Centre Number	Candidate Number	Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/02

Paper 2 (Core)

May/June 2005

1 hour 15 minutes

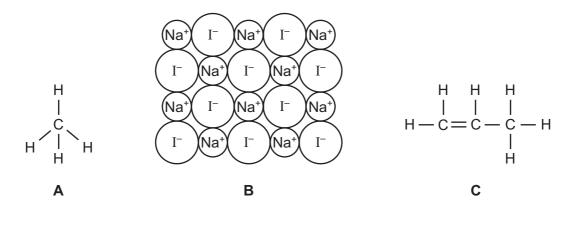
Candidates answer on the Question Paper. No Additional Materials required.

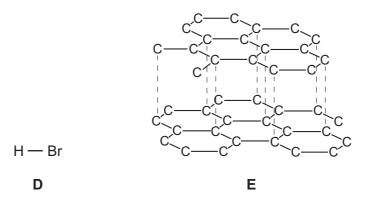
READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.


If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.


Stick your personal label here, if provided.

For Examir	ner's Use
1	
2	
3	
4	
5	
6	
Total	

International Examinations

1 The structures of some substances are shown below.

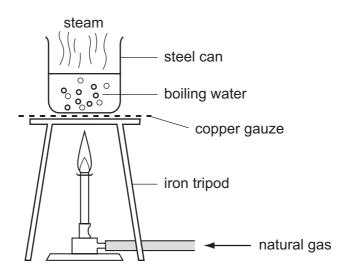
(a) Answer these questions using the letters A, B, C, D or E.

	and	[1]
(v)	Which two structures have very high melting points?	
(iv)	Which structure contains ions?	[1]
(iii)	Which two structures are hydrocarbons? and	[1]
(ii)	Which two structures are giant structures? and	[1]
(i)	Which structure is methane?	[1]

(b)	Stru	Structure E is a form of carbon.					
	(i)	What is the name of Put a ring around the					
		carbide	graphite	lead	poly(hexene)	[1]	
	(ii)	Name another form	of carbon.				
		[1]					
(c)	Wri	te the simplest form	ula for substance B .			[4]	
	•••••					[1]	
(d)		ubstance D an elem lain your answer.	ent or a compound′	?			
						[1]	

[1]

- 2 A student collected some water from a polluted river.


 The water contained soluble solids and insoluble clay and had a pH of 5.
 - (a) How can the student separate the clay from the rest of the river water?

- 4 -	
11	
1.1.	

(b) The student uses litmus paper to show that the river water is acidic. What will be the result of this test?

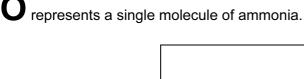
(c) The student then boiled the river water to obtain the soluble solids. The diagram shows how she heated the water.

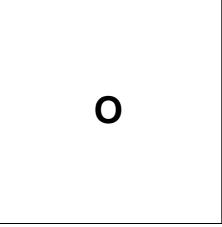
Which of the substances named in the diagram is

(i)	an alloy,	[1]
(ii)	a compound which is liquid at room temperature,	[1]
(iii)	an element,	[1]
(iv)	a fuel?	[1]
(d) Nar	me the main substance in natural gas.	

(e) What is the normal temperature of boiling water?

[1]


(f) After the student boiled off the water, she analysed the white powder on the inside of the steel can.


The table shows her results.

name of ion	formula of ion	mass of ion present /milligrams
calcium	Ca ²⁺	16
carbonate	CO ₃ ²⁻	35
chloride	Cl⁻	8
nitrate	NO ₃ ⁻	4
sodium	Na⁺	8
sulphate	SO ₄ ²⁻	6

	(i)	Which positive ion had the greatest concentration in the sample of river water?	
			[1]
	(ii)	Complete the following equation to show how a sodium ion is formed from sodium atom.	n a
		Na → Na ⁺ +	[1]
(g)		tead of using natural gas, the student could have used butane to heat the water. e formula of butane is C_4H_{10} .	
	(i)	What products are formed when butane burns in excess air?	
			[1]
	(ii)	Name the poisonous gas formed when butane undergoes incomplete combustio	n.
			[1]

- 3 Ammonia is a gas which forms an alkaline solution when dissolved in water.
 - (a) Complete the diagram below to show the arrangement of the molecules in ammonia gas.

[2]

(b) Which one of the following values is most likely to represent the pH of a dilute solution of ammonia?

Put a ring around the correct answer.

pH2 pH6 pH7 pH9 [1]

(c) The structure of the ammonia molecule is shown below.

$$H \stackrel{N}{\downarrow} H$$

(i) Write the simplest formula for ammonia.

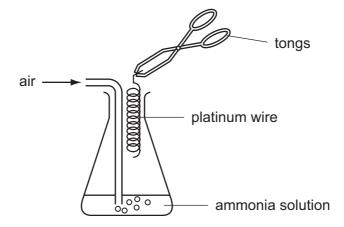
[1]

(ii) Describe the type of bonding in a molecule of ammonia.

[1]

(iii) Ammonia is a gas at room temperature. Suggest why ammonia has a low boiling point.

[1]


[3]

(d) Many fertilisers contain ammonium sulph	onate.
---	--------

(d)	Mai	ny fertilisers cor	itain ammoniur	n sulphate.			
	(i)	Which acid mu Put a ring arou	ist be added to and the correct		ution to mak	e ammonium s	ulphate?
		HC1	HN	O_3	H ₃ PO ₄	H ₂ SC	D ₄ [1]
	(ii)	Fill in the miss list.	sing words in th	ne following se	entence usin	g two of the w	ords from the
		air	hydrogen	nitrogen	soil	sodium	water
			needed in agric				
		phosphorus ar	nd other elemer	nts which are	removed froi	m the	
		when crops are	e grown.				[2]
(e)	bea ami	olution of ammoreaker of ammoreaker of monia ution		•	er of a room	g	irl standing

he closed window cannot smell the ammonia. he smells the ammonia. ticle theory to explain these facts.	

(f) The diagram shows the apparatus used for oxidising ammonia in the laboratory.

First, nitrogen(II) oxide, NO, is produced. This then reacts with oxygen to form nitrogen(IV) oxide, NO_2 .

(1) ۷۷1	There does the oxygen come norm in this reaction:	
		[1

(ii) Balance the equation for the reaction of nitrogen(II) oxide with oxygen.

2NO +
$$O_2 \rightleftharpoons \dots NO_2$$
 [1]

(iii) What is the meaning of the symbol ←?

(iv) The platinum wire acts as a catalyst in the reaction. As the reaction takes place, the wire begins to glow red hot. What does this show about the reaction?

[1]

- 4 Poly(ethene) is a plastic which is made by polymerizing ethene, C₂H₄.
 - (a) Which one of the following best describes the ethene molecules in this reaction? Put a ring around the correct answer.

alcohols alkanes monomers polymers products [1]

(b) The structure of ethane is shown below.

Explain, by referring to its bonding, why ethane cannot be polymerized.

[1]

(c) Draw the structure of ethene, showing all atoms and bonds.

[1]

- (d) Ethene is obtained by cracking alkanes.
 - (i) Explain the meaning of the term *cracking*.

(ii) What condition is needed to crack alkanes?

[1]

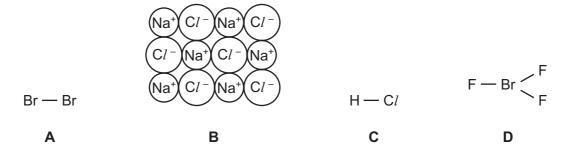
(iii) Complete the equation for cracking decane, $C_{10}H_{22}$.

 $C_{10}H_{22} \longrightarrow C_2H_4 + \dots$ [1]

- (e) Some oil companies 'crack' the ethane produced when petroleum is distilled.
 - (i) Complete the equation for this reaction.

$$C_2H_6 \longrightarrow C_2H_4 + \dots$$
 [1]

(ii)	Describe the process of fractional distillation which is used to separate the different fractions in petroleum.	ent
		••••
		[2]
(iii)	State a use for the following petroleum fractions.	
	petrol fraction	
	lubricating fraction	[2]


	reactivity. (a) In this description, what is the meaning of									
	(i) diatomic,									
		(ii)	state?					[1]		
	(b)	The	table gives	the halogens.						
			element	melting point /°C	boiling point /°C	colour	state at room temperature			
			chlorine	-101	-35	green				
			bromine	-7	+59					
(i) Complete the last column in the table to show the state of each of the haloge room temperature.(ii) State the colour of bromine.								ns at [2]		
								[1]		
	(iii) Suggest a value for the boiling point of iodine.									
[
	(c)	Cor	nplete the w	ord equation for t	the reaction of ch	nlorine with pot	assium iodide.			
		chlo	orine +	potassium iodide	-	+		[2]		

[2]

(d) (i) Draw a diagram to show the electronic structure of a chlorine molecule. Show only the outer electrons.

(ii) State a use of chlorine.

(e) The structures of some substances containing halogens are shown below.

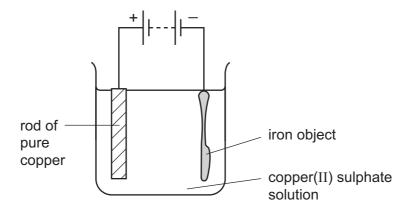
- (i) Which one of these structures, **A**, **B**, **C** or **D**, shows an element?
- (ii) Which one of these structures forms hydrochloric acid when dissolved in water?
- (iii) Complete the following sentence.

 Structure **B** conducts electricity when it is molten because

(f)	Ast	Astatine, At, is below iodine in Group VII of the Periodic Table.					
	(i)	In which Period of the Periodic Table is astatine?					
			[1]				
	(ii)	How many protons does astatine have in its nucleus?					
			[1]				
	(iii)	Astatine has many isotopes. What do you understand by the term <i>isotopes</i> ?					
			••••				
			[1]				
	(iv)	The most common isotope of astatine has a nucleon number (mass number) 210. Calculate the number of neutrons in this isotope of astatine.	of				
			[1]				

- 6 The electroplating of iron with chromium involves four stages.
 - 1. The iron object is cleaned with sulphuric acid, then washed with water.
 - 2. The iron is plated with copper.
 - 3. It is then plated with nickel to prevent corrosion.
 - 4. It is then plated with chromium.
 - (a) The equation for stage 1 is

Fe +
$$H_2SO_4$$
 \longrightarrow FeSO₄ + H_2


(i) Write a word equation for this reaction.

[2]

(ii) Describe a test for the gas given off in this reaction.

test	
result	[2]

(b) The diagram shows how iron is electroplated with copper.

(i) Choose a word from the list below which describes the iron object. Put a ring around the correct answer.

anion	anode	cathode	cation	[1

(ii) What is the purpose of the copper(II) sulphate solution?

111
 r . 1

© UCLES 2005 0620/02/M/J/05

	(iii)	Describe what happens during the electroplating to	
		the iron object,	
		the rod of pure copper[2]	
	(iv)	Describe a test for copper(II) ions.	
		test	
		result	
		[3]	[
(c)	Sug	gest why chromium is used to electroplate articles.	
		[1]	l
(d)		information below shows the reactivity of chromium, copper and iron with warm ochloric acid.	ì
	chr	mium – few bubbles of gas produced every second	
	сор	per – no bubbles of gas produced	
	iron	 many bubbles of gas produced every second 	
	Put	these three metals in order of their reactivity with hydrochloric acid.	
		Most reactive →	
		Least reactive →	
		[1]	l

-

Every reasonable effort has been made to trace all copyright holders where the publishers (i.e. UCLES) are aware that third-party material has been reproduced. The publishers would be pleased to hear from anyone whose rights they have unwittingly infringed.

DATA SHEET
The Periodic Table of the Elements

	_	on Ē	_ (b) ∈	_ _	_ L ua	− 0 5	C 8		2 T
	0	Helium	20 Ne Neon	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon	Radon 86		Lutetium 71
	=>		19 F Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70
	>		16 Oxygen 8	32 S Sulphur	Selenium	128 Tellurium	Po Polonium 84		169 Tm Thulium
	>		14 Nitrogen 7	31 Phosphorus	75 AS Arsenic	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68
	≥		12 C Carbon 6	28 Si Silicon	73 Ge Germanium	119 Sn Tin	207 Pb Lead 82		165 Ho Holmium 67
	≡		11 Boron 5	27 A1 Aluminium	70 Ga Gallium	115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium 66
					65 Zn Zinc 30	Cadmium 48	201 Hg Mercury		159 Tb Terbium 65
					64 Cu Copper	108 Ag Silver 47	197 Au Gold		Gd Gadolinium 64
Group					59 Nickell 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63
ē			1		59 Co Cobalt	Rhodium 45	192 Ir		Samarium 62
		T Hydrogen			56 Fon Iron	Ruthenium 44	190 Os Osmium 76		Pm Promethium 61
					Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymiun 60
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59
					51 Vanadium 23	93 Ni obium 41	181 Ta Tantalum 73		140 Ce Cerium 58
					48 Ti Titanium	2r Zirconium 40	178 Hf Hafnium		1
					Scandium 21	89 Yttrium 39	139 La Lanthanum 57 *	227 Ac Actinium 89	l series eries
	=		9 Be Beryllium	Magnesium	Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 90-103 Actinoid series
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	85 Rb Rubidium 37	133 Caesium 55	Francium 87	*58-71 L

16

The volume of one mole of any gas is 24 dm^3 at room temperature and pressure (r.t.p.).

Lr Lawrencium 103

Mo

Fm Fermium

Es

 \vec{c}

BKBerkelium
97

Curium

Am
Americium
95

PuPlutonium
94

Np Neptunium

238 **C** Uranium

Ра

232 **Th** Thorium

a = relative atomic massX = atomic symbol

ω **×**

Key

90

b = proton (atomic) number

© UCLES 2005 0620/02/M/J/05