

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
CHEMISTRY		0620/02
Paper 2		October/November 2007
		1 hour 15 minutes
Candidates ans	wer on the Question Paper.	
No Additional M	laterials are required.	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the periodic table is printed on page 16.

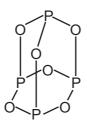
At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use					
1					
2					
3					
4					
5					
6					
7					
Total					

UNIVERSITY of CAMBRIDGE International Examinations

1 Some oxides are listed below.

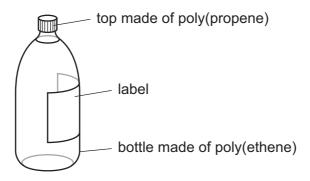

calcium oxide
carbon dioxide
carbon monoxide
phosphorus trioxide
sodium oxide
sulphur dioxide
water

	water	
(a)	Which one of these oxides is most likely to contribute to acid rain?	[1]
(b)	Which one of these oxides is a product of the reaction between an acid and a carbonate?	[1]
(c)	Which one of these oxides is formed by the incomplete combustion of carbon?	[1]
(d)	Which one of these oxides is a good solvent?	[1]
(e)	Which one of these oxides is used to neutralise acidic industrial waste products?	[1]
(f)	Which two of these oxides reacts with water to form an alkaline solution?	[1]
(g)	Complete the diagram to show the electronic structure of water. show hydrogen electrons by 'o' show oxygen electrons by 'x'	

 $\underset{\times}{\times}\overset{O}{\times}$

H H

(h) The structure of phosphorus trioxide is shown below.


Write the **simplest** formula for phosphorus trioxide.

[1	1]
 -	-

[Total: 8]

2 The diagram shows a bottle of mineral water.

alkanes

(a) The poly(propene) top is made by polymerising propene molecules, CH₃CH=CH₂.

monomers

(i) Which one of the following best describes the propene molecules in this reaction? Put a ring around the correct answer.

polymers

products

salts

[1] (ii) State the name of the homologous series to which propene belongs. [1] (iii) Propene is an unsaturated hydrocarbon. State the meaning of the following terms. unsaturated (iv) Describe a chemical test to distinguish between an unsaturated hydrocarbon and a saturated hydrocarbon. State the results. test result with saturated hydrocarbon result with unsaturated hydrocarbon [3]

(b)	The poly(ethene)	bottle is	made by	polyn	nerising	ethene
٦	~,	60.3 (000)	, 2011.0		P U.J		010

$$nCH_2=CH_2$$
 \longrightarrow $(-CH_2-CH_2)_n$

Complete the following sentence about this reaction by filling in the blank space.

The formation of poly(ethene) is an example of an ______polymerisation reaction.

(c) The label on the bottle lists the concentration of ions dissolved in the water in milligrams per litre.

concentration of ions in milligrams per litre					
calcium	32	nitrate	1		
chloride	5	potassium	0.5		
hydrogencarbonate	133	sodium	4.5		
magnesium	8	sulphate	7		

(i	i)	State the	name	of two	negative	ions	which	appear	in	this	list.

	r	- 4
l'I		11
L'.		L'.

(ii) Which metal ion in this list is present in the highest concentration?

FA:
-11
L'.

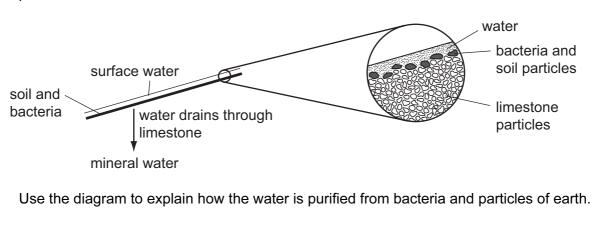
(iii) Calculate the amount of magnesium ions in 5 litres of this mineral water.

[1]

(iv) Which ion in the list reacts with aqueous silver nitrate to give a white precipitate?

_____[1]

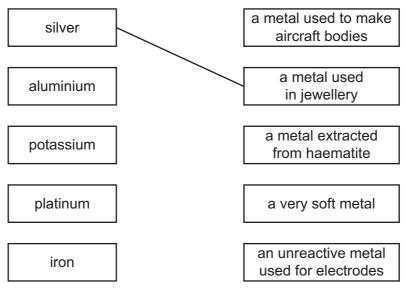
(v) Which ion in the list gives off ammonia when warmed with sodium hydroxide and aluminium foil?


[1]

(vi) Complete the equation to show the formation of a potassium ion from a potassium atom.

$$K \rightarrow K^{\dagger} + \dots$$
 [1]

(d)	The pH of the mineral water is 7.8. Which one of the following best describes this pH? Tick one box.	
	slightly acidic	
	slightly alkaline	
	neutral	
	very acidic	
	very alkaline	[1]
(e)	Pure water can be obtained by distilling the mineral water us below.	sing the apparatus shown
	flask mineral water heat	beaker
	(i) State the name of the piece of apparatus labelled A .	
	(ii) Where does the pure water collect?	[1]
		[1]
((iii) How does the boiling point of the mineral water in the flas point of pure water?	k compare with the boiling
		[1]


(f) The diagram shows how mineral water is formed. Mineral water contains no bacteria or particles of earth.

[Total: 20]

[2]

- 3 This question is about metals.
 - (a) Match up the metals in the boxes on the left with the descriptions in the boxes on the right. The first one has been done for you.

[4]

(b) Iron powder reacts rapidly with sulphuric acid to form aqueous iron(II) sulphate and hydrogen.

$$Fe(s) \hspace{3mm} + \hspace{3mm} H_2SO_4(aq) \hspace{3mm} \rightarrow \hspace{3mm} FeSO_4(aq) \hspace{3mm} + \hspace{3mm} H_2(g)$$

Describe **two** things that you would see happening as this reaction takes place.

[2]

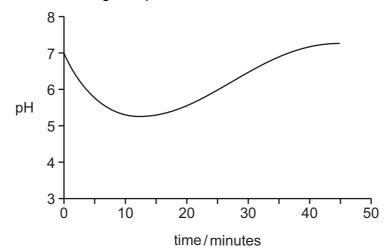
- **(c)** Alloys are often more useful than pure metals.
 - (i) Complete the following sentences by filling in the blank spaces.

An alloy is a ______ of a metal with other elements. The properties of _____ can be changed by the controlled use of additives to form

steel alloys. Increasing the amount of carbon in a steel makes it ______[3]

(ii) Name one other alloy apart from steel.

[1]


(iii) Iron rusts very easily. Describe two methods of preventing rusting.

1. ______

2. [2]

[Total:12]

4 The diagram shows the changes in pH in a student's mouth after she has eaten a sweet.

(a)	Describe how the acidity in the student'	s mouth changes after she	has eaten the sweet
1.	-,			

(b) (i) Chewing a sweet stimulates the formation of saliva. Saliva is slightly alkaline. Use this information to explain the shape of the graph.

[2]

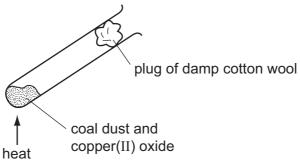
(ii) State the name of the type of reaction which occurs when an acid reacts with an alkali.

[1]

(c) Many sweets contain citric acid. The formula of citric acid is shown below.

$$\begin{array}{c} \mathsf{CO_2H} \\ \mathsf{I} \\ \mathsf{CH_2} \\ \mathsf{HO} \mathbf{--} \mathsf{CO_2H} \\ \mathsf{CH_2} \\ \mathsf{I} \\ \mathsf{CO_2H} \end{array}$$

- (i) Put a ring around the alcohol functional group on the above formula. [1]
- (ii) State the name of the CO₂H functional group in citric acid.

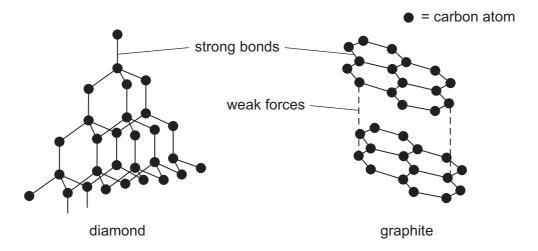

[1]

(iii) Ethanoic acid also has a – CO₂H functional group. Write down the formula for ethanoic acid.

______[1

(d)	Citri	ic acid ca	n be extracted	I from lem	on juice as	s follows:			
	stag stag	ge 2: filter ge 3: wasl ge 4: add	calcium carbo off the precipi n the calcium of sulphuric acid callise the citric	tate which citrate pre to the cal	n is formed cipitate wi	l (calcium ci th water	•	f citric acid	
	(i)		lcium carbona vhy there is a		ed to lemo	n juice a fizz	zing is obse	erved.	
									[1]
	(ii)	Draw a d	iagram to sho	w step 2.	Label you	r diagram.			
									[0]
	, <u>,</u>	0							[2]
	(iii)	Suggest	why the calciu	ım citrate	precipitate	e is washed	with water.		
									[1]
	(iv)	Describe	how you wou	ld carry o	ut step 5.				
									[1]
	(v)	Which or	vs, citric acid in the of the follow g around the c	ving is req	uired for for			ars.	
		acid	high tempe	rature	light	microorga	nisms	nitrogen	
									[1]
								[Total:	14]

5 Some coal dust was heated with copper(II) oxide using the apparatus shown below.


(a)		al contains carbon and various hydrocarbons. The carbon reduces the copper de when heated.	(II)
	(i)	What do you understand by the term reduction?	
			[1]
	(ii)	At the end of the experiment a reddish-brown solid remained in the tube. State the name of this reddish-brown solid.	
			[1]
	(iii)	The reddish brown solid conducts electricity. How could you show that it conducts electricity?	
			[2]
(b)	Dur	ring the experiment, water collected on the cooler parts of the test tube.	
	(i)	Suggest where the hydrogen in the water comes from.	
			[1]
	(ii)	Water is a liquid. Describe the arrangement and motion of the particles in a liquid.	
			••••
			[2]

The table below shows an early form of the Periodic Table made by John Newlands in 1866.

Н	F	Cl	Co, Ni	Br
Li	Na	K	Cu	Rb
Ве	Mg	Са	Zn	Sr
В	Αl	Cr	Υ	
С	Si	Ti	In	
N	Р	Mn	As	
0	S	Fe	Sc	

(a)	Newlands arranged the elements according to their relative atomic masses. What governs the order of the elements in the modern Periodic Table?	
		[1]
(b)	Use your modern Periodic Table to suggest why Newlands put cobalt and nickel in same place.	the
		[1]
(c)	Which group of elements is missing from Newlands' table?	
		[1]
(d)	Table. You must not give any of the answers you mentioned in parts (a), (b) or (c).	
		[3]

(e) Carbon exists in two forms, graphite and diamond.

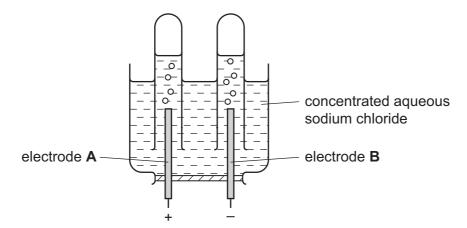
Use ideas about structure and bonding to suggest

(i)	why graphite is used as a lubricant,	
		[1]
(ii)	why diamond is very hard.	

[Total: 8]

- **7** Compounds and elements vary in their volatility, solubility in water and electrical conductivity depending on their bonding.
 - (a) Place copper, methane and water in order of their volatility.

most volatile	\rightarrow	
least volatile	\rightarrow	


(b) Complete the table to show the solubility in water and electrical conductivity of various solids.

solid	structure	soluble or insoluble	does it conduct electricity?
silver	metallic	insoluble	
sodium chloride	ionic		no
sulphur	covalent		no
copper sulphate	ionic	soluble	

[4]

[1]

(c) The apparatus shown below is used to electrolyse concentrated aqueous sodium chloride.

(i)	Suggest	a suitable	substance	which	could be	e used	for th	e elec	trodes	S.
-----	---------	------------	-----------	-------	----------	--------	--------	--------	--------	----

[1	1
	•

(ii) State the name of the gas given off

at electrode A ,	
at electrode B	[2

(iii)	State the name	e given to	electrode	e A .						
									[1	1]
(iv)	Explain why chloride does	•	sodium	chloride	conducts	electricity	but	solid	sodiun	n
									[2	2]
								[T	otal: 11]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

DATA SHEET
The Periodic Table of the Elements

	0	Helium	Neon 10 Argon 18 Argon 18	Kypton 36 Kypton 36 Xe Xenon 54	Radon 86	175 Lutetium 71 Lutetium 71 Lutetium 71 Lutetium
	₹		19 Fluorine 9 35.5 C 1 Chlorine 17	80 Bromine 35 127 I I Isodine	Astatine 85	Yb Ytterbium 70 No
	>		16 O Oxygen 8 32 S	Se Setenium 34 128 Te Tellurium 52	Po Polonium 84	Tm Thullum 69
	>		Nitrogen 7 31 P Phosphorus 15	75	209 Bismuth 83	167 Er Erbium 68 Fm
	≥		Carbon 6 Carbon 8 Silicon 14	Germanium 32 119 Sn Tin 50	207 Pb Lead 82	165 Ho Holmium 67
	=		11 B Boron 5 27 A1 Auminium 13	70 Ga Callium 31 115 In Indium 49	204 T 1 Thallium 81	162 Dy Dysprosium 66
				2	201 Hg Mercury 80	159 Tb Terblum 65 Bk
				Copper 29 Copper 108 Ag Silver 47	197 Au Gold	Gadolinium 64
Group				Nickel Nickel 28 106 Pd Palladium 46	195 Platinum 78	152 Europium 63
อั			1	59 Cobalt 27 103 Rh Rhodium	192 Ir	Sm Samarium 62
		1 Hydrogen		56 Fe Iron 26 101 Ruthenium 44	190 Os Osmium 76	Pm Promethium 61
				Manganese 25 TC Technetium 43	Rhenium	Neodymlum 60 238
				52 Cr Chromium 24 96 Moybdenum 42	184 W Tungsten 74	Pr Praseodymium 59
				Vanadium 23 93 Niobium 41	181 T.a. Tantalum 73	Cerium 58 232
				48 Titanium 22 91 Zr Zirconium 40	178 Hafnium * 72 + 72 + + + + + + + + + + + + + + + +	J nic mass bol
				Scandium 21 89	139 Lanthanum 57 227 Actinium Actinium 80	id series series series a = relative atomic mass x = atomic symbol
	=		Beryllium 4 24 Magnesium 12	Calcium 20 88 Sr Strontium 38	137 Banum Barium 56 226 Radium Radium	noid
	_		7 Li Lithium 3 23 Na Sodium 11	85 Rubidium 37	Cs Caesium 55 Fr Francium	*58-71 L ² 190-103 , Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).