Location Entry Codes

As part of CIE's continual commitment to maintaining best practice in assessment, CIE uses different variants of some question papers for our most popular assessments with large and widespread candidature. The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions is unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiners' Reports that are available.

Question Paper	Mark Scheme	Principal Examiner's Report
Introduction	Introduction	Introduction
First variant Question Paper	First variant Mark Scheme	First variant Principal Examiner's Report
Second variant Question Paper	Second variant Mark Scheme	Second variant Principal Examiner's Report

Who can I contact for further information on these changes? Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

The titles for the variant items should correspond with the table above, so that at the top of the first page of the relevant part of the document and on the header, it has the words:

• First variant Question Paper / Mark Scheme / Principal Examiner's Report

or

• Second variant Question Paper / Mark Scheme / Principal Examiner's Report

as appropriate.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	
*			
7	CHEMISTRY		0620/31
9	Paper 3 (Extend	led)	May/June 2008
0 2			1 hour 15 minutes
5 0	Candidates ans	wer on the Question Paper.	
8 2	No Additional M	aterials are required.	
4			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES

Answer all questions. A copy of the Periodic Table is printed on page 12	For Exam	iner's Use
A copy of the renoule rable is printed on page 12.	1	
The number of marks is given in brackets [] at the end of each question or part questions.	2	
	3	
	4	
	5	
	6	
	7	
	8	
	Total	

This document consists of 11 printed pages and 1 blank page.

1	For each of the following select an element from Period 4, matches the description.	potassium to krypton, that	For Examiner's Use
	(a) It is a brown liquid at room temperature.		
	(b) It forms a compound with hydrogen having the formula XH_4 .		
	(c) A metal that reacts violently with cold water.		
	(d) It has a complete outer energy level.		
	(e) It has oxidation states of 2 and 3 only.		
	(f) It can form an ion of the type X ⁻ .		
	(g) One of its oxides is the catalyst in the Contact Process.		
		[Total: 7]	

© UCLES 2008

0620/31/M/J/08

(ii) Atoms can form positive ions. [2] (iii) Atoms of the same element can have different masses. [2] (iv) Scientists are certain that there are no undiscovered elements missing from the Periodic Table from hydrogen to lawrencium. [1]

(b) Use the information in the table to explain the following.

2

- (i) Atoms contain charged particles but they are electrically neutral because they
- have no overall charge.

.....

.....

name symbol relative mass relative charge e electron 1 proton 0 n

(a) Complete the table which gives the names, symbols, relative masses and relative charges of the three subatomic particles.

[2]

[Total: 10]

For

Examiner's Use

3	Co	pper	is purified by electrolysis.			For Exeminaria
	(a)	Co	nplete the following.			Use
		Th	e positive electrode (anode) is made from			
		Th	e negative electrode (cathode) is made from			
		Th	e electrolyte is aqueous		[3]	
	(b)	Wri	te an ionic equation for the reaction at the po	sitive electrode (anode).		
					[2]	
	(c)	(i)	Give two reasons why copper is used,			
			in electric wiring,			
					[2]	
			in cooking utensils.			
					[2]	
		(ii)	Give another use of copper.			
					[1]	
				[Total:	10]	

4	Sul	lphu	ric acid is a typical strong acid.		For
	(a)	Ch	ange the equations given into a different format.		Use
		(i)	Mg + $H_2SO_4 \longrightarrow MgSO_4 + H_2$ Change into a word equation.		
				[1]	
		(ii)	lithium oxide + sulphuric acid → lithium sulphate + water Change into a symbol equation.		
			~	[2]	
		(iii)	CuO + $2H^+ \longrightarrow Cu^{2^+} + H_2O$ Change the ionic equation into a symbol equation.		
				[2]	
		(iv)	$Na_2CO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + CO_2 + H_2O$ Change into a word equation.		
				. [1]	
	(b)	Wh H₂S Exp	tion sulphuric acid dissolves in water, the following reaction occurs. SO ₄ + H ₂ O \longrightarrow HSO ₄ ⁻ + H ₃ O ⁺ plain why water is behaving as a base in this reaction.		
				[2]	
	(c)	Sul Exp	lphuric acid is a strong acid, ethanoic acid is a weak acid. plain the difference between a strong acid and a weak acid.		
				[2]	
			[Tota	al: 10]	

[4] [Total: 12] For Examiner's Use

Carbonyl chloride, $COC l_2$, is a colourless gas. It is made by the following reaction.

5

Use o for an electron from a carbon atom. Use ● for an electron from an oxygen atom.

 $C_6H_{12}O_6(aq) \longrightarrow 2C_2H_5OH(aq) + 2CO_2(q)$ The reaction is exothermic. Eventually the fermentation stops when the concentration of ethanol is about 12%. (i) What is an enzyme? [1] (ii) Pasteur said that fermentation was respiration in the absence of air. Suggest a definition of respiration. [2] (iii) On a large scale, the reaction mixture is cooled. Suggest a reason why this is necessary. [1] (iv) Why does the fermentation stop? Suggest two reasons. [2] (v) When the fermentation stops, there is a mixture of dilute aqueous ethanol and yeast. Suggest a technique which could be used to remove the cloudiness due to the yeast. [1] Name a technique which will separate the ethanol from the ethanol/water mixture. [1] [Total: 14]

(c) The fermentation of glucose is catalysed by enzymes from yeast. Yeast is added to

cells are formed.

aqueous glucose, the solution starts to bubble and becomes cloudy as more yeast

For

Examiner's Use 7 Crystals of sodium sulphate-10-water, Na₂SO₄.10H₂O, are prepared by titration.

(a) 25.0 cm³ of aqueous sodium hydroxide is pipetted into a conical flask. A few drops of an indicator are added. Using a burette, dilute sulphuric acid is slowly added until the indicator just changes colour. The volume of acid needed to neutralise the alkali is noted.

Suggest how you would continue the experiment to obtain pure, dry crystals of sodium sulphate-10-water.

[4]

(b) Using 25.0 cm³ of aqueous sodium hydroxide, 2.24 mol / dm³, 3.86 g of crystals were obtained. Calculate the percentage yield.

 $2NaOH + H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2O$ $Na_2SO_4 + 10H_2O \longrightarrow Na_2SO_4.10H_2O$

Number of moles of NaOH used =		
Maximum number of moles of $Na_2SO_4.10H_2O$ that could be formed =		
Mass of one mole of $Na_2SO_4.10H_2O = 322g$		
Maximum yield of sodium sulphate-10-water =		g
Percentage yield =	%	[4]
	[Total	: 8]

Large areas of the Amazon rain forest are cleared each year to grow soya beans. The trees 8 For are cut down and burnt. Examiner's Use (a) Why do these activities increase the percentage of carbon dioxide in the atmosphere? [2] (b) Soya beans contain all three main food groups. Two of which are protein and carbohydrate. (i) What is the third group? [1] (ii) Draw the structural formula of a complex carbohydrate such as starch. [3] (iii) Compare the structure of a protein with that of a synthetic polyamide. The structure of a typical protein is given below. Ĩ Ĥ Ö Н How are they similar? How are they different? [3] [Total: 9]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

]		F
	0	4 Helium	20 Neon 10 Argon 18 Argon	84 Krypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium 71	Lawrenciur
	NII N		19 Fluorine 35.5 C1 17 Chlorine	80 Bromine 35	127 I Iodine	At Astatine 85		173 Yb Ytterbium 70	Nobelium
	\geq		16 ² A Oxygen 32 ³² ³² ³² ³² ³²	79 Selenium 34	128 Te Tellurium 52	Poonium 84		169 Thulium	Mendelevium
	>		14 Nitrogen 31 Phosphorus	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi smuth		167 Er ^{Erbium}	Fermium F
	≥		6 Carbon 6 28 28 14 Silicon	73 Ge Germanium 32	119 Sn 50	207 Pb Lead		165 HO Holmium 67	Einsteinium
	≡		11 Beron 5 Autminium 13	70 Gal 31	115 In Indium 49	204 T1 Thallium 81		162 Dysprosium 66	Californium
				65 Zn ^{2inc}	112 Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	Berkelium
				64 Copper 29	108 Ag Silver	197 Au Gold 79		157 Gd Gadolinium 64	Ourium Ourium
dno				59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Americium
5 D				59 Co 27	103 Rh Rhodium 45	192 Ir Iridium		150 Sm Samarium 62	Plutonium
		Hydrogen		56 Fe	101 Ruthenium 44	190 OS Osmium 76		Promethium 61	Neptunium
				55 Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Neodymium 60	Uranium
				52 Chromium 24	96 Mo Molybdenum 42	184 V Tungsten 74		141 Pr Praseodymium 59	Protactinium
				51 Vanadium 23	93 Niobium 41	181 Ta Tantalum 73		140 Ce Cerium	232 Thor
				48 Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72		1	bol bol
				45 Scandium 21	89 Yttrium 39	139 La Lanthanum 57 *	227 Actinium 89	d series series	 = relative aton = atomic sym
	=		9 Beryllium 4 Beryllium 4 Magnesium	40 Calcium 20	88 St rontium 38	137 Ba Barium 56	226 Rad ium 88	anthanoic Actinoid s	• × 2
	_		23 Lithium 23 Na 11	39 Potassium 19	85 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 L _i 190-103 /	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

DATA SHEET The Periodic Table of the Elements 12

72182

J

ы 2 UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
 CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/32
Paper 3 (Extend	led)		May/June 2008
			1 hour 15 minutes
Candidates ans	wer on the Question Paper.		
No Additional M	aterials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a pencil for any diagrams, graphs or rough working.Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES

Answer all questions. A copy of the Periodic Table is printed on page 12	For Exam	iner's Use
A topy of the renove rabie is printed on page 12.	1	
The number of marks is given in brackets [] at the end of each question or part questions.	2	
	3	
	4	
	5	
	6	
	7	
	8	
	Total	

This document consists of **11** printed pages and **1** blank page.

1	For mat	each of the following select an element from Period 4, the tescription.	potassium to krypton, that	For Examiner's Use
	(a)	It is a brown liquid at room temperature.		
	(b)	It forms a covalent compound with hydrogen having the formula H_2X .		
	(c)	A metal that reacts violently with cold water.		
	(d)	It has a complete outer energy level.		
	(e)	It has oxidation states of 2 and 3 only.		
	(f)	It can form an ion of the type X⁺.		
	(g)	This metal is the catalyst in the Haber Process.		
			[Total: 7]	

[Turn over

2 (a) Complete the table which gives the names, symbols, relative masses and relative charges of the three subatomic particles.

name	symbol	relative mass	relative charge
electron	e		
proton		1	
neutron	n		

[3]

For Examiner's

Use

- (b) Use the information in the table to explain the following.
 - (i) Atoms contain charged particles but they are electrically neutral they have no overall charge.

[2] (ii) Atoms can form negative ions. [2] (iii) Different atoms of the element chlorine are ${}^{35}_{17}$ Cl and ${}^{37}_{17}$ Cl. How are they different? How are they the same? [2] (iv) Scientists are certain that there are no undiscovered elements missing from the Periodic Table from hydrogen to lawrencium. [1] [Total: 10]

3	Cop	oper	is purified by electrolysis.		For
	(a)	Cor	mplete the following.		Use
		Th	e positive electrode (anode) is made from		
		Th	e negative electrode (cathode) is made from		
		Th	e electrolyte is aqueous	[3]	
	(b)	Wri	ite an ionic equation for the reaction at the positive electrode (anode).		
				. [2]	
	(c)	(i)	Give two reasons why copper is used,		
			in electric wiring,		
			in cooking utensils.		
		(ii)	Give another use of copper.		
				[1]	
			[Tot	al: 10]	

4	Sulphur	ic acid is a typical strong acid.
	(a) Cha	ange the equation given into a different format.
	(i)	Mg + $H_2SO_4 \longrightarrow MgSO_4 + H_2$ Change into a word equation.
	(ii)	[1] lithium oxide + sulphuric acid — lithium sulphate + water Change into a symbol equation.
	(iii)	$[2] CuCO_3 + 2H^+ \longrightarrow Cu^{2+} + H_2O + CO_2$ Change the ionic equation into a symbol equation.
	(iv)	[2] $Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + CO_2 + H_2O$ Change into a word equation.
		[1]
	(b) Wh H₂S Exp	en sulphuric acid dissolves in water, the following reaction occurs. SO ₄ + H ₂ O \longrightarrow HSO ₄ ⁻ + H ₃ O ⁺ blain why water is behaving as a base.
		[2]
	(c) Sul bet Des	phuric acid is a strong acid, ethanoic acid is a weak acid. One way of distinguishing ween them is to measure their pH. The weaker acid will have the higher pH. scribe another way by which they could be distinguished.
		[2]
		[Total: 10]

For Examiner's Use

[4] [Total: 12] For

Use

6

Carbonyl chloride, $COCl_2$, is a colourless gas. It is made by the following reaction.

5

(c) The fermentation of glucose is catalysed by enzymes from yeast. Yeast is added to aqueous glucose, the solution starts to bubble and becomes cloudy as more yeast Examiner's cells are formed. $C_6H_{12}O_6(aq) \longrightarrow 2C_2H_5OH(aq) + 2CO_2(q)$ The reaction is exothermic. Eventually the fermentation stops when the concentration of ethanol is about 12%. (i) What is an enzyme? [1] (ii) Pasteur said that fermentation was respiration in the absence of air. Define respiration. [2] (iii) On a large scale, the reaction mixture is cooled. Suggest a reason why this is necessary. [1] (iv) Why does the fermentation stop? Suggest two reasons. [2] (v) When the fermentation stops, there is a mixture of dilute aqueous ethanol and yeast. Suggest a technique which could be used to remove the cloudiness due to the yeast. [1] Name another technique which will separate the ethanol from the ethanol / water mixture. [1] [Total: 14]

For

Use

7 Crystals of sodium sulphate-10-water, Na₂SO₄.10H₂O, are prepared by titration.

[4]

(b) Using 25.0 cm³ of aqueous sodium hydroxide, 2.64 mol / dm³, 3.95 g of crystals were obtained. Calculate the percentage yield.

> $2NaOH + H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2O$ Na₂SO₄ + 10H₂O → Na₂SO₄.10H₂O

Number of moles of NaOH used =		
Maximum number of moles of $Na_2SO_4.10H_2O$ that could be formed =		
Mass of one mole of $Na_2SO_4.10H_2O = 322g$		
Maximum yield of sodium sulphate-10-water =		g
Percentage yield =	%	[4]
	[Tota	l: 8]

For Examiner's Use

Large areas of the Amazon rain forest are cleared each year to grow soya beans. The trees 8 For are cut down and burnt. Examiner's Use (a) Why do these activities increase the percentage of carbon dioxide in the atmosphere? [2] (b) Soya beans contain all three main food groups. Two of which are protein and carbohydrate. (i) What is the third group? [1] (ii) Draw the structural formula of a complex carbohydrate such as starch. [3] (iii) Compare the structure of a protein with that of a synthetic polyamide. The structure of a typical protein is given below. U ∥ Ĥ Ö Н How are they similar? How are they different? [3] [Total: 9]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET The Periodic Table of the Elements

								Gre	dno								
_	=											Ξ	2	>	VI	VII	0
							-										4
							т										He
							Hydrogen 1										Helium 2
7	6					-		_			_	11	12	14	16	19	20
:	Be											8	ပ	z	0	ш	Ne
Lithium 3	Beryllium 4										_	5 Boron	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24										_	27	28	31	32	35.5	40
Na	Mg										_	Al	Si	٩	S	Cl	Ar
Sodium 11	Magnesium 12											Aluminium 13	Silicon 14	Phosphorus 15	Sulphur 16	Chlorine 17	Argon 18
39	40	45	48	51	52	55	56	59	59	64	65	20	73	75	62	80	84
×	Ca	Sc	F	>	с С	Mn	Ее	ပိ	ïz	Cu	Zn	Ga	e G	As	Se	Ŗ	Kr
Potassium 19	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
85	88	88	91	93	96		101	103	106	108	112	115	119	122	128	127	131
Rb	Ś	≻	Zr	٩N	Mo	ц	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Rubidium 37	Strontium 38	Yttrium 39 41	Zirconium 10	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49	50 Tin	Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209			
cs	Ba	La	Ηf	Ta	3	Re	SO	Ir	Ł	Au	Hg	Τl	Pb	Bi	Ро	At	Rn
Caesium 55	Barium 56	57 * 7	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
Ļ	226	227 A C															
Francium 87	Radium 88	Actinium 89 †															
*58_711	ionethae	id corioc		140	141	144		150	152	157	159	162	165	167	169	173	175
190-103 /	Actinoid	series		Cerium Cerium	Pr Praseodymium	Neodvmium	Promethium	Sa marium	Europium	Gd Gadolinium	Tb Terbium	Dy Dvsprosium	Holmium	Erbium	Tm	Yb	Lutetium
			1	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	a a	a = relative atomic	mass	232		238											
Key	×	X = atomic symbol	_	Ч	Ра	D	dN	Pu	Am	CB	BĶ	ç	Es	Fm	Md	No	۲
٩	2	o = proton (atomic)	:) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103
]				3		-			-	5	;	5	-			-	

0620/32/M/J/08

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).