

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY Paper 3 (Exten	nded)		0620/03 May/June 2007 1 hour 15 minutes
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

READ THESE INSTRUCTIONS FIRST

No Additional Materials required.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen in the spaces provided on the Question Paper.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
Total	

UNIVERSITY of CAMBRIDGE International Examinations

Amajor	source of energy is the combustion of fossil fuels.
(a) (i)	Name a solid fossil fuel.
(ii)	Name a gaseous fossil fuel. [1]
(b) Pet	[1] roleum is separated into more useful fractions by fractional distillation.
(i)	Name two liquid fuels obtained from petroleum.
	and [2]
(ii)	Name two other useful products obtained from petroleum that are not used as fuels.
(ii)	Name two other useful products obtained from petroleum that are not used as
(ii) (iii)	Name two other useful products obtained from petroleum that are not used as fuels.
. ,	Name two other useful products obtained from petroleum that are not used as fuels. and [2] Give another mixture of liquids that is separated on an industrial scale by fractional

1

2 Complete the following table.

For Examiner's Use

type of structure	particles present	electrical conductivity of solid	electrical conductivity of liquid	example
ionic	positive and negative ions	poor		
macro molecular	atoms of two different elements in a giant covalent structure	poor	poor	
metallic	and	good		copper

[Total: 6]

			4					
3	There a	re three methods	of preparing salts.					
	Method A – use a burette and an indicator.							
	Method	B – mix two soluti	ons and obtain the salt by precipitation.					
	Method	C – add an exce filtration.	ss of base or a metal to a dilute acid and remove the excess	by				
			salt preparations, choose one of the methods A , B or C , name and then write or complete the equation.	any				
	(i)	the soluble salt, z	zinc sulphate, from the insoluble base, zinc oxide					
		method						
		reagent						
		word equation		[3]				
	(ii)	the soluble salt, p	potassium chloride, from the soluble base, potassium hydroxide)				
		method						
		reagent						
		equation	+ \rightarrow KC l + H ₂ O	[3]				
	(iii)	the insoluble salt	, lead(II) iodide, from the soluble salt, lead(II) nitrate					
		method						
		reagent						
		equation Pb ²⁺ +	ightarrow	[4]				

[Total: 10]

© UCLES 2007 0620/03/M/J/07

4	Us	Jse your copy of the periodic table to help you answer these questions.								
	(a)	Pre	dict the formula	of each of the following compounds.						
		(i)	barium oxide		[1]					
		(ii)	boron oxide		[1]					
	(b)	Giv	e the formula of	f the following ions.						
		(i)	sulphide		[1]					
		(ii)	gallium		[1]					
	(c)			nowing the arrangement of the valency electrons in one molecule bund nitrogen trichloride.	of					
				an electron from a nitrogen atom. an electron from a chlorine atom.	[3]					
	(d)	Pot	assium and var	nadium are elements in Period IV.						
		(i)	State two diffe	rences in their physical properties.						
					[2]					
		(ii)	Give two differ	rences in their chemical properties.						
					[2]					

(e)		orine and astatine are halogens. Use your knowledge of the other halogens dict the following:	to	For Examiner's Use
	(i)	The physical state of fluorine at r.t.p.		
		The physical state of astatine at r.t.p.	[2]	
	(ii)	Two similarities in their chemical properties		
			[2]	
		[Total	15]	

© UCLES 2007

		in
	$TiCl_4 + 2Mg \rightarrow Ti + 2MgCl_2$	
(i)	Explain why it is necessary to use argon rather than air.	
		[1]
(ii)	Name another metal that would reduce titanium chloride to titanium.	
		[1]
(iii)	Suggest how you could separate the metal, titanium, from the soluble salt magne chloride.	siun
		[2]
		lic
pro	Modifier of large electrolated from recting.	
	steel oil rig which is cathode	
(i)	Define oxidation in terms of electron transfer.	
, ,		[1]
(ii)		
		[1]
(iii)	Name the two gases formed at the titanium anode.	
	and	[2]
(iv)		
` '		
		 [2]
	(i) (iii) (iii) (iii) (iii) (iii)	(ii) Explain why it is necessary to use argon rather than air. (iii) Name another metal that would reduce titanium chloride to titanium. (iii) Suggest how you could separate the metal, titanium, from the soluble salt magne chloride. (b) Titanium is very resistant to corrosion. One of its uses is as an electrode in the cathod protection of large steel structures from rusting. (ii) Suggest how you could separate the metal, titanium, from the soluble salt magne chloride. (iii) Titanium is very resistant to corrosion. One of its uses is as an electrode in the cathod protection of large steel structures from rusting. (iii) Suggest how you could separate the metal, titanium, from the soluble salt magne chloride. (iii) Titanium is very resistant to corrosion. One of its uses is as an electrode in the cathod protection of large steel structures from rusting. (ii) Suggest how you could separate the metal, titanium, from the soluble salt magne chloride. (iii) Name the two gases formed at the titanium anode. (iii) Name the two gases formed at the titanium anode. (iv) Explain why the oil rig does not rust.

(v)	Another way of protecting steel from corrosion is sacrificial protection. Give two differences between sacrificial protection and cathodic protection.	For Examiner's Use
	[2]	
	[Total: 12]	

6

Aluminium is extracted by the electrolysis of a molten mixture that contains alumina, which is aluminium oxide, Al_2O_3 . (a) The ore of aluminium is bauxite. This contains alumina, which is amphoteric, and iron(III) oxide, which is basic. The ore is heated with aqueous sodium hydroxide. Complete the following sentences. dissolves to give a solution of does not dissolve and can be removed by [4] (b) Complete the labelling of the diagram. waste gases carbon anode (+) mixture of aluminium oxide and temperature is [4] (c) The ions that are involved in the electrolysis are Al^{3+} and O^{2-} . (i) Write an equation for the reaction at the cathode. [2] (ii) Explain how carbon dioxide is formed at the anode. [2]

(d)	Giv	e an explanation for each of the following.		For Examiner's
	(i)	Aluminium is used extensively in the manufacture of aircraft.		Use
			[1]	
	(ii)	Aluminium is used to make food containers.		
			[2]	
	(iii)	Aluminium electricity cables have a steel core.		
			[1]	
		[Total:	16]	

© UCLES 2007

7 Esters, fats and polyesters all contain the ester linkage.

For Examiner's Use

[2]

[2]

(a) The structural formula of an ester is given below.

Name two	chemicals	that	could	be	used	to	make	this	ester	and	draw	their	structu	ıral
formulae. S	Show all bor	nds.												

names		and	[2]
structura	al formulae		

(b) (i) Draw the structural formula of a polyester such as *Terylene*.

(ii)	Suggest a use for this polymer.	
		[1

(c) Cooking products, fats and vegetable oils, are mixtures of saturated and unsaturated esters.

For Examiner's Use

The degree of unsaturation can be estimated by the following experiment. 4 drops of the oil are dissolved in 5 cm³ of ethanol. Dilute bromine water is added a drop at a time until the brown colour no longer disappears. Enough bromine has been added to the sample to react with all the double bonds.

cooking product	mass of saturated fat in 100 g of product/g	mass of unsaturated fat in 100 g of product/g	number of drops of bromine water		
margarine	nargarine 35 35		5		
butter	45	28	4		
corn oil	10	84	12		
soya oil	15	70	10		
lard	38	56			

/i\	Complete the one blank space in the table.	[1]
(1)	Complete the one plank space in the table.	[י]

(ii) Complete the equation for bromine reacting with a double bond.

$$C=C$$
 + Br_2 \longrightarrow [2]

(111)	Which of the products is the least likely to cause heart disease?	se.
		[1]

(d)	A better way of measuring the degree of unsaturation is to unsaturated compound. This is the mass of iodine that read in 100 g of the fat.	
	Use the following information to calculate the number of do of the fat.	ouble bonds in one molecule
	Mass of one mole of the fat is 884 g.	
	One mole of I_2 reacts with one mole $C=C$	
	The iodine number of the fat is 86.2g.	
	Complete the following calculation.	
	100 g of fat reacts with 86.2 g of iodine.	
	884 g of fat reacts with	g of iodine.
	One mole of fat reacts with	moles of iodine molecules.
	Number of double bonds in one molecule of fat is	[3]
		[Total:14]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

	0	4 He ium	20 Ne Neon 10 40 Ar	Argon 18	8 X	Krypton 36	131 X	Xenon 54	Radon Radon	8	175 Lu Lutetium	Lr Lawrencium 103
	II/		19 Fluorine 9 35.5 C1	Chlorine 17	® &	Bromine 35	127	lodine 53	Astatine	3	173 Yb Ytterbium 70	No
	IN		16 Oxygen 8	Sulphur 16	79 Se	Selenium 34	الم	Tellurium 52	Po Polonium	;	169 Tm Thulium	Md ndelevium
	>		14 Nitrogen 7 31	Phosphorus 15	75 As	Arsenic 33	122	Antimony 51	209 Bi Bismuth	3	167 Er Erbium	Fm Fermium
	N		12 Carbon 6 28 Si	Silicon 14	73 Ge	Germanium 32	119	Tin 50	207 Pb Lead	1	165 Ho Holmium 67	ES Einsteinium 99
	=		11 B Boron 5 27 A1	Aluminium 13	o₂ Ga	Gallium 31	115 Ln	Indium 49	204 T 1 Thallium	5	162 Dy Dysprosium 66	
					e5 Zn	Zinc 30	112 C.d	Cadmium 48	201 Hg Mercury	3	159 Tb Terbium 65	BK Berkelium 97
					64 Cu	Copper 29	108 A G	Silver 47	197 Au Gold	2	157 Gd Gadolinium 64	Carium
Group					⁶⁹ Z	Nickel 28	106 D	Palladium 46	195 Pt Platinum	?	152 Eu Europium 63	Am Americium 95
้อั					္မ လိ	Cobalt 27	103 7	Rhodium 45	192 Ir	:	Sm Samarium 62	Pu Plutonium
		T Hydrogen			56 Fe	lron 26	101	Ruthenium 44	190 Os Osmium	?	Pm Promethium 61	N ptunium
					Mn S55	Manganese 25	۲	43 43	186 Re Rhenium	2	144 Nd Neodymium 60	238 U Uranium 92
					Ç 52	Chromium 24	96 X	Molybdenum 42	184 W Tungsten	:	141 Pr Praseodymium 59	Pa Protactinium 91
					5 >	Vanadium 23	93 S	Niobium 41	181 Ta Tantalum	?	140 Ce Cerium	232 Th Thorium 90
					48 F	Titanium 22	97	Zirconium 40	Hafnium	!	1	nic mass Ibol nic) number
					Sc	Scandium 21	& >	Yttrium 39	La Lanthanum	Ac ctinium	l series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		Beryllium 4 24 Mg	Magnesium 12	C 40	Calcium 20	® &	Strontium 38	137 Ba Barium 56	226 Rad Radium	*58-71 Lanthanoid series 190-103 Actinoid series	в х а
	_		Lithium 3 23 Na	Sodium 11	® ⊀	Potassium 19	85 7	Rubidium 37	Caesium	Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).