
Teaching and classroom laboratories based
on the “eZ430” and "Experimenter’s board"

MSP430 microcontroller platforms and
Code Composer Essentials

Collection Editors:
Pedro Dinis

António Espírito Santo

Teaching and classroom laboratories based
on the “eZ430” and "Experimenter’s board"

MSP430 microcontroller platforms and
Code Composer Essentials

Collection Editors:
Pedro Dinis

António Espírito Santo

Authors:
Pedro Dinis

António Espírito Santo
Bruno Ribeiro

Online:
< http://cnx.org/content/col10706/1.3/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Pedro Dinis, António Espírito Santo. It

is licensed under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/).

Collection structure revised: May 19, 2009

PDF generated: February 5, 2011

For copyright and attribution information for the modules contained in this collection, see p. 151.

Table of Contents

1 MSP430 Overview
1.1 Introduction . 1
1.2 MSP430 Main characteristics . 2
1.3 Address space . 3
1.4 Central Processing Unit (MSP430 CPU) . 8
1.5 Central Processing Unit (MSP430X CPU) . 12
1.6 Addressing modes . 21
1.7 MSP430 instruction set . 26

2 Code Composer Essentials

2.1 Code Composer Essentials . 35
2.2 Introduction to CCE IDE . 36
2.3 Creating a Project 40
2.4 Code Editor . 48
2.5 File history . 54
2.6 Import and Export functionality . 54
2.7 Project Con�guration details . 57
2.8 Introduction to Debug with CCE . 65

3 General purpose Input/Output

3.1 Laboratory GPIO: Lab1 - Blinking the LED . 71
3.2 Laboratory GPIO: Lab2 - Blinking the LED half the speed . 72
3.3 Laboratory GPIO: Lab3 - Toggle the LED state by pressing the push button 73
3.4 Laboratory GPIO: Lab4 - Enable/disable LED blinking by push button press 74

4 Timers
4.1 Laboratory Timers: Lab1 - Memory clock with Basic Timer1 . 77
4.2 Laboratory Timers: Lab2 - Real Time Clock with Basic Timer1 . 81
4.3 Laboratory Timers: Lab3 - Memory Clock with Timer_A . 83
4.4 Laboratory Timers: Lab4 - Buzzer tone generator . 86
4.5 Laboratory Timers: Lab5 - Frequency measurement . 91

5 LCD Controller
5.1 Laboratory LCD controller: Lab1 - LCD message display . 97

6 Data Acquisition

6.1 Laboratory Signal Acquisition: Lab1 - SAR ADC10 conversion . 101
6.2 Laboratory Signal Acquisition: Lab2 - SAR ADC12 conversion . 104
6.3 Laboratory Signal Acquisition: Lab3 - SD16_A ADC conversion 109
6.4 Laboratory Signal Acquisition: Lab4 - Voltage signal comparison with Compara-

tor_A . 112

7 Digital-to-Analog Converter (DAC)

7.1 Laboratory DAC: Lab1 - Voltage ramp generator . 115

8 Direct Memory Access (DMA)

8.1 Laboratory DMA: Lab1 - Data Memory transfer triggered by software . 119
8.2 Laboratory DMA: Lab2 - Sinusoidal waveform generator 120

9 Hardware Multiplier

9.1 Laboratory Hardware Multiplier: Lab1 - Multiplication without hardware multi-
plier . 123

9.2 Laboratory Hardware Multiplier: Lab2 - Multiplication with hardware multiplier 124

iv

9.3 Laboratory Hardware Multiplier: Lab3 - RMS and active power calculation 126

10 Flash Programming

10.1 Laboratory Flash memory: Lab1 - Flash memory programming with the CPU
executing the code from �ash memory . 131

10.2 Laboratory Flash memory: Lab2 - Flash memory programming with the CPU
executing the code in RAM . 133

11 Communication
11.1 Laboratory Communications: Lab1 - Echo test using the UART mode of the

USCI module . 137
11.2 Laboratory Communications: Lab2 - Echo test using SPI . 140
11.3 Laboratory Communications: Lab3 - Echo test using I2C . 143

Index . 150
Attributions .151

Chapter 1

MSP430 Overview

1.1 Introduction1

Introduction
The types of devices such as microprocessor, microcontroller, processor, digital signal processor (DSP),

amongst others, in a certain manner, are related to the same device � the ASIC (Application Speci�c
Integrated Circuit). Each processing device executes instructions, following a determined program applied
to the inputs and shares architectural characteristics developed from the �rst microprocessors created in 1971.
In the three decades after the development of the �rst microprocessor, huge developments and innovations
have been made in this engineering �eld. Any of the terms used at the beginning of this section are correct
to de�ne a microprocessor, although each one has di�erent characteristics and applications.

The de�nition of a microcontroller is somewhat di�cult due to the constantly changing nature of the
silicon industry. What we today consider a microcontroller with medium capabilities is several orders of
magnitude more powerful, than the computer used on the �rst space missions. Nevertheless, some gener-
alizations can be made as to what characterizes a microcontroller. Typically, microcontrollers are selected
for embedded systems projects, i.e., control systems with a limited number of inputs and outputs where the
controller is embedded into the system.

The programmable SoC (system-on-chip) concept started in 1972 with the 4-bit TMS1000 microcomputer
developed by Texas Instruments (TI), and in those days it was ideal for applications such as calculators and
ovens. This term was changed to Microcontroller Unit (MCU), which was more descriptive of a typical
application. Nowadays, MCUs are at the heart of many physical systems, with higher levels of integration
and processing power at lower power consumption.

The following list presents several qualities that de�ne a microcontroller:
- Cost: Usually, the microcontrollers are high-volume, low cost devices;
- Clock frequency: Compared with other devices (microprocessors and DSPs), microcontrollers use a low

clock frequency. Microcontrollers today can run up to 100 MHz/ 100 Million Instructions Per Second (MIPS)
- Power consumption: orders of magnitude lower than their DSP and MPU cousins;
- Bits: 4 bits (older devices) to 32 bits devices;
- Memory: Limited available memory, usually less than 1 MByte;
- Input/Output (I/O): Low to high (8-150) pin-out count.
Request the MSP430 Teaching ROM Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp2

1This content is available online at <http://cnx.org/content/m23492/1.1/>.
2https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

1

2 CHAPTER 1. MSP430 OVERVIEW

1.2 MSP430 Main characteristics3

MSP430 Main characteristics
Although there are variants in devices in the family, a MSP430 microcontroller can be characterized by:
- Low power consumption:

• 0.1 µA for RAM data retention;
• 0.8 µA for real time clock mode operation;
• 250 µA/MIPS at active operation.

Low operation voltage (from 1.8 V to 3.6 V).
< 1 µs clock start-up.
< 50 nA port leakage.
Zero-power Brown-Out Reset (BOR).
On-chip analogue devices:

• 10/12/16-bit Analogue-to-Digital Converter (ADC);
• 12-bit dual Digital-to-Analogue Converter (DAC);
• Comparator-gated timers;
• Operational Ampli�ers (OP Amps);
• Supply Voltage Supervisor (SVS).

16 bit RISC CPU:

• Instructions processing on either bits, bytes or words;
• Compact core design reduces power consumption and cost;
• Compiler e�cient;
• 27 core instructions;
• 7 addressing modes;
• Extensive vectored-interrupt capability.

Flexibility:

• Up to 256 kB In-System Programmable (ISP) Flash;
• Up to 100 pin options;
• USART, I2C, Timers;
• LCD driver;
• Embedded emulation.

The microcontroller's performance is directly related to the 16-bit data bus, the 7 addressing modes and the
reduced instructions set, which allows a shorter, denser programming code for fast execution. These micro-
controller families share a 16-bit CPU (Central Processing Unit) core, RISC type, intelligent peripherals,
and �exible clock system that interconnects using a Von Neumanncommon memory address bus (MAB) and
memory data bus (MDB) architecture.

3This content is available online at <http://cnx.org/content/m23490/1.2/>.

3

MSP430 architecture.

Figure 1.1

Request the MSP430 Teaching ROM Materials here https://www-
a.ti.com/apps/dspuniv/teaching_rom_request.asp4

1.3 Address space5

Address space
All memory, including RAM, Flash/ROM, information memory, special function registers (SFRs), and

peripheral registers are mapped into a single, contiguous address space.
Note: See the device-speci�c datasheets for speci�c memory maps. Code access is always performed on

even addresses. Data can be accessed as bytes or words.
The MSP430 is available with either Flash or ROM memory types. The memory type is identi�ed by

the letter immediately following �MSP430� in the part numbers.
Flash devices: Identi�ed by the letter �F� in the part numbers, having the advantage that the code

space can be erased and reprogrammed.

4https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
5This content is available online at <http://cnx.org/content/m23495/1.1/>.

4 CHAPTER 1. MSP430 OVERVIEW

ROM devices: Identi�ed by the letter �C� in the part numbers. They have the advantage of being very
inexpensive because they are shipped pre-programmed, which is the best solution for high-volume designs.

Figure 1.2

* Depending on device family.
For all devices, each memory location is formed by 1 data byte. The CPU is capable of addressing data

values either as bytes (8 bits) or words (16 bits). Words are always addressed at an even address, which
contain the least signi�cant byte, followed by the next odd address, which contains the most signi�cant byte.
For 8-bit operations, the data can be accessed from either odd or even addresses, but for 16-bit operations,
the data values can only be accessed from even addresses.

1.3.1 Interrupt vector table

The interrupt vector table is mapped at the very end of memory space (upper 16 words of Flash/ROM),
in locations 0FFE0h through to 0FFFEh (see the device-speci�c datasheets). The priority of the interrupt
vector increases with the word address.

Interrupt vector table for MSP430 families.

5

Vector Ad-
dress

Priority ' 11xx and
' 12xx

' 13x and '
14x

`2xx ' 3xx ' 4xx

0xFFFE 31, Highest Hard Reset/
Watchdog

Hard Reset/
Watchdog

Hard Reset/
Watchdog

Hard Reset/
Watchdog

Hard Reset/
Watchdog

0xFFFC 30 Oscillator/
Flash/NMI

Oscillator/
Flash/NMI

Oscillator/
Flash/NMI

Oscillator/
Flash/NMI

Oscillator/
Flash/NMI

0xFFFA 29 Unused Timer_B Timer_B
(22x2, 22x4,
23x, 24x,
26x only)

Dedicated
I/O

Timer_B('43x
and'44x
only)

0xFFF8 28 Unused Timer_B Timer_B
(22x2, 22x4,
23x, 24x
only)

Dedicated
I/O

Timer_B('43x
and'44x
only)

0xFFF6 27 Comparator Comparator Comparator_A+
(20x1 only,
21x1, 23x,
24x, 26x)

Unused Comparator

0xFFF4 26 Watchdog
Timer

Watchdog
Timer

Watchdog
Timer+

Watchdog
Timer

Watchdog
Timer

0xFFF2 25 Timer_A USART Rx Timer_A Timer_A USART0
Rx('43x
and'44x
only)

0xFFF0 24 Timer_A USART0 Tx Timer_A Timer_A USART0
Tx('43x
and'44x
only)

0xFFEE 23 USART0 Rx
('12xx only)

ADC USCI
Rx(22x2,
22x4, 23x,
24x, 26x
only)I2C
status (23x,
24x)

USART Rx ADC('43x
and'44x
only)

continued on next page

6 CHAPTER 1. MSP430 OVERVIEW

0xFFEC 22 USART0 Tx
('12xx only)

Timer_A USCI
Tx(22x2,
22x4, 23x,
24x, 26x
only)I2C
Rx/Tx (23x,
24x, 26x
only)

USART Tx Timer_A

0xFFEA 21 ADC10 Timer_A ADC10
(20x2
22x2, 22x4
only)ADC12
(23x,
24x, 26x
only)SD16_A
(20x3 only)

ADC('32x
and '33x)
Timer/Port
('31x)

Timer_A

0xFFE8 20 Unused Port 1 USI(20x2,
20x3 only)

Timer/Port('32x
and '33x)

Port 1

0xFFE6 19 Port 2 USART1 Rx Port P2 Port 2 USART1
Rx('44x
only)

0xFFE4 18 Port 1 USART1 Tx Port P1 Port 1 USART1
Tx('44x
only)

0xFFE2 17 Unused Port 2 USCI
Rx (23x,
24x, 26x
only)I2C
status
(241x, 261x
only)

Basic Timer Port 2

0xFFE0 16 Unused Unused USCI Tx
(23x,24x
only)I2C
Rx/Tx
(241x, 261x
only)

Port 0 Basic Timer

continued on next page

7

15 DMA (241x,
261x only)

14 DAC12
(241x, 261
only)

13 to 0Low-
est

Reserved

Table 1.1

1.3.2 Flash/ROM

The start address of Flash/ROM depends on the amount of Flash/ROM present on the device. The start
address varies between 01100h (60k devices) to 0F800h (2k devices) and always runs to the end of the address
space at location 0FFFFh. Flash can be used for both code and data. Word or byte tables can also be stored
and read by the program from Flash/ROM.

All code, tables, and hard-coded constants reside in this memory space.

1.3.3 Information memory (Flash devices only)

The MSP430 �ash devices contain an address space for information memory. It is like an onboard EEPROM,
where variables needed for the next power up can be stored during power down. It can also be used as code
memory. Flash memory may be written one byte or word at a time, but must be erased in segments. The
information memory is divided into two 128-byte segments. The �rst of these segments is located at addresses
01000h through to 0107Fh (Segment B), and the second is at address 01080h through to 010FFh (Segment
A). This is the case in 4xx devices. It is 256 bytes (4 segments of 64 bytes each) in 2xx devices.

1.3.4 Boot memory (Flash devices only)

The MSP430 �ash devices contain an address space for boot memory, located between addresses 0C00h
through to 0FFFh. The �bootstrap loader� is located in this memory space, which is an external interface
that can be used to program the �ash memory in addition to the JTAG. This memory region is not accessible
by other applications, so it cannot be overwritten accidentally. The bootstrap loader performs some of the
same functions as the JTAG interface (excepting the security fuse programming), using the TI data structure
protocol for UART communication at a �xed data rate of 9600 baud.

1.3.5 RAM

RAM always starts at address 0200h. The end address of RAM depends on the amount of RAM present on
the device. RAM is used for both code and data.

1.3.6 Peripheral Modules

Peripheral modules consist of all on-chip peripheral registers that are mapped into the address space. These
modules can be accessed with byte or word instructions, depending if the peripheral module is 8-bit or 16-bit
respectively. The 16-bit peripheral modules are located in the address space from addresses 0100 through to
01FFh and the 8-bit peripheral modules are mapped into memory from addresses 0010h through to 00FFh.

8 CHAPTER 1. MSP430 OVERVIEW

1.3.7 Special Function Registers (SFRs)

Some peripheral functions are mapped into memory with special dedicated functions. The Special Function
Registers (SFRs) are located at memory addresses from 0000h to 000Fh, and are the speci�c registers for:

- Interrupt enables (locations 0000h and 0001h);
- Interrupt �ags (locations 0002h and 0003h);
- Enable �ags (locations 0004h and 0005h).
SFRs must be accessed using byte instructions only. See the device-speci�c data sheets for the applicable

SFR bits.
Request the MSP430 Teaching ROM Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp6

1.4 Central Processing Unit (MSP430 CPU)7

1.4.1 Central Processing Unit (MSP430 CPU)

The RISC type architecture of the CPU is based on a short instruction set (27 instructions), interconnected
by a 3-stage instruction pipeline for instruction decoding. The CPU has a 16-bit ALU, four dedicated
registers and twelve working registers, which makes the MSP430 a high performance microcontroller suitable
for low power applications. The addition of twelve working general purpose registers saves CPU cycles by
allowing the storage of frequently used values and variables instead of using RAM.

The orthogonal instruction set allows the use of any addressing mode for any instruction, which makes
programming clear and consistent, with few exceptions, increasing the compiler e�ciency for high-level
languages such as C.

6https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
7This content is available online at <http://cnx.org/content/m23497/1.1/>.

9

MSP430 CPU block diagram.

Figure 1.3

10 CHAPTER 1. MSP430 OVERVIEW

1.4.1.1 Arithmetic Logic Unit (ALU)

The MSP430 CPU includes an arithmetic logic unit (ALU) that handles addition, subtraction, comparison
and logical (AND, OR, XOR) operations. ALU operations can a�ect the over�ow, zero, negative, and carry
�ags in the status register.

1.4.1.2 MSP430 CPU registers

The CPU incorporates sixteen 16-bit registers:
- Four registers (R0, R1, R2 and R3) have dedicated functions;
- There are 12 working registers (R4 to R15) for general use.

1.4.1.2.1 R0: Program Counter (PC)

The 16-bit Program Counter (PC/R0) points to the next instruction to be read from memory and executed
by the CPU. The Program counter is implemented by the number of bytes used by the instruction (2, 4, or
6 bytes, always even). It is important to remember that the PC is aligned at even addresses, because the
instructions are 16 bits, even though the individual memory addresses contain 8-bit values.

1.4.1.2.2 R1: Stack Pointer (SP)

The Stack Pointer (SP/R1) is located in R1.
1st: stack can be used by user to store data for later use (instructions: store by PUSH, retrieve by POP);
2nd: stack can be used by user or by compiler for subroutine parameters (PUSH, POP in calling routine;

addressed via o�set calculation on stack pointer (SP) in called subroutine);
3rd: used by subroutine calls to store the program counter value for return at subroutine's end (RET);
4th: used by interrupt - system stores the actual PC value �rst, then the actual status register content

(on top of stack) on return from interrupt (RETI) the system get the same status as just before the interrupt
happened (as long as none has changed the value on TOS) and the same program counter value from stack.

1.4.1.2.3 R2: Status Register (SR)

The Status Register (SR/R2) stores the state and control bits. The system �ags are changed automatically
by the CPU depending on the result of an operation in a register. The reserved bits of the SR are used to
support the constants generator. See the device-speci�c data sheets for more details.

SR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved for CG1 V SCG1 SCG0 OSCOFF CPUOFF GIE N Z C

Table 1.2

Bit Description

8 V Over�ow bit.V = 1 ⇒ Result of
an arithmetic operation over�ows
the signed-variable range.

continued on next page

11

7 SCG1 System clock generator 0.SCG1
= 1 ⇒ DCO generator is turned
o� � if not used for MCLK or SM-
CLK.

6 SCG0 System clock generator 1.SCG0
= 1 ⇒ FLL+ loop control is
turned o�.

5 OSCOFF Oscillator O�.OSCOFF = 1 ⇒
turns o� LFXT1 when it is not
used for MCLK or SMCLK.

4 CPUOFF CPU o�.CPUOFF = 1⇒ disable
CPU core.

3 GIE General interrupt enable.GIE =
1⇒ enables maskable interrupts.

2 N Negative �ag.N = 1 ⇒ result of
a byte or word operation is nega-
tive.

1 Z Zero �ag.Z = 1⇒ result of a byte
or word operation is 0.

0 C Carry �ag.C = 1 ⇒ result of a
byte or word operation produced
a carry.

Table 1.3

R2/R3: Constant Generator Registers (CG1/CG2)
Depending of the source-register addressing modes (As) value, six commonly used constants can be

generated without a code word or code memory access to retrieve them.
This is a very powerful feature, which allows the implementation of emulated instructions, for example,

instead of implementing a core instruction for an increment, the constant generator is used.

Register As Constant Remarks

R2 00 - Register mode

R2 01 (0) Absolute mode

R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 0FFFFh -1, word processing

Table 1.4

12 CHAPTER 1. MSP430 OVERVIEW

1.4.1.2.4 R4 - R15: General�Purpose Registers

These general-purpose registers are used to store data values, address pointers, or index values and can be
accessed with byte or word instructions.

Request the MSP430 Teaching ROM Materials here https://www-
a.ti.com/apps/dspuniv/teaching_rom_request.asp8

1.5 Central Processing Unit (MSP430X CPU)9

1.5.1 Central Processing Unit (MSP430X CPU)

1.5.1.1 Main features of the MSP430X CPU architecture

The MSP430X CPU extends the addressing capabilities of the MSP430 family beyond 64 kB to 1 MB. To
achieve this, there are some changes to the addressing modes and two new types of instructions. One type of
new instructions allows access to the entire address space, and the other is designed for address calculations.

The MSP430X CPU address bus is 20 bits, but the data bus is still 16 bits. The CPU supports 8-bit,
16-bit and 20-bit memory accesses. Despite these changes, the MSP430X CPU remains compatible with the
MSP430 CPU, having a similar number of registers. A block diagram of the MSP430X CPU is shown in the
�gure below:

8https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
9This content is available online at <http://cnx.org/content/m23498/1.1/>.

13

MSP430X CPU block diagram.

Figure 1.4

14 CHAPTER 1. MSP430 OVERVIEW

Although the MSP430X CPU structure is similar to that of the MSP430 CPU, there are some di�erences
that will now be discussed.

With the exception of the status register SR, all MSP430X registers are 20 bits. The CPU can now
process 20-bit or 16-bit data.

1.5.1.2 MSP430X CPU registers

1.5.1.2.1 R0 (PC) - Program Counter

Has the same function as the MSP430 CPU, although now it has 20 bits.

1.5.1.2.2 R1 (SP) - Stack Pointer

Has the same function as the MSP430 CPU, although now it has 20 bits.

1.5.1.2.3 R2 (SR) - Status Register

Has the same function as the MSP430 CPU, but still only has 16 bits.

15

Description of the SR bits.

Figure 1.5

16 CHAPTER 1. MSP430 OVERVIEW

Figure 1.6

1.5.1.2.4 R2 (CG1) and R3 (CG2) - Constant Generators

The registers R2 and R3 can be used to generate six di�erent constants commonly used in programming,
without the need to add an extra 16-bit word of code to the instruction. The constants below are chosen
based on the bit (As) of the instruction that selects the addressing mode.

Values of constant generators.

Figure 1.7

Whenever the operand is one of these six constants, the registers are selected automatically. Therefore,
when used in constant mode, registers R2 and R3 cannot be addressed explicitly by acting as source registers.

1.5.1.2.5 R4-R15 � General-purpose registers

These registers have the same function as the MSP430 CPU, although they now have 20 bits. They can store
8-bit, 16-bit or 20-bit data. Any byte written to one of these registers clears bits 19:8. Any word written to

17

one of these registers clears bits 19:16. The exception to this rule is the instruction SXT, which extends the
sign value to �ll the 20-bit register.

The following �gures illustrate how the operations are conducted for the exchange of information between
memory and registers, for the following formats: byte (8 bits), word (16 bits) and address (20 bits).

The following �gure illustrates the handling of a byte (8 bits) using the su�x .B.

Example: Register-Byte/Byte-Register operation.

Figure 1.8

The following �gure illustrates the handling of a word (16-bit) using the su�x .W.

18 CHAPTER 1. MSP430 OVERVIEW

Example: Register-Word/Word-Register operation.

Figure 1.9

19

Example: Register-Word/Word-Register operation.

Figure 1.10

The following �gure illustrates the manipulation of an address (20 bits) using the su�x .A.

20 CHAPTER 1. MSP430 OVERVIEW

Example: Register - Address-Word operation.

Figure 1.11

21

Example: Address-Word - Register operation.

Figure 1.12

Request the MSP430 Teaching ROM Materials here https://www-
a.ti.com/apps/dspuniv/teaching_rom_request.asp10

1.6 Addressing modes11

Addressing modes
The MSP430 supports seven addressing modes for the source operand and four addressing modes for the

destination operand (see bellow). The following sections describe each of the addressing modes, with a brief
description, an example and the number of CPU clock cycles required for an instruction, depending on the
instruction format and the addressing modes used.

Mode Source operand Destination operand Description

Register mode X X Single cycle

Indexed mode X X Table processing

continued on next page

10https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
11This content is available online at <http://cnx.org/content/m23500/1.1/>.

22 CHAPTER 1. MSP430 OVERVIEW

Symbolic mode X X Easy to read code, PC
relative

Absolute mode X X Directly access any
memory location

Indirect register mode X Access memory with
pointers

Indirect auto increment
mode

X Table processing

Immediate mode X Unrestricted constant
values

Table 1.5

Before describing the addressing modes, it is important to mention the clock cycles required by interrupts
and resets.

Action Cycles Length (words)

Return from interrupt 5 1

Interrupt accepted 6 -

Watchdog timer reset 4 -

Hard reset 4 -

Table 1.6

1.6.1 Register Mode

Register mode operations work directly on the processor registers, R4 through R15, or on special function
registers, such as the program counter or status register. They are very e�cient in terms of both instruction
speed and code space.

Description: Register contents are operands.
Source mode bits: As = 00 (source register de�ned in the opcode).
Destination mode bit: Ad=0 (destination register de�ned in the opcode).
Syntax: Rn.
Length: One or two words.
Comment: Valid for source and destination.
Example 1: Move (copy) the contents of source (register R4) to destination (register R5). Register R4

is not a�ected.
Before operation: R4=A002h R5=F50Ah PC = PCpos

Operation: MOV R4, R5
After operation: R4=A002h R5=A002h PC = PCpos + 2
The �rst operand is in register mode and depending on the second operand mode, the cycles required

to complete an instruction will di�er. The next table shows the cycles required to complete an instruction,
depending on the second operand mode.

23

Operands 2 nd operand mode Operator Cycles Length (words)

2 Register Any 1* 1

2 Indexed, Symbolic or Absolute Any 4 2

1 N/A RRA, RRC, SWPB or SXT 1 1

1 N/A PUSH 3 1

1 N/A CALL 4 1

Table 1.7

1.6.2 Indexed mode

The Indexed mode commands are formatted as X(Rn), where X is a constant and Rn is one of the CPU reg-
isters. The absolute memory location X+Rn is addressed. Indexed mode addressing is useful for applications
such as lookup tables.

Description: (Rn + X) points to the operand. X is stored in the next word.
Source mode bits: As = 01 (memory location is de�ned by the word immediately following the opcode).
Destination mode bit: Ad=1 (memory location is de�ned by the word immediately following the opcode).
Syntax: X(Rn).
Length: Two or three words.
Comment: Valid for source and destination.
Example 2: Move (copy) the contents at source address (F000h + R5) to destination (register R4).
Before operation: R4=A002h R5=050Ah Loc:0xF50A=0123h
Operation: MOV F000h(R5), R4
After operation: R4=0123h R5=050Ah Loc:0xF50A=0123h

Operands 2 nd operand mode Operator Cycles Length (words)

2 Register Any 3 2

2 Indexed, Symbolic or Absolute Any 6 3

1 N/A RRA, RRC, SWPB or SXT 4 2

1 N/A CALL or PUSH 5 2

Table 1.8

1.6.3 Symbolic mode

Symbolic mode allows the assignment of labels to �xed memory locations, so that those locations can be
addressed. This is useful for the development of embedded programs.

Description: (PC + X) points to the operand. X is stored in the next word. Indexed mode X(PC) is
used.

Source mode bits: As = 01 (memory location is de�ned by the word immediately following the opcode).
Destination mode bit: Ad=1 (memory location is de�ned by the word immediately following the opcode).
Syntax: ADDR.
Length: Two or three words.
Comment: Valid for source and destination.
Example 3: Move the content of source address XPT (x pointer) to the destination address YPT (y

pointer).

24 CHAPTER 1. MSP430 OVERVIEW

Before operation: XPT=A002h Location YPT=050Ah
Operation: MOV XPT, YPT
After operation: XPT= A002h Location YPT=A002h

Operands 2 nd operand mode Operator Cycles Length (words)

2 Register Any 3 2

2 Indexed, Symbolic or Absolute Any 6 3

1 N/A RRA, RRC, SWPB or SXT 4 2

1 N/A CALL or PUSH 5 2

Table 1.9

1.6.4 Absolute mode

Similar to Symbolic mode, with the di�erence that the label is preceded by �&�.
Description: The word following the instruction contains the absolute address. X is stored in the next

word. Indexed mode X(SR) is used.
Source mode bits: As = 01 (memory location is de�ned by the word immediately following the opcode).
Destination mode bit: Ad=1 (memory location is de�ned by the word immediately following the opcode).
Syntax: &ADDR.
Length: Two or three words.
Comment: Valid for source and destination.
Example 4: Move the content of source address XPT to the destination address YPT.
Before operation: Location XPT=A002h Location YPT=050Ah
Operation: MOV &XPT, &YPT
After operation: Location XPT= A002h Location YPT=A002h

Operands 2 nd operand mode Operator Cycles Length (words)

2 Register Any 3 2

2 Indexed, Symbolic or Absolute Any 6 3

1 N/A RRA, RRC, SWPB or SXT 4 2

1 N/A CALL or PUSH 5 2

Table 1.10

1.6.5 Indirect register mode

The data word addressed is located in the memory location pointed to by Rn. Indirect mode is not valid for
destination operands, but can be emulated with the indexed mode format 0(Rn).

Description: Rn is used as a pointer to the operand.
Source mode bits: As = 10.
Syntax: @Rn.
Length: One or two words.
Comment: Valid only for source operand. The substitute for destination operand is 0(Rn).
Example 5: Move the contents of the source address (contents of R4) to the destination (register R5).

Register R4 is not modi�ed.

25

Before operation: R4=A002h R5=050Ah Loc:0xA002=0123h
Operation: MOV @(R4), R5
After operation: R4= A002h R5=0123h Loc:0xA002=0123h

Operands 2 nd operand mode Operator Cycles Length (words)

2 Register Any 2* 1

2 Indexed, Symbolic or Absolute Any 5 2

1 N/A RRA, RRC, SWPB or SXT 3 1

1 N/A CALL or PUSH 4 1

Table 1.11

1.6.6 Indirect auto increment mode

Similar to indirect register mode, but with indirect auto increment mode, the operand is incremented as part
of the instruction. The format for operands is @Rn+. This is useful for working on blocks of data.

Description: Rn is used as a pointer to the operand. Rn is incremented afterwards by 1 for byte
instructions and by 2 for word instructions.

Source mode bits: As = 11.
Syntax: @Rn+.
Length: One or two words.
Comment: Valid only for source operand. The substitute for destination operand is 0(Rn) plus second

instruction INCD Rn.
Example 6: Move the contents of the source address (contents of R4) to the destination (register R5),

then increment the value in register R4 to point to the next word.
Before operation: R4=A002h R5=050Ah Loc:0xA002=0123h
Operation: MOV @R4+, R5
After operation: R4= A004h R5=0123h Loc:0xA002=0123h

Operands 2 nd operand mode Operator Cycles Length (words)

2 Register Any 2* 1

2 Indexed, Symbolic or Absolute Any 5 2

1 N/A RRA, RRC, SWPB or SXT 3 1

1 N/A PUSH 4 1

1 N/A CALL 5 1

Table 1.12

1.6.7 Immediate mode

Immediate mode is used to assign constant values to registers or memory locations.
Description: The word following the instruction contains the immediate constant N. Indirect autoincre-

ment mode @PC+ is used.
Source mode bits: As = 11.
Syntax: #N.

26 CHAPTER 1. MSP430 OVERVIEW

Length: Two or three words. It is one word less if a constant in CG1 or CG2 can be used.
Comment: Valid only for source operand.
Example 7: Move the immediate constant E2h to the destination (register R5).
Before operation: R4=A002h R5=050Ah
Operation: MOV #E2h, R5
After operation: R4= A002h R5=00E2h

Operands 2 nd operand mode Operator Cycles Length (words)

2 Register Any 2* 2

2 Indexed, Symbolic or Absolute Any 5 3

1 N/A RRA, RRC, SWPB or SXT N/A N/A

1 N/A PUSH 4 2

1 N/A CALL 5 2

Table 1.13

Request the MSP430 Teaching ROM Materials here https://www-
a.ti.com/apps/dspuniv/teaching_rom_request.asp12

1.7 MSP430 instruction set13

Instruction set
The MSP430 instruction set consists of 27 core instructions. Additionally, it supports 24 emulated

instructions. The core instructions have unique op-codes decoded by the CPU, while the emulated ones need
assemblers and compilers to generate their mnemonics.

There are three core-instruction formats:
- Double operand;
- Single operand;
- Program �ow control - Jump.
Byte, word and address instructions are accessed using the .B, .W or .A extensions. If the extension is

omitted, the instruction is interpreted as a word instruction.

1.7.1 Double operand instructions

The double operand instruction is formatted as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcode S-Reg Ad B/W As D-Reg

Table 1.14

Bit Description

continued on next page

12https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
13This content is available online at <http://cnx.org/content/m23503/1.1/>.

27

15-12 opcode

11-8 S-Reg The working register used for the
source operand (src)

7 Ad The addressing bits responsible
for the addressing mode used for
the destination operand (dst)

6 B/W Byte or word operation:B/W=0:
word operation; B/W=1: byte
operation

5-4 As The addressing bits responsible
for the addressing mode used for
the source operand (src)

3-0 D-Reg The working register used for the
destination operand (dst)

Table 1.15

The next tableshows the double operand instructions that are not emulated.

Mnemonic Operation Description

Arithmetic instructions

ADD(.B or .W) src,dst src+dst→dst Add source to destination

ADDC(.B or .W) src,dst src+dst+C→dst Add source and carry to destination

DADD(.B or .W) src,dst src+dst+C→dst (dec) Decimal add source and carry to destination

SUB(.B or .W) src,dst dst+.not.src+1→dst Subtract source from destination

SUBC(.B or .W) src,dst dst+.not.src+C→dst Subtract source and not carry from destination

Logical and register control instructions

AND(.B or .W) src,dst src.and.dst→dst AND source with destination

BIC(.B or .W) src,dst .not.src.and.dst→dst Clear bits in destination

BIS(.B or .W) src,dst src.or.dst→dst Set bits in destination

BIT(.B or .W) src,dst src.and.dst Test bits in destination

XOR(.B or .W) src,dst src.xor.dst→dst XOR source with destination

Data instructions

CMP(.B or .W) src,dst dst-src Compare source to destination

MOV(.B or .W) src,dst src→dst Move source to destination

Table 1.16

Depending on the double operand instruction result, the status bits may be a�ected. The following gives
the conditions for setting and resetting the status bits.

28 CHAPTER 1. MSP430 OVERVIEW

Status bits

Mnemonic V N Z C

Arithmetic instructions

ADD(.B or .W)
src,dst

=1, Arithmetic
over�ow=0, other-
wise

=1, negative re-
sult=0, if positive

=1, null result=0,
otherwise

=1, carry from re-
sult=0, if not

ADDC(.B or .W)
src,dst

=1, Arithmetic
over�ow=0, other-
wise

=1, negative re-
sult=0, if positive

=1, null result=0,
otherwise

=1, carry from
MSB result=0, if
not

DADD(.B or .W)
src,dst

- =1, MSB=1=0,
otherwise

=1, null result=0,
otherwise

=1, result >
99(99)

SUB(.B or .W)
src,dst

=1, Arithmetic
over�ow=0, other-
wise

=1, negative re-
sult=0, if positive

=1, null result=0,
otherwise

=1, if no bor-
row=0, otherwise

SUBC(.B or .W)
src,dst

=1, Arithmetic
over�ow=0, other-
wise

=1, negative re-
sult=0, if positive

=1, null result=0,
otherwise

=1, if no bor-
row=0, otherwise

Logical and register control instructions

AND(.B or .W)
src,dst

=0 =1, MSB result
set=0, if not set

=1, null result=0,
otherwise

=1, not zero=0,
otherwise

BIC(.B or .W)
src,dst

- - - -

BIS(.B or .W)
src,dst

- - - -

BIT(.B or .W)
src,dst

=0 =1, MSB result
set=0, otherwise

=1, null result=0,
otherwise

=1, not zero=0,
otherwise

XOR(.B or .W)
src,dst

=1, both operands
negative

=1, MSB result
set=0, otherwise

=1, null result,=0,
otherwise

=1, not zero=0,
otherwise

Data instructions

CMP(.B or .W)
src,dst

=1, Arithmetic
over�ow=0, other-
wise

=1, src>=dst=0,
src<dst

=1, src=dst=0,
otherwise

=1, carry from
MSB result=0, if
not

continued on next page

29

MOV(.B or .W)
src,dst

- - - -

Table 1.17

1.7.2 Single operand instructions

The single operand instruction is formatted as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcode B/W Ad D/S-Reg

Table 1.18

Bit Description

15-7 opcode

6 B/W Byte or word operation:B/W=0:
word operation; B/W=1: byte
operation

5-4 Ad The addressing bits responsible
for the addressing mode used for
the source operand (src)

3-0 D/S-Reg The working register used for the
destination operand (dst) or for
the source operand (src)

Table 1.19

The next table shows the single operand instructions that are not emulated.

Mnemonic Operation Description

Logical and register control instructions

RRA(.B or .W) dst MSB→MSB→. . .LSB→C Roll destination right

RRC(.B or .W) dst C→MSB→. . .LSB→C Roll destination right through
(from) carry

SWPB(.B or .W) dst Swap bytes Swap bytes in destination

SXT dst bit 7→bit 8. . .bit 15 Sign extend destination

continued on next page

30 CHAPTER 1. MSP430 OVERVIEW

PUSH(.B or .W) src SP-2→SP, src→@SP Push source to stack

Program �ow control instructions

CALL(.B or .W) dst SP-2→SP, PC+2→@SPdst→PC Subroutine call to destination

RETI TOS→SR, SP+2→SPTOS→PC,
SP+2→SP

Return from interrupt

Table 1.20

Conditions for status bits, depending on the single operand instruction result.

Status bits

Mnemonic V N Z C

Logical and register control instructions

RRA(.B or .W)
dst

=0 =1, negative re-
sult=0, otherwise

=1, null result,=0,
otherwise

Loaded from LSB

RRC(.B or .W) dst =1, dst positive &
C=1=0, otherwise

=1, negative re-
sult=0, otherwise

=1, null result,=0,
otherwise

Loaded from LSB

SWPB(.B or .W)
dst

- - - -

SXT dst =0 =1, negative re-
sult=0, otherwise

=1, null result,=0,
otherwise

=1, not zero=0,
otherwise

PUSH(.B or .W)
src

- - - -

Data instructions

CALL(.B or .W)
dst

- - � -

RETI restored from
stack

restored from
stack

restored from
stack

restored from
stack

Table 1.21

1.7.3 Program �ow control - Jumps

The jump instruction is formatted as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcode C 10 bit PC o�set

Table 1.22

Bit Description

15-13 opcode

12-10 C

9-0 PC o�set PCnew = PCold + 2 + PCo�set × 2

31

Table 1.23

The following table shows the program �ow control (jump) instructions that are not emulated.

Mnemonic Description

Program �ow control instructions

JEQ/JZ label Jump to label if zero �ag is set

JNE/JNZ label Jump to label if zero �ag is reset

JC label Jump to label if carry �ag is set

JNC label Jump to label if carry �ag is reset

JN label Jump to label if negative �ag is set

JGE label Jump to label if greater than or equal

JL label Jump to label if less than

JMP label Jump to label unconditionally

Table 1.24

1.7.4 Emulated instructions

The next gives the di�erent emulated instructions. This table also contains the type of operation and the
emulated instruction based on the core instructions.

Mnemonic Operation Emulation Description

Arithmetic instructions

ADC(.B or .W)
dst

dst+C→dst ADDC(.B or .W) #0,dst Add carry to desti-
nation

DADC(.B or .W)
dst

dst+C→dst (deci-
mally)

DADD(.B or .W) #0,dst Decimal add carry
to destination

DEC(.B or .W) dst dst-1→dst SUB(.B or .W) #1,dst Decrement desti-
nation

DECD(.B or .W)
dst

dst-2→dst SUB(.B or .W) #2,dst Decrement desti-
nation twice

INC(.B or .W) dst dst+1→dst ADD(.B or .W) #1,dst Increment destina-
tion

continued on next page

32 CHAPTER 1. MSP430 OVERVIEW

INCD(.B or .W)
dst

dst+2→dst ADD(.B or .W) #2,dst Increment destina-
tion twice

SBC(.B or .W) dst dst+0FFFFh+C→dstdst+0FFh→dstSUBC(.B or .W) #0,dst Subtract source
and borrow
/.NOT. carry from
dest.

Logical and register control instructions

INV(.B or .W) dst .NOT.dst→dst XOR(.B or .W) #0(FF)FFh,dst Invert bits in des-
tination

RLA(.B or .W) dst C[U+F0AC]MSB[U+F0AC]MSB-
1. . .LSB+1[U+F0AC]LSB[U+F0AC]0

ADD(.B or .W) dst,dst Rotate left arith-
metically

RLC(.B or .W) dst C[U+F0AC]MSB[U+F0AC]MSB-
1. . .LSB+1[U+F0AC]LSB[U+F0AC]C

ADDC(.B or .W) dst,dst Rotate left
through carry

Data instructions

CLR(.B or .W) dst 0→dst MOV(.B or .W) #0,dst Clear destination

CLRC 0→C BIC #1,SR Clear carry �ag

CLRN 0→N BIC #4,SR Clear negative �ag

CLRZ 0→Z BIC #2,SR Clear zero �ag

POP(.B or .W) dst @SP→tempSP+2→SPtemp→dstMOV(.B or .W) @SP+,dst Pop byte/word
from stack to
destination

SETC 1→C BIS #1,SR Set carry �ag

SETN 1→N BIS #4,SR Set negative �ag

SETZ 1→Z BIS #2,SR Set zero �ag

TST(.B or .W) dst dst + 0FFFFh +
1dst + 0FFh + 1

CMP(.B or .W) #0,dst Test destination

Program �ow control

BR dst dst→PC MOV dst,PC Branch to destina-
tion

DINT 0→GIE BIC #8,SR Disable (general)
interrupts

EINT 1→GIE BIS #8,SR Enable (general)
interrupts

continued on next page

33

NOP None MOV #0,R3 No operation

RET @SP→PCSP+2→SPMOV @SP+,PC Return from sub-
routine

Table 1.25

Conditions for status bits, depending on the emulated instruction result.

Status bits

Mnemonic V N Z C

Arithmetic instructions

ADC(.B or .W)
dst

=1, Arithmetic
over�ow=0, other-
wise

=1, negative re-
sult=0, if positive

=1, null result=0,
otherwise

=1, dst from
0FFFFh to
0000=0, other-
wise

DADC(.B or .W)
dst

- =1, MSB=1=0,
otherwise

=1, dst=0=0, oth-
erwise

=1, dst from
99(99) to
00(00)=0, oth-
erwise

DEC(.B or .W) dst =1, Arithmetic
over�ow=0, other-
wise

=1, negative re-
sult=0, if positive

=1, dst contained
1=0, otherwise

=1, dst contained
0=0, otherwise

DECD(.B or .W)
dst

=1, Arithmetic
over�ow=0, other-
wise

=1, negative re-
sult=0, if positive

=1, dst contained
2=0, otherwise

=1, dst contained
0 or 1=0, other-
wise

INC(.B or .W) dst =1, dst contained
07(FF)h=0, other-
wise

=1, negative re-
sult=0, if positive

=1, dst contained
FF(FF)h=0, oth-
erwise

=1, dst contained
FF(FF)h=0, oth-
erwise

INCD(.B or .W)
dst

=1, dst contained
07(FFE)h=0, oth-
erwise

=1, negative re-
sult=0, if positive

=1, dst contained
FF(FE)h=0, oth-
erwise

=1, dst con-
tained FF(FF)h
or FF(FE)h=0,
otherwise

SBC(.B or .W) dst =1, Arithmetic
over�ow=0, other-
wise

=1, negative re-
sult=0, if positive

=1, null result,=0,
otherwise

=1, if no bor-
row=0, otherwise

continued on next page

34 CHAPTER 1. MSP430 OVERVIEW

Logical and register control instructions

INV(.B or .W) dst =1, negative ini-
tial dst=0, other-
wise

=1, negative re-
sult=0, if positive

=1, dst contained
FF(FF)h=0, oth-
erwise

=1, not zero=0,
otherwise

RLA(.B or .W) dst =1, Arithmetic
over�ow=0, other-
wise

=1, negative re-
sult=0, if positive

=1, null result,=0,
otherwise

Loaded from MSB

RLC(.B or .W) dst =1, Arithmetic
over�ow=0, other-
wise

=1, negative re-
sult=0, if positive

=1, null result,=0,
otherwise

Loaded from MSB

Data instructions

CLR(.B or .W) dst - - - -

CLRC - - - =0

CLRN - =0 - -

CLRZ - - =0 -

POP(.B or .W) dst - - - -

SETC - - - =1

SETN - =1 - -

SETZ - - =1 -

TST(.B or .W) dst =0 =1, dst nega-
tive=0, otherwise

=1, dst contains
zero=0, otherwise

=1

Program �ow control

BR dst - - - -

DINT - - - -

EINT - - - -

NOP - - - -

RET - - - -

Table 1.26

Request the MSP430 Teaching ROM Materials here https://www-
a.ti.com/apps/dspuniv/teaching_rom_request.asp14

14https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

Chapter 2

Code Composer Essentials

2.1 Code Composer Essentials1

2.1.1 Code Composer Essentials

TI recently launched Code Composer Essentials v3. This IDE's latest version (version 3) supports all
available MSP430 devices.

The new features of CCE v3 include:
- Free 16 kB code-limited version;
- Supports the large memory model (Place data >64k);
- Enhanced Compatibility with IAR C-code:
- #pragma (ISR declarations), most intrinsics.
- GDB Debugger replaced by TI proprietary debugger that allows faster single stepping;
- Hardware Multiplier libraries (16-bit and 32-bit multiplies);
- CCE v2 project support (auto convert);
- Breakpoints:
- Extended Emulation Module (EEM) support via uni�ed breakpoint manager;
- Using of EEM (prede�ned Use Cases);
- Unlimited Breakpoints
Eclipse is a software development platform, developed in Java, which allows it to be used on di�erent

operating systems. One of its main features is that it is fully based on plug-ins, which gives it great versatility.
Code Composer Essentials (CCE) version 3 is based on Eclipse release 3.2 (Callisto). On the market there
are hundreds of plug-ins that can be added in order to enhance or optimize a particular aspect of CCE.
One of the available repositories for plug-ins developed for the Eclipse is the Eclipse Plugin Central located
at http://www.eclipseplugincentral.com/. This development tool has advanced capabilities to support the
development of applications for the MSP430 family. Among them are the support for the use of breakpoints,
either hardware or software. CCE supports code debugging activities, with support for features such as code
step-by-step execution, or fast and e�cient access to registers and memory locations. There is complete
compatibility between the C programming language syntax used and the great diversity of code examples
available.

In addition, others plug-ins are also part of the default version, the important ones being:
- Concurrent Version System (CVS): For control of code versions in production.
- Plug-in Development Environment (PDE): Relevant for those who want to expand the functionality of

IDE through plug-ins.
- JUnit: Framework for code validation and test

1This content is available online at <http://cnx.org/content/m23504/1.1/>.

35

36 CHAPTER 2. CODE COMPOSER ESSENTIALS

2.1.1.1 CCE installation

Most of the installation of CCE is automated. It is only necessary to provide some user indications as to
how the program installation should continue.

Request the MSP430 Teaching ROM Materials here https://www-
a.ti.com/apps/dspuniv/teaching_rom_request.asp2

2.2 Introduction to CCE IDE3

Introduction to CCE IDE
The introductory overview in the use of CCE will continue with a practical example, addressing some of

its main features. Let us begin by building a project. This project will be con�gured with respect to the
hardware, i.e., the MSP430 family device.

2.2.1 Launching the workbench

The term �Workbench� refers to the integrated development environment of all tools necessary for the
development and management of projects. When CCE is started, it asks the user where they want to locate
the work directory (workspace).

After choosing the location where the workspace will be stored, it opens by default in the project con-
struction perspective. The concept associated with a perspective is important for the correct understanding
of CCE operation. A perspective provides that for a given task there is an organization of windows most
appropriate to its implementation. Changing perspective involves reformulating the workspace for a new
Windows con�guration that promotes the development of particular task. There are two major perspectives:
C/C++ for editing, management and compilation of projects, and Debug for debugging the applications.
The working perspective is selected in the upper right hand corner of the application.

By default, the windows included in the C/C++ perspective are: C/C++ Projects (to manage the
projects); Editor (to edit �les); Outline (to view data); Console (to send messages); Problems (identi�es
problems found in the project). The icons associated with the various tasks that can be performed in this
perspective are shown together in Table 1.

Button Description Button Description

Open a new perspective Save the active editor
contents

Save the contents of all
editors

Save editor contents un-
der a new name or loca-
tion

Opens the search dialog Print editor contents

Open a resource cre-
ation wizard (New)

Open a �le creation wiz-
ard

continued on next page

2https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
3This content is available online at <http://cnx.org/content/m23508/1.1/>.

37

Open a folder creation
wizard

Open a project creation
wizard

Open the import wizard Open the export wizard

Run incremental build
(Build All)

Run a program

Debug a program Run an external tool

Cut selection to clip-
board

Copy selection to clip-
board

Paste selection from
clipboard

Undo most recent edit

Redo most recent un-
done edit

Navigate to next item in
a list

Navigate to previous
item in a list

Navigate forwards

Navigate backwards Navigate up one level

Add bookmark or task Open a view's drop
down menu

Close view or editor Pin editor to prevent au-
tomatic reuse

Filter tasks or proper-
ties

Go to a task, problem,
or bookmark in the edi-
tor

Restore default proper-
ties

Show items as a tree

Refresh view contents Sort list in alphabetical
order

Cancel a running opera-
tion

Delete selected item or
content

Last edit location Toggle Mark Occur-
rences

Assembly instruction
only

Table 2.1

By default, the windows included in theDebug perspective are: Debug (provides information concerning
the debug process); Editor (to edit �les); Variables/Expressions (to evaluate variables and expressions

38 CHAPTER 2. CODE COMPOSER ESSENTIALS

values during debug); Console (console to send messages); Registers/Breakpoints (to evaluate the con-
tents of registers and to de�ne code breakpoint); and Disassembly/Memory (to evaluate the assembly
code and memory map occupation). The icons associated with the various tasks that can be performed in
this perspective are shown together in Table 2.

Icon Command Description

Create New Create a new project, folder, or
�le.

Save Save the content of the current
editor. Disabled if the editor does
not contain unsaved changes.

Print Prints the content of the current
editor.

Build All Compiles all �les for all projects
in workbench.

Enable/Disable Breakpoints Enables or disables a breakpoint
at the speci�ed location.

Toggle Breakpoint Toggles a breakpoint at a speci�c
address selected in the Edit win-
dow.

Change Build Con�guration Lists available build con�gura-
tions to choose.

New C/C++ Project Creates a new C/C++ project.

New C/C++ Source Folder Creates a source folder within the
current project.

New C/C++ Source File Creates a source �le within the
current project.

New C/C++ Class Creates a C++ class within the
current project.

Debug Active Project Debugs the current active
project.

Launch TI Debugger Launches the TI speci�c debug-
ger.

continued on next page

39

Debug Launches the Debug dialog box.

Run Launches the Run dialog box

External Tools Launches the External Tools dia-
log box

Open Type Brings up the Open Type selec-
tion dialog to open a type in the
editor. The Open Type selection
dialog shows all types existing in
the workspace.

Search Launches the C/C++ Search di-
alog box

Select Working Sets Selects a working set from the list
to be the active one. Working
sets group elements for display in
views or for operations on a set
of elements.

Next Annotation Selects the next annotation in the
resource that is currently active
in the editor area. Supported in
the Java editor.

Previous Annotation Selects the previous annotation
in the resource that is currently
active in the editor area. Sup-
ported in the Java editor.

Go to Last Edit Location Returns editor view to the last
line edited, if the �le that was
last edited was closed it will be
re-opened.

Back Navigates back through open
�les.

Forward Navigates forward through open
�les.

Table 2.2

Request the MSP430 Teaching ROM Materials here https://www-
a.ti.com/apps/dspuniv/teaching_rom_request.asp4

4https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

40 CHAPTER 2. CODE COMPOSER ESSENTIALS

2.3 Creating a Project5

2.3.1 Creating a Project

Select the option File> New > Managed Make C\ASM Project (recommended) to create a project.
Other project options are available, but with the above option, the project process creation is more auto-
mated. The Figure 1 shows the window where the option should be selected.

CCE workbench � Project creation process window.

Figure 2.1

After choosing this option, a procedure for the creation of projects for the MSP430 family of microcon-
trollers is provided. The user must answer the �rst question concerning the project's name. By default,
all the project �les are stored within a folder, with the name of the project in the directory chosen for the
workspace. The New Project window is shown in the Figure 2.

5This content is available online at <http://cnx.org/content/m23511/1.1/>.

41

CCE workbench � New project name window.

Figure 2.2

Afterwards, some additional settings are made to the project, such as whether there is any dependency of
this project on another. If this condition is true, the dependency should be established through the window
shown in Figure 3.

42 CHAPTER 2. CODE COMPOSER ESSENTIALS

CCE workbench � Project dependency window.

Figure 2.3

Information indexing functionality is part of the C/C++ Project. It uses a parser to create a database of
the contents of the project �les. This feature is used during the information search, the project navigation,
and in the content assistant. The indexing task is performed in the background and reacts to changes in
content such as: C/C++ project creation or deletion; �le creation or deletion; �le import; content of �les
changes.

There are three options for setting up the operation of this functionality:
- Without Project contents indexing (No Indexer);
- Fast C/C++ or;
- Full Indexer C/C++ Indexer).
These two last options di�er mainly in the required processing time of the indexing task and results

quality. The con�guration window of this feature is displayed in Figure 3.

43

CCE workbench � Project indexing window.

Figure 2.4

In the �nal window displayed during the project's creation procedure (see Figure 4), the device with which
the project is being developed must be chosen. By choosing the device, the appropriate linker command �le
and supporting libraries are selected automatically.

44 CHAPTER 2. CODE COMPOSER ESSENTIALS

CCE workbench � Device selection window.

Figure 2.5

The project's creation can then be �nalised by choosing the option Finish. At any time, it is possible
to go back to previous windows by choosing the option Back.

The next step is to add the source code �le to the project. Choose File > New > Source File. In this
menu the option to create .C type �le should be selected, as shown in Figure 5.

45

CCE workbench � Source code �le creation procedure.

Figure 2.6

The name of the �le is then requested in the window as shown in Figure 6. Do not forget to add the �le
extension such as �my�le.c� so that it is recognized as a C �le.

46 CHAPTER 2. CODE COMPOSER ESSENTIALS

CCE workbench � Source code �le creation window.

Figure 2.7

The project is automatically selected as the default project. Although the workspace allows several
projects to be opened simultaneously, it allows only one of them to be active. To select an active project, its
name must be selected with the mouse's right button in C/C++ Project view, in order to show the context
menu. Then the option set as active project must be selected. From here, the expression [Active-Debug]
will appear. In the context menu there are other options to manage the project: add or remove �les, import
or export resources, edit the properties and so on.

47

CCE workbench � Set as an active project window.

Figure 2.8

At this point, it is possible to start editing the project's source code. CCE has all the capabilities inherited
from the Eclipse edition. Adding the �le lab1.c, which already exists, is done through the option add �le
to project. This �le can be found in Project > add �le to project, as in the context menu of the view
C/C++ Projects. The �le lab1.c can be removed from the project by simply selecting it in the view and
selecting the option delete. Note that when the �le is removed, it will be cleared from the directory.

Request the MSP430 Teaching ROM Materials here https://www-
a.ti.com/apps/dspuniv/teaching_rom_request.asp6

6https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

48 CHAPTER 2. CODE COMPOSER ESSENTIALS

2.4 Code Editor7

2.4.1 Code Editor

The text editor included in CCE is a versatile tool and very e�ective for helping with the code editing task.
The C/C++ perspective is shown in Figure 1.

CCE workbench � C/C++ perspective.

Figure 2.9

The text editor has a set of features that allow speeding up the code editing process. An overview of the
text editor is shown in Figure 2.

7This content is available online at <http://cnx.org/content/m23513/1.1/>.

49

CCE workbench � Text editor window.

Figure 2.10

Code editing is greatly facilitated using features such as search and replace. To accomplish this task,
the user must select Edit > Find/Replace. In addition to the normal features of search and replace, the
option Search > File allows the use of more elaborate expressions. For example, it provides the global
replacement in all �les of a speci�c directory. The search and replace tasks previously performed can be
found on the drop-list.

CCE can regularly save the opened �les for editing in order to prevent losses caused by system crashes.
To use this function, select Window > Preferences > General > Workspace and specify the time
interval at which this task should be performed automatically. The project can also be saved whenever it
goes through project build.

The content wizard is a very e�ective tool to support the writing of code. It is possible to automatically
insert a code structure model, previously de�ned, as an alternative to writing it out completely (see an
example in Figure 3). To insert a model of a structure, it is only necessary to write the �rst letters in the
text editor and then press the Ctrl + Space keys in order to display a list of the corresponding models.
The options in the list can be reduced by continuing writing the structure name. The Arrow Up and Arrow
Down keys can be used to select the desired model and by pressing the Enter key to accept the selection.
At any time the Esc key allows editing to continue without the use of the content wizard.

CCE workbench � Content wizard.

50 CHAPTER 2. CODE COMPOSER ESSENTIALS

Figure 2.11

The behaviour of this feature can be con�gured in Window > Preferences. In Figure 4 shows the
con�guration page of the content wizard.

51

CCE workbench � Preferences window.

Figure 2.12

The search range can be restricted to only the edited �le and to the �les included therein (Search
current �le and included �les), or alternatively a search can be in the whole project (Search current
project). Automatic model insertion is allowed, as long as it is the only one at the options list (Insert
single proposals automatically). The user may also request that the suggestions list is presented in
alphabetical order (Present proposals in alphabetical order). Another aspect that can be con�gured is
related to the time (in milliseconds) that the content wizard delays to suggest a list (delay), or the duration
of the validity of the suggestion (Content Assist Parsing timeout).

In addition to the sequence of Ctrl + Space keys, the content wizard can also be set automatically when
the following characters are typed: ".", "->" or "::".

CCE is already provided with a set of models. However, it is possible to create new models by opening
the models editor. Expand the C/C++ perspective in Window > Preferences, and select Editor >

52 CHAPTER 2. CODE COMPOSER ESSENTIALS

Templates. The option New must be selected to create a new model (see Figure 5).

CCE workbench � New template window.

Figure 2.13

A name must be given for the new model. The context in which the model is valid should be selected.
In the Description �eld a brief description of the model can be added. The model itself is described in the
Pattern �eld. To insert a variable, use the Insert Variable option.

One way to learn how to create models, or even how to customize existing models, can be achieved using
the model editing feature (see Figure 6). To access this feature, the Editor > Templates option must be
chosen, and is visible after expanding the C/C++ perspective in Window > Preferences.

53

CCE workbench � Edit template window.

Figure 2.14

The procedures to check on this page are identical to those described earlier for building new models.
The CCE supports the following intrinsic functions for the MSP430 family devices:
- void __no_operation(void);
- void __enable_interrupt(void);
- void __disable_interrupt(void);
- unsigned short __get_interrupt_state(void);
- void __set_interrupt_state(void);
- void __op_code(unsigned short);
- unsigned short __swap_bytes(unsigned short);
- void __bic_SR_register(unsigned short);
- void __bis_SR_register(unsigned short);
- unsigned short __get_SR_register(void);
- void __bic_SR_register_on_exit(unsigned short);
- void __bis_SR_register_on_exit(unsigned short);
- unsigned short __get_SR_register_on_exit(void);
- void __set_SP_register(unsigned short);
- unsigned short __get_SP_register(void);
- unsigned short __bcd_add_short(unsigned short, unsigned short);
- unsigned long __bcd_add_long(unsigned long, unsigned long);
- void __data20_write_char(unsigned long, unsigned char);
- void __data20_write_short(unsigned long, unsigned short);
- void __data20_write_long(unsigned long, unsigned long);

54 CHAPTER 2. CODE COMPOSER ESSENTIALS

- unsigned char __data20_read_char(unsigned long);
- unsigned short __data20_read_short(unsigned long);
- unsigned long __data20_read_long(unsigned long);
Request the MSP430 Teaching ROM Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp8

2.5 File history9

2.5.1 File history

Another of the features included in CCE allows comparisons between two �les or previous versions of it,
using �le history stored during the work sessions. This feature allows searching and integrating the di�erent
versions between �les.

The �le to compare with the local history must be selected in one of the navigation views. In the context
menu (select the �le, mouse right button click), choose the Compare With > Local history option.
In response to this selection, the Compare With Local History window is opened. A previous state
presented in the Local History list can be chosen. The text comparison editor will then be open. The
navigation between changes is made through the buttons Select Next Change and Select Previous
Change.

It is possible to recover a resource that has been cleared of the workspace. The procedure is as follows: the
project to which is to be restored to a previous state must be chosen in the navigation view. In the context
menu, the Restore from Local History... option should be chosen. The Restore From Local History
window will open on the right hand side of the screen. It will display all the �les that were previously part
of the project. The last �le version, or any of those previous, can be fully recovered by choosing it in the
Local History list. The restore will be done after clicking Restore.

The �le history feature can be con�gured according to Project needs. In the preferences page General
> Workspace > Local History, it is possible to establish the number of days that a particular �le history
should remain available and the maximum number of entries per �le. If the de�ned value is exceeded, the
oldest changes are removed in order to provide memory space for the latest. The maximum size available to
store the �le history can also be de�ned. If its size is exceeded, the �le history ceases to be performed.

Request the MSP430 Teaching ROM Materials here https://www-
a.ti.com/apps/dspuniv/teaching_rom_request.asp10

2.6 Import and Export functionality11

2.6.1 Import and Export functionality

CCE has the capability to import and export di�erent types of information. In the context menu of the view
C/C++ Projects it is possible to activate the import process choosing the option Import. This process
allows importing resources such as those listed in the following �gure (Figure 1).

8https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
9This content is available online at <http://cnx.org/content/m23514/1.1/>.

10https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
11This content is available online at <http://cnx.org/content/m23518/1.1/>.

55

CCE workbench � Import options window.

Figure 2.15

Following the instructions given by the import wizard: Archive File (imports �les stored in a compressed
�le); Import Breakpoints (imports a breakpoints scenario previously de�ned in another or in the same
project); Existing Project into Workspace (imports a project into the actual workspace); File System
(imports a �le); Preferences (imports the CCE con�guration preferences), etc.

When the Export option from the context menu is selected, the window with the export procedures is
displayed, as shown in Figure 2.

56 CHAPTER 2. CODE COMPOSER ESSENTIALS

CCE workbench � Export options window.

Figure 2.16

Similar to the import procedure, the resources belonging to a Project can be exported: Archive File;
Export Breakpoints; File System, Preferences, etc. . .

Request the MSP430 Teaching ROM Materials here https://www-
a.ti.com/apps/dspuniv/teaching_rom_request.asp12

12https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

57

2.7 Project Con�guration details13

2.7.1 Project Con�guration details

The project con�guration de�nes a set of options to build it. The options de�ned at this level are applied to
all the �les of the project. CCE allows setting di�erent options for building at di�erent stages of the project.

Building a project is a process that generates new features starting from the existing ones, or updates
them if they already exist. In the workspace, di�erent builds for di�erent types of projects, or for di�erent
stages of development can be invoked. The di�erent build types are:

- An Incremental build uses a build held earlier. Thus, from a past build state, it applies the necessary
changes to the resources that have been changed;

- A Clean Build ignores all previous builds as well as problems or errors that led to them. This type of
build will transform all resources in accordance with the set of rules in the project build con�guration.

The project builds can be done in two di�erent ways. The behaviour con�guration can be de�ned in
Window > Preferences > General > Workspace:

- Automatic builds are always incremental and are always carried out throughout the workspace. When-
ever there is resource alteration, it will initiate a build process. This option may be disabled in Window >
Preferences > General > Workspace;

- A manual build is always triggered by the user. This type of project build option can be clean or
incremental, and can be applied on a group of project �les, or to the whole workspace.

The order in which the build is processed is con�gurable. If the project contains mentions to another
project, the CDT (C/C++ Development Tools) must �rst build the initial project. The order in which the
build takes place may be selected inWindow > Preferences > General >Workspace > Build Order.

In order to bring the various parts of a project together, it is necessary to build the project using a
con�guration stored in a �le. There are several build �les available, giving di�erent build alternatives, so
the build �le most appropriate to the stage of the project must be selected. The CDT can automatically
generate build �les whenever aManaged Make C project orManaged Make C++ project is created.
Each project is therefore created with two default settings: Debug and Release. Other additional settings
can be con�gured. Whenever a project is created or an existing project is opened, the �rst con�guration in
the list of alphabetically sorted items, is taken as active.

The project's compiler and linker de�nition options are complex. Therefore, it is recommended to care-
fully read the documentation related to the compiler and to the assembler/linker.

After the project's creation, it must be con�gured for the appropriate compiler, linker and debugging
options. By selecting the option Properties from the context menu of the view C/C++ Project, the
project's con�guration window is displayed (Figure 1). The compiler, linker and debug options can be
de�ned here.

13This content is available online at <http://cnx.org/content/m23520/1.1/>.

58 CHAPTER 2. CODE COMPOSER ESSENTIALS

CCE workbench � Con�guration window.

Figure 2.17

The management of build con�gurations is found under the option C/C++ Build, accessed via the
Manage button. Through it the management features can be accessed (see Figure 2).

59

CCE workbench � Manage window.

Figure 2.18

It is possible to create new build con�gurations, delete the existing ones or modify their names. The
name of the modi�ed con�guration is selected in con�guration.

The C/C++ compiler used by the project is controlled by the project's properties. To view the project
properties in the dialog box that appears, the page C/C++ Build allows control of the variety of con�gu-
rations, including:

Build Options: speci�es the options that a�ect all project �les. This dialog page allows selection of the
appropriate options, including those for compiling and linking. It is also possible to specify whether the
compiler uses Stop On Error or Keep Going On Error. The second option allows the compiler to build
all projects referenced, even if the current project contains errors. The build command speci�es the make
�le to use.

The MSP430X devices allow data to be located anywhere in the 20-bit address space. By enabling this
option, the compiler will use instructions that need a larger space for their storage. Hence, the memory
space occupied by the �nal program will be greater. The option (- large_memory_model) is valid only
when the project is intended as a MSP430X device de�ned by the compile option (- vmspx). The programs
for MSP430X processors should be compiled with RTS libraries supplied for that purpose (rts430xl.lib and
rts430xl_eh.lib).

The compilation option (- silicon_version) selects the CPU version using the 4 least signi�cant processor's
identi�cation digits. If this option is not used, the compiler will construct the default code for the device.

In the process of linking, if all references to the multiplication routines of integers are to be replaced
by the routines versions that use the hardware multiplier option (- use_hw_mpy), the device multiplier's
length must be speci�ed. To use the 16-bit hardware multiplier, present in most devices, choose the option
16. For devices belonging to the F4xx family, which has a 32-bit multiplier module, chose the option 32.
Finally, for the new 5xx family, which also has a 32-bit multiplier, use the F5 option. The default option is
16-bit hardware multiplier module.

The model used for the initialization of static variables in the C program can be speci�ed as: None,
Link using ROM autoinitialization model (- rom_model), or link using RAM autoinitialization model (-
ram_model). The C/C++ compiler produces tables of data for automatic initialization of global variables.
These tables are placed in the section identi�ed by .cinit.

The memory space reserved for the passing of arguments by the C routines is de�ned in (�arg_size). The
space reserved for the dynamic allocation of memory by the program is de�ned in the option (�heap_size).

60 CHAPTER 2. CODE COMPOSER ESSENTIALS

The system stack size used by the program is set by the option (�stack_size). See Figure 3.

CCE workbench � Memory space con�guration.

Figure 2.19

The device for which the project is intended is con�gured in the Properties> TI Building Setting.
The window is in every way identical to that presented in the project's creation (Figure 4).

61

CCE workbench � Device con�guration.

Figure 2.20

The project debugging is carried out as speci�ed in the window TI Debug Settings. With the Setup
tab, using the option connection, the method of connecting to the device is established, either parallel
port or USB port. The Debugger tab can be used to specify whether to load the all application (Load
program) or just load the project's symbols (Load symbols only). These options can be used to choose
between loading the entire program, or just the symbols. This last option is valid when the development
environment cannot load the software, such as in the case of the software runs in ROM.

Using the Target tab, it is possible to de�ne various aspects related to the device. Thus, it is possible to
enable the use of IO functions in Enable CIO functions use, or establish the starting point for the code
execution when a reset occurs or a program is loaded. In the MSP430 properties, it is possible to specify the
supply voltage and the types of breakpoints: software or hardware. The memory storage process can also
be de�ned using this tab (Figures 5 to 7).

62 CHAPTER 2. CODE COMPOSER ESSENTIALS

CCE workbench � Device options con�guration.

Figure 2.21

63

CCE workbench � Device options con�guration: TI Debug Settings � Target: Generic.

Figure 2.22

64 CHAPTER 2. CODE COMPOSER ESSENTIALS

CCE workbench � Device options con�guration: TI Debug Settings � Target: MSP430
properties.

Figure 2.23

The �rst time that the project is built, the Project > Build All option must be selected. The project
build status can be examined in the Console window. If there is a problem, the Problems window will list
them all. After a successful build of the project, the output �le can be automatically loaded into the device.

Alternatively, a project can be built at the beginning of the debug session. The option Debug Active
Project will recompile the project and launch the debugger, using the device information de�ned in the
project options.

Note that an attempt to update the �rmware can occur when the debugger is used for the �rst time,
after a software release has been installed or a new USB interface is used.

Finally, the active perspective must be switched to the Debug perspective. This operation can be
carried out with the perspective selection buttons located on upper right corner of the workspace window,
or alternatively, by selecting Window > Open Perspective > Debug.

When the project is debugged, the errors are identi�ed on the right hand side of the editor as red marks
while the problems are identi�ed as white marks. A mark is added on the left hand side of the editor to the
lines that contain an error. When this mark is selected, the compiler provides information about the error.

When the project is made (make option), the resources used can be accessed on Properties > C/C++
Build > MSP430 Linker V3.0 > Linker Output in the option Produce list of input and output
sections.

Request the MSP430 Teaching ROM Materials here https://www-
a.ti.com/apps/dspuniv/teaching_rom_request.asp14

14https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

65

2.8 Introduction to Debug with CCE15

2.8.1 Introduction to Debug with CCE

TI's debugger generates an output �le as a result of building the project. To debug a project after a build,
it is only necessary to perform the following steps:

1. Select the project as active, or click Run > Debug Active Project. The debug perspective is open
and it is possible to debug the code;

2. This resets and suspends the execution of code on the device. Running this command, the content of
all status registers is modi�ed to the power-up state defaults in accordance with the device speci�cations.
The reset command is enabled by > Reset CPU;

3. To start a program execution, once loaded into the device's memory, select the option Run > Run
(F8). Program execution will take place until the program �nds a breakpoint;

4. The program execution may be suspended at any time by using the command Run > Halt;
5. To re-start the execution of the application use the command Run > Restart. This action does not

modify the execution stage of the device. It only restores the PC to the application's starting point loaded
into memory;

6. The Set PC to Cursor feature moves the execution of the application to a particular point in program
memory. The execution of this command only modi�es the contents of the PC register. No instruction will
be executed in order to reach this point. The command can be found in the context menu of the C/C++
perspective in Set PC to Cursor;

7. There are several di�erent ways to run the code until a speci�c point:
- Use a breakpoint to specify that when this point is reached the program execution must be halted;
- Use the command Run > Run to Line, available in the context menu of C/C++ perspective, to run

the code until the speci�ed location;
8. A special case is to run the code until the main function is reached. This feature enables a temporary

breakpoint at the beginning of the main routine and starts the execution of the application. The breakpoint
is removed and execution is suspended once the location is reached. This command provides a convenient
method of starting C applications.

9. The stepping commands execute each instruction step-by-step. When a function is called, it is possible
to move the execution to the function (step into) or perform the function and pass to the following instruction
(step over). Once inside a function, the user can continue to execute each instruction individually, or run
the rest of the function code until it ends (step out);

10. The execution of the next instruction is performed through Run > Step Into (F5). The next
instruction is executed when this command is used. If the next statement is a function call, the debugger
passes the execution to the �rst instruction of the function, and suspends execution at this point;

11. When the execution is on top of a function call, the step over operation can be enabled by selecting
the Run > Step Over (F6). The debugger then performs the function and then suspends execution when
it returns. If it �nds a breakpoint somewhere in the function, the execution may be suspended at this point.
If the Step Over is executed on an instruction that is not a function call, the debugger response will be the
same as Step Into command;

12. If the application is being executed inside a function in response to a function call, it is possible
to force the return of this function through the command Run > Step Return (F7). The debugger will
execute the rest of the function code and return the calling point. The execution will be suspended at this
point;

13. The command Terminate allows �nishing of the application's debugging.

2.8.1.1 EEM - Enhanced Emulation Module).

All the MSP430 family of devices have an advanced code debugging module (EEM - Enhanced Emulation
Module). This module allows CCE to monitor the device's operation in a non-intrusive way, and without

15This content is available online at <http://cnx.org/content/m23521/1.1/>.

66 CHAPTER 2. CODE COMPOSER ESSENTIALS

using any resources. Thus, it facilitates the development of the application through the veri�cation of its
operation. Depending on the device, the EEM module implementations di�er. Generally, the following
features are present:

- Up to 8 hardware breakpoints;
- Operates in all range of frequencies and clock sources;
- Ability to set more complex breakpoints through association of triggers;
- Suspend the execution of the application on the occurrence of a program or data bus access;
- Access protection to protected data and program memory areas;
- All timers and counters can be inhibited (depending on the device);
- Inhibits PWM signals generation on the occurrence of the application's suspension;
- Allows real-time execution of the applications in the modes: single step, step into; run to cursor; step

over;
- Supports all low power modes.
The Figure 1 represents a simpli�ed block diagram of one of the most complete implementations of EEM

module.

67

CCE workbench � EEM module block diagram.

Figure 2.24

Events within the device can generate triggers. These triggers can be classi�ed as the event that causes
them to:

- Access to addressing and data buses;
- Access to CPU registers.
Depending on the device, it is possible to associate two or more of these triggers, in order to build

complex event detectors that help the detection of incorrect operation of applications. Generally, a trigger
can be used to control the following functional blocks of the EEM: breakpoints, trace, and sequencer. The
activation of a trigger is conditioned to an access to the data and program busses or access to CPU registers.

68 CHAPTER 2. CODE COMPOSER ESSENTIALS

A breakpoint is set through one or more triggers. Through these it is possible to establish the following
types of breakpoints:

- Address breakpoint;
- Data breakpoint;
- Register Breakpoint;
- Mask Register;
- Range breakpoint.
A simple breakpoint is de�ned using a trigger associated with an instruction read operation by the CPU.

It is necessary to specify the instruction address where the trigger should occur.
By combining two triggers, it is possible to establish a Data Breakpoint. While one of the triggers is used

to detect the occurrence of a particular address on the address bus, the other is used to detect the occurrence
of a read or write operation at that address. It is possible to force the suspension of the execution of the
application to only occur when there is a match between the value written or read and the one speci�ed.

When the application is written in assembly language, it is sometimes necessary to analyse the accesses
to some of the microcontroller's registers. A Register Break Point uses a trigger to detect the access to a
register. A Mask Register should be used when the register is composed of several �elds, since it can apply
a mask and test speci�c bits only.

An application in certain operating conditions may occasionally try to access to invalid or protected
memory regions. Using a range breakpoint, it is possible to detect the occurrence of these events. It is thus
possible to suspend the execution of the application on the occurrence of:

- Write to �ash;
- Invalid access to memory;
- Access to an instruction in invalid program space;
- Access to data in invalid data space.
The hardware breakpoint properties are established through di�erent �elds. The action to make when

all triggers are true can be de�ned in the Action option of the Hardware Con�guration �eld. One of the
following options can be chosen:

- Halt;
- Trigger storage;
- Halt and trigger storage.
In the trigger �eld, specify through various options, the check condition for a true trigger. The trigger

can be:
- Memory Address bus;
- Memory Data bus;
- Register Write.

2.8.1.2 Depending on the type of trigger chosen, the options to specify may be

2.8.1.2.1 Memory Address Bus

Location: Address of the program code line or data memory address (e.g.: &a);
Mask: the information introduced in this �eld is used in a logic AND operation with the contents;
Operator: Logic operation with the data (==, <=, >=, !=);
Access: Memory access type:
- Instruction fetch;
- Instruction fetch and hold trigger;
- No instruction fetch;
- Don't care;
- No Instruction fetch and read;
- No instruction fetch and write;
- Read;
- Write;

69

- No instruction fetch and no DMA access;
- DMA access (read or write);
- No DMA access;
- Write and no DMA access;
- No instruction fetch and read and no DMA access;
- Read and no DMA access;
- Read and DMA access;
- Write and DMA access.

2.8.1.2.2 Memory Data Bus

Value: A mask and compare will be applied to the data on the bus and to value added here, to determine
if the trigger is true;

Mask: The information introduced in this �eld is used in a logic AND operation with the contents;
Operator: Logic operation with the data (==, <=, >=, !=);
Access: Memory access type (on Memory Address Bus).

2.8.1.2.3 Miscellaneous

Group: Group to which the breakpoint belongs;
Name: Name assigned to the breakpoint.

2.8.1.3 There is a prede�ned breakpoint that can be set to

- Break in program range: Generates a suspension of the execution of the application in a range of
program memory addresses. It uses two triggers that de�ne the range of addresses;

- Break in DMA transfer: Generates the suspension of the execution of the application, whenever
a DMA read or write operation at the speci�ed program address occurs. This breakpoint is implemented
using only one trigger;

- Break in DMA transfer range: Generates the suspension of the execution of the application, when-
ever a DMA read or write operation at the speci�ed address range occurs. This breakpoint is implemented
using two triggers;

- Break in stack over�ow: Generates the suspension of the execution of the application whenever the
SP register value assumes a lower value than the speci�ed one. This breakpoint is implemented using only
one trigger;

- Breakpoint: Generates the suspension of the execution of the application whenever the memory bus
address takes the value speci�ed. This breakpoint is implemented using only one trigger;

- Hardware breakpoint: Generates the suspension of the execution of the application whenever the
memory bus address takes the value speci�ed. This breakpoint is implemented using only one trigger;

- Watch on data address range: Generates a suspension of the execution of the application whenever
the speci�ed data memory addresses range is accessed. It uses two triggers to de�ne the range of addresses;

- Watchpoint: Generates the suspension of the execution of the application whenever a speci�ed data
memory address is accessed. It uses a trigger to generate the watchpoint;

- Watchpoint with data: Generates the suspension of the execution of the application whenever a
speci�ed data memory address is accessed and the value of the address is equal to speci�ed value. Two
triggers are used to implement this watch.

2.8.1.4 Code Execution Veri�cation

In order to verify the code execution, it is necessary to use support tools to complete this task. CCE provides
a set of features with this aim.

A breakpoint suspends the execution of the application in order to check the status of the system. The
activation, deactivation and con�guration of these breakpoints are possible through CCE.

70 CHAPTER 2. CODE COMPOSER ESSENTIALS

There are two types of breakpoints: software and hardware. While the �rst type of breakpoint is im-
plemented through the insertion of code in the application, in a way invisible to the user, the second type
is implemented internally by the device's hardware. Although the software breakpoints are not limited, the
hardware breakpoints, depending on the device, have a limit of 2 to 4 breakpoints.

The application debugging process often requires access to the actual values of the variables. The Vari-
able view allows the user to monitor the application's local and global variables. In this view, the CCE
automatically displays the name and contents of the local variables of the function that is being executed. It
is also possible to add the name of other local variables or global variables to be monitored in the debugging
process.

The values of the local variables can be modi�ed. The values of the variables that have been changed
during the last instruction execution are displayed in red. However, the variable names cannot be modi�ed.
It is allowed to change the representation format of the variable: Natural, decimal or hexadecimal. The
variables that contain more than one element, such as arrays, structures, or pointers are presented with a
(+) sign immediately after the name. This signal means that the variable has elements that can be seen
through the expansion of the (+) sign, passing this signal (-), which allows the structure to be collapsed.

The local variables cannot be added or removed from the Variables view. However, global variables can
be added or removed. The local variables can be disabled in order to freeze their value as the program is
executed.

The Expressions view accepts the entry of expressions to evaluate them as the program is executed.
These expressions are written in syntax similar to that used by the C programming language.

2.8.1.4.1 The commands accessible through the context menu can

- Specify the number of elements of the array to be displayed in the Expression view: The command
Display as Array can be used to display the elements of any pointer or array. The command Remove
Array Expansion is used to return an expanded variable back to its original state;

- Change value: Changes the content of the variable;
- Cast to type: Performs a promotion (cast) for a di�erent type of variable;
- Restore Original Type: Restores the expression for the original data type.

2.8.1.5 The Memory window of the Debug perspective

TheMemory window of the Debug perspective allows the user to monitor and modify the device's memory.
The memory is provided with a list of Memory Monitors. Each monitor represents a section of memory
speci�ed by its named location base address. Each memory monitor may be represented in di�erent data
formats (memory renderings). The debugger allows four di�erent types of rendering:

- Hex (default);
- Ascii;
- Integer signed;
- Unsigned integer.
The Memory view has two panels:
- Memory Monitors;
- Memory Renderings.
The �rst panel displays the memory monitors list added to the debug session. The second panel is

controlled by selection in the �rst one and consists of tabs that display the rendering. This panel can be
con�gured to display both renderings.

Request the MSP430 Teaching ROM Materials here https://www-
a.ti.com/apps/dspuniv/teaching_rom_request.asp16

16https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

Chapter 3

General purpose Input/Output

3.1 Laboratory GPIO: Lab1 - Blinking the LED1

3.1.1 Laboratory GPIO: Lab1 - Blinking the LED

3.1.1.1 Introduction

The hands-on laboratory consists of con�guring the I/O ports, setting up the input lines to read push
buttons and the output lines to feed LEDs. The following exercises have been developed for the three
hardware development tools.

The �rst to be discussed is the MSP-EXP430FG4618 Experimenter's board. Modi�cations are later made
to suit the other development boards. The main di�erences between the boards are related to the speci�c
ports in which the buttons and LED are (or can be) connected. For the development of this laboratory,
Code Composer Essentials v3 has been used.

3.1.1.2 Procedure

By analysis of the schematics, determine which I/O port pin is connected to the LED on the board:
- Consult the MSP430FG4618/F2013 Experimenter's Board User's Guide slau213a.pdf 2

- LED1 is connected to Port 2.2
- Consult the eZ430-F2013 Development Tool User's Guide slau176b.pdf 3

- LED1 is connected to Port 1.1
- Consult the eZ430-RF2500 Development Tool User's Guide slau227c.pdf 4

- LED is connected to Port 1.0
Include the standard register and bit de�nitions for the TI MSP430 microcontroller device (example for

the MSP430FG18/MSP430F2013 Experimenter's board):
#include <msp430xG46x.h>
De�ne the main routine:
void main (void){

The watchdog timer must be prevented from generating a PUC. Write 0x5A to the eight MSBs of the
Watchdog timer control register, WDTCTL:

WDTCTL = WDTHOLD | WDTPW;

Port control registers:
- Set the LED port pin as an output;

1This content is available online at <http://cnx.org/content/m23525/1.5/>.
2http://cnx.org/content/m23525/latest/slau213a.pdf
3http://cnx.org/content/m23525/latest/slau176b.pdf
4http://cnx.org/content/m23525/latest/slau227c.pdf

71

72 CHAPTER 3. GENERAL PURPOSE INPUT/OUTPUT

P2DIR: Port 2.2 is set as an output:
P2DIR |= 0x04; // to force the pin setting. It is uses an OR operation (|) with

P2DIR and 0x04

Use an in�nite loop to modify the state of the port;
Use a software delay loop to generate the pause interval. (a long software delay loop is used here for

simplicity - in real applications, a timer would be used)
- Because no clock is de�ned, the device will use the 32.768 kHz watch crystal. In order for a rate of

one blinking LED state transition each second, the software delay loop should count to approximately 30000
{30000/32768 = +/- 1 sec};

volatile unsigned int i;

while(1){ //Infinite loop

i=30000; //Delay

do (i--);

while (i !=0);

- Port control registers inside the loop:
P2OUT: To switch the port state between low and high state during program execution:

P2OUT ^= 0x04}}; // It uses an XOR operation (^) between P2OUT and 0x04:

- The programming code for the other hardware kits follows the same sequence as given above, requiring
only con�guration the port.

This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp5

3.2 Laboratory GPIO: Lab2 - Blinking the LED half the speed6

3.2.1 Laboratory GPIO: Lab2 - Blinking the LED half the speed

3.2.1.1 Introduction

The hands-on laboratory consists of con�guring the I/O ports, setting up the input lines to read push
buttons and the output lines to feed LEDs. The following exercises have been developed for the three
hardware development tools.

The �rst to be discussed is the MSP-EXP430FG4618 Experimenter's board. Modi�cations are later made
to suit the other development boards. The main di�erences between the boards are related to the speci�c
ports in which the buttons and LED are (or can be) connected. For the development of this laboratory,
Code Composer Essentials v3 has been used.

3.2.1.2 Procedure

Using the Lab1: Blinking the LED example, independently of the hardware development tool, reduce the
value of the software delay to half its previous value.

#include "msp430xG46x.h"

void main (void){

volatile unsigned int i;

WDTCTL = WDTPW | WDTHOLD; // Stop Watchdog Timer

5https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
6This content is available online at <http://cnx.org/content/m23540/1.2/>.

73

P2DIR |= 0x04; // Configure P2.2 as Output

while(1){ // Infinite loop

i=30000; // Delay

do (i--);

while (i !=0);

P2OUT ^= 0x04; // Toggle Port P2.2 using an exclusive-OR

}

}

- In order for a rate of two blinking LED state transition each second, the software delay loop should
count to approximately 15000 {15000 / 32768 = 0.5 sec};

i=15000; //Delay

This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp7

3.3 Laboratory GPIO: Lab3 - Toggle the LED state by pressing the
push button8

3.3.1 Laboratory GPIO: Lab3 - Toggle the LED state by pressing the push button

3.3.1.1 Introduction

The hands-on laboratory consists of con�guring the I/O ports, setting up the input lines to read push
buttons and the output lines to feed LEDs. The following exercises have been developed for the three
hardware development tools.

The �rst to be discussed is the MSP-EXP430FG4618 Experimenter's board. Modi�cations are later made
to suit the other development boards. The main di�erences between the boards are related to the speci�c
ports in which the buttons and LED are (or can be) connected. For the development of this laboratory,
Code Composer Essentials v3 has been used.

3.3.1.2 Procedure

By analysis of the schematics, determine to which port pin the push button is connected:
- Consult the MSP430FG4618/F2013 Experimenter's Board User's Guide <slau213a.pdf>:
- Button S1 is connected to Port 1.0;
- Consult the eZ430-RF2500 Development Tool User's Guide <slau227a.pdf>:
- Button S1 is connected to Port 1.2;
- The eZ430-RF2500 uses a device in 2xx family, so you need to additionally con�gure the button as

pull-up or pull-down, in the P1REN register.
Ports control registers:
- Set push button pin port as an input
- P1DIR: Port 1.0 is set as an input:
P1DIR &= ∼0x01 // to force the pin setting to 0. It is uses an AND operation (&)

between P1DIR and 0xFE

- Enable interrupts to this pin port;
- P1IE: Enable interrupt to port 1.0:
P1IE |= 0x01; // Interrupt Enable in P1.0

- PIIES: Call the port interrupt on a high-to-low transition:

7https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
8This content is available online at <http://cnx.org/content/m23547/1.1/>.

74 CHAPTER 3. GENERAL PURPOSE INPUT/OUTPUT

P1IES |= 0x01; // P1.0 Interrupt flag high-to-low transition

- Con�gure the watchdog timer to prevent a PUC during the program execution;
WDTCTL = WDTPW | WDTHOLD; //Stop Watchdog Timer

- Enable Global Interrupts and con�gure low power mode 3;
_BIS_SR (LPM3_bits + GIE); //Low Power Mode with interrupts enabled

- Create a interrupt service routine, that includes:
- Toggle LED1 pin port;
- Delay for button debounce;
- Clear interrupt �ag.

#pragma vector=PORT1_VECTOR

__interrupt void Port_1 (void) {

volatile unsigned int i;

P2OUT ^= 0x04; // Toggle Port P2.2

i=1500; // Delay, button debounce

do (i--);

while (i !=0);

while (! (P1IN & 0x01)); // Wait for the release of the button

i=1500; // Delay, button debounce

do (i--);

while (i !=0);

P1IFG & = ∼0x01; // Clean P1.0 Interrupt Flag

}

This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp9

3.4 Laboratory GPIO: Lab4 - Enable/disable LED blinking by push
button press10

3.4.1 Laboratory GPIO: Lab4 - Enable/disable LED blinking by push button
press

3.4.1.1 Introduction

The hands-on laboratory consists of con�guring the I/O ports, setting up the input lines to read push
buttons and the output lines to feed LEDs. The following exercises have been developed for the three
hardware development tools.

The �rst to be discussed is the MSP-EXP430FG4618 Experimenter's board. Modi�cations are later made
to suit the other development boards. The main di�erences between the boards are related to the speci�c
ports in which the buttons and LED are (or can be) connected. For the development of this laboratory,
Code Composer Essentials v3 has been used.

3.4.1.2 Procedure

Detect of the button is pressed:
if (!(P1IN & 0x01))

Include a control �ow program variable that detects if the LED is blinking or not, when the button is
pressed:

9https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
10This content is available online at <http://cnx.org/content/m23556/1.1/>.

75

- De�ne a variable that indicates whether the LED is blinking;
unsigned char blink_status=1;

- Set the program �ow depending on the state of the variable.

while(1){ // Infinite loop

if (blink_status == 1) {

P2OUT ^= 0x04; // Toggle Port P2.2

i=15000; // Delay

do (i--);

while (i !=0);

}

if (!(P1IN & 0x01)) { // Detect S1 pressed

i=1500; // Delay, button debounce

do (i--);

while (i !=0);

while (!(P1IN & 0x01)); // Wait for the release of the button

i=1500; // Delay, button debounce

do (i--);

while (i !=0);

if (blink_status ==1){ // If led is blinking, stop it

P2OUT&= ∼ 0x04; // Turn Led off

blink_status=0;

}else

blink_status=1;

This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp11

11https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

76 CHAPTER 3. GENERAL PURPOSE INPUT/OUTPUT

Chapter 4

Timers

4.1 Laboratory Timers: Lab1 - Memory clock with Basic Timer11

4.1.1 Laboratory Timers: Lab1 - Memory clock with Basic Timer1

4.1.1.1 Introduction

Correct system timing is a fundamental requirement for the proper operation of a real-time application. The
timing de�nition can dictate how the data information processed during the execution of the application
program. The clock implementations vary between devices in the MSP430 family. Each device provides
di�erent clock sources, controls and uses. This chapter discusses the clock controls included in the platforms
used. The MSP430 4xx family has two general-purpose 16-bit or 8-bit counters and event timers, named
Timer_A, Timer_B, and a Basic Timer. The Basic Timer module is only implemented in `4xx devices.
The 2xx device family also has Timer_A and Timer_B, but the clock signals are provided by the basic
clock module+. The timers may receive an internal or external clock. Timer_A and Timer_B also include
multiple independent capture and compare blocks, with interrupt capabilities.

4.1.1.2 Overview

This laboratory implements a memory clock using the features provided by Timer1. The clock is updated once
every second by the Basic Timer1 interrupt service routine (ISR). This procedure also performs switching of
LED1. In order to evaluate the execution time of the routine, LED2 is kept active during the execution of
the ISR. When the ISR has completed, the device goes into low power mode, until the new interrupt wakes
it up.

4.1.1.3 Resources

This application (Lab1_Timers.c2) sets Basic Timer1 to generate an interrupt once every second. The
interrupt service routine generated by this peripheral is required to update the clock stored in memory.
Moreover, it must refresh the content of the clock displayed on the LCD.

Thus, the system resources used by this application are:
- Basic Timer1;
- I/O ports;
- LCD;
- Interrupts;
- Low power modes.

1This content is available online at <http://cnx.org/content/m23532/1.8/>.
2http://cnx.org/content/m23532/latest/Lab1_Timers.c

77

78 CHAPTER 4. TIMERS

The default con�guration of the FLL+ is used, so, all the clock signals required for the operation of the
components of the device assume their default values.

4.1.1.4 Software application organization

The �rst task is to disable the Watchdog Timer. It should be stated that this feature, when used correctly,
makes the application more robust.

The resources needed for the LCD are all con�gured. This code is given, since its operation will be
analysed in a later laboratory. Once the LCD con�gured, it is cleared by the execution of the routine
LCD_all_off().

The memory clock consists of setting three global variables: hour, min, and sec, all of the type unsigned
char, used to store the hours, minutes and seconds values elapsed respectively since the beginning of the
execution of the application. These variables are initialized with zero values.

The LCD is refreshed at startup to show the initial clock value.
LED1 is used as an indicator of Basic Timer1 ISR execution. The execution time can be determined

through it. In addition, LED2 state switches whenever the Basic Timer1 ISR is executed.
The Basic Timer1 is set to generate an interrupt once every second.
The routine main() ends with the interrupts global activation and puts the device in low power mode,

awaiting the next interrupt.
Basic Timer1 ISR begins by activating LED2, indicating the beginning of the routine execution and then

switches the state of LED1. The counters are updated in cascade and their contents updated on the LCD,
through routines LCD_sec(), LCD_min() and LCD_hour(). The routine ends with switching the state of the
clock separation points. Finally, LED2 is turned o�.

4.1.1.5 System con�guration

4.1.1.5.1 Watchdog Timer

The Watchdog Timer is disabled with the objective of reducing energy consumption, but giving up the
protection a�orded by it. This peripheral is con�gured by the WDTCTL register. Its access is protected by
a password. The value to disable it:

WDTCTL = WDTPW | WDTHOLD; // Stop WDT

4.1.1.5.2 FLL+ con�guration

A 32.768 kHz crystal is applied to the oscillator LFXT1. Since it is possible to select the internal capacitors
using software, the value to write to the FLL_CTL0 con�guration register to select the 8 pF capacitors is:

FLL_CTL0 |= XCAP18PF; // Set load cap for 32k xtal

Taking into consideration the change mentioned earlier to the FLL+ module, what are the frequencies
of each of the clock signals?

ACLK = _________________;
MCLK = _________________;
SMCLK = ________________;

4.1.1.5.3 LED ports con�guration

LED1 and LED2 are connected to ports P2.2 and P2.1 respectively. How should they be con�gured so that
just the bits related to these ports have digital output functions?

P2DIR |= 0x06; // P2.2 and P2.1 as output

How should the P2OUT register be con�gured so that the application starts with LED1 on and LED2
o�?

P2OUT |= 0x04; // LED1 on and LED2 off

79

4.1.1.5.4 Basic Timer1 con�guration

Basic Timer1 should generate an interrupt once every second. It uses two counters in series, so that the
input of the BTCNT2 counter is the output of the BTCNT1 counter divided by 256. The BTCNT1 counter
input is the ACLK with a 32.768 kHz frequency. If the selected output of the BTCNT2 counter is divided
by 128, what is the time period associated with the Basic Timer1 interrupt? _________

BTCTL = BTDIV | BT_fCLK2_DIV128; // (ACLK/256)/128

IE2 |= BTIE; // Enable Basic Timer1 interrupt

//***

// BasicTimer1 Interrupt Service Routine

//***

#pragma vector=BASICTIMER_VECTOR

__interrupt void basic_timer_ISR(void)

{

P2OUT |=0x02; // LED1 turn on

P2OUT ^=0x04; // LED2 toogle

sec++; // increment seconds

LCD_sec(); // refresh seconds field in LCD

if (sec == 60) // one minute was pass

{

sec = 0; // reset seconds counter

min++; // increment minutes

LCD_min(); // refresh minutes field in LCD

if (min == 60) // one hour was pass

{

min = 0; // reset minutes counter

hour++; // increment hours

LCD_min(); // refresh hours field in LCD

if (hour == 24)// one day was pass

{

hour = 0; // reset hours counter

}

}

}

if (sec & 0x01) // toogle clock dots

{

P3_DOT_ON;

P5_DOT_ON;

}

else

{

P3_DOT_OFF;

P5_DOT_OFF;

}

80 CHAPTER 4. TIMERS

P2OUT &=∼0x02; // LED1 turn off

}

4.1.1.5.5 Low power modes

The task simply updates the counters periodically and refreshes the LCD contents. It is possible to con�gure
the registers for an energy-e�cient operation.

Which low power mode should be used? _____________
Which system clocks are activated in the low power mode selected? _________________
BIS_SR(LPM3_bits + GIE); // Enter LPM3 + interrupts enabled

4.1.1.6 Analysis of operation

4.1.1.6.1 System clocks inspection

The MCLK, SMCLK and ACLK system clocks are available at ports P1.1, P1.4 and P1.5 respectively. These
ports are located on the SW2, RESET_CC and VREG_EN lines, which are available on the H2 Header
pins 2, 5 and 6. All these resources are available because the Chipcon RF module is not installed and SW2
is not used.

Using the Registers view, set bits 1, 4 and 5 of P1SEL and P1DIR registers, to choose the secondary
function of these ports con�gured as outputs. By connecting an oscilloscope to those lines, it is possible to
monitor the clock signals.

What are the values measured for each of the system clocks?
ACLK: ________________
SMCLK: _______________
MCLK: ________________

4.1.1.6.2 ISR execution time

The Basic Timer1 ISR execution time is fundamental to energy conservation, in order to extend the life of
the system battery. The routine execution time can be measured by connecting the oscilloscope to port P2.1,
which controls LED2. This output is available on pin 2 of Header H4.

The execution time of this routine varies with the number of the counter updates and respective updates
to the LCD. What are the times measured for each of these situations and what their frequencies?

Seconds update: ______ with a time period of ______
Seconds and minutes update: ______ with a time period of ______
LCD �elds update: ______ with a time period of ______
If the developer chooses to update all the LCD �elds at each interrupt, the time required is much

greater than the solution presented. E�cient programming contributes to a reduction in the system power
consumption.

4.1.1.6.3 Measurement of electrical current drawn

The power consumption was discussed in the previous point. The electrical power required by the system
during operation is measured by replacing the jumper on the Header PWR1 by an ammeter, which indicates
the electric current taken by device during operation.

What is the value read? __________
This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp3

3https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

81

4.2 Laboratory Timers: Lab2 - Real Time Clock with Basic Timer14

4.2.1 Laboratory Timers: Lab2 - Real Time Clock with Basic Timer1

4.2.1.1 Introduction

Correct system timing is a fundamental requirement for the proper operation of a real-time application. The
timing de�nition can dictate how the data information processed during the execution of the application
program. The clock implementations vary between devices in the MSP430 family. Each device provides
di�erent clock sources, controls and uses. This chapter discusses the clock controls included in the platforms
used. The MSP430 4xx family has two general-purpose 16-bit or 8-bit counters and event timers, named
Timer_A, Timer_B, and a Basic Timer. The Basic Timer module is only implemented in `4xx devices.
The 2xx device family also has Timer_A and Timer_B, but the clock signals are provided by the basic
clock module+. The timers may receive an internal or external clock. Timer_A and Timer_B also include
multiple independent capture and compare blocks, with interrupt capabilities.

4.2.1.2 Overview

The Real Time Clock (RTC) has a 32-bit counter, to automatically control the clock calendar. This peripheral
is present on the MSP430FG461x devices. The application developed in the laboratory Timers: Lab1 -
Memory clock with Basic Timer1 will now be modi�ed to incorporate this module.

4.2.1.3 Resources

This application (Lab2_Timers.c 5) is based on the same resources used in the laboratory Timers: Lab1 -
Memory clock with Basic Timer1. In addition, there is an additional RTC peripheral and two push buttons,
SW1 and SW2. The �rst module works in automatic mode to manage the clock calendar, while the push
buttons switch the information displayed on the LCD between the clock and calendar.

4.2.1.4 Software application organization

The organization of the software is identical to that of laboratory Timers: Lab1 - Memory clock with Basic
Timer1. The Basic Timer1, LCD and LEDs continue to perform the same functions. They are con�gured
similarly, but with the changes described below.

In routine main(), the con�gurations for RTC and SW1/SW2 are added.
The memory addresses corresponding to the clock calendar values are initialized with the default values,

that is zero hours, zero minutes and zero seconds, on August 9, 2008. The RTC is then activated in calendar
mode, with the interrupt disabled. This mode a�ects the Basic Timer1 operation.

The switches SW1 and SW2 are connected to the microcontroller ports P1.0 and P1.1 respectively. Hence,
these ports are con�gured as inputs and their interrupts activated by a high-to-low transition at the input.

4.2.1.5 System con�guration

4.2.1.5.1 Real Time Clock con�guration

The RTC is con�gured in calendar mode and enabled. The counting registers provide the values of seconds,
minutes, hours, days, day of the week, day of the month, month and year. The registers are stored in BCD
format to speed up the data writing process to the LCD. The interrupt for this peripheral should be disabled
(disabling the Basic Timer1 interrupt). Given these objectives:

RTCCTL = RTCBCD | RTCHOLD | RTCMODE_3; // BCD mode, RTC and BT disable

The RTC operation in calendar mode automatically con�gures some of the Basic Timer1 features. The
content of the bits BTSSEL, BTHOLD and BTDIV of BTCNT register are ignored. Thus, the BTCNT1 and

4This content is available online at <http://cnx.org/content/m23531/1.2/>.
5http://cnx.org/content/m23531/latest/Lab2_Timers.c

82 CHAPTER 4. TIMERS

BTCNT2 counters work in cascade. The clock source of the BTCNT1 counter is the ACLK clock signal. The
output of the BTCNT1.Q7 counter is selected as the input of the BTCNT2 counter (frequency: ACLK/256).
The RTC uses the BTCNT2.Q6 output as clock source (frequency: ACLK/32768).

4.2.1.5.2 Basic Timer1 con�guration

This peripheral is automatically con�gured with the RTC in calendar mode. To enable the interrupt once
every 0.5 seconds:

BTCTL = BT_fCLK2_DIV64; // (ACLK/256)/64

IE2 |= BTIE; // Enable BT interrupt with 0.5 period

4.2.1.5.3 Ports P1.0 and P1.1 con�guration

The switches SW1 and SW2 are connected to ports P1.0 and P1.1 respectively. How should the following
registers be con�gured in order to set just the bits that a�ect the digital inputs, with high-to-low transition
interrupts?

P1SEL &= ∼0x03; // P1.0 and P1.1 I/O ports

P1DIR &= ∼0x03; // P1.0 and P1.1 digital inputs

P1IFG = 0x00; // Clear P1 flags

P1IES &= ∼0x03; // high-to-low transition interrupts

P1IE |= 0x03; // enable port interrupts

4.2.1.6 Analysis of operation

4.2.1.6.1 ISR execution time

Performing similar procedures to those described in laboratory Timers: Lab1 - Memory clock with Basic
Timer1 measure the ISR execution time. What is the value measured?

LCD refresh: ______
The LCD write routines were changed. Taking advantage of storing the data in the BCD format, the

division operation can be ignored, resulting in the reduction of execution time of the Basic Timer1 ISR. Is
the processing time required to refresh the LCD constant? _____

4.2.1.6.2 Measurement of electrical current drawn

The power consumption was discussed in the previous point. The electrical power required by the system
during operation is measured by replacing the jumper on the Header PWR1 by an ammeter, which indicates
the electric current taken by device during operation.

What is the value read? __________
This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp6

6https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

83

4.3 Laboratory Timers: Lab3 - Memory Clock with Timer_A7

4.3.1 Laboratory Timers: Lab3 - Memory Clock with Timer_A

4.3.1.1 Introduction

Correct system timing is a fundamental requirement for the proper operation of a real-time application. The
timing de�nition can dictate how the data information processed during the execution of the application
program. The clock implementations vary between devices in the MSP430 family. Each device provides
di�erent clock sources, controls and uses. This chapter discusses the clock controls included in the platforms
used. The MSP430 4xx family has two general-purpose 16-bit or 8-bit counters and event timers, named
Timer_A, Timer_B, and a Basic Timer. The Basic Timer module is only implemented in `4xx devices.
The 2xx device family also has Timer_A and Timer_B, but the clock signals are provided by the basic
clock module+. The timers may receive an internal or external clock. Timer_A and Timer_B also include
multiple independent capture and compare blocks, with interrupt capabilities.

4.3.1.2 Overview

The objective of this laboratory is to build a memory clock similar to the one that was developed using the
Basic Timer1, in laboratory Timers: Lab1 - Memory clock with Basic Timer1. Timer_A is con�gured to
generate an interrupt once every 100 msec. The ISR manages the memory clock. LED1 and LED2 are used
to monitor the operation of the system state.

4.3.1.3 Resources

This application (Lab3_Timers.c 8) makes use of Timer_A to generate an interrupt when the value in the
TACCR0 unit is reached. The ISR updates the contents of the memory clock variables.

LED1 monitors the system operation, switching state whenever the Timer_A ISR runs. LED2 can be
used to monitor the ISR execution time. The contents of the LCD is updated every interrupt. When the
ISR �nishes, the device returns to low power mode.

Hence, the system resources used by this application are:
- Timer_A;
- I/O ports;
- LCD;
- Interrupts;
- Low power modes.
The default con�guration of the FLL+ is used, so all the clock signals required for the operation of the

device assume their default values.

4.3.1.4 Software application organization

The �rst task is to disable the Watchdog Timer. All the resources needed for the LCD are then con�gured.
Once con�gured, the LCD is cleared by the execution of the routine LCD_all_off().

The memory clock consists of three global variables: min, sec, msec, of the type unsigned char, to store
the minutes, seconds and milliseconds respectively of the values elapsed since the beginning of the execution
of the application. These variables are initialized with zeros.

The LCD is refreshed at startup to display the initial clock value.
LED2 is used as an indicator of Timer_A ISR execution. The execution time can be monitored using it.

In addition, LED1 switches state whenever Timer_A ISR is executed.
Timer_A is con�gured to generate an interrupt once every 100 milliseconds.

7This content is available online at <http://cnx.org/content/m23530/1.5/>.
8http://cnx.org/content/m23530/latest/Lab3_Timers.c

84 CHAPTER 4. TIMERS

The routine main() ends with a global interrupt enable and puts the device into a low power mode,
where it waits for the next interrupt.

Timer_A ISR begins by activating LED2, indicating the beginning of execution of the routine and then
switches LED1 state. The counters are updated in cascade and their contents are used to update the LCD,
through the routines LCD_msec(), LCD_sec() and LCD_min(). The routine ends by switching the state of
the clock separation points. Finally, LED2 is turned o�.

4.3.1.5 System con�guration

4.3.1.5.1 Watchdog Timer

The Watchdog Timer is disabled with the objective of reducing energy consumption, but giving up the
protection a�orded by it. This peripheral is con�gured by the WDTCTL register. Its access is protected by
a password. The value to disable it:

WDTCTL = WDTPW | WDTHOLD; // Stop WDT

4.3.1.5.2 FLL+ con�guration

A 32.768 kHz crystal is applied to the oscillator LFXT1. Since it is possible to select the internal capacitors
using software, what is the value to write to the FLL_CTL0 con�guration register to select the 8 pF
capacitors?

FLL_CTL0 |= XCAP18PF; // Set load cap for 32k xtal

4.3.1.5.3 LED ports con�guration

LED1 and LED2 are connected to ports P2.2 and P2.1 respectively. How should they be con�gured so that
just the bits related to these ports have digital output functions?

P2DIR |= 0x06; // P2.2 and P2.1 as output

How should the P2OUT register be con�gured so that the application starts with LED1 on and LED2
o�?

P2OUT |= 0x04; // LED1 on and LED2 off

4.3.1.5.4 Timer_A con�guration

The Timer_A is con�gured to count until it reaches the value written in the TACCR0 unit. An interrupt is
generated when it reaches that value. Which is the interrupt vector to use? ____________

Timer_A clock signal is the ACLK without division. What is the value to write in the con�guration
register?

TACTL = TASSEL_1 | MC_1 | ID_0; // ACLK, up mode

The TACCR0 capture/compare unit determines the Timer_A counting range. For a 100 msec response,
what is the value to write in the register?

TACCR0 = 3268; // this count corresponds to 100 msec

The interrupt is con�gured in TACCR0 capture/compare unit. What is the value to write to the following
register?

TACCTL0 = CCIE; // TACCR0 interrupt enabled

//***

// Timer A ISR

//***

#pragma vector=TIMERA0_VECTOR

85

__interrupt void TimerA0_ISR (void)

{

P2OUT |=0x02; // LED1 turn on

P2OUT ^=0x04; // LED2 toogle

msec++;

LCD_msec();

if (msec == 10)

{

msec = 0;

sec++;

LCD_sec();

if (sec == 60)

{

sec = 0;

min++;

LCD_min();

if (min == 60)

{

min = 0;

}

}

}

if (sec & 0x01) // toogle clock dots

{

P3_DOT_ON;

P5_DOT_ON;

}

else

{

P3_DOT_OFF;

P5_DOT_OFF;

}

P2OUT & =∼ 02; // LED1 turn off

}

4.3.1.5.5 Low power mode

BIS_SR(LPM3_bits + GIE); // LPM3 with interrupts enable

4.3.1.6 Analysis of operation

4.3.1.6.1 ISR execution time

Performing similar procedures to those described in laboratory Timers: Lab1 - Memory clock with Basic
Timer1 measure the ISR execution time. What is the value measured?

86 CHAPTER 4. TIMERS

LCD refresh: ______
The LCD write routines were changed. Taking advantage of storing the data in the BCD format, the

division operation can be ignored, resulting in the reduction of execution time of the Basic Timer1 ISR. Is
the processing time required to refresh the LCD constant? _____

4.3.1.6.2 Measurement of electrical current drawn

The power consumption was discussed in the previous point. The electrical power required by the system
during operation is measured by replacing the jumper on the Header PWR1 by an ammeter, which indicates
the electric current taken by device during operation.

What is the value read? __________
This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp9

4.4 Laboratory Timers: Lab4 - Buzzer tone generator10

4.4.1 Laboratory Timers: Lab4 - Buzzer tone generator

4.4.1.1 Introduction

Correct system timing is a fundamental requirement for the proper operation of a real-time application. The
timing de�nition can dictate how the data information processed during the execution of the application
program. The clock implementations vary between devices in the MSP430 family. Each device provides
di�erent clock sources, controls and uses. This chapter discusses the clock controls included in the platforms
used.

The MSP430 4xx family has two general-purpose 16-bit or 8-bit counters and event timers, named
Timer_A, Timer_B, and a Basic Timer. The Basic Timer module is only implemented in `4xx devices. The
2xx device family also has Timer_A and Timer_B, but the clock signals are provided by the basic clock
module+.

The timers may receive an internal or external clock. Timer_A and Timer_B also include multiple
independent capture and compare blocks, with interrupt capabilities.

4.4.1.2 Overview

The purpose of this laboratory is to build a sound generator using Timer_B. The PWM signal produced by
this peripheral drives the buzzer, producing a sequence of musical notes at regular time intervals. At the
same time, LED1 and LED2 switch state alternately. The volume of sound produced by the buzzer can be
controlled by push buttons SW1 and SW2.

4.4.1.3 Resources

The implementation of this application (Lab4_Timers.c 11) requires the production of speci�c frequency
signals corresponding to musical notes. For each frequency, the duty-cycle can be modi�ed in order to control
the volume of sound produced. This task is carried out using Timer_B and one of its compare units. The
buzzer is operated by Port P3.5, con�gured to work in its special function as TB4 compare unit output.
This output corresponds to the TBCCR4 output compare unit.

The push buttons SW1 and SW2 are connected to ports P1.0 and P1.1 respectively. An interrupt is
generated when either of these buttons are pressed. The duty-cycle of the generated note is modi�ed in
response.

9https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
10This content is available online at <http://cnx.org/content/m23529/1.2/>.
11http://cnx.org/content/m23529/latest/Lab4_Timers.c

87

Basic Timer1 is con�gured to generate an interrupt once every second. The interrupt service routine
updates the musical notes produced by the buzzer, which are stored in an array.

LED1 and LED2 are driven from P2.2 and P2.1 respectively, and their state is switched alternately once
every second.

The module FLL+ is con�gured to a 7.995392 MHz frequency, for the MCLK and SMCLK clock signals.
The resources used by the application are:
- Timer_B;
- Basic Timer1;
- I/O ports;
- FLL+;
- Interrupts.

4.4.1.4 Software application organization

The application consists of the routine main(), which is used to con�gure all system resources, before entering
into a standby mode, waiting for one of two interrupts.

This routine starts by disabling the watchdog timer and starting the module FLL+ to produce the desired
clock signals of the correct frequency for the SMCLK and MCLK. Then, the Basic Timer1 and Timer_B
are con�gured in order to perform the desired functions.

The ports connected to the LEDs, buttons and buzzer are then initialized.
Finally, the interrupts are activated, and the application waits for the execution of one of two interrupts.
The Basic Timer1 interrupt executes at a frequency of once every second. When this interrupt is occurs,

it begins by switching the state of LED1 and LED2. Afterwards, it accesses the memory to fetch the next
musical note to be performed. The routine ends with memory pointer management.

The Port 1 ISR begins by evaluating the source of the interrupt. The sound volume is reduced if the
button SW1 is pressed. The sound volume is increased if button SW2 is pressed.

4.4.1.5 System con�guration

4.4.1.5.1 Timer_B

It is the responsibility of Timer_B to produce the PWM signal that activates the Buzzer. Timer_B counts
until the value contained in the TBCCR0 register is reached. It does not generate an interrupt, and must
be sourced by SMCLK clock signal:

TBCTL = TBSSEL_2 | CNTL_0 | TBCLGRP_0 |MC_1 | ID_0;

Each PWM signal produced by Timer_B corresponds to a musical note. The relationship between the
frequency and the musical note is given in Table 1.

Note SI0 DO RE MI FA SOL LA SI DO2

Freq [Hz] 503 524 587 662 701 787 878 1004 1048

Table 4.1

Timer_B has a frequency clock input equal to 7.995392 MHz.
The value to write in the TBCCR0 register in order to generate the desired frequency is:

// TBCCR0 value of the musical notes

#define SI0 15895

#define DO 15258

#define RE 13620

#define MI 12077

#define FA 11405

88 CHAPTER 4. TIMERS

#define SOL 10159

#define LA 9106

#define SI 7963

#define DO2 7629

TBCCTL4 = OUTMOD_3; // CCR4 interrupt enabled

TBCCR4 = space[0]/2;

4.4.1.5.2 Timer_A con�guration

TACTL = TASSEL_2 |MC_2 | ID_0 | TAIE; // SMCLK, continuous mode up to 0xffff

TACCTL1 = CM1 | CCIS_0 | CAP | CCIE;// Capture on rising edge, Cap mode,

// Cap/Com int. enable, TACCR1 input signal selected

//***

// Timer A ISR

//***

#pragma vector=TIMERA1_VECTOR

__interrupt void TimerA1_ISR (void)

{

switch (TAIV)

{

case TAIV_TACCR1:

if (capture == 0){

T1 = TACCR1;

flag = 1;

capture = 1;

}

else {

if (flag == 1) {

T2 = TACCR1;

if (T2 > T1)

T = T2-T1;

}

else{

TAR = 0;

}

capture = 0;

flag = 0;

}

break;

case TAIV_TACCR2:

break;

case TAIV_TAIFG:

tick++;

89

if (tick == 60){

LCD_freq();

tick = 0;

}

if (flag == 1)flag = 0;

break;

default:

break;

}

}

4.4.1.5.3 Basic Timer1

The Basic Timer1 generates an interrupt once every second. It uses two counters in series, where the
BTCNT2 counter input uses the BTCNT1 counter output divided by 256. The BTCNT1 counter input is
the ACLK clock signal with a frequency of 32.768 kHz.

If BTCNT2 counter selected output is divided by 128, what is the time period associated with the Basic
Timer1 interrupt? _________

What are the values to write to the con�guration registers?

BTCTL = BTDIV | BT_fCLK2_DIV128; // (ACLK/256)/128

IE2 |= BTIE; // enable BT interrupt

//***

// Basic Timer ISR. Run with 1 sec period

//***

#pragma vector=BASICTIMER_VECTOR

__interrupt void basic_timer_ISR(void)

{

unsigned int read_data; // read data from file , frequency in kHz

P2OUT^=0x06; // toogle LED1 and LED2

counter++;

if (counter == 5){

counter = 0;

read_data = 200;

TBCCR0 = 7995392/read_data;

TBCCR4 = TBCCR0/2;

}

}

90 CHAPTER 4. TIMERS

4.4.1.5.4 I/O Ports con�guration

// SW1 and SW2 configuration (Port1)

P1SEL &= 0x00; // P1.0 and P1.2 I/O

P1DIR &= 0x00; // P1.0 and P1.2 as inputs

P1IFG = 0x00;

P1IES &= 0xFF // high-to-low transition interrupt

P1IE |= 0xFF; // enable port interrupts

// LED1 and LED2 configuration (Port2):

P2DIR |= 0x06; // P2.2 and P2.1 as outputs

P2OUT = 0x04; // LED1 on and LED2 off

// Buzzer port configuration (Port3)

P3SEL |= 0x20; // P3.5 as special function

P3DIR |= 0x20; // P3.5 as digital output

4.4.1.5.5 FLL+ con�guration

FLL_CTL0 |= DCOPLUS + XCAP18PF; //DCO+ set,freq=xtal*D*N+1

SCFI0 |= FN_4; // x2 DCO freq, 8MHz nominal DCO

SCFQCTL = 121; // (121+1) x 32768 x 2 = 7.99 MHz

4.4.1.6 Analysis of operation

4.4.1.6.1 System clocks inspection

The MCLK, SMCLK and ACLK system clocks are available at ports P1.1, P1.4 and P1.5 respectively. These
ports are located on the SW2, RESET_CC and VREG_EN lines, which are available on the H2 Header
pins 2, 5 and 6. All these resources are available because the Chipcon RF module is not installed and SW2
is not used.

Using the Registers view, set bits 1, 4 and 5 of P1SEL and P1DIR registers to choose the secondary
function of their ports, that is, con�gured as outputs. Connect an oscilloscope probe at these positions to
monitor the clock signals.

What are the values measured for each of the system clocks?
ACLK: _____________________
SMCLK: ____________________
MCLK: _____________________

4.4.1.6.2 TBCCR4 unit output frequency

With the help of an oscilloscope, it is possible to evaluate the operation of the application. Alternatively, it
is possible to listen to the sound produced. By removing jumper JP1 and connecting the oscilloscope to this
pin, it is possible to view the PWM signal produced by the microcontroller. The duty-cycle can be reduced
or increased by pressing the push buttons SW1 and SW2.

91

4.4.1.6.3 Port P1 interrupt source decoding

All Port P1 interrupt lines share the same interrupt vector. The decoding is done through the P1IFG register.
This process can be observed by entering a breakpoint at the �rst line of the ISR code.
Execute the application.
The application's execution is suspended at the breakpoint by pressing either button SW1 or SW2. From

this point onwards, run the lines of code step-by-step and observe changes in the register values.

4.4.1.6.4 Measurement of electrical current drawn

The power consumption was discussed in the previous point. The electrical power required by the system
during operation is measured by replacing the jumper on the Header PWR1 by an ammeter, which indicates
the electric current taken by device during operation.

What is the value read? __________
This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp12

4.5 Laboratory Timers: Lab5 - Frequency measurement13

4.5.1 Laboratory Timers: Lab5 - Frequency measurement

4.5.1.1 Introduction

Correct system timing is a fundamental requirement for the proper operation of a real-time application. The
timing de�nition can dictate how the data information processed during the execution of the application
program. The clock implementations vary between devices in the MSP430 family. Each device provides
di�erent clock sources, controls and uses. This chapter discusses the clock controls included in the platforms
used.

The MSP430 4xx family has two general-purpose 16-bit or 8-bit counters and event timers, named
Timer_A, Timer_B, and a Basic Timer. The Basic Timer module is only implemented in `4xx devices. The
2xx device family also has Timer_A and Timer_B, but the clock signals are provided by the basic clock
module+.

The timers may receive an internal or external clock. Timer_A and Timer_B also include multiple
independent capture and compare blocks, with interrupt capabilities.

4.5.1.2 Overview

This laboratory implements an application (Lab5_Timers.c 14) designed to measure a PWM signal fre-
quency. If a signal generator is not available, the microcontroller generates a PWM signal based on the
frequencies stored in a �le. The frequencies generated are read and updated with a �xed time period using
the features of CCE. The measured value is shown on the LCD in Hz.

4.5.1.3 Resources

The module FLL+ is con�gured to a frequency of 7.995392 MHz for the MCLK and SMCLK clock signals.
This application performs the two tasks simultaneously.

On the one hand, it generates a PWM signal with a frequency of 200 Hz and a duty cycle of 50%.
Alternatively, the PWM signal frequency can be read from a �le using a breakpoint. This function is
performed by Timer_B, using the compare unit to generate the PWM signal.

12https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
13This content is available online at <http://cnx.org/content/m23527/1.2/>.
14http://cnx.org/content/m23527/latest/Lab5_Timers.c

92 CHAPTER 4. TIMERS

The time period between two consecutive PWM signals low-to-high transitions is measured by Timer_A.
The capture unit of this timer is con�gured to collect the Timer_A counter register's contents when a PWM
signal low-to-high transition is detected at its input.

The Basic Timer1 generates an interrupt once every second. The ISR updates the PWM signal frequency
generated by the Timer_B. If you choose to use this feature, a breakpoint associated with this ISR execution
allows reading a �le with the value of the frequency that will be generated.

The microcontroller's ports are con�gured in order that the PWM signal generated by Timer_B through
the TBCCR4 compare unit available at Port P3.5/TB4 can be connected to the Port P1.2/TA1 of the
Timer_A TACCR1 capture unit. If you plan to use this feature, these pins must be connected together.
Port P3.5 pin is available on Header 7 pin 6, while the Port P1.2 pin is available on Header H2 pin 3.

Ports P2.1 and P2.2 are used to monitor the state of the LED2 and LED1, respectively.
The resources used by the application are:
- Timer_A;
- Timer_B;
- Basic Timer1;
- I/O ports;
- FLL+;
- Interrupts.

4.5.1.4 Software application organization

The software structure allows various tasks to be performed simultaneously. The routine main() is respon-
sible for con�guring all the resources used by the application. Once started, the application enables all the
interrupts and waits for an interrupt request.

There are two routines that separately service the two possible interrupts. The routine TimerA1_ISR()

services interrupts required by the Timer_A over�ow and by the TACCR1 capture unit. For every interrupt
caused by a TACCR1 capture, the value collected in the TACCR1 register is stored in T1, if it is the �rst
low-to-high transition, or stored in T2 if it is the second low-to-high transition. This sequence is controlled
by the variable capture. The variable �ag is used to �ag the measurement process. This process occurs
between the capture of the �rst low-to-high transition and the second transition. The counting of clock
pulses is done by Timer_A, in the time interval between the T1 and T2 acquisition, assigned to the variable
T. The process is synchronized when Timer_A over�ows, restarting the measurement process. The LCD is
refreshed once every 0.5 seconds with the latest measured frequency value, using the control variable control
tick that corresponds to 0.5 seconds.

The routine basic_timer_ISR() services the interrupt produced by Basic Timer1 once every second.
This routine begins by switching the state of LED1 and LED2. In addition, it updates the Timer_B
counting period. The variable read_data allows the counting period to be changed.

4.5.1.5 System con�guration

4.5.1.5.1 Basic Timer1

Basic Timer1 generates an interrupt once every second. Use the two counters in series, where the BTCNT2
counter input is selected as the BTCNT1 counter output divided by 256. The BTCNT1 counter input is the
ACLK clock signal with a frequency of 32.768 kHz.

If BTCNT2 counter selected output is divided by 128, what is the time period associated with the Basic
Timer1 interrupt? _________

The values written to the con�guration registers are:

BTCTL = BTDIV | BT_fCLK2_DIV128; // (ACLK/256)/128

IE2 |= BTIE; // Enable BT interrupt with 1 sec period

93

4.5.1.5.2 Timer_B

The TBCCR4 compare unit is used to generate the PWM signal. The set/reset compare mode is used.
The values written to the con�guration registers are:

TBCTL = TBSSEL_2 | CNTL_0 | TBCLGRP_0 |MC_1 | ID_0;

// SMCLK, continuous mode

TBCCTL4 = OUTMOD_3; // CCR4 output mode 3 (set/reset)

The TB4 PWM output signal has a frequency X, with a 50% duty-cycle. The SMCLK clock signal is used
as input of Timer_B.

The values written to the con�guration registers are:

TBCCR0 = 39977;// Output 200 Hz signal with 50% duty cycle

TBCCR4 = TBCCR0/2;

What the largest and lowest generated frequency?
Maximum frequency value: ____________
Minimum frequency value: _____________

4.5.1.5.3 Timer_A

Timer_A is sourced by the SMCLK clock signal. It counts to the value 0xFFFF, in continuous mode. An
interrupt is generated when the TAR counter over�ows. What is the value to write to its con�guration
register?

TACTL = TASSEL_2 |MC_2 | ID_0 | TAIE; // SMCLK

// up mode to 0xFFFF

The capture unit captures the TAR register value to the TACCR1 register when it detects a low-to-high
transition at the TA1 input. What is the value to write to the con�guration register?

TACCTL1 = CCIS_0 | CAP | CCIE;

// Capture on rising edge,

// TACCR1 input signal selected,

// Capture mode,

// Capture/compare interrupt enable.

Determine the maximum and minimum frequency values detected. Note that these values do not take into
account the execution time of the application. The PWM signals should be applied at frequencies well below
the maximum value determined.

Maximum frequency value: ____________
Minimum frequency value: _____________
The TACCR1 capture unit is con�gured to generate an interrupt when it detects a low-to-high transition.

What is the value to write to the con�guration register?
TACCTL1 |= CM1

94 CHAPTER 4. TIMERS

4.5.1.5.4 Ports P3.5/TB4 and P1.2/TA1 con�guration

These ports perform special functions. Thus, the Port P3.5 is con�gured as an output, selected by the special
function TB4, with the values:

// TB4 configuration (Port3)

P3SEL = 0x20; // P3.5 as special function (TB4)

P3DIR = 0x20; // P3.5 as output

The Port P1.2 is con�gured as input, with the special function TA1, using the values:

// TA1 (TACCR1) configuration (Port1)

P1SEL = 0x04; // P1.2 as special function (TA1)

P1DIR = 0x00; // P1.2 as input

4.5.1.5.5 I/O Ports con�guration:

// SW1 and SW2 configuration (Port1)

P1SEL &= 0x00; // P1.0 and P1.2 I/O

P1DIR &= 0x00; // P1.0 and P1.2 as inputs

P1IFG = 0x00;

P1IES &= 0xFF // high-to-low transition interrupt

P1IE |= 0xFF; // enable port interrupts

// LED1 and LED2 configuration (Port2):

P2DIR |= 0x06; // P2.2 and P2.1 as outputs

P2OUT = 0x04; // LED1 on and LED2 off

// Buzzer port configuration (Port3)

P3SEL |= 0x20; // P3.5 as special function

P3DIR |= 0x20; // P3.5 as digital output

4.5.1.6 Analysis of operation

4.5.1.6.1 Run the application using the frequency generator based on Timer_B

Without a frequency generator, the Timer_B generates a PWM signal at the TBCCR4 unit output that
can be fed back to Timer_A TACCR1 capture unit input. These two pins must therefore be connected
together. By default, the PWM signal frequency is 200 Hz. Add a breakpoint at the line of code belonging
to the Basic Timer1 ISR to modify this value.

TBCCR0 = 7995392/read_data;

If the variable read_data has the value 200, it will generate a 200 Hz frequency. The value of this variable
can be changed by associating a breakpoint to that line of code. Before the line of code is executed, the
value of the data �le is read and assigned to the variable read_data. The signal will oscillate at the desired
frequency, loading the value in TBCCR0. The breakpoint con�guration is as follows:

- Action: read data from �le
- File: address of the data �le (example in freq.txt)
- Wrap Around: activate this option to restart reading at the beginning
- Start address: &read_data
- Length: 1 in order to read a value from the �le each time

95

4.5.1.6.2 Run the application using a frequency generator

The operation of the application can be veri�ed using a frequency generator. The generator should generate
a PWM signal with voltage and frequency values compatible with the device's input (2.5 to 3.3 volts).

4.5.1.6.3 Observe the measured frequency

The PWM signal applied to the TA1 input can be viewed using an oscilloscope, connected to pin 3 of Header
2. Perform this task and con�rm the values present at the LCD.

4.5.1.6.4 Measurement of electrical current drawn

The power consumption was discussed in the previous point. The electrical power required by the system
during operation is measured by replacing the jumper on the Header PWR1 by an ammeter, which indicates
the electric current taken by device during operation.

What is the value read? __________
This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp15

15https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

96 CHAPTER 4. TIMERS

Chapter 5

LCD Controller

5.1 Laboratory LCD controller: Lab1 - LCD message display1

5.1.1 Laboratory LCD controller: Lab1 - LCD message display

5.1.1.1 Introduction

This hands-on laboratory consists of con�guring the LCD_A controller of the MSP430FG4618 device of the
Experimenter's board to display a message on the LCD display. This laboratory has been developed for
Code Composer Essentials version 3 software development tool only.

5.1.1.2 Overview

This laboratory will explore the LCD_A controller of the MSP430FG4618 device included on the Experi-
menter's board. This application (Lab1_LCD.c2) demonstrates the activation of various LCD segments.

5.1.1.3 Resources

The Experimenter's board uses a LCD, which does not have its own controller. The operation is controlled
by MSP430FG4618.

The interface between these two components is described in the Experimenter's Board datasheet
slau213a.pdf 3

It is also recommended that the LCD datasheet be read.
Based on this information, it is possible to de�ne the values to write to each of the memory registers to

turn on the desired segments, or to set several of them, as is the case with numbers. The de�nitions are
listed in LCD_defs.h4 .

From analysis of the Experimenter's Board schematics, it can be seen that there is a 10 µF between the
LCDCAP pin and ground, which means it is possible to use the charge pump.

The segments shared by the I/O function are not used by the LCD, being connected to the segments S4
to S25. The four lines COM0, COM1, COM2, and COM3 are used. The last three lines are shared by ports
P5.2, P5.3 and P5.4, respectively. The LCD is operated in 4-mux mode.

The pins R03, R13, R23 and LCDCAP\R33 are used to provide the V5, V4, V3, V2 and V1 (VLCD)
voltages, using an external resistor network. They are available at Header H5.

1This content is available online at <http://cnx.org/content/m23558/1.3/>.
2http://cnx.org/content/m23558/latest/Lab1_LCD.c
3http://cnx.org/content/m23558/latest/SBLCDA4_Speci�cation.pdf
4http://cnx.org/content/m23558/latest/LCD_defs.h

97

98 CHAPTER 5. LCD CONTROLLER

In the current Experimenter's Board con�guration, it is possible to select the AVss or charge pump to
provide the V1 (VLCD), V2, V3, V4 and V5 voltages. These voltages are only generated when LCD_A
module and the ACLK clock are active. This allows the use of low power mode 3 (LPM3).

Timer_A, together with the TACCR0 unit are used to generate an interrupt once every second. LED1
and LED2 are switched at each Timer_A interrupt.

The push button SW1 is used to change the value of voltage generated by the charge pump. The push
button SW2 is used to change the LCD frequency.

5.1.1.4 Software application organization

The application starts by con�guring the Ports P5.2, P5.3, P5.4 to special function COM1, COM2 and
COM3, respectively. The function of COM0 is not shared with the digital I/O functions.

Then, the pins with multiplexed functions are selected to perform the functions necessary to control the
LCD segments.

The LCD_A control register and the voltage con�guration register are also con�gured.
There then follows the execution of the LCD clear routine LCD_all_off(), which ensures that all segments

of the LCD are o�.
Timer_A is con�gured with its TACCRO unit to generate an interrupt once every second. The ISR

generates the memory clock with msec, sec and min, and also connects/disconnects the remaining LCD
symbols.

The port pins P2.1 and P2.2 drive LED2 and LED1, respectively. Hence, these ports are con�gured as
digital outputs.

Push buttons SW1 and SW2 have the capacity to generate an interrupt through a change at ports P1.0
and P1.2 respectively. The interrupt ISR, after decoding its source, modi�es the LCD operation frequency
or modi�es the VLCD voltage.

Finally, all the interrupts are activated and the system enters low power mode LPM3.

5.1.1.5 System con�guration

5.1.1.5.1 LCD_A interface with the LCD con�guration

Select the function COM1, COM2 and COM3. What is the value to write to these registers?

P5DIR |= 0x1E; // Ports P5.2, P5.3 and P5.4 as outputs

P5SEL |= 0x1E; // Ports P5.2, P5.3 and P5.4 as special function (COM1, COM2 and COM3)

The LCD segments are controlled by the S4 to S25 LCD memory segments. Activate these segments by
writing to correct value to the following register:

LCDAPCTL0 = LCDAPCTL0 = LCDS24 | LCDS20 | LCDS16 | LCDS12 | LCDS8 | LCDS4; // Enable S4 to S25

5.1.1.5.2 LCD operation frequency

The LCD is to operate in 4-mux mode, with a 30 Hz to 100 Hz refresh frequency. It uses the following
equation to determine the LCD operation frequency, fLCD:

fLCD = 2 x mux x fframe
Choose the frequency that provides greatest energy savings.

99

5.1.1.5.3 LCD_A con�guration

The LCD_A module is to be activated in 4-mux mode from a 32768 Hz clock. What value should be written
to the following register?

LCDACTL = LCDFREQ_192 | LCD4MUX; // (ACLK = 32768)/192

// and 4-mux LCD

LCDACTL |= LCDSON | LCDON; // LCD_A and Segments on

Use the charge pump to internally generate all the voltages necessary for the operation of the LCD, using a
bias 1/3. What is the value to write to the register?

LCDAVCTL0 = LCDCPEN; // Charge pump enable

The charge pump generates a LCD voltage of 3.44 volts. Con�gure the following register:
LCDAVCTL1 = VLCD_3_44; // VLCD = 3.44 V

5.1.1.5.4 Timer_A con�guration

The Timer_A generates an interrupt once every second. It uses the TACCR0 unit. Con�gure the following
registers:

TACCTL0 = CCIE; // TACCR0 interrupt enabled

TACCR0 = 3268; // this count correspond to 1 msec

TACTL = TASSEL_1 | MC_1 | ID_0; // ACLK, up mode

5.1.1.5.5 Output ports con�guration

Con�gure the ports connected to LED1 and LED2 in order to make one of them active and the other inactive
at system start up:

P2DIR |= 0x06; // P2.1 and P2.2 as output

P2OUT |= 0x04; // LED2 off and LED1 on

5.1.1.5.6 Input ports con�guration

The push buttons SW1 and SW2 generate an interrupt on a low-to-high transition. Con�gure the necessary
registers:

P1DIR &= ∼0x03; // P1.0 and P1.1 digital inputs

P1IES |= 0x03; // low-to-high transition interrupts

P1IE |= 0x03; // enable port interrupts

5.1.1.6 Analysis of operation

Compile the project, load it into microcontroller's memory and execute the application. For each value of the
operating frequency and voltage generated by the charge pump, measure the electrical current consumption.
Draw a graph of these results and draw conclusions concerning the energy consumption.

This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp5

5https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

100 CHAPTER 5. LCD CONTROLLER

Chapter 6

Data Acquisition

6.1 Laboratory Signal Acquisition: Lab1 - SAR ADC10 conversion1

6.1.1 Laboratory Signal Acquisition: Lab1 - SAR ADC10 conversion

6.1.1.1 Introduction

This laboratory gives examples of the uses of the ADC types available in the hardware development kits. A
di�erent laboratory is developed for each kit, taking into account that both the ADC10 and the SD16_A
laboratories implement a temperature data logger. The ADC12 laboratory also uses operational ampli�ers
to perform the analogue signal conditioning.

6.1.1.2 Overview

This laboratory (Lab1_ADC.c2) implements a temperature data logger using the hardware kit's integrated
temperature sensor. The device is con�gured to perform an acquisition each minute for one hour. Each
temperature's (ºC) value is transferred to �ash info memory segment B and C. When the microcontroller is
not performing any task, it enters into low power mode.

6.1.1.3 Resources

The ADC10 module uses VREF+ = 1.5 V as the reference voltage.
It is necessary to con�gure the ADC10 to use the integrated temperature sensor (A10) as an input.

Timer_A generates an interrupt once every second that starts conversion in the ADC10. At the end of a
conversion, an interrupt is requested by the converter and the temperature value is written to �ash memory.

The voltage value is converted into temperature following the equation provided in ADC10 section of the
MSP430 User's Guide <slau144e.pdf>. After transferring the value to the �ash memory, the system returns
to low power mode LPM3.

The resources used by the application are:
- ADC10;
- Timer_A;
- Ports I/O;
- Interrupts;
- Low power mode.

1This content is available online at <http://cnx.org/content/m23539/1.2/>.
2http://cnx.org/content/m23539/latest/Lab1_ADC.c

101

102 CHAPTER 6. DATA ACQUISITION

6.1.1.4 Software application organization

The application starts by stopping the Watchdog Timer.
The system checks for calibration constants on info memory segment A. The CPU execution will be

trapped if it does not �nd this information.
Digitally controller oscillator (DCO) is set to 1 MHz, providing clock source for MCLK and SMCLK,

while the Basic Clock System+ is con�gured to set ACLK to 1.5 kHz.
Controller's �ash timing is obtained fromMCLK divided by three to comply with the device speci�cations.
Port P1.0 is con�gured as an output and will blink the once LED every second.
The ADC10 is con�gured to use the input channel corresponding to the on-chip temperature sensor

(channel A10). The con�guration includes the activation of the internal reference voltage VREF+ = 1.5 V
and the selection of ADC10OSC as clock signal. The converter is con�gured to perform a single-channel
single-conversion. At the end of conversion, an interrupt is requested.

The Timer_A is con�gured to generate an interrupt once every second. ACLK/8 is selected as the clock
signal using the VLOCLK as clock source and will count until the TACCR0 value is reached (in up mode).
The system then enters into low power mode and waits for an interrupt.

Flash memory pointers and interrupt counters are initialized. The Timer_A ISR increments the variable
counter and when this variable reaches the value 60 (1 minute), the software start of conversion is requested.
At the end of this ISR, the system returns to low power mode.

When the ADC10 ends the conversion, an interrupt is requested. While variable min is lower than 60,
the temperature is written to �ash memory. The memory pointer is increased by two (word). When min =

60, the system stops operation.

6.1.1.5 System con�guration

6.1.1.5.1 DCO con�guration

Adjust the DCO frequency to 1 MHz by software using the calibrated DCOCTL and BCSCTL1 register
settings stored in information memory segment A.

if (CALBC1_1MHZ == 0xFF || CALDCO_1MHZ == 0xFF)

{

while(1); // If calibration constants erased

// do not load, trap CPU!!

}

DCOCTL = CALDCO_1MHZ; // Set DCO to 1 MHz

6.1.1.5.2 Basic Clock module+ con�guration

Set MCLK and SMCLK to 1 MHz. Use the internal very low power VLOCLK source clock to ACLK/8 clock
signal as low frequency oscillator (12 kHz):

BCSCTL1 = DIVA_3; // ACLK = 1.5 kHz

BCSCTL3 = LFXT1S_2; // Set VLOCLK (12 kHz)

6.1.1.5.3 ADC10 con�guration

The ADC10's input channel is the integrated temperature sensor (A10) and it uses the signal VREF+ (1.5
V) as reference voltage. The ADC10 clock source is ADC10OSC, the clock signal being ADC10CLK/4.
Con�gure the ADC10 sample-and-hold time: 64xADC10CLKs, to perform a single-channel single-conversion
and enable its interrupts. What are the values to write to the con�guration registers?

103

ADC10CTL1 = INCH_10 + ADC10DIV_3; // Temp Sensor (A10),

// ADC10CLK/4,

// clock source: ADC10OSC

ADC10CTL0=SREF_1 + ADC10SHT_3 + REFON + ADC10ON +ADC10IE;

// Internal reference voltage Vref+ = 1.5 V

// ADC10 sample-and-hold time: 64 x ADC10CLKs

// Reference-generator voltage = 1.5 V

// ADC10 on + ADC10 interrupt enable

//***

// ADC10 Interrupt Service Routine

//***

#pragma vector=ADC10_VECTOR

__interrupt void ADC10ISR(void)

{

unsigned int temperature;

if (min <= 60)

{

temperature = ((ADC10MEM - 673) * 423) / 1024;

write_int_flash(memo_ptr,temperature);

memo_ptr += 2;

}

else

{

_NOP();

}

}

6.1.1.5.4 Timer_A con�guration

Con�gure Timer_A register to enable an interrupt once every second. Use the ACLK clock signal as the
clock source. This timer is con�gured in up counter mode in order to count until the TAR value reaches the
TACCR0 value.

TACCTL0 = CCIE; // TACCR0 interrupt enabled

TACCR0 = 1500; // this count corresponds to 1 sec

TACTL = TASSEL_1 | MC_1 | ID_0;// ACLK, up mode to TACCR0

//**

// Timer_A Interrupt Service Routine

//**

#pragma vector=TIMERA0_VECTOR

__interrupt void TimerA0_ISR (void)

{

counter++;

P1OUT ^= 0x01; // LED toogle

if (counter == 60)

104 CHAPTER 6. DATA ACQUISITION

{

min++;

counter = 0;

ADC10CTL0 |= ENC + ADC10SC; // Sampling/Conversion start

}

}

6.1.1.6 Analysis of operation

After compiling the project, start the debug session and before running the application, put a breakpoint
at the line of code with the _NOP() instruction. Go to breakpoint properties and set action to Write data
to �le. Name the �le as Temp.dat and de�ne the data format as integer. The data starts at address
0x01040, with a length of 3C. Run the application and let the temperature data logger acquire the values
for 1 hour. Use a heater or a fan to force temperature variations during the measurement period. When
execution reaches the breakpoint, the �le will be available in your �le system. Construct a graph in Excel
or a similar tool, in order to plot the temperature variation obtained by the data logger.

This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp3

6.2 Laboratory Signal Acquisition: Lab2 - SAR ADC12 conversion4

6.2.1 Laboratory Signal Acquisition: Lab2 - SAR ADC12 conversion

6.2.1.1 Introduction

This laboratory gives examples of the uses of the ADC types available in the hardware development kits. A
di�erent laboratory is developed for each kit, taking into account that both the ADC10 and the SD16_A
laboratories implement a temperature data logger. The ADC12 laboratory also uses operational ampli�ers
to perform the analogue signal conditioning.

6.2.1.2 Overview

This laboratory (Lab2_ADC.c)5 examines the ADC12 and OA modules using the MSP-EXP430FG4618
Development Tool (MSP430FG4618 device). The test voltage is generated by the DAC12 channel 0, available
in DAC12_ODAT register. The analogue signal is conditioned by the OA module (amplitude change),
con�gured as non-inverting operational ampli�er. Afterwards, this signal is applied to the ADC12 input to
be converted. Compare the DAC12_ODAT and the ADC12MEM0 values.

6.2.1.3 Resources

The DAC12 module uses the same internal reference voltage as the ADC12 module (VREF+ = 2.5 V).
The OA module is con�gured as Non-inverting PGA with unity gain. The Non-inverting input is the

DAC0 internal while the output is connected to internal/external A1 of the ADC12. The ADC12 sample-
and-hold time is con�gured to be 64 ADC12CLK cycles. It performs a single-channel, single-conversion using
ADC12OSC/1 as the clock source.

The resources used by the application (following the signal modi�cation steps) are:
- DAC12;

3https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
4This content is available online at <http://cnx.org/content/m23546/1.2/>.
5http://cnx.org/content/m23546/latest/Lab2_ADC.c

105

- OA;
- ADC12;
- Timer_A;
- Interrupts.

6.2.1.4 Software application organization

The laboratory is organized following its working �ow chart:
- Peripheral initialization phase, �nishing with the MSP430 in LPM3;
- ISR phase, consisting of a Timer_A over�ow service routine that triggers a new ADC12 conversion and

it is responsible by the end of conversion.
The application starts by stopping the Watchdog Timer.
The system clock is con�gured by the FLL+ at 4.199304 MHz (128 x 32768Hz).
The DAC12 module is con�gured to present a null voltage (0 V) at the output. It uses the ADC12

internal 2.5 V reference voltage. The DAC12's output is con�gured with 12-bit resolution, in straight binary.
DAC12 uses the full-scale output with a Medium speed/current.

The OA module is con�gured as non-inverting PGA, the input signal (DAC0 internal) being in the
rail-to-rail range. The output of the OA is connected to internal/external A1.

The ADC12 is con�gured to perform a single-channel (channel A1), single-conversion. The con�guration
includes the activation of the same internal reference voltage as the DAC12. The ADC12 clock source is
ADC12OSC, with the sample-and-hold time selected as 64 ADC12CLK cycles.

The Timer_A is con�gured to use the ACLK as the clock source. It will count in continuous mode
(TACCR0 counts up to 0FFFFh) and generate an interrupt to update the ADC12MEM. When the interrupt
is serviced, the MSP430 enters into LPM3.

6.2.1.5 System con�guration

6.2.1.5.1 ADC12 con�guration:

The ADC12 module is con�gured in order to have the following characteristics:
- Single-channel, single-conversion operation;
- Uses the internal signal VREF+ (2.5 V) as reference voltage;
- The sample-and-hold time must be 64 ADC12CLK cycles;
- The conversion result must be available on ADC12MEM0;
- The sample-and-hold clock source is de�ned by software.

ADC12CTL0 |= SHT02|REF2_5V|REFON|ADC12ON|ENC|ADC12SC;

//SHT1x (Sample-and-hold time) = 0000b -> N/A

//SHT0x (Sample-and-hold time) = 0010b -> 64 ADC12CLK

//MSC (Multiple sample and conversion) = 0b -> N/A

//REF2_5V (Reference generator voltage) = 1b -> 2.5 V

//REFON (Reference generator on) = 1b -> Reference on

//ADC12ON (ADC12 on) = 1b -> ADC12 on

//ADC12OVIE (overflow-int. enable) = 0b -> disabled

//ADC12TOVIE (conversion-time-overflow int enable) = 0b

// -> disabled

//ENC (Enable conversion) = 0b -> enable configuration

//ADC12SC (Start conversion) = 1b -> Start conversion

ADC12CTL1 = CSTARTADD_0; // Start MEM0, TB1, Rpt Sing.

//CSTARTADDx (Conv. start address.) = 0000b -> ADC12MEM0

//SHSx (Sample-and-hold source) = 00b -> ADC12SC bit

//SHP (Sample-and-hold pulse-mode select) = 0b

106 CHAPTER 6. DATA ACQUISITION

// -> SAMPCON is sourced from the sample-input signal

//ISSH (Invert signal S-H) = 0b -> not inverted

//ADC12DIVx (ADC12 clock divider) = 000b -> /1

//ADC12SSELx (ADC12 clock source) = 00b -> ADC12OSC

//CONSEQx (Conversion sequence mode) = 00b -> Single-

// channel, single-conversion

//ADC12BUSY (ADC12 busy) = xb -> read only

The ADC12 module operates with reference voltages: VR+ = VREF+ and VR- = AVSS. The channel
selected to perform the analogue-to-digital conversion is channel A1. This channel is internally connected
the OA0's output.

ADC12MCTL0 = INCH_1 | SREF_1;

//EOS (End of sequence) = 0b -> Not Used

//SREFx (Select ref.) = 001b -> VR+=VREF+/VR-=AVSS

//INCHx (Input channel select) = 0001b -> A1

6.2.1.5.2 DAC12 con�guration:

DAC12_0DAT = 0x00; // DAC_0 output 0V

DAC12_0CTL = DAC12IR | DAC12AMP_5 | DAC12ENC;

//DAC_0 -> P6.6

//DAC_1 -> P6.7

//DAC reference Vref

//12 bits resolution

//Immediate load

//DAC full scale output

//Medium speed/

//Straight binary

//Not grouped

6.2.1.5.3 OA0 con�guration

The OA module of the MSP430FG4168 has three operational ampli�ers with wide utilization �exibility. For
this laboratory it is set up using the OA0 in non-Inverting PGA mode with the following con�guration:

- The inverting input is connected to the DAC12 channel 0;
- The ampli�er gain is con�gured as unity;
- The input is con�gured in rail-to-rail mode;
- The output is connected to the channel A1.

OA0CTL1 |= OAFC_4 | OAFBR_0;

//OAFBRx (feedback resistor) = 000b -> Tap 0 (G=1)

//OAFCx (OAx function) = 100b -> Non-inverting PGA

//OARRIP = 0b -> OAx input range is rail-to-rail

OA0CTL0 |= OAP_2 | OAPM_3 | OAADC1;

//OANx (Inverting input) = XXb -> not important

107

//OAPx (Non-inverting input) = 10b -> DAC0 internal

//OAPMx (Slew rate select) = 11b -> Fast

//OAADC1 (OA output) = 1b -> output connected to A1

//OAADC0 (OA output) = 0b -> output not connected A12

6.2.1.5.4 ADC12 ISR

#pragma vector=ADC12_VECTOR

__interrupt void ADC_ISR(void)

{

int x;

x = ADC12MEM0; // Reads data

ADC12CTL0 |= ADC12SC; // Start new conversion

}

6.2.1.5.5 Timer_A ISR

#pragma vector=TIMERA1_VECTOR

__interrupt void TimerA_ISR (void)

{

ADC12CTL0 &= ∼ADC12SC; //start new conversion

TACTL &= ∼TAIFG;
}

6.2.1.6 Analysis of operation

This laboratory uses the previous modules to construct an analogue signal chain as shown in Figure 1.

108 CHAPTER 6. DATA ACQUISITION

Analogue signal chain structure.

Figure 6.1

The input voltage VIN is in the range 0 V and 2.5 V, with a resolution of:
∆VIN = (2.5 x VREF) / 212 = 0.6 mV
The VIN value is controlled by the value in the DAC12_0DATA register.
The output voltage Vo has the same characteristics as the input voltage, but scaled by a multiplication

factor (gain), attributed by the OA. The OA gain is selectable through the OAFBR �eld in the OA0CTL1
register.

The Vo conversion result is stored in the ADC12MEM0 register.
Once the signal chain modules are con�gured in accordance with the previous steps, initiate the exper-

iment by completing the �le, compiling it and running it on the Experimenter's board. For the evaluation
of the peripherals discussed during this laboratory, set a breakpoint on the ADC12_ISR and perform the
following operations:

- Con�gure the DAC12_0DATA register with the value 0xFF. With the aid of a voltmeter, measure the
analogue input voltage A6 (DAC12 channel 0 output). The value should be in the region of 0.15 V;

- Measure the input voltage A1 (OA0's output). The voltage value should be the same;
- Execute the code. Verify the ADC12's conversion result. The value should be similar to the one of the

DAC12_0DATA register;
- Double the ampli�er gain (2x). Verify the voltage at A0. It should be the double of the input voltage

A1 (OA0's output) given in step 2;
- Execute the code. Verify the ADC12's conversion result. The value should be two times the value of

the DAC12_0DATA register;
- Execute further modi�cations in order to evaluate the digital-to-analogue and analogue-to-digital con-

version. Do not exceed the Vo maximum value (2.5 V).
This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp6

6https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

109

6.3 Laboratory Signal Acquisition: Lab3 - SD16_A ADC conversion7

6.3.1 Laboratory Signal Acquisition: Lab3 - SD16_A ADC conversion

6.3.1.1 Introduction

This laboratory gives examples of the uses of the ADC types available in the hardware development kits. A
di�erent laboratory is developed for each kit, taking into account that both the ADC10 and the SD16_A
laboratories implement a temperature data logger. The ADC12 laboratory also uses operational ampli�ers
to perform the analogue signal conditioning.

6.3.1.2 Overview

This laboratory (Lab3_ADC.c 8) implements a temperature data logger using the hardware kit's integrated
temperature sensor. The device is con�gured to perform a data acquisition once every minute for one hour.
Each temperature's (ºC) value is transferred to �ash info memory segment B and C. When the microcontroller
is not performing any task, it enters into low power mode.

6.3.1.3 Resources

The SD16_A module uses VREF+ = 1.2 V as reference voltage.
It is necessary to select the channel 6 of the SD16_A to use the integrated temperature sensor as an

input. Timer_A generates an interrupt once every second, which starts conversion on the SD16_A. At the
end of conversion, an interrupt is requested by the converter and the temperature value is written to �ash
memory.

The voltage value is converted into temperature using the mathematical expression provided in the eZ430-
F2013 data sheet. After transferring the value to the �ash memory, the system returns to low power mode
LPM3.

The resources used by the application are:
- SD16_A;
- Timer_A;
- Ports I/O;
- Interrupts;
- Low power mode.

6.3.1.4 Software application organization

The application starts by stopping the Watchdog Timer.
System tests for the presence of calibration constants in info memory segment A. The CPU execution

will be trapped if it does not �nd this information.
The digital controller oscillator (DCO) is set to 1 MHz to provide clock sources for MCLK and SMCLK,

while the Basic Clock System+ is con�gured to set ACLK to 1.5 kHz.
The controller's �ash timing is obtained from MCLK, divided by three to comply with the device speci-

�cations.
Port P1.0 is con�gured as output and will blink the LED once every second.
The SD16_A is con�gured to use the input channel corresponding to the on-chip temperature sensor

(channel A6). The con�guration includes the activation of the internal reference voltage: VREF+ = 1.2 V
and the selection of SMCLK as clock signal. The converter is con�gured to perform a single conversion in
bipolar mode and o�set binary format. At the end of conversion an interrupt is requested.

7This content is available online at <http://cnx.org/content/m23563/1.2/>.
8http://cnx.org/content/m23563/latest/Lab3_ADC.c

110 CHAPTER 6. DATA ACQUISITION

The Timer_A is con�gured to generate an interrupt once every second. ACLK/8 is selected as the clock
signal using VLOCLK as clock source and will count until it reaches the TACCR0 value (up mode). The
system enters into low power mode and waits for an interrupt.

Flash memory pointers and interrupt counters are initialized. The Timer_A ISR increments variable
counter and when this variable reaches the value 60 (1 minute), the software start of conversion is requested.
At the end of this ISR, the system returns to low power mode.

When the SD16_A ends the conversion, an interrupt is requested. While variable min is lower than 60,
the temperature is written in �ash memory. The memory pointer is increased by two (word). When min =
60, the system stops operation.

6.3.1.5 System con�guration

6.3.1.5.1 DCO con�guration

Adjust the DCO frequency to 1 MHz by software using the calibrated DCOCTL and BCSCTL1 register
settings stored in information memory segment A.

if (CALBC1_1MHZ == 0xFF || CALDCO_1MHZ == 0xFF)

{

while(1); // If calibration constants erased

// do not load, trap CPU!!

}

DCOCTL = CALDCO_1MHZ; // Set DCO to 1 MHz

6.3.1.5.2 Basic Clock module+ con�guration

Set MCLK and SMCLK to 1 MHz. Use the internal very low power VLOCLK source clock to ACLK/8 clock
signal as low frequency oscillator (12 kHz):

BCSCTL1 = DIVA_3; // ACLK = 1.5 kHz

BCSCTL3 = LFXT1S_2; // Set VLOCLK (12 kHz)

6.3.1.5.3 SD16_A con�guration

The SD16_A's input channel is the integrated temperature sensor (A6) and it uses the signal VREF+ (1.2
V) as reference voltage. The SD16_A clock source is SMCLK. Con�gure the SD16_A to perform a single
conversion and enable its interrupts. What are the values to write to the con�guration registers?

SD16CTL = SD16REFON + SD16SSEL_1; // 1.2V ref, SMCLK

SD16INCTL0 = SD16INCH_6; // Temp. sensor: A6+/-

SD16CCTL0 = SD16SNGL + SD16IE; // Single conv, int. enable

//***

// SD16_A Interrupt Service Routine

//***

#pragma vector=SD16_VECTOR

__interrupt void SD16ISR(void)

{

unsigned int temperature;

111

if (min <= 60)

{

temperature = (SD16MEM0-0x8000)/84 - 232;

write_int_flash(memo_ptr,temperature);

memo_ptr += 2;

}

else

{

_NOP();

}

}

6.3.1.5.4 Timer_A con�guration

Con�gure Timer_A register to enable an interrupt once every second. Use the ACLK clock signal as the
clock source. This timer is con�gured in up mode in order to count until the TAR value reaches the TACCR0
value.

TACCTL0 = CCIE; // CCR0 interrupt enabled∼
TACCR0 = 1500; // this count corresponds to 1 sec

TACTL = TASSEL_1 | MC_1 | ID_0; // ACLK, up mode to CCR0

//***

// Timer_A Interrupt Service Routine

//***

#pragma vector=TIMERA0_VECTOR

__interrupt void TimerA0_ISR (void)

{

counter++;

P1OUT ^= 0x01; // LED toogle

if (counter == 60)

{

min++;

counter = 0;

SD16CCTL0 |= SD16SC; // Start SD16 conversion

}

}

6.3.1.6 Analysis of operation

6.3.1.6.1 Measure the temperature variation over 1 hour

After compiling the project and starting the debug session, before running the application, put a breakpoint
at line of code with the _NOP() instruction. Go to breakpoint properties and set action to Write data to �le.
Name the �le as Temp.dat and de�ne the data format as integer. The data starts at address 0x01040 with
a length of 3C. Run the application and let the temperature data logger acquire the values over 1 hour. Use
a heater or a fan to force temperature variations during the measurement period. When execution reaches
the breakpoint, the �le will be available in your �le system. Construct a graph using Excel or a similar tool,
to plot the temperature variation obtained by the data logger.

112 CHAPTER 6. DATA ACQUISITION

This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp9

6.4 Laboratory Signal Acquisition: Lab4 - Voltage signal comparison
with Comparator_A10

6.4.1 Laboratory Signal Acquisition: Lab4 - Voltage signal comparison with Com-
parator_A

6.4.1.1 Introduction

This laboratory gives examples of the uses of the ADC types available in the hardware development kits. A
di�erent laboratory is developed for each kit, taking into account that both the ADC10 and the SD16_A
laboratories implement a temperature data logger. The ADC12 laboratory also uses operational ampli�ers
to perform the analogue signal conditioning.

6.4.1.2 Overview

This laboratory (Lab4_ADC.c11) analyses Comparator_A operation. A voltage is applied to one of the
Comparator's inputs, generated either by the DAC12 or by other external source. Whenever the external
voltage value is higher than the comparison value internally generated, an interrupt is generated that switches
the LED state.

6.4.1.3 Resources

The resources used by the application are:
- DAC12;
- Comparator_A;
- Digital IO;
- Timer_A.

6.4.1.4 Software application organization

The application starts by stopping the Watchdog Timer.
Timer_A is con�gured to generate an interrupt once every msec, and updates the DAC12 output in order

to provide a ramp signal.
The Comparator_A's output is con�gured to be accessible at pin P6.6, which is available on Header 4

pin 7. The signal applied to CA0 input is compared with 0.5 Vcc internal reference voltage. Every time that
a compare match occurs, an interrupt is requested and switches the state of LED1.

6.4.1.5 System con�guration

6.4.1.5.1 Comparator_A con�guration

Con�gure the registers in order to receive the external signal at the CA0 input and compare it with the
internal reference 0.5 Vcc. Enable the comparator with an interrupt triggered on a low-to-high transition of
the comparator output.

9https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
10This content is available online at <http://cnx.org/content/m23543/1.2/>.
11http://cnx.org/content/m23543/latest/Lab4_ADC.c

113

CACTL1 = CAON | CAREF_2 | CARSEL | CAIE; // Enable comp, ref = 0.5*Vcc

CACTL2 = P2CA0; // Pin to CA0

P2DIR |= 0x042; // P2.1 and P2.6 output direction

P2SEL |= 0x040; // P2.1 = LED1 and P2.6 = CAOUT

CACTL1 |= CAIE; // Setup interrupt for Comparator

//***

// Comp_A interrupt service routine -- toggles LED

//***

#pragma vector=COMPARATORA_VECTOR

__interrupt void Comp_A_ISR (void)

{

CACTL1 ^= CAIES; // Toggles interrupt edge

P2OUT ^= 0x02; // Toggle P2.1

}

6.4.1.5.2 ADC12 con�guration

ADC12CTL0 = REF2_5V + REFON; // Internal 2.5V ref on

6.4.1.5.3 DAC12 con�guration

DAC12_0DAT = 0x00; // DAC_0 output 0V

DAC12_0CTL = DAC12IR | DAC12AMP_5 | DAC12ENC;

// DAC_0->P6.6
// DAC reference Vref

// 12 bits resolution

// Imediate load

// DAC full scale output

// Medium speed/current

// Straight binary

// Not grouped

6.4.1.5.4 Timer_A con�guration

// Compare mode

TAR = 0; // TAR reset

TACCR0 = 13600; // Delay to allow Ref to settle

TACCTL0 |= CCIE; // Compare-mode interrupt

TACTL = TACLR + MC_1 + TASSEL_2; // up mode, SMCLK

// Interrupt enable

TAR = 0; // TAR reset

TACCTL0 = CCIE; // CCR0 interrupt enabled

TACCR0 = 32; // 1 msec counting period

114 CHAPTER 6. DATA ACQUISITION

TACTL = TASSEL_1 | MC_1 | ID_0; // ACLK, up mode

//***

// ISR to TACCRO from Timer A

//***

#pragma vector=TIMERA0_VECTOR

__interrupt void TimerA0_ISR (void)

{

DAC12_0DAT++;

if (DAC12_0DAT == 0xFFF)

DAC12_0DAT = 0;

if (flag == 1) // if flag active exit LPM0

{

flag = 0;

LPM0_EXIT;

}

}

6.4.1.6 Analysis of operation

The experimental veri�cation of this laboratory can be accomplished by connecting the DAC12's output,
available on Header 8 pin 7, to the Comparator_A's input CA0, available on Header 4 pin 7.

Observe the signals wave form at the Comparator_A's input and output using an oscilloscope. The
LED1 switches state whenever the input's voltage value is lower than the compare value.

This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp12

12https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

Chapter 7

Digital-to-Analog Converter (DAC)

7.1 Laboratory DAC: Lab1 - Voltage ramp generator1

7.1.1 Laboratory DAC: Lab1 - Voltage ramp generator

7.1.1.1 Introduction

This laboratory gives an example of the use of the DAC available in the MSP-EXP430FG4618 Development
Tool. The DAC module reference is obtained from the ADC module. The DAC is con�gured with 12 bits
resolution in straight binary format. The DAC's output value is updated every 1 msec by a Timer_A ISR.
The buttons SW1 and SW2 are used to manually modify the DAC's output.

7.1.1.2 Overview

This laboratory (Lab1_DAC.c2)implements a voltage ramp generator. The DAC module reference is
obtained from the ADC module. The DAC is con�gured with 12-bit resolution, in straight binary format.
The output of the DAC value is updated once every 1 msec by an interrupt service routine (ISR) generated
by Timer_A. The push buttons SW1 and SW2 are used to manually modify the output of the DAC value.
When the microcontroller is not performing any task, it enters low power mode.

7.1.1.3 Resources

The DAC12_0 module uses VREF+ as reference voltage. It is therefore necessary to activate this reference
voltage in the ADC12 module.

The DAC12_0 is connected to Port P6.6 on the Header 8 pin 7. Connect the oscilloscope probe to this
port pin.

The output of the DAC is updated whenever Timer_A generates an interrupt. This peripheral is con-
�gured to generate an interrupt with a 1 msec time period.

After refreshing the output of the DAC, the system returns to low power mode LPM3.
The push buttons SW1 and SW2 allow the output of the DAC value to be changed manually.
The resources used by the application are:
- Timer_A;
- DAC12;
- I/O ports;
- FLL+;
- Interrupts.

1This content is available online at <http://cnx.org/content/m23573/1.3/>.
2http://cnx.org/content/m23573/latest/Lab1_DAC.c

115

116 CHAPTER 7. DIGITAL-TO-ANALOG CONVERTER (DAC)

7.1.1.4 Software application organization

The application starts by stopping the Watchdog Timer.
Then, the ADC12's reference voltage is activated and set to 2.5 V. A delay is used to allow the reference

voltage to settle. During this time period, the device enters low power mode LPM0. The delay period,
which is controlled by Timer_A, enables an interrupt when it completes. The interrupt wakes the device
and proceeds with the execution of the application.

Timer_A is recon�gured to generate an interrupt once every 1 msec. This interrupt service routine (ISR)
updates the output of the DAC.

Ports P1.0 and P1.1 are connected to buttons SW1 and SW2. The ports are con�gured as inputs with
interrupt capability, such that the ISR can decode which button is pushed. If the interrupt source is due to
button SW1, then the output of the DAC is increased. If the interrupt source is due to button SW2, then
the output of the DAC is decreased.

7.1.1.5 System con�guration

7.1.1.5.1 FLL+ con�guration

FLL_CTL0 |= DCOPLUS | XCAP18PF; // DCO+ set,

// freq = xtal x D x N+1

SCFI0 |= FN_4; // x2 DCO freq, // 8MHz nominal DCO

SCFQCTL = 121; // (121+1) x 32768 x 2 = 7.99 MHz

7.1.1.5.2 Reference voltage selection

The DAC12_0 uses the signal VREF+ as reference voltage. What is the value to write to the con�guration
register in order to obtain the internally available reference?

ADC12CTL0 = REF2_5V | REFON; // Internal 2.5V ref on

7.1.1.5.3 DAC12 con�guration

The DAC12_0 is con�gured with 12-bit resolution. The output is updated immediately when a new DAC12
data value is written in straight binary data format to the DAC12_0DAT register.

The full-scale output must be equal to the VREF+ 2.5 V internal reference voltage. Choose a compromise
solution between the settling time and current consumption, by selecting a medium frequency and current
for both input and output bu�ers. Con�gure the following register in order to meet these speci�cations:

DAC12_0DAT = 0x00; // DAC_0 output 0V

DAC12_0CTL = DAC12IR | DAC12AMP_5 | DAC12ENC;

// DAC_0 -> P6.6,

// DAC_1 -> P6.7,

// DAC reference Vref,

// 12 bits resolution,

// Immediate load,

// DAC full scale output,

// Medium speed/current,

// Straight binary,

// Not grouped

117

7.1.1.5.4 Timer_A con�guration

Con�gure Timer_A register to enable an interrupt once every 1 msec. Use the ACLK clock signal as the
clock source. This timer is con�gured in count up mode in order to count until the TAR value reaches the
TACCR0 value.

// Before entering in LPM0:

TACTL = TACLR | MC_1 | TASSEL_2; // up mode, SMCLK

// Timer_A ISR:

TAR = 0; // TAR reset

TACCR0 = 13600; // Delay to allow Ref to settle

TACCTL0 |= CCIE; // Compare-mode interrupt

TACTL = TACLR | MC_1 | TASSEL_2; // up mode, SMCLK

//***

// ISR to TACCRO from Timer A

//***

#pragma vector=TIMERA0_VECTOR

__interrupt void TimerA0_ISR (void)

{

DAC12_0DAT++; // Increase DAC's output

if (DAC12_0DAT == 0xfff)

DAC12_0DAT = 0; // reset DAC's output

if (flag == 1) // if flag active exite LPM0

{

flag = 0;

LPM0_EXIT;

}

}

7.1.1.5.5 I/O Ports con�guration

Port P1 uses the bits P1.0 and P1.2 to activate the ISR whenever the push buttons SW1 and SW2 are
activated (low-to-high transition).

// SW1 and SW2 ports configuration

P1SEL &= ∼0x03; // P1.0 and P1.1 I/O ports

P1DIR &= ∼0x03; // P1.0 and P1.1 digital inputs

P1IFG = 0x00; // clear all interrupts pending

P1IE |= 0x03; // enable port interrupts

DAC12_0 is connected to P6.6. Con�gure P6 as a special function output:

// P6.6 (DAC12_0 output)

// There is no need to configure P6.6 as a

// special function output since it was configured in the

// DAC12 configuration register (DAC12_0CTL) using

// DAC12OPS = 0

//***

118 CHAPTER 7. DIGITAL-TO-ANALOG CONVERTER (DAC)

// Port1 Interrupt Service Rotine

//***

#pragma vector=PORT1_VECTOR

__interrupt void PORT1_ISR (void)

{

if (P1IFG & 0x01) // SW1 generate interrupt

DAC12_0DAT += 400; // DAC's output increases

if (P1IFG & 0x02) // SW2 generate interrupt

DAC12_0DAT -= 400; // DAC's output decreases

P1IFG = 0x00; // clean all pending interrupts

}

7.1.1.6 Analysis of operation

7.1.1.6.1 Observe the analogue signal using an oscilloscope

After compiling the project and starting the debug session, monitor the operation of the application using
an oscilloscope probe connected to pin 7 of Header 8 (P6.6).

7.1.1.6.2 Measure the current drawn

Assign di�erent values to the bits set in DAC12AMP0. Suspend the execution of the application then directly
change the registers. Do not forget that this change requires suspending the operation of the DAC12 by
disabling the bit DAC12ENC. Afterwards, this bit must be enabled.

Please note the special cases relating to:
- DAC12 o�;
- High impedance output and DAC12 o�;
- Output: 0 V.
This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp3

3https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

Chapter 8

Direct Memory Access (DMA)

8.1 Laboratory DMA: Lab1 - Data Memory transfer triggered by
software1

8.1.1 Laboratory DMA: Lab1 - Data Memory transfer triggered by software

8.1.1.1 Introduction

This laboratory gives an example of the use of the DMA peripheral available in the MSP-EXP430FG4618
Development Tool. It requires the con�guration of the DMA Source and Destination Addresses Registers,
DMA Size Address Register; DMA Control Registers and DMA Channel 0 Control Register in order to
transfer data between two regions of memory.

8.1.1.2 Overview

During this laboratory (Lab1_DMA.c 2), the data transfer between two regions of memory is analyzed.
The order of transfer is controlled by software.

8.1.1.3 Resources

The following resource is used in this laboratory:
- DMA controller.

8.1.1.4 Software application organization

The software begins by disabling the watchdog timer. Port P2.1 is set as an output with a logic low level.
The memory addresses of the data vectors are passed to the source data address DMA0SA and destination

address DMA0DA registers.
The number of words to be transferred is loaded in the DMA0SZ (size) register.
The DMA channel 0 is con�gured so that the data transfer trigger is controlled by software, in order that

after each transfer, the source and destination addresses are correctly incremented.
The application enters an in�nite loop, where port P2.1 state is switched just before initiating the data

transfer.

1This content is available online at <http://cnx.org/content/m23575/1.2/>.
2http://cnx.org/content/m23575/latest/Lab1_DMA.c

119

120 CHAPTER 8. DIRECT MEMORY ACCESS (DMA)

8.1.1.5 System con�guration

8.1.1.5.1 DMA channel con�guration:

The source address and destination address of the data must be loaded into their respective registers:

DMA0SA = (void (*)()) &tab_1; // Start block address

DMA0DA = (void (*)()) &tab_2; // Destination block address

To move a total of 32 words, what is the value to write to the data size register?
DMA0SZ = 0x0020; // Block size

The DMA channel must be con�gured to transfer the word under software control. The source and
destination addresses should be incremented immediately after each of the transfers.

DMA0CTL=DMADT_0 | DMASRCINCR_3 | DMADSTINCR_3 | DMAEN;

// Single transfer,

// DMA source and destination addresses increment,

// Enable DMA0

8.1.1.6 Analysis of operation

In the Memory window, the addresses of data vector Tab_1 and Tab_2 addresses are displayed. The contents
of these blocks must be identi�ed in memory.

Add a breakpoint at line of code that performs the switching of port P2.1 state.
Execute the application, and whenever the breakpoint is reached, the execution of the application will

be suspended. Observe the data being gradually transferred from source to destination.
The data transfer is suspended once the 32 elements of the source data vector have been transferred.
This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp3

8.2 Laboratory DMA: Lab2 - Sinusoidal waveform generator4

8.2.1 Laboratory DMA: Lab2 - Sinusoidal waveform generator

8.2.1.1 Introduction

This laboratory gives an example of the use of the DMA peripheral available in the MSP-EXP430FG4618
Development Tool. It requires the con�guration of the DMA Source and Destination Addresses Registers,
DMA Size Address Register; DMA Control Registers, DMA Channel 0 Control Register, DAC12 control
register and Timer_A control register in order to generate a sinusoidal waveform.

8.2.1.2 Overview

This laboratory (Lab2_DMA.c 5) uses the DMA controller to automatically transfer data between data
memory and the DAC12 data register. A sinusoidal waveform is produced at the output of the DAC, without
CPU intervention.

3https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
4This content is available online at <http://cnx.org/content/m23577/1.2/>.
5http://cnx.org/content/m23577/latest/Lab2_DMA.c

121

8.2.1.3 Resources

This laboratory uses the following peripherals:
- DMA controller;
- DAC;
- ADC (reference generator: VREF+);
- Timer_A;
- Low power mode.

8.2.1.4 Software application organization

The successive samples needed to produce the sinusoidal waveform using the DAC are stored in the data
vector Sin_tab, which contains 32 points:

//---

// 12-bit Sine Lookup table with 32 steps

//---

int Sin_tab[32] = {2048, 2447, 2831, 3185, 3495, 3750, 3939, 4056,

4095, 4056, 3939, 3750, 3495, 3185, 2831, 2447,

2048, 1648, 1264, 910, 600, 345, 156, 39,

0, 39, 156, 345, 600, 910, 1264, 1648};

The software begins by disabling the watchdog timer, followed by activating the internal reference voltage
VREF+. The source and destination registers of the data vector to be transferred by the DMA channel
are loaded into the data vector Sin_tab (source) address and with the DAC12 data register (destination)
address. There are 32 data values to be transferred.

The data transfer is initiated whenever the DAC12IFG �ag is enabled. In this application, the DAC
interrupt should be disabled.

The DMA controller is con�gured to operate in repeat mode, to transfer a word whenever the previous
event occurs. The data source address is set to increment after each transfer, while the destination address
must remain constant.

The timer is set to generate the PWM signal through the capture/compare unit TACCR1. SMCLK is
the clock signal that counts up to the value in the TACCR0 register.

Finally, the settings and interrupts are enabled and the device enters into low power mode LPM0.

8.2.1.5 System con�guration

8.2.1.5.1 DAC12 reference voltage activation

The DAC12 requires a reference voltage. One of the options is to use the internal voltage VREF+. Set the
ADC12CTLO register to activate this voltage:

ADC12CTL0 = REFON; // Internal reference

8.2.1.5.2 DMA Controller con�guration:

Con�gure the registers DMA0SA (source), DMA0DA (destination) and DMA0SZ (size) to transfer 32 words
between the source vector Sin_tab and the DAC12_0DAT data destination register:

DMA0SA = (void (*)())&Sin_tab; // Source block address

DMA0DA = (void (*)())&DAC12_0DAT; // Destination single address

DMA0SZ = 0x20; // Block size

122 CHAPTER 8. DIRECT MEMORY ACCESS (DMA)

Con�gure the register DMACTL0 to provide a data transfer whenever the DAC12IFG �ag is set:
DMACTL0 = DMA0TSEL_5; // DAC12IFG trigger

Con�gure the register DMA0CTL to carry out a repeated simple data transfer, increasing the data source
address:

DMA0CTL = DMADT_4 | DMASRCINCR_3 | DMAEN;

// Repeated single transfer,

// DMA source address increment,

// since DMASRCBYTE = 0, the source address increments by

// two (word-word)

8.2.1.5.3 Setup DAC12

The DAC12 will update its output whenever there is the activation of the signal TA1. The DAC full-scale
should be 1x reference voltage. Choose a medium relationship between the DAC's current and average
conversion speed:

DAC12_0CTL = DAC12LSEL_2 | DAC12IR | DAC12AMP_5 | DAC12IFG | DAC12ENC;

// Rising edge of Timer_A.OUT1 (TA1),

// DAC12 full-scale output: 1x reference voltage,

// Input and output buffers: Medium freq./current,

// Enable DAC12

8.2.1.5.4 Timer_A con�guration

Timer_A is responsible for synchronizing data transfers between memory and the DAC12. The Timer_A
input receives as the SMCLK signal (1.048576 MHz) and must have a 30 msec counting period. What value
needs to be written to TACCR0, in order to achieve this counting period:

TACCR0 = 32-1; // Clock period of TACCR0

TACTL = TASSEL_2 | MC_1; // SMCLK, continuous mode

The capture/compare unit TACCR1 should generate a PWM signal in set/reset mode. Con�gure the unit
appropriately:

TACCTL1 = OUTMOD_3; // TACCR1 set/reset

TACCR1 = 20; // TACCR1 PWM Duty Cycle

8.2.1.6 Analysis of operation

The veri�cation of this laboratory is achieved by using an oscilloscope probe to monitor the output of the
DAC12 Channel 0, available on header 8 pin 6.

This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp6

6https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

Chapter 9

Hardware Multiplier

9.1 Laboratory Hardware Multiplier: Lab1 - Multiplication without
hardware multiplier1

9.1.1 Laboratory Hardware Multiplier: Lab1 - Multiplication without hardware
multiplier

9.1.1.1 Introduction

This laboratory explores the hardware multiplier peripheral. It is composed of three di�erent tasks, each of
which evaluates a di�erent characteristic of the hardware multiplier peripheral:

- Multiplication operation execution time, with and without the hardware multiplier.
-Di�erences between the use of the operator �*� and direct write to the hardware multiplier registers.
- Task operational analysis, in which the active power and the RMS value of an electrical system are

calculated.

9.1.1.2 Overview

This laboratory explores and analyses the MSP430's performance when it performs multiply operations
without the hardware multiplier. The execution time is measured using an oscilloscope.

9.1.1.3 Resources

This laboratory only uses Port P2.1 connected to LED2 in order to measure the execution time of the
multiply operation when it is performed by a software routine.

The default con�guration of the FLL+ is used. All the clock signals required for the operation of the
components of this device take their default values.

9.1.1.4 Software application organization

- The application starts by stopping the Watchdog Timer;
- Port P2.1 is con�gured as an output with the pin at a low level;
- The variables a and b to be multiplied are initialized;
- The multiplication of the two variables is performed between toggle P2.1 instructions;
- This application ends by putting the device into low power mode LPM4.

1This content is available online at <http://cnx.org/content/m23581/1.2/>.

123

124 CHAPTER 9. HARDWARE MULTIPLIER

9.1.1.5 System con�guration

Go to Properties > TI Debug Settings and select the Target tab. Uncheck the automatically step
over functions without debug information when source stepping in order to allow stepping into the
multiply routine;

Go to Properties > C/C++ Build > Linker MSP430 Linker v3.0 > General options and choose
the option None at the Link in hardware version of RTS mpy routine. With this linker option, the
application (Lab1_HM.c 2) will be built without the hardware multiplier and all multiplication operations
will be performed by the software routine.

Rebuild the project and download it to the target.

9.1.1.6 Analysis of operation

9.1.1.6.1 Software multiplication routine analysis

- Connect the oscilloscope probe to port P2.1 available on Header 4 pin 2;
- Put the cursor at line of code 51 {c = a*b} and Run to line;
- Go to Disassembly view and switch to mixed disassembly view in order to show both C and

Assembly code;
- Observe that the variables a and b are passed by registers and the #__mpyi routine is called;
- Run the code step-by-step with the Disassembly view active. This action will lead to the software

multiply routine;
- As the software multiply routine source code is not available, switch to Assembly view only;
- Run the application step-by-step until the RETA instruction;
- This multiplication is a time-consuming CPU operation.

9.1.1.6.2 Measurement of the multiply operation execution time

- Restart the application. It will run from the beginning;
- Put the cursor on line of code 56 {_BIS_SR(LPM4)} and Run to line;
- Measure the time pulse time width using the oscilloscope;
- This software multiply operation takes around 54 µsec.
This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp3

9.2 Laboratory Hardware Multiplier: Lab2 - Multiplication with
hardware multiplier4

9.2.1 Laboratory Hardware Multiplier: Lab2 - Multiplication with hardware
multiplier

9.2.1.1 Introduction

This laboratory explores the hardware multiplier peripheral. It is composed of three di�erent tasks, each of
which evaluates a di�erent characteristic of the hardware multiplier peripheral:

- Multiplication operation execution time, with and without the hardware multiplier.
-Di�erences between the use of the operator �*� and direct write to the hardware multiplier registers.
- Task operational analysis, in which the active power and the RMS value of an electrical system are

calculated.

2http://cnx.org/content/m23581/latest/Lab1_HM.c
3https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
4This content is available online at <http://cnx.org/content/m23584/1.2/>.

125

9.2.1.2 Overview

This laboratory explores and analyses the MSP430's performance when it performs multiply operations using
the hardware multiplier peripheral. Two di�erent variants are analysed:

- Using the �*� operator;
-Accessing the hardware multiplier registers directly.
The execution times are measured with an oscilloscope.

9.2.1.3 Resources

This laboratory only uses Port P2.1 connected to LED2 in order to measure the execution time of the
multiplication operation, when it is performed by the hardware multiplier.

The default con�guration of the FLL+ is used. All the clock signals required for the operation of the
components of the device take their default values.

9.2.1.4 Software application organization

The application begins by stopping the Watchdog Timer;
Port P2.1 is con�gured as an output with the pin at a low level;
The code can be broken down into two parts:
- In the �rst part of the code, the multiplication is performed with the �*� operator. This task is performed

between P2.1 toggles, in order to determine the time required to perform this operation;
- The remaining part of the code is separated by some _NOP() operations. This coding allows analysis

of the execution time using an oscilloscope. Here, the multiplication operation is performed by directly
accessing the hardware multiplier registers. The multiplication of the variables is performed between toggle
P2.1 instructions;

This application ends with the device entering low power mode LPM4.

9.2.1.5 System con�guration

Go to Properties > TI Debug Settings and select the Target tab. Uncheck the automatically step
over functions without debug information when source stepping in order to allow stepping into the
multiply routine;

Go to Properties > C/C++ Build > Linker MSP430 Linker v3.0 > General options and
choose the option 16 (default) at the Link in hardware version of RTS mpy routine. With this
linker option, the application (Lab2_HM.c 5) will be built with the 16-bit hardware multiplier peripheral
contained in the Experimenter's board.

Rebuild the project and download to the target.

9.2.1.6 Analysis of operation

9.2.1.6.1 Analysis of hardware multiply routine with the �*� operator

- Connect the oscilloscope probe to port P2.1, which is connected to Header 4 pin 2;
- Put the cursor at line of code 55 {c = a*b} and Run to line;
- Go to Disassembly view and switch to mixed disassembly view in order to show both C and

Assembly code;
- Observe that the variables a and b are passed to registers and #__mpyi_hw routine is called;
- Run the code step-by-step with the Disassembly view active. This action will lead to the multiply

operation being performed by the hardware multiplier;
- As the hardware multiply routine source code is not available, switch to Assembly view only;

5http://cnx.org/content/m23584/latest/Lab2_HM.c

126 CHAPTER 9. HARDWARE MULTIPLIER

- The routine starts by pushing the Status Register onto the system stack (PUSH instruction) and disabling
the interrupts (this always occurs when using the hardware multiplier peripheral);

- The next line of code exchanges data with the hardware multiplier;
- Then the SR is popped (POP instruction) from the system stack, restoring the system environment (data

interrupt state restored);
- The routine �nishes with a RETA instruction.

9.2.1.6.2 Analysis of hardware multiply operation with direct registers access

- Switch to the C view;
- Put the cursor at line of code 72 {MPY = a} and Run to line;
- The routine call operation is avoided, as shown in the Disassembly view. This exempli�es an energy

saving procedure because it shows how less CPU clock cycles can be used.

9.2.1.6.3 Measurement of execution time of the multiply operation

- Restart the application. It will run from the beginning;
- Put the cursor at line of code 77 {_BIS_SR(LPM4)} and Run to line;
- Measure the pulse widths using the oscilloscope;
- The �rst time pulse corresponds to the hardware multiply routine with the operator �*�, and has a

width of 42 µsec;
- The second time pulse corresponds to the hardware multiply register operation and has a width of 19

µsec;
- Comparing both time pulses and the time pulse obtained in Lab1: Multiplication without the hardware

multiplier, it can be seen that with the hardware multiplier there is a signi�cant reduction of the time
required to perform a multiply operation;

- The smaller time pulse corresponds to the hardware multiply operation writing directly to the hardware
multiplier registers. This reduction in time means less power consumption, which is very useful for the design
of low-power applications.

This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp6

9.3 Laboratory Hardware Multiplier: Lab3 - RMS and active power
calculation7

9.3.1 Laboratory Hardware Multiplier: Lab3 - RMS and active power calculation

9.3.1.1 Introduction

This laboratory explores the hardware multiplier peripheral. It is composed of three di�erent tasks, each of
which evaluates a di�erent characteristic of the hardware multiplier peripheral:

- Multiplication operation execution time, with and without the hardware multiplier.
-Di�erences between the use of the operator �*� and direct write to the hardware multiplier registers.
- Task operational analysis, in which the active power and the RMS value of an electrical system are

calculated.

6https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
7This content is available online at <http://cnx.org/content/m23582/1.2/>.

127

9.3.1.2 Overview

This laboratory explores and analyses the MSP430 performance when it makes multiply operations using
the hardware multiplier peripheral. In this laboratory, the active power and the RMS value of an electrical
signal are calculated.

The execution times are measured using an oscilloscope.

9.3.1.3 Resources

This laboratory only uses Port P2.1 connected to LED2, in order to measure the execution time of the
multiply operation when it is performed by the hardware multiplier.

The application uses the default con�guration of the FLL+. All the clock signals required for the
operation of the components of the device take their default values.

9.3.1.4 Software application organization

- The application starts by stopping the Watchdog Timer;
- Two _NOP() instructions are provided to associate breakpoints, in order to read current and voltage

samples (N = 200) from �les;
- Power is computed by applying the following formula:

P =
1
N

N∑
k=1

ukik (9.1)

- A signed multiply operation is performed by writing the �rst sample of current to MPYS and the �rst
sample of voltage to OP2;

- The result of the multiplication is stored in the RESHI and RESLO registers;
- A loop is performed with a signed multiply and accumulate (MACS) operation;
- The �nal result is transferred from the RESHI and RESLO registers to the long variable result;
- The power is computed by dividing the variable result by the number of samples (N);
- Port P2.1 is active between MACS operations;
- The RMS current and voltage values are calculated from the following expressions:

IRMS =

√√√√ 1
N

N∑
k=1

ikik (9.2)

URMS =

√√√√ 1
N

N∑
k=1

ukuk (9.3)

- The two procedures are similar, with the exception of the square root (sqrt) operations;
- P2.1 is active during for all the RMS current calculation;
- The computation times of the sqrt and division operations are determined when the RMS voltage value

is calculated;
- This application ends by putting the device into low power mode LPM4.

9.3.1.5 System con�guration

Go to Properties > TI Debug Settings and select the Target tab. Uncheck the automatically step
over functions without debug information when source stepping in order to allow stepping into the
multiply routine;

Go to Properties > C/C++ Build > Linker MSP430 Linker v3.0 > General options and
choose the option 16 (default) at the Link in hardware version of RTS mpy routine. With this

128 CHAPTER 9. HARDWARE MULTIPLIER

linker option, the application (Lab3_HM.c 8) will be built with the 16-bit hardware multiplier peripheral
contained in the Experimenter's board.

Rebuild the project and download to the target.

9.3.1.6 Analysis of operation

9.3.1.6.1 Loading samples from �les

- Insert a breakpoint at line of code 61 (�rst _NOP() operation);
- Edit Breakpoint Properties and choose the Read Data from �le action;
- Con�gure the following data �elds:
File: i.txt
Wrap around: True
Start address: &i
Length: 200
- Include a breakpoint at line of code 63 (second _NOP() operation);
- Edit Breakpoint Properties and choose the Read Data from �le action;
- Con�gure the following data �elds:
File: u.txt
Wrap around: True
Start address: &u
Length: 200

9.3.1.6.2 Computing active power

- Connect the oscilloscope probe to port P2.1, which is available at Header 4 pin 2;
- Put the cursor at the line of code 88 and Run to line;
- In the Variables view, add the global variable P and format it to decimal;
- The active power is in the region of 1204 W;
- The pulse width, as viewed on the oscilloscope, corresponds to the time to perform the 200 signed

multiply and accumulate operations and is 5.4 msec.

9.3.1.6.3 Compute RMS current value

- Starting at the last step of the previous task, put the cursor at line of code 105 {MPYS = u[0]} and Run
to line;

- Add the global variable I (RMS voltage);
- Set the value to 10;
- The pulse width, as viewed on the oscilloscope, corresponds to the time required to perform the 200

signed multiply and accumulate operations, 1 division operation and 1 square root operation, and is 12.6
msec;

9.3.1.6.4 Compute RMS voltage value

- Starting at the last step of the previous task, put the cursor at line of code 121 {_BIS_SR(LPM4)} and Run
to line;

- Add the global variable U (RMS voltage);
- Set the value to 240;
- The pulse width, as viewed on the oscilloscope, corresponds to the time to perform the 200 signed

multiply and accumulate operations, and is 6.8 msec;
This example and many others are available on the MSP430 Teaching ROM.

8http://cnx.org/content/m23582/latest/Lab3_HM.c

129

Request this ROM, and our other Teaching Materials here https://www-
a.ti.com/apps/dspuniv/teaching_rom_request.asp9

9https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

130 CHAPTER 9. HARDWARE MULTIPLIER

Chapter 10

Flash Programming

10.1 Laboratory Flash memory: Lab1 - Flash memory programming
with the CPU executing the code from �ash memory1

10.1.1 Laboratory Flash memory: Lab1 - Flash memory programming with the
CPU executing the code from �ash memory

10.1.1.1 Introduction

The TI MSP430 has an internal �ash memory that can be used for data storage. Two di�erent methods of
writing to the �ash memory are studied in this laboratory. The �rst method requires the CPU execution of
the code resident in �ash memory. The consequences of this procedure are discussed. In the second part of
the laboratory, the �ash write and erase operations are conducted with the CPU executing the code resident
in RAM. The important details are highlighted.

10.1.1.2 Overview

This laboratory programs the internal �ash memory with the CPU executing the code resident in �ash
memory. It requires to con�gure: - Flash memory controller; - Segment erase routine; and the - Flash write
routine. The execution time of the di�erent operations can be obtained with an oscilloscope connected on
pin 2 of the Header 4 or analyzing the state of the LED (digital output P2.1).

10.1.1.3 Resources

This laboratory uses the �ash memory controller. The operation of this device is monitored using a digital
output port (P2.1).

The project must be compiled using the �les (Lab1_Flash.c 2)and the command �le
lnk_msp430fg4618.cmd.

The code is resident in the �ash memory, so whenever a �ash write or erase operation occurs, the CPU
access to this memory is automatically inhibited.

10.1.1.4 Software application organization

The software begins by disabling the Watchdog Timer. Then, port P2.1 is set as an output with a logic low
level.

1This content is available online at <http://cnx.org/content/m23580/1.2/>.
2http://cnx.org/content/m23580/latest/Lab1_Flash.c

131

132 CHAPTER 10. FLASH PROGRAMMING

The �ash memory controller is con�gured with the clock MCLK divided by 3. Thus the fFTG operating
frequency lies within the speci�ed limits of 257 kHz to 476 kHz.

A set of routines are provided to erase, write and copy the contents of a segment. The main tasks related
to the �ash memory handling are presented using this set of routines.

The information Segments A and B are erased �rst. Then, bytes are written to SegmentA and words
are written to SegmentB. The contents of the information memory SegmentA are copied to the information
SegmentB, overwriting the previous contents.

10.1.1.5 System con�guration

10.1.1.5.1 Flash memory controller con�guration

Con�gure the register FCTL2 to use clock MCLK divided by 3. Do not forget to enter the password to
access the register.

FCTL2 = FWKEY | FSSEL0 | FN1; // MCLK/3 for Flash Timing Generator

10.1.1.5.2 Segment erase routine

Con�gure the registers FCTL1 and FCTL3 in order to initiate the �ash segment erase process by writing an
address belonging to the segment to be erased. Be sure to include the password to access the register.

FCTL1 = FWKEY | ERASE; // Set Erase bit

FCTL3 = FWKEY; // Clear Lock bit

Block �ash write and erase operations are carried out after erasing the segment:

//Flash block write and erase operations after erasing the segment:

FCTL3 = FWKEY | LOCK; // Set LOCK bit

10.1.1.5.3 Flash write routine

Con�gure the registers in order to start writing to the �ash memory. Be sure to include the password to
access the register.

FCTL1 = FWKEY | ERASE; // Set Erase bit

FCTL3 = FWKEY; // Clear Lock bit

Con�gure �ash block write and erase operations and disable the write bit:

// Flash block write and erase operations and disable the write bit

// after the writing process to the segment:

FCTL3 = FWKEY | LOCK; // Set LOCK bit

10.1.1.6 Analysis of operation

10.1.1.6.1 Execution time for the information segments erase operation

Put the cursor at line of code 124, located just after the second port P2.1 switching state. Execute the
software until the cursor position is reached. The erase operation timing can be seen on an oscilloscope with
the probe connected to pin 2 of the Header 4.

133

10.1.1.6.2 Bytes write in the information memory A

The routine write_char_flash allows writing a byte to �ash memory. It receives the memory address where
the byte should be stored.

Open the memory window, and add the address of the information memory A. The content of this
address becomes visible after ordering its rendering. As we are writing a byte to �ash, we must change the
presentation of the memory contents. Choose the option Column Size 1, from the context menu of the
memory window, through the option Format.

Now, during the execution of the for loop, the �ash contents is written sequentially.

10.1.1.6.3 Bytes written in the information B memory

This routine is similar to the previous one. Note that now the �ash write address is increased by two because
a word occupies two bytes of memory.

The information is more readily observed when the memory contents display mode is restored to its initial
state. Reset the default conditions in the option Format of the context menu.

10.1.1.6.4 Copy the contents of the information A memory to information B memory

The output port P2.1 is enabled before the copy process begins. The copy routine receives the start ad-
dress of the source information segment and the start address of the destination information segment. The
information is then successively read and written from one segment to another.

Port P2.1 is disabled at the end of the copy process. Thus, the task execution time can be measured
using an oscilloscope.

This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp3

10.2 Laboratory Flash memory: Lab2 - Flash memory programming
with the CPU executing the code in RAM4

10.2.1 Laboratory Flash memory: Lab2 - Flash memory programming with the
CPU executing the code in RAM

10.2.1.1 Introduction

The TI MSP430 has an internal �ash memory that can be used for data storage. Two di�erent methods of
writing to the �ash memory are studied in this laboratory. The �rst method requires the CPU execution of
the code resident in �ash memory. The consequences of this procedure are discussed. In the second part of
the laboratory, the �ash write and erase operations are conducted with the CPU executing the code resident
in RAM. The important details are highlighted.

10.2.1.2 Overview

This laboratory programs the internal �ash memory with the CPU executing the code in RAM. It requires to
con�gure: - Several �ash storage management routines; - Check the state of the �ag Wait; an the - Flash write
routine. This procedure requires special attention during the project construction. The application begins
copying the routines from �ash to RAM. Directive MEMORY: Device's memory con�guration. Identi�es the
memory ranges that are physically present on the device Directive SECTIONS: controls how the sections
are built and reserved.

3https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
4This content is available online at <http://cnx.org/content/m23578/1.2/>.

134 CHAPTER 10. FLASH PROGRAMMING

The execution time of the di�erent operations can be obtained with an oscilloscope connected on pin 2
of the Header 4 or analyzing the state of the LED (digital output P2.1).

10.2.1.3 Resources

The tasks developed in the Lab1: Flash memory programming with the CPU executing the code from �ash
memory are executed again during this laboratory. The di�erence this time is that the software runs from
RAM.

This process requires special procedures. The routines to run from RAM must be identi�ed. The
application must begin by copying the routines from �ash to RAM.

The directive MEMORY determines the device's memory con�guration. The memory can be organized
in accordance with the system needs. This directive identi�es the memory ranges that are physically present
on the device. Each of these ranges has a set of features, such as:

- Name;
- Initial address;
- Length;
- Optional attributes set;
- Optional �lling speci�cations.
The directive Memory is organized as described below.

MEMORY

{

name 1 [(attr)] : origin = constant, length = constant [, fill = constant]

name n [(attr)] : origin = constant, length = constant [, fill = constant]

}

The directive SECTIONS controls how the sections are built and reserved. The directive performs the
following:

- Describes how the input sections are related to the output sections;
- De�nes the output sections in the executable program;
- De�nes where the output sections are placed in memory;
- Allows changing the name of the output sections;
The directive SECTIONS is organized as described below.

SECTIONS

{

name : [property [, property] [, property] . . .]

name : [property [, property] [, property] . . .]

name : [property [, property] [, property] . . .]

}

The following directives are possible:

// Reserve memory space to load the section:

Syntax: load = allocation or

Allocation or

> allocation

// Define the memory space where the code belonging to the section will run:

Syntax: run = allocation or

run > allocation

135

In this project, we intend to write the code to the �ash memory, but we want it to be executed from RAM.
The Linker o�ers a very simple way to accomplish this task. A memory space where the code is stored is
associated with another memory space where it will run. The application transfers the code to the memory
space, where it will be executed.

The memory spaces needed to store the routines are de�ned in the lnk_msp430fg4618_RAM.cmd �le.

RAM_MEM : origin = 0x1100, length = 0x0200

FLASH_MEM : origin = 0x3100, length = 0x0200

The following sections are also de�ned:

.FLASHCODE : load = FLASH_MEM, run = RAM_MEM

.RAMCODE : load = FLASH_MEM

10.2.1.4 Software application organization

The software for this laboratory has the same structure as the Lab1: Flash memory programming with the
CPU executing the code from �ash memory.

The directive #pragma CODE_SECTION (symbol, "section name") reserves space for the "symbol" in
a section called "section name". Thus, the routines are stored in the section ".FLASHCODE".

The routine copy_flash_to_RAM runs from the beginning of the program. It is responsible for transferring
the �ash contents to RAM.

The �les (Lab2_Flash.c5) and lnk_msp430fg4618_RAM.cmd must be included during the compilation.
Now, the code is executed from RAM. Check, whenever appropriate, the Wait bit state of the register

FCTL3.

10.2.1.5 System con�guration

10.2.1.5.1 Flash storage management routines

To store the �ash management routines in the section ".FLASHCODE" complete the empty spaces:

#pragma CODE_SECTION(erase_segment,".FLASHCODE")

void erase_segment(int address)

#pragma CODE_SECTION(write_char_flash,".FLASHCODE")

void write_char_flash(int address, char value)

#pragma CODE_SECTION(write_int_flash,".FLASHCODE")

void write_int_flash(int address, int value)

#pragma CODE_SECTION(copy_seg_flash,".FLASHCODE")

void copy_seg_flash(int address_source, int address_destination)

10.2.1.5.2 Check the �ag wait

At software key points, and whenever writing or erasing the �ash memory, perform a delay before proceeding
with the data writes. Complete the following line of code in order to suspend the program �ow while the
busy �ag is not active.

5http://cnx.org/content/m23578/latest/Lab2_Flash.c

136 CHAPTER 10. FLASH PROGRAMMING

while(FCTL3&BUSY); // Check BUSY flag

10.2.1.6 Analysis of operation

Analyse the di�erences between the di�erent versions of the routines. Note that successive delays are placed
in the versions to be executed from RAM.

This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp6

6https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

Chapter 11

Communication

11.1 Laboratory Communications: Lab1 - Echo test using the UART
mode of the USCI module1

11.1.1 Laboratory Communications: Lab1 - Echo test using the UART mode of
the USCI module

11.1.1.1 Introduction

The MSP430 contains built-in features for both parallel and serial data communication. This chapter de-
scribes the operation of these peripherals, and discusses the protocols, data formats and speci�c techniques
for each type of data communication.

The communication modules available for the MSP430 family of microcontrollers are USART (Universal
Synchronous/Asynchronous Receiver/Transmitter), USCI (Universal Serial Communication Interface) and
USI (Universal Serial Interface). These provide asynchronous data transmission between the MSP430 and
other peripheral devices when con�gured in UART mode. They also support data transmission synchronized
to a clock signal through a serial I/O port in Serial Peripheral Interface (SPI) and Inter Integrated Circuit
(I2C) modes.

11.1.1.2 Overview

This laboratory explores the USCI module in UART mode that will be connected to a Code Composer
Essentials (CCE) IO console. When the connection is established, the character sequence written on the
keyboard to the console will be displayed again on the console.

11.1.1.3 Resources

This laboratory uses the USCI module in asynchronous mode. The RX interrupt activates the service routine
that reads the incoming character and sends it out again to the PC (computer), allowing the instantaneous
display (echo) of the written character.

The resources used are:
- USCI module;
- Interrupts;
- IO ports:
- System clock.
With the objective of allowing the generation of two di�erent baud rates, a function has been added that

con�gures the FLL+ and selects the base frequency for the UART. In this example it will be 8 MHz.

1This content is available online at <http://cnx.org/content/m23567/1.2/>.

137

138 CHAPTER 11. COMMUNICATION

11.1.1.4 Software application organization

The proposed application (Lab1_Comm.c2) is organized as shown in Figure 1. The main routine performs
the necessary hardware con�guration. Then, the hardware takes command of the software through the
interrupt service routine generated by the reception of a new character.

The initial con�guration sets the system clock to a frequency of 8 MHz.

Software application organization

Figure 11.1

11.1.1.5 System con�guration

11.1.1.5.1 UART con�guration

The connection will operate in the following mode:
- Parity disabled;
- LSB �rst;
- 8-bit data;

2http://cnx.org/content/m23567/latest/Lab1_Comm.c

139

- One stop bit.
The module will operate in the following mode:
- Asynchronous;
- SMCLK source clock;
- No Receive erroneous-character interrupt-enable;
- No Receive break character interrupt-enable.
Based on these characteristics the following control registers are con�gured:

UCA0CTL0 = 0x00;

// UCA0CTL0 =

//UCPEN|UCPAR|UCMSB|UC7BIT|UCSPB|UCMODEx|UCSYNC|

//UCPEN (Parity) = 0b -> Parity disabled

//UCPAR (Parity select) = 0b -> Odd parity

//UCMSB (MSB first select) = 0b -> LSB first

//UC7BIT (Character length) = 0b -> 8-bit data

//UCSPB (Stop bit select) = 0b -> One stop bit

//UCMODEx (USCI mode) = 00b -> UART Mode

//UCSYNC = 0b -> Asynchronous mode

UCA0CTL1 = 0x81;

// UCA0CTL1 =

//UCSSELx|UCRXEIE|UCBRKIE|UCDORM|UCTXADDR|UCTXBRK|UCSWRST|

//UCSSELx (USCI clock source select) = 10b -> SMCLK

//UCRXEIE = 0b -> Erroneous characters rejected

//UCBRKIE = 0b -> Received break characters set

//UCDORM = 0b -> Not dormant

//UCTXADDR = 0b -> Next frame transmitted is data

//UCTXBRK = 0b -> Next frame transmitted is no break

//UCSWRST = 1b -> normally Set by a PUC

11.1.1.5.2 Baud rate generation

The module has an 8 MHz clock source and the objective is to establish a connection at 9600 Baud. It is
necessary to select the baud rate generation in oversampling mode:

UCA0BR0 = 0x34;

UCA0BR1 = 0x00;

//Prescaler = 8MHz/(16 x 9600) = 52 = 0x34

//9600 from 8MHz -> SMCLK

UCA0MCTL = 0x11;

// UCA0MCTL = UCBRFx | UCBRSx | UCOS16

//UCBRFx (1st modulation stage) = 0001b -> Table 19-4

//UCBRSx (2nd modulation stage) = 000b -> Table 19-4

//UCOS16 (Oversampling mode) = 1b -> Enabled

11.1.1.5.3 Port con�guration

In order to set the external interfaces at the USCI module, it is necessary to con�gure the I/O ports. Select
the USCI peripheral in UART mode following the connections provided on the Experimenter's board:

P2SEL |= 0x30; // P2.4,P2.5 = USCI_A0 TXD,RXD

140 CHAPTER 11. COMMUNICATION

11.1.1.5.4 RX interrupt enable

To �nish the module con�guration, it is necessary to enable the receive interrupts:
IE2 |= UCA0RXIE; // Enable USCI_A0 RX interrupt

11.1.1.6 Analysis of operation

Once the USCI module is con�gured in accordance with the previous steps, compile it and run it on the
Experimenter's board.

For the correct operation, there must be a connection between the Experimenter's board and the PC. If
the CCE console is disabled, go toWindow > Show View > Console to enable it. If necessary, con�gure
the CCE console options in accordance to the connection details.

Once the program code is running, any character key pressed in the PC keyboard will be displayed on
the CCE console.

This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp3

11.2 Laboratory Communications: Lab2 - Echo test using SPI4

11.2.1 Laboratory Communications: Lab2 - Echo test using SPI

11.2.1.1 Introduction

The MSP430 contains built-in features for both parallel and serial data communication. This chapter de-
scribes the operation of these peripherals, and discusses the protocols, data formats and speci�c techniques
for each type of data communication.

The communication modules available for the MSP430 family of microcontrollers are USART (Universal
Synchronous/Asynchronous Receiver/Transmitter), USCI (Universal Serial Communication Interface) and
USI (Universal Serial Interface). These provide asynchronous data transmission between the MSP430 and
other peripheral devices when con�gured in UART mode. They also support data transmission synchronized
to a clock signal through a serial I/O port in Serial Peripheral Interface (SPI) and Inter Integrated Circuit
(I2C) modes.

11.2.1.2 Overview

This laboratory explores the USCI and USI communication interfaces in SPI mode. The MSP430 de-
vices included on the Experimenter's board will exchange messages between themselves, one being the
MSP430FG4618 (master) that will control operation of the other MSP430F2013 device (slave). The master,
by reading the current state of the slave, will drive the slave to the new desired state, controlling its activity.
In this particular case, switching the state of LED3 will be implemented.

11.2.1.3 Resources

This laboratory uses the USCI module of the MSP430FG4618 device and the USI module included on the
MSP430F2013. Both units operate in SPI mode.

The Basic Timer1 of the master device is programmed to switch the status of the slave device once every
2 seconds.

The slave is noti�ed of the arrival of information through the counting end interrupt of the USI module.
The resources used are:
- USCI module;

3https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
4This content is available online at <http://cnx.org/content/m23571/1.3/>.

141

- USI module;
- Basic Timer1;
- Interrupts;
- I/O ports.

11.2.1.4 Software application organization

The software architecture for this laboratory is shown in Figure 1.
The master unit is composed of two software modules (Lab2_Comm_1.c 5):
- The "Main master task" module contains the operation algorithm of master unit;
- The "ISR Basic Timer" module wakes the "Main master task" once every 2 seconds.
The slave unit is also composed of two modules (Lab2_Comm_2.c 6):
- The "Main slave task" module contains the operation algorithm of the slave unit;
- The "USI ISR" module reads the data received, prepares the USI module for new reception and wakes

the "Main slave task" to execute the algorithm associated with the reception of the new command.
Software architecture

Figure 11.2

11.2.1.5 System con�guration

11.2.1.5.1 USCI_B (master) control registers con�guration

The SPI connection will operate in the following mode:
- Clock phase -> Data value is updated on the �rst UCLK edge and captured on the following edge;
- Clock polarity -> the inactive state is low;
- MSB �rst;
- 8-bit data;
- Master mode;
- 3-Pin SPI;
- Source clock -> SMCLK.

5http://cnx.org/content/m23571/latest/Lab2_Comm_1.c
6http://cnx.org/content/m23571/latest/Lab2_Comm_2.c

142 CHAPTER 11. COMMUNICATION

The following control registers are con�gured based on these characteristics:

UCB0CTL0 = 0x29;

//UCB0CTL0 =

// UCCKPH|UCCKPL|UCMSB|UC7BIT|UCMST|UCMODEx|UCSYNC|

//UCCKPH (Clock phase) = 0b -> Data is changed on the

// first UCLK edge and captured on the following edge.

//UCCKPL (Clock polarity) = 0b -> Inactive state is low

//UCMSB (MSB first select) = 1b -> MSB first

//UC7BIT (Character length) = 0b -> 8-bit data

//UCMST (Master mode) = 1b -> Master mode

//UCMODEx (USCI mode) = 00b -> 3-Pin SPI

//UCSYNC (Synch. mode enable) = 1b -> Synchronous mode

UCB0CTL1 = 0x81;

//UCB0CTL1 =

// UCSSELx | Unused |UCSWRST|

//UCSSELx (USCI clock source select)= 10b -> SMCLK

//UCSWRST (Software reset) = 1b -> normally set by a PUC

11.2.1.5.2 Data rate USCI_B (master)

The system clock is con�gured to operate with a frequency of ∼ 1048 kHz from the DCO. This frequency
will be the working base frequency of the USCI module. The connection operates at a clock frequency of ∼
500 kHz. Con�gure the following registers:

UCB0BR0 = 0x02;

UCB0BR1 = 0x00;

// DATA RATE

// Data rate = SMCLK/2 ∼= 500kHz

// UCB0BR1 = 0x00 & UCB0BR0 = 0x02

11.2.1.5.3 Port con�guration USCI_B (master)

In order to set the external interfaces at the USCI module, it is necessary to con�gure the I/O ports. Select
the USCI peripheral in SPI mode, matching the connections provided at the Experimenter's board:

P3SEL |= 0x0E; // P3.3, P3.2, P3.1 option select

11.2.1.5.4 USI (slave) control registers con�guration

The SPI connection will operate on the following mode:
- MSB �rst;
- 8-bit data.
- Slave mode;
- Clock phase -> Data is changed on the �rst SCLK edge and captured on the following edge;
- USI counter interrupt enable.
The following control registers are con�gured based on these characteristics:

USICTL0 = 0xE3;

//USICTL0 =

143

//USIPE7|USIPE6|USIPE5|USILSB|USIMST|USIGE|USIOE|USISWRST

//USIPE7 (USI SDI/SDA port enable) = 1b -> USI enabled

//USIPE6 (USI SDO/SCL port enable) = 1b -> USI enabled

//USIPE5 (USI SCLK port enable) = 1b -> USI enabled

//USILSB (LSB first) = 0b -> MSB first

//USIMST (Master) = 0b -> Slave mode

//USIGE (Output latch control) = 0b -> Output latch

// enable depends on shift clock

//USIOE (Serial data output enable) = 1b-> Output enable

//USISWRST (USI software reset) = 1b -> Software reset

USICTL1 = 0x10;

//USICTL1 =

//USICKPH|USII2C|USISTTIE|USIIE|USIAL|USISTP|USISTTIFG|USIIFG

//USICKPH (Clock phase select) = 0b -> Data is changed

// on the first SCLK edge and captured on the following edge

//USII2C (I2C mode enable) = 0b -> I2C mode disabled

//USISTTIE (START condition interrupt) = 0b -> Not used

//USIIE (USI counter) = 1b -> Interrupt enabled

//USIAL (Arbitration lost) = 0b -> Not used

//USISTP (STOP condition received) = 0b -> Not used

//USISTTIFG (START condition int. flag) = 0b -> Not used

//USIIFG (USI counter int. flag) = 0b -> No int. pending

11.2.1.6 Analysis of operation

Once the USCI module is con�gured in accordance with the previous steps, initiate the experiment with the
�les Lab2_Comm_1.c (master � MSP430FG4618) and Lab2_Comm_2.c (slave � MSP430F2013), compiling
them and running them on the Experimenter's board.

For this laboratory, it is necessary to set the following jumper settings:
- PWR1/2, BATT, LCL1/2, JP2;
- SPI: H1- 1&2, 3&4, 5&6, 7&8.
Once the program code is running in the two microcontrollers, monitor LED3 on the Experimenter's

board. It will blink with a period of 4 seconds.
This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp7

11.3 Laboratory Communications: Lab3 - Echo test using I2C8

11.3.1 Laboratory Communications: Lab3 - Echo test using I2C

11.3.1.1 Introduction

The MSP430 contains built-in features for both parallel and serial data communication. This chapter de-
scribes the operation of these peripherals, and discusses the protocols, data formats and speci�c techniques
for each type of data communication.

7https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
8This content is available online at <http://cnx.org/content/m23569/1.2/>.

144 CHAPTER 11. COMMUNICATION

The communication modules available for the MSP430 family of microcontrollers are USART (Universal
Synchronous/Asynchronous Receiver/Transmitter), USCI (Universal Serial Communication Interface) and
USI (Universal Serial Interface). These provide asynchronous data transmission between the MSP430 and
other peripheral devices when con�gured in UART mode. They also support data transmission synchronized
to a clock signal through a serial I/O port in Serial Peripheral Interface (SPI) and Inter Integrated Circuit
(I2C) modes.

11.3.1.2 Overview

This laboratory explores the USCI and USI communication interfaces in I2C mode. It uses the two MSP430
devices included on the Experimenter's board: MSP430FG4618 as the master and the MSP430F2013 as the
slave. The master receives a single byte from the slave as soon as a button connected to P1.0 is pressed.

11.3.1.3 Resources

This laboratory uses the USCI module of the MSP430FG4618 device and the USI module included in the
MSP430F2013. Both units operate in I2C mode.

The interrupts on the slave unit are generated exclusively by the USI module. They are:
- START condition in the I2C bus;
- Data reception and transmission.
The interrupts on the master unit are provided by the USCI module. They are:
- Data reception;
- Interrupt on Port1.
The resources used are:
- USCI module;
- USI module;
- Interrupts;
- I/O ports.

11.3.1.4 Software application organization

The software architecture for this laboratory is shown in Figure 1.
The master task is composed of two interrupt service routines (Lab3_Comm_1.c9):
- S1 switch service routine used to receive a new frame from the slave;
- USCI module interrupt service routine that reads the data sent by the slave.
Software architecture

9http://cnx.org/GroupWorkspaces/wg1386/module.2009-04-01.2361860801/Lab3_Comm_1.c/view

145

Figure 11.3

For the operational capability of the slave unit based on the USI module, it is necessary to implement a
state machine as shown in Figure 2. It is important to note that the states �RX Address� and �RX (N)ACK"
are transient states that ensure the USI module is prepared for the next activity.

Slave state machine.

146 CHAPTER 11. COMMUNICATION

Figure 11.4

147

11.3.1.5 System con�guration

11.3.1.5.1 USCI_B (master) control registers con�guration

The connection via I2C bus will operate in the following mode:
- Address slave with 7-bit address;
- Master mode;
- Single master;
- USCI clock source is SMCLK;
The following control registers are con�gured based on these characteristics:

UCB0CTL0 = 0x0F;

//UCB0CTL0 = UCA10 | UCSLA10 | UCMM | Unused | UCMST | UCMODEx | UCSYNC

//UCA10 (Own address) = 0b -> Own address (7-bit)

//UCSLA10 (Slave address) = 0b -> 7-bit slave address

//UCMM (Multi-master) = 0b -> Single master

//Unused

//UCMST (Master mode) = 1b -> Master mode

//UCMODEx (USCI mode) = 11b -> I2C Mode

//UCSYNC (Synchronous mode enable) = 1b -> Synchronous

UCB0CTL1 = 0x81;

//UCB0CTL1 = UCSSELx | Unused | UCTR | UCTXNACK | UCTXSTP | UCTXSTT | UCSWRST

//UCSSELx (USCI clock source select) = 10b -> SMCLK

//Unused

//UCTR (Transmitter/Receiver) = 0b -> Receiver

//UCTXNACK (Transmit a NACK) = 0b -> ACK normally

//UCTXSTP (Transmit STOP condition) = 0b -> No STOP

//UCTXSTT (Transmit START condition) = 0b -> No START

//UCSWRST (Software reset) = 1b -> Enabled

11.3.1.5.2 Data rate USCI_B (master)

The system clock is con�gured to operate with a frequency of ∼ 1048 kHz from the DCO. This frequency
will be the working base frequency of the USCI module. The connection operates at a clock frequency of ∼
95.3 kHz:

// DATA RATE

// data rate -> fSCL = SMCLK/11 = 95.3kHz

UCB0BR0 = 0x0B; // fSCL = SMCLK/11 = 95.3kHz

UCB0BR1 = 0x00;

11.3.1.5.3 Port con�guration USCI_B (master)

In order to set the external interfaces at the USCI module, it is necessary to con�gure the I/O ports. Select
the USCI peripheral in I2C mode matching the connections provided at the Experimenter's board:

P3SEL |=0x06; // Assign I2C pins to USCI_B0

148 CHAPTER 11. COMMUNICATION

11.3.1.5.4 USI (slave) control registers con�guration

The connection via I2C bus will operate in the following mode:
- Slave mode;
- USI counter interrupt enable (RX and TX);
- START condition interrupt-enable;
- USIIFG is not cleared automatically.
The following control registers are con�gured based on these characteristics:

USICTL0 = 0XC1;

//USICTL0 = USIPE7 | USIPE6 | USIPE5 | USILSB | USIMST | USIGE | USIOE | USISWRST

//USIPE7 (USI SDI/SDA port enable) = 1b -> USI enabled

//USIPE6 (USI SDO/SCL port enable) = 1b -> USI enabled

//USIPE5 (USI SCLK port enable) = 0b -> SCLK disable

//USILSB (LSB first) = 0b -> MSB first

//USIMST (Master) = 0b -> Slave mode

//USIGE (Output latch control) = 0b -> Output latch

// enable depends on shift clock

//USIOE (Serial data output enable) = 0b -> Output enable

//USISWRST (USI software reset) = 1b -> Software reset

USICTL1 = 0x70;

//USICTL1 = USICKPH | USII2C | USISTTIE | USIIE | USIAL | USISTP | USISTTIFG | USIIFG

//USICKPH (Clock phase select) = 0b -> Data is changed

// on the first SCLK edge and captured on the following edge.

//USII2C (I2C mode enable) = 1b -> I2C mode enabled

//USISTTIE = 1b -> Interrupt on START condition enabled

//USIIE = 1b -> USI counter interrupt enable

//USIAL (Arbitration lost) = 0b -> Not used

//USISTP (STOP condition received) = 0b -> Not used

//USISTTIFG (START condition int. flag) = 0b -> Not used

//USIIFG (USI counter int. flag) = 0b -> No int. pending

The slave unit interrupt service routine is not complete. The portion related to the �I2C_TX� state needs
to be completed:

- Con�gure the USI module as output;
- Insert the information to transmit using the transmission register;
- Con�gure the bit counter.

// USI Bit Counter Register

USICNT |= 0x20;

//USICNT = USISCLREL | USI16B | USIIFGCC | USICNTx

//USISCLREL (SCL release) = 0b -> SCL line is held low

// if USIIFG is set

//USI16B (16-bit shift register enable) = 0b -> 8-bit

// shift register mode

//USIIFGCC (USI int. flag clear control) = 1b -> USIIFG

// is not cleared automatically

//USICNTx (USI bit count) = 00000b -> (not relevant)

149

// I2C state machine:

USICTL0 |= USIOE; // SDA = output

USISRL = SlaveData; // Send data byte

USICNT |= 0x08; // Bit counter = 8, TX data

11.3.1.6 Analysis of operation

Once the USCI module is con�gured in accordance with the previous steps, initiate the experiment with the
�les (Lab3_Comm_1.c10) (master � MSP430FG4618) and (Lab3_Comm_2.c11) (slave � MSP430F2013),
compiling them and running them on the Experimenter's board.

For this laboratory, the following jumper settings are required:
- PWR1/2, BATT, LCL1/2, JP2;
- SPI: H1- 1&2, 3&4.
The slave data is sent and increments from 0x00 with each transmitted byte, which is veri�ed by the

Master. The LED is o� for address or data Acknowledge and the LED turns on for address or data Not
Acknowledge. LED3 blinks at each data request. It is turned on with a START condition and it is turned
o� by the data transmit acknowledge by the slave (Note: the I2C bus is not released by the master since the
successive START conditions are interpreted as �repeated START�).

Verify the value received setting a breakpoint in the line of code �RxBuffer = UCB0RXBUF;� of the USCI
interrupt.

This example and many others are available on the MSP430 Teaching ROM.
Request this ROM, and our other Teaching Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp12

10http://cnx.org/content/m23569/latest/Lab3_Comm_1.c
11http://cnx.org/content/m23569/latest/Lab3_Comm_2.c
12https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

150 INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

C Code Composer Essentials, � 2.1(35),
� 2.2(36), � 2.3(40), � 2.4(48), � 2.5(54),
� 2.6(54), � 2.7(57), � 2.8(65)
Communications, � 11.1(137), � 11.2(140),
� 11.3(143)
Comparator_A, � 6.4(112)

D DAC12, � 7.1(115)
DMA controller, � 8.1(119), � 8.2(120)

E eZ430-F2013 USB stick, � 3.1(71), � 3.2(72),
� 3.3(73), � 3.4(74), � 4.1(77), � 4.2(81),
� 4.3(83), � 4.4(86), � 4.5(91), � 6.3(109)
eZ430-RF2500 USB stick, � 3.1(71), � 3.2(72),
� 3.3(73), � 3.4(74), � 4.1(77), � 4.2(81),
� 4.3(83), � 4.4(86), � 4.5(91), � 6.1(101)

F Flash memory, � 10.1(131), � 10.2(133)

G GPIO, � 3.1(71), � 3.2(72), � 3.3(73), � 3.4(74)

H Hardware Multiplier, � 9.1(123), � 9.2(124),
� 9.3(126)

I I2C mode, � 11.3(143)

L LCD controller, � 5.1(97)

M MDP430, � 1.5(12)
MSP-EXP430FG4618 Development Tool,

� 3.1(71), � 3.2(72), � 3.3(73), � 3.4(74),
� 4.1(77), � 4.2(81), � 4.3(83), � 4.4(86),
� 4.5(91), � 5.1(97), � 6.2(104), � 6.4(112),
� 7.1(115), � 8.1(119), � 8.2(120), � 9.1(123),
� 9.2(124), � 9.3(126), � 10.1(131), � 10.2(133),
� 11.1(137), � 11.2(140), � 11.3(143)
MSP430, � 1.1(1), � 1.2(2), � 1.3(3), � 1.4(8),
� 1.6(21), � 1.7(26)
MSP430F2013, � 11.2(140), � 11.3(143)
MSP430FG4618, � 11.2(140), � 11.3(143)

S SAR ADC10, � 6.1(101)
SAR ADC12, � 6.2(104)
SD16_A, � 6.3(109)
SPI mode (USCI module and USI module),
� 11.2(140)

T Texas Instruments (TI), � 3.1(71), � 3.2(72),
� 3.3(73), � 3.4(74), � 4.1(77), � 4.2(81),
� 4.3(83), � 4.4(86), � 4.5(91), � 5.1(97),
� 6.1(101), � 6.2(104), � 6.3(109), � 6.4(112),
� 7.1(115), � 8.1(119), � 8.2(120), � 9.1(123),
� 9.2(124), � 9.3(126), � 10.1(131), � 10.2(133),
� 11.1(137), � 11.2(140), � 11.3(143)
Timers, � 4.1(77), � 4.2(81), � 4.3(83),
� 4.4(86), � 4.5(91)

U USCI module, � 11.1(137)
USCI module and USI module, � 11.3(143)

ATTRIBUTIONS 151

Attributions

Collection: Teaching and classroom laboratories based on the �eZ430� and "Experimenter's board" MSP430
microcontroller platforms and Code Composer Essentials
Edited by: Pedro Dinis, António Espírito Santo
URL: http://cnx.org/content/col10706/1.3/
License: http://creativecommons.org/licenses/by/3.0/

Module: "Introduction"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23492/1.1/
Page: 1
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "MSP430 Main characteristics"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23490/1.2/
Pages: 2-3
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Address space"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23495/1.1/
Pages: 3-8
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Central Processing Unit (MSP430 CPU)"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23497/1.1/
Pages: 8-12
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Central Processing Unit (MSP430X CPU)"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23498/1.1/
Pages: 12-21
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Addressing modes"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23500/1.1/
Pages: 21-26
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

152 ATTRIBUTIONS

Module: "MSP430 instruction set"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23503/1.1/
Pages: 26-34
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Code Composer Essentials"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23504/1.1/
Pages: 35-36
Copyright: Pedro Dinis, António Espírito Santo, Cathy Wicks, Bruno Ribeiro
License: http://creativecommons.org/licenses/by/3.0/

Module: "Introduction to CCE IDE"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23508/1.1/
Pages: 36-39
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Creating a Project"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23511/1.1/
Pages: 40-47
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Code Editor"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23513/1.1/
Pages: 48-54
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "File history"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23514/1.1/
Page: 54
Copyright: Pedro Dinis, António Espírito Santo, Cathy Wicks, Bruno Ribeiro
License: http://creativecommons.org/licenses/by/3.0/

Module: "Import and Export functionality"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23518/1.1/
Pages: 54-56
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Project Con�guration details"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23520/1.1/
Pages: 57-64
Copyright: Pedro Dinis, António Espírito Santo, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

ATTRIBUTIONS 153

Module: "Introduction to Debug with CCE"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23521/1.1/
Pages: 65-70
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory GPIO: Lab1 - Blinking the LED"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23525/1.5/
Pages: 71-72
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory GPIO: Lab2 - Blinking the LED half the speed"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23540/1.2/
Pages: 72-73
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory GPIO: Lab3 - Toggle the LED state by pressing the push button"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23547/1.1/
Pages: 73-74
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory GPIO: Lab4 - Enable/disable LED blinking by push button press"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23556/1.1/
Pages: 74-75
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory Timers: Lab1 - Memory clock with Basic Timer1"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23532/1.8/
Pages: 77-80
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory Timers: Lab2 - Real Time Clock with Basic Timer1"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23531/1.2/
Pages: 81-82
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

154 ATTRIBUTIONS

Module: "Laboratory Timers: Lab3 - Memory Clock with Timer_A"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23530/1.5/
Pages: 83-86
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory Timers: Lab4 - Buzzer tone generator"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23529/1.2/
Pages: 86-91
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory Timers: Lab5 - Frequency measurement"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23527/1.2/
Pages: 91-95
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory LCD controller: Lab1 - LCD message display"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23558/1.3/
Pages: 97-99
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory Signal Acquisition: Lab1 - SAR ADC10 conversion"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23539/1.2/
Pages: 101-104
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory Signal Acquisition: Lab2 - SAR ADC12 conversion"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23546/1.2/
Pages: 104-108
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory Signal Acquisition: Lab3 - SD16_A ADC conversion"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23563/1.2/
Pages: 109-112
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory Signal Acquisition: Lab4 - Voltage signal comparison with Comparator_A"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23543/1.2/
Pages: 112-114
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

ATTRIBUTIONS 155

Module: "Laboratory DAC: Lab1 - Voltage ramp generator"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23573/1.3/
Pages: 115-118
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory DMA: Lab1 - Data Memory transfer triggered by software"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23575/1.2/
Pages: 119-120
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory DMA: Lab2 - Sinusoidal waveform generator"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23577/1.2/
Pages: 120-122
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory Hardware Multiplier: Lab1 - Multiplication without hardware multiplier"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23581/1.2/
Pages: 123-124
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory Hardware Multiplier: Lab2 - Multiplication with hardware multiplier"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23584/1.2/
Pages: 124-126
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory Hardware Multiplier: Lab3 - RMS and active power calculation"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23582/1.2/
Pages: 126-129
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory Flash memory: Lab1 - Flash memory programming with the CPU executing the code
from �ash memory"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23580/1.2/
Pages: 131-133
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

156 ATTRIBUTIONS

Module: "Laboratory Flash memory: Lab2 - Flash memory programming with the CPU executing the code
in RAM"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23578/1.2/
Pages: 133-136
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory Communications: Lab1 - Echo test using the UART mode of the USCI module"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23567/1.2/
Pages: 137-140
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory Communications: Lab2 - Echo test using SPI"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23571/1.3/
Pages: 140-143
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Module: "Laboratory Communications: Lab3 - Echo test using I2C"
By: Pedro Dinis, António Espírito Santo, Bruno Ribeiro
URL: http://cnx.org/content/m23569/1.2/
Pages: 143-149
Copyright: Pedro Dinis, António Espírito Santo, Bruno Ribeiro, Cathy Wicks
License: http://creativecommons.org/licenses/by/3.0/

Teaching and classroom laboratories based on the �eZ430� and "Experimenter's board"
MSP430 microcontroller platforms and Code Composer Essentials
This collection is primarily designed to help professors create and adapt courses for the MSP430 architecture,
but it can also be used in many other ways, as it provides modular, open-source contents. It is useful for
anyone looking to learn the MSP430 architecture and it discusses all the MSP430 peripherals. It uses the
popular eZ430, eZ430-RF and Experimenter's Boards, alongside program examples implemented in CCE
(Code Composer Essentials) development environment.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

