

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CHEMISTRY 5070/01

Paper 1 Multiple Choice May/June 2008

1 hour

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

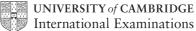
Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

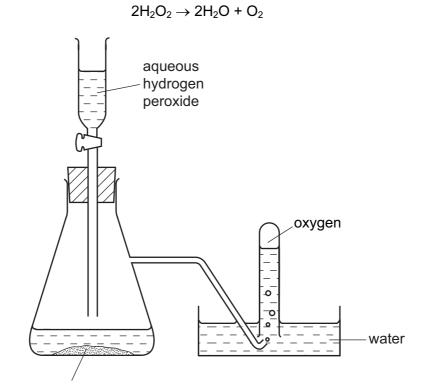
Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.


Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.


Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 16.

1 Oxygen was prepared from hydrogen peroxide and collected as shown in the diagram.

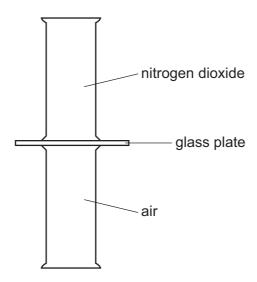
The first few tubes of gas were rejected because the gas was contaminated by

- A water vapour.
- B hydrogen peroxide.
- C hydrogen.
- D nitrogen.
- **2** The table gives the properties of four substances.

Which substance is a solid metal at room temperature?

manganese(IV) oxide

	melting point /°C	boiling point /°C	electrical conductivity when solid	electrical conductivity when molten
Α	808	1465	X	✓
В	98	890	✓	✓
С	119	445	x	X
D	-39	357	✓	✓


key

√ = conducts

x = does not conduct

3 Nitrogen dioxide is a dark brown gas and is more dense than air.

A gas jar containing nitrogen dioxide is sealed with a glass plate and is then inverted on top of a gas jar containing air.

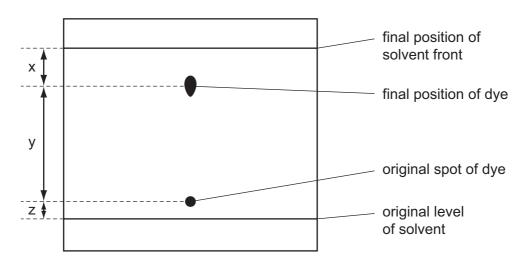
The glass plate is removed.

Which one of the following correctly describes the colours inside the gas jars after a long period of time?

	upper gas jar	lower gas jar		
Α	brown	brown		
В	dark brown	light brown		
С	colourless	dark brown		
D	light brown	dark brown		

4 A student tested a solution by adding aqueous sodium hydroxide. A precipitate was **not** seen because the reagent was added too quickly.

What could **not** have been present in the solution?


- **A** Al^{3+}
- B Ca²⁺
- C NH₄⁺
- **D** Zn²⁺
- **5** Which substance has a giant molecular structure at room temperature?
 - **A** methane
 - **B** sand
 - C sodium chloride
 - **D** water

6 When a covalent liquid boils its molecules become more widely spaced.

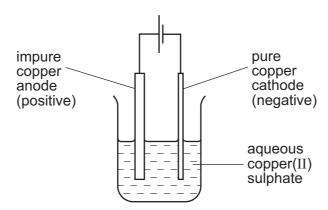
Which property of the molecules has the most influence on the energy required to boil a covalent liquid?

- A the forces of attraction between the molecules
- B the reactivity of the molecules
- C the shape of the molecules
- **D** the strength of the covalent bonds in the molecules
- 7 The diagram shows the chromatogram obtained by analysis of a single dye.

Three measurements are shown.

How is the R_f value of the dye calculated?

$$A \frac{X}{X+V}$$


$$\mathbf{B} = \frac{y}{x+y}$$

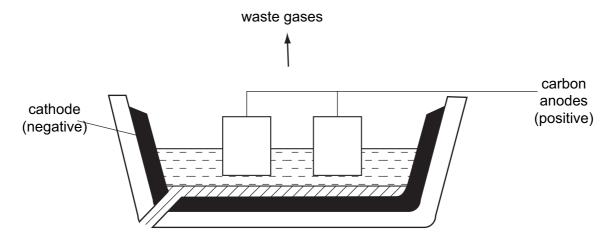
$$C = \frac{X}{X+V+Z}$$

$$D \qquad \frac{y}{x+y+z}$$

- 8 The atoms $^{64}_{29}$ Cu and $^{65}_{30}$ Zn have the same
 - A nucleon number.
 - **B** number of electrons.
 - C number of neutrons.
 - **D** proton number.

- 9 Why does molten sodium chloride conduct electricity?
 - A An electron is completely transferred from sodium to chlorine.
 - **B** Sodium ions are only weakly attracted to the chloride ions.
 - **C** The electrons in the sodium chloride are free to move.
 - **D** The sodium ions and the chloride ions are free to move.
- 10 Which equation describes the most suitable reaction for making lead sulphate?
 - **A** Pb + $H_2SO_4 \rightarrow PbSO_4 + H_2$
 - **B** PbCO₃ + $H_2SO_4 \rightarrow PbSO_4 + CO_2 + H_2O$
 - **C** $Pb(NO_3)_2 + H_2SO_4 \rightarrow PbSO_4 + 2HNO_3$
 - **D** $Pb(OH)_2 + H_2SO_4 \rightarrow PbSO_4 + 2H_2O$
- 11 In which oxide does X have the same oxidation state as in the chloride, XCl₃?
 - A X_3O
- $B X_2O$
- \mathbf{C} XO_2
- $D X_2O_3$
- **12** A sample of copper contains a metal impurity which is below copper in the reactivity series. The diagram shows the apparatus used for refining the sample.

The loss in mass of the anode (positive electrode) is 50 g and the gain in mass of the cathode (negative electrode) is 45 g.


What is the percentage purity of this sample of copper?

- **A** 10.0%
- **B** 11.1%
- **C** 90.0%
- **D** 95.0%
- 13 One mole of a sample of hydrated sodium sulphide contains 162g of water of crystallisation.

What is the correct formula of this compound?

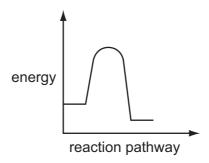
- A $Na_2S.3H_2O$
- B Na₂S.5H₂O
- C Na₂S.7H₂O
- **D** $Na_2S.9H_2O$

14 The diagram shows the electrolytic production of aluminium.

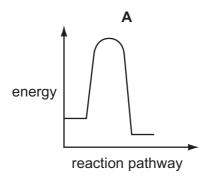
What are the products at the electrodes?

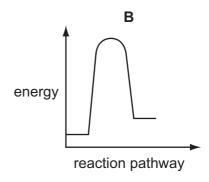
	negative electrode	positive electrode			
Α	solid aluminium	hydrogen			
В	solid aluminium	oxygen			
С	liquid aluminium	hydrogen			
D	liquid aluminium	oxygen			

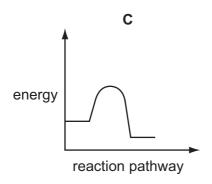
- **15** When dilute sulphuric acid is electrolysed between platinum electrodes, which statements are correct?
 - 1 Hydrogen is released at the cathode.
 - 2 Oxygen is released at the anode.
 - 3 Sulphur is released at the anode.
 - 4 The acid becomes more dilute.
 - **A** 1 and 2 **B** 1 and 3 **C** 2 and 4 **D** 4 only
- 16 Which of the following is an endothermic reaction?
 - A the combustion of ethanol in air
 - **B** the formation of a carbohydrate and oxygen from carbon dioxide and water
 - **C** the oxidation of carbon to carbon dioxide
 - **D** the reaction between hydrogen and oxygen


17 At 400 °C the reaction between hydrogen and iodine reaches an equilibrium.

$$H_2(g) + I_2(g) \Longrightarrow 2HI(g)$$
 $\Delta H = -13 \text{ kJ}$


Which change in conditions would increase the percentage of hydrogen iodide in the equilibrium mixture?


- A a decrease in pressure
- B a decrease in temperature
- **C** an increase in pressure
- **D** an increase in temperature


18 The diagram shows the reaction pathway for a reaction without a catalyst.



Which diagram shows the addition of a catalyst which speeds up the reaction?

19 Sulphur dioxide reacts with aqueous bromine according to the following equation.

$$SO_2(g) + Br_2(ag) + 2H_2O(I) \rightarrow H_2SO_4(ag) + 2HBr(ag)$$

Which element has been oxidised?

- **A** bromine
- **B** hydrogen
- C oxygen
- **D** sulphur
- **20** When 20 cm³ of a 2 mol/dm³ solution of potassium hydroxide is mixed with 20 cm³ of a 1 mol/dm³ solution of sulphuric acid, the temperature of the mixture rises.

What best explains this?

- A Sulphuric acid is a strong acid.
- **B** The potassium hydroxide solution is more concentrated than the sulphuric acid solution.
- **C** The reactants have a higher energy content than the products.
- **D** Potassium hydroxide is a very strong alkali.
- 21 A colourless gas is passed into each of three different solutions. The results for each solution are shown in the table.

solution	result				
potassium iodide	stays colourless				
acidified potassium dichromate(VI)	orange to green				
acidified potassium manganate(VII)	purple to colourless				

What is the colourless gas?

- A an acid
- B an alkali
- **C** an oxidising agent
- D a reducing agent
- **22** Which observation is typical of a solid non-metal element?
 - A It reacts vigorously with chlorine.
 - **B** It conducts electricity.
 - C It has more than one oxidation state.
 - **D** It forms an acidic oxide.

- 23 Which equation represents the reaction between hydrochloric acid and sodium hydroxide?
 - **A** $Cl^- + Na^+ \rightarrow NaCl$
 - **B** $2H^{+} + O^{2-} \rightarrow H_{2}O$
 - **C** $\frac{1}{2}$ O₂ + H₂ \rightarrow H₂O
 - $\mathbf{D} \quad \mathsf{H}^{^{+}} + \mathsf{OH}^{^{-}} \rightarrow \mathsf{H}_{2}\mathsf{O}$
- 24 The following statements about dilute sulphuric acid are all correct.
 - 1 A white precipitate is formed when aqueous barium chloride is added.
 - 2 The solution turns anhydrous copper(II) sulphate from white to blue.
 - 3 Addition of Universal Indicator shows that the solution has a pH value of less than 7.0.
 - 4 The solution reacts with copper(II) oxide, forming a blue solution.

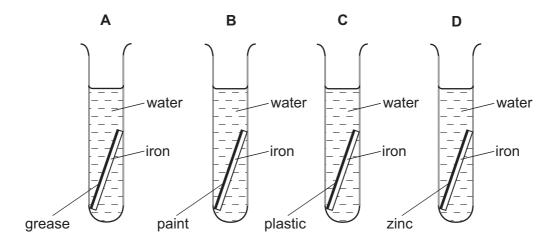
Which two statements confirm the acidic nature of the solution?

- **A** 1 and 2
- **B** 1 and 3
- **C** 2 and 4
- **D** 3 and 4
- 25 Ammonia gas is produced when solid ammonium chloride is heated with
 - A calcium hydroxide.
 - **B** calcium sulphate.
 - C hydrochloric acid.
 - **D** magnesium nitrate.
- 26 Sulphur and selenium (Se) are in the same group of the Periodic Table.

From this, we would expect selenium to form compounds having the formulae

- A SeO, Na₂Se and NaSeO₄.
- **B** SeO₂, Na₂Se and NaSeO₄.
- C SeO₂, Na₂Se and Na₂SeO₄.
- **D** SeO₃, NaSe and NaSeO₄.

27 X and Y are diatomic elements. X is less reactive than Y.


What are elements X and Y?

	Х	Υ		
Α	chlorine	iodine		
В	fluorine	nitrogen		
С	iodine	bromine		
D	oxygen	nitrogen		

- 28 A metal X, in Group I of the Periodic Table, would be expected to
 - **A** form a nitrate of formula $X(NO_3)_2$.
 - **B** form an acidic oxide.
 - **C** form an insoluble chloride.
 - **D** produce hydrogen from cold water.
- 29 Four test-tubes were set up as shown.

Each piece of iron was protected on one side by a different coating.

In which test-tube is the iron least likely to rust?

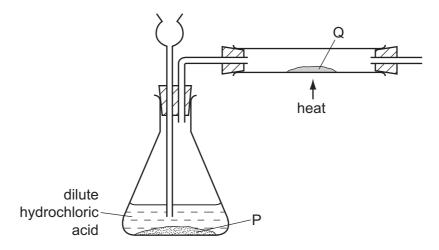
30 Three types of steel have different properties.

steel 1 easily shaped

steel 2 brittle

steel 3 resistant to corrosion

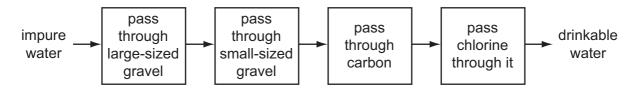
What are the names of these three types of steel?


	steel 1	steel 2	steel 3		
Α	high carbon	mild	stainless		
В	high carbon	stainless	mild		
С	mild	high carbon	stainless		
D	mild	stainless	high carbon		

31 Aluminium is used to make saucepans because of its apparent lack of reactivity.

Which property of aluminium explains its unreactivity?

- **A** It has a high electrical conductivity.
- **B** It has a low density.
- C It has a surface layer of oxide.
- **D** It is in Group III of the Periodic Table.


32 The diagram shows the apparatus used in an experiment to reduce substance Q with the gas generated in the flask.

What are substances P and Q?

	Р	Q			
Α	copper	copper(II) oxide			
В	lead	lead(II) oxide			
С	magnesium	zinc oxide			
D	zinc	copper(II) oxide			

33 The flow chart shows how impure water can be treated to produce drinkable water.

What is **not** removed from the water by this process?

- A clay particles
- **B** microbes
- **C** nitrates
- **D** odours

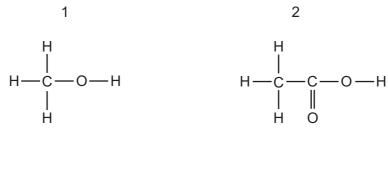
34 A solid substance Z burns in air to form a product that is gaseous at 20 °C.

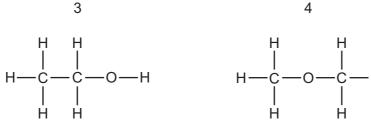
What is Z?

- A hydrogen
- B carbon monoxide
- C carbon
- **D** magnesium
- **35** A section of a polymer is shown.

The structure of its monomer is

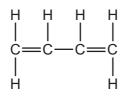
The monomer undergoes condensation polymerisation to form the polymer.


What is made each time a monomer adds to the polymer?


- A hydrogen molecules, H₂
- **B** hydroxide ions, OH⁻
- C oxygen atoms, O
- **D** water molecules, H₂O
- **36** Carboxylic acids react with alcohols to form esters.

Which acid and alcohol react together to form the following ester?

- A propanoic acid and ethanol
- B propanoic acid and methanol
- C ethanoic acid and ethanol
- **D** ethanoic acid and methanol


37 Which two compounds are members of the same homologous series?

- **A** 1 and 2
- **B** 1 and 3
- C 1 and 4
- **D** 2 and 4

38 The diagram shows the structure of the compound 1,3-butadiene.

How many molecules of hydrogen are needed to saturate one molecule of 1,3-butadiene?

- **A** 1
- **B** 2
- **C** 3
- **D** 4

39 Which compound has more than two carbon atoms per molecule?

- A ethyl ethanoate
- **B** ethene
- **C** ethane
- D ethanoic acid

40 Alkanes are a homologous series of organic compounds.

Which statement about alkanes is correct?

- A Their boiling points increase as the length of the carbon chain increases.
- **B** Their general formula is C_nH_{2n} .
- **C** They are unsaturated hydrocarbons.
- **D** They take part in addition reactions.

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Ne	18	8 7	Krypton 36	131 Xe	Xenon 54	R	Radon 86		175 Lu Lutetium 71	-	Lawrencium 103
	NII V		19 Fluorine 9 35.5 C.1	17	88 Q	Bromine 35	127 I	lodine 53	At	Astatine 85		173 Yb Ytterbium	2	_
	IN		16 Oxygen 8 32 Sulphur Sulphur		Se 3	Selenium 34	128 Te	Tellurium 52	Ро	Polonium 84		169 Tm Thulium 69	2	Ę
	>		Nitrogen 7 31 31 Phosphorus	15	75 As	Arsenic 33	122 Sb	Antimony 51	208 B	Bismuth 83		167 Er Erbium 68	8	
	>		Carbon 6 28 Silicon	14	⁷³ Ge	Germanium 32	119 Sn	Tin 50	207 Pb	Lead 82		165 Ho Holmium 67	Ц	Ε
	≡		11 B Boron 27 A1	13		Gallium 31	115 In	Indium 49	204 T 1	Thallium 81		162 Dy Dysprosium 66	1	Ε
					es Zn	Zinc 30	112 Cd	Cadmium 48	201 Hg	Mercury 80		159 Tb Terbium 65	ă	=
					Çu Cu	Copper 29	108 Ag	Silver 47	197 Au	Gold 79		157 Gd Gadolinium 64		
dn					69 \(\)	Nickel 28	106 Pd	Palladium 46	195 Pt	Platinum 78		152 Eu Europium 63	8	Americium 95
Group					₆₉ %	Cobalt 27	103 Rh	Rhodium 45	192 Ir	Iridium 77		Sm Samarium 62		_
		1 Hydrogen			56 Fe	Iron 26	101 Ru	Ruthenium 44	190 S	Osmium 76		Pm Promethium 61	2	Neptunium 93
					55 Mn	Manganese 25	Tc	Technetium 43	186 Re	Rhenium 75		Neodymium 60	238	Uranium 92
					Ğ	Chromium 24	96 Mo	Molybdenum 42	⁸ ≥	Tungsten 74		Praseodymium	D	Protactinium 91
					5 >	Vanadium 23	Page 193	Niobium 41	181 Ta	Tantalum 73		140 Ce Cerium	232	Thorium 90
					48 =	Titanium 22	91 Zr	Zirconium 40	178 H	Hafnium 72			iic mass	ic) number
					45 Sc	Scandium 21	>	Yttrium 39	139 La	Lanthanum 57 *	Ac Actinium t	series eries	a = relative atomic mass X = atomic symbol	b = proton (atomic) number
	=		Be Berylium 4 24 Mg	12	0 Q	Calcium 20	88 Sr	Strontium 38	137 Ba	Barium 56	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series	a ×	
	_		Lithium 3 23 Na Sodium	11	® ×	Potassium 19	85 Rb	Rubidium 37	133 Cs	Caesium 55	Francium 87	*58-71 L ₆	K Pev	و

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.