Centre Number	Candidate Number	Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/02

Paper 2

May/June 2006

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

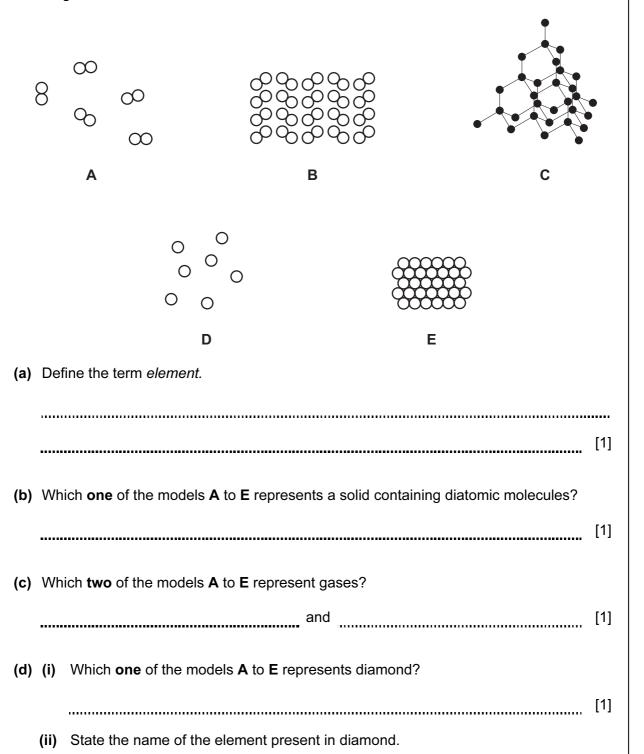
READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

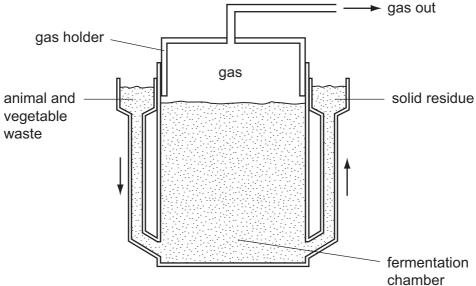

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
Total		

1 The diagram shows models of various elements.



(iii) State a use of diamond other than in jewellery.

(e)	Stru met		re E is a metal.	State th	ree phy	sical p	roperties	which are	character	ristic of	all
										.	
							•••••		•••••		[3]
(f)	Met	als	are sometimes m	nixed with	n other e	lements	s in order	to change	their prop	erties.	
	(i)	Wł	nat is the name gi	ven to a	mixture	of meta	als with ot	her elemer	nts?		
											[1]
	(ii)		atch up the metal e has been done		ooxes or	n the le	ft with the	eir uses on	the right.	The f	irst
			tin				for maki	ng chemica	al plants		
			mild steel				for p	plating tin c	ans		
			stainless ste	el			fo	r car bodie	es		
			aluminium				for e	electrical wi	ring		
			copper				for	aircraft bod	lies		
											[A]

[1]

2 The diagram shows a biogas digester. Animal and vegetable waste is fermented by bacteria. The gas produced is a mixture of mainly carbon dioxide and methane.

						chamber		
(a)		te the name give duce carbon dio		releasing	process in	which organisms u	se food a	and
								[1]
(b)	The	hydrogen reac	roduced during th ts with the carbon equation for this re	dioxide to		nane and oxygen.		
			CO ₂ + 2H ₂		+			
	(ii)	Suggest a use	for the methane p	oroduced	n this reac	tion.		[2]
								[1]
	(iii)	Describe the a	rrangement and r	notion of t	he molecul	es in methane gas		
		arrangement					_	
								[2]
	(iv)	State the name	e of the homologo	us series	to which m	ethane belongs.		
								[1]
	(v)	Which one of t methane? Tick one box.	he following com	pounds be	elongs to th	ne same homologo	us series	s as
		C_2H_4	C_2H_6	СН	₃ОН	CH ₃ CO ₂ H		

© UCLES 2006 0620/02/M/J//06

1-1	\\\\hickara	of the fellowing	r cauctions A D	C or D doooril	oes fermentation?
IC	i vvnich one	e or the following	i eduations A. D	. C or D descri	jes iennentation?

A
$$CH_4 + H_2O \longrightarrow CO + 3H_2$$

B
$$C_6H_{12}O_6 + 6O_2 \longrightarrow 6H_2O + 6CO_2$$

$$C C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$$

$$\textbf{D} \quad C_6H_{14} \quad \longrightarrow \quad C_4H_{10} \ + \ C_2H_4$$

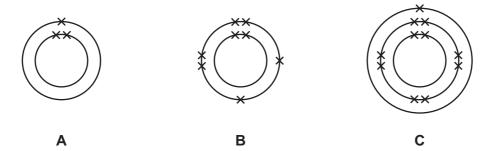
[1]	1

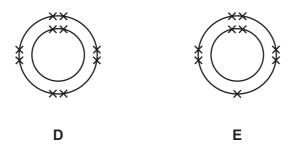
(d) Many of the reactions occurring in the biogas digester are catalysed by enzymes.

	(i)	Suggest	where t	the enzv	vmes d	ome	from
--	-----	---------	---------	----------	--------	-----	------

r.a	47	
17	17	1
L'	٠,	
	-	

(ii) Define the term catalysis.


	[1]


(e) The solid residue from the biogas digester can be used as a fertiliser.

State the names of **two** non-metallic elements found in fertilisers which are needed for plant growth.

and	[2	2
	 -	-

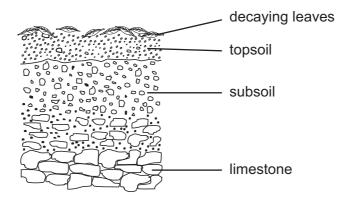
3 The electronic structures of various atoms are shown below.

(a)	(i)	Which one of these structures A to E represents a noble gas?	
			[1]
	(ii)	Which two of these structures represent atoms from the same Group of Periodic Table?	the
		andand	[1]
	(iii)	Which one of these structures represents an atom with an atomic number of 8?	
			[1]
	(iv)	Which one of these structures forms a stable ion by gaining one electron?	
			[1]
	(v)	Which one of these structures is in Period 3 of the Periodic Table?	
			[1]

(b) Complete the following sentences using words from the list.

	chlorine	diamond	high	low	sharing
	sodium	stroi	ng	transfer	weak
cov	alent molecule	es such asi	tures such as	nd bromine have	have many
	D(onds and nave nigi	n meiting point	S.	[5]
The	•		_	e arranged in a hy	/drogen molecule.
(ii)	test				ro1
	The	covalent bonds a covalent molecule melting points. G The simplest cova (i) Draw a diagra (ii) Describe a te test	Covalent bonds are formed by the covalent molecules such as melting points. Giant covalent struct bonds and have high the simplest covalent molecule is hy (i) Draw a diagram to show how the covalent molecule is hy the covalent	covalent bonds are formed by the covalent molecules such as melting points. Giant covalent structures such as bonds and have high melting point. The simplest covalent molecule is hydrogen. (i) Draw a diagram to show how the electrons are test	sodium strong transfer Covalent bonds are formed by theof pairs of electovalent molecules such as and bromine have melting points. Giant covalent structures such asbonds and have high melting points. The simplest covalent molecule is hydrogen. (i) Draw a diagram to show how the electrons are arranged in a hydrogen. (ii) Describe a test for hydrogen. test

4 Coal gas is made by heating coal in the absence of air. The table shows the composition of coal gas.


name of gas	% of gas in coal gas
hydrogen	50
methane	30
carbon monoxide	7
carbon dioxide	4
nitrogen	4
ethene	3
oxygen	2

(a)	(i)	Which element in this table is a highly flammable gas?	
			[1]
	(ii)	Which compound in the table is an alkene?	
			[1]
	(iii)	Which compound in the table turns limewater milky?	
			[1]
(b)	De	scribe a test you can use to distinguish between ethene and methane.	
	tes	st	
	res	sult with ethene	
	res	sult with methane	[3]

© UCLES 2006 0620/02/M/J//06

(c)	Мо	lecules of ethene can re	act with each other	to make poly(ethene).		
	(i)	What is the name giver	n to this type of reac	tion?		
						[1]
	(ii)	Which formula below b Tick one box.	est represents a mo	lecule of poly(ethene)?	?	
_	 	H H	H H C = C -	H CH ₃	H H C C C H H H H H H H H	- n
						[1]
(d)	usi	nene can be manufacturing high temperatures areate the name given to thi	nd a catalyst.	wn hydrocarbons into	smaller molecu	les
						[1]
(e)		quid is also formed when s liquid contains a high p				
	(i)	Describe a test for amr	nonia.			
		test				
		result				[2]
	(ii)	Ammonia has the form		nmonia.		
						F41
(f)		al contains a small amou blain why burning coal is		onment.		[1]
						••••
						[2]

5 The diagram shows a cross section of a soil.

(a) A student took 10 g of topsoil and shook it with 200 cm³ of distilled water.

(i)	How can the student separate the	e solids in the soil from the solution?	[1]
(ii)	The topsoil had a pH of 6. Which of the following gives the b Tick one box.	pest description of this pH?	,
	strongly acidic		
	weakly acidic		
	neutral		
	weakly alkaline		

[1]

© UCLES 2006 0620/02/M/J//06

(b)	The	he soil contained large amounts of calcium ions and carbonate ions.							
	(i)	Use the information in the diagram to suggest where these ions came from.							
		[1]							
	/::\	Complete the word equation for the reaction of calcium carbonate with hydrochloric							
	(ii)	acid.	e the word eq	uation for the read	ction of calcium carbonate v	vitn nyarochioric			
	alciu bona	+	hydrochlorid acid	calci	+	+			
						[2]			
(c)	The	table sh	ows the mass	of each ion preser	nt in 200 cm ³ of soil solution				
			ion	formula of ion	mass present/milligrams				
			calcium	Ca ²⁺	12				
			carbonate	CO ₃ ²⁻	20				
			iron(III)	Fe ³⁺	4				
			magnesium	Mg ²⁺	5				
			nitrate	NO ₃	2				
			phosphate	PO ₄ ³⁻	1				
			others		6				
	(i)	Which n	egative ion ha	s the highest cond	entration in the soil solution] 1?			
	(i) Which negative ion has the highest concentration in the soil solution? [1] (ii) Calculate the mass of iron(III) ions in one litre (1000 cm³) of solution.								
(iii) Which ion in the table will release ammonia when heated with aqueous sodium hydroxide and aluminium foil?									
((iv)		a test for iror			[1]			
		test							
		result				[3]			

(d) The air trapped in the soil has a different composition from the air in the atmosphere. The table shows the composition of the air in the soil.

gas	percentage of gas in soil air	
carbon dioxide	2	
nitrogen	82	
oxygen	15	
other gases	1	

State how the composition of soil air compares with the composition of air in the atmosphere.

carbon di	ioxide	
nitrogen		
oxygen		[3]

(e) Decaying leaves produce ethanoic acid.

Complete the formula for ethanoic acid showing all atoms and bonds.

[1]

6

Iror	ı is e	extracted from iron ore by heating the iron ore with coke and limestone.	
(a)	Sta	te the name of the ore from which iron is extracted.	
			[1]
(b)	The	e coke burns in a blast of hot air to form carbon monoxide.	
	(i)	Complete the equation for this reaction.	
		C + O ₂ CO	
			[1]
	(ii)	State an adverse effect of carbon monoxide on human health if it were to esca from the blast furnace.	ape
			[1]
(c)	Nea	ar the top of the blast furnace, carbon monoxide reacts with iron ore.	
		$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$	
	(i)	Write a word equation for this reaction.	
			[1]
	(ii)	What type of chemical reaction is the conversion of Fe ₂ O ₃ to 2Fe?	
			[1]

		e limestone is confurnace.	verted to cald	ium oxi	de and d	carbon o	dioxide by the i	intense heat in
			CaCO ₃		CaO	+ CO ₂		
((i)	What type of che	mical reactior	n is this?	?			
								[1]
(ii)	Name a use of lir	nestone othe	r than in	the blas	t furnac	e.	
								[1]
(i	ii)	The calcium oxid The product of the furnace. What is Put a ring around	nis reaction of the name of	ollects o	on top of			bottom of the
		baux	ite sa	nd	slag	sl	aked lime	
(e) -	The	e iron obtained fror	n the blast fu	rnace co	ontains tl	ne follov	ving impurities.	[1]
` ,							0 1	
							•••	
		carbon	manganes	se	phosph	orus	silicon	
((i)	carbon Which one of the					silicon	
((i)	Which one of the	ese elements	is a tran	sition ele	ement?	silicon	[1]
	(i) (ii)	Which one of the	ese elements	is a tran	sition ele	ement?		[1]
		Which one of the	ese elements	is a tran	sition ele	ement?		[1]
		Which one of the	ese elements de is phospho I the correct a	is a tran	sition ele	ement?		[1]
(Which one of the	de is phospho I the correct a ampho	rus oxidinswer.	basi	ement?	neutral	[1]
((ii)	Which one of the What type of oxice Put a ring arounce acidic 50 tonnes of imp	de is phospho I the correct a ampho	rus oxidinswer.	basi	ement?	neutral	[1]
((ii)	Which one of the What type of oxice Put a ring arounce acidic 50 tonnes of imp	de is phospho I the correct a ampho	rus oxidinswer.	basi	ement?	neutral	[1]
((ii)	Which one of the What type of oxice Put a ring arounce acidic 50 tonnes of imp	de is phospho I the correct a ampho	rus oxidinswer.	basi	ement?	neutral	[1]
((ii)	Which one of the What type of oxice Put a ring arounce acidic 50 tonnes of imp	de is phospho I the correct a ampho	rus oxidinswer.	basi	ement?	neutral	[1]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

	0	4 He lium	20 Neon 10 40 Ar Argon	84 Kr Kr Kr (Krypton 36 Xe Xenon 54	Radon 86	Luetium Lutetium 71 Luewrendium 103		
	=		19 Fluorine 9 35.5 C1 Chlorine	80 Br Bromine 35 127 I I S I I I I I I I I I I I I I I I I	At Astatine 85	Yb Yb Ytterbium 70 No Nobelium		
	5		16 Oxygen 8 32 Sulphur 16	See Selenium 34 128 Te Tellurium 52	Po Polonium 84	Tm Thulium 69 Md Mendelevium 101		
	>		Nitrogen 7 31 P Phosphorus 15	75 As Arsenic 33 122 Sb Antimony 51	209 Bismuth 83	Erbium 68 Fm Fermium 100		
	≥		12 Carbon 6 28 Silicon 14	73 Ge Germanium 32 119 Sn Tin	207 Pb Lead	Homium 67 Es Einsteinium 99		
	=		11 B Boron 5 27 A1 Auminium 13	Gallium 31 115 Indium 49	204 T 1 Thallium 81	Dy Dysprosium 66 Cf Californium 98		
				2nc Znc 30 112 Cd Cadmium	201 Hg Mercury 80	Tb Tb Terbium 65 Berkellum 97		
				Cu Copper 29 108 Ag Silver	Au Au Gold 79	Gd Gadolinium 64 Cm Curium 96		
Group				Nickel 28 106 Pd Palladium 46	195 Pt Platinum 78	Europium 63 Am Americium 95		
Ğ				59 Cobalt 27 103 Rh Rhodium	192 Ir	Samarium 62 Pu Putonium 94		
		1 H Hydrogen		56 Fe Iron 26 101 Ru Ruthenium 44	190 O S Osmium 76	Pm Promethium 61 Np Neptunium 93		
				Manganese 25 TC Technetium 43	186 Renium 75	Nd Neodymium 60 238 Uranium 92		
						52 Cr Chromium 24 96 Mo Moybdenum 42	184 W Tungsten 74	Pr Praseodymium 59 Pa Protactinium 91
				Vanadium 23 93 Niobium 41	181 Tantalum 73	140 Cer ium 58 Th Thorium 90		
				48 Titanium 22 91 Zr Zirconium 40	178 Haf Hafnium 72	nic mass bol nic) number		
				Scandium 21 89 Y Yttrium 39	139 Lanthanum 57 * 227 Actinium 89	bid series I series a = relative atomic mass X = atomic symbol b = proton (atomic) number		
	=		Be Beryllium 4 24 Magnesium 12	Calcium 20 88 Sr Strontium 38	137 Ban Barium 56 226 Rad Radium 88	noic		
	_		Lithium 3 Lithium 3 23 Na Sodium 11	39 K Potassium 19 85 Rb Rubidium 37	Caesium 55 Francium Francium 87	*58-71 L 190-103 A		

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).