the configROM mapping start address used by the host controller. The ConfigROMmapNext value shall be copied to
ConfigROMmap when either HCControl.linkEnable is zero or after a bus reset event on the 1394 serial bus.

 To provide the atomic update of the host configuration ROM, both the ConfigROMheader and BusOptions registers (sections
5.5.2 and 5.5.4) shall be reloaded with updated values by Open HCI accesses to the host bus space. These registers are
reloaded following a 1394 bus reset when HCControl.linkEnable is set and ConfigROMmapNext register has been written
since the last bus reset. If an error occurs when loading these registers from host memory, the Open HCI shall clear
HCControl.BIBimageValid, set IntEvent.unrecoverableError, and shall inhibit responses to all read requests to the first 1K of
host configuration ROM including the bus_info_block registers until a soft reset occurs.

 After a bus reset initiates an update of ConfigROMheader and BusOptions registers, the Open HCI shall respond to 1394
configuration ROM accesses to these registers with the updated data mapped by the new ConfigROMmap address, and the
Open HCI functionality based upon BusOptions fields shall be properly updated.

 The procedure given below summarizes both the Open HCI hardware and software steps in updating host configuration ROM
atomically. This procedure is only valid if HCControl.BIBimageValid is set.

a) Software prepares the new config ROM, including the first five quadlets which contain the updated configROM header
and Bus Options quadlets. Software shall ensure that the bus_info_block is built correctly with data acquired from Open
HCI registers.

b) Software writes ConfigROMmap with new configuration ROM start address. Hardware stores this value only in
ConfigROMmapNext.

c) Software forces a 1394 bus reset.
d) When the 1394 bus reset occurs, Open HCI updates ConfigROMmap after it completes all current host bus accesses that

use the old ConfigROMmap value.
e) Open HCI updates ConfigROMheader and BusOptions by accessing the host bus at the updated ConfigROMmap

address.

   
Open HCI Offset 11'h034

Figure 5-12 – Configuration ROM mapping register

Table 5-10 – Configuration ROM mapping register fields
Field rwu Reset Description
configROMaddr rw undef If a quadlet read request to 1394 offset 48'hFFFF_F000_0400 through offset

48'FFFF_F000_07FF is received, then the low order 10 bits of the offset are added
to this register to determine the host memory address of the returned quadlet.

5.6   Vendor ID register

 The vendor ID register holds the company ID of an organization that specified any vendor-unique registers.
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configROMaddr
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Open HCI Offset 11'h040

Figure 5-13 – VendorID register

Table 5-11 – VendorID register fields
Field rwu Reset Description
vendorCompanyID r N/A The company ID of the organization that specified the particular set of vendor

unique registers and behaviors of this particular implementation of the 1394
Open HCI. If no additional features are implemented, this field shall be 24'h0.

vendorUnique r N/A Vendor defined.

To obtain a company ID (also known as an Organizationally Unique Identifier, OUI), contact:IEEE Registration
Authority IEEE Standards Department.
445 Hoes Lane, P.O. Box 1331
Piscataway, NJ 08855-1331
USA
phone:  (732) 562-3813
fax:       (732) 562-1571
email:   ieee-registration-authority@ieee.org
web:      http://standards.ieee.org/regauth/oui/index.shtml

Your company need not obtain a company ID if it has been previously assigned an IEEE 48-bit Globally Assigned Address
Block or an IEEE assigned Organizationally Unique Identifier (OUI) for use in network applications. However, be aware that
the (left through right) order of the bits within the company ID value is not the same as the (first through last) network-
transmission order of the bits within these other identifiers. Consult the IEEE Registration Authority for clarifying
documentation.
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5.7   HCControl registers (set and clear)

 This register provides flags for controlling the Host Controller. There are two addresses for this register: HCControlSet and
HCControlClear. On read, both addresses return the contents of the control register. For writes, the two addresses have
different behavior: a one bit written to HCControlSet causes the corresponding bit in the HCControl register to be set, while a
zero bit leaves the corresponding bit in the HCControl register unaffected. On the other hand, a one bit written to
HCControlClear causes the corresponding bit in the HCControl register to be cleared, while a zero bit leaves the
corresponding bit in the HCControl register unaffected.

Open HCI Offset 11'h050 - Set
Open HCI Offset 11'h054 - Clear

Figure 5-14 – HCControl register

Table 5-12 – HCControl register fields
Field rscu Reset Description
BIBimageValid rsu 1'b0 This bit is used to enable both Open HCI response to block read requests to

host configuration ROM and the Open HCI mechanism for atomically
updating configuration ROM. Software shall create a valid image of the
bus_info_block in host configuration ROM memory before setting this bit.
When this bit is zero, the Open HCI shall return ack_type_error on block read
requests to configuration ROM and shall neither update the configROMmap
register nor update ConfigROMheader and BusOptions registers when a 1394
bus reset occurs.
When this bit is set, the physical response unit handles block reads of host
configuration ROM and the mechanism for atomically updating configuration
ROM is enabled. Details of these enhancements are given in section 5.5.6.
Software may only set this bit when HCControl.linkEnable is zero. Once set,
this bit is cleared by a hardware reset, a soft reset, or if a fetch error occurs
when the Open HCI loads bus_info_block registers from host memory as
described in section 5.5.6.

noByteSwapData rsc undef This bit is used to control byte swapping during host bus accesses on the data
portion of a 1394 packet. When 0, data quadlets are sent/received in little
endian order. When 1, data quadlets are sent/received in big endian order.
See the explanation following this table. Software may only change this bit
when HCControl.linkEnable is 0, otherwise unspecified behavior will result.
Support of this bit is optional for motherboard implementations and required
for all other implementations.
See section 5.7.1 below for more information.
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Table 5-12 – HCControl register fields
Field rscu Reset Description
ackTardyEnable rsc 1'b0 This bit is used to control the acknowledgment of ack_tardy. When this bit is

set to one, ack_tardy may be returned as an acknowledgment to configuration
ROM accesses from 1394 to the Open HCI including accesses to the
bus_info_block. The Host Controller shall return ack_tardy to all other
asynchronous packets addressed to the Open HCI node. When the Host
Controller sends ack_tardy, IntEvent.ack_tardy is set to indicate the
attempted asynchronous access. Refer to IEEE Std 1394a-2000 for more
information on ack_tardy.
Software shall not set this bit if the Host HCI node is the 1394 bus manager.
Refer to Annex A., “PCI Interface (optional),”section A.4, for a discussion on
how ack_tardy relates to PCI Power Management

programPhyEnable rc
or
r

* This bit informs upper-level generic software (e.g., an OS OHCI device
driver) if lower-level implementation specific software (e.g., BIOS or Open
Firmware) has consistently configured 1394a enhancements in the Link and
PHY.
When 1 and while linkEnable is 0, generic software is responsible for
configuring the IEEE Std 1394a-2000 enhancements within the PHY and the
aPhyEnhanceEnable bit within the Host Controller Link in a consistent
manner.
When 0, generic software may not modify the IEEEStd 1394a-2000
enhancement configuration in either the Link or PHY and cannot interpret the
setting of aPhyEnhanceEnable
*On a hardware reset, this bit should be 1 for Host Controllers that can
support the enabling of all IEEE Std 1394a-2000 PHY enhancements by
generic software, and may be 0 for Host Controllers which that are always
configured by lower-level software.
A soft reset and a bus reset shall not affect this bit.
See section 5.7.2 below for more information.

aPhyEnhanceEnable rsc
or
r

** When the programPhyEnable bit is 1, this bit is used by generic,
implementation independent software (e.g., OHCI device driver) to enable
the Host Controller Link to use all of IEEE Std 1394a-2000 enhancements.
Generic software can only modify this bit when the programPhyEnable bit is
1 and the linkEnable bit is 0. This bit is meaningless to software when the
programPhyEnable bit is 0.
When 0, none of the IEEE Std 1394a-2000 enhancements are enabled within
the Link.
When 1, the set of all IEEE Std 1394a-2000 enhancements is enabled within
the Link.
**On a hardware reset, this bit should be 0 for Host Controllers which
initialize without all of the IEEE Std 1394a-2000 PHY enhancements
enabled, and 1 for those which initialize with all IEEE Std 1394a-2000 PHY
enhancements enabled.
A soft reset and a bus reset shall not affect this bit.
See section 5.7.2 below for more information.
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Table 5-12 – HCControl register fields
Field rscu Reset Description
LPS rsu 1'b0 This bit is used to control the Link Power Status. Software must set LPS to 1

to permit Link PHY communication. Once set, the link can use LREQs to
perform PHY reads and writes.
An LPS value of 0 prevents Link PHY communication. In this state, the
only accessible Host Controller registers are Version, VendorID, HCControl,
GUID_ROM, GUIDHi and GUIDLo. Access to other registers is not defined.
Hard and soft resets clear LPS to 0. Software may disable LPS by writing a
one to this field in the HCControlClear register.* See section 5.7.3 below for
more information.

postedWriteEnable rsc undef This bit is used to enable (1) or disable (0) physical posted writes. When
disabled (0) physical writes shall be handled but shall not be posted and
instead are ack'ed with ack_pending.
Software may only change this bit when HCControl.linkEnable is 0,
otherwise unspecified behavior will result. See Section 12., “Physical
Requests,” for information about posted writes.

linkEnable rsu 1'b0  Software shall set this bit to 1 when the system is ready to begin operation
and then force a bus reset.
When this bit is clear, the Host Controller is logically and immediately
disconnected from the 1394 bus. The link shall not process or interpret any
packets received from the PHY, nor shall the link generate any 1394 bus
requests. However, the link may access PHY registers via the PHY control
register.
This bit is cleared to 0 by a hardware reset or soft reset, and shall not be
cleared by software. Software shall not set the linkEnable bit until the
Configuration ROM mapping register (section 5.5.6) is valid.
See section 5.7.3 below for more information.

softReset rsu *** When set to 1, a soft reset occurs, all FIFO's are flushed and all Host
Controller registers are set to their hardware reset values unless otherwise
specified. Registers outside of the Open HCI realm, i.e., host attachment
registers such as those for PCI, are not affected.
***The read value of this bit shall be 1 while a soft reset or a hardware reset
is in progress. The read value of this bit shall be 0 when neither a soft reset
nor hardware reset are in progress. Software can use the value of this bit to
determine when a reset has completed and the Host Controller is safe to
operate.

5.7.1 noByteSwapData

 The 1394 bus is quadlet based big endian. By convention, when quadlets are sent in big endian order, the leftmost byte (bits
31-24) of a quadlet is shall be sent first. When sent in little endian order, the right most byte (bits 7-0) shall be sent first with
the leftmost bit of each byte sent first.

 When the Host Controller sends/receives a packet, the header information shall be sent/received in big endian order (leftmost
byte first). Header information is composed of a sequence of quadlets which is invariant over big and little endian systems.

                                                          
* Note: in earlier versions of this standard software was not permitted to clear the LPS bit.
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 When the HCControl.noByteSwapData bit is not set, data quadlets shall be sent/received in little endian order and when
HCControl.noByteSwapData is set, data quadlets shall be sent/received in big endian order. The data quadlets that are subject
to swap are:

1) any data quadlet covered by data CRC (tcodes 4'h1, 4'h7, 4'h9, 4'hA an 4'hB)
2) the data quadlet in a quadlet write request (tcode 4'h0)
3) the data quadlet in a quadlet read response (tcode 4'h6)

 Since the cycle_time is self contained within the Host Controller, it shall not be byte-swapped regardless of the setting of the
noByteSwapData bit.

 The data in a PHY packet (identified internally with tcode 4'hE) shall not be byte swapped for send or receive.

5.7.2   programPhyEnable and aPhyEnhanceEnable

 After a hardware or soft reset, system software shall ensure that the PHY and the Link are set to a consistent, compatible set
of IEEE Std 1394a-2000 enhancements. The programPhyEnable and aPhyEnhanceEnable bits are provided to enable
software to accomplish this task.

 Since different levels of software may be responsible for ensuring this setup, the programPhyEnable bit is defined to support
communication between implementation specific lower-level software (e.g., BIOS or Open Firmware) and generic,
implementation independent upper-level software (e.g., OHCI device driver). If generic software reads this bit as a 1, it shall
configure the IEEE Std 1394a-2000 enhancements in both the Link and PHY in a consistent manner (either all enhancements
enabled or all enhancements disabled). A 0 value for this bit informs the upper-level system software that no further changes
to the IEEE Std 1394a-2000 configurations of the Link and PHY are permitted, since either: 1) lower-level software has
previously performed initialization appropriate to the Host Controller capabilities, or 2) the link has hardwired IEEE Std
1394a-2000 capabilities to match the PHY with which it is being used. Note that this bit is only a software flag and does not
control any Host Controller functionality.

 The programPhyEnable bit may be read-only, returning a zero value, if upper-level software will not be involved in the
configuration of IEEE Std 1394a-2000 enhancements for the Link and PHY. This is appropriate when the Link and PHY are
hardwired with compatible settings or when lower-level software will consistently configure both the Link and PHY. If
generic software control of IEEE Std 1394a-2000 enhancements is to be supported, programPhyEnable shall be implemented
as read/clear with a hardware reset value of 1. Software should clear programPhyEnable once the PHY and Link have been
programmed consistently.

 When programPhyEnable is set to 1, then the aPhyEnhanceEnable bit allows generic software to enable or disable all IEEE
Std 1394a-2000 enhancements within the Host Controller Link. A value of 1 for aPhyEnhanceEnable configures the Link to
use all IEEE Std 1394a-2000 enhancements and is appropriate when software has enabled all of the enhancements within the
PHY. Likewise, a value of 0 prevents the Link from using any IEEE Std 1394a-2000 enhancements and is appropriate when
software has disabled all of the enhancements within the PHY. Generic software shall not attempt to modify or interpret the
setting of the aPhyEnhanceEnable bit if programPhyEnable contains a 0.

 The aPhyEnhanceEnable bit may be read-only or read/set/clear depending on options implemented in the hardware. If the
aPhyEnhanceEnable bit is read/set/clear, it shall hardware reset to 0 for default compatibility with legacy PHYs. If the
aPhyEnhanceEnable bit is read-only, it shall hardware reset to 0 if it only operates with legacy PHYs or shall hardware reset
to 1 if it only operates with IEEE Std 1394a-2000 PHYs. In either case, the upper-level software will be responsible for
programming the PHY consistently (provided programPhyEnable is set).



1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.2 Printed 7/20/01

Copyright   1996-2001.  All rights reserved. Page 5-16

 The following table illustrates the responsibility of generic software for some example Link implementations.

Table 5-13 – programPhyEnable and aPhyEnhanceEnable Examples
Link Capabilities programPhyEnable aPhyEnhanceEnable Comments
Legacy-only Link 0 (read-only) X(meaningless) Generic software shall not change PHY or Link

enhancement configuration.

IEEE 1394a2000 -
only Link

0 (read/clear)
1 (read/clear)

X (meaningless)
1 (read-only)

Generic software shall not change PHY or Link
enhancement configuration.
Generic software shall enable IEEE Std 1394a-
2000 enhancements in the PHY.

IEEE 1394a-2000
capable Link

0 (read/clear)
1 (read/clear)
1 (read/clear)

X (meaningless)
0 (read/set/clear)
1 (read/set/clear)

Generic software shall not change PHY or Link
enhancement configuration.
Generic software may modify
aPhyEnhanceEnable and shall configure PHY
consistently.

In all cases, the PHY-Link enhancements shall be programmed only when HCControl.linkEnable is 0.

5.7.3   LPS and linkEnable

 Three basic tasks with respect to the PHY/Link interface include:

 ! Bootstrap of Open HCI.
Configure the link and the PHY prior to receiving any packets or generating any bus requests.

 ! Recovery from a hung system.
Place Open HCI in a near pre-bootstrap condition, and allows the PHY and link to get back into sync if required.

 ! Power Management via Suspend/Resume
Inform the PHY that PHY/Link communication is no longer required and, if possible, the PHY can suspend itself if no
active ports remain.

 To achieve proper behavior, software shall assert the signals in the following sequence: LPS, then linkEnable, then any other
individual context enables or runs. The Host Controller behavior when violating this order is undefined and can produce
unreliable behavior. The table below illustrates the progressive functionality as these signals are asserted.
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Table 5-14 – LPS and linkEnable assertion
# LPS linkEnable contextControl.run Sequence Comments

a. Off Off Off Initial State
b. On Off Off Allows PHY clock  to start
c. On Off Off Config PHY/Link registers
d. On On Off Initiate Bus Reset
e. On On Off Physical DMA/Cycle Starts Okay
f. On On On Normal Operation

Following a hardware reset or soft reset, LPS and linkEnable are Off as shown in step a. Software proceeds to enable the link
power status (b) and, when the PHY clock has started, software may configure the PHY and Link registers as listed in step c
(e.g., Self-ID receive DMA registers). Setting linkEnable in step d enables some DMA functionality, and asserting
contextControl.run (e) for the Host Controller contexts then yields full functionality.

When software disables LPS by writing a one to the hci.control.clear register, the link will disable LPS as soon as convenient.
Data in the transmit FIFO at that time shall be flushed.  Data in the receive FIFOs shall be processed normally.

5.8   Bus Management CSR Initialization Registers

 These registers shall be reset to their default value on a hardware reset or soft reset, and shall not be affected by a 1394 bus
reset. The values of these registers shall be loaded into their corresponding bus management CSR registers upon a hardware
reset, soft reset, or a 1394 bus reset.

Open HCI Offset 11'h0B0

Figure 5-15 – Initial Bandwidth Available register

Open HCI Offset 11'h0B4

Figure 5-16 –  Initial Channels Available Hi register
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InitialBandwidthAvailable
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InitialChannelsAvailableHi
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Open HCI Offset 11'h0B8

Figure 5-17 –  Initial Channels Available Lo register

Table 5-15 – Bus Management CSR Initialization registers' fields
Field rw Reset Description
InitialBandwidthAvailable rw 13'h1333 (‘d4915) This field is reset to 13'h1333 on a hardware reset or soft

reset, and shall not be affected by a 1394 bus reset. The value
of this field shall be loaded into the
BANDWIDTH_AVAILABLE CSR upon a hardware reset,
soft reset, or a 1394 bus reset.

InitialChannelsAvailableHi rw 32'hFFFF_FFFF This field is reset to 32'hFFFF_FFFF on a hardware reset or
soft reset, and shall not be affected by a 1394 bus reset. The
value of this field shall be loaded into the
CHANNELS_AVAILABLE_ HI CSR upon a hardware reset,
soft reset, or a 1394 bus reset.

InitialChannelsAvailableLo rw 32'hFFFF_FFFF This field is reset to 32'hFFFF_FFFF on a hardware reset or
soft reset, and shall not be affected by a 1394 bus reset. The
value of this field shall be loaded into the
CHANNELS_AVAILABLE_ LO CSR upon a hardware
reset, soft reset, or a 1394 bus reset.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

InitialChannelsAvailableLo
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5.9  FairnessControl register (optional)

 This register provides a mechanism by which software can direct the Host Controller to transmit multiple asynchronous
request packets during a fairness interval as specified in IEEE Std 1394a-2000.

Open HCI Offset 11'h0DC

Figure 5-18 – FairnessControl register

Table 5-16 –FairnessControl register fields
Field rw Hardware

reset
Soft &
bus reset

Description

pri_req rw undef N/A This field specifies the maximum number of priority arbitration requests for
asynchronous request packets that the link is permitted to make of the PHY
during a fairness interval. A pri_req value of 8'h0 is equivalent to the
behavior specified by IEEE Std 1394-1995.
The number of implemented bits is variable as per the IEEE Std 1394a-2000
specification. Unimplemented bits shall be read-only and shall read as 0's.

The FairnessControl register is configured by software in conjunction with software support of the Fairness Budget Register
specified in IEEE Std 1394a-2000. Transmission of all asynchronous packets via the Asynchronous Transmit Request context
shall be governed by the fairness protocol supported by the Host Controller.

5.10   LinkControl registers (set and clear)

 This register provides the control flags that enable and configure the link core protocol portions of the 1394 Open HCI. It
contains controls for the receiver, and cycle timer. There are two addresses for this register: LinkControlSet and LinkCon-
trolClear. On read, both addresses return the contents of the control register. For writes, the two addresses have different
behavior: a one bit written to LinkControlSet causes the corresponding bit in the LinkControl register to be set, while a zero
bit leaves the corresponding bit in the LinkControl register unaffected. On the other hand, a one bit written to Link-
ControlClear causes the corresponding bit in the LinkControl register to be cleared, while a zero bit leaves the corresponding
bit in the LinkControl register unaffected.

 The physReqDebug bit is intended to be used only in a debugging environment in which debugging is performed or aided by
physical access to host memory through 1394.  When this bit is set, debugging can continue after one or more bus resets,
even if the host has crashed or software is otherwise unable to re-enable the physical unit.  Software is expected to set the
asynReqResourceAll bit when using physReqDebug.

{  Hunter:  Bit 8 below will become the physReqDebug bit, when create editable figure. }
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pri_reg
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Open HCI Offset 11'h0E0 - Set
Open HCI Offset 11'h0E4 - Clear

Figure 5-19 –LinkControl register

Table 5-17 – LinkControl register fields
Field rscu Reset Description
cycleSource rsc

or
r

* Optional. When one, the cycle timer shall use an external source to determine
when to increment cycleCount. When cycleCount is incremented, cycleOffset is
reset to 0. If cycleOffset reaches 3071 before an external event occurs, it shall
remain at 3071 until the external signal is received and is then reset to 0.
When the cycleSource bit is zero, the 1394 Open HCI rolls the cycle timer over
when the timer reaches 3072 cycles of the 24.576 MHz clock (i.e., 8 kHz).
If not implemented, this bit shall read as 0.
* A hardware reset clears this bit to 0. A soft reset has no effect.

cycleMaster rscu undef When one and the PHY has notified the 1394 Open HCI that it is root, the 1394
Open HCI shall generate a cycle start packet every time the cycle timer rolls
over, based on the setting of the cycleSource bit. When either this bit is zero or
the Open HCI node is not the root, the 1394 Open HCI shall accept received
cycle start packets to maintain synchronization with the node which is sending
them. This bit shall be zero when the IntEvent.cycleTooLong bit is set.

cycleTimerEnable rsc undef When one, the cycle timer offset shall count cycles of 49.152MHz / 2. When
zero, the cycle timer offset shall not count.

rcvPhyPkt Rscrs
c

undef When one, the receiver shall accept incoming PHY packets into the AR request
context if the AR request context is enabled. This does not control either the
receipt of self-identification packets during the Self-ID phase of bus initialization
or the queuing of synthesized bus reset packets in the AR DMA Request Context
buffer (section 8.4.2.3). This does control receipt of any self-identification
packets received outside of the Self-ID phase of bus initialization.

rcvSelfID Rscrs
c

undef When one, the receiver will accept incoming self-identification packets. Before
setting this bit to one, software shall ensure that the self ID buffer pointer register
contains a valid address.

physReqDebug Rscrs
c

** When one, causes the physical unit to behave as if the PhysicalRequestFilterHi
register contains the value 32’h7FFF_FFFF and the PhysicalRequestFilterLo
register contains the value 32’hFFFF_FFFF.  Software may set or clear this bit at
any time.
** Hardware and soft resets clear this bit.  A bus reset has no effect.

tag1SyncFilterLock Rsrs *** When one, ContextMatch.tag1SyncFilter equals one for all IR contexts. When
zero, ContextMatch.tag1SyncFilter has read/write access.
*** A hardware reset clears this bit. A soft reset has no effect.
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5.11   Node identification and status register

 This register contains the CSR address for the node on which this chip resides. The 16-bit combination of busNumber and
nodeNumber is referred to as the Node ID.

Open HCI Offset 11'h0E8

Figure 5-20 – Node ID register

Table 5-18 – Node ID register fields
Field rwu Reset Description
iDValid ru 1'b0 This bit indicates whether or not the 1394 Open HCI has a valid node number. It

shall be cleared when a bus reset is detected and shall be set when the 1394
Open HCI receives a new node number from the PHY.

root ru 1'b0 This bit is set during the bus reset process if the attached PHY is root.
CPS ru 1'b0 Set if the PHY is reporting that cable power status is OK .
busNumber rwu 10'h3FF This number is used to identify the specific 1394 bus this node belongs to when

multiple 1394-compatible busses are connected via a bridge. This field shall be
set to 10'h3FF on a bus reset.

nodeNumber ru Undef This number is the physical node number established by the PHY during self-
identification. It shall be set to the value received from the PHY after the self-
identification phase. If the PHY sets the }nodeNumber to 63, software shall not
set ContextControl.run for either of the AT DMA contexts. The Host Controller
shall not acknowledge any packet received with a destination nodeNumber of 63
regardless of the setting of this field.

This register shall be written autonomously and atomically by the Host Controller with the value in PHY register 0 following
the self-identification phase of bus initialization. Although IntEvent.phyRegRcvd shall not be set when the contents of PHY
register 0 are written here, software may use the IntEvent.selfIDComplete interrupt to detect that the self-identification phase
has completed, and then check for a new valid Node ID.
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5.12   PHY control register

 The PHY control register is used to read or write a PHY register. To read a register, the address of the register shall be
written to the regAddr field along with a 1 in the rdReg bit. When the read request has been sent to the PHY (through the
LReq pin), the rdReg bit is cleared to 0. When the PHY returns the register (through a status transfer), the rdDone bit
transitions to one and then the IntEvent.phyRegRcvd interrupt is set. The address of the register received is placed in the
rdAddr field and the contents in the rdData field.

 Software shall not issue a read of PHY register 0. The most recently available contents of this register shall be reflected in the
NodeID register (section 5.11). The Host Controller shall only write the contents of PHY register 0 into the nodeID register,
and never into this register.

 To write to a PHY register, the address of the register shall be written to the regAddr field, the value to write shall be written
to the wrData field, and a 1 shall be written to the wrReg bit. The wrReg bit shall be cleared when the write request has been
transferred to the PHY.

 Software should assure that no more than one PHY register request is outstanding.

 

Open HCI Offset 11'h0EC

Figure 5-21 – PHY control register

Table 5-19 – PHY control register fields
Field rwu Reset Description
rdDone ru undef rdDone shall be cleared to 0 by the Host Controller when either rdReg or

wrReg is set to 1. This bit shall be set to 1 when a register transfer (transfer
other than PHY register 0) is received from the PHY and rdData is updated.

rdAddr ru undef The address of the register most recently received from the PHY.
rdData ru undef The data read from the PHY register at rdAddr.
rdReg rwu 1'b0 Set rdReg to initiate a read request to a PHY register. This bit shall be cleared

when the read request has been sent. The wrReg bit shall not be set while the
rdReg bit is set.

wrReg rwu 1'b0 Set wrReg to initiate a write request to a PHY register. This bit shall be
cleared when the write request has been sent. The rdReg bit shall not be set
while the wrReg bit is set.

regAddr rw undef The address of the PHY register to be written or read.
wrData rw undef The contents to be written to a PHY register. Shall be ignored for a read.
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This register shall be written atomically: all bits shall be accumulated and written together when rdDone is set

To ensure a consistent interface, regardless of the PHY/Link implementation, the register map of IEEE Std 1394a-2000
PHYs shall be supported.
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5.13   Isochronous Cycle Timer Register

 The isochronous cycle timer register is a read/write register that shows the current cycle number and offset. The cycle timer
register is split up into three fields. The lower order 12 bits are the cycle offset, the middle 13 bits are the cycle count, and the
upper order 7 bits count time in seconds. When the 1394 Open HCI is cycle master, this register shall be transmitted in the
cycle start packet. When the 1394 Open HCI is not cycle master, this register shall be loaded with the data field in each
incoming cycle start. In the event that the cycle start packet is not received, the fields continue incrementing (when
cycleTimerEnable is set in the LinkControl register) to maintain a local time reference.

Open HCI Offset 11'h0F0

Figure 5-22 – Isochronous cycle timer register

Table 5-20 – Isochronous cycle timer register fields
Field rwu Reset Description
cycleSeconds rwu N/A This field counts seconds (cycleCount rollovers) modulo 128
cycleCount rwu N/A This field counts cycles (cycleOffset rollovers) modulo 8000.
cycleOffset rwu N/A This field counts 24.576MHz clocks modulo 3072, i.e., 125 µs. If an

external 8KHz clock configuration is being used, cycleOffset shall be set to
0 at each tick of the external clock.
Note that the ability to support an external clock is optional.
Implementations which support an external clock are not required to have an
external clock.

A host initiated write to the cycleTime register may evoke an IntEvent.cycleInconsistent in some implementations.

5.14   Asynchronous Request Filters

 The 1394 Open HCI allows for selective access to host memory and the Asynchronous Receive Request context so that
software can maintain host memory integrity. The selective access is provided by two sets of 64-bit registers:
PhysRequestFilter and AsynchRequestFilter. These registers allow access to physical memory and the AR Request context
on a nodeID basis. The request filters shall not be applied to quadlet read requests directed at the Config ROM (including the
ConfigROM header, BusID, Bus Options, and Global Unique ID registers) nor to accesses directed to the isochronous
resource management registers. When the link is enabled, access by any node to the first 1K of CSR config ROM shall be
enabled (see section 5.5.6). The Asynchronous Request Filters shall not have any effect on Asynchronous Response packets.

5.14.1   AsynchronousRequestFilter Registers (set and clear)

 When a request is received by the Host Controller from the 1394 bus and that request does not access the first 1K of CSR
config ROM on the Host Controller, then the sourceID is used to index into the AsynchronousRequestFilter. If the corre-
sponding bit in the AsynchronousRequestFilter is 0, then requests from that device shall be ignored (an ack_ shall not be
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sent). If however, the bit is set to 1, the requests shall be accepted and shall be processed according to the address of the
request and the setting of the PhysicalRequestFilter register.

 Requests to offsets above PhysicalUpperBound (section 5.15), with the exception of offsets handled physically as described
in Section 12., shall be sent to the Asynchronous Receive Request DMA context. If the AR Request DMA context is not
enabled, then the Host Controller shall ignore the request.

Open HCI Offset 11'h100 - Set
Open HCI Offset 11'h104 - Clear

Figure 5-23 – AsynchronousRequestFilterHi (set and clear) register

Open HCI Offset 11'h108 - Set
Open HCI Offset 11'h10C - Clear

Figure 5-24 –AsynchronousRequestFilterLo (set and clear) register

Table 5-21 – AsynchronousRequestFilter register fields
Field rscu Reset Description
asynReqResourceN rscu 1'b0 If set to one for local bus node number N, asynchronous requests

received by the Host Controller from that node shall be accepted.
All asynReqResourceN bits shall be cleared to zero when a bus
reset occurs.

asynReqResourceAll rscu 1'b0 If set to one, all asynchronous requests received by the Host
Controller from all bus nodes (including the local bus) shall be
accepted, and the values of all asynReqResourceN bits shall be
ignored. A bus reset shall not affect the value of the
asynReqResourceAll bit.
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The AsynchronousRequestFilter bits are set by writing a one to the corresponding bit in the AsynchronousRequestFilterHiSet
or AsynchronousRequestFilterLoSet address. They shall be cleared by writing a one to the corresponding bit in the
AsynchronousRequestFilterHiClear or AsynchronousRequestFilterLoClear address. If bit “asynReqResourceN” is set, then
requests with a sourceID of either {10'h3FF, #n} or {busID, #n} shall be accepted. If the asynReqResourceAll bit is set in
AsynchronousRequestFilterHi, requests from all bus nodes including those on the local bus shall be accepted.

Reading the AsynchronousRequestFilter registers returns their current state. All asynReqResourceN bits in the
AsynchronousRequestFilter register shall be cleared to 0 on a 1394 bus reset.

5.14.2   PhysicalRequestFilter Registers (set and clear)

 If an asynchronous request is received, passes the AsynchronousRequestFilter, and the offset is below PhysicalUpperBound
(section 5.15), the sourceID of the request is used as an index into the PhysicalRequestFilter. If the corresponding bit in the
PhysicalRequestFilter is set to 0, then the request shall be forwarded to the Asynchronous Receive Request DMA context. If
however, the bit is set to 1, then the request shall be sent to the physical response unit. (Note that within the Physical Range,
lock transactions and block transactions with a non-zero extended tcode are always forwarded to the Asynchronous Receive
Request DMA context. See Section 12.)

Open HCI Offset 11'h110 - Set
Open HCI Offset 11'h114 - Clear

Figure 5-25 – PhysicalRequestFilterHi (set and clear) register

Open HCI Offset 11'h118 - Set
Open HCI Offset 11'h11C - Clear

Figure 5-26 – PhysicalRequestFilterLo (set and clear) register
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Table 5-22 –PhysicalRequestFilter register fields
Field rscu Reset Description
physReqResourceN rscu 1'b0 If set to one for local bus node number N, then asynchronous physical

requests received by the Host Controller from that node shall be accepted.
All PhysicalReqResourceN bits shall be cleared to zero when a bus reset
occurs.

physReqResourceAllBuses rscu 1'b0 If set to one, all asynchronous physical requests received by the Host Con-
troller from non-local bus nodes shall be accepted. A bus reset shall not
affect the value of this bit.

The PhysicalRequestFilter bits shall be set by writing a one to the corresponding bit in the PhysicalRequestFilterHiSet or
PhysicalRequestFilterLoSet address. They shall be cleared by writing a one to the corresponding bit in the
PhysicalRequestFilterHiClear or PhysicalRequestFilterLoClear address. If bit “physReqResourceNn” is set, then requests
with a sourceID of either {10'h3FF, #n} or {busID, #n} shall be accepted. If the physReqResourceAllBuses bit is set in
PhysicalRequestFilterHi, physical requests from any device on any other bus shall be accepted (bus number other than
10'h3FF and busID).

Physical requests that are rejected by the PhysicalRequestFilter shall be sent to the AR Request DMA context if the AR
Request DMA context is enabled. If it is disabled then the Host Controller shall ignore the requests.

Reading the PhysicalRequestFilter registers returns their current states. All physReqResourceN bits in the PhysicalRe-
questFilter registers are cleared to 0 on a 1394 bus reset.

5.15   Physical Upper Bound register (optional)

 Asynchronous requests which are candidates to be handled by the physical response unit include requests that have a
destination offset which falls within the physical range. This range begins at 48'h0 and ends at the offset specified in this
register. In general, requests at physUpperBoundOffset or higher are handled by the Asynchronous Receive Request context.
Refer to section 12. for details about Physical Requests.

 For use with 64-bit implementations, the Physical Upper Bound register comprises the top 32 bits of a 48-bit offset and
provides a mechanism for implementations to specify physical access for offsets above 48'0000_FFFF_FFFF (4GB).
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Figure 5-27 – 48-bit Physical Upper Bound

Open HCI Offset 11'h120

Figure 5-28 – Physical Upper Bound register
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Table 5-23 –Physical Upper Bound register fields
Field rwu Hardware

reset
Soft &
bus reset

Description

physUpperBoundOffset rw
or
r

undef N/A Represents the high-order 32 bits of the 48 bit destination
offset, with the remaining 16 bits set to 16'h0. Requests to
this offset or higher shall be handled by the Asynchronous
Receive Request context, with some exceptions as
outlined in Chapter 12.
Software shall not set physUpperBoundOffset to a value
above 32'hFFFF_0000.
If implemented, this shall be a read/write register.
If not implemented, this register shall be read-only with a
value of 32'h0 and the upper bound of the physical range
shall be 48'h0001_0000_0000.

5.16 Physical SPLIT_TIMEOUT

Open HCI Offset 11'h124

Figure 5-29 – PhysicalSplitTimeout register

Table 5-24 –PhysicalSplitTimeout register fields
Field rwu Hardware

reset
Soft reset Bus reset Description

seconds ru 3’h0 3’h0 unchanged Seconds portion of SPLIT_TIMEOUT.
fractions ru 13’h0320 13’h0320 unchanged Fractions portion of SPLIT_TIMEOUT in units of

125 microseconds.  Software shall not store a value
larger than 7999 in this field.

 When software sends or receives packets that are part of a split transaction, software manages the required timeouts using the
packet receipt timestamp and packet transmit timeout fields described in chapters 8 and 7.  But when response packets are
sent by the physical DMA, the 1394 Open HCI must also observe the appropriate timeouts.

 When physical request packets are received by the link, the 1394 Open HCI shall record a receipt timestamp for each packet
(see chapter 8).  In the event that the packet is acknowledged with ack_pending, and the packet is not delivered to software
via the ARDMA, and the 1394 Open HCI attempts to autonomously send a corresponding response, the response shall only
be sent if arbitration to send the response is granted before the duration specified by the Physical SPLIT_TIMEOUT register
has elapsed.  If the response cannot be sent in time, the request shall be silently discarded and no response shall be sent.
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 Software may modify this register at any time.  Any newly stored value shall take effect for all packets received after the
value is stored, and may take effect sooner (such as for requests already received).

 Although the SPLIT_TIMEOUT register itself is defined in CSR space as eight bytes starting at offset
48ÕhFFFF_F000_0018, the 1394 Open HCI shall not directly handle any requests directed to this location.  Such received
requests shall be directed to software through the ARDMA as described elsewhere in this document.

 See ISO/IEC Std 13213:1994 and section 8.3.2.2.6 of IEEE Std 1394-1995 for additional information.
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6  Interrupts

 The 1394 Open HCI reports two classes of interrupts to the host: DMA interrupts and device interrupts. DMA interrupts are
generated when DMA transfers complete (or are aborted). Device interrupts come directly from the remaining 1394 Open
HCI logic. For example, one of these interrupts could be sent in response to the asserting edge of cycleStart, a signal which
indicates that a new isochronous cycle has started.

 The 1394 Open HCI contains two primary 32-bit registers to report and control interrupts: IntEvent and IntMask. Both
registers have two addresses: a “Set” address and a “Clear” address. For a write to either register, a “one” bit written to the “
Set” address causes the corresponding bit in the register to be set (excluding bits which are read-only), while a “one” bit
written to the “Clear” address causes the corresponding bit to be cleared. For both addresses, writing a “zero” bit has no
effect on the corresponding bit in the register.

 The IntEvent register contains the actual interrupt request bits. Each of these bits corresponds to either a DMA completion
event, or a transition on a device interrupt line. The IntMask register is ANDed with the IntEvent register to enable selected
bits to generate processor interrupts. Software writes to the IntEventClear register to clear interrupt conditions reported in the
IntEvent register.

 A processor interrupt is generated when:

 (((IntEvent & IntMask) != 0) && (IntMask.masterIntEnable == 1)).

 Low-level software responds to the interrupt by reading the IntEvent register, then writing the value read to the IntEventClear
register. At this point the interrupt request is deasserted (assuming no new interrupt bit has been set). Software can proceed to
process the reported interrupts in whatever priority order it chooses, and is free to re-enable interrupts as soon as the
IntEventClear register is written.

 In addition, the 1394 Open HCI contains four secondary 32-bit registers to report and control interrupts for isochronous
transmit and receive contexts. Each register has two addresses: a “Set” address and a “Clear” address.

6.1   IntEvent (set and clear)

 This register reflects the state of the various interrupt sources from the 1394 Open HCI. The interrupt bits are set by an
asserting edge of the corresponding interrupt signal, or by software by writing a one to the corresponding bit in the
IntEventSet address. They are cleared by writing a one to the corresponding bit in the IntEventClear address.

 Reading the IntEventSet register returns the current state of the IntEvent register. Reading the IntEventClear register returns
the masked version of the IntEvent register (IntEvent & IntMask).

 On a hardware reset or soft reset, the values of all bits in this register are undefined.
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Open HCI Offset 11'h080 - Set
Open HCI Offset 11'h084 - Clear

Figure 6-1 –IntEvent register

Table 6-1 – IntEvent register description
Field Bit # rscu Description
reqTxComplete 0 rscu Asynchronous transmit Transmit request Request DMA interrupt. This bit is

conditionally set upon completion of an AT DMA request OUTPUT_LAST*
command. For Host Controllers that implement out-of-order AT request
pipelining (see section 7.7), if after active is set the AT request transmitter retries
a packet then this bit shall be set when the AT request context goes inactive.

respTxComplete 1 rscu Asynchronous transmit Transmit response Response DMA interrupt. This bit is
conditionally set upon completion of an AT DMA response OUTPUT_LAST*
command. For Host Controllers that implement out-of-order AT response
pipelining (see section 7.7), if after active is set the AT response transmitter
retries a packet then this bit shall be set when the AT response context goes
inactive.

ARRQ 2 rscu Asynchronous Receive Request DMA interrupt. This bit is conditionally set upon
completion of an AR DMA Request context command descriptor.

ARRS 3 rscu Asynchronous Receive Response DMA interrupt. This bit is conditionally set
upon completion of an AR DMA Response context command descriptor.

RQPkt 4 rscu Indicates that a packet was sent to an asynchronous receive request context
buffer and the descriptor's xferStatus and resCount fields have been updated.
This differs from ARRQ above since RQPkt is a per-packet completion
indication and ARRQ is a per-command descriptor (buffer) completion
indication. AR Request buffers may contain more than one packet.

RSPkt 5 rscu Indicates that a packet was sent to an asynchronous receive response context
buffer and the descriptor's xferStatus and resCount fields have been updated.
This differs from ARRS above since RSPkt is a per-packet completion indication
and ARRS is a per-command descriptor (buffer) completion indication. AR
Response buffers may contain more than one packet.

isochTx 6 ru Isochronous Transmit DMA interrupt. Indicates that one or more isochronous
transmit contexts have generated an interrupt. This is not a latched event, it is the
OR'ing all bits in (isoXmitIntEvent & isoXmitIntMask). The isoXmitIntEvent
register indicates which contexts have interrupted. See section 6.3.

isochRx 7 ru Isochronous Receive DMA interrupt. Indicates that one or more isochronous
receive contexts have generated an interrupt. This is not a latched event, it is the
OR'ing all bits in (isoRecvIntEvent & isoRecvIntMask). The isoRecvIntEvent
register indicates which contexts have interrupted. See section 6.4.
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Table 6-1 – IntEvent register description
Field Bit # rscu Description
postedWriteErr 8 rscu Indicates that a host bus error occurred while the Host Controller was trying to

write a 1394 write request, which had already been given an ack_complete, into
system memory. The 1394 destination offset and sourceID are available in the
PostedWriteAddress registers described in section 13.2.8.1.

lockRespErr 9 rscu Indicates that the Host Controller attempted to return a lock response for a lock
request to a serial bus register described in Section 5.5.1, but did not receive an
ack_complete after exhausting all permissible retries.

reserved 10-14
selfIDcomplete2 15 rscu Secondary indication of the end of a selfID packet stream. This bit shall be set by

the Open HCI when it sets selfIDcomplete, and shall retain state independent of
IntEvent.busReset.

selfIDcomplete 16 rscu A selfID packet stream has been received. Will be generated at the end of the bus
initialization process if LinkControl.rcvSelfID is set. This bit is turned off
simultaneously when IntEvent.busReset is turned on.

busReset 17 rscu Indicates that the PHY chip has entered bus reset mode. When this bit is set,
writes to the CSRControl, AsynchronousRequestFilter registers, and
PhysicalRequestFilter registers have no effect. See section 6.1.1 below for
information on when to clear this interrupt.

regAccessFail 18 rscu Indicates that an Open HCI register access failed due to a missing clock signal
from the PHY. When a register access fails, this bit shall be set before the next
register access. See section 1.4.1 and for more information on this error con-
dition, and Chapter 4., “Register addressing,” for a list of Open HCI registers that
may be implemented in the PHY clock domain.

phy 19 rscu Generated when the PHY requests an interrupt through a status transfer.
cycleSynch 20 rscu Indicates that a new isochronous cycle has started. Set when the low order bit of

the internal isochronousCycleTimer.cycleCount toggles.
cycle64Seconds 21 rscu Indicates that the 7th bit of the cycle second counter has changed.
cycleLost 22 rscu A lost cycle is indicated when no cycle_start packet is sent/received between two

successive cycleSynch events.
cycleInconsistent 23 rscu A cycle start was received that had an isochronous cycleTimer.seconds and

isochronous cycleTimer.count different from the value in the CycleTimer
register. Implementations are free to indicate a cycleInconsistent if a host
initiated write changes the cycleSeconds or cycleCount fields of the cycleTimer
register (section 5.13). For the effect of this condition on isochronous transmit,
refer to section 9.5.1 and for isochronous receive refer to section 10.5.1.

unrecoverableError 24 rscu This event occurs when the Host Controller encounters any error that forces it to
stop operations on any or all of its subunits. For example, when a DMA context
sets its contextControl.dead bit.
While unrecoverableError is set, all normal interrupts for the context(s) that
caused this interrupt will be blocked from being set.

cycleTooLong 25 rscu This bit shall be set when an isochronous cycle lasted longer than the allotted
time, LinkControl.cycleMaster is set, and the Host Controller is the 1394 root
node. Hardware shall set this bit no less than 115 µsecs and no more than 120 µ
secs after sending a cycle start packet unless a subaction gap or bus reset
indication is first observed. LinkControl.cycleMaster shall be cleared when this
bit is set.

phyRegRcvd 26 rscu The 1394 Open HCI has received a PHY register data byte which can be read
from the PHY control register (see 5.12).
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Table 6-1 – IntEvent register description
Field Bit # rscu Description
ack_tardy 27 rscu This bit shall be set when the Host Controller sent an ack_tardy acknowledgment

or HCControl.ackTardyEnable is set to one, and either of the following
conditions occur:

a. Data is present in a receive FIFO that is to be delivered to the host.
b. The physical response unit is busy processing requests or sending

responses

Refer to Annex A., “PCI Interface (optional),”section A.4, for a discussion on
how ack_tardy relates to PCI Power Management

reserved 28
softInterrupt 29 rsc Software Interrupt. This bit may be used by software to generate a Host

Controller interrupt for its own use.
vendorSpecific 30 Vendor defined.
reserved 31

6.1.1 busReset

 When a bus reset occurs and the busReset interrupt is set to one, the selfIDComplete interrupt is simultaneously cleared to 0.
The Host Controller shall prevent software from clearing the busReset interrupt bit during the self-ID phase of bus
initialization. Software must take precautions regarding the asynchronous transmit contexts before clearing this interrupt.
Refer to section 7.2.3 for further details.

6.2   IntMask (set and clear)

 The bits in the IntMask register have the same format as the IntEvent register, with the addition of masterIntEnable (bit 31).
A one bit in the IntMask register enables the corresponding IntEvent register bit to generate a processor interrupt. A zero bit
in IntMask disables the corresponding IntEvent register bit from generating a processor interrupt. A bit is set in the IntMask
register by writing a one to the corresponding bit in the IntMaskSet address and cleared by writing a one to the corresponding
bit in the IntMaskClear address.

 If masterIntEnable is 0, all interrupts are disabled regardless of the values of all other bits in the IntMask register. The value
of masterIntEnable has no effect on the value returned by reading the IntEventClear; even if masterIntEnable is 0, reading
IntEventClear will return (IntEvent & IntMask) as described earlier in section 6.1.

 On a hardware or soft reset, the IntMask.masterIntEnable bit (31) shall be 0 and the value of all other bits is undefined.
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Open HCI Offset 11'h088 - Set
Open HCI Offset 11'h08C - Clear

Figure 6-1 – IntMask register

Table 6-1 – IntMask register description
Field Bit # rscu Description
interrupt events for: 0-9 rsc See Table 6-1.
reserved 10-14
interrupt events for 15-27 rsc See Table 6-1.
reserved 28
interrupt event for 29 rsc See Table 6-1.
vendorSpecific 30 Vendor defined.
masterIntEnable 31 rscu If set, external interrupts will be generated in accordance with the IntMask register.

If clear, no external interrupts will be generated regardless of the IntMask register
settings.

6.3   IsochTx interrupt.registers

 There are two 32-bit registers to report isochronous transmit context interrupts: isoXmitIntEvent and isoXmitIntMask. Both
registers have two addresses: a “Set” address and a “Clear” address. For a write to either register, a “one” bit written to the “
Set” address causes the corresponding bit in the register to be set, while a “one” bit written to the “Clear” address causes the
corresponding bit to be cleared. For all four addresses, writing a “zero” bit has no effect on the corresponding bit in the
register.

 The isoXmitIntEvent register contains the actual interrupt request bits. Each of these bits corresponds to a DMA completion
event or a cycle skip event for the indicated isochronous transmit context. The isoXmitIntMask register shall be ANDed with
the isoXmitIntEvent register to enable selected bits to generate processor interrupts. If (isoXmitIntMask & isoXmitIntEvent)
is not zero, then the IntEvent.isochTx bit will be set to one, and if enabled via the IntMask register it will generate a processor
interrupt. A software write to the isoXmitIntEventSet register can therefore cause an interrupt (if not otherwise masked). A
software write to the isoXmitIntEventClear register will clear interrupt conditions reported in the isoXmitIntEvent register.

 Reading the isoXmitIntEventSet register returns the current state of the isoXmitIntEvent register. Reading the
isoXmitIntEventClear register returns the masked version of the isoXmitIntEvent register (isoXmitIntEvent &
isoXmitIntMask).
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6.3.1 isoXmitIntEvent (set and clear)

 This register reflects the interrupt state of the isochronous transmit contexts. An interrupt is generated on behalf of an
isochronous transmit context if an OUTPUT_LAST DMA command completes and its i bits are set to 2'b11 (interrupt
always). Upon determining that the IntEvent.isochTx interrupt has occurred, software can check the isoXmitIntEvent register
to determine which context(s) caused the interrupt.

Open HCI Offset 11'h090 - Set
Open HCI Offset 11'h094 - Clear

Figure 6-1 – isoXmitIntEvent (set and clear) register

On a hardware reset or soft reset, values of all bits in this register are undefined. Note that in these circumstances the
IntMask.masterIntEnable is set to zero, therefore masking all interrupts until re-enabled by software.
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6.3.2   isoXmitIntMask (set and clear)

 The bits in the isoXmitIntMask register have the same format as the isoXmitIntEvent register. Setting a bit in this register
shall enable the corresponding interrupt event in the isoXmitIntEvent register. Clearing a bit in this register shall disable the
corresponding interrupt event in the isoXmitIntEvent register.

Open HCI Offset 11'h098 - Set
Open HCI Offset 11'h09C - Clear

Figure 6-1 – isoXmitIntMask (set and clear) register

Bits for all unimplemented contexts shall be 0's. Software can use this register to determine which contexts are supported by
writing to it with all 1's, then reading it back. Contexts with a 1 are implemented, and those with a 0 are not.

On a hardware reset or soft reset, values for all bits in this register are undefined.

6.4   IsochRx interrupt registers

 There are two 32-bit registers to report isochronous receive context interrupts: isoRecvIntEvent and isoRecvIntMask. Both
registers have two addresses: a “Set” address and a “Clear” address. For a write to either register, a “one” bit written to the “
Set” address causes the corresponding bit in the register to be set, while a “one” bit written to the “Clear” address causes the
corresponding bit to be cleared. For all four addresses, writing a “zero” bit has no effect on the corresponding bit in the
register.

 The isoRecvIntEvent register contains the actual interrupt request bits. Each of these bits corresponds to a DMA completion
event for the indicated isochronous receive context. The isoRecvIntMask register is ANDed with the isoRecvIntEvent
register to enable selected bits to generate processor interrupts. If (isoRecvIntMask & isoRecvIntEvent) is not zero, then the
IntEvent.isochRx bit will be set to one, and if enabled via the IntMask register it will generate a processor interrupt. A
software write to the isoRecvIntEventSet register can therefore cause an interrupt (if not otherwise masked). A software write
to the isoRecvIntEventClear register will clear interrupt conditions reported in the isoRecvIntEvent register.

 Reading the isoRecvIntEventSet register returns the current state of the isoRecvIntEvent register. Reading the
isoRecvIntEventClear register returns the masked version of the isoRecvIntEvent register (isoRecvIntEvent & isoRecvInt-
Mask).
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6.4.1   isoRecvIntEvent (set and clear)

 This register reflects the interrupt state of the isochronous receive contexts. An interrupt shall be generated on behalf of an
isochronous receive context in packet-per-buffer mode if a packet completes and the packet descriptor block i bits are set to
2'b11. An interrupt shall be generated on behalf of an isochronous receive context in buffer-fill mode or dual-buffer mode if a
packet completes and any of the buffers it spans have the i bits set to 2'b11 in their corresponding descriptor blocks. Upon
determining that the IntEvent.isochRx interrupt has occurred, software can check the isoRecvIntEvent register to determine
which context(s) caused the interrupt.

Open HCI Offset 11'h0A0 - Set
Open HCI Offset 11'h0A4 - Clear

Figure 6-1 – isoRecvIntEvent (set and clear) register

On a hardware reset or soft reset, values of all bits in this register are undefined. Note that in these circumstances the
IntMask.masterIntEnable is set to zero, therefore masking all interrupts until re-enabled by software.

6.4.2   isoRecvIntMask (set and clear)

 The bits in the isoRecvIntMask register have the same format as the isoRecvIntEvent register. Setting a bit in this register
shall enable the corresponding interrupt event in the isoRecvIntEvent register. Clearing a bit in this register shall disable the
corresponding interrupt event in the isoRecvIntEvent register.

Open HCI Offset 11'h0A8 - Set
Open HCI Offset 11'h0AC - Clear

Figure 6-1 – isoRecvIntMask (set and clear) register
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Bits for all unimplemented contexts shall be 0's. Software may use this register to determine which contexts are supported by
writing to it with all 1's then reading it back. Contexts with a 1 are implemented, and those with a 0 are not.

On a hardware reset or soft reset, values of all bits in this register are undefined.
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7   Asynchronous Transmit DMA

 The 1394 Open HCI divides the transmission of asynchronous packets into three categories: asynchronous requests, asyn-
chronous responses, and physical responses. This chapter describes how to use DMA to transmit asynchronous requests and
asynchronous responses. For information regarding physical responses, see section 12., “Physical Requests.”

 There is one DMA controller for each transmit context: the Asynchronous Transmit (AT) Request Controller for the AT
request context, and the AT Response Controller for the AT response context. Although Open HCI does not specify how
many FIFOs are required to support the AT DMA controllers, it is required that the re-transmission of request packets never
blocks the transmission of response packets.

 The AT Request context is used by software to transmit read, write and lock request packets and the AT Response context is
used to send response packets to read, write, and lock requests that have earlier been received into the asynchronous receive
request context buffers (see section 8., “Asynchronous Receive DMA”).

 Each context consists of a context program and two registers. A context program is a list of commands for that context which
direct the Host Controller on how to assemble packets for transmission. The DMA controller for that context executes each
command, inserting data into the appropriate FIFO and interrupting as requested.

 The following sections describe how to set up and manage an AT DMA context program and describe the data formats for
the various asynchronous request and response packet types.

7.1   AT DMA Context Programs

 Each asynchronous transmit packet, whether a request or response packet, shall be described by a contiguous list of command
descriptors referred to as a descriptor block. A chain of descriptor blocks is referred to as a context program. There are four
different command descriptors that can be used within each descriptor block: OUTPUT_MORE, OUTPUT_MORE-
Immediate, OUTPUT_LAST and OUTPUT_LAST-Immediate. In the descriptions that follow, OUTPUT_MORE* refers to
both the OUTPUT_MORE and OUTPUT_MORE-Immediate commands, OUTPUT_LAST* refers to both the
OUTPUT_LAST and OUTPUT_LAST-Immediate commands and *-Immediate refers to both the OUTPUT_MORE-
Immediate and OUTPUT_LAST-Immediate commands.

 Each packet shall be specified in one descriptor block. A descriptor block may have either one single OUTPUT_LAST-
Immediate descriptor, or may have one OUTPUT_MORE-Immediate descriptor followed by zero to five OUTPUT_MORE
descriptors, followed by one OUTPUT_LAST descriptor. This allows software to combine up to seven fragments to specify a
single packet. In addition, the first command descriptor in a descriptor block must be one of the *-Immediate commands to
transmit the full 1394 packet header for the packet's tcode type, where packet header is defined as all quadlets that appear
before the 1394 packet header CRC quadlet and that are required by the respective packet format (defined in section 7.8).
Further, a descriptor block for a packet shall not exceed 128 bytes. The OUTPUT_MORE and OUTPUT_LAST command
descriptors are 16-bytes in length, and the *-Immediate descriptors are 32-bytes in length. All descriptors must be aligned on
a 16-byte boundary.

 The order in which packets are transmitted may not be the same as the order of descriptor blocks in the context program
when out-of-order AT pipelining is implemented. Refer to section 7.7 for more information.
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 In the sections below, the format for each command descriptor is shown. The shaded fields are reserved and should be set to
0 by software. Fields with a hardcoded value must be set to that value by software. The values of all other fields are described
in each command's descriptor element summary.

7.1.1   OUTPUT_MORE descriptor

 The OUTPUT_MORE command descriptor is used to specify a host memory buffer from which the AT DMA controller will
insert bytes into the appropriate transmit FIFO. It has the following format.

Figure 7-1 – OUTPUT_MORE descriptor format

Table 7-1 – OUTPUT_MORE descriptor element summary
Element Bits Description
cmd 4 Set to 4'h0 for OUTPUT_MORE.
key 3 Set to 3'h0 for OUTPUT_MORE.
b 2 Branch control. Software must set this field to 2'b00. Values of 2'b11, 2'b10, 2'b01 will

result in unspecified behavior.
reqCount 16 Request Count: The number of transmit packet bytes starting at dataAddress.
dataAddress 32 Address of transmit data. dataAddress has no alignment restrictions.

b=0 reqCountcmd=0 key=0

dataAddress
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7.1.2   OUTPUT_MORE_Immediate descriptor

 The OUTPUT_MORE-Immediate command descriptor is used to specify up to four quadlets of packet header information to
be inserted into the appropriate transmit FIFO. It has the following format.

Figure 7-2 – OUTPUT_MORE-Immediate descriptor format

Table 7-2 – OUTPUT_MORE-Immediate descriptor element summary
Element Bits Description
cmd 4 Set to 4'h0 for OUTPUT_MORE-Immediate
key 3 Set to 3'h2 for OUTPUT_MORE-Immediate.
b 2 Branch control. Software must set this field to 2'b00. Values of 2'b11, 2'b10, 2'b01 will

result in unspecified behavior.
reqCount 16 Request Count: The number of transmit packet bytes immediately following the 16th

byte of this descriptor. This value shall be either 8 (two quadlets) or 16 (four quadlets).
Specifying any other value will result in unspecified behavior. Regardless of the
reqCount value, this descriptor is always 32 bytes long.

timeStamp 16 Valid only in the AT response context. This field contains the three low order bits of
cycleSeconds and all 13 bits of cycleCount. See section 5.13, “Isochronous Cycle Timer
Register” for information about these fields.
For AT response packets, timeStamp indicates a time after which the packet should not
be transmitted. For further information on the use of this field, see section 7.1.5.3 below.

first, second, third, and
fourth quadlets

128 Packet header quadlets to be inserted into the applicable FIFO.

The OUTPUT_MORE-Immediate command shall only be used either to specify the four quadlet 1394 transmit packet header
for a block payload or lock packet, or to specify the two quadlet 1394 transmit packet header for an asynchronous stream
packet. All OUTPUT_MORE-Immediate command descriptors are 32-bytes in length and are counted as two 16-byte aligned
blocks when calculating the Z value.

Second Quadlet

Third Quadlet

Fourth Quadlet

First Quadlet

reqCount = 16cmd=0 b=00key=2
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7.1.3   OUTPUT_LAST descriptor

 The OUTPUT_LAST command descriptor is used to specify a host memory buffer from which the AT DMA controller will
insert bytes into the appropriate transmit FIFO. This command indicates the end of a packet to the Host Controller. It has the
following format.

Figure 7-3 – OUTPUT_LAST descriptor format

Table 7-3 – OUTPUT_LAST descriptor element summary
Element Bits Description
cmd 4 Set to 4'h1 for OUTPUT_LAST.
key 3 Set to 3'h0 for OUTPUT_LAST.
p 1 Ping Timing. This field is only applicable in the AT request context. A value of 1

indicates that this is a ping packet. A ping packet is used to discern the round-trip time of
transmitting a packet to another node. The timeStamp value written into this descriptor
for a ping packet shall be the time from when the last bit of the packet is transmitted from
the link to the PHY until either data is received or a subaction gap occurs. For more
information on ping timing, see section 7.1.5.3.2.
A 0 indicates that this is not a ping packet.

i 2 Interrupt control. Options:
2'b11 - Always interrupt upon command completion.
2'b01 - Interrupt only if did not receive an ack_complete or ack_pending. See table 3-2
for a list of possible ack_ and evt_ values.
2'b00 - Never interrupt.
Specifying a value of 2'b10 will result in unspecified behavior.

b 2 Branch control. Software must set this field to 2'b11. Values of 2'b10, 2'b01, and 2'b00
will result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes described by this descriptor, begin-
ning at dataAddress.

dataAddress 32 Address of transferred data. dataAddress has no alignment restrictions.
branchAddress 28 16-byte aligned address of the next descriptor. A valid host memory address must be pro-

vided in this field unless the Z field is 0.
Z 4 This field indicates the number of 16-byte command blocks that comprise the next

packet. If this is the last descriptor in the list, the Z value must be 0. Otherwise, valid
values are 2 to 8. Note that each *-Immediate command descriptor is counted as two 16-
byte blocks and each non-immediate command is counted as one 16-byte block.

xferStatus 16 Written with ContextControl [15:0] after descriptor is processed.

timeStamp (AT requests only)xferStatus

ZbranchAddress

dataAddress

p i reqCountcmd=1 bkey=0
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Table 7-3 – OUTPUT_LAST descriptor element summary
Element Bits Description
timeStamp 16 For AT request packets that are not ping packets, this field is written by hardware to

indicate the transmission time of the packet. This transmission timestamp contains the
three low order bits of cycleSeconds and all 13 bits of cycleCount. See section 5.13, “
Isochronous Cycle Timer Register” for information about those two fields.
For AT request packets that are ping packets, this field is written by hardware to indicate
the measured ping duration in units of 49.152 MHz clocks. See section 7.1.5.3.2 for
information about this duration value.
For AT response packets, timeStamp is not valid (response descriptor blocks use a
timestamp in the *-Immediate descriptor).
For further information on the use of the timeStamp field, see section 7.1.5.3.
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7.1.4   OUTPUT_LAST_Immediate descriptor

 The OUTPUT_LAST-Immediate command descriptor is used to specify two to four quadlets of packet header information to
be inserted into the appropriate transmit FIFO. This command indicates the end of a packet to the Host Controller. It has the
following format.

Figure 7-4 – OUTPUT_LAST-Immediate desc

Table 7-4 – OUTPUT_LAST-Immediate descriptor 
Element Bits Description
cmd 4 Set to 4'h1 for OUTPUT_LAST-Immediate.
key 3 Set to 3'h2 for OUTPUT_LAST-Immediate.
p 1 Ping Timing. This field is only applicable in t

indicates that this is a ping packet. A ping pac
transmitting a packet to another node. The tim
for a ping packet shall be the time from when
the link to the PHY until either data is receive
information on ping timing, see section 7.1.5.
A 0 indicates that this is not a ping packet.

i 2 Interrupt control. Options:
2'b11 - Always interrupt upon command com
2'b01 - Interrupt only if did not receive an ack
for a list of possible ack and evt values.
2'b00 - Never interrupt.
Specifying a value of 2'b10 will result in unsp

b 2 Branch control. Software must set this field to
will result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packe
byte of this descriptor. Valid values are 8(two
quadlets). Specifying any other values will re
the reqCount value, this descriptor is always 3

timeSxferStatus

branchAddress

first quadlet

second quadlet

third quadlet

fourth quadlet

icmd=1 b =
11

key
= 2 p reqC
Page 7-6

riptor format
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eStamp value written into this descriptor

 the last bit of the packet is transmitted from
d or a subaction gap occurs. For more
3.2.

pletion.
_complete or ack_pending. See table 3-2

ecified behavior.
 2'b11. Values of 2'b10, 2'b01, and 2'b00

t bytes immediately following the 16th
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sult in unspecified behavior. Regardless of
2 bytes long.
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ount
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Table 7-4 – OUTPUT_LAST-Immediate descriptor element summary
Element Bits Description
branchAddress 28 16-byte aligned address of the next descriptor. A valid host memory address must be pro-

vided in this field unless the Z field is 0.
Z 4 This field indicates the number of 16-byte command blocks that comprise the next

packet. If this is the last descriptor in the list, the Z value must be 0. Otherwise, valid
values are 2 to 8. Note that each *-Immediate command descriptor is counted as two 16-
byte blocks and each non-immediate command is counted as one 16-byte block.

xferStatus 16 Written with ContextControl [15:0] after descriptor is processed.
timeStamp 16 For AT request packets that are not ping packets, this field is written by hardware to

indicate the transmission time of the packet. This transmission timestamp contains the
three low order bits of cycleSeconds and all 13 bits of cycleCount. See section 5.13, “
Isochronous Cycle Timer Register” for information about those two fields.
For AT request packets that are ping packets, this field is written by hardware to indicate
the measured ping duration in units of 49.152 MHz clocks. See section 7.1.5.3.2 for
information about this duration value.
For AT response packets, this field is written by software to indicate a time after which
the packet should not be transmitted. This time is expressed in the same
cycleSeconds/cycleCount format as for request packets that are not ping packets.
For further information on the use of the timeStamp field, see section 7.1.5.3.

first, second, third, and
fourth quadlets

128 Data quadlets to be inserted into the applicable FIFO.

The OUTPUT_LAST-Immediate command will be used to specify information that is protected by the header CRC or for
sending a PHY packet. OUTPUT_LAST-Immediate command descriptors are 32-bytes in length regardless of the value of
reqCount and are counted as two 16-byte aligned blocks when calculating the Z value.
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7.1.5   AT DMA descriptor usage

 Fields in the command descriptor are further described below.

7.1.5.1   Command.Z

 The Z value is used by the Host Controller to enable several descriptors to be fetched at once, for improved efficiency. Z
values must always be encoded correctly. The contiguous descriptors described by a Z value are called a descriptor block.
The following table summarizes all legal Z values for the Asynchronous Transmit contexts:

Table 7-5 – Z value encoding
Z value Use
0 Indicates that the current descriptor is the last descriptor in the context program.
1 reserved. (Since all descriptor blocks must start with a *-Immediate command, they are

by definition a minimum of two 16-byte blocks in size.)
2-8 Indicates that two to eight 16-byte aligned blocks starting at branchAddress are

physically contiguous and specify a single packet. Note that the 32-byte *-Immediate
command descriptors must be counted as two 16-byte blocks when calculating the Z
value.

9-15 reserved

A single packet that is to be transmitted must be entirely described by one descriptor block. This requirement permits the
Host Controller to prefetch all the descriptors for a packet, in order to avoid fetching additional descriptors during a packet
transfer. The branch address+Z allows the Host Controller to learn the Z value of the next block. Only the OUTPUT_LAST*
descriptor shall specify a branch address+Z for the next packet. BranchAddress+Z values are ignored in all
OUTPUT_MORE* descriptors, and should not be specified.

All DMA context programs must use a Z = 0 command to indicate the end of the program. A program which ends in Z=0 can
be appended to while the DMA runs, even if the DMA has already reached the end. The mechanism for doing this is
described in section 3.2.1.2.

7.1.5.2   Command.xferStatus

 Upon the transmission completion of a packet, the 16 least significant bits of the current contents of the DMA Context-
Control register are written to the completed packet's OUTPUT_LAST* descriptor's Command.xferStatus field. See
section 7.2.2 for the contents of this field.

7.1.5.3   Command.timeStamp

 The timeStamp field is encoded as follows:
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Figure 7-5– timeStamp format

Table 7-6 – timeStamp description
Field Bits Description
cS (cycleSeconds) 3 Low order three bits of the seven-bit isochronous cycle timer second count.

Possible values are 0 to 7.
cycleCount 13 Full 13 bits of the 13-bit isochronous cycle timer cycle count.

Possible values are 0 to 7999.

7.1.5.3.1   timeStamp value for Requests

 An asynchronous transmit request packet may initiate a transaction which should complete by a specific time. To permit host
software to know when such a transaction began (i.e., when the request was successfully transmitted on the 1394 bus) the
Host Controller shall write the timeStamp value in each OUTPUT_LAST* descriptor when the corresponding ack is
received. If no ack is received, timeStamp will be written when the ack timeout occurs. TimeStamp shall be written in the
same host bus operation in which xferStatus is written.

 Note that a transmit request packet may sit in the transmit FIFO for some time before the PHY wins normal arbitration. This
delay is usually brief, but could be over 200 cycles (over 25 milliseconds) in the case of a bus with 80% isochronous traffic
and 63 nodes each sending maximum-size asynchronous packets as often as possible.

7.1.5.3.2   timeStamp value for Ping Requests

 Pinging is used to discern the round-trip time of transmitting a packet to another node. In IEEE 1394-1995 this is done by
transmitting a packet to a node and timing how long it takes to receive the corresponding ack. In IEEE1394a, this is done by
transmitting a Ping packet to a node and timing how long it takes to receive that node's self-ID packet as a response.

 Software sets the p bit in the packet's OUTPUT_LAST* command descriptor to indicate it is a ping packet. The Host
Controller shall transmit the packet and track the timing based on the number of 49.152MHz clocks, and shall place the final
result in the descriptor's timeStamp field.  Note: the time base for ping packets is always 49.152 MHz, even though the 1394b
PHY clock rate is higher.

 The Ping timer begins counting from zero immediately after the last bit of each transmitted packet is delivered from the link
to the PHY. (For controllers that implement the IEEE1394a standardized PHY/Link interface, the timer would start with the
first HOLD or IDLE driven by the link after each transmitted packet.) The Ping timer stops counting at the earliest of either
data reception or an indication of a subaction gap. (For controllers that implement the IEEE1394a standardized PHY/Link
interface, the timer stops with the first of either a RECEIVE indication from the PHY, or a STATUS transfer indicating a
subaction gap.)

 Aside from the difference in meaning of the timeStamp field when an OUTPUT_LAST has the p bit enabled, all other
behaviors of the AT Request DMA context remain unchanged for the packet. For example, if an ack_busy* is returned by the

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cycleCountcS
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destination node, the AT Request DMA shall perform its normal retry behavior. Each retried transfer shall repeat the ping
timing, with the last attempt reported to the AT Request DMA command descriptor.

7.1.5.3.3   timeStamp value for Responses

 Typically, asynchronous transmit response packets expire at a certain time and should not be transmitted after that time. A
timeStamp value can be placed in the first OUTPUT_* descriptor for such packets to indicate the expiration time.

 The timeStamp used for asynchronous transmit contains a 3-bit seconds field and a 13-bit cycle number that counts modulo
8000. Before an asynchronous response is put into the transmit FIFO, whether for the initial transmission attempt or for a
retry attempt, this timeStamp value is compared to the current cycleTimer. This comparison is used to determine whether or
not the packet will be sent or rejected as being too old.

 The comparison is broken into two parts. The first compare is done on the seconds field of the timeStamp and the low order
three bits of the seconds field in the cycleTimer. The low three bits of cycleTimer.cycleSeconds is subtracted from the
timeStamp.cycleSeconds field using three bit arithmetic. If the most significant bit of the subtraction is 1, then the timeStamp
is considered ‘late' and the packet is rejected. If the most significant bit is 0 but the other two bits are not 0, then the
timeStamp is considered to be for some time in the ‘distant' future and the packet can be sent. If the difference is 0, then the
timeStamp and cycleTimer are referring to the same second so the cycle number portion of the timeStamp is compared to the
cycle number portion of the cycleTimer to determine if the cycle is early, late or matches. This comparison is done by
subtracting the cycleTimer cycle number from the timeStamp cycle number. If the result is negative, then the time for the
packet has passed and the packet is rejected. If the difference is positive and the timeout value is positive or zero, then the
packet can be sent. This subtraction is signed so a sign bit is assumed to be prepended to both cycle number values.

Table 7-7 – Results of timeStamp.cycleSeconds – cycleTimer.cycleSeconds
cycleTimer.seconds

timeStamp.seconds 000 001 010 011 100 101 110 111
000 000 111 110 101 100 011 010 001
001 001 000 111 110 101 100 011 010
010 010 001 000 111 110 101 100 011
011 011 010 001 000 111 110 101 100
100 100 011 010 001 000 111 110 101
101 101 100 011 010 001 000 111 110
110 110 101 100 011 010 001 000 111
111 111 110 101 100 011 010 001 000

NOTE:  Shaded entries denote ‘late' values.

For those entries in the table above which are 000, the cycleTimer.cycleCount field is subtracted from the
timeStamp.cycleCount field. If the result is positive or 0, it indicates that the packet can be sent. If the result is negative the
packet cannot be sent and the status error code is set to evt_timeout.
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Table 7-8 – timeStamp.cycleCount-cycleTime.cycleCount Example 1
timeStamp.cycleCount cycleTime.cycleCount difference action

14'h0FA0 14'h0F9E 14'h0002 send packet
14'h0FA0 14'h0F9F 14'h0001 send packet
14'h0FA0 14'h0FA0 14'h0000 send packet
14'h0FA0 14'h0FA1 14'h3FFF reject packet

Table 7-9 – timeStamp.cycleCount-cycleTime.cycleCount Example 2
timeStamp.cycleCount cycleTime.cycleCount difference action

14'h1000 14'h0FFE 14'h0002 send packet
14'h1000 14'h0FFF 14'h0001 send packet
14'h1000 14'h1000 14'h0000 send packet
14'h1000 14'h1001 14'h3FFF reject packet

Table 7-10 – timeStamp.cycleCount-cycleTime.cycleCount Example 3
timeStamp.cycleCount cycleTime.cycleCount difference action

14'h0000 14'h0000 14'h0000 send packet
14'h0000 14'h0001 14'h3FFF reject packet

... ... ... ...
14'h0000 14'h1000 14'h3000 reject packet
14'h0000 14'h1001 14'h2FFF reject packet

... ... ... ...
14'h0000 14'h1F3E 14'h20C2 reject packet
14'h0000 14'h1F3F 14'h20C1 reject packet

After a transmit packet has passed the timeStamp check, it may sit in the transmit FIFO for some time before the PHY wins
normal arbitration. The Host Controller does not re-examine the timeStamp while the packet waits, even if the descriptor is
still active because only part of the packet fits into the FIFO. This delay is usually brief, but could be over 200 cycles (over
25 milliseconds) in the case of a bus with 80% isochronous traffic and 63 nodes each sending maximum-size asynch packets
as often as possible.

Software can compute the worst-case FIFO delay based on knowledge of the current node count and the current (or
maximum) isochronous load. Software can use this delay to compute an earlier expiration timeStamp to prevent late trans-
mission due to FIFO delay. Using the maximum (not current) isochronous load is advisable, because additional isochronous
reservations could be made while the packet is waiting in the transmit FIFO.

Because the Host Controller examines the timeStamp before the packet is loaded into the transmit FIFO, and because the
packet may remain in the FIFO for some period until the PHY attached to the Host Controller wins normal arbitration, it is
not possible to guarantee that the packet will not be transmitted after it expires. The maximum time the packet waits in the
FIFO can be computed by software based on dynamic bus parameters, and this time can be factored into the packet's
expiration timeStamp.
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7.2 AT DMA context registers

 Each AT DMA context (request and response) has two registers: CommandPtr and ContextControl. CommandPtr is used by
software to tell the Host Controller where the DMA context program begins. ContextControl is used by software to control
the context's behavior, and is used by hardware to indicate current status.

7.2.1 CommandPtr

 The CommandPtr register specifies the address of the context program which will be executed when a DMA context is
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be zero. The four
least-significant bits of the CommandPtr register are used to encode a Z value that indicates how many physically contiguous
16-byte blocks of command descriptors are pointed to by descriptorAddress.

Open HCI Offset 11'h18C - AT Request
Open HCI Offset 11'h1AC - AT Response

Figure 7-6 – CommandPtr register format

When an Open HCI AT context that support out-of-order pipelining (see section 7.7) reports an error by setting
ContextControl.dead, the CommandPtr register shall point to the descriptor furthest in the list (i.e. closest to the end) that was
fetched. This CommandPtr register implementation differs from other Open HCI contexts.

Refer to Section 3.1.2 for a complete description of the CommandPtr register.

7.2.2 ContextControl register (set and clear)

 The ContextControlSet and ContextControlClear registers contain bits that control options, operational state and status for a
DMA context. Software can set selected bits by writing ones to the corresponding bits in the ContextControlSet register.
Software can clear selected bits by writing ones to the corresponding bits in the ContextControlClear register. It is not
possible for software to set some bits and clear others in an atomic operation. A read from either register will return the same
value.

2831 30 29 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DescriptorAddress[31:4] Z
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Open HCI Offset 11'h180 (set) / 11'h184 (clear) - AT Request
Open HCI Offset 11'h1A0 (set) / 11'h1A4 (clear) - AT Response

Figure 7-7 – ContextControl (set and clear) register format

Table 7-11 – ContextControl (set and clear) register description
Field rscu Description
run rscu Refer to section 3.1.1.1 for an explanation of the ContextControl.run bit.
wake rsu Refer to section 3.1.1.2 for an explanation of the ContextControl.wake bit.
dead ru Refer to section 3.1.1.4 for an explanation of the ContextControl.dead bit. Open HCI AT

contexts that support out-of-order pipelining provide unique ContextControl.dead func-
tionality. See section 7.7 for more information on out-of-order AT pipelining.

active ru Refer to section 3.1.1.3 for an explanation of the ContextControl.active bit. Open HCI
AT contexts that support out-of-order pipelining provide unique ContextControl.active
functionality. See section 7.7 for more information on out-of-order AT pipelining.

undef ru This field is specified as undefined and may contain any value without impacting the
intended processing of this packet.  This field is not available for future standardization.

event code ru Following an OUTPUT_LAST* command, the received ack_ code or an “evt_” error
code is indicated in this field. Possible values are: ack_complete, ack_pending,
ack_busy_X, ack_busy_A, ack_busy_B, ack_data_error, ack_type_error, evt_tcode_err,
evt_missing_ack, evt_underrun, evt_descriptor_read, evt_data_read,evt_timeout,
evt_flushed and evt_unknown.
See Table 3-2, “Packet event codes,” for descriptions and values for these codes.

7.2.2.1 Writing status back to context command descriptors

 Upon OUTPUT_LAST* completion, bits 15-0 of the ContextControl register are written to the OUTPUT_LAST*
command's xferStatus field. When Command.xferStatus is written to memory, the active bit is always one. If software
prepared the descriptor's xferStatus.active bit to be zero, this change indicates that the descriptor has been executed, and the
xferStatus and timeStamp fields have been updated.

7.2.3 Bus Reset

7.2.3.1 Host Controller Behavior for AT

 Upon detection of a bus reset, the Host Controller will cease transmission of asynchronous transmit packets. When this
occurs there are two possibilities for AT packets that are left in the FIFO.

 ! Case 1 is when a bus reset occurs after the packet was transmitted but before an ack was received. For this category, the
link side of the Host Controller will return evt_missing_ack.

run

2831 30 29 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

event codeundef

active
dead

wake
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 ! Case 2 is when a bus reset occurs after the packet is placed in the FIFO but before it is transmitted. For this category,
the link side of the Host Controller may return evt_flushed.

 When each context becomes stable (all data transfers have been halted and status writes have been completed), the Host
Controller will clear the corresponding ContextControl.active bit.

7.2.3.2 Software Guidelines

 When a bus reset occurs, the link side will flush the asynchronous transmit FIFO(s) until the IntEvent.busReset condition is
cleared. Software must make sure however that IntEvent.busReset is not cleared until 1) software has cleared the
ContextControl.run bits for both Asynchronous Transmit contexts, and 2) both Asynchronous Transmit contexts have
quiesced and both ContextControl.active fields are zero. This is to ensure that all queued asynchronous packets (with
potentially stale node numbers) are flushed. Once the contexts are no longer active, software may clear the busReset interrupt
condition, and hardware will stop flushing the asynchronous transmit FIFO(s). Before setting ContextControl.run for either
context following a bus reset, software must ensure that NodeID.iDValid is set and that NodeID.nodeNumber (section 5.11)
does not equal 63.

7.2.3.3 Optional Host Controller Behavior after Bus Reset
{ hunter:  omitted "7.2.3.3" from the "(sections….)" list  -- seemed rather redundant. }

It is implied in other areas of this specification { WHERE? }(sections 1.2.3, 3.1.1.3 part 3, and 7.7) that, when a bus reset
occurs, the host controller must process all descriptors in the asynchronous transmit queues and mark the completion status as
reqevt_flushed if there is no other status for the transaction associated with that descriptor. An alternative, simpler behavior is
allowed and strongly recommended:

After a bus reset, only those descriptors for which a status is known need to be updated with transfer status.  If a packet was
sent and the bus reset occurred before the ack was received, then ack_missing statusevt_missing_ack shall be written in the
associated descriptor.  If an the most recent ack received for a packet was ack_busy* was received for a packet and the retry
count was not exceeded, then no status exists for the associated behavior and the descriptor need should not be updated.

It is not required that the command pointer register have any specific value when the descriptor processing is stopped after a
bus reset.  Software is required to reset the CommandPtr register before re-enabling the asynchronous transmit queues.

Implementers are strongly recommended to use this optional behavior.

7.3 ack_data_error

 If a transmit FIFO underrun occurs and an AT DMA context receives an ack_data_error or ack_busy* on the last transmit
attempt according to the ATRetries Register, the OUTPUT_LAST* descriptor for the packet is completed and the Host
Controller shall return evt_underrun for the event code. If a transmit FIFO underrun does not occur and an AT DMA context
receives an ack_data_error, the Host Controller shall return ack_data_error for the event code. This behavior is illustrated in
Figure 7-8.

7.4 AT Retries

 The Host Controller will retry busied asynchronous transmit request and response packets based on the configuration of the
ATRetries register. If an AT context supports out-of-order pipelining, it shall only write busy status to a descriptor when the
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appropriate ATRetries expiration occurs and the descriptor is retired with busy status per table 3-2. For a detailed description
of the ATRetries register see section 5.4.

 Hardware implementations that support dual-phase retry shall ignore the retry code provided by software and shall insert a
retry code as appropriate with the current state of the retry protocol (retry_1, retry_A or retry_B).

 The following flow diagram illustrates the completion status and retry behavior for the AT DMA contexts.

Figure 7-8 – Completion Status and Retry Behavior

 

7.5 Fairness

 Packets transmitted via the AT Request queue shall abide by the fairness protocol as supported by the Host Controller (see
section 5.9, “FairnessControl register (optional)”). AT response packets shall be transmitted according to the rules for
response packets specified in IEEE1394a.

7.6 AT Interrupts

 Each asynchronous DMA context has one interrupt indication bit in the IntEvent register (section 6.1). For requests, it is the
reqTxComplete bit and for responses it is the respTxComplete bit. This interrupt indication bit will be set to one if a
completed OUTPUT_LAST* command has the i field set to 2'b11, or if the i field is set to 2'b01 and transmission of the
packet did not yield an ack_complete or an ack_pending.

 For Host Controllers that implement out-of-order AT pipelining, reqTxComplete or respTxComplete interrupt events may be
set when an AT context goes inactive. If after active is set the AT Request transmitter retries a packet then reqTxComplete
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shall be set when the AT Request context goes inactive. If after active is set the AT Response transmitter retries a packet then
respTxComplete shall be set when the AT Response context goes inactive. Thus, it is possible to get reqTxComplete and
respTxComplete interrupt events when no i bits are set in the AT context programs.

7.7 AT Pipelining

 For performance reasons it is desirable to overlap Open HCI DMA processing of the AT Request and AT Response packets
with packet transmission through the Open HCI Link. This overlap may be accomplished per Open HCI 1.0 with speculative
processing - the AT DMA prefetches descriptor blocks and packet data and provides the next-in-line prefetched packet to the
Link only when it receives transmit status that retires the current AT packet. The speculative processing scheme provides for
sequential consistency between the AT DMA context programs and the order AT packets are transmitted on the 1394
medium. Sequential consistency can result in AT bottlenecks when AT packets transmitted from the Open HCI result in
numerous retried attempts.

 Open HCI Release 1.1 implementations should support out-of-order pipelining of AT Request and AT Response packets
where the order of AT packets transmitted on the 1394 medium may not be the same as the order of descriptor blocks in the
AT DMA programs. The Open HCI is not required to update AT descriptor blocks with status information in the same order
as an AT context program. If software needs to ensure sequential consistency for a set of packets, it shall not have more than
one of these packets outstanding in the same context program at any given time.

 Open HCI AT contexts that support out-of-order pipelining have unique implementations of ContextControl.active, dead, and
the CommandPtr register. ContextControl.active shall remain set when the end of a context program is reached until all
outstanding fetched packets are retired. When software clears ContextControl.run, the Open HCI shall stop acquiring new
descriptors and keep ContextControl.active set until all outstanding fetched packets are retired. The outstanding packets may
be retried in this case. The Open HCI CommandPtr register points to the furthest fetched descriptor block in the list when it
clears ContextControl.active as described in section 3.1.2.

 When a bus reset is detected, the Open HCI shall stop acquiring new AT descriptors and keep ContextControl.active set until
either valid pending completion status, evt_flushed, or evt_missing_ack has been written to all outstanding fetched
descriptors. The outstanding packets shall not be retried in this case.

 When an out-of-order AT pipelining context experiences a condition for setting ContextControl.dead described in
section 3.1.2.1 and section 13.2, it shall stop acquiring new descriptors and continue normally processing all outstanding
fetched descriptors to completion and write status. Once AT activity is complete for the dying context, it shall set
ContextControl.dead. The Open HCI CommandPtr register points to the furthest fetched descriptor block in the list when it
sets ContextControl.dead.

 Out-of-order pipelining requires special consideration for error recovery from software. When software traverses the
descriptor list for a dead AT context, it shall attribute ack_missing to those descriptors along the way that have zero status up
to and including the descriptor pointed to by the CommandPtr register. Any regions pointed to by the zero status descriptors
and the descriptor memory itself are suspect in causing the error that resulted in the dead AT context. Software may re-queue
any descriptors after the descriptor pointed to by the CommandPtr register.  See section 7.2.3.3 for additional details.

7.8  AT Data Formats

 There are five basic formats for asynchronous data to be transmitted:
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 a) no-data packets (used for quadlet read requests and all write responses)
 b) quadlet packets (used for quadlet write requests, quadlet read responses and block read requests)
 c) block packets (used for lock requests and responses, block write requests and block read responses)
 d) PHY packets
 e) asynchronous stream packets (tcode 4'hA packets sent during asynchronous period)

 All formats are shown below in three sections, asynchronous requests, asynchronous responses, and asynchronous streams.

 Note that packets to go out over the 1394 wire are constructed from these Host Controller internal formats, and are not sent in
the exact order as shown in the formats below. For example, destinationID is transmitted in the first quadlet, and source ID is
automatically provided and transmitted in the second quadlet.

7.8.1 Asynchronous Transmit Requests

7.8.1.1 No-data transmit

 The no-data request transmit format is shown below. The first quadlet contains packet control information. The second and
third quadlets contain 16-bit destination ID and the 48-bit quadlet-aligned destination offset. Note that this packet requires
only three quadlets. Therefore when transmitted via an OUTPUT_LAST-Immediate descriptor, the descriptor's fourth quadlet
is unused.

Figure 7-9 – Quadlet read request transmit format

Table 7-12 – Quadlet read request transmit fields
Field Bits Description
ID (srcBusID) 1 Source bus ID selector. If clear, the high order 10 bits of the source_ID field of the

transmitted packet will be 10'h3FF. If set, the high order 10 bits of the source_ID field
of the transmitted packet will be Node_ID.busNumber (see section 5.11).

BF (betaFrame) 1 Indicates that the link shall make a Beta mode request to the PHY.  This bit should
only be set if software has determined that all connections in the path to the addressed
mode are running in Beta mode.

spd 3 This field indicates the speed at which this packet is to be transmitted. 3'b000 = 100
Mbits/sec, 3'b001 = 200 Mbits/sec, 3'b010 = 400 Mbits/sec, 3'b011 = 800 Mbits/sec,
3'b100 = 1600 Mbits/sec and 3'b101 = 3200 Mbits/sec,. All other values are reserved.

tLabel 6 This field is the transaction label, which is used to pair up a response packet with its
corresponding request packet.

I
D

B
F spd tLabel rt tCode = 4 1394

reserved

destinationOffsetHidestinationID

destinationOffsetLow

2831 30 29 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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rt 2 The retry code for this packet. Software should set rt to retry_X (2'b01). Hardware
may elect to ignore the software provided retry code and substitute an rt as appropriate
for the implemented retry mechanism. I.e., hardware implementing single phase retry
can use either the software provided rt or provide the equivalent 2'b01 constant, and
hardware implementing dual phase retry shall provide the proper retry_1, retry_A or
retry_B code upon transmission.

tCode 4 The transaction code for this packet.
1394 reserved 4 Open HCI shall transmit these bits along as-is and shall not verify or modify them.
destinationID 16 This is the concatenation of the 10-bit bus number and the 6-bit node number for the

destination of this packet.
destinationOffsetHi
destinationOffsetLow

16
32

The concatenation of these two fields addresses a quadlet in the destination node's
address space. This address must be quadlet-aligned (modulo 4).

7.8.1.2 Quadlet transmit

 The quadlet request transmit formats are shown below. The first quadlet contains packet control information. The second and
third quadlets contain 16-bit destination ID and the 48-bit destination offset. For write requests the destination offset shall be
quadlet aligned, and the fourth quadlet is the quadlet data. For read requests the destination offset may be byte aligned, and
the fourth quadlet contains the number of bytes requested in the read request.

Figure 7-10 – Quadlet write request transmit format

Figure 7-11 – Block read request transmit format

destinationOffsetHidestinationID

destinationOffsetLow

quadlet data
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F spd tLabel rt tCode = 0 1394

reserved
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destinationOffsetLow

dataLength 1394 Reserved

I
D

B
F spd tLabel rt tCode = 5 1394

reserved

destinationOffsetHidestinationID
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Table 7-13 – Quadlet transmit fields
Field Bits Description
ID, spd , BF, spd, tLabel, rt,
tCode, 1394 reserved,
destinationID

See Table 7-12.

destinationOffsetH
destinationOffsetLo

16
32

The concatenation of these two fields addresses memory in the destination node's
address space. For write requests this address shall be quadlet aligned. For read
requests this address may be byte aligned.

quadlet data 32 For quadlet write requests this field holds the data to be transferred.
dataLength 16 The number of bytes requested in a block read request.

7.8.1.3 Block transmit

 The block request transmit formats are shown below. The first quadlet contains packet control information. The second and
third quadlets contain the 16-bit destination node ID and the 48-bit destination offset. The fourth quadlet contains the length
of the data field and the extended transaction code (all zeros except for lock transactions). The block data, if any, follows the
extended code.

Figure 7-12 – Block  write request transmit format

2831 30 29 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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reserved

destinationOffsetHidestinationID

destinationOffsetLow

block  data

padding (if needed)
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Figure 7-13 – Loc

Table 7-14 – B
Field Bits Description
srcBusID, betaFrame, spd,
tLabel, rt, tCode, 1394
reserved, destinationID

See Table 7-12.

destinationOffsetHi
destinationOffsetLo

16
32

The concatenation
address space. Fo
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k request transmit format

lock transmit fields

 of these two fields addresses memory in the destination node's
r block requests this address may have any alignment.
tes of data to be transmitted in this packet.
ates a lock transaction, this specifies the actual lock action to be
e data in this packet.
t. If dataLength==0, no data should be written into the FIFO for

less of the destination or source alignment of the data, the first
must appear in the leftmost byte of the first quadlet.
mod 4 is not zero, then zero-value bytes are added onto the end
uarantee that a whole number of quadlets is sent.
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7.8.1.4 PHY packet transmit

 The PHY packet transmit format is shown below. The first quadlet contains packet control information. Software should set
spd to S100 (3'b000) for compliance with IEEE Std 1394. The remaining two quadlets contain data that is transmitted without
any formatting on the bus. No CRC is appended to the packet, nor is any data in the first quadlet sent. This packet is used to
send a PHY configuration, Link-on, and IEEE1394a Ping packets.

 The AT Request context shall guarantee that no more than two quadlets of PHY packet data are transmitted, regardless of the
context program instructions. If software requests more than two quadlets, then the first two quadlets are sent and the
remaining quadlets are ignored.

Figure 7-14 – PHY packet transmit format

7.8.2 Asynchronous Transmit Responses

7.8.2.1 No-data transmit

 The no-data transmit format is shown below. The first quadlet contains packet control information. The second and third
quadlets contain 16-bit destination ID and the response code. Note that this packet requires only three quadlets. Therefore
when transmitted via an OUTPUT_LAST-Immediate descriptor, the descriptor's fourth quadlet is unused.

Figure 7-15 – Write response transmit format
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spd tCode=Eh

PHY packet quadlet 1

PHY packet quadlet 1
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B
F spd tLabel rt tCode = 2 1394

reserved

1394 reserveddestinationID

1394 reserved

rCode



Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.2 Printed 7/20/01

Copyright   1996-2001.  All rights reserved.

Table 7-15 – Write response transmit fields
Field Bits Description
ID (srcBusID) 1 Source bus ID selector. If clear, the high order 10 bits of the source_ID field of the

transmitted packet will be 10'h3FF. If set, the high order 10 bits of the source_ID field
of the transmitted packet will be Node_ID.busNumber (see section 5.11).

BF (betaFrame) 1 Indicates that the link shall make a Beta mode request to the PHY.  This bit should
only be set if software has determined that all connections in the path to the addressed
node are running in Beta mode.

spd 3 This field indicates the speed at which this packet is to be transmitted. 3'b000 = 100
Mbits/sec, 3'b001 = 200 Mbits/sec, 3'b010 = 400 Mbits/sec, 3'b011 = 800 Mbits/sec,
3'b100 = 1600 Mbits/sec and 3'b101 = 3200 Mbits/sec.   All other values are reserved.

tLabel 6 This field is the transaction label, which is used to pair up a response packet with its
corresponding request packet.

rt 2 The retry code for this packet. Software should set rt to retry_X (2'b01). Hardware
may elect to ignore the software provided retry code and substitute an rt as appropriate
for the implemented retry mechanism. I.e., hardware implementing single phase retry
can use either the software provided rt or provide the equivalent 2'b01 constant, and
hardware implementing dual phase retry should provide the proper retry_1, retry_A or
retry_B code upon transmission.

tCode 4 The transaction code for this packet.
1394 reserved 4 Open HCI shall transmit these bits along as-is and shall not verify or modify them.
destinationID 16 This is the concatenation of the 10-bit bus number and the 6-bit node number for the

destination of this packet.
rCode 4 Response code for this response packet.

7.8.2.2 Quadlet transmit

 The quadlet read response transmit format is shown below. The first quadlet contains packet control information. The second
and third quadlets contain 16-bit destination ID and the 4-bit response code. The fourth quadlet is the quadlet data for read
responses.

Figure 7-16 – Quadlet read response transmit f
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Table 7-16 – Quadlet transmit fields
Field Bits Description
ID, BF, spd, tLabel, rt, tCode,
1394 reserved, destinationID,
rCode

See Table 7-15.

quadlet data 32 For quadlet read responses, this field holds the data to be transferred.

7.8.2.3 Block transmit

 The block response transmit formats are shown below. The first quadlet contains packet control information. The second and
third quadlets contain the 16-bit destination node ID and the response code and reserved data. The fourth quadlet contains the
length of the data field and the extended transaction code (all zeros except for lock transactions). The block data, if any,
follows the extended code.

Figure 7-17 – Block read response transmit format

2831 30 29 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I
D

B
F spd tLabel rt tCode = 7 1394

reserved

1394 reserved

block  data

padding (if needed)
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1394 reserveddataLength
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Figure 7-18 – Lock response transmit format

Table 7-17 – Block transmit fields
Field Bits Description
srcBusID, betaFrame, spd,
tLabel, rt, tCode, 1394
reserved, destinationID,
rCode

See Table 7-15.

dataLength 16 The number of bytes of data to be transmitted in this packet.
extendedTcode 16 If the tCode indicates a lock transaction, this specifies the actual lock action to be

performed with the data in this packet.
block data The data to be sent. Regardless of the destination or source alignment of the data,

the first byte of the block must appear in the leftmost byte of the first quadlet.
padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the end

of the packet to guarantee that a whole number of quadlets is sent.

7.8.3 Asynchronous Transmit Streams

 An asynchronous stream packet is a packet in the format of an isochronous packet (e.g., using tcode = 4'hA) that is
transmitted during the asynchronous period. It is transmitted via the Asynchronous Transmit Request context and as such, it
is governed by the same fairness rules as other asynchronous packets. This packet format consists of two header quadlets (as
specified in either the OUTPUT_MORE-Immediate or OUTPUT_LAST-Immediate descriptor) and an optional data payload.
The data payload in host memory is not required be aligned on a quadlet boundary. Padding is added by the Host Controller
if needed. The format is as follows.

2831 30 29 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

spd tLabel rt tCode =Bh 1394
reserved

1394 reserved

block  data

(up to 2 quadlets)

1394 reserveddestinationID rCode

extended tCodedataLength

I
D

B
F
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Figure 7-19 – Asynchronous stream packet format

Table 7-18 – Asynchronous stream packet fields
Field Bits Description
spd 3 This field indicates the speed at which this packet is to be transmitted. 3'b000 = 100

Mbits/sec, 3'b001 = 200 Mbits/sec, 3'b010 = 400 Mbits/sec, 3'b011 = 800
Mbits/sec, 3'b100 = 1600 Mbits/sec and 3'b101 = 3200 Mbits/sec, and 3'b010 = 400
Mbits/sec, .  All other values are reserved.

tag 2 The data format of the isochronous data (see IEEE 1394 specifications)
chanNum 6 The channel number this data is associated with.
tcode 4 The transaction code for this packet.
sy 4 Transaction layer specific synchronization bits.
dataLength 16 Indicates the number of bytes in this packet.
block data The data to be sent with this packet. The first byte of data must appear in the

leftmost byte of the first quadlet. The last quadlet should be padded with zeroes, if
necessary.

padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the end of
the packet to guarantee that a whole number of quadlets is sent.

Note that packets to go out over the 1394 wire are constructed from this Host Controller internal format, and are not sent in
the exact order as shown above. For example, spd, shown in the first quadlet, is not transmitted at all as part of the
asynchronous stream packet header.

2831 30 29 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

spd tag chanNum tCode =Ah sy

block  data

padding (if needed)

dataLength



Asynchronous Receive DMA                      1394 Open Host Controller Interface Specification                       Printed 07/18/01

Copyright   1996-2001.  All rights reserved.                                                                                                                                      Page 1

8 Asynchronous Receive DMA

 The Asynchronous Receive DMA controller performs the function of accepting packets for which there is no explicit
destination. This includes all packets which are accepted by the link module, but are not handled by any other receive DMA
function. However this does not include cycle start packets. There are two asynchronous receive (AR) contexts, an AR
Request context and an AR Response context. Each context uses a DMA context program to move such packets into memory
to be interpreted by the host processor software.

 Since the collection of packets that must be handled by the AR contexts may be of widely varying lengths, each context
operates in buffer-fill mode in which multiple packets may be concatenated into the supplied buffers. Software is responsible
for parsing through these buffers and taking the appropriate action required for a packet, and hardware is required to make
these buffers parsable.

 This chapter describes the AR context program components, how the AR contexts are managed and how the Asynchronous
Receive controller operates. For information regarding receive FIFO implementation, refer to Section 3.3.

8.1 AR DMA Context Programs

 The Asynchronous Receive DMA controller consists of two contexts for handling all asynchronous packets not handled by
the physical DMA controller. A context program is a list of DMA descriptors used to identify buffers in host memory into
which the Host Controller places received asynchronous packets.

 The DMA descriptors are 16-bytes in length and must be aligned on a 16-byte boundary. There is one type of command

descriptor used in an AR context program: INPUT_MORE.

 The INPUT_MORE command descriptor is used to specify a host memory buffer into which the AR controller will place the
received asynchronous packets from the Host Controller receive FIFO. It has the following format.

8.1.1 INPUT_MORE descriptor
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Figure 8-1 – INPUT_MORE descriptor format

Table 8-1 – INPUT_MORE descriptor element summary
Element Bits Description
cmd 4 Software must set this field in all AR command descriptors to 4'h2 for

INPUT_MORE, and hardware may assume that all AR descriptors are
INPUT_MORE commands.
This indicates to the AR controller that this descriptor contains a buffer
address for storing received asynchronous packets.

s 1 Status control. Software must set this field to 1. Hardware always writes
status regardless of the setting of this bit.

key 3 This field must be set to 3'b0.
i 2 Interrupt control. Valid values are 2'b11 to generate an IntEvent.ARRQ or

IntEvent.ARRS interrupt when the descriptor is completed (see section 6.1),
or 2'b00 for no interrupt. The descriptor is completed when resCount is
written zero by the Host Controller. Behavior is unspecified if set to 2'b01 or
2'b10.
Note that in addition to the per-descriptor (buffer) interrupts, interrupts can
also be generated on a per-packet basis for each complete packet received
using the IntEvent.RQPkt and IntEvent.RSPkt interrupts described in
section 6.1. These per-packet interrupts are not affected by the setting of the i
bit in an INPUT_MORE descriptor.

b 2 Branch control. Software must set this field to 2'b11. Values of 2'b10, 2'b01,
and 2'b00 will result in unspecified behavior.

reqCount 16 Request count: The size in bytes of the input buffer pointed to by
dataAddress. ReqCount must be a multiple of 4 (representing a whole
number of quadlets).

dataAddress 32 Host memory address of receive buffer. This address must be aligned on a
quadlet boundary.

branchAddress 28 16-byte aligned address of the next descriptor. A valid address must be
provided in this field unless the Z field is 0.

Z 4 Z may be set to 0 or 1. If this is the last descriptor in the context program, Z
must be set to 0, otherwise it must be set to 1.

xferStatus 16 Written with ContextControl [15:0] whenever resCount is updated.
resCount 16 Residual count: while this descriptor is in-use by the Host Controller,

resCount is updated each time a packet is written to the receive buffer to
indicate the number of bytes (out of a max of reqCount) which have not been
filled with received data.
For further information on resCount see section 8.4.2, “AR DMA Controller
processing.”

Note that the Command.resCount and Command.xferStatus fields are updated in an indivisible operation.

Z

resCount

branchAddress

xferStatus

dataAddress

i reqCountcmd bkeys
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{ Hunter:  dataAddress is still listed as 32 bits, even though 2 bits are blanked out on the figure.  Why? }
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 An asynchronous receive context program consists of one or more INPUT_MORE command descriptors. Each descriptor,
other than the final one, must provide a branchAddress with a Z value of 1 for the next block. The final command descriptor
must have a Z value of 0 to indicate the end of the context program. Section 3.2.1.2 describes a safe method by which
additional INPUT_MORE command descriptors may be appended to an active DMA program, regardless of whether or not
the AR DMA has reached the final command descriptor.

 Software may only modify a (non-completed) descriptor that may have been prefetched if a) the descriptor's current Z value
is 0, and b) only the branchAddress and Z fields of the descriptor are modified.

8.2 bufferFill mode

 Received asynchronous packets can be either solicited responses or unsolicited requests. Since software must be prepared to
handle several packets of variable size, the Asynchronous Receive DMA contexts operate in bufferFill mode. In bufferFill
mode, all received packets are concatenated into a contiguous stream of data. This data is then metered out into buffers
described by a DMA context program, filling each buffer completely. As each packet is put into a buffer, the descriptor's
resCount is updated to reflect the number of remaining bytes available in the buffer. Packets may straddle multiple buffers in
this mode (see packet 2 in the illustration below). In addition to the overall concept of bufferFill mode, there are several
nuances for Asynchronous receive which are described in detail in section 8.4.2.

8.3 Asynchronous Receive Context Registers

 The AR request context and AR response context each have a CommandPtr register and a ContextControl register.
CommandPtr is used by software to tell the Host Controller where the DMA context program begins. ContextControl is used
by software to control the context's behavior, and is used by hardware to indicate current status.

8.1.2 AR DMA descriptor usage

Figure 8-2 – bufferFill Receive Mode
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 The CommandPtr register specifies the address of the context program that will be executed when a DMA context is started.
All descriptors are 16-byte aligned, so the four least significant bits of any descriptor address must be zero. The least
significant bit of the CommandPtr register is used to encode a Z value. For each AR context (Request and Receive) Z may be
either 1 to indicate that descriptorAddress points to a valid command descriptor, or 0 to indicate that there are no descriptors
in the context program.

 Note:  As explained in section 3.1.2, software can not read a meaningful value from the CommandPtr.Z field.  Refer to
section 3.1.2 for a full description of the CommandPtr register.

Open HCI Offset 11'h1CC - AR Request
Open HCI Offset 11'h1EC - AR Response

Figure 8-3 – CommandPtr register format

8.3.1 AR DMA CommandPtr register

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

DescriptorAddress [31:4] Z
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 The ContextControlSet and ContextControlClear registers contain bits that control options, operational state, and status for a
DMA context. Software can set selected bits by writing ones to the corresponding bits in the ContextControlSet register.
Software can clear selected bits by writing ones to the corresponding bits in the ContextControlClear register. It is not
possible for software to set some bits and clear others in an atomic operation. A read from either register will return the same
value and is referred to as the ContextControlStatus register.

Open HCI Offset 11'h1C0 (set) / 11'h1C4 (clear) - AR Request
Open HCI Offset 11'h1E0 (set) / 11'h1E4 (clear) – AR Response

Figure 8-4 – AR ContextControl (set and clear) register format

Table 8-2 – AR ContextControl (set and clear) register description
Field RSC Description
run rscu Refer to section 3.1.1.1 for an explanation of the ContextControl.run bit.
wake rsu Refer to section 3.1.1.2 for an explanation of the ContextControl.wake bit.
dead ru Refer to section 3.1.1.4 for an explanation of the ContextControl.dead bit.
active ru Refer to section 3.1.1.3 for an explanation of the ContextControl.active bit.
spd ru This field indicates the speed at which the last packet was received by this context.

3'b000 = 100 Mbits/sec, 3'b001 = 200 Mbits/sec , 3'b010 = 400 Mbits/sec, 3'b011 =
800 Mbits/sec, 3'b100 = 1600 Mbits/sec and 3'b101 = 3200 Mbits/sec. All other values
are reserved.
Software should not attempt to interpret the contents of this field while the
ContextControl.active or ContextControl.wake bits are set.

event code ru The packet ack_ code or an “evt_” error code is indicated in this field. Possible values
are: ack_complete, ack_pending, ack_type_error, evt_descriptor_read, evt_data_write,
evt_bus_reset, evt_unknown, and evt_no_status.
See Table 3-2, “Packet event codes,” for descriptions and values for these codes.

8.3.2 AR ContextControl register (set and clear)

dead
active

wake

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 6 5 4 3 2 1 09 810 7

wake

spd event
code
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8.4 AR DMA Controller

 Software can control from which nodes it will receive request packets by utilizing the asynchronous filter registers. There are
two registers, one for filtering out all requests from a specified set of nodes (AsynchronousRequestFilter register) and one for
filtering out physical requests from a specified set of nodes (PhysicalRequestFilter register). The settings in both registers
have a direct impact on how the AR Request context is used, e.g., disabling only physical receives from a node will cause all
request packets from that node to be routed to the AR Request context buffer(s). The usage and interrelationship between
these registers is fully described in section 5.14, “Asynchronous Request Filters.” Asynchronous response packets are never
filtered.

 The AR DMA controller writes the entire packet, as described in the Asynchronous Receive Data Formats section, into
memory for software to process. This includes the packet header and packet reception status. Data chaining across context
commands is supported.

 For the AR request context, command.reqCount should always be set to at least the maximum possible packet length for an
asynchronous packet as specified in the max_rec field of the bus_info_block, plus five quadlets for the header and trailer
(2^(max_rec+1) + 20 bytes). This means a single packet can cross at most one buffer boundary. This requirement also makes
it easier for the Host Controller implementation to combine asynchronous receive FIFOs (see section 3.3).

 When the host software transmits an asynchronous request, it must first ensure that there is enough buffer space allocated in
the AR response context's context program to receive the response packet including headers and timestamp. Failure to
preallocate this space may result in the hardware discarding responses that arrive when the AR response context is out of
descriptors even though ack_complete may have been sent to the source node.

 Since the AR request context and AR response context buffers must always be parseable by software there are three essential
requirements.

 a) The Host Controller must write a packet into a buffer(s) by first writing the asynchronous packet header, followed by
the packet data, followed by a packet trailer.

 b) Requests or responses with data-length errors, CRC errors, FIFO overrun errors or buffer overrun errors must not be
presented to the software. Although the host memory buffers may have been written in anticipation of a good packet,
the xferStatus and resCount will not be updated. This in effect “backs out” the packet.

 c) After each packet is written into the buffer(s), hardware must update the resCount for the INPUT_MORE
descriptor(s) for the buffer(s), to accurately reflect the number of unused bytes remaining.

8.4.1 Asynchronous Filter Registers

8.4.2 AR DMA Controller processing
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 Software must initialize resCount to the value of reqCount. Upon the first packet arrival into a buffer, the Host Controller
must write the appropriate residual count, based on (resCount - (packetHeaderLen + dataLength + statusquadlet)). Note that
neither the header CRC nor data CRC quadlets are inserted into the buffer.

 As depicted in figure 8-2, it is possible for a received packet to straddle multiple buffers. For the AR Request context, the
buffer size requirements (mentioned above) ensure that a packet can only straddle two buffers. However, the AR Response
context does not have a buffer size requirement and therefore AR response packets may straddle more than two buffers. To
ensure that the receive buffers for a context remain parsable, hardware must follow the procedure shown below. (First buffer
refers to the buffer receiving the first byte of the packet or packet header, and final buffer refers to the buffer receiving the
last byte of the packet or packet trailer.)

 1) After filling to the end of a buffer with a partial packet, advance to the next descriptor block and obtain the next
buffer (dataAddress), retaining all state for the first buffer as well as for the new buffer.

 2) Continue writing packet bytes into the new buffer. If the end of the buffer is reached, advance to the next buffer
without updating xferStatus and retaining only cummulative interrupt state (section 6.4.1). Write the remaining
packet bytes into the final buffer (for the packet).

 3) If there is no error: 1) write the trailer quadlet into the final buffer, 2) update xferStatus and resCount into the
final buffer's descriptor, and 3) update xferStatus and resCount into the first buffer's descriptor (where
xferStatus is the current value of ContextControl[15:0]). At that point the first buffer's state is no longer needed.

 4) If there is an error, then the packet must be ‘backed-out' by reverting back to the previous state of the first buffer
(as saved earlier). XferStatus and resCount are not updated for either descriptor.

 By following these steps, the AR context buffers remain intact and can be parsed. Since interim buffers (those containing an
inner portion of one packet) for the AR Response context will not have their status updated, software must only use resCount
values when the corresponding xferStatus indicates the active bit is set to one. It follows from this that if the xferStatus.active
bit is set in a descriptor, then all prior descriptors have been filled.
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8.4.2.1 AR DMA Packet Trailer

 The trailer quadlet written by the Host Controller at the end of each packet has the following format.

Table 8-3 – AR DMA trailer fields
Field Bits Description
xferStatus 16 Written with ContextControl[15:0].
timeStamp 16 The low order 3 bits of cycleTimer.cycleSeconds and the full 13 bits of

cycleTimer.cycleCount at some time during receipt of the packet.

8.4.2.2 Error Handling

 When the AR DMA receives a packet with valid header and a failed data CRC check or data_length error, the Host
Controller shall respond with a “busy” acknowledgment (e.g. ack_busy_X if dual phase retry does not apply). Since an error
condition is not known until all data (plus data CRC) has arrived, many “corrupted” data bytes may have been moved into an
AR DMA buffer by the time the error situation is discovered. In this circumstance, hardware is required to halt its writing of
the packet into the AR DMA buffer without updating the resCount field. By not advancing the residual count location, it will
appear as though the packet never was written into the AR DMA buffer at all.

 Similarly, if a bus reset occurs after a packet has been received but before the ack is sent, the packet may be “backed-out” of
the buffer(s) as described for the error conditions above.

 If an AR DMA context has an unrecoverable error, the Host Controller shall continue to unload the FIFO even though the
context is dead.

8.4.2.3 Bus Reset Packet

 To assist software in determining which asynchronous request packets arrived before and after a bus reset, necessary since
node numbers may have changed, the Host Controller inserts a synthesized PHY packet into the AR DMA Request Context
buffer (if active) as soon as a bus reset condition is detected. This packet has the following format.

Figure 8-5 – AR DMA packet trailer format

timeStampxferStatus

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0
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Table 8-4 – AR Request Context Bus Reset packet description
Field Bits Description
tcode 4 Set to 4'hE to indicate a PHY packet.
selfIDGeneration 8 The selfIDCount.selfIDGeneration value at the time this packet is created.
reserved undefined 8 + 16 This field is specified as undefined and may contain any value without impacting the

intended processing of this packet.
eventCode 5 A value of 5'h09 (evt_bus_reset) identifies this as a synthesized bus_reset packet.

Software can distinguish the bus-reset packet from authentic PHY packets by the value of eventCode which is set to
evt_bus_reset. Software can further interpret and coordinate received asynchronous packets across multiple bus resets by
using the selfIDGeneration number provided in the bus-reset packet. Since the bus-reset packet is fabricated when a bus reset
is initially detected, the selfIDGeneration number is for the new (not previous) generation and will be the same as the
selfIDGeneration number in the SelfIDCount register as well as in the selfID buffer.

If more than one bus reset has occurred without any intervening packets, then only the “last” one is required to result in a
synthesized bus-reset packet.

If the input FIFO is full when a bus reset occurs, the link side of the FIFO must later insert the bus-reset packet when space
becomes available. If the AR DMA request context does not have enough buffer space for the bus-reset packet, the packet
shall be synthesized once buffer space becomes available.

The bus reset interrupt (IntEvent.busReset) is independent of the time when this packet goes from the FIFO into a host buffer.
This interrupt shall occur as soon as possible after a bus reset has been detected. The bus-reset packet is no different from any
other packet going into the AR Request buffer in that IntEvent.RQPkt will be generated like it would for other packets.

8.5 PHY Packets

 PHY packets will be received by asynchronous receive DMA if LinkControl.rcvPhyPkt is 1, and will be received by the AR
Request context. PHY packets in the AR Request context will include the PHY packet's “logical inverse” quadlet which must
be verified by software to be the logical inverse of the previous quadlet. The format of this packet is shown in section 8.7.1.4.

Figure 8-6 – AR Request Context Bus Reset packet format

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tcode=4'hE 4'h0

reserved undefined3'h0 event = 5'h09

selfIDGeneration

reserved undefined
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 A packet is treated as a PHY packet if it is two quadlets and fails the CRC check. This includes any Self-ID packet that
arrives outside of the Self-ID phase of bus initialization.

8.6 Asynchronous Receive Interrupts

 There are two interrupts for each context (request and response) that software can use to gauge the usage of the receive
buffers. If software needs to be informed of the arrival of each packet being sent to the context buffers, it can use the RQPkt
or RSPkt interrupts in the IntEvent register (see section 6.1). If software needs to be informed that a receive buffer has been
filled, it can set the context command.i field to 2'b11, which will trigger an interrupt in the IntEvent register (ARRQ for
requests; ARRS for responses).  A received packet may be split up and stored into buffers described by more than one
descriptor.  In this case, an interrupt shall be generated (ARRQ for requests; ARRS for responses) if any asynchronous
receive descriptor whose command.i field is 2’b11 is completed because its buffer is full.
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8.7 Asynchronous Receive Data Formats

 The Host Controller shall only receive PHY packets or packets which have tCodes that are defined by an approved IEEE
1394 standard. All other packets shall be dropped.

 There are four basic formats for asynchronous data to be received:

 a) no-data packets (used for quadlet read requests and all write responses)
 b) quadlet packets (used for quadlet write requests, quadlet read responses, and block read requests)
 c) block packets (used for lock requests and responses, block write requests, and block read responses)
 d) PHY packets

 The names and descriptions of the fields in the received data are given in table 8-5.

Table 8-5 – Asynch receive fields
Field Bits Description
destinationID 16 This field is the concatenation of busNumber (or all ones for “local bus”) and node-

Number (or all ones for broadcast) for this node.
tLabel 6 This field is the transaction label, which is used to pair up a response packet with

its corresponding request packet.
rt 2 The retry code for this packet. 00=retry1, 01=retryX, 10=retryA, 11=retryB
tCode 4 The transaction code for this packet.
1394 reserved 4 Open HCI shall transmit these bits along as-is and shall not verify or modify them.
sourceID 16 This is the node ID (bus number + node number) of the sender of this packet.
destinationOffsetHi
destinationOffsetLo

16
32

The concatenation of these two fields addresses a quadlet in this node's address
space. This address must be quadlet-aligned (modulo 4).

rCode 4 Response code for response packets.
quadlet data 32 For quadlet write requests and quadlet read responses, this field holds the data

received.
dataLength 16 The number of bytes of data to be received in a block packet.
extendedTcode 16 If the tCode indicates a lock transaction, this specifies the actual lock action to be

performed with the data in this packet.
block data The data received. Regardless of the destination or source alignment of the data, the

first byte of the block will appear in the leftmost byte of the first quadlet.
padding If the dataLength mod 4 is not zero, then bytes have been added onto the end of the

packet by the transmitting node to guarantee that a whole number of quadlets is
received.

xferStatus 16 Written with ContextControl[15:0].
timeStamp 16 The low order 3 bits of cycleTimer.cycleSeconds and the full 13 bits of

cycleTimer.cycleCount at some time during receipt of the packet.
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8.7.1.1 No-data receive

 The no-data receive format is shown below. The first quadlet contains the destination node ID and the rest
of the packet header. The second and third quadlets contain 16-bit source ID and the 48-bit, quadlet-
aligned destination offset. The last quadlet contains packet reception status.

8.7.1.2 Quadlet Receive

 The quadlet receive formats are shown below. The first quadlet contains the destination node ID and the
rest of the packet header. The second and third quadlets contain 16-bit source ID and the 48-bit, quadlet-
aligned destination offset. The fourth quadlet is the quadlet data for write quadlet requests, and is the data
length and reserved for block read requests. The last quadlet contains packet reception status

8.7.1 Asynchronous Receive Requests

Figure 8-7 – Quadlet read request receive format

destinationOffsetHigh

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4'h4

destinationOffsetLow

sourceID

rtdestinationID

xferStatus timeStamp
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.

8.7.1.3 Block receive

 The block receive formats are shown below. The first quadlet contains the destination node ID and the rest of the packet
header. The second and third quadlets contain the 16-bit source ID and the 48-bit destination offset. The fourth quadlet
contains the length of the data field and the extended transaction code (all zeros except for lock transactions). The block data,
if any, follows the extended Tcode. The last quadlet contains packet reception status.

Figure 8-8 –Quadlet write request receive format

Figure 8-9 – Block read request receive format

destinationOffsetHigh

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4'h0

destinationOffsetLow

sourceID

rtdestinationID

xferStatus timeStamp

quadlet data

destinationOffsetHigh

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4'h5

destinationOffsetLow

sourceID

rtdestinationID

xferStatus timeStamp

dataLength 1394 reserved
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Figure 8-10 – Block write request receive format

destinationOffsetHigh

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4'h1

destinationOffsetLow

sourceID

rtdestinationID

xferStatus timeStamp

dataLength 1394 reserved

padding (if needed)

block data
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8.7.1.4 PHY packet receive
The PHY packet receive format is shown below. The first quadlet contains a synthesized packet header with a tCode of 4'hE.
The second quadlet contains the PHY quadlet and the third quadlet contains the inverse of the previous quadlet. Software is
required to verify the integrity of the second quadlet by checking it against the third quadlet. The final (fourth) quadlet
contains the packet trailer. The value of xferStatus.event shall be ack_complete for PHY packets.

{Hunter:  1.1 had value of xferStatus.event evt_no_status for PHY packets;  was this change intentional
(or did I mess up some words somewhere)? }

Figure 8-11 – Lock request receive format

destinationOffsetHigh

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4'h9

destinationOffsetLow

sourceID

rtdestinationID

xferStatus timeStamp

dataLength extendedTcode

padding (if needed)

block data
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8.7.2.1 No-data receive

 The no-data receive format is shown below. The first quadlet contains the destination node ID and the rest of the packet
header. The second and third quadlets contain 16-bit source ID and the response code. The last quadlet contains packet
reception status.

8.7.2.2 Quadlet Receive

Figure 8-12 –PHY packet receive format

8.7.2 Asynchronous Receive Responses

Figure 8-13 – Write response receive format

timeStampxferStatus

PHY packet second quadlet

PHY packet first quadlet

4’h0tCode=
4’hE

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

1394 reserved

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4'h2

1394 reserved

sourceID

rtdestinationID

xferStatus timeStamp

rCode
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 The quadlet receive format is shown below. The first quadlet contains the destination node ID and the rest of the packet
header. The second and third quadlets contain 16-bit source ID and the response code. The fourth quadlet is the quadlet data
for read responses. The last quadlet contains packet reception status.

8.7.2.3 Block receive

 The block receive formats are shown below. The first quadlet contains the destination node ID and the rest of the packet
header. The second and third quadlets contain the 16-bit source ID and the response code and reserved data. The fourth
quadlet contains the length of the data field and the extended transaction code (all zeros except for lock transactions). The
block data, if any, follows the extended Tcode. The last quadlet contains packet reception status.

Figure 8-14 – Quadlet read response receive format

1394 reserved

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4'h6

1394 reserved

sourceID

rtdestinationID

xferStatus timeStamp

quadlet data

rCode
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Figure 8-15 – Block read response receive format

1394 reserved

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4'h7

1394 reserved

sourceID

rtdestinationID

xferStatus timeStamp

dataLength 1394 reserved

padding (if needed)

block data

rCode
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Figure 8-16 – Lock response receive format

1394 reserved

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4'hB

1394 reserved

sourceID

rtdestinationID

xferStatus timeStamp

dataLength extendedTcode

padding (if needed)

block data

rCode
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9 Isochronous Transmit DMA

 The Isochronous Transmit DMA (IT DMA) controller has a required minimum of four and an implementation maximum of
32 isochronous transmit contexts. Each context is controlled by a DMA context program. Each IT DMA context will transmit
data for a single isochronous channel.

9.1 IT DMA Context Programs

 For isochronous transmit DMA, a context program is a list of DMA command descriptors used to identify buffers in host
memory from which the Host Controller transmits packets onto the 1394 bus. The descriptors are 16- and 32-bytes in length
and must be aligned on a 16-byte boundary. There are five IT DMA command descriptors: OUTPUT_MORE,

OUTPUT_MORE-Immediate, OUTPUT_LAST, OUTPUT_LAST-Immediate and STORE_VALUE.

 There are two components to a 1394 isochronous packet, the packet header and the packet data, and there are many ways in
which software may need to organize this information in host memory. To accommodate the variety of packet organization,
there are four IT DMA descriptor commands used to instruct the Host Controller on how to assemble the packets, and one
descriptor command for writing a quadlet into host memory for software tracking purposes.

 If a packet has two or more data fragments an OUTPUT_MORE-Immediate and possibly some OUTPUT_MORE commands
are used. The OUTPUT_MORE-Immediate command is used to specify the packet header, and each OUTPUT_MORE
command allows for the specification of one packet fragment.

 To indicate the end of a packet, either the OUTPUT_LAST or OUTPUT_LAST-Immediate command must be used. The
OUTPUT_LAST command allows for the specification of one data fragment, and the OUTPUT_LAST-Immediate is used to
specify a packet solely consisting of an isochronous packet header. Unlike the OUTPUT_MORE commands, the
OUTPUT_LAST commands indicate to the Host Controller that there is no more data to send for a packet.

 The STORE_VALUE command descriptor provides a mechanism for software to monitor progress on a context without

using interrupts. This command will write a quadlet to a specified host memory location.

9.1.1 IT DMA command descriptor overview

9.1.2 OUTPUT_MORE descriptor
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Table 9-1 – OUTPUT_MORE descriptor element summary
Element Bits Description
cmd 4 Set to 4'h0 for OUTPUT_MORE.

Identifies one data fragment used to build the packet.
key 3 This field must be set to 3'h0.
b 2 Branch control. Must be set to 2'b00. Behavior is unspecified if set to 2'b01, 2'b10 or

2'b11.
reqCount 16 Request count. The size of the specified buffer in bytes pointed to by dataAddress.
dataAddress 32 Address of transmit buffer. dataAddress has no alignment restrictions.

The OUTPUT_MORE descriptor is used to specify one data fragment for the packet. It shall not be used for specifying the
packet header, and must be preceded by an OUTPUT_MORE-Immediate or another OUTPUT_MORE.

Figure 9-1 – OUTPUT_MORE command descriptor format

9.1.3 OUTPUT_MORE-Immediate descriptor

reqCountcmd=0 b=0key=0

dataAddress
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Table 9-2 – OUTPUT_MORE-Immediate descriptor element summary
Element Bits Description
cmd 4 Set to 4'h0 for OUTPUT_MORE-Immediate.
key 3 This field must be set to 3'h2.
i 2 Interrupt control. Valid values are 2'b00 and 2'b11. Behavior is unspecified if set to 2'b01

or 2'b10. When set to 2'b11, an IsochTx interrupt shall be generated when the skipAd-
dress in this descriptor is taken. When programmed to 2'b00 no interrupt shall be gener-
ated when the skipAddress is taken.

b 2 Branch control. Must be set to 2'b00. Behavior is unspecified if set to 2'b01, 2'b10 or
2'b11.

reqCount 16 Must be set to 8 to accommodate the IT packet header. Using any other value yields
unspecified results.

skipAddress 28 16-byte aligned address of the next descriptor to be used if a missed cycle is detected.
Used only within the first command descriptor in a descriptor block. The first command
must either have a valid skipAddress, or must set the Z field to 0.

Z 4 Used to indicate the number of descriptors needed for the skip descriptor block. Z may be
a value from 0 to 8. A zero indicates there is no skipAddress, and the DMA for this
context stops. A value of 1 to 8 indicates that there are 1 to 8 descriptors used in the skip
packet.

first quadlet
second quadlet

32
32

Quadlets to be inserted into the isochronous transmit FIFO for the isochronous packet
header (see section 9.6).

The OUTPUT_MORE-Immediate descriptor shall be used, and shall only be used, to specify the isochronous header for a
non-zero data length packet. This is an efficient way for software to provide the packet header information since the data is
built into the descriptor and does not need to be fetched from a separate memory buffer.

OUTPUT_MORE-Immediate command descriptors are 32 bytes in length regardless of the value of reqCount, and are
counted as two 16-byte aligned blocks when calculating the Z value.

Figure 9-2 – OUTPUT_MORE-Immediate descriptor format

b=0

first Quadlet

second Quadlet

reqCount = 8cmd=0 key=2

skipAddress Z
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Table 9-3 – OUTPUT_LAST descriptor element summary
Element Bits Description
cmd 4 Set to 4'h1 for OUTPUT_LAST.

Each command identifies one data fragment used to build the packet. OUTPUT_LAST is
used to signify the end of the isochronous packet to be transmitted.

s 1 Status control. If set to one, xferStatus and timeStamp will be updated upon descriptor
completion. If set to zero, neither field is updated.

key 3 This field must be set to 3'h0.
i 2 Interrupt control. Valid values are 2'b00 and 2'b11. Behavior is unspecified if set to 2'b01

or 2'b10. When set to 2'b11, an IsochTx interrupt shall be generated when the descriptor
is completed (see section 6.1) or the skipAddress in this descriptor is taken. When set to
2'b00, no interrupt shall be generated upon completion of this descriptor or when the
skipAddress in this descriptor is taken.

b 2 Branch control. This field must be set to 2'b11 to branch to the location specified in the
branchAddress field. Behavior is unspecified for all other values.

reqCount 16 Request count: The size of the buffer in bytes pointed to by dataAddress.
dataAddress 32 Address of transmit buffer. dataAddress has no alignment restrictions.
branchAddress
skipAddress

28 16-byte aligned address of the next descriptor. Used only within OUTPUT_LAST*
commands.
16-byte aligned address of the next descriptor to be used if a missed cycle is detected.
Used only within the first command descriptor in a descriptor block. OUTPUT_LAST
may only be the first descriptor in a descriptor block when reqCount is 0.

Z 4 Used in OUTPUT_LAST to indicate the number of descriptors needed in the next
descriptor block. Z may be a value from 0 to 8. A zero indicates this is the last descriptor
in the list for this IT DMA context. A value of 1 to 8 indicates that there are 1 to 8
descriptors used in the next descriptor block.

xferStatus 16 Written with ContextControl [15:0] after the descriptor is processed if s = 1.
timeStamp 16 Contains the three low order bits of cycleSeconds and all 13 bits of cycleCount, and is

written when xferStatus is written. TimeStamp indicates the cycle for which the IT DMA
controller queued the transmission of this packet (if any). See section 5.13, “Isochronous
Cycle Timer Register,” for information about cycle* fields.

The OUTPUT_LAST descriptor is used to indicate the end of a packet. If reqCount is non-zero, this specifies the last data
fragment for the packet. It shall not be used for specifying the packet header.

An OUTPUT_LAST with reqCount=0 is used to indicate that no packet is to be sent for the current cycle. The IT DMA
controller will advance the context to the next descriptor block (branchAddress) for the next cycle. An OUTPUT_LAST with
a reqCount=0 shall not be preceded by any OUTPUT_MORE* descriptors in the descriptor block.

9.1.4 OUTPUT_LAST descriptor

Figure 9-3 – OUTPUT_LAST command descriptor format

skip or descriptor branch Address
xferStatus timeStamp

dataAddress

reqCountb=2’b11cmd=1 key=0s
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Table 9-4 – OUTPUT_LAST-Immediate descriptor element summary
Element Bits Description
cmd, s Same as in Table 9-3.
key 3 This field must be set to 3'h2.
i, b Same as in Table 9-3.
reqCount 16 Must be set to 16'h0008 to accommodate the IT packet header. Using any other value

yields unspecified results.
branchAddress
skipAddress

28 16-byte aligned address of the next descriptor. Used only within OUTPUT_LAST*
commands.
16-byte aligned address of the next descriptor to be used if a missed cycle is detected.
Used only within the first command descriptor in a descriptor block.

Z, xferStatus, timeStamp Same as in Table 9-3.

quadlets 32*4 The first and second quadlets are used to specify the 2 quadlets required for the isochro-
nous packet header. (See section 9.6).

The OUTPUT_LAST-Immediate descriptor must be used, and must only be used, to specify the isochronous header for a
packet with zero data bytes. OUTPUT_LAST-Immediate command descriptors are 32-bytes in length regardless of the value

of reqCount and are counted as two 16-byte aligned blocks when calculating the Z value.

 The STORE_VALUE command descriptor instructs the Host Controller to write a specified 32-bit value to a specified host
memory location. If used, STORE_VALUE must be the first command descriptor in a descriptor block, and only one is

Figure 9-4 – OUTPUT_LAST-Immediate command descriptor format

9.1.5 STORE_VALUE descriptor
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permitted per descriptor block. STORE_VALUE must not be the only descriptor in a descriptor block and shall be followed
by one or more OUTPUT_* descriptors. It has the following format.

Table 9-5 – STORE_VALUE descriptor element summary
Element Bits Description
cmd 4 Set to 4'h8 for STORE_VALUE.
key 3 This field must be set to 3'h6.
i 2 Interrupt control. Valid values are 2'b00 and 2'b11. Behavior is unspecified if set to 2'b01

or 2'b10. When set to 2'b11, an IsochTx interrupt shall be generated when the skipAd-
dress in this descriptor is taken. When programmed to 2'b00 no interrupt shall be gener-
ated when the skipAddress is taken.

storeDoublet 16 16-bit value to be stored into the quadlet aligned dataAddress upon execution of this
command. StoreDoublet is written as a 32 bit value, where bits 31:16 are 0's and bits 15:0
contain the storeDoublet value provided in the descriptor.

dataAddress 32 Quadlet aligned host memory address into which storeDoublet (padded to 32) bits is
written.

skipAddress 28 16-byte aligned address of the next descriptor to be used if a missed cycle is detected.
The skipAddress must be valid or the Z field must be 0. If the skip address is used, the
store action specified by this descriptor will not be executed.

Z 4 Used to indicate the number of descriptors needed for the skip descriptor block. Z may be
a value from 0 to 8. A zero indicates there is no skipAddress, and the DMA for this
context stops. A value of 1 to 8 indicates that there are 1 to 8 descriptors used in the skip
packet.

The STORE_VALUE command provides a mechanism for software to monitor a context's progress independent of using
interrupts. For example a running IT context program could perform a STORE_VALUE periodically into a memory host

location where software would look to determine the latest IT DMA context progress.

 The Z value is used by the Host Controller to enable several descriptors to be fetched at once, for improved efficiency. Z
values must always be encoded correctly. The contiguous descriptors described by a Z value are called a descriptor block.
The following table summarizes all legal Z values:

Figure 9-5 –STORE_VALUE descriptor

9.1.6 IT DMA descriptor usage
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dataAddress
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Table 9-6 – Z value encoding
Z value Use
0 Indicates that the current descriptor is the last descriptor in the context program.
1-8 Indicates that starting at descriptorAddress, there are one to eight 16-byte aligned

physically contiguous descriptors and descriptor components.
9-15 reserved

Each isochronous transmit descriptor block for a packet shall be specified with the command descriptors according to the
following rules:

! A maximum of 8 command descriptors may be used.
! Only one STORE_VALUE may be used, and it must be the first descriptor in a descriptor block.
! If STORE_VALUE is used, it shall be followed by at least one OUTPUT_* descriptor, and the Z value for the

descriptor block shall be between 2-8 inclusively.
! If the packet dataLength is not zero, one OUTPUT_MORE-Immediate must be used, followed by zero to five

OUTPUT_MORE's, followed by one OUTPUT_LAST.
! If the packet dataLength is zero, one OUTPUT_LAST-Immediate must be used.
! If no packet is to be sent during a cycle, one OUTPUT_LAST with reqCount=0 must be used and shall not be preceded

by any other OUTPUT_* descriptor.

The isochronous packet header must be specified using a *-Immediate command. The OUTPUT_LAST* command must
have a branch control value of 2'b11. All other commands must have a branch control value of 2'b00. Depending on the
aggregate number of bytes being transmitted for one descriptor block, hardware may assist with padding. If the sum of all
reqCounts modulo 4 is 0, then padding is not necessary. If the sum of all reqCounts module 4 is not 0, then hardware will
insert padding up to a quadlet boundary.

To indicate the end of the context program, all IT DMA context programs must use an OUTPUT_LAST or OUTPUT_LAST-
Immediate command with a branch (b) value of 2'b11 (branch always) and a Z value of 0 to indicate the end of the program.
A program which ends can be appended to while the DMA runs, even if the DMA has already reached the last descriptor.

The first command in an isochronous packet descriptor block must have a skipAddress which points to the descriptor to
branch to if this packet cannot be transmitted (typically due to a lost cycle). The value of the Command.b field in that
descriptor does not affect a skip branch.

The use of many OUTPUT_MORE* commands to describe a single packet will generally cause extra fetch latencies, as the
Host Controller fetches payload buffers from different parts of memory. These latencies may differ for each Host Controller
implementation, bus, and host memory architecture. Software is expected to construct IT DMA context programs with a
sufficiently low number of OUTPUT_MORE* commands so that the Host Controller can satisfy application-specific latency
requirements.

IT DMA context programs must contain exactly one descriptor block to be processed per cycle. Each descriptor block must
be identified with an accurate Z value, both when the program is started, and on each branch within the program. Each
descriptor block must end with an unconditional branch to the next descriptor block, even if the next block follows
immediately in consecutive memory. (The branch enables the IT DMA to learn the Z value for the next descriptor block).
Each descriptor block must begin with a command that contains a branch to the skipAddress (also with a Z code).
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Some applications of isochronous transfer do not transfer a packet on every isochronous cycle. Therefore the IT DMA will
sometimes not transmit a packet for one or more channels. Within a context program, a non-transmit cycle is indicated by a
descriptor block whose only transfer command is an OUTPUT_LAST with a reqCount of zero. (This is not a zero-length
packet, which would be sent with an OUTPUT_LAST-Immediate.)

9.2 IT Context Registers

 Each isochronous transmit context consists of two registers: CommandPtr and IT ContextControl. CommandPtr is used by
software to tell the IT DMA controller where the DMA context program begins. IT ContextControl is used by software to

control the context's behavior, and is used by hardware to indicate current status.

 The CommandPtr register specifies the address of the context program which will be executed when a DMA context is
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be zero. The four
least-significant bits of the CommandPtr register are used to encode a Z value that indicates how many physically contiguous
descriptors are pointed to by descriptorAddress.

 When ContextControl.run and ContextControl.active are set for an IT context, this field shall point to the descriptor block
that is currently being processed by the DMA.

 Refer to section 3.1.2 for a full description of the CommandPtr register and special functionality for IT contexts.

9.2.1 CommandPtr

Open HCI Offset 11'h20C + (16 * n) ; where n = 0 for contexts 0, n = 1 for context 1, etc.

Figure 9-6 – CommandPtr register format

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

DescriptorAddress [31:4] Z
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 The IT ContextControl set and clear registers contain bits that control options, operational state, and status for the
isochronous transmit DMA contexts. Software can set selected bits by writing ones to the corresponding bits in the
ContextControlSet register. Software can clear selected bits by writing ones to the corresponding bits in the
ContextControlClear register. It is not possible for software to set some bits and clear others in an atomic operation. A read
from either register will return the same value.

 The context control register used for isochronous transmit DMA contexts is shown below. In addition to the standard
ContextControl fields as described in section 3.1.1, it includes a mechanism for starting transmit at a specified cycle time.

Open HCI Offset 11'h200 + (16 * n) - Set; where n = 0 for contexts 0, n = 1 for context 1, etc.
Open HCI Offset 11'h204 + (16 * n) - Clear

Figure 9-7 –IT DMA ContextControl (set and clear) register format

Table 9-7 – IT DMA ContextControl (set and clear) register description
Field rscu Reset Description
cycleMatchEnable rscu undef When set to one, processing will occur such that the packet described by the

context's first descriptor block will be transmitted in the cycle whose number is
specified in the cycleMatch field of this register. The 15-bit cycleMatch field must
match the low order two bits of cycleSeconds and the 13-bit cycleCount field in the
cycle start packet that is sent or received immediately before isochronous
transmission begins.
Since the IT DMA controller may work ahead, the processing of the first descriptor
block may begin slightly in advance of the actual cycle in which the first packet is
transmitted.
The effects of this bit however are impacted by the values of other bits in this
register and are explained below this table. Once the context has become active,
hardware clears the cycleMatchEnable bit.

cycleMatch rsc undef Contains a 15-bit value, corresponding to the low order two bits of the bus
CycleTime.cycleSeconds and the 13-bit CycleTime.cycleCount field. If
ContextControl.cycleMatchEnable is set, then this IT DMA context will become
enabled for transmits when the low order two bits of the bus
CycleTime.cycleSeconds concatenated with CycleTime.cycleCount equals the
cycleMatch value.

run rscu 1'b0 Refer to section 3.1.1.1 and the description following this table for an explanation of
the ContextControl.run bit.

wake rsu undef Refer to section 3.1.1.2 for an explanation of the ContextControl.wake bit.

9.2.2 IT ContextControl Register

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 6 5 4 3 2 1 09 810 7

dead
active

wake

run {

reserved-
undefined
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dead ru 1'b0 Refer to section 3.1.1.4 for an explanation of the ContextControl.dead bit.
active ru 1'b0 Refer to section 3.1.1.3 for an explanation of the ContextControl.active bit.
reserved undefined ru undef This field is specified as undefined and may contain any value without impacting

the intended processing of this packet.
event code ru undef Following an OUTPUT_LAST* command, the error code is indicated in this field.

Possible values are: ack_complete, evt_underrun, evt_descriptor_read,
evt_data_read, evt_tcode_err, evt_timeout, and evt_unknown.
See Table 3-2, “Packet event codes,” for descriptions and values for these codes.

The cycleMatch field is used to start an IT DMA context program on a specified cycle. Software enables matching by setting
the cycleMatchEnable bit. When the low order two bits of the bus CycleTime.cycleSeconds concatenated with
CycleTime.cycleCount matches the cycleMatch value, hardware clears the cycleMatchEnable bit to 0, sets the
ContextControl.active bit to 1, and begins executing descriptor blocks for the context. The transition of an IT DMA context
to the active state from the not-active state is dependent upon the values of the run and cycleMatchEnable bits.

! If run transitions to 1 when cycleMatchEnable is 0, then the context will become active (active = 1).
! If both run and cycleMatchEnable are set to 1, then the context will become active when the low order two bits of the

bus CycleTime.cycleSeconds and 13-bit CycleTime.cycleCount values match the 15-bit cycleMatch value.
! If both run and cycleMatchEnable are set to 1, and cycleMatchEnable is subsequently cleared, the context becomes

active.
! If both run and active are 1 (the context is active), and then cycleMatchEnable is set to 1, this will result in unspecified

behavior.

Due to software latencies, software attempts by software to manage the startup of a context too close to the current time may
not be effective.

In addition, the usability of cycleMatchEnable for IT contexts will be impacted by the cycleInconsistent interrupt. Refer to
Section 9.5.1 for more information.

9.3 Isochronous transmit DMA controller

 The following sections describe how software manages the multiple isochronous transmit DMA contexts. Each context has a
CommandPtr pointing to the current DMA descriptor. For every cycle start packet that the Host Controller receives or sends,
the IT DMA controller can transmit exactly one descriptor block describing exactly one packet from each DMA context that

is in the ContextControl.run state.

 Each IT DMA context command pointer corresponds to a list of packets to be sent on successive 1394 cycles. Generally,
each list represents a single isochronous channel. Isochronous channel numbers are not tied to any internal indexing scheme
utilized by the Host Controller to track all implemented IT DMA contexts. Each IT DMA context program pointed to by each
CommandPtr will specify the entire isochronous packet header, including the isochronous channel number, for each packet
that is transmitted. The entire IT DMA is summarized in the following figure:

9.3.1 IT DMA Processing
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In the example, three channels are being transmitted. Three cycles of transmit are shown. Context 0 is sending on
isochronous channel 9, using an OUTPUT_MORE-Immediate to send each packet header and an OUTPUT_LAST for each
payload. In cycle 2002 the payload spans a page boundary, so channel 9 uses an extra OUTPUT_MORE. Channel 9 will skip
to the next packet if any cycle is lost. Context 1 is sending on isochronous channel 6, with zero length packets and only
headers. Because channel 6 uses a single descriptor per packet, the skip branch is equal to the normal next packet branch.
Context 2 is sending on isochronous channel 42, with each skip branch pointing to itself. If a cycle is lost, channels 6 and 9
will advance to the next packet, while channel 42 will fall behind by one packet, without skipping any packets.

For every cycle, the IT DMA controller shall process each running context in order, from the lowest numbered context
through the highest numbered context. For each cycle, the IT DMA controller will complete one descriptor block for each
active IT DMA context. Once a packet has been transferred into the transmit FIFO, the packet is considered sent even though
it may not have been transmitted yet on the 1394 wire.

In the case of an underrun while the IT DMA controller is processing a context, the IT DMA controller shall continue
through its list of active contexts taking the skip branch address for each of the remaining contexts.

Figure 9-8 – IT DMA summary
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 The Host Controller is permitted to work up to two cycles ahead of the current cycle time. The result is that it's possible for
data for a 1394 cycle to be put into the FIFO long before it is sent on the bus. This in effect creates a time decoupling of the
host side (input) of the FIFO from the link side (output) of the FIFO.

 Since the host side and the link side are not time synchronized, the host side may have its own cycle timer. This keeps track
of the cycle number for which data is being put into the FIFO. It is not the same cycle timer that the link side uses. When the
Host Controller is initialized, the timers are set to the same value and then the host side can start putting things into the FIFO.
Whenever the difference between the host side cycle time and the link side cycle time is less than two, the host can start
putting packets into the FIFO.

 By working up to two cycles ahead it's possible for two 1394 cycles worth of packets to be in the FIFO at the same time. To
convey to the link side where the 1394 cycle boundary is between the packets, the host side puts a delimiter into the FIFO
each time processing is completed for all contexts for a cycle. When a cycle start appears on the 1394 bus, the link starts

taking packets out of the FIFO and sends the data on the bus until the link reaches the delimiter.

 The IT DMA controller can send multiple packets (multiple isochronous channels) in each isochronous cycle. Because
isochronous cycles can be lost, the IT DMA is organized so that one cycle's worth of packets can be skipped, if necessary, to
catch up. The loss of an isochronous cycle is usually uncommon, and typically results from a bus reset.

 If isochronous cycles were lost, and no corrective action was taken, the transmitter would gradually fall behind, sending each
packet some number of cycles after the transmission time intended by software.

 In order to permit the transmitter to avoid falling behind, each packet in an IT DMA context program contains a skip branch
address. Any time the IT DMA wants to correct for a cycle loss, it will follow this branch instead of transmitting the packet.
For each cycle's worth of packets (descriptor blocks), the IT DMA will either put all of the packets into the FIFO and
advance to the next descriptor block pointed to by branchAddress or will not put any packets into the FIFO and will advance
to the next descriptor block pointed to by skipAddress. SkipAddress is used for any condition in which the IT DMA cannot
acquire the bus to transmit all packets for a cycle within that cycle.

 If an IT DMA context performs skip processing, the context shall generate an IsochTx interrupt if the ‘i' field of the first
descriptor in the skipped descriptor block is set as 2'b11. This allows software to keep track of completed and skipped
descriptor blocks.

 Software can use the skip branch in at least four ways. 1) Branching to the next packet will cause the IT DMA to skip packets
to recover from cycle loss. 2) Branching to the same packet will cause the IT DMA to fall behind (on that channel only)

9.3.2 Prefetching IT Packets

9.3.3 Isochronous Transmit Cycle Loss
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without skipping any packets due to cycle loss. 3) Branching to an alternate context program can allow the generation of an
interrupt, and the possible early completion of transmission. 4) Stopping the IT DMA context program due to cycle loss.
Software can use the third and fourth methods to cease transmission on cycle loss in the application-specific case that the
receiver cannot tolerate either late or lost packets.

 Because the Host Controller will generally load isochronous transmit packets into a FIFO in advance of transmission, some
packets may be considered complete when cycle loss is detected, even though they have not yet left the transmit FIFO. In this
situation, the Host Controller will hold those packets in the FIFO until they can be transmitted, and will then complete the
transmission of each context packet that had been intended to go out in the same cycle. The Host Controller will then apply
the skip branching on the packets for the next cycle (the first cycle for which no transmission has been performed). If a
context in the IT DMA is arranged to skip packets on cycle loss, the packet skipped will be the one scheduled for the cycle
following the cycle that was lost. If the Host Controller preloads more than one cycle's worth of packets, the skip may be
delayed by a similar number of cycles, so that the transmit FIFO can empty normally, without being flushed.

 The illustration in Figure 9-9 shows how each of these cases works. In this example, the IT DMA attempts to keep two cycles
ahead of the bus. In other words, it tries to have two complete cycles in the transmit FIFO (if they will fit) whenever possible.
Context A illustrates case 1 (above), where the skip branch is chosen so that packets are skipped. Note that because of the
FIFO preload, the two packets skipped on Context A (A4 and A5) follow a delayed packet (A3) that was already in the FIFO.
While it might have been possible to skip only one packet if the FIFO was flushed, it would be much harder for the Host
Controller to have packet A5 ready in time to send it on cycle 6. Context B illustrates case 2, where packets are not skipped.
While context A loses two packets, context B instead falls two cycles behind. Context C illustrates case 3, where
transmission ends in response to a detected cycle loss. Packets C2 and C3 were already in the FIFO, so they are transmitted,
followed by the end-of-program packet Cx. The descriptor block for packet Cx loops to itself in case additional cycles are
lost before Cx is sent. This loop guarantees that Cx will be sent before the program ends. Context D illustrates case 4, where
transmission ends in response to a detected cycle loss without an end-of-program packet. The skip address indicates the end

of list (Z=0) and no more packets are loaded into the FIFO upon detection of cycle loss.

 A skip processing overflow occurs when recurring cycle skip conditions occur and the Host Controller cannot record the
number of cycle skips necessary to catch up. Open HCI implementations shall provide for at least three outstanding skip
events before a skip processing overflow may occur. When a skip processing overflow occurs all IT DMA contexts with
ContextControl.run set shall set ContextControl.dead and IntEvent.unrecoverableError (see section 9.5.3), and shall set
ContextControl.eventcode status to evt_timeout.

 To recover from a skip processing overflow software shall clear ContextControl.run for all IT DMA contexts with
ContextControl.run set, and verify these contexts are inactive before restarting any IT DMA contexts.

 In these examples, the packets that are “in the FIFO” assume an infinitely large transmit FIFO. The Host Controller will
transmit packets as shown, even if they are too big to actually fit into the FIFO.

9.3.4 Skip Processing Overflow



Isochronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.12 Printed 7/18/01

Copyright   1996-2000 2001.  All rights reserved. Page 14

If a cycle loss is detected while the IT DMA is mid packet, that context's descriptor block will not branch to the skipAddress,

but will advance to the next descriptor block.

 If there is a FIFO underrun while processing an isochronous context, then the following shall occur:

 ! The packet that underran is lost.
 ! The context with the underrun

 1) does not write status to the descriptor block for to the underran packet, and
 2) advances processing to the skipAddress contained in the descriptor block for the underrun packet.

 ! Any contexts remaining to be processed for the now lost cycle will be processed by advancing to the next descriptor
block pointed to by skipAddress

Figure 9-9 – Isochronous transmit cycle loss example
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 ! Any of the contexts that take the skipAddress as a result of the underrun will generate an IsochTx interrupt if the ‘i' field
in the first descriptor of the skipped descriptor block is set to 2'b11

 ! The contexts shall be processed normally in the isochronous cycle that follows the underrun.

 All actions to recover from the FIFO underrun shall be executed immediately after the underrun, and skip processing will

disrupt a minimum number of contexts.

 The number of supported isochronous transmit DMA contexts may vary for 1394 Open HCI implementations from a
minimum of four to a maximum of 32. Software can determine the number of supported IT DMA contexts by writing
32'hFFFF_FFFF to isoXmitIntMask register (see section 6.3.1), and then reading it back. Bits returned as 1's indicate
supported contexts, and bits returned as 0's indicate unsupported/unimplemented contexts.

9.4 Appending to an IT DMA Context Program

 As described in Section 3.2.1.2, “Appending to Running List,” software may freely append to a context program without
knowledge of where the controller is in processing the list of descriptor blocks. Unlike other DMA contexts, the IT DMA
contexts can have two pointers that may require updating in the known last descriptor block; the skipAddress and the
branchAddress. When an IT context has reached the end of its context program and active is 0, setting wake will result in
using the descriptor (not descriptor block) which had Z=0 and will use the provided address, be it a skip or branch, for
retrieving the next descriptor block.

9.5 IT Interrupts

 Each of the possible 32 isochronous transmit contexts can generate an interrupt, so each IT context has a bit in the
isoXmitIntEvent register. Software can enable interrupts on a per-context basis by setting the corresponding isoXmitMask bit
to one.

 To efficiently handle interrupts which could conceivably be generated from 32 different contexts in close proximity to one
another, there is a single bit for all IT DMA contexts in the Host Controller IntEvent register. This bit signifies that at least
one but potentially several IT DMA contexts attempted to generate an interrupt. Software can read the isoXmitIntEvent

register to find out which context(s) are involved. For more information on the isoXmitIntEvent register, see section 6.3.1.

 When the IntEvent.cycleInconsistent condition occurs (table 6-1), the IT DMA controller shall continue processing running
contexts normally, with the exception that contexts with the ContextControl.cycleMatchEnable bit set will remain inactive
and cycleMatch processing shall be, in effect, disabled. To re-enable cycleMatch processing, software must first stop the IT
contexts for which cycleMatch is enabled (by clearing ContextControl.run to 0 and waiting for ContextControl.active to go to
0), then must clear the IntEvent.cycleInconsistent interrupt. The stopped IT contexts may then be started, but software should

9.3.6 Determining the number of implemented IT DMA contexts

9.5.1 cycleInconsistent Interrupt
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not schedule any transmits to occur for these contexts for at least two cycles immediately following the clearing of the

interrupt condition.

 Bus reset does not affect isochronous transmit.

 The IT DMA context shall set ContextControl.dead, set ContextControl.eventcode to evt_timeout, and generate and unre-
coverableError interrupt event when a skip processing overflow occurs as described in section 9.3.4.

9.6 IT Data Format

 An isochronous transmit packet consists of two header quadlets (as specified in either the OUTPUT_MORE-Immediate or
OUTPUT_LAST-Immediate descriptor) and an optional data payload. The data payload in host memory is not required to be
aligned on a quadlet boundary. Padding is added by the Host Controller if needed. The format is as follows.

Note:  the figure below is a captured image.  It will have to be replaced completely in order to insert the
betaFrame field as bit 20.

9.5.2 busReset Interrupt

9.5.3 UnrecoverableError Interrupt
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Table 9-8 – Isochronous transmit fields
Field Bits Description
betaFrame 1 Indicates  that the link shall make a Beta mode request to the PHY.  This bit should

only be set if software has determined that all connections in the path to the addressed
node are running in Beta mode.

spd 3 This field indicates the speed at which this packet is to be transmitted. 3'b000 = 100
Mbits/sec, 3'b001 = 200 Mbits/sec, 3'b010 = 400 Mbits/sec, 3'b011 = 800 Mbits/sec,
3'b100 = 1600 Mbits/sec and 3'b101 = 3200 Mbits/sec.  All other values are reserved.

tag 2 The data format of the isochronous data (see IEEE 1394 specifications)
chanNum 6 The channel number this data is associated with.
tcode 4 The transaction code for this packet.
sy 4 Transaction layer specific synchronization bits.
dataLength 16 Indicates the number of bytes in this packet.
isochronous data The data to be sent with this packet. The first byte of data must appear in the leftmost

byte of the first quadlet of this field. The last quadlet should be padded with zeroes, if
necessary.

padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the end of
the packet to guarantee that a whole number of quadlets is sent.

Note that packets to go out over the 1394 wire are constructed from this Host Controller internal format, and are not sent in
the exact order as shown above. For example, spd, shown in the first quadlet, is not transmitted at all as part of the
isochronous packet header.

Figure 9-10 –  Isochronous transmit format
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10 Isochronous Receive DMA

 The Isochronous Receive DMA (IR DMA) controller has a required minimum of four and an implementation maximum of
32 isochronous receive DMA contexts. Each context is controlled by a DMA context program. One single IR DMA context
can receive packets from multiple isochronous channels, and the remaining DMA contexts can each receive packets from a
single isochronous channel. IR DMA contexts can receive exactly one packet per buffer ("packet-per-buffer" mode),
concatenate packets into a stream that completely fills each of a series of buffers ("buffer-fill" mode), or concatenate a first
portion of payload of each packet into one series of buffers and a second portion of payload into another separate series of
buffers ("dual-buffer" mode). Packets may be received with or without isochronous packet headers and time-stamps.

10.1  IR DMA Context Programs

 For isochronous receive DMA, a context program is a list of DMA descriptors used to identify buffers in host memory into

which the Host Controller places received isochronous packets.

 There are two kinds of descriptor commands available in the packet-per-buffer and buffer-fill modes: INPUT_MORE and
INPUT_LAST. These descriptors are 16 bytes in length and shall be aligned on a 16 byte boundary.

Table 10-1 – INPUT_MORE/INPUT_LAST descriptor element summary
Element Bits Description
cmd 4 Set to 4'h2 for INPUT_MORE, or set to 4'h3 for INPUT_LAST.

INPUT_MORE is required for receiving packets in buffer-fill mode (see
section 10.2.1), and may also be used in packet-per-buffer mode.
INPUT_LAST is required for receiving packets in packet-per-buffer mode (see
section 10.2.2), and shall be the final descriptor in a descriptor block. It is not permitted
in buffer-fill mode.

s 1 Used with packet-per-buffer mode only (see section 10.2.2). If set to one, xferStatus
and resCount will be updated upon descriptor completion. If set to zero, neither field is
updated. Assumed to be one for buffer-fill mode.

10.1.1 Buffer-Fill and Packet-per-Buffer Descriptors

Figure 10-1 – INPUT_MORE/INPUT_LAST descriptor format
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key 3 This field shall be set to 3'b0.
i 2 Interrupt control. Valid values are 2'b11 to generate an IsochRx interrupt when the

descriptor is completed (see section 6.1), or 2'b00 for no interrupt. The descriptor is
completed in buffer-fill when resCount is written zero by the Host Controller, and is
completed for packet-per-buffer when the residual count is updated. Behavior is
unspecified for 2'b01 and 2'b10. In packet-per-buffer mode (see section 10.2.2),
software shall set i to 0 in INPUT_MORE descriptors and hardware may ignore this
field.

b 2 Branch control. Valid values are 2'b11 to branch to branchAddress, and 2'b00 not to
branch. Behavior is unspecified for 2'b01 and 2'b10.
For buffer-fill mode (see section 10.2.1), this field shall always be set to 2'b11.
For packet-per-buffer mode (see section 10.2.2), this field shall be 2'b00 for
INPUT_MORE commands and 2'b11 for INPUT_LAST commands.

w 2 Wait control. Valid values are 2'b11 to wait for a packet with a sync field which
matches the sync specified in the context's IRContextMatch register (see section 10.3),
or 2'b00 not to wait.
For packet-per-buffer mode, 2'b11 can only be used in the first descriptor of a
descriptor block.
For buffer-fill mode a w of 2'b11 affects all packets received into the buffer - the wait
condition will apply the sync match requirement to each packet to be received into the
indicated buffer and not just to the first packet. If needed, the w field should be set to
2'b11 for only the first descriptor in a buffer-fill context program.
Note that all packets are filtered on the IRContextMatch tag values regardless of the
value of this (w) field. Behavior is unspecified for 2'b01 and 2'b10.

reqCount 16 Request count: The size of the input buffer in bytes.
dataAddress 32 Address of receive buffer. Any receive buffer which will contain one or more packet

headers shall have a quadlet aligned dataAddress. Buffers to receive data only (no
headers) may have a byte aligned dataAddress.

branchAddress 28 16-byte aligned address of the next descriptor. This field is not used for INPUT_MORE
commands in packet-per-buffer mode.

Z 4 For buffer-fill mode (see section 10.2.1), Z shall be either 1 to indicate the
branchAddress is a valid address for the next INPUT_MORE, or 0 to indicate this
descriptor is the end of the context program.
For packet-per-buffer mode (see section 10.2.2), if the command is INPUT_LAST, Z
may be a value from 1 to 8 to indicate the number of descriptors in the next descriptor
block, or 0 to indicate the end of the context program. If the command is
INPUT_MORE, then Z is not used.

xferStatus 16 Composed of 16-bits from ContextControl[15:0].
For buffer-fill mode, xferStatus is written when resCount is updated.
For packet-per-buffer mode, xferStatus is written after the descriptor is processed if s =
1.

resCount 16 Residual count: The number of bytes remaining in the dataAddress buffer (out of a
maximum of reqCount). Written if in packet-per-buffer mode and s = 1, or each time a
packet is received in buffer-fill mode. For further details on when resCount is updated
in buffer-fill mode, see section 10.2.1.

 There is only one type of descriptor used in dual-buffer mode, and this is referred to as the DUALBUFFER descriptor. This
descriptor is 32-bytes in length, and shall be aligned on a 16 byte boundary.

10.1.2 Dual-Buffer Descriptor
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 Since DUALBUFFER is the only descriptor type used in dual-buffer mode, the typical descriptor cmd field is reserved for
future use. Refer to section 10.2.3 for details on dual-buffer mode processing.

Figure 10-2 – DUALBUFFER descriptor format

Table 10-2 – DUALBUFFER descriptor element summary
Element Bits Description
s 1 Status control. This bit shall be set to one.
key 3 This field shall be set to 3'b0.
i 2 Interrupt control. Valid values are 2'b11 to generate an IsochRx interrupt when the

descriptor is completed (see section 6.1), or 2'b00 for no interrupt. The DUALBUFFER
descriptor is complete when either the firstBuffer or the secondBuffer is filled and
firstResCount or secondResCount is written zero by the Host Controller. Behavior is
unspecified when this field is set to either for 2'b01 or 2'b10.

b 2 Branch control. This field shall be set to 2'b11.
w 2 Wait control. Valid values are 2'b11 to wait for a packet with a sync field which matches

the sync specified in the context's IRContextMatch register (see section 10.3), or 2'b00
not to wait. When set to 2'b11, the wait condition will apply the sync match requirement
to each packet to be received into the indicated buffers and not just to the first packet. If
needed, the w field should be set to 2'b11 for only the first descriptor in a dual-buffer
mode context program.
Note that all packets are filtered on the IRContextMatch tag values regardless of the
value of this (w) field. Behavior is unspecified for 2'b01 and 2'b10.

firstSize 16 First size. This field specifies the fixed length in bytes of the first data information in
each packet payload to stream into the buffer pointed to by firstBuffer and shall be a
multiple of four bytes.

firstReqCount 16 First data request count. Specifies the size of the buffer in bytes pointed to by firstBuffer
and shall be a multiple of firstSize.

secondReqCount 16 Second data request count. Specifies the size of the buffer in bytes pointed to by second-
Buffer.

branchAddress 28 16-byte aligned address of the next descriptor when Z is non-zero.
Z 4 This field shall be either set to 4'h2 to indicate the branchAddress is a valid address for

the next descriptor, or 4'h0 to indicate this descriptor is the end of the context program.
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firstResCount 16 First buffer residual count. Software shall initialize this field to the same value as that
programmed in firstReqCount. Hardware shall update this field with the current first data
buffer residual count in bytes after each packet is successfully received. The Host Con-
troller shall update firstResCount and back packets out of the firstBuffer according to the
procedure described in section 10.2.1 for the buffer-fill receive mode.

secondResCount 16 Second buffer residual count. Software shall initialize this field to the same value as that
programmed in secondReqCount. Hardware shall update this field with the current
second data buffer residual count in bytes after each packet is successfully received. The
Host Controller shall update secondResCount and back packets out of the secondBuffer
according to the procedure described in section 10.2.1 for the buffer-fill receive mode.

firstBuffer 32 First buffer pointer. This field specifies the physical address of the start of the first buffer
and shall be quadlet aligned.

secondBuffer 32 Second buffer pointer. This field specifies the physical address of the start of the second
buffer.

 The Z value is used by the Host Controller to fetch multiple command descriptors at once, for improved efficiency. The
contiguous descriptors described by a Z value are called a descriptor block. The following table summarizes all legal Z
values:

Table 10-3 – Z value encoding
Z value Use
0 Indicates that the current descriptor is the last descriptor in the context program.
1-8 Indicates that one to eight 16-byte aligned blocks starting at descriptorAddress are

physically contiguous.
9-15 reserved

All IR DMA context programs shall indicate the end of the program by using a command descriptor with a b value of 2'b11
(branch always) and a Z value of 0. A context program can be appended to while the DMA runs, even if the DMA has
already reached the last descriptor. Section 3.2.1.2 describes how to append to a context program.

When an IR DMA context is running and/or active, software shall not modify any command descriptors within the context
program with the exception of the last command descriptor (the one descriptor in a program with b=2'b11 and Z=4'h0). The
last command descriptor may only be modified according to the steps described in section 3.2.1.2.

10.1.3 Descriptor Z Values
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10.2  Receive Modes

 The Host Controller can write isochronous receive packets into host memory buffers in one of three ways. It can place them

using either buffer-fill mode, packet-per-buffer mode, or dual-buffer mode.

 In bufferFill mode, all received packets are concatenated into a contiguous stream of data. This data is then metered out into
buffers described by a DMA context program, filling each buffer completely. Packets may straddle multiple buffers in this
mode (see packet 2 in the illustration below).

A context program for an isochronous receive context in buffer-fill mode consists of a list of independent INPUT_MORE
descriptors, each branching to the next descriptor in the list. Since each descriptor shall always branch to the subsequent one,
the b field shall always be set to 2'b11 to indicate a branch. If a buffer-fill mode INPUT_MORE descriptor is not the last
descriptor in the list, its Z value shall be set to 1 to instruct the Host Controller to fetch the next single descriptor. If it is the
last one in the list, Z shall be set to 0. Also, to ensure an accurate resCount value software shall initialize resCount to the
value of reqCount.

As depicted above, it is possible for a received packet to straddle multiple buffers. To ensure that the receive buffers for a
context remain parsable, hardware shall follow the following procedure.

1) After filling to the end of a buffer with a partial packet, advance to the next descriptor block and obtain the next
buffer (dataAddress), retaining all state for the first buffer as well as for the new buffer.

2) Continue writing packet bytes into the subsequent buffer(s). If the end of a buffer is reached, advance to the next
buffer without updating xferStatus and retaining only cummulative interrupt state (section 6.4.1). Write the
remaining packet bytes into the final packet buffer.

3) If there is no data error: a) conditionally write the trailer quadlet into the last buffer, b) update xferStatus and
resCount into the final buffer's descriptor, and c) update xferStatus and resCount into the first buffer's

10.2.1 Buffer Fill Mode

Figure 10-3 – IR Buffer Fill Mode
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descriptor. At that point the previous state of the first buffer is no longer needed and the first buffer's descriptor
is completed.

4) If there is an error, then the packet shall be ‘backed-out' by reverting back to the previous state (as saved earlier).
XferStatus and resCount are not updated for either descriptor.

By following these steps, the IR context buffers remain intact and can be parsed. Since interim buffers (those containing an
inner portion of one packet) will not have their status updated, software shall only use resCount values when the
corresponding xferStatus indicates the active bit is set to one. It follows from this that if the xferStatus.active bit is set in a
descriptor, then all prior descriptors have been filled.

For information on the effect of a host bus error on an IR DMA context in buffer-fill mode, refer to section 13.2.6.

 In packet-per-buffer mode, each received packet is placed in the buffer(s) described by one descriptor block. Any leftover
bytes are discarded, and packets never straddle multiple descriptor blocks. Both INPUT_MORE and INPUT_LAST are
allowed in packet-per-buffer mode. Each INPUT_LAST marks the end of a packet, though the final byte may have been used
up in a previous INPUT_MORE (see packet 2 in the illustration below). Each packet starts in an INPUT_* command that
follows an INPUT_LAST.

10.2.2 Packet-per-Buffer Mode
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Figure 10-4 – packet-per-buffer Receive Mode

 

A context program for an isochronous receive context in packet-per-buffer mode consists of a series of descriptor blocks.
Each descriptor block describes buffers that will receive one packet and shall contain a contiguous set of 0 to 7
INPUT_MORE descriptors, followed by one INPUT_LAST descriptor. This requirement permits the Host Controller to
prefetch all the descriptors for a packet, in order to avoid fetching additional descriptors during a packet transfer.
INPUT_MORE descriptors shall have the b field set to 2'b00 (never branch). INPUT_LAST descriptors shall have the b field
set to 2'b11 (always branch), and shall either have a valid address in branchAddress with a Z value of 1 to 8, or shall have a Z
value of 0 to indicate it's the last descriptor in the context program.

For information on the effect of a host bus error on an IR DMA context in packet-per-buffer mode, refer to section 13.2.6.

10.2.2.1 Command.xferStatus and Command.resCount updates

 In packet-per-buffer mode, when s=1 the xferStatus and resCount fields are updated only in the descriptor for the buffer
which receives the last byte of the packet. ResCount is only valid in a descriptor if the xferStatus field has the
ContextControl.active bit set. To obtain accurate values for xferStatus, software should initialize xferStatus to zero
(evt_no_status).

 In figure 10-4 above, there are 3 shaded xferStatus quadlets. The shaded quadlets are status fields that were never updated,
and the unshaded status quadlets reflect status fields that were updated. In the top descriptor block, the xferStatus quadlet in
the first descriptor was not written because packet 1 did not complete in the first descriptor's buffer. In the middle descriptor
block, the first descriptor was big enough to hold packet 2 completely. Since the first descriptor's buffer received the last byte
of packet 2, the first descriptor's status was written, and the second descriptor's status is ignored. Although the
OUTPUTINPUT_LAST's status is ignored in this example, its i bit is used to determine whether or not an interrupt is
triggered for this descriptor block.

 If a descriptor block describes buffer space that cannot fit an entire packet (including header if isochHeader mode is enabled),
then the overflow bytes are discarded. When this occurs, xferStatus.ack will be set to evt_long_packet.
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 Dual-buffer mode is selected by setting the ContextControl.dualBufferMode bit to one before starting an isochronous receive
context. When ContextControl.dualBufferMode is set to one, the ContextControl.multiChanMode and Context-
Control.bufferFill bits shall be programmed to zero.

 When an isochronous receive context is in dual-buffer mode, all received packets are viewed as containing a first portion of
the payload followed by a second portion. This view of isochronous packet data aligns with several protocols utilizing
isochronous services.

 The dual-buffer mode operations are similar to buffer-fill mode, but provide two separate series of buffers to stream
isochronous packet data: firstBuffer series and secondBuffer series. The Host Controller separates the first portion from the
second portion of packet payload per the firstSize field of the DUALBUFFER descriptor. The first portions of received
packets are concatenated into a contiguous stream of data and metered out into the firstBuffer series. The second portion of
received packets are concatenated into a contiguous stream of data and metered out into the secondBuffer series. The
firstBuffer and secondBuffer series are described by the DUALBUFFER descriptors.

 The data formats for dual-buffer mode are described in section 10.6.2. The isochronous header and trailer shall be part of the
firstBuffer series and shall not be presented to the secondBuffer series if ContextControl.isochHeader is set. To ensure that
the header and trailer information is not presented to the secondBuffer series, software shall set the firstSize field to at least
eight bytes when ContextControl.isochHeader is set.

 DUALBUFFER descriptors shall be retired when either the firstBuffer or secondBuffer indicated by the descriptor has been
filled by the Host Controller and a residual count of zero has been written to either firstResCount or secondResCount.
FirstBuffer data shall not span a buffer pointed to by a DUALBUFFER descriptor. Software shall set up first data buffers in
multiples of firstSize (including header and trailer quadlets if ContextControl.isochHeader is set). Hardware shall subtract
firstSize from firstResCount for each packet received. This ensures that each packet's first portion begins at a predetermined
address in the firstBuffer.

 The diagram that follows illustrates a sequence of packets of varying length. The first DUALBUFFER descriptor is retired
after packet 2 second data payload has spanned the second data buffer, and the second descriptor is retired after packet 5 first
data completely fills the first data buffer. The Host Controller may receive packets with empty second portions (i.e. only first
data payload), and this is illustrated in the following diagram with packets 3 and 4.

10.2.3 Dual-Buffer Mode
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Figure 10-5 – IR Dual-Buffer Mode

The Host Controller shall support second data payload for a received packet to straddle multiple buffers. In dual-buffer mode,
the Host Controller shall follow the procedure for residual count update and ‘backing-out' described for buffer-fill mode in
section 10.2.1.

When the IR DMA context receives a packet while in dual-buffer mode, the Host Controller shall perform the following
actions:

• Store up to firstSize bytes from the beginning of the packet (including header & trailer quadlets if enabled) into the
firstBuffer starting at address (firstBuffer + firstReqCount - firstResCount);

• Store up to secondResCount bytes of packet data, if any, into the second buffer starting at address (secondBuffer +
secondReqCount - secondResCount). Pad bytes are not stored in the second buffer. Note: if there are additional bytes in
the packet, processing proceeds to the next DMA descriptor block to store data in its second buffer;

• If the packet was received without error then store the new values for firstResCount and secondResCount with a single
write. The new values are: firstResCount = firstResCount - firstSize; secondResCount = secondResCount -
bytes_stored_in_second_buffer. Note: if the packet data length causes an advance to a new descriptor block, then that
block's secondResCount is updated without changing its firstResCount, next the original descriptor block's
firstResCount and secondResCount are updated.

• Completes this descriptor block when firstResCount or secondResCount is written as zero

If a packet is received that is not large enough to fill firstSize bytes of the firstBuffer (including header & trailer quadlets if
enabled), the Host Controller shall treat the packet as if it exactly filled firstSize bytes of the firstBuffer, and shall update
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firstResCount accordingly. The buffer locations not filled by the short packet have undefined contents, and are not used to
store a subsequent packet.

For information on the effect of a host bus error on an IR DMA context in dual-buffer mode, refer to section 13.2.6.

10.3 IR Context Registers

 Each isochronous receive context consists of three registers: CommandPtr, IRContextControl, and IRContextMatch.
CommandPtr is used by software to tell the IR DMA controller where the DMA context program begins. IRContextControl is
used by software to control the context's behavior, and is used by hardware to indicate current status. IRContextMatch is used
to start on a specified cycle number and to filter received packets based on their tag bits and possibly sync bits. This section

describes each register in detail.

 The CommandPtr register specifies the address of the context program which shall be executed when a DMA context is
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address shall be zero. The four
least-significant bits of the CommandPtr register are used to encode a Z value that indicates how many physically contiguous
descriptors are pointed to by descriptorAddress. In buffer-fill mode, Z will be either one or zero. In packet-per-buffer mode,
Z will be from zero to eight.

 Note:  As explained in section 3.1.2, software can not read a meaningful value from the CommandPtr.Z field.  Refer to
section 3.1.2 for a full description of the CommandPtr register.

Open HCI Offset 11'h40C + (32 * n); where n = 0 for context 0, n = 1 for context 1, etc.

Figure 10-6 – CommandPtr register format

 The IR ContextControl register contains bits that control options, operational state, and status for the isochronous receive
DMA contexts. Software can set selected bits by writing ones to the corresponding bits in the ContextControlSet register.
Software can clear selected bits by writing ones to the corresponding bits in the ContextControlClear register. It is not
possible for software to set some bits and clear others in an atomic

10.3.1 CommandPtr

10.3.2 IR ContextControl register (set and clear)

2831 30 29 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DescriptorAddress[31:4] Z



Isochronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.12 Printed 7/18/01

Copyright   199

 The context control register used for isochronous receive DMA contexts is shown below. It includes several fields which
permit software to filter packets based on various combinations of fields within the isochronous packet header.

Open HCI Offset 11'h400 + (32 * n) - Set; where n = 0 for context 0, n = 1 for context 1, etc.
Open HCI Offset 11'h404 + (32 * n) - Clear

Field
bufferFill

isochHeader

cycleMatchEn

2831 30 29 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

run

event codeset

active
dead

wake

dualBufferMode
multiChanMode

cycleMatchEnable
isochHeader

l
bufferFil
6-2000 2001.  All rights reserved.                 Page 11

Figure 10-7 – IR DMA ContextControl (set and clear) register format

Table 10-4 – IR DMA ContextControl (set and clear) register description
rscu Reset Description
rsc undef When set to one, received packets are placed back-to-back to completely fill

each receive buffer (specified by an INPUT_MORE command). When clear,
each received packet is placed in a single buffer (described by zero to seven
INPUT_MORE commands followed by an INPUT_LAST command). If the
multiChanMode bit is set to one, this bit shall also be set to one.
The value of bufferFill shall not be changed while active or run is set to one.

rsc undef When set to one, received isochronous packets will include the complete 4-
byte isochronous packet header seen by the link layer. The end of the packet
will be marked with a xferStatus (bits 15:0 of this register) in the first doublet,
and a 16-bit timeStamp indicating the time of the most recently received (or
sent) cycleStart packet. When clear, the packet header is stripped off of
received isochronous packets. The packet header, if received, immediately
precedes the packet payload. Details are shown in section 10.6.
The value of isochHeader shall not be changed while active or run is set to
one.

able rscu undef In general, when set to one, the context will begin running only when the 15-
bit cycleMatch field in the contextMatch register matches the two bits of the
bus CycleTime.cycleSeconds and 13-bit CycleTime.cycleCount values. The
effects of this bit however are impacted by the values of other bits in this
register and are explained below. Once the context has become active,
hardware clears the cycleMatchEnable bit.
The value of cycleMatchEnable shall not be changed while active or run is set
to one.
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multiChanMode rsc undef When set to one, the corresponding isochronous receive DMA context will
receive packets for all isochronous channels enabled in the IRChannelMaskHi
and IRChannelMaskLo registers (see section 10.4.1.1). The isochronous
channel number specified in the IRDMA context match register is ignored.
When set to zero, the IRDMA context will receive packets for that single
channel.
Only one IRDMA context may use the IRChannelMask registers. If more than
one IRDMA context control register has the multiChanMode bit set, results are
undefined. Since the value of this bit is undefined after reset in all IR contexts,
software shall initialize this bit to zero in all contexts whether or not active to
maintain the exclusive nature of this bit. See section 10.4.3 for more
information.
The value of multiChanMode shall not be changed while active or run is set to
one.

dualBufferMode rsc undef When set to one, received packets shall be separated into first and second
payload and streamed independently to the firstBuffer series and secondBuffer
series as described in section 10.2.3. Both multiChanMode and bufferFill shall
be programmed to zero when this bit is set.
The value of dualBufferMode shall not be changed while active or run is set to
one.

run rscu 1'b0 Refer to section 3.1.1.1 and the description following this table for an
explanation of the ContextControl.run bit.

wake rsu undef Refer to section 3.1.1.2 for an explanation of the ContextControl.wake bit.
dead ru 1'b0 Refer to section 3.1.1.4 for an explanation of the ContextControl.dead bit.
active ru 1'b0 Refer to section 3.1.1.3 for an explanation of the ContextControl.active bit.
spd ru undef This field indicates the speed at which the packet was received. 3'b000 = 100

Mbits/sec, 3'b001 = 200 Mbits/sec, 3'b010 = 400 Mbits/sec, 3'b011 = 800
Mbits/sec, 3'b100 = 1600 Mbits/sec and 3'b101 = 3200 Mbits/sec.  All other
values are reserved.

event code ru undef  For bufferFill mode, possible values are: ack_complete, evt_descriptor_read,
evt_data_write and evt_unknown. Packets with data errors (either dataLength
mismatches or dataCRC errors) and packets for which a FIFO overrun
occurred are ‘backed-out' as described in section 10.2.1.
For packet-per-buffer mode, possible values are: ack_complete,
ack_data_error, evt_long_packet, evt_overrun, evt_descriptor_read,
evt_data_write and evt_unknown.
See Table 3-2, “Packet event codes,” for descriptions and values for these
codes.

The cycleMatchEnable bit is used to start an IR DMA context program on a specified cycle. When the cycleStart packet'’s
low order two bits of cycleSeconds and 13-bit cycleCount values match the 15-bit cycleMatch value (in the IR contextMatch
register), hardware sets the cycleMatchEnable bit to 0, sets the ContextControl.active bit to 1, and begins executing
descriptor blocks for the context. The transition of an IR DMA context to the active state, from the not-active state is
dependent upon the values of the run and cycleMatchEnable bits.

• If run transitions to 1 when cycleMatchEnable is 0, then the context will become active (active = 1).
• If both run and cycleMatchEnable are set to 1, then the context will become active when the cycleStart packet's low

order two bits of cycleSeconds and 13-bit cycleCount values match the 15-bit cycleMatch value indicated in the IR
contextMatch register.

• If both run and cycleMatchEnable are set to 1, and cycleMatchEnable is subsequently cleared, the context becomes
active.

• If both run and active are 1 (the context is active), and then cycleMatchEnable is set to 1, this will result in unspecified
behavior.
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10.3.3 Isochronous receive contextMatch register

 The IR ContextMatch register is used to start a context running on a specified cycle number, to filter incoming isochronous
packets based on tag values and to wait for packets with a specified sync value. All packets are checked for a matching tag
value, and a compare on sync is only performed when the descriptor's w field is set to 2'b11. See section 10.1 for proper
usage of the w field. This register should only be written when ContextControl.active is 0, otherwise unspecified behavior
will result.

Open HCI Offset 11'h410 + (32 * n); where n = 0 for context 0, n = 1 for context 1, etc.

Figure 10-8 – IR DMA ContextMatch register format

Table 10-5 –IR DMA ContextMatch register description

Field rwu Reset Description
tag3 rw undef If set, this context will match on isochronous receive packets with a tag field of

2'b11.
tag2 rw undef If set, this context will match on isochronous receive packets with a tag field of

2'b10.
tag1 rw undef If set, this context will match on isochronous receive packets with a tag field of

2'b01.
tag0 rw undef If set, this context will match on isochronous receive packets with a tag field of

2'b00.
cycleMatch rw undef Contains a 15-bit value, corresponding to the low order two bits of

cycleSeconds and the 13-bit cycleCount field in the cycleStart packet. If
ContextControl.cycleMatchEnable is set, then this IR DMA context will
become enabled for receives when the two low order bits of the bus
cycleTime.cycleSeconds and cycleTime.cycleCount values equal the
cycleMatch value.

sync rw undef This field contains the 4 bit field which is compared to the sync field of each
isochronous packet for this channel when the command descriptor's w field is
set to 2'b11.

channelNumbersync

tag1SyncFiltertag3
tag2

tag1
tag0

cycleMatch

2831 30 29 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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tag1SyncFilter rw
**

undef If set to one and the contextMatch.tag1 bit is set, then packets with tag 2'b01
shall only be accepted into the context if the two most-significant bits of the
packet's sync field are 2'b00. Packets with tag values other than 2'b01 shall be
filtered according to the tag0, tag2 and tag3 bits above with no additional
restrictions.
If clear, this context will match on isochronous receive packets as specified in
the
tag0-3 bits above with no additional restrictions.
** If LinkControl.tag1SyncFilterLock is set, then this bit is read only and is set
to one by the OHCI.

channelNumber rw undef This six bit field indicates the isochronous channel number for which this IR
DMA context will accept packets.

At least one tag bit shall be set to 1, otherwise no received packets will match and the context will, in effect, wait forever.

10.4  Isochronous receive DMA controller

 The following sections describe how software manages the multiple isochronous receive DMA contexts. Each context has a
CommandPtr pointing to the initial DMA descriptor, a ContextControl register, and a contextMatch register to start the
context based on a cycle number and to filter packets. The IR DMA controller has one set of IRMultiChanMask registers

used to specify a set of isochronous channels for the single isochronous context in multiChanMode.

 Any IR DMA context can receive packets from multiple isochronous channels per cycle by enabling ContextCon-
trol.multiChanMode and using the IRMultiChanMask registers. There is a single set of IRMultiChanMask registers available
in the IR DMA controller, and only one IR DMA context may be using them at any given time as determined by the setting
of ContextControl.multiChanMode bit (see section 10.3.2).

 A context to be enabled for multiChanMode, shall also be enabled for bufferFill and isochHeader modes. If multiChanMode
is enabled without bufferFill and isochHeader, the resulting behavior is undefined.

 If an IR DMA context is in multi-channel mode, therefore using the IRMultiChanMask registers, the isochronous channel
field in the IR DMA context Match register (section 10.3.3) is ignored.

10.4.1.1 IRMultiChanMask registers (set and clear)

 An isochronous channel mask is used to enable packet receives from up to 64 specified isochronous data channels. Software
enables receives for any number of isoch channels by writing ones to the corresponding bits in the IRMultiChanMaskHiSet
and IRMultiChanMaskLoSet addresses. To disable receives for any isoch channels, software writes ones to the corresponding
bits in the IRMultiChanMaskHiClear and IRMultiChanMaskLoClear addresses.

10.4.1 Isochronous receive multi-channel support
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 A read of each IRChanMask register shows which channels are enabled; a one for enabled, a zero for disabled. The
IRMultiChanMask registers are not changed by a bus reset. The state of these registers is undefined following a hard reset or
soft reset.

Open HCI Offset 11'h070 - Set
Open HCI Offset 11'h074 - Clear

Figure 10-9 –IRMultiChanMaskHi (set and clear) register

Open HCI Offset 11'h078 - Set
Open HCI Offset 11'h07C - Clear

Figure 10-10 – IRMultiChanMaskLo (set and clear) register

 

 Each isochronous receive DMA context can receive one packet per cycle from one isochronous data channel. Data chaining
across DMA context commands is supported when either the ContextControl.bufferFill or the ContextCon-
trol.dualBufferMode bits are set.

10.4.2 Isochronous receive single-channel support

2831 30 29 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

isoChannel3isoChannel28
isoChannel2
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isoChannel0

isoChannel29
isoChannel30

isoChannel31
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isoChannel34
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isoChannel32

isoChannel61
isoChannel62

isoChannel63
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 To configure a context to receive packets from an isochronous channel, write the channel number into the contextMatch
register's channelNumber field.

 To start a context on a particular cycle, write the starting cycle time into the ContextMatch register, and enable the
ContextControl.cycleMatchEnable and ContextControl.run bits. When the low order two bits of the bus
CycleTime.cycleSeconds and CycleTime.cycleCount values equal the ContextMatch.cycleMatch value, the IR DMA
controller will clear the ContextControl.cycleMatchEnable bit and the context will begin receiving packets. (see sections
10.3.2 and 10.3.3).

 To wait for a packet with specified sync value in the isochronous packet header, set the desired configuration in the sync field
of the ContextMatch register and set the DMA command descriptor's w (wait) field to 2'b11. When the IR DMA controller
detects a w field of 2'b11, it waits until a packet arrives matching the specified sync and directs it to the buffer identified in
the waiting descriptor's dataAddress field. Packets with the specified channel number and tag bits but which do not match the
specified sync are discarded.

 When an IR DMA context is stopped either because it reached the end of the context program or because the run bit is
cleared, some packets following the intended stop point may have already entered the receive FIFO. These packets will be

discarded when they reach the bottom of the FIFO, unless another IR DMA context is able to receive them.

 If more than one IR DMA context specifies receives for packets from the same isochronous channel, the context destination
for that channel's packets is undefined.

 If more than one IR DMA context has the ContextControl.multiChanMode bit set, then the context destination for
IRmultiChanMask packets is undefined.

 If an isochronous channel is specified both in a single channel context and in the multiChannel context, then the packet will

be routed to the multiChannel context and the single channel context shall remain active.

 The number of supported isochronous receive DMA contexts may vary for 1394 Open HCI implementations from a
minimum of four to a maximum of 32. Software can determine the number of supported IR DMA contexts by writing
32'hFFFF_FFFF to the isoRecvtIntMask register (see section 6.4.1), and then reading it back. Bits returned as 1's indicate
supported contexts, and bits returned as 0's indicate unsupported/unimplemented contexts.

10.5 IR Interrupts

10.4.3 Duplicate channels

10.4.4 Determining the number of implemented IR DMA contexts
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 Each of the possible 32 isochronous receive contexts can generate an interrupt, therefore each IR DMA context has a bit in
the isoRecvIntEvent register. Software can enable interrupts on a per-context basis by setting the corresponding
isoRecvIntMask bit to one.

 To efficiently handle interrupts which could conceivably be generated from 32 different contexts in close proximity to one
another, there is a single bit for all IR DMA contexts in the Host Controller IntEvent register. This bit signifies that at least
one but potentially several IR DMA contexts attempted to generate an interrupt. Software can read the isoRecvIntEvent

register to find out which context(s) are involved. For more information on the isoRecvIntEvent register, see section 6.4.

 When the IntEvent.cycleInconsistent condition occurs (table 6-1), the IR DMA controller shall continue processing running
contexts normally, with the exception that contexts with the ContextControl.cycleMatchEnable bit set will remain inactive
and cycleMatch processing shall be disabled. To re-enable cycleMatch processing, software shall first stop the IR contexts
for which cycleMatch is enabled (by clearing ContextControl.run to 0 and waiting for ContextControl.active to go to 0), then

shall clear the IntEvent.cycleInconsistent interrupt. The stopped IR contexts may then be started.

 Bus reset shall not affect isochronous receive contexts.

10.6 IR Data Formats

 The Host Controller shall only receive packets which have tcodes that are defined by an approved 1394 standard. packets
with undefined tcodes will be dropped.

 There are four formats for isochronous receive packets depending upon the setting of the ContextControl.isochHeader,
ContextControl.bufferFill, and ContextControl.dualBufferMode bits. If the ContextControl.isochHeader bit is zero, then only
the isochronous data without any padding, header quadlet or timestamp quadlet is put in the buffer.

Table 10-6 – Isochronous receive fields
Field Bits Description
dataLength 16 Indicates the number of bytes in this packet.
tag 2 The data format of the isochronous data (see IEEE 1394 specifications)
chanNum 6 The channel number this data is associated with.
tcode 4 The transaction code as received for this packet.
sy 4 Transaction layer specific synchronization bits.
isochronous data The data received with this packet. The first byte of data shall appear in the leftmost

byte of the first quadlet of this field. The last quadlet should be padded with zeroes, if
necessary.

10.5.1 cycleInconsistent Interrupt

10.5.2 busReset Interrupt
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padding If the dataLength mod 4 is not zero, then zero-value bytes have been added onto the
end of the packet to guarantee that a whole number of quadlets was sent. In three
formats, the pad bytes are stripped off the packet.

xferStatus 16 Contains bits [15:0] from the ContextControl register.
timeStamp 16 The time at which this packet was received into the link, specified by the three low

order bits of cycleSeconds, and the full 13-bits of cycleCount from the most recently
received (or sent) cycle start packet.

10.6.1.1 IR with header/trailer

 The format of an isochronous receive packet when ContextControl.bufferFill=1 and ContextControl.isochHeader=1 is shown
below.

10.6.1.2 IR without header/trailer

 The format of the isochronous receive packet when ContextControl.bufferFill=1 and ContextControl.isochHeader=0 is
shown below.

10.6.1 bufferFill mode formats

Figure 10-11 – Receive isochronous format in bufferFill mode with header/trailer

isochronous data

dataLength chanNum tcode sytag

padding (if needed)

xferStatus timeStamp

31 30 29 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 028
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10.6.2.1 IR with header/trailer

 The format of an isochronous receive packet when ContextControl.isochHeader=1 and either ContextControl.bufferFill=0 or
ContextControl.dualBufferMode=1 is shown below. Note that although xferStatus may be written as a side-effect of writing
timeStamp, xferStatus does not contain valid or otherwise useful values

.

10.6.2.2 IR without header/trailer

 The format of the isochronous receive packet when ContextControl.bufferFill=0 or ContextControl.dualBufferMode=1 and
ContextControl.isochHeader=0 is shown below.

isochronous data

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

Padding (if any) is stripped from the packet in this mode.

Data is appended to other byte-aligned data (if any) in the bufferFill mode buffer

Figure 10-12 – Receive isochronous format in bufferFill mode without header/trailer

10.6.2 Packet-per-buffer mode and dual-buffer mode formats

isochronous data

dataLength

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

chanNum tcode sytag

INVALID timeStamp

Padding (if any) is stripped from the packet in this mode.

If headers & data are in the same buffer, then the data shall be quadlet aligned.
If headers are in a separate buffer from the data,

then the data buffer may be byte aligned.

Figure 10-13 – Receive isochronous format in packet-per-buffer or dual-buffer mode with header/trailer
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isochronous data

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

Padding (if any) is stripped from the packet in this mode.

Buffers with data only (no headers), like this, may be byte aligned

Figure 10-14 – Receive isochronous format in packet-per-buffer and dual-buffer mode without
header/trailer
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11 Self ID Receive

 The purpose of the SelfID DMA controller is to receive self ID packets during the bus initialization process. The self ID
packets are received using a special pair of DMA registers, the Self ID Buffer Pointer register and the Self ID Count register.

11.1 Self ID Buffer Pointer Register

 The Self ID Buffer Pointer register points to the buffer the SelfID packets will be DMA'ed into during bus initialization.

Table 11-1 – Self ID Buffer Pointer register
field name rwu reset description
selfIDBufferPtr rw undef Contains the 2K-byte aligned base address of the buffer in host memory where

received self-ID packets are stored.

11.2 Self ID Count Register

 This register keeps a count of the number of times the bus self ID process has occurred, flags self ID packet errors and keeps
a count of the amount of self ID data in the Self ID buffer.

Open HCI Offset 11'h068

Figure 11-2 – Self ID Count register

Table 11-2 – Self ID Count register
Field rwu Reset Description
selfIDError ru undef When this bit is one, an error was detected during the most recent self ID packet

reception. The contents of the self ID buffer are undefined. This bit is cleared after
a self ID reception in which no errors are detected. Note that an error can be a
hardware error or a host bus write error.

Open HCI Offset 11'h064

Figure 11-1 – Self ID Buffer Pointer register

9 831 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 10 7 6 5 4 3 2 1 0

selfIDBufferPtr

selfIDError

9 831 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 10 7 6 5 4 3 2 1 0

SefIDSize (quadlets)selfIDGeneration
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selfIDGeneration ru undef The value in this field increments each time a bus reset is detected. This field rolls
over to 0 after reaching 255.

selfIDSize ru undef This field indicates the number of quadlets that have been written into the selfID
buffer for the current selfIDGeneration. This includes the header quadlet and the
selfID data.

The self ID stream can be (63 devices) * (4 packets/device) * (2 quadlets/packet) = 504 quadlets. If a bus reset is received
part way through a self ID sequence, the old data will be overwritten.

To keep things straight the host controller and software shall each access the Self-ID receive buffer in a complementary
manner. The host controller shall only update the first quadlet of the Self-ID receive buffer after it has written all self ID
packets for given self ID phase. The host controller shall ensure that the generation counter value written into the first quadlet
of the Self-ID receive buffer is consistent with the bus reset associated with the self ID packets just written into the Self-ID
receive buffer. Thus, even if several bus resets occur in quick succession causing multiple streams of Self ID packets to be
resident in a receive FIFO, the host controller shall not write the same value into the selfIDGeneration field in the first
quadlet of the Self-ID receive buffer on successive updates. When the host controller has completed all pending updates to
the Self-ID receive buffer (without error) the SelfIDGeneration field values in the Self-ID receive buffer and the Self ID
Count register shall match. Software shall read the generation counter in memory, then the stream, then the SelfIDCount
register. If the selfIDGeneration field in the Self ID Count register matches the one in the Self-ID receive buffer, then the self
ID stream is consistent.

If the selfIDError flag is set, then there was either a hardware error in receiving the last self ID sequence or a host bus error
while writing to the host buffer, so the self ID data is not trustworthy. Any self ID data received after the error is flushed. If
more than 504 quadlets are received, the selfIDSize field is set to 9'h1FF and the selfIDError flag is set. (This is only possible
if > 63 nodes are on the bus... a gross error condition.)

The Host Controller does not verify the integrity of the self-ID packets and software is responsible for performing this
function (i.e., using the logical inverse quadlet).

11.3 Self-ID receive

 The self-ID receive format is shown below. The first quadlet contains the time stamp and the self ID generation number. The
remaining quadlets contain data that is received from the time a bus reset ends to the first subaction gap. This is the
concatenation of all the self-ID packets received. Note that the bit-inverted check quadlets are included in the FIFO and must
be checked by the application



Self ID Receive                                1394 Open Host Controller Interface Specification                                   Printed 07/18/01

Copyright   1996-2001.  All rights reserved.                                                                                                                                    Page 3

.
Table 11-3 – Self-ID receive fields

Field Description
selfIDGeneration The value in this field changes each time the first quadlet of the Self-ID receive buffer is

updated by the host controller. It is incremented for each self ID packet stream written to
the Self-ID receive buffer.

timeStamp The three low order bits from cycleTimer.cycleSeconds, and the full 13-bits of
cycleTimer.cycleCount at the time this status quadlet was generated.

self ID packet data The data received during the selfID process of the bus initialization phase. Note that each
selfID packet includes the data quadlet and inverted quadlet.

11.4 Enabling the SelfID DMA
 The RcvSelfID bit in the LinkControl register (see section 5.10, “LinkControl registers (set and clear),”) allows the receiver
to accept incoming self-identification packets. Before setting this bit, software shall ensure that the self ID buffer pointer
register contains a valid address and that the value of the selfIDGeneration field in the first quadlet of the self-ID receive
buffer is configured such that an accidental generation count match will not occur.

11.5 Interrupt Considerations for SelfID DMA

 IntEvent.SelfIDcomplete and IntEvent.selfIDComplete2 bits (section 6.1) are set after the host controller updates the first
quadlet of the Self-ID receive buffer. The IntEvent.selfIDComplete2 shall only be cleared through the IntEventClear register.

11.6 SelfIDs Received Outside of Bus Initialization

 SelfID packets received outside of the bus initialization self-ID phase are routed to the AR DMA Request context and use the
PHY packet receive format.

 

 

 

Figure 11-3 – Self-ID receive format

self ID packet data

selfIDGeneration

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

timeStamp
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12 Physical Requests

 When a block or quadlet read request or a block or quadlet write request is received, the 1394 Open HCI chip handles the
operation automatically without involving software if the offset address in the request packet header meets a specific set of
criteria listed below. Requests that do not meet these criteria are directed to the AR DMA Request context unless otherwise
specified. Host Controller registers which are written via physical access to the Host Controller will yield unspecified results.

 The 1394 Open HCI checks to see if the offset address in the request packet header is one of the following.

 a) If the offset falls within the physical range, then the offset address is used as the memory address for the block or
quadlet transaction. Physical range is defined by offsets inclusively between a lower bound of 48'h0 and an upper
bound of either the PhysicalUpperBound offset minus one (section 5.15), or 48'h0000_FFFF_FFFF if the
PhysicalUpperBound register is not implemented. If the high order 16-bits of the offset address is 16'h0000 and
PhysicalUpperBound is not implemented, then the lower 32 bits of the offset address are used as the memory address
for the block or quadlet transaction.

 Lock transactions and block transactions with a non-zero extended tcode are not supported in this address space,
instead they are diverted to the AR DMA Request context. For read requests, the information needed to formulate the
response packet is passed to the Physical Response Unit. Requests are only accepted if the source node ID of the
request has a corresponding bit in the Asynchronous Request Filter registers and Physical Request Filter
registers(section 5.14).

 b) If the offset address selects one of the following addresses, the physical request unit will directly handle quadlet
compare-swaps and quadlet reads. Other requests shall be sent an ack_type_error. (See section 5.5.1.)
 1) BUS_MANAGER_ID (48'hFFFFF000021C). Local register is BusManagerID.
 2) BANDWIDTH_AVAILABLE (48'hFFFFF0000220). Local register is BandwidthAvailable.
 3) CHANNELS_AVAILABLE_HI (48'hFFFFF0000224). Local register is ChannelsAvailableHi.
 4) CHANNELS_AVAILABLE_LO (48'hFFFFF0000228). Local register is ChannelsAvailableLo.

 c) If the offset address is one of the following addresses, the Physical Request controller shall directly handle quadlet
reads. If HCControl.BIBimageValid is set to one, block read requests shall be processed as described in section 5.5.6.
Other requests shall be sent an ack_type_error.
 1) Config ROM header (1st quadlet of the Config ROM) (48'hFFFFF0000400). Local register is

ConfigROMheader (section 5.5.2).
 2) Bus ID (1st quadlet of the Bus_Info_Block) (48'hFFFFF0000404). Local register is BusID (section 5.5.3).
 3) Bus options (2nd quadlet of the Bus_Info_Block) (48'hFFFFF0000408). Local register is BusOptions

(section 5.5.4).
 4) Global unique ID (3rd and 4th quadlets of the Bus_Info_Block) (48'hFFFFF000040C and 48'hFFFFF0000410).

Local registers are GlobalIDHi and GlobalIDLo (section 5.5.5).
 5) Configuration ROM (48'hFFFFF0000414 to 48'hFFFFF00007FF). Mapped by the ConfigROMmap register to a

1K byte block of system memory (section 5.5.6)

 When receiving a packet that is destined for the physical response unit with a valid header and a failed data CRC check or a
data_length error, the Host Controller responds with a “busy” acknowledgment (e.g. ack_busy_X if dual phase retry does not
apply).

 For information about ack codes for write requests, see section 3.3.2.
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12.1 Filtering Physical Requests

 Software can control from which nodes it will receive packets by utilizing the asynchronous filter registers. There are two
registers, one for filtering out all requests from a specified set of nodes (AsynchronousRequestFilter register) and one for
filtering out physical requests from a specified set of nodes (PhysicalRequestFilter register). The settings in both registers
have a direct impact on how the AR DMA Request context is used, e.g., disabling only physical receives from a node will
cause all request packets from that node to be routed to the AR DMA Request context. The usage and interrelationship
between these registers is fully described in section 5.14, “Asynchronous Request Filters.”

12.2 Posted Writes

 Write requests which are handled by the physical request controller may be acknowledged by the host controller with an
ack_complete before the data is actually written to system memory. This physical posted write condition is described in
section 3.3.3, “Posted Writes.” Information on host bus error handling of physical posted writes is provided in section 13.2.8, 
“Physical Posted Write Error.”

12.3 Physical Responses

 The response packet generated for a physical read, non-posted write, and lock request shall contain the transaction label as it
appeared in the request and the destination_ID as provided in the request's source_ID, and shall be transmitted at the speed at
which the request was received using the format of the request (Beta or legacy). The source bus ID in the response packet
shall be equal to the destination bus ID from the original request; this shall be either the local bus ID 10'h3FF or the
busNumber field in the Open HCI Node ID register.

 Unlike AR Response packets, physical responses do not track a SPLIT_TIMEOUT expiration time.

12.4 Physical Response Retries
 There is a separate nibble-wide MaxPhysRespRetries field in the ATRetries Register (see section 5.4) that tells the Physical
Response Unit how many times to attempt to retry the transmit operation for the response packet when an ack_busy* is re-
ceived from the target node. If the retry count expires, the packet is dropped and software is not notified.

12.5 Interrupt Considerations for Physical Requests

 Physical read request handling does not cause an interrupt to be generated under any circumstances. Physical write requests
will generate an interrupt when posted write processing yields an error. Lock requests to the serial bus registers will generate
an interrupt when the Host Controller is unable to deliver a lock response packet.

12.6 Bus Reset

 On a bus reset, all pending physical requests (those for which ack_pending was sent) shall be discarded. Following a bus
reset, only physical requests to the autonomous CSR resources (see section 5.5) can be handled immediately. Other physical
requests may be processed after software initializes the filter registers (section 5.14).
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13 Host Bus Errors

 Open HCI has three goals when dealing with host bus error conditions:

 1) continue transmission and/or reception on all contexts not involved in the error;
 2) provide information to software which is sufficient to allow recovery from the error when possible;
 3) provide a means of error recovery on a context other than a general chip reset.

13.1 Causes of Host Bus Errors

 Host bus errors can generally be classified as one of the following:

 1) addressing error (e.g., non-existent memory location)
 2) operation error (e.g., attempt to write to read-only memory)
 3) data transfer error (e.g., parity or unrecoverable ECC) and
 4) time out (e.g., reply on split transaction was not received in time).

 Each of these errors can occur at three identifiable stages in the processing of a descriptor:

 1) descriptor fetch,
 2) data transfer (read or write), and
 3) an optional descriptor status update.

 In general, the nature of the bus error is not as significant as the stage of descriptor processing in which it occurs. For
example, the difference between an addressing error and a data parity error is not significant to the error processing.

13.2 Host Controller Actions When Host Bus Error Occurs

 When a host bus error occurs, the Host Controller performs a defined set of actions for all context types. Additionally, there

are a set of actions that are performed that are dependent on the context type. The following sections outline these actions.

 When an error occurs during the reading of a descriptor or descriptor block, the behavior of the Host Controller shall be the
same for all but out-of-order pipelining AT contexts. The Host Controller shall set ContextControl.dead to one and
ContextControl.event to evt_descriptor_read to indicate that the descriptor fetch failed. The unrecoverable error IntEvent is
generated and the context's IntEvent is not set. Additionally, CommandPtr will be set to point to a descriptor within the
descriptor block in which the error occurred. Since the descriptor could not be read, its xferStatus and resCount will not be
written with current values, and software must refer to ContextControl.event for the status.

 For out-of-order pipelining AT contexts, CommandPtr points to the descriptor block furthest in the list that was fetched and
the descriptor read error may have occurred on any descriptor block before that pointed to by CommandPtr that has zero
status.

13.2.1 Descriptor Read Error
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 For any type of context, when the Host Controller encounters an error writing the status to a descriptor, it sets
ContextControl.dead. The values that would have been written to xferStatus of a descriptor are retained in ContextControl for
inspection by system software. The unrecoverable error IntEvent is generated and the context's IntEvent is not set regardless
of the setting of the interrupt (I) field in the descriptor. Additionally, in all but out-of-order pipelining AT contexts
CommandPtr shall be set to point to a descriptor within the descriptor block in which the error occurred. For out-of-order
pipelining AT contexts, CommandPtr points to the descriptor block furthest in the list that was fetched and the xferStatus

write error may have occurred on any descriptor block before that pointed to by CommandPtr that has zero status.

 For asynchronous request transmit, asynchronous response transmit and isochronous transmit the Host Controller handles
system data read errors in a similar manner. The Host Controller will not stop processing for the context. Instead, the event
code in the status of the OUTPUT_LAST* descriptor is set to indicate that there was an error and the nature of the error. The
indicated errors are evt_data_read or evt_underrun. If the error occurs before a packet's header is placed in the output FIFO,
the Host Controller can immediately abort the packet transfer, optionally set the descriptor status to evt_data_read or
evt_underrun and move on to the next descriptor block. If, however, the error occurs after the header has been placed in the
output FIFO, the Host Controller will stop placing data in the output FIFO. This will cause the Host Controller to send a
packet with a length that does not agree with the data_length field of the header. If the Host Controller receives an
ack_data_error or ack_busy* from the addressed node, then the Host Controller will substitute evt_data_read or evt_underrun
as appropriate. If the device returns anything other than ack_data_error or ack_busy*, then the Host Controller will store that
value in the status for the packet. It should be noted that this means that if the addressed node returns an ack_pending on a
block write, the error indication will be lost.

 If the packet was a broadcast write, an isochronous packet, or an asynchronous stream packet, no ack code is received from
any node. In this case, the Host Controller assumes that ack_data_error was received and proceeds as outlined above.

 Note: Underruns which occur due to host bus latency shall not be construed to be host bus data errors, and as a result such

asynchronous request and response packets may be retried as described in section 5.4.

 A data write error can occur when the Host Controller attempts to write to the address indicated in a STORE_VALUE
descriptor. This error is handled like a data read error with the exception that the event code is set to evt_data_write. The
Host Controller may not begin placing the packet associated with a STORE_VALUE into the output FIFO until the
STORE_VALUE operation is complete. This is to prevent the possibility of having multiple errors that cannot be properly
reported to system software.

13.2.2 xferStatus Write Error

13.2.3 Transmit Data Read Error

13.2.4 Isochronous Transmit Data Write Error
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 When a host bus error occurs while the Host Controller is attempting to write to either the request or response buffer, the
Host Controller will set the corresponding ContextControl.dead and set ContextControl.event to evt_data_write. The
unrecoverable error IntEvent is generated and the context's IntEvent is not set regardless of the setting of the interrupt (I) field
in the descriptor. CommandPtr.descriptorAddress will point to the descriptor that contained the buffer descriptor for the

memory address at which the error occurred. Any data in the input FIFO for the context is discarded.

 If a data write error occurs for a context that is in packet-per-buffer mode, the Host Controller shall set ContextControl.event
to evt_data_write and conditionally update xferStatus of the descriptor in which the error occurred. Any remaining data in the
input FIFO for the packet is discarded. The resCount value in a descriptor that has an error may not reflect the correct number
of data bytes successfully written to memory. ContextControl.dead shall not be set as a result of a data write error for a
context in packet-per-buffer mode.

 If a FIFO overrun occurs for a context that is in buffer-fill or dual-buffer mode, the packet shall be treated as if a data length
error had occurred and shall be ‘backed out' of the receive buffer (xferStatus and resCount not updated) and the remainder of
the packet shall be discarded from the input FIFO. If a data write error occurs for a context in buffer-fill or dual-buffer mode,
the Host Controller shall set ContextControl.dead to one and set ContextControl.event to evt_data_write. The unrecoverable
error IntEvent is generated and the context's IntEvent is not set regardless of the setting of the interrupt (I) field in the
descriptor. CommandPtr.descriptorAddress will point to the descriptor that contained the buffer descriptor for the memory

address at which the error occurred. Any data in the input FIFO for the context is discarded.

 When an external node does a physical access and the Host Controller's read of system memory fails, the Host Controller
shall return an error indication to the requester. The error indication is made by forming a response containing a response
code of resp_data_error or resp_address_error as appropriate or by truncating the response packet which forces a data_length
mismatch at the requester. If the device replies with ack_busy* the host shall retry the packet according to
ATRetries.maxPhysRespRetries. If the device replies with ack_data_error, the host controller shall not retry the response and

the transaction is complete.

 As described in section 3.3.3, the physical request controller and the asynchronous receive request context may acknowledge
a write request with ack_complete before the data is actually written to system memory. Since the sending node has been

13.2.5 Asynchronous Receive DMA Data Write Error

13.2.6 Isochronous Receive Data Write Error

13.2.7 Physical Read Error

13.2.8 Physical Posted Write Error
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notified that the action is complete, when the Host Controller cannot complete a posted write operation due to a host bus error
the system shall be notified so that software can recover.

 This section describes error reporting for physical posted write errors. Data write errors that occur when transferring posted
write requests from the asynchronous receive FIFO are handled differently than posted physical writes. Refer to
section 13.2.5 for more information.

 If an error occurs in writing a physical posted data packet, the Host Controller shall set the IntEvent.PostedWriteErr bit to
indicate that an error has occurred and the write shall remain pending. Software can then read the source node ID and offset
address from PostedWriteAddressLo and PostedWriteAddressHi and then clear IntEvent.PostedWriteErr. When software
clears IntEvent.PostedWriteErr, that write is no longer pending.

 A Host Controller implementation may support any number of physical posted writes. However, for each physical posted
write, there shall be an error reporting register to hold the packet's source node ID and offset address, if a physical posted
write fails.

 If the Host Controller has as many pending physical writes as it has reporting registers additional physical writes may not be
posted. Instead the Host Controller shall either return ack_busy*, or shall return ack_pending and later send a write response.

 Although the Host Controller may allow several pending writes, error reporting is through a single pair of software visible
registers. If multiple posted write failures have occurred, software will access them one at a time through the
PostedWriteAddress registers. When software clears IntEvent.PostedWriteErr, this is a signal to the Host Controller that
software has completed reading of the current contents of PostedWriteAddressLo/Hi and that the Host Controller can report
another error by again setting IntEvent.PostedWriteErr and presenting a new set of values when software reads
PostedWriteAddressLo/Hi.
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13.2.8.1 PostedWriteAddress Register (optional)

 If IntEvent.postedWriteErr is set, then these registers contain the 48 bits of the 1394 destination offset of the write request
that resulted in a host bus error.

Open HCI Offset 11'h03C

Figure 13-1 – PostedWriteAddressHi register

Open HCI Offset 11'h038

Field ru Reset Description
 sourceID ru undef The busNumber and nodeNumber of the node that issued the write request that was

posted and failed.
destinationOffsetHi ru undef The upper 16 bits of the 1394 destination offset of the write request that was posted

and failed.
destinationOffsetLo ru undef The low 32 bits of the 1394 destination offset of the write request that was posted and

failed.

The PostedWriteAddress register is a 64-bit register which indicates the bus and node numbers (source ID) of the node that
issued the write that failed, and the address that node attempted to access. The IntEvent.PostedWriteErr bit allows hardware
to generate an interrupt when a write fails.

The PostedWriteAddress registers point to a queue in the Host Controller. This queue is accessed by software through the
PostedWriteAddress registers. When a physical posted write fails, its address and node's source ID shall be placed in this
queue, and IntEvent.PostedWriteErr shall be set. In addition, that packet is removed from the FIFO. By removing the packet
from the FIFO, the Host Controller is not blocked from performing future transactions on the 1394 and host buses.

When software reads from these registers, that entry is removed from the queue, the next address and source ID are placed at
the head of the queue, and another interrupt is generated. When the queue is empty, the Host Controller stops generating
interrupts.

Figure 13-1 – PostedWriteAddressLo register

Table 13-1 – PostedWriteAddress Register description

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

sourceID destinationOffsetHi

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

destinationOffsetLo
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In order to guarantee the accuracy of the Posted Write error registers, software must perform the following algorithm when
the posted write error interrupt is encountered:

1) Read the PostedWriteAddressHi register
2) Read the PostedWriteAddressLo register
3) Clear the IntEvent.PostedWriteError bit.

This will guarantee that software receives all information it requires about the first posted write, allowing another interrupt to
be generated for future posted writes, and simplifies the Host Controller hardware. The Host Controller does not have to
monitor that all three events occur before it moves to the next item in the queue. It may consider the information read once it
sees the IntEvent.PostedWriteError bit cleared to 0.

13.2.8.2 Queue Rules

 The Host Controller shall only post as many physical writes as its physical posted write error queue is deep. For example, if
the Host Controller has a queue depth of two, it shall only return ack_complete on two physical writes. All other physical
writes must return either ack_pending or ack_busy* event codes. When a previous physical posted write is successfully
transferred into host memory, or when a physical posted write that resulted in an error is removed from the queue through the
method described above by software, the Host Controller can accept more physical posted writes.

Figure 13-3 – Posted Write Error Queue

An example queue is shown in Figure 13-3. In this case, the queue is three entries deep, so this particular Host Controller can
only handle three outstanding physical posted writes.

PostedWriteErrorLo{

{ PostedWriteErrorHi

PostedWriteErrorHi

PostedWriteErrorLo

PostedWriteErrorHi

PostedWriteErrorLo

Invisible Registers

Visible Registers
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Host Controllers should implement physical posted write functionality.
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Annex A   PCI Interface (optional)

A.1 PCI Configuration Space

 The Open HCI may be on any number of buses, this appendix only discusses their designs with PCI bus. This section
describes the PCI requirements for IEEE 1394 Open Host Controller Interface compliant devices implemented using the PCI
bus (abbreviated as OHC's herein). Only the registers and functions unique to a PCI-based OHC (basically, PCI configuration
registers) are described in this appendix. Open HCI compliant 1394 controllers shall adhere to the requirements given in the
PCI Local Bus Specification, Revision 2.1, and should implement the PCI Power Management Revision 1.1 register interface
described in this annex.

 Typically, the PCI registers and expansion ROM are only accessed during boot-up and PCI device initialization. They are not
typically accessed during runtime by device drivers. The PCI configuration registers, taken in total, are called the PCI
configuration space. The PCI configuration space for Open HCI is header type 0. Header type 8'h00 is the format for the
device's configuration header region which is the first 16 dwords of PCI configuration space. Operational registers are
memory mapped into PCI memory address space and pointed to by Base_Adr_0 register in the PCI configuration space. The
operational registers are described in the body of this specification. PCI configuration space is not directly memory or I/O
mapped - its access is system dependent. Soft reset issued through an Open HCI control register does not affect the contents
of the PCI configuration space.

A.2 Busmastering Requirements

 The 1394 Open HCI controller requires a bursting capable busmaster ability on the PCI bus. If the busmaster bit in the
command register transitions from 1 to zero (see section A.3.1), the PCI logic supporting the Open HCI controller logic must
kill all DMA contexts.

A.3 PCI Configuration Space for 1394 Open HCI With PCI Interface

 Figure A-1 shows the PCI configuration space for a 1394 Open HCI controller designed for PCI attachment. The format of
this configuration space must be compliant with PCI Local Bus Specification, Revision 2.1 (PCI Special Interest Group,
1995). Any registers not pointed to by the Base_Adr_0 (OHCI registers) pointer are vendor specific. Vendor specific
registers must not be required for correct operation of the 1394 Open HCI controller with a 1394 Open HCI device driver.
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 Figure A-2 shows the resources pointed to by the various Base_Adr registers and the Expansion ROM Base Address register.

Figure A-1 – PCI Configuration Space
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A.3.1 COMMAND Register

 This register provides coarse control over the device's ability to generate and respond to PCI cycles. For the 1394 Open HCI
it is required that the Host Controller support both PCI bus-mastering and memory-mapping of all operational registers into
the memory address space of the PC host. Consequently, the fields MS and BM should always be set to 1'b1 during device
configuration.

 Once the Host Controller starts processing DMA descriptor lists, the action of resetting either field MS or BM to 1'b0 will
halt all PCI operations from the 1394 OHCI. (Do this carefully). If the field MS is reset to 1'b0, the Host Controller can no
longer respond to any software command addressed to it and interrupt generation is halted.

Table A-1 – COMMAND Register
Field Bits Read/

Write
Description

0 rw Refer to PCI Local Bus Specification, Revision 2.1, for definition
Memory Space 1 rw MEMORY SPACE (MS)

Set to 1‘b1 so that the Open HCI controller can respond to PCI memory
cycles

Figure A-2 – Pointers to OHCI Resources in PCI Configuration Space
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BusMaster 2 rw BUS MASTER (BM)
Set to 1‘b1 so that the Open HCI controller can act as a bus-master

3-5 rw Refer to PCI Specification, Revision 2.1, for definition
Parity Error Response 6 rw Parity Error Response

Set to 1‘b1 if error detection on the PCI bus is desired.
7 rw Refer to PCI Specification, Revision 2.1, for definition

A.3.2 STATUS Register

 This register tracks the status of PCI bus-related events.

Table A-2 – STATUS Register
Field Bits Read/

Write
Description

3-0 r Reserved.
Capabilities 4 r Capabilities

When set, this bit indicates that the Capabilities Pointer Register (CAP_PTR)
contains an offset into PCI configuration space that represents the beginning
of an extended capabilities list. Since PCI Open HCI implementations should
implement the register interface defined by PCI Power Management Revision
1.1, this bit should return a value of 1 when read.

- 15-5 - See the PCI Local Bus Specification, Revision 2.1.

A.3.3 CLASS_CODE Register

 This register identifies the basic function of the device, and a specific programming interface code for an 1394 Open HCI-
compliant Host Controller.

Table A-3 – CLASS_CODE Register
Field Bits Read/

Write
Description

PI 7-0 r PROGRAMMING INTERFACE
A constant value of 8'h10 Identifies the device being a 1394 Open HCI Host
Controller.

SC 15-8 r SUB CLASS
A constant value of 8'h00 Identifies the device being a 1394 device.

BC 23-16 r BASE CLASS
A constant value of 8'h0C Identifies the device being a serial bus controller.

A.3.4 Revision_ID Register

 The Revision ID must contain the vendor's revision level of their Open HCI silicon. It is required that each new revision of
silicon receive a new revision ID.

A.3.5 Base_Adr_0 Register
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 The Base_Adr_0 register specifies the base address of a contiguous memory space in the PCI memory space of the host. This
memory space is assigned to the operational registers defined in this specification. All of the operational registers described
in this document are directly mapped into the first 2 kilobytes of this memory space. Vendor unique registers are not allowed
within the first 2 KB of this memory space.

 Those hardware registers that are used to implement vendor specific features are not covered by this 1394 Open HCI
Specification. Additional vendor unique address spaces may be allocated by adding additional base address registers
beginning at offset h14 in PCI configuration space.

Table A-4 – Base_Adr_0 Register
Field Bits Read/W

rite
Description

IND 0 r MEMORY SPACE INDICATOR
A constant value of 1'b0 Indicates that the operational registers of the device
are mapped into memory space of the main memory of the PC host system

TP 2-1 r This bit must be programmed consistent with the PCI Local Bus
Specification, Revision 2.1

PM 3 r PREFETCH MEMORY
A constant value of 1'b0 Indicates that there is no support for “prefetchable
memory”

X-4 rw Default value of 0 and is read only. 10 <= X. Represents a minimum of 2-KB
addressing space for the Open HCIs operational registers.

OHCI_REG_PTR 31-
(X+1)

rw OHCI Register Pointer
Specifies the upper bits of the 32-bit starting base address. This represents a
minimum of 2-KB addressing space for the Open HCIs operational registers.
X > 10. If X is 11 the addressing space is 2KB, if 12 it's 4KB etc...
On x86 systems which will be booting from a 1394 device, the BIOS may
need to map this address range into the option ROM area below 1M.
Requesting large blocks of address space using the register may result in a
non-optimal system configuration.

A.3.6 CAP_PTR Register

 This register is a pointer to a linked list of additional capabilities.

Table A-5 – CAP_PTR Register
Field Bits Read/

Write
Description

CAP_PTR 7-0 r Capabilities Pointer
CAP_PTR provides an offset into the function's PCI configuration space for
the location of the first item in the capabilities linked list. The CAP_PTR
offset is double-word aligned so the two least significant bits are always “
2'b00.” This field contains a valid offset if STATUS.Capabilities is set. If no
extended capabilities are implemented, then this bit shall return zero when
read.

A.3.7 PCI_HCI_Control Register
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 This register has 1394 Open HCI specific control bits. Vendor options are not allowed in this register. It is reserved for Open
HCI use only.

Table A-6 – PCI_HCI_Control Register
Field Bits Read/Wri

te
Description

PCI_Global_Swap 0 rw PCI Global Swap Bit
When this bit is set to one, all quadlets read from and written to the PCI
interface are byte swapped. PCI addresses, such as expansion ROM and
PCI configuration registers, are unaffected by this bit (they are not byte
swapped under any circumstances). However, Open HCI registers are byte
swapped when this bit is set. The hardware reset value of this bit is zero.
Byte swapping a quadlet reverses the order of the bytes in that quadlet.
This bit is not required for motherboard implementations.

reserved 31-1 r These are reserved bits and shall return zeros when read. If software writes
these bits, the value written to these bits must be zeros.

A.3.8 PCI Power Management Register Interface

 PCI implementations of Open HCI Release 1.1 should implement the latest version of PCI Power Management, and the
register interface described here is specified by PCI Power Management Revision 1.1.

A.3.8.1 Capability ID Register

 This register is located at a byte address in PCI configuration space equal to the value of CAP_PTR + 0.

Table A-7 – Capability ID Register
Field Bits Read/

Write
Description

CAP_ID 7-0 r Capability Identifier - This field, when “8'h01” identifies the linked list item
as being the PCI Power Management registers. It is not required that the PCI
Power Management capability be indicated first in the linked list of capabili-
ties.

A.3.8.2 Next Item Pointer Register (Nxt_Ptr)

 This register is located at a byte address in PCI configuration space equal to the value of CAP_PTR + 1.

Table A-8 – Next Item Pointer Register
Field Bits Read/

Write
Description

NXT_PTR 7-0 r Next Item Pointer - This field provides an offset into the function's PCI con-
figuration space pointing to the location of the next item in the function's
capability list. If there are no additional items in the linked list of capabilities,
then this field shall be set to “8'h00.”

A.3.8.3 Power Management Capabilities Register (PMC)
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 This register is located at a word address in PCI configuration space equal to the value of CAP_PTR + 2.

Table A-9 – PMC Register
Field Bits Read/

Write
Description

PME _Support 15-11 r PME Support- This field indicates the power states in which the Open HCI
function may assert PME#. A value of “0” for any bit indicates that the func-
tion is not capable of asserting the PME# signal while in that power state.

bit (11) - PME_D0. PME# can be asserted from D0
bit (12) - PME_D1. PME# can be asserted from D1
bit (13) - PME_D2. PME# can be asserted from D2
bit (14) - PME_D3hot. PME# can be asserted from D3hot
bit (15) - PME_D3cold. PME# can be asserted from D3cold

D2_Support 10 r When this bit is set, the Open HCI supports the optional D2 power state.
D1_Support 9 r When this bit is set, the Open HCI supports the optional D1 power state.
AUX_PWR 8-6 r Auxiliary Power - This field reports the VAUX power requirements for the

Open HCI function. An optional mechanism to report this information is via
the PM_DATA Register. If either the PM_DATA register is implemented by
the Open HCI function or the function does not support PME# generation
from D3cold (PME_D3cold == 0), then this field shall return a value of “
3'b000.” when read. In all other cases, the following bit assignments apply:
3'b111 - 375mA maximum current required for a 3.3 Volt VAUX.
3'b110 - 320mA maximum current required for a 3.3 Volt VAUX.
3'b101 - 270mA maximum current required for a 3.3 Volt VAUX.
3'b100 - 220mA maximum current required for a 3.3 Volt VAUX.
3'b011 - 160mA maximum current required for a 3.3 Volt VAUX.
3'b010 - 100mA maximum current required for a 3.3 Volt VAUX.
3'b001 - 55mA maximum current required for a 3.3 Volt VAUX.
3'b000 - 0 (self powered)

DSI 5 r Device Specific Initialization - This bit is set to indicate that the function
requires special initialization beyond the standard PCI configuration header
before the generic class device driver is able to use it. Open HCI designs that
do not require a device specific initialization sequence following the
transition to the D0_uninitialized state shall return a value of “0” when this
bit is read.

RSVD 4 r Reserved bit shall return zero when read.
PME_CLK 3 r PME Clock - This bit is set to indicate that the Open HCI function requires

the presence of the PCI clock for PME# generation. It is recommended that
this bit return a value of “0” when read, indicating the Open HCI function
does not require the PCI clock to generate PME#.

VERSION 2-0 r A value of 3'b010 indicates compliance with Revision 1.1 of the PCI Power
Management Interface Specification. Other versions are allowed.
See section A.3.8 for more information.

A.3.8.4 Power Management Control/Status (PMCSR)

 This register is located at a word address in PCI configuration space equal to the value of CAP_PTR + 4.

Table A-10 –PM Control/Status Register
Field Bits Read/

Write
Description
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PME_STS 15 rc PME Status- This bit is set when the function would normally assert the
PME# signal independent of the state of the PME_EN bit. Writing a “1” to this
bit will clear it and cause the Open HCI function to stop asserting the PME# (if
enabled). Writing a “0” has no effect.
This bit defaults to “0” if the Open HCI function does not support PME# gen-
eration from D3cold, and is indeterminate at the time of initial OS boot if the
Open HCI function does support PME# generation from D3cold.

DataScale 14-13 rw Data Scale - This field indicates the scaling factor to be used when interpreting
the value of the PM_DATA register. If the PM_DATA register is not imple-
mented, then this field should return zeros when read.

DataSelect 12-9 rw Data Select - This field is used to select what value to report in the PM_DATA
register when implemented. If the PM_DATA register is not implemented,
then this field should return zeros when read.

PME_EN 8 rw PME Enabled- This bit is set to enabled the Open HCI function to assert
PME#. When this bit is zero, PME# assertion is disabled. Functions that do not
support PME# generation from any power state may implement this bit as a
read only bit returning “0” when read.
This bit defaults to “0” if the Open HCI function does not support PME# gen-
eration from D3cold, and is indeterminate at the time of initial OS boot if the
Open HCI function does support PME# generation from D3cold.

RSVD 7-2 r Reserved field shall return zeros when read.
PowerState 1-0 rw Power State - This field is used both to determine the current power state of

the Open HCI function and to set the function into a new power state. If soft-
ware attempts to write an unsupported, optional state to this field, the write
operation must complete normally on the bus; however, the data is discarded
and no state change occurs. The definition of the field values is given below:
2'b00 - D0
2'b01 - D1
2'b10 - D2
2'b11 - D3hot

A.3.8.5 PMCSR_BSE

 This 8-bit register is located at a byte address in PCI configuration space equal to the value of CAP_PTR + 6, and is included
in the PCI Power Management Specification as an extension for PCI to PCI bridges. Open HCI devices shall implement this
byte as a read only value of “8'h00.”

A.3.8.6 PM_DATA

 This register is located at a byte address in PCI configuration space equal to the value of CAP_PTR + 7, and provides a
mechanism to report various data controlled by the PMCSR.DataSelect and PMCSR.DataScale fields. Implementations of
this 8-bit field must either comply with the Power Consumption/Dissipation Reporting Table defined in the PCI Power
Management Specification, or always return “8'h00” when read indicating the PM_DATA register is not implemented.

A.4 PCI Power Management Behavior

 PCI based 1394 Open Host Controllers should implement PCI Power Management, and implementations that support PCI
Power Management shall exhibit behavior consistent with this Annex.
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A.4.1 Power State Transitions

 Figure A-3 illustrates the PCI function power state transitions per the PCI Power Management Revision 1.1 specification.

 The Open HCI enters the D0_Uninitialized power state from the D3cold power state when Vcc is applied and a hardware or
soft reset occurs. The hardware reset may be either a PCI reset input or an optional power-on reset input. Generic Open HCI
software, Open HCI power management software, and register loads from the optional serial ROM contribute to the
initialization that occurs while in the D0_Uninitialized power state. The component that initializes the GUID shall assure that
the initialization is performed in a secure manner. When initializations are complete such that LPS is asserted, the Open HCI
is in the D0_Active power state.

 Power management software transitions the Open HCI through D0_Uninitialized, D0_Active, D1, D2, and D3hot power
states via Open HCI register accesses, and may determine when to place the Open HCI function in the D3cold power state by
removing Vcc. Additional power management policy may be implemented to switch or continuously apply an auxiliary
power supply, VAUX, to the Open HCI when Vcc is removed. While in this power state, referred to as D3cold with VAUX or
D3VAUX, the Open HCI exhibits identical behavior as the D3hot power state and no additional Open HCI hardware is
required to distinguish between D3hot and D3VAUX.

 Per the PCI Power Management specification, the Open HCI function asserts an internal reset during the D3hot to
D0_Uninitialized transition. The only Open HCI context that must be retained in D3hot and through the internal reset tran-

Figure A-3 – PCI Function Power Management State Diagram

D0
Uninitialized

D0
Active

D1

Vcc removed and  no
Vaux applied

Internal
reset

Hardware reset or
soft reset

Vcc applied and
hardware reset

D3coldD2
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sition to the D0_Uninitialized power state is the PME context (PMCSR.PME_STS and PMCSR.PME_EN).  In addition, the
GUID registers must be preserved in order to resist spoofing (and thereby increase security).

A.4.2 Power State Definitions

 This section defines the Open HCI behavior per power state when programmed using PMCSR.PowerState. Power
management software may use alternate register mechanisms to place the Open HCI in similar states. The Open HCI shall
support the D0_Uninitialized, D0_Active, D3hot, and D3cold power states and should support the D1 and D2 power states.

 Unmasked Open HCI interrupts are signaled to the PCI interface when the Open HCI is in either the D0_Uninitialized or
D0_Active power states. The Open HCI should not implement additional hardware to distinguish between D0_Uninitialized
and D0_Active, which differ only in the assertion state of LPS from the Open HCI to the 1394 Physical layer. In all other
power states, the Open HCI shall not signal functional interrupts to PCI.

 Unmasked interrupt events will set PMCSR.PME_STS when the Open HCI is programmed with PMCSR.PowerState set to
D0, and a PCI PME# wake-up shall be signaled if enabled via PMCSR.PME_EN. It is possible for one interrupt event to
cause the Open HCI to signal both a PCI interrupt and a PME# to the host. Power management software shall either be
designed to handle this condition or to mask the PME# signal when the Open HCI is in D0.

 A LinkOn indication from the 1394 Physical layer will set PMCSR.PME_STS in Open HCI power states where LPS is driven
deasserted. A LinkOn indication is unexpected in the D0_Active and D1 power states since LPS is asserted from the Open
HCI in these states. Any unmasked interrupt event shall set PMCSR.PME_STS in the D1, D0_Active, or D0_Uninitialized
power states. These characteristics allow for Open HCI wake-up from low power states.

 Software shall ensure that all Open HCI transmit contexts are inactive before it attempts to place the Open HCI into the D1
power state. 1394 bus manager Open HCI nodes shall not be placed into D1. Generation of ack_tardy shall be enabled when
either the Open HCI is placed in the D1 power state or when HCControl.ackTardyEnable is asserted.  Software shall ensure
that IntEvent.ack_tardy is zero and should unmask wake-up interrupt events such as IntEvent.phy and IntEvent.ack_tardy
before placing the Open HCI into D1.

 All Open HCI context is retained in through the D1 power state and transitioning back to D0. All 1394 configuration except
the GUID registers is lost through the D2 power state and transitioning back to D0. Once the GUID registers are initialized
after a true device power-on condition, the Open HCI shall preserve the GUID until all power (i.e. Vcc and VAUX) is
removed. The only Open HCI context that must be retained in D3hot, or D3VAUX, and through the internal reset transition
to the D0_Uninitialized power state is the PME context (PMCSR.PME_STS and PMCSR.PME_EN) and the GUID registers.

 The functional and wake-up characteristics for the Open HCI power states are summarized in Table A-11.

Table A-11 – Open HCI Power State Summary
Power State Functional Characteristics Wake-up Characteristics
D0_Uninitialized * LPS is deasserted

* PCI and 1394 initializations occur
* Unmasked interrupts are fully functional

* Any unmasked interrupt sets PME_STS
* A LinkOn indication sets PME_STS
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D0_Active * LPS is asserted
* HCControl.linkEnable may be set
* Fully functional Open HCI device state
* Unmasked interrupts are fully functional

* Any unmasked interrupt sets PME_STS

D1 * LPS is asserted
* HCControl.linkEnable is set
* ack_tardy may be returned to config ROM accesses
from 1394 , and ack_tardy shall be returned to all
other asynchronous accesses addressed to the Open
HCI.
* Open HCI shall preserve PCI configuration
* Open HCI shall preserve 1394 configuration
* Open HCI shall preserve GUID registers
* Functional interrupts are masked

* Any unmasked interrupt sets PME_STS

D2 * LPS is de-asserted
* Open HCI shall preserve PCI configuration
* 1394 configuration is lost
* Open HCI shall preserve GUID registers
* Functional interrupts are masked

* A LinkOn indication sets PME_STS

D3hot and D3VAUX * LPS is deasserted
* PCI configuration is lost
* 1394 configuration is lost
* Open HCI shall preserve GUID registers
* Open HCI shall preserve PME context
* Functional interrupts are masked

* A LinkOn indication sets PME_STS

D3cold * LPS is deasserted
* All device context/configuration is lost

* No wake capability

A.4.3 PCI PME# Signal

 The PCI PME# signal shall be implemented as an open drain, active low signal that is driven low by the Open HCI to request
a change in its current power management state. PME# has additional electrical requirements over and above standard open
drain signals that allow it to be shared between devices that are powered off and those which are powered on. Refer to the
PCI Power Management specification for more details.
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A.5 PCI Expansion ROM for 1394 Open HCI

 1394 Open Host Controllers used on add-in adapters may need PCI expansion ROMs that provide BIOS, Open Firmware, etc. to boot and
configure the card. If this ROM is non-writable and soldered to the card (not socketed), it is also permitted that the serial ROM image which the
Open Host Controller autoloads at boot up can be included in this expansion ROM (saving the cost of a serial ROM). If this is done, the serial
ROM image must be loaded into the 1394 Open Host Controller by hardware state machine without software intervention or control. It cannot
be modifiable by software or 1394 devices under any circumstances.

A.6 PCI Bus Errors

 Any PCI bus error encountered must be reported to the Open HCI operational logic for error handling. The nature of the error response is
context dependent and discussed in the body of the document. No distinction is made between the various PCI bus errors. Basically, only one all
encompassing error signal is provided to the operational logic by the PCI specific interface logic. It is the responsibility of the implementer to
insure that PCI bus errors are reported in a timely fashion, consistent with their overall Open HCI implementation, that insures that the errors
are associated with the engine, context, etc. that the error should be posted to.

 When the “Parity Error Response” bit in the Command Register in PCI Configuration Space is enabled (see section A.3.1), the PCI interface
logic in the Open HCI must assert PERR# in accordance with the PCI Local Bus Specification, Revision 2.1 when data with bad parity is
received by the 1394 Open HCI controller.

 PCI target abort errors shall not be generated by the Host Controller when unable to service requests to certain registers due to a missing PHY
clock signal. The error is communicated via IntEvent.RegAccessFail, failed read operations shall return undefined values, and failed write
operations shall have undefined effects. Refer to section 1.4.1 for general discussion.
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Annex B   Summary of Register Reset Values (Informative)

 The table below is a summary of all register reset values described in this document and is provided for convenience. In the
event of a discrepancy between values shown in this table and the normative part of this document, the normative part of this
document shall be considered correct.

 All registers are shown below in address order. Refer to section 4.2, “Register Map,” for the complete list. Fields for each
register are shown along with their values following a hardware reset, a soft reset and a bus reset. Refer to section 2.1.4.3 for
interpretation of reset values notation. All values for bus reset are N/A (not affected) unless otherwise specified.

Table B-1 – Register Reset Summary
Register Fields RESET

Hardware Soft Bus
See

clause(s)
Version
 GUID_ROM
 version
 revision

N/A
N/A
N/A

5.2

GUID_ROM
 addrReset
 rdStart
 rdData

undef
1'b0

undef

5.3

ATRetries
 secondLimit
 cycleLimit
 maxPhysRespRetries
 maxATRespRetries
 maxATReqRetries

3'h0
13'h0
undef
undef
undef

5.4

Bus Management CSR registers
 BUS_MANAGER_ID
 BANDWIDTH_AVAILABLE
 CHANNELS_AVAILABLE_HI

6'3F
13'h1333

32'h
FFFF_FFFF

6'3F
13'h1333

32'h
FFFF_FF

FF

6'3F
InitialBandwidthAvailable
InitialChannelsAvailableHi

5.5.1 and
5.8

 CHANNELS_AVAILABLE_LO 32'h
FFFF_FFFF

32'h
FFFF_FF

FF

InitialChannelsAvaila-
bleLo

CSRReadData undef 5.5.1
CSRCompareData undef 5.5.1
CSRControl
 csrDone
 csrGenFail
 selfIDGeneration
 csrSel

1'b1
undef
undef
undef

5.5.1

ConfigROMhdr
 info_length
 crc_length
 rom_crc_value

8'h00
8'h00

16'h0000

N/A
N/A
N/A

5.5.2

BusID N/A 5.5.3
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BusOptions
 max_rec
 link_spd

max implemented
max link speed

N/A
undef

5.5.4

GUIDHi 5.5.5
 node_vendor_ID 24'b0 N/A
 chip_ID_hi 8'b0 N/A
GUIDLo 5.5.5
 chip_ID_lo 32'b0 N/A
ConfigROMmap
 configROMaddr undef

5.5.6

PostedWriteAddressLo 13.2.8.1
 destinationOffsetLo undef
PostedWriteAddressHi
 sourceID
 destinationOffsetHi

undef
undef

13.2.8.1

VendorID 5.6
 VendorUnique N/A
 VendorCompanyID N/A
HCControl
 BIBimageValid
 noByteSwapData
 ackTardyEnable
 programPhyEnable
 aPhyEnhanceEnable
 LPS
 postedWriteEnable
 linkEnable
 softReset

1'b0
undef
1'b0

** see table 5-12
** see table 5-12

1'b0
undef
1'b0

**see table 5-12

N/A
N/A

5.7

SelfIDBuffer
 selfIDBufferPtr undef

11.1

SelfIDCount
 selfIDError
 selfIDGeneration
 selfIDSize

undef
undef
undef

*
*

9'b0 -> *

11.2

IRMultiChanMaskHi
IRMultiChanMaskLo

undef

10.4.1.1

IntEvent
 selfIDcomplete
 busReset
 all other bits

undef
undef
undef

1'b0
1'b1

6.1

IntMask
 masterIntEnable
 all other bits

1'b0
undef

6.2

IsoXmitIntEvent
 isoXmitN undef

6.3.1

IsoXmitIntMask
 isoXmitN undef

6.3.2

IsoRecvIntEvent
 isoRecvN undef

6.4.1
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IsoRecvIntMask
 isoRecvN undef

6.4.2

InitialBandwidthAvailable
 InitialBandwidthAvailable 13'h1333

5.8

InitialChannelsAvailableHi
 InitialChannelsAvailableHi 32'hFFFF_FFFF

5.8

InitialChannelsAvailableLo
 InitialChannelsAvailableLo 32'hFFFF_FFFF

5.8

FairnessControl
 pri_req undef N/A

5.9

LinkControl
 cycleSource
 cycleMaster
 cycleTimerEnable
 rcvPhyPkt
 rcvSelfID
 tag1SyncFilterLock

1'b0
undef
undef
undef
undef
1'b0

undef

undef

5.10

NodeID
 iDValid
 root
 CPS
 busNumber
 nodeNumber

1'b0
1'b0
1'b0

10'h3FF
undef

1'b0 -> 1'b1
1'b1 (conditional)

10'h3FF
from PHY

5.11

PhyControl
 rdDone
 rdAddr
 rdData
 rdReg
 wrReg
 regAddr
 wrData

undef
undef
undef
1'b0
1'b0

undef
undef

5.12

Isochronous Cycle Timer
 cycleSeconds
 cycleCount
 cycleOffset

N/A
N/A
N/A

5.13

AsynchronousRequestFilterHi
AsynchronousRequestFilterLo
 asynReqResourceN
 asynReqResourceAll

1'b0
1'b0

1'b0
5.14.1

PhysicalRequestFilterHi
PhysicalRequestFilterLo
 physReqResourceN 1'b0

1'b0
1'b0

5.14.2

PhysicalUpperBound
 physUpperBoundOffset undef N/A

5.15

CommandPtr
 descriptorAddress
 Z

undef
undef

3.1.2,
7.2.1,
8.3.1,
9.2.1,
10.3.1
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AT Request ContextControl
AT Response ContextControl
 run
 wake
 dead
 active
 event code

1'b0
undef
1'b0
1'b0

undef
1'b0

3.1, 7.2.2,
7.2.3

AR Request ContextControl
AR Response ContextControl
 run
 wake
 dead
 active
 spd

1'b0
undef
1'b0
1'b0

undef
undef

3.1, 8.3.2

IT ContextControl
 cycleMatchEnable
 cycleMatch
 run
 wake
 dead
 active
 event code

undef
undef
1'b0

undef
1'b0
1'b0

undef

3.1, 9.2.2

IR ContextControl
 bufferFill
 isochHeader
 cycleMatchEnable
 multiChanMode
 dualBufferMode
 run
 wake
 dead
 active
 spd
 event code

undef
undef
undef
undef
undef
1'b0

undef
1'b0
1'b0

undef
undef

3.1, 10.3.2

IR ContextMatch
 tag3
 tag2
 tag1
 tag0
 cycleMatch
 sync
 tag1SyncFilter

undef
undef
undef
undef
undef
undef
undef

10.3.3

 channelNumber undef
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Annex C   Summary of Bus Reset Behavior (Informative)

 This section is a summary of Open HCI bus reset behavior. In the event of a discrepancy between information presented here
and in the normative part of this document, the normative part of this document shall be considered correct.

C.1 Overview

 Following a bus reset, node ID's for nodes on the bus may have changed from the values they had been prior to the bus reset.
Since asynchronous packets include a source and destination node ID, it is imperative that packets with stale node ID's do not
go out on the 1394 bus. Isochronous packets do not include any node ID information and therefore must be allowed to
continue un-interrupted after a bus reset. To accomplish this behavior, several things must happen in real-time by the Open
Host Controller when a bus reset occurs. The following sections describe bus reset behavior for each DMA type.

C.2 Asynchronous Transmit: Request & Response

 While the bus reset interrupt, IntEvent.busReset, is active, the Host Controller will inhibit AT Request and AT Response
transmits and flush all packets from the AT Request & AT Response FIFO(s). The host software must wait until both AT
contexts are inactive (ContextControl.active == 0) before clearing the bus reset interrupt. Refer to sections 7.2.3.1 and 7.2.3.2
for more information.

C.3 Asynchronous Receive: Request & Response

 Since all nodes are required to only transmit asynchronous packets that have node ID's as they were assigned in the most
recent bus reset/ Self ID process, AR Requests and AR Responses continue to be processed normally by the hardware. To
assist software in determining which Request packets arrived before and after the bus reset, the Host Controller inserts a
fabricated bus reset packet in the appropriate location in the receive queue. This way, packets which arrive in the receive
buffer after the bus reset packet can be interpreted using the current node ID assignments.

 Also upon detection of a bus reset the Host Controller will clear all bits in the Asynchronous Filter registers except for the
Asynchronous Request Filter HI.asynReqResourceAll bit. If this bit is also 0, receipt of all asynchronous requests which do
not reference the first 1K of CSR config ROM will be prevented and software is responsible for subsequently enabling the
Asynchronous Filter registers as appropriate.

 Refer to section 8.4.2.3 for information on the bus reset packet, and section 5.14 for information on the asynchronous filter
registers.

C.4 Isochronous Transmit
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 A bus reset does not affect the transmission of isochronous packets, which continue being transmitted for their assigned
channels. It is software's responsibility to perform the necessary isochronous resource re-allocation and make any
communication to the talker's and/or receivers' control registers.

C.5 Isochronous Receive

 A bus reset does not affect the receipt of isochronous packets, which continue being received for their assigned channels. It is
software's responsibility to perform the necessary isochronous resource re-allocation and communicate as required to the
talkers and/or receivers.

C.6 Self ID Receive

 The receipt of self ID packets is part of the bus reset process. When a bus reset occurs, and the IntEvent.busReset bit is set,
the IntEvent.selfIDComplete interrupt is cleared. Once the Self ID phase of bus initialization has completed the
IntEvent.selfIDComplete and IntEvent.selfIDComplete2 bits are set to inform software that bus initialization self ID packets
have been received. The IntEvent.selfIDComplete2 bit is only cleared by a write to IntEventClear, and may be used to
eliminate spurious interrupt events caused by fast back-to-back bus resets. See section 11. for further information.

C.7 Physical Requests/Responses

C.8 Physical Response

 The Host Controller will flush all Physical Asynchronous Transmit Response packets from all asynchronous transmit FIFOs.
The Physical AT Response engine will resume processing incoming requests that arrive following the bus reset.

C.7.2 Physical Requests

 Posted write requests, that is, write requests for which ack_complete was sent but which have not yet been processed, will be
processed normally.

 All split transaction AR Requests are flushed until a bus reset boundary is detected. After the bus reset boundary, normal
physical receive transactions are resumed.

 In response to a bus reset, Host Controller clears the Physical Request Filter registers and physical handling of requests
outside the first 1K of CSR config ROM is disabled. Software is responsible for subsequently enabling the Physical Request
Filter registers as appropriate. See section 5.14.2 for further information.

C.8 Control Registers
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 In response to a bus reset, the NodeID.iDValid bit is cleared indicating that the Host Controller does not yet have a valid node
ID, and therefore software must not enable asynchronous transmits. When the self ID phase of bus initialization has
completed and the new Node ID has been determined, the PHY returns status that initializes NodeID.nodeNumber and the
Host Controller sets NodeID.iDValid at which point software may restart asynchronous transmit.

 A bus reset will also cause the Host Controller's Isochronous Resource Management registers to be reset. Refer to
section 5.5.1 for further information.
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Annex D   IT DMA Supplement (Informative)

 The Open HCI Isochronous Transmit DMA (IT DMA) is documented in section 9. This Annex provides supplementary
explanation and example, to aid in understanding the IT DMA. It is intended that this Annex will agree completely with
section 9. If there is any disagreement, this Annex is faulty, and the information in section 9 overrides this Annex.

D.1 IT DMA Behavior

 The flowcharts given in the next two sections illustrate the behavior of the IT DMA as documented in section 9. These
flowcharts are provided in order to help the reader visualize the end result of IT DMA operation, through a set of events that
could occur within the IT DMA. These flowcharts do not specify the IT DMA algorithm, although they should yield the same
output as that specified by section 9. Furthermore, these flowcharts do not dictate an implementation strategy. The variables
such as M and N do not necessarily correspond to Open HCI registers. The presence of a task on the “Link side” flowchart or
the “DMA side” flowchart does not mandate that the associated logic be implemented in any particular part of Open HCI.
Such distinctions also do not imply anything about clock domains, signal routing, or other implementation-specific aspects of
an Open HCI product.

D.2 IT DMA Flowchart Summary

 The output of the IT DMA is illustrated in this Annex using two flowcharts. One flowchart represents activity that is likely to
take place within the DMA engines of a particular Open HCI. The other flowchart represents activity that is likely to take
place in the Link (or “Link Core”) portion of a particular Open HCI. These two flowcharts execute simultaneously, with no
interdependencies other than those shown by the shared variables, and other shared state such as the local cycle timer or the
cycle start value most recently received or sent. Note also that neither flowchart contains an exit or a stop condition. It is
intended that both flowcharts begin execution at the same instant, and then remain in operation forever. In practice, the
flowcharts might be restarted after a full chip reset, or other similar Open HCI event.

 The flowcharts do not attempt to capture every possible error condition, such as a dead condition in the IT DMA. Only the
states required for ordinary IT DMA processing are shown, and the level of detail varies somewhat. In this sense, cycle loss
and cycle match are considered normal IT DMA events. Bus resets are not specifically identified, but those that cause cycle
loss will be handled by the flowchart algorithm.

 Because the flowcharts do not mandate implementation details, they also do not necessarily show the most optimal way of
implementing the IT DMA. For example, the detection of a cycle loss could possibly be performed with less delay,
potentially giving the IT DMA more time to recover, thus improving the FIFO readiness for following cycles, and reducing
the chance of further cycle losses. The presentation of these example flowcharts does not preclude a more efficient
implementation, within the behavior specified in section 9.
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D.3  DMA-side IT DMA flowchart

 The following flowchart shows logic for processing the DMA component of the IT DMA in a manner that (when coupled
with the Link side shown below) agrees with that specified in section 9.

 The DMA-side flowchart has two major components. The top half consists of a loop that synchronizes the activity of the
DMA side to the correct cycle number. This loop implements a two-cycle workahead. If the FIFO were arbitrarily large, this
algorithm would always keep two cycles worth of packets in the FIFO, in addition to the packets for any cycle currently
being transmitted. The bottom half consists of a loop for each of the IT DMA contexts. This loop processes one cycles worth
of packets, either loading them all into the FIFO, or performing skip processing for all of them.
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cycle, and will not exit until it does. This behavior agrees with section 9, in that packets are never flushed to compensate for a
cycle loss. Any packet already in the FIFO, or even potentially in the FIFO, will be transmitted (eventually).

D.3.1 DMA-side top half

 The top half of the DMA-side flowchart regulates the IT DMA workahead, if any. The flowchart illustrated will attempt to
maintain a two-cycle workahead. To do this, the algorithm communicates with the Link side in three ways. First, both sides
share access to the local cycle timer and the most recent cycle start packet. Second, both sides share a variable called Lost,
which is a count of the number of lost cycles that have not yet been handled. Finally, the two sides communicate through the
IT FIFO. The DMA side places packets into the FIFO, and the Link side removes them. The DMA side also places end-of-
cycle tokens in the FIFO, which are removed by the Link side. Many implementations are likely to also use an end-of-packet
token. This flowchart does not show such tokens, and it does not prohibit them.

 Because the DMA side wants to work two cycles ahead, when it first starts running it must hold off the Link side, so that it
can try to put two cycles worth of packets in the FIFO. The DMA side immediately places two end-of-cycle tokens into the
FIFO. The Link side will consume one end-of-cycle token per cycle, as detailed below, so these two tokens will hold off the
Link side for two cycles, while the DMA side tries to work ahead.

 The DMA side keeps a private variable N, to indicate the cycle number for which it wants to load packets into the FIFO. If
the DMA side were always able to maintain two-cycle workahead, N would usually be two greater than the current cycle
number. More likely, N will vary between zero and two greater than the current cycle number, depending on how much of
the desired two-cycle workahead can actually fit into the FIFO. Because the flowchart is entered in the midst of some cycle,
and it is too late to perform any IT DMA for that cycle, N is initialized to the current cycle number, plus three.

 The DMA side also has a private variable called Skip. This variable is changed only between entries to the bottom-half loop,
and it controls whether the bottom-half loop will attempt to transmit a cycles worth of packets, or apply skip processing to a
cycles worth of packets.

 The top-half loop acts as a gate to the bottom-half loop.  The bottom-half can be entered for two reasons.  First, the top-half
can determine that the workahead is less than two cycles, because the last cycle start number sent or received is greater than
or equal to N minus two.  Second, the top-half will immediately enter the bottom half if it learns that there is a lost cycle to be
handled.  This condition is indicated by the shared variable Lost being greater than zero.  When this is the case, the DMA
side will enter the bottom half loop regardless of the current cycle number, so that skip processing can begin as soon as
possible.  Because cycles cannot be lost more often than once per cycle, it is not possible for the DMA side to achieve excess
workahead due to immediately entering the bottom-half loop whenever Lost is greater than zero.

D.3.2 DMA-side bottom half

 The bottom-half loop begins by initializing a private variable C to zero. The variable C will count the IT DMA context index
currently being processed. For each context, cycle match processing is applied, if needed, regardless of whether or not a cycle
loss has caused cycle skip processing. This causes the cycle match mechanism to correctly start a context even if the desired
starting cycle is lost. In such a case, the first packet of that context will be subjected to cycle skip processing, rather than
being loaded into the FIFO. Within the bottom-half loop, each active context (including one just activated due to cycle
match) will either load one packet into the FIFO, or receive skip processing. [Nit: an empty cycle might not load anything
into the FIFO.]
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 When a packet is loaded into the FIFO, the DMA side flowchart will remain in the block “packet -> FIFO” as long as
necessary to complete loading the packet into the FIFO.  If the packet is larger than the FIFO, but two-cycle workahead had
been achieved prior to this packet, the DMA side might remain in this block for about two whole cycles.  During this time,
the workahead drops from two to zero, and when the end of the packet is finally loaded into the FIFO, the DMA will
immediately begin work on the next packet (same or next cycle).

 When skip processing is applied, the DMA side merely replaces a context's command pointer with the skip address of the
descriptor pointed to by the current value of the command pointer.

 At the end of the bottom-half loop, the private variable N is incremented, to indicate that one more cycle has been processed.
If the cycle's packets were loaded into the FIFO normally, an end-of-cycle token is placed in the FIFO. However, if skip
processing was applied, no packets were loaded into the FIFO, and no end-of-cycle token is placed in the FIFO. As described
below, the Link side consumes an end-of-cycle token only for cycles that are not lost, so no token is required when skip
processing is applied.

 If skip processing was applied, the DMA side atomically decrements the shared variable Lost, to indicate that one lost cycle
has been handled.

D.4 Link-side IT DMA flowchart

 The following flowchart shows logic for processing the Link-side component of the IT DMA in a manner that (when coupled
with the DMA side shown above) agrees with that specified in section 9.

 Like the DMA side flowchart, the Link side flowchart keeps a private variable M to indicate what cycle number it wants to
work on next. Because the Link side begins work simultaneously with the DMA side, there will already be a cycle in
progress for which it is too late to possibly do any IT DMA work. So, the Link side initializes M to the current cycle number
plus one.

 Like the DMA side, the Link side flowchart has a top half and a bottom half.  The top half watches the cycle number, and
tries to keep transmission synchronized with the cycle timer.  The bottom half transmits packets from the FIFO.  Unlike the
DMA side, the Link side flowchart can move between the top and bottom halves several times during a single cycle's worth
of packets.  However, in the absence of cycle loss, the top and bottom halves each run once per cycle.

D.4.1 Link-side top half

 The top-half has two roles.  First, it watches for the cycle start event that indicates that isochronous transmission can begin.
When this happens, it sends control to the bottom half.  Second, the top half detects cycle losses that occur outside of the
isochronous period.  If, while waiting for a cycle start, the top half determines that a cycle loss has occurred, it will
communicate this to the DMA side, and then wait to begin work on the following cycle.

 In normal operation, the top half waits until cycle M occurs, due to the transmission or reception of the cycle start packet for
cycle M. After processing cycle M, or if cycle M is lost, the top half increments M and then begins waiting for the next cycle.
While waiting for cycle M, the top half tries to detect cycle loss. The detection algorithm is simple: If the cycle timer rolls
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over twice, without the receipt or transmission of a cycle start packet, then cycle loss has occurred. There are various ways to
more quickly determine that a cycle has been lost, such as the observance of a subaction gap on the bus after the cycle timer
has rolled over once. Such strategies, if compatible with section 9, may be valuable optimizations, but they are not illustrated
here.

Figure D-2 – IT DMA Link-Side Flowchart
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D.4.2 Link-side bottom half

 The bottom half of the Link-side flowchart attempts to remove packets from the FIFO and transmit them on the 1394 bus.
The bottom half will process at most one cycle's worth of packets. However, if cycle loss occurs during the bottom half, it
will indicate this to the DMA side and then return to the top half. The remainder (if any) of the cycle that was being
transmitted will be transmitted by a future visit to the bottom half.

 The bottom half begins by checking for an end-of-cycle token on the output of the FIFO. If this token is present, then the
bottom half has finished work on transmitting one (possibly empty) cycle. The token is removed, M is incremented, and the
top half now waits for the next cycle.

 If the bottom of the FIFO does not contain an end-of-cycle token, then the bottom half of the Link side flowchart will attempt
to transmit packets on the 1394 bus until it does reach an end-of-cycle token. When attempting to transmit packets, the
bottom half first checks to see if the 1394 bus is in an isochronous period. When the bottom half is first entered, due to the
sending or reception of cycle start packet M, the bus should always be in an isochronous period. However, after some time in
the bottom half, the isochronous period may have ended due to a cycle loss. The bottom half checks this before each packet,
and if it finds that the bus is not in an isochronous period, it indicates a cycle loss and exits to the top half.

 If the bottom half has a packet to transmit, and the 1394 bus is in an isochronous period, the bottom half will then attempt to
arbitrate for the 1394 bus. In most silicon implementations, arbitration may have begun earlier, but for the purpose of this
flowchart, this is the point at which arbitration actually matters, so it is shown here. Note that if we have already sent at least
one packet in the bottom half, then we should already have won arbitration at this point.

 If we have not yet won arbitration, the bottom half will loop tightly until we do win arbitration, or a cycle loss is detected. If
the cycle timer rolls over twice while we attempt to arbitrate, or if we receive any other indication that the isochronous period
has ended, then we indicate a cycle loss and exit the bottom half. As with the top half, there may be ways to optimize the
detection of a cycle loss, in order to more rapidly signal the DMA side that recovery is required. These methods are not
illustrated here, but as long as they comply with section 9, they are not precluded.

 If the bottom half does win arbitration, it must then immediately transmit an isochronous packet. Until this time (while
arbitrating) it did not matter if the FIFO was empty (due to the DMA having fallen behind). In such a case, the DMA may
have caught up and loaded something into the FIFO, in which case transmission can proceed. However, if the FIFO is empty
after arbitration is won, then a cycle loss is indicated.

 After winning arbitration without detecting a cycle loss and with some data in the FIFO, the bottom half can then begin
transmitting a packet on the bus. This process continues until a single packet has been transmitted. If, during transmission,
the FIFO underflows, the Link side will clean up the FIFO by eating any leftover parts of the packet that underflowed (but
not any following packets). If an end-of-cycle token does not follow immediately, then a cycle loss will be indicated.
However, an underflow on the last packet of a cycle does not cause a cycle loss (although the packet itself may be lost).

 Finally, after transmitting a packet, with or without underflow, the bottom half checks to see if the cycle has been completed,
by looking for an end-of-cycle token at the bottom of the FIFO. If the cycle is complete, the bottom half increments M and
returns to the top half. If the cycle is not complete, the bottom half will attempt to transmit the next packet for the current
cycle. In this case, if an underflow occurred and the bus was lost, a cycle loss will then be indicated, and the transmission of
the next packet will be delayed until the following cycle, as specified in section 9.
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Annex E   Sample IT DMA Controller Implementation (Informative)

 The Open HCI IT DMA controller is documented in Chapter 9.0. This Annex describes a sample implementation of the IT
DMA controller. It is intended to faithfully implement the behaviors specified in Chapter 9.0. If there is any disagreement the
information in Chapter 9.0 overrides this Annex.

 The basic idea behind this IT DMA implementation is that the DMA side keeps track of how far “ahead” or “behind” it is
from the link side. When the ahead_ctr is positive the DMA side is working ahead of the link. When the ahead_ctr is
negative the DMA side is catching up. The DMA side cycle_count is calculated by adding the ahead_ctr value to a version of
the link side cycle_count that has been exported to the DMA side. This allows the IT DMA controller to work reliably after a
cycle inconsistent event. CycleInconsistent events do not affect contexts that don't care about the cycle number. There is no
need to shutdown all contexts when a cycleInconsistent condition is detected. Software only needs to stop/reconfigure/restart
contexts that care about the cycle number.

Figure E-1 –DMA Cycle Matching Continuum

This IT DMA controller implementation also maintains a lost counter (lost_ctr) that indicates the number of cycle to skip and
the logic needed to calculate a current cycle count value for cycle matching purposes.
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Figure E-2 – IT DMA Controller counters and cycle matching logic

The following pseudo-code is included to describe how the counters can be implemented.

always @(posedge dma_clk or negedge reset_z)
   if(!reset_z)
      ahead_ctr <= #1 0;
   else if(it_traverse_done && !cycle_sync && (ahead_ctr != AHEAD_MAX))
      ahead_ctr <= #1 ahead_ctr + 1;
   else if(!it_traverse_done && cycle_sync && (ahead_ctr != AHEAD_MIN))
      ahead_ctr <= #1 ahead_ctr - 1;

always @(posedge dma_clk or negedge reset_z)
   if(!reset_z)
      lost_ctr <= #1 0;
   else if(!it_skipped && cycle_lost && (lost_ctr != LOST_MAX))
      lost_ctr <= #1 lost_ctr + 1;
   else if(it_skipped && !cycle_lost && (lost_ctr != LOST_MIN))
      lost_ctr <= #1 lost_ctr - 1;

// signed arithmetic assumed here

match_cycle = (cycle_count + ahead_ctr) % 8000;

it_skipped = it_traverse_done && skipping_this_cycle

At start-up time, the IT DMA controller “primes the pump” by writing two “isochronous end” tokens into the isochronous
transmit FIFO. This causes the ahead_ctr to begin with a value of 2. When the following cycle_sync event is received from
the link-side the ahead_ctr is decremented. The IT DMA controller attempts to service the IT contexts when ahead_ctr is less
than 2 or the lost_ctr is greater than 0. So the IT DMA controller will service the IT contexts and then write an isochronous
end token (when not skipping) into the FIFO, causing the ahead_ctr to increment back to 2. The IT DMA controller is then
stalled until the next cycle_sync or cycle_lost event.
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The IT DMA controller uses a calculated cycle count value, match_cycle, for matching purposes. It compares the cycleMatch
value to the link's cycle_count plus the ahead_ctr value (modulo 8000). Some care must be taken to synchronize the updates
to the ahead_ctr with the changes to the cycle_count. This is actually not too difficult since the cycle_sync event pulse
originates from the link, too. The Host Controller designer just needs to be careful about balancing the synchronization of the
cycle_count and cycle_sync signals. The cycle_lost signal needs to be synchronized, too; but it isn't critical that it be balanced
with the others. The pseudo-code shown above assumes the cycle_lost is translated into single clock cycle pulse on the
dma_clk.

If the DMA side is unable to service the IT contexts for a span of several 1394 cycles the ahead_ctr will continue to
decrement and become a negative number. At the same time the link side will generate cycle_lost events and the lost_ctr will
increment. When the DMA side is able to continue it will iteratively traverse the IT contexts performing skip processing until
lost_ctr equals 0. It can then start stuffing packets into the isochronous transmit FIFO until ahead_ctr equals 2.

Figure E-4 – Process IT Contexts Flowchart
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 Annex F   Extended Config ROM Entries

 This section defines the format of the GUID ROM, if implemented, to provide vendor specific configuration ROM infor-
mation and extended entries through the GUID ROM interface.

 The optional GUID ROM is included in Open HCI Release 1.0 to provide a hardware mechanism to load the global unique
identification (GUID) and miscellaneous implementation specific data to the 1394 host controller, and a read-only interface
to the GUID ROM is defined. There is not a standard GUID ROM address where the GUID data resides in the optional
GUID ROM, and this addressing is typically hardwired in the host controller design.

 GUID ROM formats compliant to Open HCI Release 1.1 will implement the GUID ROM data map as illustrated in figure F-
1. The region labeled “Mini-ROM” in figure F-1 is further described in this annex, and contains up to 256 quadlets of 1394
configuration data. The GUID data loaded upon power reset is located at a vendor specific region of the GUID ROM.

Figure F-1 – GUID ROM data map

F.1 Mini-ROM Data Format

 The GUID ROM may contain a Mini-ROM structure, which can be used to provide vendor specific 1394 configuration ROM
information. The format of the Mini-ROM is nearly identical to that of the general 1394 configuration ROM, with a few
minor exceptions. Figure F-2 illustrates the format of the Mini-ROM.
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Figure F-2 – Mini-ROM format

The first quadlet of the Mini-ROM contains a reserve byte (value of 8'h00), the miniROM_len field that specifies the number
of additional quadlets in the Mini-ROM following the first quadlet, and the ROM_CRC_value that is calculated over the
entire Mini-ROM contents excluding the first quadlet. The CRC calculation and general Mini-ROM format is that specified
by IEEE1212 and IEEE1394 standards for configuration ROM starting with the root directory. The bus_info_block is not
included in the Mini-ROM.

The Mini-ROM root directory is not required to contain the Module_Vendor_ID, Node_Capabilities, and Node_Unique_ID
entries. The Mini-ROM should not duplicate information already available in the 1394 host software, unless such data makes
the Mini-ROM parsable.

The Mini-ROM is a big endian structure in the GUID ROM, that is, the first byte of the Mini-ROM (i.e. Offset 0) is the
reserved field of the fist quadlet as illustrated in figure F-2.

Description
Block Offset Offset Offset + 1 Offset + 2 Offset + 3

First
Quadlet 0 reserved miniROM_len ROM_CRC_value (calculated)

Root
Directory 4 per 1394 configuration ROM

Node_Power
Directory -- per 1394 TA Power Specification

Vendor
Dependent -- per 1394 configuration ROM


