

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
CHEMISTRY		0620/02
Paper 2		October/November 2009
		1 hour 15 minutes
Candidates ans	swer on the Question Paper.	
No Additional N	laterials are required.	
NO Additional N	iateriais are required.	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the periodic table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

_	For Examiner's Use							
t	1							
	2							
	3							
	4							
	5							
	6							
	7							
	Total							

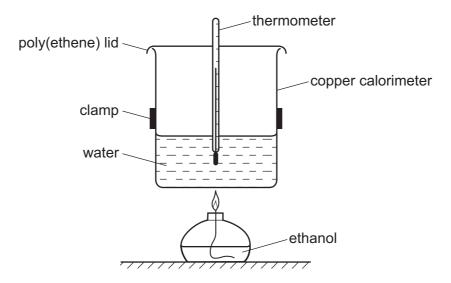
This document consists of 17 printed pages and 3 blank pages.

1

The	e list shows some non-metallic elements.	
	bromine carbon fluorine krypton nitrogen oxygen	
(a)	Which two elements in the list are in the same Group of the Periodic Table?	
	and	[1]
(b)	Which element in the list has the highest proton number?	
		[1]
(c)	Which two of these elements make up most of the air?	
	and	[1]
(d)	Bromine and fluorine form a compound with the formula BrF ₅ . Calculate the relative molecular mass of BrF ₅ .	
		- 4 -
(0)		[1]
	The diagram shows the structure of some compounds containing oxygen. A B C D	
0	$O = C = O \qquad \begin{pmatrix} K^{+} & (K^{+}) & (K$	
	(i) What type of oxide is compound C?	
		[1]

(ii)	Compound A is an atmospheric pollutant. Describe the source of compound A and state its effect on the environment.
	Source
	Effect on the environment
	[2]
(iii)	In the presence of air, compound D reacts with water to form nitric acid.
	A student used the apparatus below to add an aqueous solution of nitric acid to an aqueous solution of potassium hydroxide. He added the acid until it was in excess.
	solution of nitric acid
	solution of potassium hydroxide
	Describe how the pH of the solution in the flask changes as the nitric acid is added until the acid is in excess.
	[3]
(iv)	Describe how you can measure this pH change.
	[1]
(v)	The equation for the reaction is
	$KOH + HNO_3 \rightarrow KNO_3 + H_2O$
	State the name of the salt formed in this reaction.
	[1] [Total: 12]

For


Examiner's Use

2 (a) Link the terms in the boxes on the left with the definitions on the right. The first one has been done for you. a substance containing different atoms or ions atom bonded together a substance made up compound of one type of atom the smallest part of an element which takes part element in a chemical reaction the smallest group of covalently bonded atoms ion which can exist on its own a charged atom or molecule group of atoms [4] **(b)** Which **two** of the following are mixtures? Tick two boxes. air graphite sodium chloride steel [1]

(c)	(i)	Draw a labelled diagram to show the atomic structu In your diagram include the structure of the nucleus		For Examiner's Use
			[4]	
	(ii)	State a use for helium.		
			[1]	
	(iii)	Which one of these statements about helium is corr	ect?	
		helium is in Period 2 of the Periodic Table		
		helium is a liquid at room temperature		
		helium is unreactive		
		helium has an incomplete outer shell of electrons		
			[1]	
			[Total: 11]	

3 A student used the apparatus shown to calculate the energy released when ethanol burns.

For Examiner's Use

(a) Draw the structure of ethanol showing all atoms and bonds.

[1]

- **(b)** The energy released by the burning ethanol raises the temperature of the water in the copper calorimeter.
 - (i) Which one of these words best describes the energy change when ethanol burns? Put a ring around the correct answer.

electrolytic electronic endothermic exothermic [1]

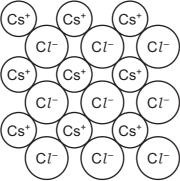
(ii) When 4.6 g of ethanol is burnt, 5.4 g of water is formed.

Calculate the mass of water formed when 13.8 g of ethanol is burnt.

[1]

	(iii) (Complete	the equat	ion for the	combusti	on of e	ethanol.	
	C ₂ H ₅	OH +	3O ₂	→	CO ₂	+	H ₂ O	[1]
(c)							insition metal. etals from Group I	metals.
								[2]
(d)	forms		surface.				_	f copper carbonate conate reacts with
		CuCO	$\theta_3(s) + 2$	HC <i>l</i> (aq)	\rightarrow CuC l_2 ((aq) -	+ CO ₂ (g) + H ₂ C)(I)
	(i) [Describe	two obser	vations th	at can be r	nade a	as this reaction ha	ppens.
		1.						
						•••••		
	(11)	State the	meaning o	of the sym	bol (aq).			
								[1]
(e)			er lid is ma se sentend			ıe) usi	ng words from the	list.
;	acids		addition	C	ondensati	on	ethane	ethene
		n	nonomers				polymer	
F	Polv(et	hene) is	а		formed by	the	of e	thene molecules
								mene molecules.
I	n this i	reaction	the ethene	molecule	s can be d	lescrib	ed as	
								[3]
								[Total: 12]

1	Cae	esiun	n is a metal in Group I of the Periodic Table.	
	(a)	Stat	te two physical properties of caesium.	
				[2]
	(b)	Stat	te the number of electrons in the outer shell of a caesium atom.	
				[1]
	(c)	An i	sotope of caesium has a mass number of 133.	
		(i)	What do you understand by the term isotope?	
				[1]
		(ii)	Calculate the number of neutrons in this isotope of caesium.	
				[1]


(d) Complete the following table to estimate the boiling point of caesium and predict the reactivity of caesium with water.

Group I metal	density/ g/cm³	boiling point	reactivity with water
sodium	0.97	883	fizzes quickly, disappears gradually and does not burst into flame
potassium	0.86	760	fizzes very quickly, disappears quickly and bursts into flame with a little spitting
rubidium	1.53	686	fizzes extremely quickly, bursts into flame then spits violently and may explode
caesium	1.88		

[2]

For Examiner's Use

(e) The diagram shows the structure of caesium chloride.

	Use this diagram to work out the simplest formula for caesium chloride.	
		[1]
(f)	Caesium chloride dissolves in water to form a neutral solution. State the pH of a neutral solution.	
		[1]
(g)	Describe a test for chloride ions.	
	test	
	result	
		[2]
	[Total:	11]

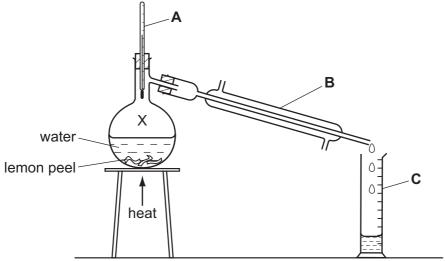
5 Limonene is a colourless unsaturated hydrocarbon found in lemons. The structure of limonene is shown below.

For Examiner's Use

(a) On the formula above, draw a circle around the bonds which make limonene an unsaturated compound.

[1]

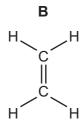
(b) Write the molecular formula for a molecule of limonene.

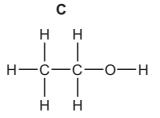

[1]

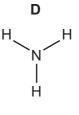
(c) Describe the colour change which occurs when excess limonene is added to a few drops of bromine water.

[2]

(d) Limonene can be extracted from lemon peel by steam distillation.




	(i)	State the name of the pieces of apparatus labelled A , B and C .	
		Α	
		В	
		c	[3]
	(ii)	At point X on the diagram, the water is in the form of steam. Describe the arrangement and the movement of the particles in steam.	
		arrangement	
		movement	[2]
(e)	Wh	en limonene undergoes incomplete combustion, carbon monoxide is formed.	
	(i)	What do you understand by the term incomplete combustion?	
			[1]
	(ii)	State an adverse effect of carbon monoxide on health.	
			[1]


(f) The structures of some compounds found in plants are shown below.

For Examiner's Use

(i) Which one of these compounds is a carboxylic acid?

												I	•	1	1	
	_	 _	 	 _	_	_						- 1	L	•	J	

(ii) Which one of these compounds is produced by the fermentation of glucose?

[1	1	ı
 L	١.	ı

(iii) Which one of these compounds is a hydrocarbon? [1]

[Total: 14]

Aluminium is extracted by the electrolysis of aluminium oxide. positive electrode electrolyte (aluminium oxide dissolved in molten cryolite) (a) Hydrated aluminium oxide is heated to produce pure aluminium oxide. $Al_2O_3.3H_2O$ Al_2O_3 3H₂O hydrated aluminium oxide What type of reaction is this? Put a ring around the correct answer. decompositon neutralisation oxidation reduction [1] **(b)** Explain why the electrolyte must be molten for electrolysis to occur. [1] (c) What is the purpose of the cryolite? [1] (d) Which letter in the diagram, A, B, C or D, represents the cathode? [1] (e) State the name of the products formed at the anode and cathode during this electrolysis. cathode (f) Why do the anodes have to be renewed periodically?

(g) Complete the equation for the formation of aluminium from aluminium ions. $Al^{3+} + \dots e^{-} \rightarrow Al \qquad [1]$	For Examiner's Use
(h) State one use of aluminium.	1
[Total: 10]	

15 7 The diagram shows an experiment to investigate the rusting of some iron nails. В C Α airair air. iron nail iron nail iron nail coated with zinc distilled drying agent distilled (calcium chloride) water water (a) For each tube A, B and C predict whether the nails will rust. In each case give a reason. tube **A**: does the nail rust? reason tube **B**: does the nail rust? reason tube **C**: does the nail rust? reason [3] (b) Iron from the blast furnace contains impurities such as carbon, phosphorus, silicon and sulfur. Describe how the level of these impurities is decreased when steel is made from impure iron. [3]

For Examiner's Use

[1]

......

(c) State a use for stainless steel.

(d)	Pure iron can be prepared by the reduction of iron(II) oxide, FeO.	
	FeO + $H_2 \rightarrow$ Fe + H_2O	
	Explain how this equation shows that the iron(II) oxide has been reduced.	
		[1]
(e)	Iron(II) oxide reacts with acids.	
	FeO + 2HC $l \rightarrow$ FeC l_2 + H ₂ O	
	Write a word equation for this reaction.	
		[2]
	[Total:	10]

BLANK PAGE

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

Group	0	He 4 Helium	- 1	Ne	Neon 10	40	Αr	Argon 18	84	ᅔ	Krypton 36	131	Xe	Xenon 54		R	Radon 86			175	Ľ	Lutetium 71		۲	103
	II/		19	ш	Fluorine 9	35.5	Cl	Chlorine 17	80	Ā	Bromine 35	127	I	lodine 53		¥	Astatine 85			173	Υb	Ytterbium 70		٩	Nobelium 102
			16	0	Oxygen 8	32	တ	Sulfur 16	79	Se	Selenium 34	128	<u>e</u>	Tellurium 52		Ъ	Polonium 84			169	Tm			Md	Mendelevium 101
	>		41	z	Nitrogen 7		۵	Phosphorus 15		As			Sb	Antimony 51		ä	Bismuth 83			167	щ	Erbium 68		Fm	Fermium 100
	2		12	ပ	Carbon 6		Si	Silicon 14		Ge	Germanium 32	119	Sn		207	Pb	Lead 82			165	유	Holmium 67		Es	n Einsteinium 99
	≡		11	Ω	Boron 5	27	Ν	Aluminium 13	20	Ga	Gallium 31	115	In	Indium 49	204	11	Thallium 81			162		Ę		ర	Californium 98
									65	Zn	Zinc 30	112		Cadmium 48	201	Hg				159	₽	Terbium 65		BK	Berkelium 97
									64	చె	Copper 29	108	Ag	Silver 47	197	Αn	Gold 79			157		Ε			Curium 96
									69	Z	Nickel 28	106	Pd	Palladium 46	195	ፈ	Platinum 78			152	Eu	Europium 63			Americium 95
									59	ဝိ	Cobalt 27	103	R	Rhodium 45	192	Ľ				150	Sm	_		Pu	Plutonium 94
		T Hydrogen	-						99	Fe	Iron 26	101		Ruthenium 44	190	s _O	Osmium 76				Pm	Promethium 61		N	Neptunium 93
										Mn	≥ 2		ဍ	Technetium 43	186		_			144	Nd	Neodymium 60	238	-	Uranium 92
									52	ပ်	Chromium 24	96	Mo	Molybdenum 42	184		_			141	P	Praseodymium 59		Ра	Protactinium 91
									51	>	Vanadium 23	93	q	Niobium 41	181	<u>Б</u>	Tantalum 73			140	Ce	Cerium 58	232	ᄕ	Thorium 90
									48	j=	Titanium 22	91	Zr	Zirconium 40	178	Ξ	* Hafnium						nic mass	pol	nic) number
									45	လွ	Scandium 21	68	>	Yttrium 39	139	La	Lanthanum 57 *	227	Actinium Actinium 489		orion	S D D	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number
	=		6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	S	Strontium 38	137	Ва	Barium 56	226	Radium 88	* 60 44 0 1 47 0 1*	30-7 I Lantinandiu sene 190 103 Actinoid sorios	ACIIIIOIU :	а	×	Φ
	_		7	=	Lithium 3	23	Na	Sodium 11	39	¥	Potassium 19	85	Rb	Rubidium 37	133	Cs	Caesium 55	Ľ	Francium 87	*60 71	100-7 L +00-7 L	01-08		Key	٥

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.