\square

CAMBRIDGE INTERNATIONAL EXAMINATIONS
 General Certificate of Education Ordinary Level
 CHEMISTRY
 PAPER 4 Alternative to Practical
 MAY/JUNE SESSION 2002

1 hour
Candidates answer on the question paper.
No additional materials are required.

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.
You should use names, not symbols, when describing all reacting chemicals and the products formed.

FOR EXAMINER'S USE

1 What is the volume of liquid, to the nearest cm^{3}, in the measuring cylinder?

cm 3
$=50$
E
$E-40$
E
$=30$
E
$=20$
E

2 Approximately 4 g of solid potassium hydroxide was added to $100 \mathrm{~cm}^{3}$ of water. The temperature changed.

The diagrams below show the temperature of the water before and after the potassium hydroxide was added.

T_{1} (before)

T_{2} (after)
(a) Complete the table and calculate the change in temperature.

temperature T_{2} after	${ }^{\circ} \mathrm{C}$
temperature T_{1} before	${ }^{\circ} \mathrm{C}$
change in temperature	${ }^{\circ} \mathrm{C}$

(b) What type of reaction does this temperature change show?
\qquad
(c) (i) A piece of litmus paper was placed in the potassium hydroxide solution.

What colour was the litmus paper in the potassium hydroxide solution?
\qquad
(ii) How would you determine the pH of the solution?
\qquad
(iii) Suggest a value for the pH of the solution.
\qquad
(d) Suggest another metal hydroxide that would give similar results to those of potassium hydroxide.
\qquad

3 The fertiliser ammonium nitrate contains nitrogen. It has the formula $\mathrm{NH}_{4} \mathrm{NO}_{3}$. It can be made by adding an acid to aqueous ammonia.
(a) Name and give the formula of this acid. name \qquad formula
(b) (i) Which of the diagrams I, II or III shows the best way to make large crystals of ammonium nitrate?

I

II

III
(ii) How can these crystals be separated from the solution?
\qquad
(c) (i) Calculate the mass of nitrogen contained in 160 g of ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}$ ($\left.A_{r}: \mathrm{N}, 14 ; \mathrm{H}, 1 ; \mathrm{O}, 16.\right)$
\qquad
(ii) What is the volume of this mass of nitrogen at r.t.p.? (One mole of a gas occupies $24 \mathrm{dm}^{3}$ at r.t.p.)
(d) Ammonium nitrate contains the ions NH_{4}^{+}and NO_{3}^{-}.

Give a chemical test for each of these ions.
\qquad

For questions 4 to 8 inclusive, place a tick against the best answer.
4 A student obtained pure water from aqueous sodium chloride.
Which method was used?
(a) chromatography
(b) distillation
(c) evaporation
(d) titration

5 A small amount of glucose was dissolved in some water and the boiling point was determined.

The boiling point was
(a) $96^{\circ} \mathrm{C}$,
(b) $98^{\circ} \mathrm{C}$,
(c) $100^{\circ} \mathrm{C}$,
(d) $102^{\circ} \mathrm{C}$.

6 A student did an experiment to decompose hydrogen peroxide.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \xrightarrow{\mathrm{MnO}_{2}(\mathrm{~s})} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})
$$

He repeated the experiment using manganese(IV) oxide as a catalyst.
Which of the following observations was correct?
(a) The manganese(IV) oxide was used as an aqueous solution.
(b) The catalyst increased the yield of oxygen.
(c) The mass of manganese(iv) oxide decreased as the experiment proceeded.
(d) The catalyst increased the rate of decomposition.

7 A student prepares a salt by mixing two aqueous solutions.
A white precipitate is formed. The two solutions can be
(a) copper(I) sulphate and sodium hydroxide.
(b) sodium chloride and silver nitrate.
(c) potassium chloride and sodium nitrate.
(d) iron(II) chloride and sodium hydroxide.

8 The presence of an alkene is confirmed by its reaction with aqueous bromine.
1 mol of alkene reacts with 1 mol of bromine Br_{2}.
In an experiment 4.2 g of an alkene reacts completely with 16 g of bromine.
($A_{r}: \mathrm{C}, 12 ; \mathrm{H}, 1 ; \mathrm{Br}, 80$.)
The alkene is
(a) $\mathrm{C}_{2} \mathrm{H}_{4}$
(b) $\mathrm{C}_{2} \mathrm{H}_{6}$
(c) $\mathrm{C}_{3} \mathrm{H}_{6}$
(d) $\mathrm{C}_{3} \mathrm{H}_{8}$

9 A student determined the concentration of $\mathrm{H}^{+}(\mathrm{aq})$ ions in an acid, by titration with aqueous sodium carbonate.

Solution \mathbf{R} is $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ aqueous sodium carbonate.
$25.0 \mathrm{~cm}^{3}$ of \mathbf{R} was transferred into a flask.
(a) Which is the best piece of apparatus to transfer $25.0 \mathrm{~cm}^{3}$ of \mathbf{R} into the flask?
\qquad
A few drops of methyl orange indicator were added to the flask. The acid was run into the flask from a burette until an end point was reached.
(b) What was the colour change of the methyl orange at the end-point?

The colour changed from to
(c) The diagrams below show the liquid levels in the burette before and after the titration.

After looking at this result the student decided to dilute the acid. Explain why.
(d) The student made solution \mathbf{P} by diluting $10.0 \mathrm{~cm}^{3}$ of the acid to $100 \mathrm{~cm}^{3}$ in a graduated flask.

The student poured away the acid that was left in the burette.
Before refilling with solution \mathbf{P}, which two liquids did the student use to wash out the burette?

1st liquid \qquad
2nd liquid
(e) Three titrations were done using the solution \mathbf{P}. The diagrams below show part of the burette at the beginning and end of each titration.

Using the diagrams, complete the following table.

titration number	1	2	3
final burette reading $/ \mathrm{cm}^{3}$			
initial burette reading $/ \mathrm{cm}^{3}$			
volume of \mathbf{P} used $/ \mathrm{cm}^{3}$			
best titration results (\checkmark)			

Summary:
Tick the best titration results.
Using these results, the average volume of \mathbf{P} required was \qquad cm^{3}. [4]
(f) Calculate the number of moles of sodium carbonate in $25.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium carbonate, solution \mathbf{R}.

Carbonate ions $\mathrm{CO}_{3}{ }^{2-}$ react with $\mathrm{H}^{+}(\mathrm{aq})$ ions according to the following equation

$$
2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})
$$

(g) Calculate the number of moles of $\mathrm{H}^{+}(\mathrm{aq})$ ions in the average volume of solution \mathbf{P}.
(h) Calculate the concentration of $\mathrm{H}^{+}(\mathrm{aq})$ ions in $\mathrm{mol} / \mathrm{dm}^{3}$ in solution \mathbf{P}.
(i) Using the information in (d) and your answer to (h), calculate the concentration of $\mathrm{H}^{+}(\mathrm{aq})$ ions in the original acid solution.

10 The following table shows the tests a student did on compound \mathbf{V} and the conclusions made from the observations. Complete the table by describing these observations and suggest the test and observation which led to the conclusion from test 4.

	Test	Observation
$\mathbf{1}$V was dissolved in water and the solution divided into three parts for tests 2, 3 and 4.		Conclusion
$\mathbf{2}$(a) To the first part, aqueous sodium hydroxide was added until a change was seen. (b) An excess of aqueous sodium hydroxide was added to the mixture from (a).		V is not a compound of a transition metal.
3To the second part, an equal volume of aqueous ammonia was added until a change was seen.		V may contain Ca^{2+} ions.

11 Calcium carbonate reacts with hydrochloric acid according to the equation

$$
\mathrm{CaCO}_{3}+2 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

A student investigated the rate of this reaction using the apparatus shown below. Experiments 1 and 2 were done using small lumps of calcium carbonate.

In experiment $1,100 \mathrm{~cm}^{3}$ of $0.05 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid was added to 1.0 g (an excess) of solid calcium carbonate in the flask. The volume of carbon dioxide was recorded every 30 seconds. This was experiment 1 .

The diagrams below show the volumes of carbon dioxide produced after 60, 90, 120 and 150 seconds. Record these volumes in the table below.

In experiment $2,50 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid was added to 1.0 g calcium carbonate.

The results are shown in the table.
(a)

time / seconds	volume of carbon dioxide / cm^{3}	
	experiment 1	experiment 2
30	21	32
60		48
90		57
120		60
150		60
180	60	60

Plot the volume of carbon dioxide against time on the grid below. For each experiment connect the points with a smooth curve. Label the curves 1 (experiment 1) and 2 (experiment 2).

Use the graphs to answer the following questions.
(c) Why was the volume of gas the same in each experiment?
\qquad
(d) At which point in experiment 1 was the rate the greatest?

Explain your answer.
START
MIDDLE
END

Tick the correct answer.
Explanation.
\qquad
\qquad
(e) After how many seconds in each experiment has half the total volume of carbon dioxide been produced?

Experiment 1 \qquad seconds

Experiment 2 \qquad seconds
(f) Experiment 3 was done using 1.0 g of powdered calcium carbonate and $50 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid.

Draw a line on your graph to represent the results of this experiment and label it 3. [2]
(g) Experiment 4 was done using $50 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ nitric acid with 1.0 g of calcium carbonate.

What was the final volume of carbon dioxide produced?

$$
60 \mathrm{~cm}^{3} \quad 120 \mathrm{~cm}^{3} \quad 180 \mathrm{~cm}^{3} \quad 240 \mathrm{~cm}^{3}
$$

Tick the correct answer.

