



## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

| CANDIDATE<br>NAME |                            |                     |                   |
|-------------------|----------------------------|---------------------|-------------------|
| CENTRE<br>NUMBER  |                            | CANDIDATE<br>NUMBER |                   |
| CHEMISTRY         |                            |                     | 0620/02           |
| Paper 2           |                            |                     | May/June 2008     |
|                   |                            |                     | 1 hour 15 minutes |
| Candidates ans    | wer on the Question Paper. |                     |                   |
| No Additional M   | laterials are required.    |                     |                   |
|                   |                            |                     |                   |

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

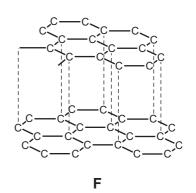
DO **NOT** WRITE IN ANY BARCODES

Answer all questions.

A copy of the periodic table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.


| For Examiner's Use |  |
|--------------------|--|
| 1                  |  |
| 2                  |  |
| 3                  |  |
| 4                  |  |
| 5                  |  |
| 6                  |  |
| 7                  |  |
| Total              |  |

UNIVERSITY of CAMBRIDGE
International Examinations

1 The diagram shows the structures of some substances containing carbon.

For Examiner's Use

$$\begin{array}{c} & Ca^{2+}CO_3^{2-}Ca^{2+}CO_3^{2-}Ca^{2+}\\ & CO_3^{2-}Ca^{2+}CO_3^{2-}Ca^{2+}CO_3^{2-}\\ & C \\ &$$



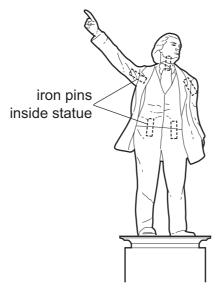
(a) Answer these questions using the letters  ${\bf A},\,{\bf B},\,{\bf C},\,{\bf D},\,{\bf E}$  or  ${\bf F}.$ 

(ii) Which one of these structures is ionic? [1]

(iii) Which one of these structures represents ethanol? [1]

(iii) Which one of these structures represents a gas which turns limewater milky? [1]

(iv) Which one of these structures is an unsaturated hydrocarbon? [1]


(b) Describe a chemical test for an unsaturated hydrocarbon.

[2]

| (c) | State the chemical name of structure                            | e <b>B</b> .                                         |            |
|-----|-----------------------------------------------------------------|------------------------------------------------------|------------|
|     |                                                                 |                                                      | [1]        |
|     |                                                                 |                                                      |            |
| (d) | Structure <b>F</b> has several uses. Which Tick <b>one</b> box. | one of the following is a correct use of structure   | <b>F</b> ? |
|     | for cutting metals                                              |                                                      |            |
|     | as a lubricant                                                  |                                                      |            |
|     | for filling balloons                                            |                                                      |            |
|     | as an insulator                                                 |                                                      | [1]        |
| (e) | The structures <b>A</b> to <b>E</b> are compound                | ls. What do you understand by the term <i>compou</i> | nd?        |
|     |                                                                 |                                                      |            |
|     |                                                                 |                                                      | [1]        |
| (f) | State the type of bonding in structure                          | e <b>A</b> .                                         |            |
| (-) |                                                                 |                                                      | [1]        |
|     |                                                                 | [Total:                                              | 10]        |

For Examiner's Use The diagram shows a statue in a park in an industrial town. The statue is made from limestone.

For Examiner's Use



statue when first erected



the same statue after 20 years

[1]

| (a) | State the name of the chemical present in limestone.                                                             |          |
|-----|------------------------------------------------------------------------------------------------------------------|----------|
|     |                                                                                                                  | [1]      |
| (b) | Use ideas about the chemistry of atmospheric pollutants to suggest how and why the statue changes over 20 years. | <b>:</b> |
|     |                                                                                                                  |          |
|     |                                                                                                                  |          |
|     |                                                                                                                  |          |
|     |                                                                                                                  | [4]      |
|     |                                                                                                                  | r - 1    |

(c) Parts of the statue are joined together with iron pins. After 30 years, the arm falls off the

© UCLES 2008 0620/02/M/J/08

Suggest why the arm falls off.

statue.

| )  | The table shows to  | he number of subatomic                               | particles in an atom of iron.                                           |
|----|---------------------|------------------------------------------------------|-------------------------------------------------------------------------|
|    | type of particle    | number of particles                                  | relative charge on the particle                                         |
|    | electron            | 26                                                   |                                                                         |
|    | neutron             | 30                                                   |                                                                         |
|    | proton              | 26                                                   |                                                                         |
| )  |                     | e to show the relative che of nucleons in this isoto | •                                                                       |
|    |                     |                                                      |                                                                         |
|    |                     |                                                      |                                                                         |
| •  | ne isotopes are rac | lioactive. State one indu                            | strial use of radioactive isotopes                                      |
|    | ne isotopes are rac | lioactive. State one indu                            | strial use of radioactive isotopes                                      |
| on | ne isotopes are rad |                                                      | strial use of radioactive isotopes                                      |
| on |                     |                                                      | istrial use of radioactive isotopes.  Fe( $NO_3$ ) <sub>2</sub> + $H_2$ |

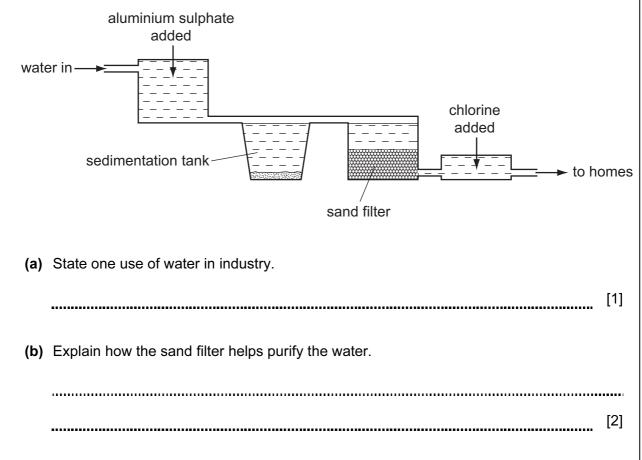
[1]

For Examiner's Use

[Total: 13]

3 The table shows the concentration of some ions present in seawater.

For Examiner's Use


| name of ion | formula of ion                | concentration of ion in g/dm³ |
|-------------|-------------------------------|-------------------------------|
| bromide     | Br <sup>-</sup>               | 0.07                          |
| calcium     | Ca <sup>2+</sup>              | 0.4                           |
| chloride    | C <i>l</i> −                  | 19.1                          |
| magnesium   | Mg <sup>2+</sup>              | 1.2                           |
| potassium   | K <sup>+</sup>                | 0.3                           |
| sodium      | Na⁺                           | 10.6                          |
|             | SO <sub>4</sub> <sup>2-</sup> | 0.8                           |

| (a) | Which negative ion has the highest concentration in seawater?                                                                                     |       |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     |                                                                                                                                                   | [1]   |
| (b) | State the name of the ion with the formula $SO_4^{2-}$ .                                                                                          |       |
|     |                                                                                                                                                   | [1]   |
| (c) | Which two ions in the table are formed from Group I elements?                                                                                     |       |
|     | and                                                                                                                                               | [1]   |
| (d) | When seawater is evaporated a number of different compounds are formed. State the name of the compound which is present in the greatest quantity. |       |
|     |                                                                                                                                                   | [1]   |
| (e) | State the names of two ions in the table which move to the cathode when seawate electrolysed.                                                     | er is |
|     | and                                                                                                                                               | [2]   |

| (f) | Wh   | en concentrated seawater is electrolysed, chlorine is formed at one of the electrod                                                          | des. | For<br>Examiner's |
|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|
|     | (i)  | To which Period in the Periodic Table does chlorine belong?                                                                                  |      | Use               |
|     |      |                                                                                                                                              | [1]  |                   |
|     | (ii) | Draw the electronic structure of a chlorine molecule. Show only the outer electronic                                                         | ns.  |                   |
|     |      |                                                                                                                                              |      |                   |
|     |      |                                                                                                                                              |      |                   |
|     |      |                                                                                                                                              |      |                   |
|     |      |                                                                                                                                              |      |                   |
|     |      |                                                                                                                                              |      |                   |
|     |      |                                                                                                                                              | [2]  |                   |
| (g) |      | nking water can be obtained by purifying seawater.<br>Dlain why distillation rather than filtration is used to purify seawater for drinking. |      |                   |
|     |      |                                                                                                                                              | [2]  |                   |
|     |      | [Total: 1                                                                                                                                    | 11]  |                   |

4 The diagram shows a water treatment works.

For Examiner's Use



**(c)** The aluminium ions in aluminium sulphate cause clay particles to clump together. Describe a test for aluminium ions.

| test   |     |
|--------|-----|
| result |     |
|        | [3] |

(d) Why is chlorine added to the water?

[1]

For Examiner's Use

| (e) | Wh    | orine is in Group VII of the Periodic Table.<br>en chlorine reacts with a solution of potassium bromide, the solution turns a<br>dish – brown colour. |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (i)   | Write a word equation for this reaction.                                                                                                              |
|     |       | [2]                                                                                                                                                   |
|     | (ii)  | Explain why iodine does not react with a solution of potassium bromide.                                                                               |
|     |       | [1]                                                                                                                                                   |
| (f) | Wh    | en chlorine reacts with sodium to form sodium chloride, energy is released.                                                                           |
|     | (i)   | State the name given to a reaction which releases energy.                                                                                             |
|     |       | [1]                                                                                                                                                   |
|     | (ii)  | What type of bonding is present in sodium chloride?                                                                                                   |
|     |       | [1]                                                                                                                                                   |
|     | (iii) | Explain what happens in terms of electron transfer when a sodium atom reacts with a chlorine atom.                                                    |
|     |       |                                                                                                                                                       |
|     |       | [2]                                                                                                                                                   |
|     |       | [Total: 14]                                                                                                                                           |

| 5 | Pure dry crystals of magnesium sulphate can be made by reacting excess magne<br>powder with dilute sulphuric acid. |                                                                     |                                                                                                                          |         |
|---|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------|
|   | (a)                                                                                                                |                                                                     | ring the reaction, bubbles of a colourless gas are given off.<br>te the name of this gas.                                |         |
|   |                                                                                                                    |                                                                     |                                                                                                                          | [1]     |
|   | (b)                                                                                                                | (i)                                                                 | Why is excess magnesium used?                                                                                            |         |
|   |                                                                                                                    |                                                                     |                                                                                                                          | [1]     |
|   |                                                                                                                    | (ii) How is the excess magnesium removed from the reaction mixture? |                                                                                                                          |         |
|   |                                                                                                                    |                                                                     |                                                                                                                          | [1]     |
|   | (c)                                                                                                                |                                                                     | scribe how you can obtain pure dry crystals of magnesium sulphate from a solut magnesium sulphate.                       | ion     |
|   |                                                                                                                    |                                                                     |                                                                                                                          |         |
|   |                                                                                                                    |                                                                     |                                                                                                                          | [2]     |
|   | (d)                                                                                                                | (i)                                                                 | Describe one other reaction that makes magnesium sulphate.                                                               |         |
|   |                                                                                                                    |                                                                     |                                                                                                                          | <br>[1] |
|   |                                                                                                                    | (ii)                                                                | Write a word equation for the reaction you suggested in part (d)(i).                                                     |         |
|   |                                                                                                                    |                                                                     |                                                                                                                          |         |
|   |                                                                                                                    |                                                                     |                                                                                                                          | [1]     |
|   |                                                                                                                    | (iii)                                                               | Magnesium sulphate can be used as a medicine. Explain why the chemicals use in medicines need to be as pure as possible. | ∍d      |
|   |                                                                                                                    |                                                                     |                                                                                                                          |         |
|   |                                                                                                                    |                                                                     |                                                                                                                          | [1]     |
|   |                                                                                                                    |                                                                     |                                                                                                                          |         |

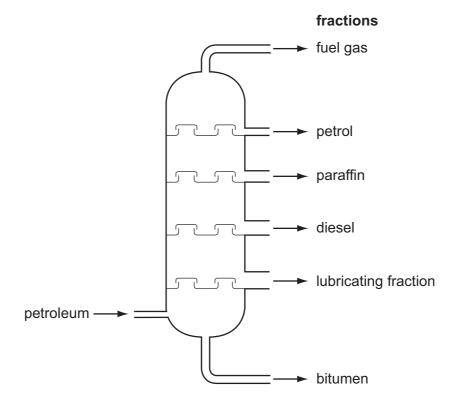
© UCLES 2008 0620/02/M/J/08

For Examiner's Use (e) A student repeats the experiment using excess sulphuric acid. She obtains 24 g of magnesium sulphate from 4.8 g of magnesium. How much magnesium sulphate can the student obtain from 1.2 g of magnesium?

For Examiner's Use

[1]

(f) A sample of 20 g of impure magnesium sulphate contains 19.5 g of magnesium sulphate.


Calculate the percentage purity of the magnesium sulphate.

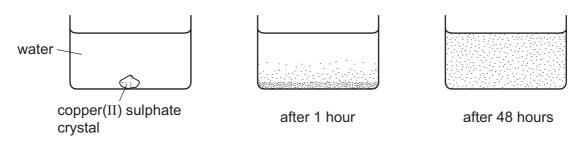
[1]

[Total: 10]

**6** Petroleum is separated into useful fractions by distillation.

For Examiner's Use




| (a) | (i)   | What do you understand by the term fraction?                   |       |
|-----|-------|----------------------------------------------------------------|-------|
|     |       |                                                                |       |
|     |       |                                                                | [1]   |
|     | (ii)  | Which fraction has the lowest boiling point?                   |       |
|     |       |                                                                | [1]   |
|     | (iii) | Describe how distillation is used to separate these fractions. |       |
|     |       |                                                                |       |
|     |       |                                                                |       |
|     |       |                                                                | [2]   |
|     |       |                                                                | ,     |
|     | (iv)  | State a use for                                                |       |
|     |       | the paraffin fraction,                                         | ····· |
|     |       | the bitumen fraction.                                          | [2]   |

| (b) | Eth   | ene can be made by c                                                   | racking certain                   | hydrocarbon fraction            | ns.                               | For<br>Examiner's |
|-----|-------|------------------------------------------------------------------------|-----------------------------------|---------------------------------|-----------------------------------|-------------------|
|     | (i)   | Explain what is mean                                                   | it by the term cr                 | acking.                         |                                   | Use               |
|     |       |                                                                        |                                   |                                 |                                   |                   |
|     |       |                                                                        |                                   |                                 |                                   | [1]               |
|     | (ii)  | Complete the equation                                                  | on for the cracki                 | ng of tetradecane, C            | S <sub>14</sub> H <sub>30</sub> . |                   |
|     |       |                                                                        | C <sub>14</sub> H <sub>30</sub> → | + C <sub>2</sub> H <sub>4</sub> |                                   | [1]               |
| (c) |       | anol is formed when s<br>alyst of phosphoric aci                       |                                   | th ethene at high pr            | essure and temperatur             | e. A              |
|     |       |                                                                        | ethene + ste                      | am ⇌ ethanol                    |                                   |                   |
|     | (i)   | What is the function of                                                | of the catalyst?                  |                                 |                                   |                   |
|     |       |                                                                        |                                   |                                 |                                   | [1]               |
|     | (ii)  | What is the meaning                                                    | of the symbol =                   | <b>⇒</b> ?                      |                                   |                   |
|     |       |                                                                        |                                   |                                 |                                   | [1]               |
|     | (iii) | Ethanol is also forme<br>What is this process<br>Put a ring around the | called?                           | -                               | on.                               |                   |
|     |       | addition com                                                           | bustion                           | fermentation                    | neutralisation                    | [1]               |
|     | (iv)  | Phosphoric acid is a phosphoric acid is ad                             |                                   | ite what you would o            | bserve when a solution            | n of              |
|     |       | blue litmus,                                                           |                                   |                                 |                                   |                   |
|     |       | a solution of sodium                                                   | carbonate.                        |                                 |                                   | [2]               |
|     |       |                                                                        |                                   |                                 | [Total:                           | 13]               |
|     |       |                                                                        |                                   |                                 |                                   |                   |

7 A student placed a crystal of copper(II) sulphate in a beaker of water.

After one hour the crystal had completely disappeared and a dense blue colour was observed in the water at the bottom of the beaker. After 48 hours the blue colour had spread throughout the water.

For Examiner's Use

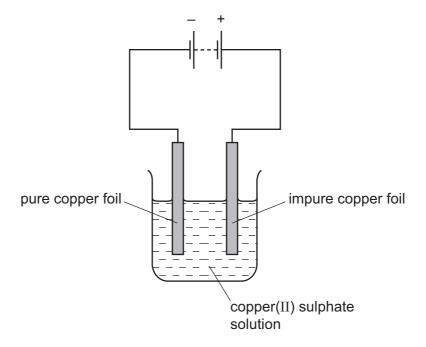


| (a) | Use the kinetic particle theory to explain these observations.                           |
|-----|------------------------------------------------------------------------------------------|
|     |                                                                                          |
|     |                                                                                          |
|     |                                                                                          |
|     | [2]                                                                                      |
| (b) | Describe the arrangement and motion of the particles in the copper(II) sulphate crystal. |
|     | arrangement                                                                              |

**(c)** Copper ions can be separated from other metal ions by paper chromatography. Draw a labelled diagram of the apparatus for paper chromatography.

In your diagram include

motion


- the solvent,
- the spot where the solution containing copper ions is placed.

[2]

[2]

(d) Copper can be purified by electrolysis.





(i) Choose a word from the list below which describes the pure copper foil. Put a ring around the correct answer.

|      | anion         | anode         | cathode             | cation | electrolyte | [1]      |
|------|---------------|---------------|---------------------|--------|-------------|----------|
| (ii) | Describe wha  | t happens dur | ing this electrolys | is to  |             |          |
|      | the pure copp | per foil,     |                     |        |             |          |
|      | the impure co | opper foil.   |                     |        |             | [2]      |
|      |               |               |                     |        | [To         | otal: 9] |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

| Lithium 3                   | 4                                                  |                                                                                                         |                                   |                                    |                                     |                                   | T Hydrogen                          |                       | Group                              |                                 |                                   | = 27 E B B C C C C C C C C C C C C C C C C C | € Carbon 6                        | Nirogen 7                          | Oxygen 5 25                       |                                  | 2 Hellum 2 2 20 Neon 10 Neon 10 P 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |
|-----------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|-------------------------------------|-----------------------------------|-------------------------------------|-----------------------|------------------------------------|---------------------------------|-----------------------------------|----------------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|----------------------------------|-----------------------------------------------------------------------|
| Sodium<br>11                | Magnesium 12                                       | Ę                                                                                                       |                                   |                                    |                                     | -                                 |                                     |                       |                                    |                                 |                                   | At Aluminium                                 | Silicon                           | suns                               | Sulphur<br>16                     | Chlorine                         | Ar<br>Argon                                                           |
| 39 <b>K</b> Potassium       | Ca Calcium 20                                      | Scandium 21                                                                                             | 48 <b>Ti</b><br>Titanium<br>22    | 51<br>V<br>Vanadium<br>23          | 52<br><b>Cr</b><br>Chromium<br>24   | Mn<br>Manganese<br>25             | 56<br><b>Fe</b><br>Iron<br>26       | 59<br>Cobalt          | Nickel                             | 64<br><b>Cu</b><br>Copper<br>29 | 65<br><b>Zn</b><br>Zinc<br>30     | 70<br><b>Ga</b><br>Gallium<br>31             | 73 <b>Ge</b> Germanium            | AS<br>As<br>Arsenic                | 79<br><b>Se</b><br>Selenium<br>34 | 80<br><b>Br</b><br>Bromine<br>35 | 84 <b>Kr</b><br>Krypton 36                                            |
| Rubidium                    | Sr<br>Strontium<br>38                              | 89 <b>Y</b>                                                                                             | 91 <b>Zr</b> Zirconium 40         | 93<br><b>Nb</b><br>Niobium<br>41   | 96<br><b>Mo</b><br>Molybdenum<br>42 | Tc<br>Technetium<br>43            | 101<br><b>Ru</b><br>Ruthenium<br>44 | Rhodium 45            | 106 Pd Palladium 46                | 108 <b>Ag</b> Silver 47         | 112<br><b>Cd</b><br>Cadmium<br>48 | 115 <b>In</b> Indium 49                      | <b>Sn</b> Tin 50                  | 122<br><b>Sb</b><br>Antimony<br>51 | 128 <b>Te</b> Tellurium 52        | 127 I I Iodine                   | Xe Xenon 54                                                           |
| 133 <b>Cs</b> Caesium 55    | 137<br><b>Ba</b><br>n Barium<br>56                 | 139 <b>La</b> Lanthanum 57 *                                                                            | 178<br><b>Hf</b><br>Hafnium<br>72 | 181<br><b>Ta</b><br>Tantalum<br>73 | 184<br><b>W</b><br>Tungsten<br>74   | 186<br><b>Re</b><br>Rhenium<br>75 | 190<br><b>Os</b><br>Osmium<br>76    |                       | 195<br>Pt<br>Platinum<br>78        | 197<br><b>Au</b><br>Gold        | 201<br><b>Hg</b><br>Mercury<br>80 | 204 <b>T 1</b> Thallium 81                   | 207<br><b>Pb</b><br>Lead<br>82    | 209 <b>Bi</b> Bismuth              | <b>Po</b> Polonium 84             | At<br>Astatine<br>85             | Radon<br>86                                                           |
| <b>Fr</b><br>Francium<br>87 | 226<br><b>Ra</b><br>m Radium                       | 227<br><b>Ac</b><br>Actinium 1                                                                          | ·                                 |                                    |                                     |                                   |                                     |                       |                                    |                                 |                                   |                                              |                                   |                                    |                                   |                                  |                                                                       |
| *58-71<br>†90-10            | *58-71 Lanthanoid serie<br>190-103 Actinoid series | *58-71 Lanthanoid series<br>190-103 Actinoid series                                                     |                                   | 140<br><b>Ce</b><br>Cerium         | Pr<br>Praseodymium<br>59            | Neodymium 60                      | Pm<br>Promethium<br>61              | Samarium 62           | 152<br><b>Eu</b><br>Europium<br>63 | Gd Gadolinium 64                | 159 <b>Tb</b> Terbium             | 162<br><b>Dy</b><br>Dysprosium<br>66         | 165<br><b>Ho</b><br>Holmium<br>67 | 167<br><b>Er</b><br>Erbium<br>68   | 169<br><b>Tm</b><br>Thulium       | 173 <b>Yb</b> Ytterbium 70       | 175 <b>Lu</b> Lutetium 71                                             |
| Key                         | a <b>X</b>                                         | <ul><li>a = relative atomic mass</li><li>X = atomic symbol</li><li>b = proton (atomic) number</li></ul> | nic mass<br>bol<br>nic) number    | 232<br><b>Th</b><br>Thorium        | Pa<br>Protactinium<br>91            | 238<br><b>U</b><br>Uranium<br>92  | Neptunium                           | Pu<br>Plutonium<br>94 | Am<br>Americium<br>95              | <b>Cm</b><br>Curium             | <b>Bk</b> Berkelium               | Cf<br>Californium<br>98                      | ES<br>Einsteinium                 | Fm<br>Fermium                      | Md<br>Mendelevium<br>101          | Nobelium                         | <b>Lr</b><br>Lawrencium<br>103                                        |

The volume of one mole of any gas is 24 dm<sup>3</sup> at room temperature and pressure (r.t.p.).