UNIVERSITY OF BOTSWANA

2008/2009 - EXAMINATIONS

FRONT PAGE

COURSE NUMBER MAT111 DURATION 2 hrs DATE NOV 2008
TITLE OF PAPER INTRODUCTORY MATHEMATICS I SUBJECT MATHEMATICS TITLE OF EXAMINATION BSc I
MORNING/AFTERNOON

INSTRUCTIONS:

- ANSWER ALL QUESTIONS IN SECTION A AND ANY TWO(2) QUESTIONS FROM SECTION B.
- ALL MARKS ARE INDICATED IN BRACKETS [].

NUMBER OF PAGES INCLUDING COVER PAGE: 5

DO NOT OPEN THIS PAGE UNTIL YOU HAVE BEEN TOLD TO DO SO BY THE SUPERVISOR.

Section A

Answer All Questions: Each Question carries 10 Marks

Question 1

(a) Solve $3^{x+1}=4^{x-1}$.
(b) Solve $\sqrt{x+3}+\sqrt{x-2}=5$.

Question 2

(a) Solve the inequality

$$
1<|3 x-1| \leq 5
$$

(b) Find the set of values of x satisfying

$$
(x-2)(2 x+1)>0
$$

Question 3

(a) Find the domain and range of the following function

$$
f(x)=\sqrt{x^{2}-16}
$$

(b) Find the equation of the line that passes through $(1,1)$ and the intersection of the line $2 x+3 y-4=0$ with the x-axis

Question 4

(a) Given that

$$
4 \log \left(\frac{1}{y^{2}}\right)-6 \log \left(\frac{1}{x}\right)=8 \log \left(y^{\frac{1}{2}}\right)
$$

find y in terms of x .
(b) When a polynomial $p(x)$ is divided by $(x-3)$ the remainder is 3 and x is a factor of $p(x)$.
Find the remainder when $\mathrm{p}(\mathrm{x})$ is divided by $x^{2}-3 x$.

Question 5

(a) Find the exact value of $\cos 2 \alpha$ if $\sin \alpha=-\frac{3}{5}$ and $180^{\circ}<\alpha<270^{\circ}$.
(b) Calculate the value of x in radians in the interval $0<x<\frac{\pi}{2}$ that satisfies the equation

$$
3^{(1-\sin x)}=27^{\sin x-\frac{1}{3}}
$$

Question 6

(a) The first term of an A. P. is -1 and the common difference is $\frac{1}{3}$. What is the sum of the first 10 terms?
(b) The fifth term of a G. P. is 7 and the sixth term is 21 . What is the sum of the first two terms?
(c) Find the polar form of the complex number $(-5+\mathrm{i} 4)$.

Section B

Answer TWO(2) Questions OUT of FOUR: Each Question carries 20 Marks

Question 7

(a) Put the surd $\sqrt{7+2 \sqrt{12}}$ in the form $\sqrt{a}+\sqrt{b}$.
(b) Solve $3^{x+1}-2\left(3^{-x}\right)+5=0$.
(c) If α and β are the roots of $x^{2}+x-6=0$, find the equation whose roots are $2 \alpha-\beta$ and $2 \beta-\alpha$.

Question 8

(a) The functions F and G, each with domain \mathbb{R} are defined as follows:

$$
F: x \rightarrow 3 x+2 \quad G: x \rightarrow x^{2}+1
$$

For each of F and G find the range of the function and give a reason to show whether the function is one-to-one. Obtain formulae for $(F \circ G)(x)$ and $(G \circ F)(x)$ and find the values of x for which $(F \circ G)(x)=(G \circ F)(x)$.
(b) If

$$
f(x)=\frac{x-1}{x-2}, \quad x \neq 2
$$

find $f^{-1}(x)$ and state the domain of the function f^{-1}.
(c) Sketch on the same axes the graphs of $y=\left|x^{2}-3\right|$ and $y=2$.

Solve the equation $\left|x^{2}-3\right|=2$
Hence write down the solution to the inequality $\left|x^{2}-3\right| \geq 2$

Question 9

(a) Find the values of the constants a and b if the polynomial
$P(x)=2 x^{3}-15 x^{2}+a x+b-2$ is divisible by x and $x-1$.
(b) Sketch the graph of the function defined by $g(x)=\frac{x+3}{x-1}$, clearly indicating intercepts with the coordinate axes and asymptotes.
(c) Solve for x :

$$
\frac{1}{3} \log x^{6}=5 \log 3-\log 27
$$

Question 10

(a) Prove the identity:

$$
\begin{equation*}
\cot \theta-\tan \theta=\frac{2 \cos 2 \theta}{\sin 2 \theta} \tag{5}
\end{equation*}
$$

(b) Solve the equation for θ where $0 \leq \theta \leq \pi$:

$$
\begin{equation*}
4 \sin \theta \cos \theta=-\sqrt{3} \tag{5}
\end{equation*}
$$

(c) Find the sum of the first 10 terms of the geometric series $\frac{1}{4}-\frac{1}{2}+1-2+4-8+\ldots$
(d) Use DeMoivre's theorem to prove that

$$
\cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1
$$

