Centre Number	Candidate Number	Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY

0620/03

Paper 3

May/June 2006

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer **all** questions. A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examir	ner's Use
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of **16** printed pages.

1 Iron is a transition element.

(a)	Which of the following statements about transition elements are correct?
	Tick three boxes.

	The	e metals are highly co	bloured e.g. ye	llow, green, bl	ue.	
	The	metals have low me	elting points.			
	The	ir compounds are hi	ghly coloured.			
	The	ir compounds are co	lourless.			
	The	elements and their	compounds ar	e often used a	s catalysts.	
	The	y have more than or	e oxidation st	ate.		
						[3]
(b)	(i)	In which Period in th	ne Periodic Ta	ble is iron to b	e found?	
						[1]
	(ii)	Use the Periodic T neutrons in one ato		out the numb	per of protons and the nu	mber of
		number of protons =	-	numbe	er of neutrons =	[1]
(c)		is extracted in a bla prmed in the extraction		he list below g	vives some of the substanc	es used
	са	rbon monoxide	coke	iron ore	limestone s	lag
	(i)	Which substance is	a mineral con	taining largely	calcium carbonate?	
						[1]

(ii) Which substance is formed when impurities in the ore react with calcium oxide?
 [1]
 (iii) Which substance is also called hematite?

	[1]

(d) State two functions of the coke used in the blast furnace.

(e) Most of the iron is converted into mild steel or stainless steel. Give one use for each.

mild steel		•
stainless s	teel [2]

2 Some reactions of metals **W**, **X**, **Y** and **Z** are given below.

metal	reaction with water	reaction with dilute hydrochloric acid
w	A few bubbles form slowly in cold water.	Vigorous reaction. Gas given off.
x	Vigorous reaction. Metal melts. Gas given off.	Explosive reaction. Should not be attempted.
Y	No reaction.	No reaction.
z	Does not react with cold water. Hot metal reacts with steam.	Steady fizzing.

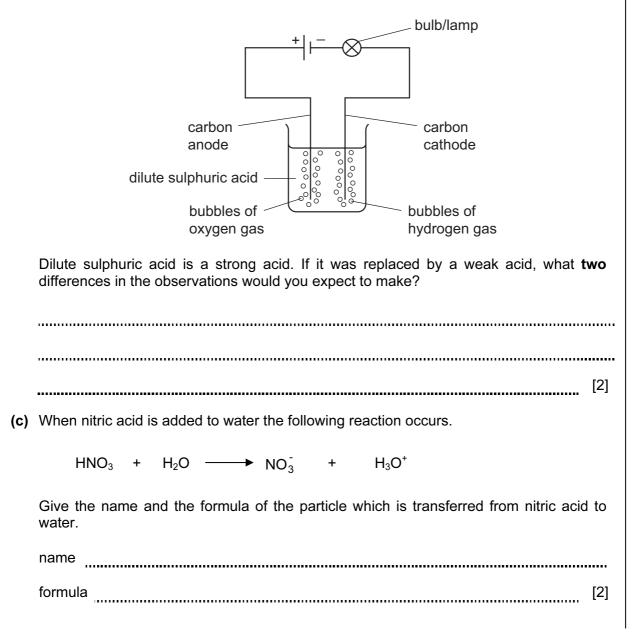
(a) Arrange these metals in order of reactivity.

	mos	st reactive		
	leas	st reactive		[2]
(b)	Wh	ich of these	metals could be	
	(i)	magnesiun	٦,	
	(ii)	copper?		[1]
	()			[1]

(c) The equation for the reaction of **X** with cold water is given below.

 $2\mathbf{X}(s) + 2H_2O(I) \longrightarrow 2\mathbf{X}OH(aq) + H_2(g)$

(i) Describe the test you would use to show that the gas evolved is hydrogen.


(ii) How could you show that the water contained a compound of the type XOH?
[2]
(iii) In which group of the Periodic Table does metal X belong?
[1]
(iv) The ore of X is its chloride. Suggest how metal X could be extracted from its chloride.

3 (a) Four bottles were known to contain aqueous ammonia, dilute hydrochloric acid, sodium hydroxide solution and vinegar, which is dilute ethanoic acid. The bottles had lost their labels. The pH values of the four solutions were 1, 4, 10 and 13.

Complete the table.

solution	рН
aqueous ammonia	
dilute hydrochloric acid	
sodium hydroxide solution	
vinegar	

- [2]
- (b) The following apparatus was set up to investigate the electrical conductivity of dilute acids.

(d) This question is concerned with the following oxides.

aluminium oxide	Al_2O_3
calcium oxide	CaO
carbon dioxide	CO_2
carbon monoxide	СО
magnesium oxide	MgO
sulphur dioxide	SO ₂

(i) Which of the above oxides will react with hydrochloric acid but not with aqueous sodium hydroxide?

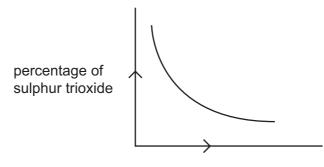
[1]

- (ii) Which of the above oxides will react with aqueous sodium hydroxide but not with hydrochloric acid?
- [1]
- (iii) Which of the above oxides will react both with hydrochloric acid and with aqueous sodium hydroxide?
 - [1]
- (iv) Which of the above oxides will react neither with hydrochloric acid nor with aqueous sodium hydroxide?
 - [1]

- The first three elements in Group IV are carbon, silicon, germanium. (a) The element germanium has a diamond-type structure. Describe the structure of germanium. A diagram is acceptable. [2] (b) Unlike diamond, graphite is soft and is a good conductor of electricity. (i) Explain why graphite has these properties. [3] (ii) Give a use of graphite that depends on one of these properties. property use [1] (c) Carbon dioxide and silicon(IV) oxide have similar formulae but different types of structure. Give the formulae of these oxides. (i) [1] (ii) How are their structures different? [2]
- (d) All these elements form compounds with hydrogen called hydrides. The saturated hydrides of carbon are the alkanes. Predict the formula of the hydride of germanium which contains two germanium atoms.
 - [1]

5 Sulphuric acid is made by the Contact process in the following sequence of reactions.

sulphur \rightarrow sulphur dioxide \rightarrow sulphur trioxide \rightarrow sulphuric acid


(a) (i) How is sulphur dioxide made from sulphur?

Why is it used in the manufacture of paper?

- (ii) Sulphur dioxide has other uses.
 - [1]
- (iii) How does it preserve food?
 - [1]
- (b) The equation for a stage of the Contact process is

$$2SO_2 + O_2 \rightleftharpoons 2SO_3$$

The percentage of sulphur trioxide in the equilibrium mixture varies with temperature.

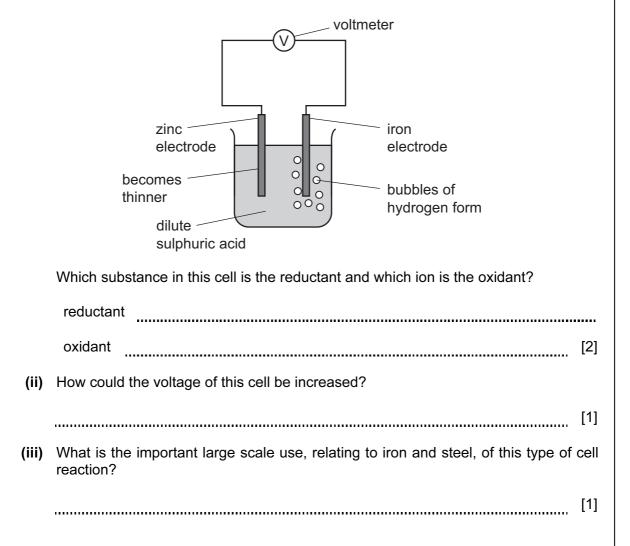
temperature

(i) How does the percentage of sulphur trioxide in the equilibrium mixture vary as the temperature increases? Circle the correct answer.

	increases	stays the same	decre	ases	[1]
(ii)	Is the forward reaction in endothermic? Give a reaso	-	+ O ₂ ≓	2SO ₃ exothermic	or
					 [2]

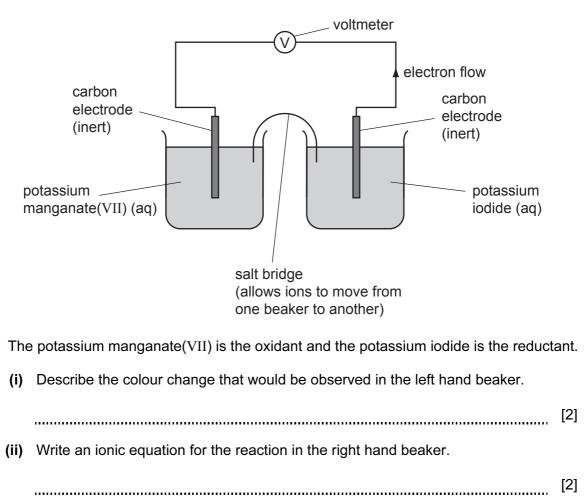
(iii) Explain, mentioning both rate and percentage yield, why the temperature used in the Contact process is 450°C.
[2]
(iv) Describe how the sulphur trioxide is changed into concentrated sulphuric acid.
[2]

© UCLES 2006


6 (a) Exothermic reactions produce heat energy.

An important fuel is methane, natural gas. The equation for its combustion is as follows.

CH₄ + 2O₂ → CO₂ + 2H₂O


(i) In chemical reactions bonds are broken and new bonds are formed. Using this reaction give an example of a bond that is broken, a bond that is formed. [2] (ii) Explain, using the idea of bonds forming and breaking, why this reaction is exothermic, that is it produces heat energy. [2] (b) Some radioactive isotopes are used as nuclear fuels. (i) Give the symbol and the nucleon number of an isotope that is used as a nuclear fuel. [2] (ii) Give another use of radioactive isotopes. [1]

- (c) Cell reactions are both exothermic and redox. They produce electrical energy as well as heat energy.
 - (i) The diagram shows a simple cell.

For Examiner's Use

(d) Cells can be set up with inert electrodes and the electrolytes as oxidant and reductant.

[2]

7 The fractional distillation of crude oil usually produces large quantities of the heavier fractions. The market demand is for the lighter fractions and for the more reactive alkenes. The heavier fractions are cracked to form smaller alkanes and alkenes as in the following example.

 $C_8H_{18} \longrightarrow C_4H_{10} + C_4H_8$ octane butane butenes

(a) (i) Write a different equation for the cracking of octane.

 $C_8H_{18} \longrightarrow$ [1]

(ii) The cracking of octane can produce isomers with the molecular formula C_4H_8 . Draw the structural formulae of two of these isomers.

(b) (i) Give the essential condition for the reaction between chlorine and butane.
[1]
(ii) What type of reaction is this?
[1]
(iii) This reaction produces a mixture of products. Give the names of two products that contain four carbon atoms per molecule.
[2]

© UCLES 2006

(c) Alkenes are more reactive than alkanes and are used to make a range of organic chemicals. Propene, CH₃–CH=CH₂, is made by cracking. Give the structural formula of the addition product when propene reacts with the following.

(i) water

(ii) bromine

(d) Propene reacts with hydrogen iodide to form 2-iodopropane.
CH₃-CH=CH₂ + HI _____ CH₃-CHI-CH₃
1.4 g of propene produced 4.0 g of 2-iodopropane.
Calculate the percentage yield.
moles of CH₃-CH=CH₂ reacted = ______

maximum moles of CH_3 -CHI- CH_3 that could be formed =

mass of one mole of CH_3 –CHI– CH_3 = 170 g

maximum mass of 2- iodopropane that could be formed =

percentage yield %

[1]

[1]

[4]

.....

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET The Periodic Table of the Elements

								Grc	Group								
—	=											≡	\geq	>	N	١١٨	0
							¹ Hydrogen										4 Helium 2
23 23 23 23 23 23 23 23 23 23 23 23 23 2	9 Beryllum 24 Magnesium					-						11 B 5 27 Aluminium 13	12 6 Carbon 6 28 28 28 14	Nitrogen 7 Nitrogen 31 31 Phosphorus 15	16 0 0 0 0 0 0 0 0 0 0 0 0 0	19 9 35.5 Chlorine 37.5 17	20 Neon 10 Argon
39 A Potassium	40 Calcium 20	45 SC 21	48 T Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Man Manganese 25	56 Fe ^{rron}	59 CO ^{Cobalt}	59 Nickel 28	64 Copper 29	65 Zn 30	70 Gal lium 31	73 Ge Germanium 32	75 AS Arsenic 33	79 Selenium 34	80 Br Bromine 35	84 Kypton 36
85 Rb Rubidium 37	88 Sr rontium 38	89 Yttrium 39	91 Zr Zirconium 40	93 Nicobium 41	96 Mo Molybdenum 42	Tc Technetium 43	101 Rut Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn 50	122 Sb Antimony 51	128 Te ^{Tellurium} 52	127 I Iodine 53	131 Xe 54
133 CS Caesium 55	137 Ba ^{Barium} 56	139 La n Lanthanum 57 *	178 Hf Hafinium 72	181 Ta Tantalum 73	184 V Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 Ir Iridium 77	195 Pt Platinum 78	197 Au Gold 79	201 Hg ^{Mercury} 80	204 T 1 Thallium 81	207 Pb ^{Lead} 82	209 Bi Bismuth 83	Polonium 84	At Astatine 85	Radon 86
Fr Francium 87	226 Ra ^{Radium} 88	227 AC ⁿ Actinium															
*58-71 †90-103	*58-71 Lanthanoid serie 190-103 Actinoid series	*58-71 Lanthanoid series 190-103 Actinoid series		140 Ce Cerium	141 Praseodymium 59	144 Neodymium 60	Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb 65	162 Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tan 69	173 Yb Ytterbium 70	175 Lu Lutetium 71
Key	ت X	a = relative atomic mass X = atomic symbol b = proton (atomic) number	mic mass Ibol nic) number	232 Thorium 90	Protactinium 91	238 U ^{Uranium} 92	Neptunium 93	Pu Plutonium 94	Americium 95	C Curium 96	BK Berkelium 97	Cf Californium 98	Einsteinium 99	Fm ^{Fermium}	Mendelevium 101	Nobelium 102	Lr Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).