

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME			
	CENTRE NUMBER		CANDIDATE NUMBER	
* 9 2	CHEMISTRY			0620/05
2 3	Paper 5 Practica	al Test	Oc	tober/November 2009
°				1 hour 15 minutes
_	Candidates answ	wer on the Question Paper.		
6 8 6	Additional Mater	ials: As listed in Instructions to Supervisors		
* 🚃	READ THESE I	NSTRUCTIONS FIRST		

Write your, Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a pencil for any diagrams, graphs or rough working.Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES Answer **all** questions. Practical notes are provided on page 8.

At the end of the examination, fasten all you work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
Total		

This document consists of 7 printed pages and 1 blank pages.

1 You are going to investigate the temperature rise produced when equal lengths of magnesium ribbon react with excess dilute sulfuric acid of different concentrations (labelled Examiner's **A**, **B**, **C**, and **D**).

Read all the instructions below carefully before starting the experiments.

Instructions

Pour about 4 cm³ of solution **A** into a test-tube. Add a piece of magnesium ribbon to the tube. Note your observations and test the gas.

observations	
	[1]

______[1]

test for gas	
result	[2]

Experiment 1

By using a measuring cylinder, pour 20 cm³ of solution **A** into the beaker provided. Measure the initial temperature of the solution and record it in the table below. Add one length of magnesium ribbon to the solution in the beaker, and stir the mixture with the thermometer. Record the highest temperature reached.

Remove the thermometer and rinse out the beaker with water.

Experiment 2

Repeat Experiment 1 using solution **B** instead of solution **A**. Record the initial and final temperatures in the table. Rinse out the beaker.

Experiment 3

Repeat Experiment 1, using solution **C**. Record the temperatures in the table.

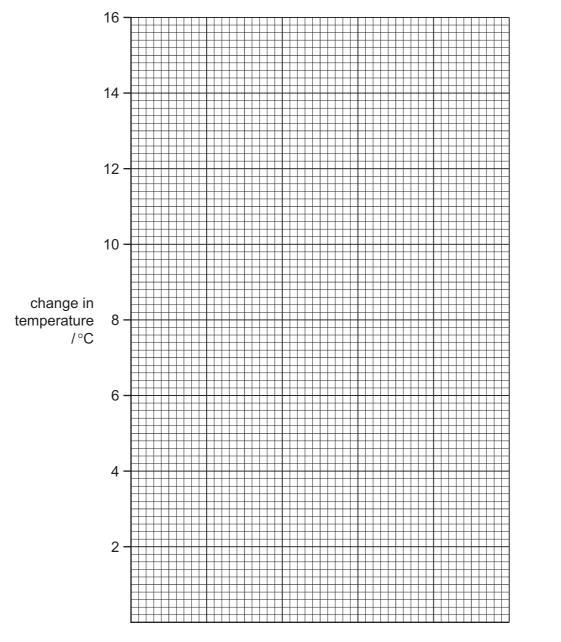
Experiment 4

Repeat Experiment 1 using solution **D**. Record the temperatures in the table.

Table of results

solution of sulfuric acid	initial temperature/°C	highest temperature/°C	change in temperature/°C
A			
В			
С			
D			

2


For

Use

(a) Work out the temperature change for each experiment and record the value in the table. [1]

For Examiner's Use

(b) Draw a labelled bar chart of the results to Experiments 1, 2, 3 and 4 on the grid below.

[4]

3

Use your results and observations to answer the following questions. (c) (i) Name the gas given off when magnesium reacts with dilute sulfuric acid. [1] (ii) What type of chemical reaction occurs when magnesium reacts with dilute sulfuric acid?[1] (d) (i) Which Experiment produced the largest temperature change? [1] (ii) Suggest why this Experiment produced the largest temperature change. [1] (e) Predict the effect on the temperature changes that would happen if (i) equal masses of magnesium powder were used in the Experiments, [1] (ii) 40 cm³ of dilute sulfuric acid was used in Experiment 1. [1] (iii) Explain your answer to (e)(ii). [1] (f) Give one possible source of experimental error in this investigation. [1] [Total: 20]

4

For Examiner's Use

0620/05/O/N/09

2 You are provided with three solutions K, L and M.Carry out the following tests on the solutions, recording all of your observations in the table.Do not write any conclusions in the table.

For Examiner's Use

tests	observations
(a) Describe the appearance of the solutions.	
solution K	,
solution L	,
solution M	[1]
(b) Using Universal Indicator paper, test the pH of each solution.	
solution K	pH
solution L	pH
solution M	pH[2]
tests on solution K	
 (c) (i) By using a teat pipette, add drops of solution K to about 3 cm³ of copper sulfate solution in a test-tube. 	
Now add an excess of solution K to the test tube.	[2]
 (ii) Repeat experiment (c)(i) using aqueous aluminium sulfate instead of aqueous copper sulfate. 	[2]
(iii) To about 3 cm ³ of solution K add a few drops of nitric acid and about 1 cm ³ of silver nitrate solution.	[1]

tests	observations		For Examiner's
tests on solution L			Use
(d) (i) Repeat experiment (c)(i) using solution L	,	[1]	
(ii) Repeat experiment (c)(ii) using solution L		 [2]	
(iii) Repeat experiment (c)(iii) using solution L		[1]	
tests on solution M			
(e) Repeat experiment c(iii) using solution M		[2]	

(f) What conclusions can you make about solution K?

		[2]
(g)	What conclusions can you make about solution L?	
		[2]
(h)	Identify solution M .	[2]
	[Total: 20 mar	

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

NOTES FOR USE IN QUALITATIVE ANALYSIS

Test for anions

anion	test	test result
carbonate (CO ₃ ^{2–})	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide (I [−]) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	yellow ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ^{2–}) [in solution]	acidify, then add aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium (A <i>l</i> ³⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
ammonium (NH ₄ ⁺)	ammonia produced on warming	-
calcium (Ca ²⁺)	white ppt., insoluble in excess	no ppt., or very slight white ppt.
copper (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test results	
ammonia (NH ₃)	turns damp red litmus paper blue	
carbon dioxide (CO ₂)	turns limewater milky	
chlorine (Cl ₂)	bleaches damp litmus paper	
hydrogen (H ₂)	"pops" with a lighted splint	
oxygen (O ₂)	relights a glowing splint	