CHEMISTRY DEPARTMENT UNIVERSITY OF BOTSWANA

CHE 101 GENERAL CHEMISTRY I FINAL EXAMINATION NOV 2003. TIME ALLOWED: 3 hours

Name of the student: \qquad

ID \#:
Group and Serial Number:

WRITE ALL ANSWERS ON THIS QUESTION PAPER.

The paper has two parts. For Section A (multiple-choice questions), circle the letter for the correct answer for each question.
For questions in Section B, use the space provided to write your answers. If you need additional space, write on the back of the printed pages.

You may detach the Periodic Table, but you may NOT write anything on it during the examination.

IMPORTANT: It is the student's responsibility to report if any page is missing in this paper. The paper has 17 pages in addition to the Periodic Table.

```
Avogadro constant \(=6.022 \times 10^{23} \mathrm{~mol}^{-1}\)
\(\mathrm{R}=0.08206 \mathrm{~L} . \mathrm{atm} . \mathrm{K}^{-1} . \mathrm{mol}^{-1}\).
\(1 \mathrm{~atm}=760 \mathrm{Torr}\)
\(\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}\)
\(\mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\)
\(1 \mathrm{~nm}=10^{-9} \mathrm{~m}\)
```

Do not write in this table.

MC	1	2	3	4	5	6	7	8	Total

Page 2 of 17 pages

SECTION A: Multiple Choice [60\%]

Circle the letter for the one correct answer in each question.

The symbol for an ion containing 24 protons, 27 neutons, and 21 electrons is:
a. ${ }^{24} \mathrm{Sb}^{3+}$
b. ${ }^{51} \mathrm{Co}^{3+}$
c. ${ }^{51} \mathrm{Cr}^{3+}$
d. ${ }^{65} \mathrm{Zn}^{2+}$
e. ${ }^{58} \mathrm{Zn}^{3+}$
2. Which one of the following statements is correct about NaHPO_{4} ?
a. Its name is sodium hydrogen phosphate
b. Its name is sodium hydrogen phosphite
c. Its name is sodium monohydrogen phosphate
d. Its name is sodium hydrogen phosphorus tetroxide
e. There is no compound with this formula.
3. Which one of the following classifications of elements is NOT CORRECT (is FALSE)?
a. $\mathrm{Sn}(\mathrm{Z}=50)$ is a transition metal.
b. $\mathrm{Ba}(\mathrm{Z}=56)$ is an alkaline earth metal
c. As $(Z=33)$ is a metalloid.
d. $(Z=53)$ is a halogen
e. $\mathrm{Kr}(\mathrm{Z}=36)$ is a nonmetal.
4. A compound of nitrogen and oxygen only, contains $36.85 \% \mathrm{~N}$ by mass. Calculate the empirical formula.
a. $\mathrm{Nr} \cap$
b.
c.
d. NO_{2}
e. $\mathrm{N}_{2} \mathrm{O}_{5}$

5 What mass of lithium nitrate, LiNO_{3}, is needed to prepare 150 mL of a 0.0200 M $\mathrm{LiNO}_{3}(\mathrm{aq})$ solution?
a. 0.535 g
b. 0.207 g
c. 0.373 g
d. 0.621 g
e. 0.452 g
6. The element Engrium, En, has the following composition of isotopes:
${ }^{147} \mathrm{En}, 146.967 \mathrm{amu}, 64.79 \%$ abundant,
${ }^{149} \mathrm{En}, 148.964 \mathrm{amu}, 26.12$ \% abundant,
${ }^{150} \mathrm{En}, 149.959 \mathrm{amu}, 9.090$ \% abundant. What is the average atomic weight for En?
a. $\quad 148.63 \mathrm{amu}$
b. $\quad 148.85 \mathrm{amu}$
c 147.03 amu
d. 147.76 amu
e. 149.12 amu
7. How many \mathbf{H} atoms are present in 15.00 g of the compound $\mathrm{Fe}_{2}\left(\mathrm{HPO}_{4}\right)_{3} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ (molar mass $=615.83 \mathrm{~g} / \mathrm{mol})$?
a. 3.96×10^{23}
b. 2.20×10^{23}
c. 1.47×10^{22}
d. 3.52×10^{23}
e. 4.85×10^{23}
8. If 500 mL of a $0.250 \mathrm{M} \mathrm{CaCl}_{2}$ (aq) solution is mixed with 200 mL of a $0.500 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ solution, what is the molarity (M) of the Cl^{-}-ion in the resulting solution?
a. 0.750 M
b. 0.375 M
c. 0.250 M
d. 0.500 M
e. 0.321 M
9. Calculate the oxidation number for the \mathbf{P} atom in each of the two species:
$\mathrm{Mg}_{3}\left(\mathrm{PO}_{3}\right)_{2}$ and $\mathrm{H}_{2} \mathrm{P}_{3} \mathrm{O}_{10}{ }^{3-}$
a. +5 and +6
b. +3 and +5
c. +6 and +15
d. +3 and +4
e. +6 and +5

Page 5 of 17 pages

10. Which are the spectator ions in the following equation (where some physical states have not been included)?

$$
\mathrm{CaS}(\mathrm{aq})+\mathrm{NiSO}_{4}(\mathrm{aq}) \mapsto \mathrm{CaSO}_{4}+\mathrm{NiS}
$$

a. They are all spectator ions.
b. $\mathrm{Ca}^{2+}(\mathrm{aq})$ and $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
c. $\mathrm{Ni}^{2+}(\mathrm{aq})$ and $\mathrm{S}^{2-}(\mathrm{aq})$
d. $\mathrm{Ca}^{2+}(\mathrm{aq})$ and $\mathrm{S}^{2-}(\mathrm{aq})$
e. There are no spectator ions.
11. The non-balanced equation below,

$$
\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \mapsto \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\ldots \mathrm{N}_{2}(\mathrm{~g})
$$

can be correctly balanced with the coefficients (in this order):
a. $1,13,10,5,1$
b. $2,25,20,11,1$
c. $3,-39,30,16,2$
d. $4,49,40,22,2$
e. $5,66,50,25,3$
12. Balance the following half-reaction in basic solution, and indicate which one of the following statements is TRUE:

$$
\mathrm{ClO}_{2}^{-}(\mathrm{aq}) \stackrel{\mathrm{ClO}_{4}^{-}}{ }{ }^{-}(\mathrm{aq})
$$

a. There are $2 \mathrm{e}^{-}$on the left side (reactants).
b. There are $2 \mathrm{ClO}_{4}^{-}(\mathrm{aq})$ on the right side (products).
c. There are $4 \mathrm{OH}^{-}(\mathrm{aq})$ on the left side (reactants).
d. There are $8 \mathrm{H}_{2} \mathrm{O}(l)$ on the left side (reactants).
e. There are $2 \mathrm{OH}^{-}(\mathrm{aq})$ on the left side (reactants).

Page 6 of 17 pages

13 A dilute sulfuric acid solution, $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, of undetermined concentration, was titrated with standard $0.1495 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ solution. If 10.00 mL of the $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ solution required 34.10 mL of the $\mathrm{NaOH}(\mathrm{aq})$ solution for neutralization, what is the molarity (M) of this sulfuric acid solution?

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \mapsto \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

a. $\quad 0.300 \mathrm{M}$
b. $\quad 0.255 \mathrm{M}$ 0.315 M
d. $\quad 0.422 \mathrm{M}$
e. 0.500 M
14. Calculate the maximum mass (in g) of $\mathrm{Cr}(\mathrm{s})$ that can be produced by the reaction of 70.0 g of $\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})\{$ molar mass $=152.0 \mathrm{~g} / \mathrm{mol}\}$ and 31.0 g of $\mathrm{Mg}(\mathrm{s})$, according to the balanced equation below,

$$
\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{Mg}(\mathrm{~s}) \mapsto 2 \mathrm{Cr}(\mathrm{~s})+3 \mathrm{MgO}(\mathrm{~s})
$$

a. 44.2 g
b. $\quad 101.0 \mathrm{~g}$
c. 47.9 g
d. 23.9 g
e. 66.3 g
15. A 5.00 g sample of ozone gas, $\mathrm{O}_{3}(\mathrm{~g})$, is contained in a 750 mL stainless-steel cylinder. If the temperature is at $-20.0^{\circ} \mathrm{C}$, what is the gas pressure ?
a. $\quad 3.50 \mathrm{~atm}$
b. 4.01 atm
c. 3.15 atm
d. 1.96 atm
e. 2.88 atm

Page 7 of 17 pages

16. If 0.200 mol of $\mathrm{H}_{2}(\mathrm{~g}), 0.125 \mathrm{~mol}$ of $\mathrm{He}(\mathrm{g})$, and 0.100 mol of $\mathrm{N}_{2}(\mathrm{~g})$ are together in the same 1.00 L container at $25^{\circ} \mathrm{C}$, what is the total gas pressure ?
a. 7.95 atm
b. 5.50 atm
c. 10.4 atm
d. 7.34 atm
e. 9.03 atm
17. Calculate the energy of a photon of light having wavelength, $\lambda=545 \mathrm{~nm}$
a. $3.65 \times 10^{-19} \mathrm{~J}$
b. $2.20 \times 10^{5} \mathrm{~J}$
c. $6.06 \times 10^{3} \mathrm{~J}$
d. $4.65 \times 10^{-15} \mathrm{~J}$
e. $2.20 \times 10^{15} \mathrm{~J}$
18. Indicate the total number of electrons in the same atom that can have $\mathbf{n}=\mathbf{3}$
a. 3
b. 8
c. 9
d. 18
e. 32
19. The number of unpaired electrons in the atoms, ${ }_{23} \mathrm{~V}$ and ${ }_{52} \mathrm{Te}$ are, respectively:
a. 5 and 6
b. 3 and 4
c. 3 and 2
d. 5 and 4
e. 3 and 6

Page 8 of 17 pages

20. The following electronic configurations are given for the cation $\left(M^{3+}\right)$ and the anion (A^{2-} What is the formula for the compound formed from these ions?

$$
\mathbf{M}^{3+}[\mathrm{Ar}] 3 \mathrm{~d}^{6} \quad \mathbf{A}^{2-} \quad[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{6}
$$

a. $\mathrm{Fe}_{2} \mathrm{Se}_{3}$
b. $\mathrm{Co}_{2} \mathrm{~S}_{3}$
C. $\sim_{2} \mathrm{~N}_{3}$
d. $\mathrm{Co}_{2} \mathrm{Se}_{3}$
e. $\mathrm{Fe}_{2} \mathrm{O}_{3}$
21. Which one of the following sets of quantum numbers could describe the highest energy electron in the ground state configuration of the atom, ${ }_{51} \mathrm{X}$?
a. $\mathrm{n}=4, l=3, \mathrm{~m}_{l}=2, \mathrm{~m}_{\mathrm{s}}=-1 / 2$
b. $\mathrm{n}=4, l=2, \mathrm{~m}_{l}=-1, \mathrm{~m}_{\mathrm{s}}=-1 / 2$
c. $\mathrm{n}=5, l=1, \mathrm{~m}_{l}=-1, \mathrm{~m}_{\mathrm{s}}=1 / 2$
d $\mathrm{n}=5, l=2, \mathrm{~m}_{l}=1, \mathrm{~m}_{\mathrm{s}}=1 / 2$
e. $\mathrm{n}=6, l=1, \mathrm{~m}_{l}=0, \mathrm{~m}_{\mathrm{s}}=-1 / 2$
22. Which one of the following ionic compounds is expected to have the highest (most favorable) lattice energy?
a.
b. MgO
c. $\mathrm{Na}_{2} \mathrm{O}$
d.
e. NaCl

Page 9 of 17 pages

23. An acceptable Lewis dot structure for the nitrite anion, $\mathrm{NO}_{2}{ }^{-}$, is:
a. $[: \ddot{\mathrm{O}}-\ddot{\mathrm{N}}=\ddot{\mathrm{O}}]^{-}$
b. $[: \ddot{O}-\dot{N}-\ddot{O}:]^{-}$
c. $[\ddot{O} \mathrm{O}=\mathrm{N}=\ddot{\mathrm{O}}]^{-}$
d. $[: \ddot{O}-N \equiv O:]^{-}$
e. $[: \ddot{O}-\ddot{\mathrm{O}}=\ddot{\mathrm{N}}]^{-}$
24. Which one of the following species must have more than an octet (8) of electrons around the central atom?
a.
b.
c.
d. SO_{3}
e. BrCl_{3}
25. Which bond is expected to have the greatest polarity (is the most polar bond) ?
a.
b. $\mathrm{As}-\mathrm{Cl}$
c.
d. $\mathrm{As}-\mathrm{C}$
e. As-F
26. The geometry of the BrCl_{4}^{-}anion is best described as:
a. Tetrahedral
b. See saw molecule
c. T-shaped molecule
d. Trigonal bipyramidal
e. Square planar
27. Given the following Lewis dot structure, calculate the Formal Charge on the \mathbf{N}, \mathbf{S}, and \mathbf{F} atoms, respectively:

$$
\stackrel{\ddot{N}}{\ddot{N}}=\ddot{\mathrm{S}}-\ddot{\mathrm{F}}:
$$

a.
b. $-1,+1,0$
c. $+1,-1,0$
d. $-1,+2,-1$
e. $0,+1,-1$
28. The bond angle, $\angle \mathrm{Cl}-\mathrm{S}-\mathrm{Cl}$, in SCl_{4} is expected to be:
a. Approximately 109.5°
b. Approximately $90^{\circ}, 120^{\circ}$, and 180°
c. Exactly 90°
d. Approximately 104°
e. Slightly more than 130°
29. Which one of the following molecules is polar (has a dipole moment, $\boldsymbol{\mu} \neq \mathbf{0}$) ?
a.
b. PF_{5}
c. SbCl_{3}
d. BF_{3}
e.
30. What is the hybridization of the I atom in the $\mathrm{ICl}_{4}{ }^{+}$cation ?
a. $\mathrm{sp}^{3} \mathrm{~d}$
b.
c. sp^{3}
d. $s p^{3} \mathrm{~d}^{2}$
e. sp

Page 11 of 17 pages

SECTION B (40\%)

Answer each question in the space provided. If you require more space, use the back of the page. You may do your rough work on the back of the printed pages, but cross it out before submitting your paper. SHOW your work and reasoning in each question; answers without logical calculations will NOT be given credit.
A) NAME the following compounds:

$$
\mathrm{Co}_{2}\left(\mathrm{SO}_{4}\right)_{3}
$$

$\mathrm{P}_{4} \mathrm{~S}_{10}$
B) Write the chemical formula for each of the following compounds:

Zinc nitrate hexahydrate

Hydrochloric acid

Dinitrogen pentoxide \qquad

2 Convert $14.5 \mathrm{~g} / \mathrm{cm}^{3}$ into units of $\mathrm{kg} / \mathrm{m}^{3}$, showing all the conversion factors. [3]
3. In basic solution, potassium hypochlorite (KClO) disproportionates into potassium chloride (KCl) and potassium chlorate $\left(\mathrm{KClO}_{3}\right)$. The non-balanced ionic equation is:

$$
\mathrm{ClO}^{-}(\mathrm{aq}) \mapsto \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{ClO}_{3}^{-}(\mathrm{aq})
$$

Using the method of half-reactions, balance the ionic equation. Then write the full chemical equation for this reaction.

Page 13 of 17 pages

4. The thermal decomposition of barium fluorosulfate, $\mathrm{Ba}\left(\mathrm{SO}_{2} \mathrm{~F}\right)_{2}$, is:
$\mathrm{Ba}\left(\mathrm{SO}_{2} \mathrm{~F}\right)_{2}(\mathrm{~s}) \mapsto \mathrm{SO}_{2} \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{BaSO}_{4}(\mathrm{~s})$
Calculate the volume of $\mathrm{SO}_{2} \mathrm{~F}_{2}(\mathrm{~g})$, measured at $20^{\circ} \mathrm{C}$ and 700 Torr, that can be prepared from 1.500 g of $\mathrm{Ba}\left(\mathrm{SO}_{2} \mathrm{~F}\right)_{2}$. The molar masses are: $\mathrm{Ba}\left(\mathrm{SO}_{2} \mathrm{~F}\right)_{2}, 303.45 \mathrm{~g} / \mathrm{mol}$, and $\mathrm{SO}_{2} \mathrm{~F}_{2}, 102.06 \mathrm{~g} / \mathrm{mol}$.

Page 14 of 17 pages

5 A 1.500 g solid sample is a mixture of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (molar mass = $105.99 \mathrm{~g} / \mathrm{mol}$), and sodium bicarbonate, NaHCO_{3} (molar mass $=84.01 \mathrm{~g} / \mathrm{mol}$). That is: mass $\mathrm{Na}_{2} \mathrm{CO}_{3}+$ mass $\mathrm{NaHCO}_{3}=1.500 \mathrm{~g}$. After being dissolved in distilled water, this sample required 29.10 mL of $0.7500 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ solution for the complete neutralization. Find the mass of each component in this mixture.

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \mapsto 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{NaHCO}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \mapsto \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(l)
\end{aligned}
$$

Page 15 of 17 pages

6. (A) Using the rare gas abbreviated forms, write the ground state electronic configurations for the following atoms and ions:
${ }_{26} \mathrm{Fe}^{3+}$
${ }_{32} \mathrm{Ge}^{4+}$
[4]
(B) List the following elements in order of decreasing electronegativity:
$\mathbf{A l}, \mathbf{N}, \mathbf{P}, \mathbf{S}$

Page 16 of 17 pages

7 (i) Write/draw three (3) different non-equivalent resonance structures for the $\mathbf{O P C l}_{3}$ molecule, where \mathbf{P} is the central atom.
(ii) Then calculate the Formal Charges on each of the differently-bonded atoms.
(iii) Finally, select the most reasonable resonance structure for $\mathbf{O P C l}_{3}$ (which may or may not be one of the structures you have drawn).

Page 17 of 17 pages

8. For the chlorite anion, $\mathrm{ClO}_{2}{ }^{-}$
(i) Write the Lewis dot structures (include reasonable resonance structures);
(ii) Give the $A B_{x} E_{y}$ formula and describe by name the overall geometry of the valence electron pairs;
(iii) Describe by name the geometry of the ion;
(iv) Describe the bond angles expected in the structure(s).

PERIODIC TABLE OF THE ELEMENTS

	2											13	14	15	16	17	18 $\mathbf{H e}$ 4.00260		
$\begin{gathered} \mathbf{H} \\ 1.00794 \\ \hline \end{gathered}$																			
3	4	$3 \quad 4$		5		7	8	9	10			5	6	7	8	9	10		
Li	Be				B						C	N	O	F	Ne				
6.941	9.01218				10.81						12.011	14.0067	15.9994	18.9984	20.179				
11	12				13								16	17	18				
Na	$\mathbf{M g}$				Al								S	CI	Ar				
22.9898	24.305			12	26.9815								32.06	35.453	39.948				
19	20	21	22			23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti			V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.08	44.9559	47.88			50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.8
37	38	39	40			41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	$\mathbf{Z r}$			Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678	87.62	88.9059	91.22	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.41	114.82	118.69	121.75	127.6	126.9	131.29		
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86		
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn		
132.905	137.33	174.967	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.908	(209)	(210)	(222)		
87	88	103	104	105	106	107	108	109	110	111	112		114		116		118		
Fr	$\mathbf{R a}$	Lr	$\mathbf{R f}$	Db	Sg	$\mathbf{B h}$	Hs	$\underset{(\underset{6 x}{ })}{\mathbf{M t}}$	Ds	Uuu (272)	Uub (269)		Uuq		Uuh		Uuo		
(223)	226.025	(260)	(261)	(262)	(263)	(264)	(265)				(269)								

Lanthanides:	57	58	59	0	1	62	63	64	6	$\overline{6}$	67	68	69	70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.906	140.12	140.908	144.24	(145)	150.36	151.96	157.25	158.925	162.50	161.930	167.26	166.934	173.04

Actinides: | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{A c}$ | $\mathbf{T h}$ | $\mathbf{P a}$ | \mathbf{U} | $\mathbf{N p}$ | $\mathbf{P u}$ | $\mathbf{A m}$ | $\mathbf{C m}$ | $\mathbf{B k}$ | $\mathbf{C f}$ | $\mathbf{E s}$ | $\mathbf{F m}$ | $\mathbf{M d}$ | $\mathbf{N o}$ |
| $\mathbf{N a}$ | $\mathbf{N a}$ | | | | | | | | | | | | |

