CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

PAPER 3 Practical Test

5070/3

MAY/JUNE SESSION 2002

1 hour 30 minutes

Candidates answer on the question paper. Additional materials: As listed in Instructions to Supervisors

wTIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page.

Answer both questions.

Write your answers in the spaces provided on the question paper.

You should show the essential steps in any calculation and record all experimental results in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question. Qualitative Analysis notes for this paper are printed on page 8.

FOR EXAMINER'S USE	
1	
2	
TOTAL	

This question paper consists of 6 printed pages and 2 blank pages.

- **1 P** is a solution of either hydrochloric acid (HC*l*) or sulphuric acid (H_2SO_4). You are to identify the acid, and determine its concentration by titrating it against solution **Q** which is 0.100 mol/dm³ sodium hydroxide.
 - (a) Identification of the acid in P

Carry out the following tests on solution **P** and record your observations in the table.

Test no.	Test	Observations
1	To a portion of P , add an equal volume of aqueous lead(II) nitrate.	
2	To a portion of P , add an equal volume of aqueous silver nitrate.	
3	To a portion of P , add an equal volume of aqueous barium nitrate.	

The acid present in **P** is

[4]

(b) Determination of the concentration of the acid in P

Put **P** into the burette. Pipette a 25.0 cm^3 (or 20.0 cm^3) portion of **Q** into a flask and titrate with **P**, using the indicator provided.

3

Record your results in the table, repeating the titration as many times as you consider necessary to achieve consistent results.

Results

Burette readings

Titration number	1	2	
Final reading/cm ³			
Initial reading/cm ³			
Volume of P used / cm ³			
Best titration results (

Summary

- Volume of solution \mathbf{Q} used was cm³.
- (c) Q is 0.100 mol/dm³ sodium hydroxide. Using your results from (b), calculate the concentration, in mol/dm³, of the acid in P.

[12]

2 You are provided with two solutions **R** and **S** which contain the same transition metal. Carry out the following tests and record your observations in the table. You should test and name any gas evolved.

Tests on Solution R

Test no.	Test		Observations
1	(a)	To a portion of solution R , add an equal volume of aqueous barium nitrate and allow the mixture to stand for a few minutes.	
	(b)	Add nitric acid to the mixture from (a) .	
2	(a)	To a portion of solution R , add aqueous sodium hydroxide until a change is seen.	
	(b)	Add excess aqueous sodium hydroxide to the mixture from (a) .	
	(c)	To a portion of the mixture from (b) , add an equal volume of aqueous hydrogen peroxide and warm gently .	

[10]

Conclusion

The negative ion present in **R** is

[1]

Test	Test	Observations	
no.	1001		
3	(a) To a portion of solution S , add aqueous sodium hydroxide until a change is seen.		
	(b) To a portion of the mixture from (a), add an equal volume of aqueous barium nitrate and allow the mixture to stand for a few minutes.		
	(c) To the mixture from (b), add nitric acid.		
4	To a small portion of solution S , add an equal volume of dilute sulphuric acid followed by an equal volume of aqueous hydrogen peroxide.		

[9]

Conclusions

Transition metals form coloured compounds. Suggest another property of transition metals shown by these tests.

property[1]

BLANK PAGE

BLANK PAGE

NOTES FOR USE IN QUALITATIVE ANALYSIS

Test for anions

anion	test	test result
carbonate (CO_3^{2-})	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide (I ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous lead(II) nitrate	yellow ppt.
nitrate (NO $_{3}^{-}$) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulphate (SO ₄ ^{2–}) [in solution]	acidify with dilute nitric acid, then add aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia	
aluminium (Al ³⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess	
ammonium (NH ₄ ⁺)	ammonia produced on warming	-	
calcium (Ca ²⁺)	white ppt., insoluble in excess	no ppt. or very slight white ppt.	
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution	
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess	
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess	
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution	

Test for gases

gas	test and test result
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	"pops" with a lighted splint
oxygen (O ₂)	relights a glowing splint
sulphur dioxide (SO ₂)	turns aqueous potassium dichromate(VI) from orange to green