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Chapter 1

Intoduction

1.1 Network architectures and interconnection1

The network structure�its architecture2�typi�es what are known as wide area networks (WANs). The
nodes, and users for that matter, are spread geographically over long distances. "Long" has no precise
de�nition, and is intended to suggest that the communication links vary widely. The Internet is certainly
the largest WAN, spanning the entire earth and beyond. Local area networks, LANs, employ a single
communication link and special routing. Perhaps the best known LAN is Ethernet3. LANs connect to other
LANs and to wide area networks through special nodes known as gateways (Figure 1.1). In the Internet,
a computer's address consists of a four byte sequence, which is known as its IP address (Internet Protocol
address). An example address is 128.42.4.32: each byte is separated by a period. The �rst two bytes specify
the computer's domain (here Rice University). Computers are also addressed by a more human-readable
form: a sequence of alphabetic abbreviations representing institution, type of institution, and computer
name. A given computer has both names (128.42.4.32 is the same as soma.rice.edu). Data transmission
on the Internet requires the numerical form. So-called name servers translate between alphabetic and
numerical forms, and the transmitting computer requests this translation before the message is sent to the
network.

Gateway

Wide-Area Network

Gateway

A B

B

C

D
LAN

LAN

LAN

Figure 1.1: The gateway serves as an interface between local area networks and the Internet. The two
shown here translate between LAN and WAN protocols; one of these also interfaces between two LANs,
presumably because together the two LANs would be geographically too dispersed.

1This content is available online at <http://cnx.org/content/m0077/2.10/>.
2"Communication Networks", Figure 1 <http://cnx.org/content/m0075/latest/#commnetwork>
3"Ethernet" <http://cnx.org/content/m0078/latest/>
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2 CHAPTER 1. INTODUCTION

1.2 A Neural Network Model in ACL24

Introduction

Arti�cial neural networks are biologically inspired tools that have proven useful in control tasks, pattern
recognition, data mining, and other tasks. At an abstract level, a neural network is a tool for function
approximation, and the ability of a special class of neural networks, namely multiplayer perceptrons, to
approximate any function from an m-dimensional unit hyper cube to an n-dimensional unit hyper cube
with arbitrary accuracy is actually proven by the universal approximation theorem, provided some mild
constraints are met (Haykin 1999). Furthermore, such a function can be approximated using a multiplayer
perceptron with a single hidden layer. Unfortunately, this theorem merely assures the existence of such a
network, and does not provide a means of attaining it � a task that is left to one of the many diverse learning
algorithms for multiplayer perceptrons.

The most popular learning algorithm for multiplayer perceptrons is the back-propagation algorithm,
which attempts to �nd the best set of synaptic weights for a �xed network architecture (Haykin 1999),
though there are also methods that adjust the network architecture during learning, such as cascade corre-
lation (Fahlman 1991), and methods that search the space of available network architectures, such as some
neuroevolution algorithms (Gomez 1997, Stanley 2004). These algorithms often deal with perceptrons hav-
ing more than one hidden layer, in spite of the universal approximation theorem's assurance that a single
hidden layer is su�cient. This is done because solutions with more hidden layers also exist, and may in fact
be easier to discover with a given learning algorithm.

We therefore have a situation where a variety of network architectures represent the same function. Many
undesirable functions will likewise have multiple representations within the space of architectures, and this
can be problematic if architectures representing the desired solution do not densely populate the space. The
ratio of desired architectures to undesired architectures in the space may drastically decrease as the size
of the space increases. Even if this is not the case, the computational expense of searching a larger space
can often be restrictive. Even when working with a �xed architecture, the organization of synaptic weights
can give rise to equivalent networks, so this is actually a problem that a�ects any learning algorithm for
multiplayer perceptrons.

This problem is addressed in this paper via the creation of a neural network model that allows one to
prove whether or not a given set of networks is equivalent in terms of their input-output mappings. A
model of multiplayer perceptrons is developed in ACL2, and several theorems about transformations on the
networks that maintain the same input-output mapping are presented.
Model

The neural networks represented by this model are fully-connected feed-forward networks, also known
as multiplayer perceptrons. Each network consists of at least one layer. The �rst layer is always the input
layer, and the last layer is always the output layer (even if these two are the same). Any and all layers in
between are known as hidden layers.

The basic unit of a layer is a neuron, which consists of several synapses, each with its own synaptic
weight. In a computer, a synaptic weight is usually speci�ed by a �oating point value, but since ACL2 only
supports rational numbers, a synapse in this model is represented by a rational number. The associated
predicate is isSynapse. This means a neuron is represented by a list of such synapses. We also require that
each neuron have at least one synapse. Both of these conditions are checked by the isNeuron function.

A single layer of a network is represented by a list of neurons. For consistency, all neurons within a
given layer must have the same number of synapses. Furthermore, a layer must have at least one neuron.
The isLayer function checks these conditions. Having de�ned a layer, we now de�ne a network as a list of
layers. The network must contain at least one layer, where the �rst layer of the list is the input layer, and
the last layer of the list is the output layer. Furthermore, the number of outputs in each layer must match
the number of inputs in the next. This means that for all layers but the output layer, the length of the
layer equals the length shared by all neurons in the following layer. The predicate that identi�es networks
is isNetwork.

4This content is available online at <http://cnx.org/content/m15107/1.1/>.
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Because it is challenging to specify a suitable structure meeting these requirements without making a
mistake, there is a function makeNetwork that takes a �at list of synaptic weights and weaves them into
the appropriate structure. It makes use of a function makeLayer, which does the same for layers. One may
assume that organizing weights in such a list is almost as di�cult to do properly as organizing the network
itself, but since neural networks are often initialized with random weights prior to training, it simpli�es
matters to have a function that creates a proper network from a �at list of weights, the length of which may
actually be longer than is necessary: as long as enough weights are in the list, it does not matter if there
are extras. Besides the list of weights, the makeNetwork function also needs a list specifying the number of
inputs to each layer of the network in sequence. The last number in this list is the number of outputs from
the output layer. Likewise, every call to makeLayer must include the number of inputs to the layer and the
number of outputs.

Theorem 1: calling makeLayer with valid inputs (a list of weights

and two non-zero natural numbers) returns a valid layer recognized

by isLayer.

Theorem 2: calling makeNetwork with valid inputs (a list of

non-zero natural numbers and a list of weights) returns a valid

network recognized by isNetwork.

Besides modeling the structure of neural networks, we also model their input-output behavior. A valid input
vector is a list of rational numbers, and is identi�ed by the isListOfWeights function, so called because it
is also a helper function for isNeuron. Like neurons, input vectors are lists of rational numbers. A single
neuron functions by outputting the sum of products of each input value with the corresponding weight on
the synapse it is transmitted through. The behavior is handled by forwardNeuron, which takes an input
vector and neuron as input, and returns the weighted sum as output.

The value outputted from each individual neuron is then passed through an activation function, which
is normally de�ned as any real-valued function. Once again, use of ACL2 restricts us to rational numbers.
Although it is not a requirement, activation functions also commonly have a restricted range, usually [0,1]
or [-1,1]. The three activation functions modeled herein share the range [-1,1]: threshold, piecewise, and
rational sigmoid approximation.

(threshold x) (if (equal x 0) 0 (if (< 0 x) 1 -1))

(piecewise x) (if (<= x -1) -1 (if (<= 1 x) 1 x))

(rationalsigmoid x) (/ (* 6 x) (+ 12 (* x x)))

Table 1.1

The rationalsigmoid function was used because ACL2 does not support irrational numbers, and there-
fore does not support the more common full sigmoid function: (exp(x) - 1)/(exp(x) + 1). The function
presented here is a rational valued approximation of the sigmoid function using 2-2 Pade approximation
(Boskovic 1997). This activation function does not meet the requirements of the basic universal approxima-
tion theorem, but additional work has shown that rational functions such as the one above do in fact satisfy
the universal approximation property (Kainen 1994). Neither the threshold function nor piecewise function
ful�ll the universal approximation requirements, but are none-the-less common.

The activate function models the behavior of activation functions by applying forwardNeuron to the input
vector and neuron, and then applying the appropriate activation function speci�ed by a quoted symbol to
the result. The activate function is used by the forwardLayer function, which models signal propagation
through layers, and this function is in turn used by forwardNetwork, which models signal propagation
through networks.
Structural Swapping
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One of the main focuses of this paper is to provide proofs of the e�ects that several simple structural
transformations have on neural networks. Many functions are de�ned to perform these transformations, and
one of the most widely used is swap. The swap function takes a list and two indices in the list, and returns
a list with the values at those two positions swapped. To assure the correctness of swap, several theorems
are proven about it:

Theorem 3: swap is commutative, meaning that swapping positions i

and j is the same as swapping positions j and i.

Theorem 4: swap has an identity, in that swapping position i with

position i in x is equal to x.

Theorem 5: swap is its own inverse, in that swapping positions i

and j twice returns the original list.

With the swap function, the structure of a neural network can be modi�ed in many ways. We start �rst at
the level of neurons and then work our way up to full networks.

First we prove that swapping the same positions in both a neuron and its input vector does not change
the output. This makes sense, since a neuron outputs a weighted sum, and addition is both commutative
and associative.

Theorem 6: the output from a neuron is the same as the output generated

when the same positions are swapped in both the input vector and the

neuron's list of synapses.

(implies (and (isNeuron n)

(isListOfWeights i)

(equal (len n) (len i))

(natp k)

(< k (len i))

(natp j)

(< j (len i)) )

(equal (forwardNeuron i n)

(forwardNeuron (swap i j k)

(swap n j k) ))

Since the activate function simply applies an extra function to the output of forwardNeuron, this leads
directly to the following theorem, which can be considered a corollary.

Theorem 7: the activation of a neuron is the same as the activation

generated when the same positions are swapped in both the input vector

and the neuron's list of synapses.

(implies (and (isNeuron n)

(isListOfWeights i)

(equal (len n) (len i))

(natp k)

(< k (len i))

(natp j)

(< j (len i)) )

(equal (activate f i n)

(activate f (swap i j k)

(swap n j k)) ) )
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Moving up to the level of layers, we observe that swapping neurons in a layer only a�ects the order of outputs
from the layer, because the order of synapses in each neuron of the layer remains the same, as shown in
�gure 1. This fact is proven by two similar theorems, the second of which is presented in its entirety below.

Figure 1.2: A single layer with neurons swapped. The bottom row represents inputs to the layer.

Theorem 8: The output of a layer with two of its neurons swapped equals

the result of swapping those same positions in the unaltered layer's output.

Theorem 9: The output of a layer remains the same when the same positions are

swapped in both the layer and its final output vector.

(implies (and (isLayer l)

(isListOfWeights i)

(equal (len (car l)) (len i))

(natp k)

(< k (len l))

(natp j)

(< j (len l)) )

(equal (forwardLayer f i l)

(swap (forwardLayer f i (swap l j k)) j k)) )

Proving further facts about manipulations at the layer level requires an extra function, namely swapNeuron-
SynapsesInLayer, which swaps the synapses at the same two positions for each neuron in a given layer. The
e�ect of this function on a network layer is demonstrated in �gure 2.

Figure 1.3: A single layer with synapses of each neuron swapped. The bottom row represents inputs
to the layer, which must also be swapped.
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Use of this function allows us to prove the following theorem:

Theorem 10: the output of a layer remains the same if the same two positions are

swapped in all neurons of a layer, along with the same two positions in the

input vector.

(implies (and (isLayer l)

(isListOfWeights i)

(equal (len (car l)) (len i))

(natp k)

(< k (len (car l)))

(natp j)

(< j (len (car l))) )

(equal (forwardLayer f i l)

(forwardLayer f (swap i j k)

(swapNeuronSynapsesInLayer l j k)) ) )

At the network level we �nally see instances of identical input-output mappings for di�erent network struc-
tures. Doing so requires yet another function, swapLayerNeuronsInNetwork, which swaps two neurons within
the same layer of a network. Additionally, the function also applies swapNeuronSynapsesInLayer to the fol-
lowing layer (provided there is one) so that the neurons that were swapped still output to the same synapses
in the following layer. As long as the neuron swap occurs in a layer before the �nal layer, this operation does
not change the output that a neural network produces.

Theorem 11: swapping the positions of two neurons in either the input layer or a hidden

layer of a network with two or more layers, and also swapping the corresponding synapses

in each neuron of the following hidden layer, leaves the output of a network

completely unchanged.

(implies (and (isNetwork n)

(isListOfWeights i)

(equal (len (caar n)) (len i))

(natp l)

(< l (- (len n) 1))

(natp k)

(< k (len (nth l n)))

(natp j)

(< j (len (nth l n))) )

(equal (forwardNetwork f i n)

(forwardNetwork f i (swapLayerNeuronsInNetwork n l j k)) ) )

When the swapLayerNeuronsInNetwork function is applied to the output layer of a network, then the same
positions in the output vector must be swapped to obtain the original output.

Theorem 12: swapping the positions of two neurons in the output layer of a network leaves the

resulting output the same, except that the resulting output also has its values swapped at

the same two positions.

(implies (and (isNetwork n)

(isListOfWeights i)

(equal (len (caar n)) (len i))

(natp k)

(< k (len (nth (- (len n) 1) n)))
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(natp j)

(< j (len (nth (- (len n) 1) n))) )

(equal (forwardNetwork f i n)

(swap

(forwardNetwork f i

(swapLayerNeuronsInNetwork n (- (len n) 1) j k))

j k) ) )

The set of proofs described so far essentially capture the idea of interchange equivalence (Kainen 1994).
Permuting neurons of a network within their hidden layers, and modifying the synaptic connections in the
next layer accordingly, produces interchange equivalent networks.
Dead Neurons

Besides rearranging existing components of a neural network, we can also introduce and eliminate certain
components. There are certain cases when these operations have no e�ect on the behavior of the neural
network, and the most readily identi�able of these cases involve dead neurons, which shall be de�ned to
be neurons with nothing but zeroes for all synaptic weights. It therefore makes intuitive sense that such
neurons transmit no data, and can therefore be freely added to and removed from a neural network without
a�ecting its behavior. Dead neurons have a recognizer function isDeadNeuron and a constructor function
makeDeadNeuron, which constructs a dead neuron with a given number of synapses. It should be noted that
the following theorems about dead neurons depend on the fact that all available activation functions map
zero to zero. This is commonly true for activation function in the range [-1,1], but is not a hard requirement
for activation functions, which can be any real-valued function. If the value of a given activation function
at zero was not zero, then the above de�nition of a dead neuron would not make sense, because information
would in fact be transmitted.

In order to insert dead neurons into a network, we de�ne a more general function that inserts any given
neuron into a network. The addNeuronToLayerOfNetwork, function adds a neuron to the front of a speci�ed
layer in a network. Due to theorems 11 and 12 above, we know that it is su�cient to have a function that
only adds a new neuron to the front of a layer, since we could use any given number of swap operations to
reorganize the layer into any order we wanted without changing the fundamental input-output behavior of
the network. However, it is important that the new neuron have the same size as all the neurons in the layer
into which it is being inserted.

When adding a new neuron to a layer, we must also add new connections between that neuron and the
neurons of the following layer (unless there is none). Therefore besides taking a neuron, a network and the
index of a layer as input, the addNeuronToLayerOfNetwork function also takes a list of weights as input. Each
neuron of the following layer receives one synaptic weight from this list. The addSynapsesToNeuronsOfLayer
helper function performs this operation and assures that the newly inserted synapses line up with the newly
added neuron. Given these functions, we can now describe the e�ect of adding a dead neuron to a neural
network.

Theorem 13: Adding a dead neuron to the input layer or a hidden layer of a network with at

least 2 layers does not change its output.

(implies (and (isNetwork net)

(< 0 (len i))

(isListOfWeights i)

(isListOfWeights s)

(equal (len (nth (+ 1 l) net)) (len s))

(equal (len i) (len (caar net)))

(natp l)

(< l (- (len net) 1)) )

(equal (forwardNetwork f i net)

(forwardNetwork
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f i (addNeuronToLayerOfNetwork

(makeDeadNeuron (len (car (nth l net)))) s l net)) ) )

Theorem 14: Adding a dead neuron to the output layer of a network only changes the output in

that it now contains an additional value, which is 0.

(implies (and (isNetwork net)

(< 0 (len i))

(isListOfWeights i)

(isListOfWeights s)

(equal (len i) (len (caar net))) )

(equal (cons 0 (forwardNetwork f i net))

(forwardNetwork

f i (addNeuronToLayerOfNetwork

(makeDeadNeuron (len (car (nth (- (len net) 1) net))))

s (- (len net) 1) net)) ) )

We can link the concept of dead neurons to lesioning/pruning, which is the destruction of select neurons of a
neural network. The function that removes a neuron from a network is removeFromNetwork, which takes a
network, the index of a layer within the network, and the index of a neuron within that layer as input. When
removing a neuron from the network, we must also adjust the synapses of neurons in the next layer so that
they still match up. The removeFromNetwork function calls repairRemainder to perform these adjustments,
which are only necessary if the neuron was not removed from the output layer. It should be noted that the
result of removeFromNetwork is only a valid network if the layer from which the neuron was removed had
at least two neurons. Otherwise the layer would be empty after the removal, making the network invalid.

With these functions we can now prove that removing a dead neuron from a non-output layer of a network
has no e�ect on its output. This theorem is the mirror to theorem 13.

Theorem 15: removing a dead neuron from the input layer or a hidden layer in the network with at

least 2 layers does not change its output.

(implies (and (isNetwork n)

(isDeadNeuron (nth j (nth l n)))

(isListOfWeights i)

(equal (len i) (len (caar n)))

(<= 2 (len (car (nth (+ 1 l) n))))

(natp l)

(natp j)

(< l (- (len n) 1))

(<= 2 (len (nth l n)))

(< j (len (nth l n))) )

(equal (forwardNetwork f i n)

(forwardNetwork f i (removeFromNetwork l j n))) )

It makes intuitive sense that the e�ect of lesioning/pruning can also be achieved by simply replacing the
neuron marked for removal with a dead neuron, and this is the next theorem that we will prove. Once
again, we must �rst build up some functions for replacement of neurons with other neurons in a network.
We therefore de�ne replaceNeuronInLayerOfNetwork, which takes as input a network, the index of a layer in
the network, the index of a neuron within that layer, and a neuron designated to replace the neuron at that
position. The resulting network is only valid if the new neuron is the same size as the neuron it replaces.
Given this new function, we now state and prove the desired theorem.
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Theorem 16: removing a neuron from the input layer or a hidden layer in a network with at least 2

layers is equivalent to replacing it with a dead neuron.

(implies (and (isNetwork n)

(isListOfWeights i)

(natp l)

(natp j)

(< l (- (len n) 1))

(< j (len (nth l n)))

(<= 2 (len (nth l n)))

(equal (len i) (len (caar n))) )

(equal (forwardNetwork f i (removeFromNetwork l j n))

(forwardNetwork

f i (replaceNeuronInLayerOfNetwork

j l (makeDeadNeuron (len (nth j (nth l n)))) n)) ) )

There are several neural network algorithms that depend on lesioning, such as the optimal brain damage
algorithm (Russell 2003) and the Enforced Subpopulation neuroevolution algorithm (Gomez 1997). Either
the removal or replacement method can be used to perform the lesioning, though often both are used in the
following way: �rst the normal activations of several candidate neurons for lesioning are replaced one at a
time with zeroes, e�ectively replacing the neuron with an equal sized dead neuron; then the neuron whose
lesioning resulted in the best increase in performance is actually removed from the network. Theorem 16
validates this methodology, by showing that the two operations result in equivalent network outputs.
Conclusion and Future Work

The functions presented in this paper provide a useful model of fully-connected feed-forward neural
networks in ACL2. The theorems presented have shown that networks with widely di�erent representations
are in fact equivalent in terms of their input-output mappings. This is the �rst step towards creating neural
network search algorithms that search in a reduced space with fewer or no duplicate network representations
of the same input-output mapping.

One method for doing this might involve deciding on some canonical form for neural network represen-
tations, and then creating a search algorithm that only searched the space of canonical forms. The validity
of such an algorithm could be proven via the following means:

First de�ne a function, say canonicalp, that identi�ed whether or not a network was in canonical form.
One would need to show that each transformation that could be performed on a neural network during the
search would return a network for which canonicalp would return t.

The validity of such an algorithm would also depend on whether or not this canonical form was actually
canonical. That is, one would need to de�ne a function, say toCanonical, and prove that for every value
recognized by isNetwork, the toCanonical function would return a value recognized by canonicalp. The
theorems provided in this paper would likely be very useful in such a proof. Another theorem that would
be required to demonstrate that a given form was actually canonical would be a theorem proving that two
canonical forms with the same input-output mapping are in fact equal in accordance with the ACL2 equal
function.

This model could also be extended to model existing learning/search algorithms for neural networks. One
extension that would be required to model certain algorithms is addition of recurrent network connections.
Another extension that would be even more challenging to integrate would be support for networks of
arbitrary connectivity. Such support would perhaps require a completely di�erent model. However, even if
this were the case, equivalence between networks of arbitrary connectivity and the fully-connected networks
of this model could perhaps be proven in ACL2. For example, it seems likely that any gaps in a sparsely
connected neural network could be represented in a fully-connected network by dead neurons. Naturally, the
many theorems and lemmas about dead neurons created as part of this model would be helpful in proving
such a fact. Furthermore, if in the arbitrarily connected model a synapse skipped over two layers, this could
perhaps be modeled in the fully-connected model by the introduction of �identity neurons�, which could be
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de�ned as neurons where one synapse had a weight of 1, and for which the identity function was used instead
of the normal activation function. Therefore a single synapse over two layers would be represented as two
synapses, one of which had the same weight as the original, and the other of which would be the weight 1
synapse of an identity neuron.

Clearly, many extensions are possible. This model provides a good basis for studying some low level as-
pects of the theory behind neural networks, especially concerning their structure. Furthermore, the functions
provided serve as a good start towards modeling any of several neural network search algorithms. Adding
neurons, replacing existing neurons (or individual synapses) and removing neurons are basic low level oper-
ations needed for searching the space of neural network architectures. The hope is that this model can serve
as a platform for stud of such extended models.
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1.3 Neural Network Design5

To implement our neural network we used the Neural Network Toolbox in MATLAB. The neural network is
built up of layers of neurons. Each neuron can either accept a vector or scalar input (p) and gives a scalar
output (a). The inputs are weighted by W and given a bias b. This results in the inputs becoming Wp + b.
The neuron transfer function operates on this value to generate the �nal scalar output a.

5This content is available online at <http://cnx.org/content/m13228/1.1/>.
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A MATLAB Neuron that Accepts a Vector Input

Figure 1.4

Our network used three layers of neurons, one of which is required by the toolbox. The �nal layer, output
layer, is required to have neurons equal to the size of the output. We tested �ve accents, so our �nal layer
has 5 neurons. We also added two "hidden" layers, which operate on the inputs before they are prepared as
outputs, each of which have 20 neurons.

In addition to con�guring the network parameters, we had to build the network training set. In our
training set we had 42 speakers: 8 Northern, 9 Texan, 9 Russian, 9 Farsi, and 7 Mandarin. An accent pro�le
was created for each of these speakers as discussed and compacted into a matrix. Each pro�le was a column
vector, so the size was 42 x 28. For each speaker we also generated an answer vector. For example, the
desired answer for a Texan accent is [0 1 0 0 0]. These answer vectors were also combined into an answer
matrix. The training matrix and the desired answer matrix were given to the neural network which trained
using traingda (gradient descent with adaptive learning rate backpropogation). We set the goal for the
training function to be a mean square error of .005.

We originally con�gured our neural network to use neurons with a linear transfer function (purelin),
however when using more than three accents at a time we could not reduce the mean square error to .005
The error approached a limit, which increased as the number of accents we included increased.
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Linear Neuron Transfer Function

Figure 1.5
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Linear Neurons Training Curve

Figure 1.6

So, at this point we redesigned our network to use non-linear neurons (tansig).
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Tansig Neuron Transfer Function

Figure 1.7
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Tansig Neurons Training Curve

Figure 1.8

After the network was trained we re�ned our set of training samples by looking at the network's output
when given the training matrix again. We removed a handful of speakers to arrive at our present number
of 42 because they included an accent we weren't explicitly testing for. These consisted of speakers who
sounded as if they did not learn American English, but British English.

These �nal two �gures show an image representation of the answer matrix and the answers given by
the trained matrix. In the images, grey is 0 and white is one. Colors darker than grey represent negative
numbers.
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Answer Matrix

Figure 1.9



17

Trained Answers

Figure 1.10
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