Candidate Name

CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CHEMISTRY

PAPER 4 Alternative to Practical

5070/4 **MAY/JUNE SESSION 2002**

1 hour

Candidates answer on the question paper. No additional materials are required.

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer all questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question. You should use names, not symbols, when describing all reacting chemicals and the products formed.

FOR EXAMINER'S USE

1 What is the volume of liquid, to the nearest cm³, in the measuring cylinder?

2 Approximately 4 g of solid potassium hydroxide was added to 100 cm³ of water. The temperature changed.

The diagrams below show the temperature of the water before and after the potassium hydroxide was added.

(a) Complete the table and calculate the change in temperature.

temperature T ₂ after	°C
temperature T ₁ before	°C
change in temperature	°C

(b)) What type of reaction does this temperature change show?		
			. [1]
(c)	(i)	A piece of litmus paper was placed in the potassium hydroxide solution.	
		What colour was the litmus paper in the potassium hydroxide solution?	

- (ii) How would you determine the pH of the solution?
- (iii) Suggest a value for the pH of the solution.

[3]

- (d) Suggest another metal hydroxide that would give similar results to those of potassium hydroxide.
 -[1]

[4]

(d)	Ammonium nitrate o	contains	the ions	NH_4^+	and NO_3^{-} .	
-----	--------------------	----------	----------	----------	------------------	--

Give a chemical test for each of these ions.

 NH_4^+

[5]

For questions 4 to 8 inclusive, place a tick against the best answer.

4 A student obtained pure water from aqueous sodium chloride.

Which method was used?

(a)	chromatography	
(b)	distillation	
(c)	evaporation	
(d)	titration	[1]
		11

5 A small amount of glucose was dissolved in some water and the boiling point was determined.

The boiling point was

- **(a)** 96 °C,
- **(b)** 98 °C,
- **(c)** 100 °C,
- (d) 102 °C.

[1]

6 A student did an experiment to decompose hydrogen peroxide.

$$2H_2O_2(aq) \xrightarrow{MnO_2(s)} 2H_2O(I) + O_2(g)$$

He repeated the experiment using manganese($\ensuremath{\mathbb{I}}\xspace$) oxide as a catalyst.

Which of the following observations was correct?

- (a) The manganese (IV) oxide was used as an aqueous solution.
- (b) The catalyst increased the yield of oxygen.
- (c) The mass of manganese (IV) oxide decreased as the experiment proceeded.
- (d) The catalyst increased the rate of decomposition.
- 7 A student prepares a salt by mixing two aqueous solutions.

A white precipitate is formed. The two solutions can be

- (a) copper(I) sulphate and sodium hydroxide.
- (b) sodium chloride and silver nitrate.
- (c) potassium chloride and sodium nitrate.
- (d) iron(\mathbb{I}) chloride and sodium hydroxide.
- 8 The presence of an alkene is confirmed by its reaction with aqueous bromine.

1 mol of alkene reacts with 1 mol of bromine Br₂.

In an experiment 4.2 g of an alkene reacts completely with 16 g of bromine. (A_r : C, 12; H, 1; Br, 80.)

The alkene is

- (a) C₂H₄
- **(b)** C₂H₆
- (c) C_3H_6
- (d) C_3H_8

[1]

[1]

[1]

After looking at this result the student decided to dilute the acid. Explain why.

......[1]

(d) The student made solution **P** by diluting 10.0 cm³ of the acid to 100 cm³ in a graduated flask.

The student poured away the acid that was left in the burette.

Before refilling with solution \mathbf{P} , which two liquids did the student use to wash out the burette?

1st liquid

5070/4 Jun02

(e) Three titrations were done using the solution **P**. The diagrams below show part of the burette at the beginning and end of each titration.

Using the diagrams, complete the following table.

titration number	1	2	3
final burette reading / cm ³			
initial burette reading / cm ³			
volume of P used / cm ³			
best titration results (\checkmark)			

Summary:

Tick the best titration results.

Using these results, the average volume of **P** required was cm³. [4]

- (f) Calculate the number of moles of sodium carbonate in $25.0 \, \text{cm}^3$ of $0.100 \, \text{mol/dm}^3$ sodium carbonate, solution **R**.
 - moles [1]

Carbonate ions CO_3^{2-} react with H⁺(aq) ions according to the following equation

 $2H^+(aq) + CO_3^{2-}(aq) \longrightarrow H_2O(I) + CO_2(g)$

(g) Calculate the number of moles of $H^+(aq)$ ions in the average volume of solution **P**.

..... moles [1]

(h) Calculate the concentration of $H^+(aq)$ ions in mol/dm³ in solution **P**.

..... mol/dm³ [1]

(i) Using the information in (d) and your answer to (h), calculate the concentration of H⁺(aq) ions in the original acid solution.

..... mol/dm³ [1]

10 The following table shows the tests a student did on compound **V** and the conclusions made from the observations. Complete the table by describing these observations and suggest the test and observation which led to the conclusion from test 4.

	Test	Observation	Conclusion
1	V was dissolved in water and the solution divided into three parts for tests 2, 3 and 4.		V is not a compound of a transition metal.
2	 (a) To the first part, aqueous sodium hydroxide was added until a change was seen. (b) An excess of aqueous sodium hydroxide was added to the mixture from (a). 		V may contain Ca ²⁺ ions.
3	To the second part, an equal volume of aqueous ammonia was added until a change was seen.		The presence of Ca ²⁺ ions is confirmed.
4			V contains SO_4^{2-} ions.

5070/4 Jun02

11 Calcium carbonate reacts with hydrochloric acid according to the equation

$$CaCO_3 + 2HCl \longrightarrow CaCl_2 + H_2O + CO_2$$

A student investigated the rate of this reaction using the apparatus shown below. Experiments 1 and 2 were done using small lumps of calcium carbonate.

In experiment 1, 100 cm³ of 0.05 mol/dm³ hydrochloric acid was added to 1.0 g (an excess) of solid calcium carbonate in the flask. The volume of carbon dioxide was recorded every 30 seconds. This was experiment 1.

The diagrams below show the volumes of carbon dioxide produced after 60, 90, 120 and 150 seconds. Record these volumes in the table below.

20 30 40	40 50 60
60 seconds	90 seconds
50 60 70	50 60 70
120 seconds	150 seconds

In experiment 2, $50\,\text{cm}^3$ of $0.100\,\text{mol/dm}^3$ hydrochloric acid was added to $1.0\,\text{g}$ calcium carbonate.

The results are shown in the table.

(a)

time /	volume of carbon dioxide / $\rm cm^3$		
seconds	experiment 1	experiment 2	
30	21	32	
60		48	
90		57	
120		60	
150		60	
180	60	60	

Plot the volume of carbon dioxide against time on the grid below. For each experiment connect the points with a smooth curve. Label the curves **1** (experiment 1) and **2** (experiment 2).

.....[1]

11

For Examiner's Use

	12	For Examiner's	
(d)) At which point in experiment 1 was the rate the greatest?		
	Explain your answer.		
	START MIDDLE END		
	Tick the correct answer.		
	Explanation.		
	[2]		
(e)	After how many seconds in each experiment has half the total volume of carbon dioxide been produced?		
	Experiment 1 seconds		
	Experiment 2 seconds [2]		
(f)	Experiment 3 was done using 1.0g of powdered calcium carbonate and 50cm^3 of 0.100mol/dm^3 hydrochloric acid.		
	Draw a line on your graph to represent the results of this experiment and label it 3 . [2]		
(g)	Experiment 4 was done using 50 cm ³ of 0.100 mol/dm ³ nitric acid with 1.0 g of calcium carbonate.		
	What was the final volume of carbon dioxide produced?		
	$60 \mathrm{cm^3}$ 120 $\mathrm{cm^3}$ 180 $\mathrm{cm^3}$ 240 $\mathrm{cm^3}$		

Tick the correct answer.

[1]