Location Entry Codes

As part of CIE's continual commitment to maintaining best practice in assessment, CIE uses different variants of some question papers for our most popular assessments with large and widespread candidature. The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions is unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiners' Reports that are available.

Question Paper Mark Scheme **Principal Examiner's** Report Introduction Introduction Introduction First variant Question Paper First variant Mark Scheme First variant Principal Examiner's Report Second variant Question Second variant Mark Second variant Principal Paper Scheme Examiner's Report

Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

The titles for the variant items should correspond with the table above, so that at the top of the first page of the relevant part of the document and on the header, it has the words:

• First variant Question Paper / Mark Scheme / Principal Examiner's Report

or

Second variant Question Paper / Mark Scheme / Principal Examiner's Report

as appropriate.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY Paper 3 (Extend	ded)		0620/31 May/June 2009
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part questions.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
Total		

1 hour 15 minutes

This document consists of **15** printed pages and **1** blank pages.

1	Some grass is crushed and mixed with the solvent, propanone. The colour pigments are extracted to give a deep green solution.			
	(a)	(i)	Draw a labelled diagram to describe how you could show that there is more than one coloured pigment in the green solution.	
			[3]	
		(ii)	Given a pure sample of chlorophyll, how could you show that the green solution from the grass contained chlorophyll?	
			[2]	
	(b)	Exp	plain the role of chlorophyll in green plants.	
			[0]	
			[3]	
			[Total: 8]	

© UCLES 2009 0620/31/M/J/09

For Examiner's Use 2 The results of experiments on electrolysis using inert electrodes are given in the table.

For Examiner's Use

Complete the table; the first line has been completed as an example.

electrolyte	change at negative electrode	change at positive electrode	change to electrolyte
molten lead(II) bromide	lead formed	bromine formed	used up
	potassium formed	iodine formed	used up
dilute aqueous sodium chloride			
aqueous copper(II) sulfate			
	hydrogen formed	bromine formed	potassium hydroxide formed

[Total: 8]

3 The following is a list of the electron distributions of atoms of unknown elements.

For Examiner's Use

[Total: 10]

element	electron distribution
Α	2,5
В	2,8,4
С	2,8,8,2
D	2,8,18,8
E	2,8,18,8,1
F	2,8,18,18,7

		F	2,8,18,18,7			
(a) C	(a) Choose an element from the list for each of the following descriptions.					
(i)	It is	a noble gas.				
(ii)	It is a	a soft metal with a	low density.			
(iii)	It ca	n form a covalent	compound with element A.			
(iv)	It ha	s a giant covalent	structure similar to diamond.			
(v)	It ca	n form a negative	ion of the type X ³⁻ .		[5]	
	i) Dr an Us	raw a diagram thand the arrangemerse or to represent a	orm an ionic compound. It shows the formula of this control of the valency electrons around electron from an atom of Control en electron from an atom of Foundation of Foundation electron from an atom of Foundation electron electron from an atom of Foundation electron elec	und	ound, the charges on the ions the negative ion.	
(i	i) Pr 	redict two properti	es of this compound.		[3]	
					[2]	

© UCLES 2009 0620/31/M/J/09

4 The reactivity series of metals given below contains both familiar and unfamiliar elements. For most of the unfamiliar elements, which are marked *, their common oxidation states are given.

For Examiner's Use

* barium	Ва
* lanthanum	La (+3)
magnesium	
zinc	
* chromium	Cr (+2), (+3), (+6)
iron	
copper	
* palladium	(+2)

Choose metal(s) from the above list to answer the following questions.

(i)	Which two metals would not react with dilute hydrochloric acid?	
		[2]
(ii)	Which two unfamiliar metals (*) would react with cold water?	
		[2]
(iii)	What is the oxidation state of barium?	
		[1]
(iv)	Name an unfamiliar metal (*) whose oxide cannot be reduced by carbon.	
		[1]
(v)	Why should you be able to predict that metals such as iron and chromium had more than one oxidation state?	ave
		[1]
	[Total	: 7]

[2]

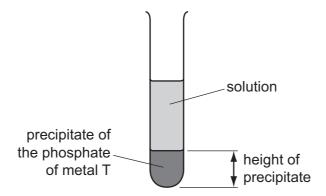
5	Insoluble salts a	re made by	precipitation.
---	-------------------	------------	----------------

(a) A preparation of the insoluble salt calcium fluoride is described below.

To 15 cm³ of aqueous calcium chloride, 30 cm³ of aqueous sodium fluoride is added. The concentration of both solutions is 1.00 mol / dm³. The mixture is filtered and the precipitate washed with distilled water. Finally, the precipitate is heated in an oven.

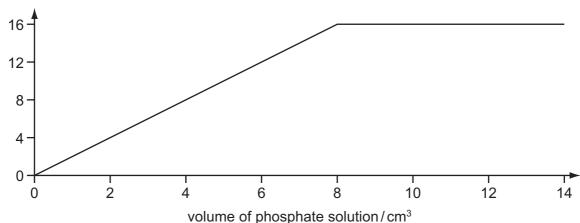
precipitate washed with distilled water. Finally, the precipitate is heated in an oven.			
(i)	Complete the equation.		

 Ca^{2+} + F^{-} \longrightarrow


(ii)	Why is the volume of sodium fluoride solution double that of the calcium chlor solution?	ride
(iii)	Why is the mixture washed with distilled water?	[1]
(iv)	Why is the solid heated?	[1]
		[41]

© UCLES 2009 0620/31/M/J/09

(b) The formulae of insoluble compounds can be found by precipitation reactions.


For Examiner's Use

To $12.0~\text{cm}^3$ of an aqueous solution of the nitrate of metal T was added $2.0~\text{cm}^3$ of aqueous sodium phosphate, Na_3PO_4 . The concentration of both solutions was $1.00~\text{mol/dm}^3$. When the precipitate had settled, its height was measured.

The experiment was repeated using different volumes of the phosphate solution. The results are shown on the following graph.

What is the formula of the phosphate of metal T? Give your reasoning.

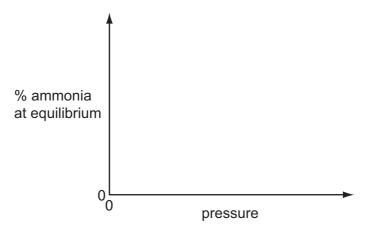
[3]

[Total: 8]

8 Ammonia is manufactured by the Haber process. 6 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ the forward reaction is exothermic (a) (i) Name the raw materials from which nitrogen and hydrogen are obtained. nitrogen from [1] hydrogen from [1] (ii) Name the catalyst used in this process. [1] (iii) What is the most important use of ammonia? [1] (b) The following graph shows how the percentage of ammonia in the equilibrium mixture changes with temperature. % ammonia at equilibrium 0 temperature (i) Explain the term equilibrium.

.....

(ii) How does the percentage of ammonia vary with temperature?


For Examiner's Use

[1]

© UCLES 2009 0620/31/M/J/09

(c) (i) Sketch a graph which shows how the percentage of ammonia in the equilibrium mixture varies with pressure.

For Examiner's Use

[1]

(ii)	Explain why the graph has the shape shown.	
		••••
		[2

[Total: 10]

7 Hydrogen reacts with the halogens to form hydrogen halides.

For Examiner's Use

(a) Bond energy is the amount of energy, in kJ, that must be supplied (endothermic) to break one mole of a bond.

bond	bond energy in kJ/mol
H—H	+436
C <i>l</i> —C <i>l</i>	+242
H–C <i>l</i>	+431

Use the above data to show that the following reaction is exothermic.

H—H + C <i>l</i> —C <i>l</i>	→ 2H—C <i>l</i>	
		[3]

© UCLES 2009 0620/31/M/J/09

For Examiner's Use

[Total: 8]

(b)	The	ey react with wat	ter to fo	orm	acidic	solutio	ons.		
							H ₃ O+		
			HF	+	H ₂ O	\rightleftharpoons	H ₃ O+	+	F ⁻
	(i)	Explain why wa	ater be	have	es as a	base	in both	of tl	hese reactions.
									[2]
	(ii)		n the	othe	er equ	ilibriu			exists as molecules, the rest has the hydrogen fluoride exists as
		What does this	tell yo	u ab	out the	e strei	ngth of e	each	acid?
									[2]
	(iii)	How would the	pH of	thes	e two	solutio	ons diffe	r?	
									[1]

8 Lactic acid can be made from corn starch.

lactic acid

It polymerises to form the polymer, polylactic acid (PLA) which is biodegradable.

a)	Suggest two advantages that PLA has compared with a polymer made from petroleu	ım.
		••••
		••••
		[2]

(b) The structure of PLA is given below.

(i) What type of compound contains the group that is circled?

		[1]
(ii)	Complete the following sentence.	
	Lactic acid molecules can form this group because they contain both an	
	group and an group.	[2]
iii)	Is the formation of PLA, an addition or condensation polymerisation? Give reason for your choice.	э а

© UCLES 2009 0620/31/M/J/09

For Examiner's Use

							_
(c)	When.	lactic	acid is	s heated,	acrylic	acid is	formed
(Υ)	VVIICII	iaotio	aoia it	, iioatoa,	aoi y iio	acia ic	, ioiiiioa.

For
Examiner's
Use

H H H—C—C—COOH H OH	H_C=C H
lactic acid	acrylic acid

(i)	Complete the word equation for the action of heat on lactic acid.								
	lactic acid → + [1]								
(ii)	Describe a test that would distinguish between lactic acid and acrylic acid.								
	test								
	result for lactic acid								
	result for acrylic acid[3]								
(iii)	Describe a test, other than using an indicator, which would show that both chemicals contain an acid group.								
	test								
	result								

[Total: 13]

[2]

For Examiner's Use

9

		ies of chemicals, expressed in moles, can be used to find the formula of a und, to establish an equation and to determine reacting masses.
(a)		compound contains 72% magnesium and 28% nitrogen. What is its empirical mula?
	•••••	[2]
(b)		compound contains only aluminium and carbon. 0.03 moles of this compound reacted n excess water to form 0.12 moles of A $l(OH)_3$ and 0.09 moles of CH $_4$.
	Wri	ite a balanced equation for this reaction.
	•••••	[2]
(c)	0.0	7 moles of silicon reacts with 25 g of bromine.
		$Si + 2Br_2 \longrightarrow SiBr_4$
	(i)	Which one is the limiting reagent? Explain your choice.
		[3]
	(ii)	How many moles of SiBr ₄ are formed?
		[1]
		[Total: 8]

© UCLES 2009 0620/31/M/J/09

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He Heium	20 Ne Neon 10 At Argon 18 Argon	84 K rypton 36	131 Xe Xenon	Rn Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103
	II		19 Fluorine 9 35.5 C 1 Chlorine	80 Br Bromine	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102
	N		16 Oxygen 8 32 S Sulfur 16	Selenium	128 Te			169 Tm Thullum	Md Mendelevium 101
	^		14 Nitrogen 7 31 Phosphorus 15	AS As Arsenic 33	Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68	Fm Fermium
	/		12 Carbon 6 Silicon 14	73 Ge Germanium 32	Sn Tin	207 Pb Lead		165 Ho Holmium 67	ES Einsteinium 99
	III		11 B 80ron 5 27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T t Thallium		162 Dy Dysprosium 66	Cf Californium 98
				65 Zn Zinc 30	Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97
				64 Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm Curium 96
Group				59 Ni Nickell 28	106 Pd Palladium	195 Pt Platinum		152 Eu Europium 63	Am Americium 95
Gr				59 Co Cobalt	103 Rh Rhodium	192 Ir Iridium		Sm Samarium 62	Pu Plutonium
		T Hydrogen		56 Fe Iron	Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Np Neptunium 93
				Manganese	Tc Technetium	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91
				51 Vanadium 23	Niobium A1	181 Ta Tantalum		140 Ce Cerium	232 Th Thorium
				48 Ti Titanium 22	2r Zroonium 40	178 Hf Hafnium 72			nic mass bol nic) number
				Scandium 21	89 ×	La Lanthanum 57 *	227 Ac Actinium 89	series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Beryllium 4 24 Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series	a ★ ¤
	_		7 Lithium 3 23 Na Sodium 11	39 K	Rubidium 37	Caesium 55	Fr Francium 87	*58-71 L 190-103	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/32
Paper 3 (Extend	ded)		May/June 2009
			1 hour 15 minutes
Candidates ans	wer on the Question Paper.		
No Additional M	laterials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part questions.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of ${f 15}$ printed pages and ${f 1}$ blank page.

1			rass is crushed and mixed with the solvent, propanone. The colour pigments are d to give a deep green solution.
	(a)	(i)	Draw a labelled diagram to describe how you could show that there is more than one coloured pigment in the green solution.
			[3]
		(ii)	Given a pure sample of chlorophyll, how could you show that the green solution from the grass contained chlorophyll?
			[2]
	(b)	Exp	plain the role of chlorophyll in green plants.
			[3]
			[Total: 8]

© UCLES 2009 0620/32/M/J/09

For Examiner's Use 2 The results of experiments on electrolysis using inert electrodes are given in the table.

For Examiner's Use

Complete the table; the first line has been completed as an example.

electrolyte	change at negative electrode	change at positive electrode	change to electrolyte
molten lead(II) bromide	lead formed	bromine formed	used up
	lithium formed	chlorine formed	used up
dilute aqueous sodium chloride			
aqueous copper(II) sulfate			
	hydrogen formed	bromine formed	potassium hydroxide formed

[Total: 8]

3 The following is a list of the electron distributions of atoms of unknown elements.

For Examiner's Use

element	electron distribution
Α	2,6
В	2,8,4
С	2,8,8,2
D	2,8,18,8
E	2,8,18,8,1
F	2,8,18,18,7

		-	2,0,10,10,1	
(a) (Choo	se an element from	n the list for each of the follow	ving descriptions.
(i)	It is	a noble gas.		
(ii)	It is	a soft metal with a	a low density.	
(iii)	It ca	an form a covalent	compound with element A.	
(iv)	It ha	as a giant covalent	structure similar to diamond.	
(v)	It is	a diatomic gas wit	h molecules of the type X_2 .	[5]
(b) I	Eleme	ents C and A can f	orm an ionic compound.	
	a U	nd the arrangemer lse o to represent a	at shows the formula of this control of the valency electrons are an electron from an atom of C an electron from an atom of A) .
(ii) P	redict two properti	es of this compound.	[3]
	•••			
				[2]

[Total: 10]

4 The reactivity series of metals given below contains both familiar and unfamiliar elements. For most of the unfamiliar elements, which are marked *, their common oxidation states are given.

For Examiner's Use

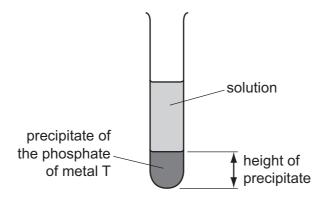
* barium	Ва
* lanthanum	La (+3)
magnesium	
zinc	
* chromium	Cr (+2), (+3), (+6)
iron	
copper	
* palladium	(+2)

Choose metal(s) from the above list to answer the following questions.

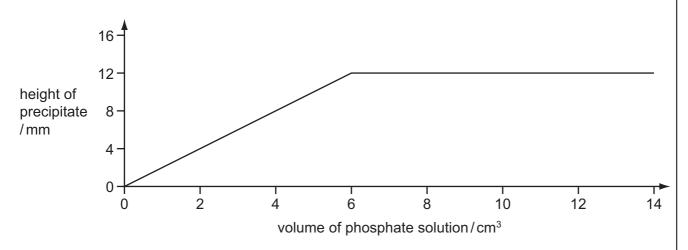
(i)	Which two metals would not react with dilute hydrochloric acid?	
		[2]
(ii)	Which two unfamiliar metals (*) would react with cold water?	
		[2]
(iii)	What is the oxidation state of barium?	
		[1]
(iv)	Name an unfamiliar metal (*) whose oxide cannot be reduced by carbon.	
		[1]
(v)	Why should you be able to predict that metals such as iron and chromium had more than one oxidation state?	ave
		[1]
	[Total	: 7]

For Examiner's Use

[1]


© UCLES 2009 0620/32/M/J/09

(iv) Why is the solid heated?


(b) The formulae of insoluble compounds can be found by precipitation reactions.

For Examiner's Use

To $18.0~\text{cm}^3$ of an aqueous solution of the nitrate of metal T was added $2.0~\text{cm}^3$ of aqueous sodium phosphate, Na_3PO_4 . The concentration of both solutions was $1.00~\text{mol/dm}^3$. When the precipitate had settled, its height was measured.

The experiment was repeated using different volumes of the phosphate solution. The results are shown on the following graph.

What is the formula of the phosphate of metal T? Give your reasoning.

[3]

[Total: 8]

For Examiner's Use

[1]

6 Ammonia is manufactured by the Haber process. $3H_2(g) \rightleftharpoons 2NH_3(g)$ the forward reaction is exothermic (a) (i) Name the raw materials from which nitrogen and hydrogen are obtained. nitrogen from [1] hydrogen from [1] (ii) Name the catalyst used in this process. [1] (iii) What is the most important use of ammonia? (b) The following graph shows how the percentage of ammonia in the equilibrium mixture changes with pressure. % ammonia at equilibrium 0 pressure (i) Explain the term equilibrium.

.....

© UCLES 2009 0620/32/M/J/09

(ii) How does the percentage of ammonia vary with pressure?

(c) (i) Sketch a graph which shows how the percentage of ammonia in the equilibrium mixture varies with temperature.

For Examiner's Use

% ammonia at equilibrium	
0,	temperature

[1]

(ii)	Explain why the graph has the shape shown.		
		[2]	
		[ک]	

[Total: 10]

7 Hydrogen reacts with the halogens to form hydrogen halides.

For Examiner's Use

(a) Bond energy is the amount of energy, in kJ, that must be supplied (endothermic) to break one mole of a bond.

bond	bond energy in kJ/mol
H—H	+436
F–F	+158
H–F	+562

Use the above data to show that t	e following reaction is	exothermic
-----------------------------------	-------------------------	------------

	п—г	1 +	г—г	7	∠⊓ − г			
 	 					•••••	 	
								[3]
	 						 	 [J]

© UCLES 2009 0620/32/M/J/09

For Examiner's Use

(b) Th	ey rea	act with	n wate	er to fo	orm	acidic	solutio	ons.		
				HC/	+	H ₂ O	\rightleftharpoons	H_3O^+	+	CI ⁻
				HF	+	H ₂ O	\rightleftharpoons	H_3O^{\dagger}	+	F ⁻
(i)	Exp	lain wh	ıy wat	er be	have	es as a	base	in both	of t	hese reactions.
										[2
(ii)	forn	•	ns. İn	the	othe	er equ	ilibriu			exists as molecules, the rest has the hydrogen fluoride exists as
	Wha	at does	this t	tell yo	u at	out the	e strer	ngth of	each	n acid?
										[2
(iii)	Hov	v would	the p	oH of	thes	e two	solutio	ons diffe	er?	
					•••••					[1
										[Total: 8]

8 Lactic acid can be made from corn starch.

lactic acid

It polymerises to form the polymer, polylactic acid (PLA) which is biodegradable.

a)	Suggest two advantages that PLA has compared with a polymer made from petroleu	ım.
		 [2]
		[ک]

(b) The structure of PLA is given below.

(i) What type of compound contains the group that is circled?

		[1]
(ii)	Complete the following sentence.	
	Lactic acid molecules can form this group because they contain both an	
	group and an group.	[2]
(iii)	Is the formation of PLA, an addition or condensation polymerisation? G reason for your choice.	ive a

© UCLES 2009 0620/32/M/J/09

For Examiner's Use

							_
(c)	When	lactic	acid i	s heated,	acrylic	acid is	formed
(Υ)	VVIICII	idotio	aoia i	o noatoa,	aoi y iio	aoia io	ioiiiioa.

For
Examiner's
Use

H H H—C—C—COOH H OH	H C=C COOH
lactic acid	acrylic acid

(i)	Complete the word equation for the action of heat on lactic acid.
	lactic acid \rightarrow + [1]
(ii)	Describe a test that would distinguish between lactic acid and acrylic acid.
	test
	result for lactic acid
	result for acrylic acid [3]
(iii)	Describe a test, other than using an indicator, which would show that both chemicals contain an acid group.
	test
	result

[Total: 13]

[2]

		ind, to establish an equation and to determine reacting masses.
(a)		compound contains 72% magnesium and 28% nitrogen. What is its empirical nula?
		[2]
(b)		ompound contains only aluminium and carbon. 0.03moles of this compound reacted excess water to form 0.12moles of $A\mathit{l}(OH)_3$ and 0.09moles of CH_4 .
	Wri	te a balanced equation for this reaction.
	•••••	[2]
(c)	0.0	8 moles of silicon reacts with 7.2 g of fluorine.
		$Si + 2F_2 \longrightarrow SiF_4$
	(i)	Which one is the limiting reagent? Explain your choice.
		[3]
	(ii)	How many moles of SiF₄ are formed?
		[1]
		[Total: 8]

0620/32/M/J/09

© UCLES 2009

For Examiner's Use

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	Neon 10 Neon 40 Argon 18	84 Krypton 36	Xenon 54	Radon 86		175 Lu Lutetium 71		La		
	=		19 Fluorine 9 35.5 C1 Chlorine	80 Br Bromine	127 I lodine 53	At Astatine 85		Yb Yterbium	2			
	>		16 Oxygen 8 32 S	Selenium	128 Te Tellurium	Po Polonium 84		169 Tm Thulium	Md	Mandalavium		
	>		14 Nitrogen 7 31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68	Fm	Lormina		
	2		12 Carbon 6 Silicon 14 Silicon 14	73 Ge Germanium 32	Sn Tin 50	207 Pb Lead		165 Ho Holmium 67	Es	miniototia.		
	≡		11 B Boron 5 A1 Auminium 13	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium 66				
			65 Zn Zinc 30	Cadmium 48			159 Tb Terbium					
				64 Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm			
Group				59 X Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am			
Ģ				59 Co Cobalt	103 Rh Rhodium 45	1		Sm Samarium 62	Pu	i		
		T Hydrogen		56 Fe Iron	Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61				
				Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Nd Neodymium 60	238			
				Cr Chromium 24	Molybdenum	184 W Tungsten 74		Pr Praseodymium 59	Pa			
						51 Vanadium 23	93 Nb Niobium	181 Ta Tantalum 73		140 Ce Cerium	232 Th	
				48 Ti Titanium	2 Zr Zrconium 40	178 Hf Hafnium			nic mass bol			
				Scandium 21	89 ×	139 La Lanthanum 57 *	227 Ac Actinium 89	l series eries	a = relative atomic massX = atomic symbol			
	=		Beryllium 4 24 Magnesium 12	40 Calcium 20	Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series	<i>a</i> ×	_		
	_		Lithium 3 23 Na Sodium 11	39 K Potassium	Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	58-71 L:	Key	_		

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.