

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
CHEMISTRY		0620/02
Paper 2		October/November 2008
	was an the Question Dense	1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the periodic table is printed on page 16.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use					
1					
2					
3					
4					
5					
6					
7					
Total					

This document consists of 16 printed pages.

1 (a) The table gives some information about five elements, A, B, C, D and E. Complete the table by writing either metal or non-metal in the last column.

elementpropertiesmetal or non-metalAshiny solid which conducts electricity[Breddish brown liquid with a low boiling point[Ca form of carbon which is black in colour and conducts
electricity[Dwhite solid which is an insulator and has a high melting
point[Edull yellow solid which does not conduct heat[

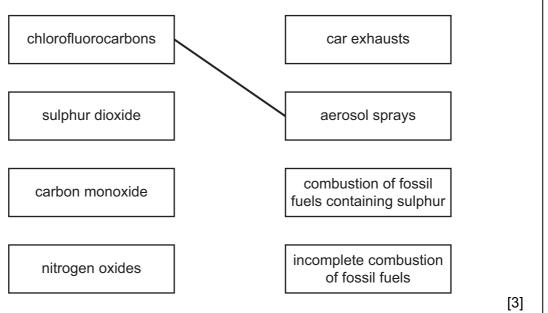
[5]

- (b) Describe how metallic character changes across a Period.
 - [1]
- (c) Sodium is in Group I of the Periodic Table.
 - (i) Draw a diagram to show the full electronic structure of sodium.

[1]

(ii) Complete the equation to show what happens when a sodium atom forms a sodium ion.

$$Na \longrightarrow Na^{+} + \dots$$
[1]


For Examiner's Use (d) Complete these sentences about the properties of the Group I elements using words from the list.

acidic	basic		decrease		hard	
incr	ease	lithium	ро	otassium		soft
The Group I ele	ments are relativ	ely	me	tals which		in
reactivity going down the Group. Sodium reacts more violently with water than						
The Group I me	tals all form		oxides.			[4]
						IT (1 401

[Total: 12]

3

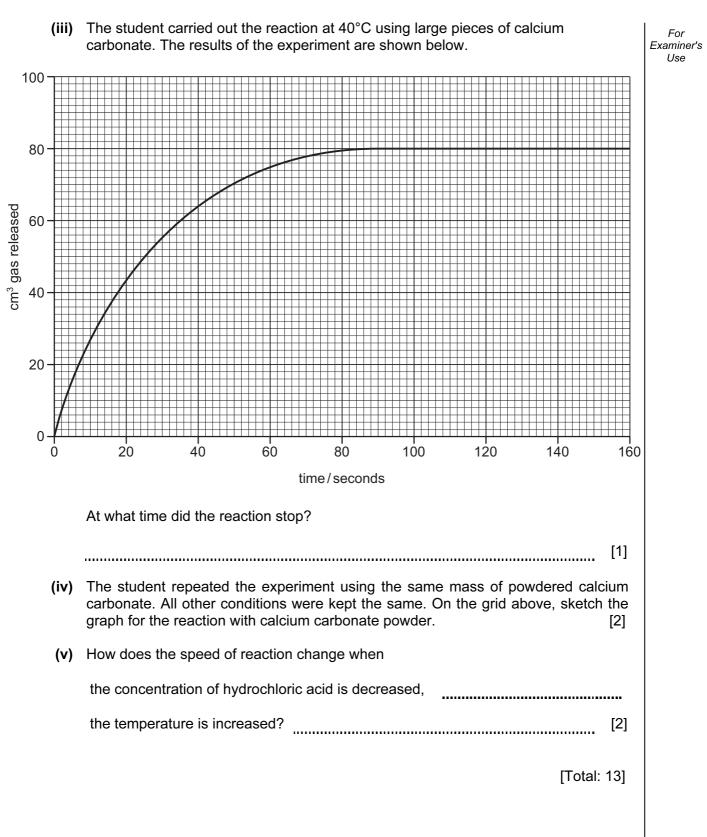
2 (a) Match up the atmospheric pollutants on the left with their main source on the right. The first one has been done for you.

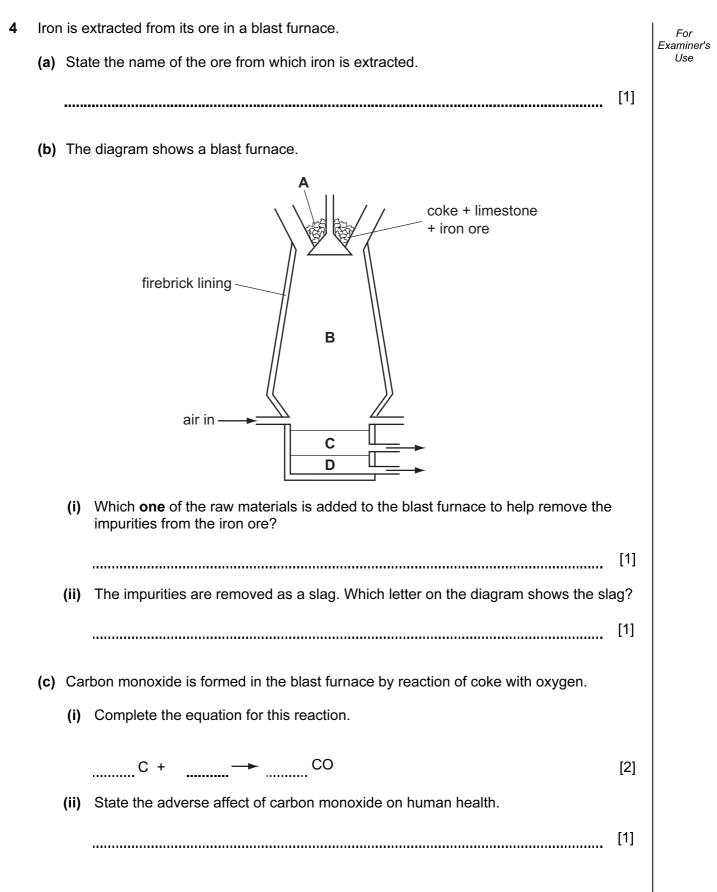
For

Examiner's Use

(b) One stage in the manufacture of sulphuric acid involves the oxidation of sulphur dioxide by oxygen in the air to form sulphur trioxide.

$$2SO_2 + O_2 \longrightarrow 2SO_3$$


(i) Explain how this reaction shows that sulphur dioxide is oxidized.


.....

(iv)	Why do farmers need to use fertilisers?	For Examiner's Use
	[2]	
(v)	Another fertiliser can be made by the reaction of ammonia with nitric acid. State the chemical name of this fertiliser. [1]	
	[Total: 9]	

For Examiner's Use

3

(d) In the hottest regions of the blast furnace the following reaction takes place. For Examiner's Fe₂O₃ + 3C → 2Fe + 3CO Use Which two of these sentences correctly describe this reaction? Tick two boxes. The iron oxide gets reduced. The reaction is a thermal decomposition. The carbon gets oxidised. The carbon gets reduced. Carbon neutralises the iron oxide. [1] (e) Aluminium cannot be extracted from aluminium oxide in a blast furnace. Explain why aluminium cannot be extracted in this way. [2] _____ (f) (i) State the name of the method used to extract aluminium from its oxide ore. [1] (ii) State one use of aluminium. [1] [Total: 11]

5 The apparatus shown below can be used to measure the energy released when a liquid fuel is burnt. The amount of energy released is calculated from the increase in temperature of a known amount of water.

For Examiner's Use

(e) The	e iron can used in this experiment rusts easily.		
(i)	Describe a method which can be used to prevent iron from rusting.		
			[1]
(ii)	Rust contains hydrated iron(III) oxide. What do you understand by the term <i>hydrated</i> ?		
			[1]
(iii)	Iron is a transition metal. State two properties which are typical of transition metals.		
			[4]
		[Total:	12]

For Examiner's Use

The compound shown below is the first member of the alkane homologous series. 6 Examiner's

(a) State two characteristics of a homologous series. _____ (b) Name and draw the structure of the next member of the alkane homologous series. name

structure

[2]

[2]

For

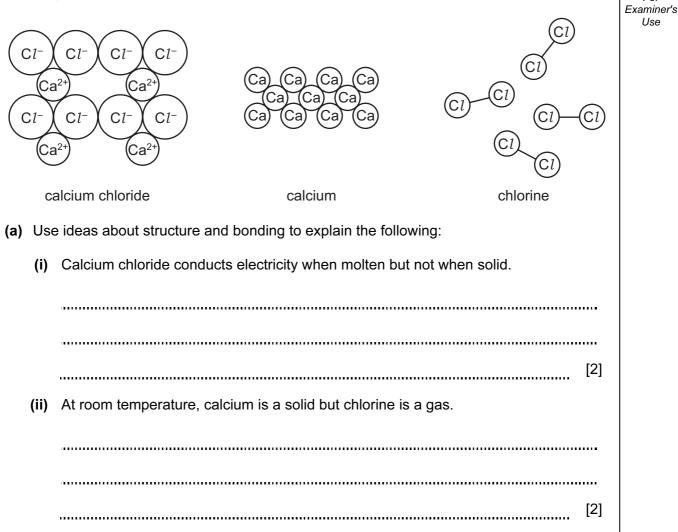
Use

(c) Complete the table to show the structure and uses of some organic compounds.

name of compound	molecular formula	structure (showing all atoms and bonds)	use
ethene	C ₂ H ₄		
ethanoic acid	$C_2H_4O_2$		making esters
dibromoethane		Br Br H—C—C—H H H	
	CH₄	Н Н—С—Н Н	

(d) Calculate the relative molecular mass of dibromoethane.

For Examiner's Use


[1]

[Total: 11]

For

Use

7 The diagram shows the structures of calcium chloride, calcium and chlorine.

For Examiner's Use

(b) Calcium is manufactured by the electrolysis of molten calcium chloride.

water-cooled steel cathode calcium molten calcium chloride (i) State the products formed at the anode, at the cathode. [2] (ii) Suggest a non-metal that can be used as an anode in this electrolysis. [1] (iii) A stream of inert gas is blown over the calcium as it is removed from the molten calcium chloride. Suggest why a stream of inert gas is blown over the hot calcium. [1] (iv) State the name of a gas which is inert. [1] (c) Aqueous sodium hydroxide or aqueous ammonia can be used to test for calcium ions in solution. Describe the results of these tests with aqueous sodium hydroxide, [2] with aqueous ammonia. [1] _____ [Total: 12]

	0	A Helium	20 Neon 10 ^{Neon} 40 Ar Argon	84 Krypton 36 131 131 Xenon 54	Radon 86	175 Luetum 71 Lawencium 103
	IN IN		9 Fluorine 35.5 35.5 17 17 Chlorine	80 Bromine 35 127 127 I S3 Iodine	At Atatine 85	To viterbium 70 Nobelium Nobelium 102
			16 0 0 8 0xygen 8 32 32 16 Sulphur	79 Selenium 34 128 128 Tallurium 52	Po Palonium 84	169 Thuilum 69 Mendelevium 101
	>		Nitrogen 7 31 7 7 7 7 7 7 7 7 7 7 7 7 7	75 As Arsenic 33 Arsenic 33 Arsenic 51	209 Bismuth 83	167 Er 68 Fermium 100
	≥		6 Carbon 6 28 28 28 14 Silicon	73 Germanium 32 119 Sn 50	207 Pb 82 Lead	165 Holmium 67 Einsteinium 99
	≡		11 5 Boron 5 27 27 Aluminium 13	70 Gaa 31 115 115 115 49	204 T 1 81	162 Dysprosium 66 Cf Cf 98
ents				65 Zinc 30 2inc 112 Cd 48	201 Mercury 80	159 Terbium 65 Berkelium 97
The Periodic Table of the Elements				64 Cu Copper 29 108 Ag	Au Gold 79	157 Gd Badolinium 64 Ourium 96
ble of th	dno			59 Nickel 106 Pd 46	195 Platinum 78	152 Europium 63 Am Am
iodic Table of th Group	Hydrogen	_	59 Cobalt 27 Cobalt 103 Rh Rhodium	192 Ir 77	150 Samarium 62 Putonium 94	
The Per			56 Fe Iron 26 Iron 101 84 Ruthenium	190 OSmium 76	61 Beromethium 61 Neptunium 93	
				55 Mn Mnganese 25 Tc Tc 130	186 Re 75	144 Neodymium 60 238 0 Uranium
				52 Crromium 24 96 Molybdenum 42	184 V 74	141 Praseodymium 59 Protactinium 91
				51 Vanadium 23 93 93 Nobbium	181 Tan 73	140 Centum 58 232 232 232 90
				48 Titanium 22 91 91 21 Zrconium	178 Hafnium 72	l nic mass bol nic) number
				45 Scandium 21 89 89 89 39 Yttrium	139 Lanthanum 57 × 227 Actinium	4 2 4
	=		9 Beryllum 4 Beryllum 24 Magnesium	40 Calcium 20 88 Strontium 38	137 Baa 56 226 Radium 88	noic
	_		7 L Lithium 3 Lithium 23 23 23 23 11 50dium	39 Rubidium 37	133 CS Caesium 55 Francium 87	*58-71 Lé 190-103 / Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.