Centre Number	Candidate Number	Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/02

Paper 2

May/June 2004

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials required.

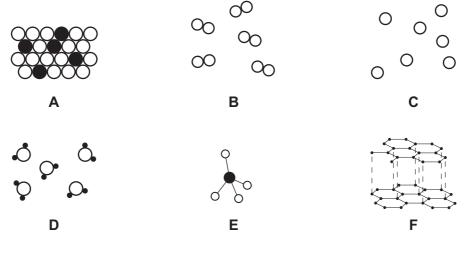
READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.

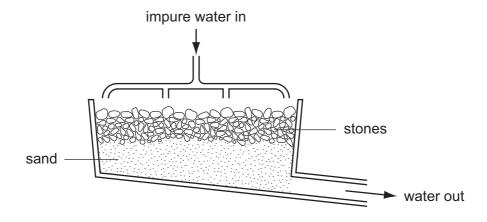
If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.


Stick your personal label here, if provided.

For Examir	ner's Use
1	
2	
3	
4	
5	
6	
Total	

This document consists of 16 printed pages.

1 The diagram shows models of various structures,



(a)	Wh	ich three of the structures A to F represent elements? Give a reason for your ans	wer.
	stru	ictures	
	rea	son	[2]
(b)	Wh	ich one of the structures A to F represents a gas containing single atoms?	
			[1]
(c)	(i)	Which one of the structures A to F represents a gas containing diatomic molecul	les?
	(ii)	State the name of a gas which has diatomic molecules.	[2]
(d)	(i)	Which one of the structures A to F represents graphite?	
	(ii)	State one use of graphite.	
			[2]

(e)	Stru	ucture D represe	ents a compound.			
	(i)	State what is n	neant by the term compou	ınd.		
	(ii)	Which one of t	he following substances is	s structure E most lik	cely to represent	:?
		Put a ring arou	nd the correct answer.			
		ammonia	hydrogen chloride	methane	water	[2]
(f)	Нус	drogen chloride	is a compound.			
	(i)	Draw a diagrar chloride.	m to show how the electro	ons are arranged in a	a molecule of hy	drogen
		Show only the	outer electrons.			
					drogen electron	
				SNOW C	chlorine electron	s as x
						[0]
						[2]
	(ii)	State the name	e of the type of bonding pr	resent in hydrogen c	hloride.	
						[1]
	(iii)		ride dissolves in water to you would use litmus pape			

						[2]
	(iv)	Which one of solution of hyd	the following values is nrochloric acid?	nost likely to repres	ent the pH of a	a dilute
		Put a ring arou	nd the correct answer.			
		pH 2	рН7	pH10	pH14	[1]

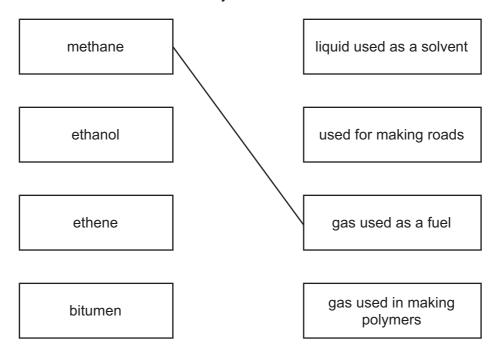
(v)	Complete the following equation for the reaction of hydrochloric acid w magnesium.	ith
	$Mg(s) + \dots HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$	1]
(vi)	Name the salt formed in this reaction.	
		[1]

2 Two of the stages in water purification are filtration and chlorination. The diagram below shows a filter tank.

(a)	Exp	plain how this filter helps purify the water.	
			[2]
(b)	(i)	Why is chlorine added during water purification?	
	(ii)	After chlorination, the water is acidic. A small amount of slaked lime is added to t acidic water. Explain why slaked lime is added.	:he
	(iii)	What is the chemical name for slaked lime?	
	(iv)	State one other use of slaked lime.	
			[4]

(c)	(i)	State the b	ooiling	point of	pure water	•			
									[2]
	(ii)	Describe a	a chem	nical test	for water.				
		test							[1]
		result							[1]
((iii)	State one	use of	water ir	the home				
				*************					[1]
(d)	The	diagram s	hows t	he arran	gement of	particles in t	he three	e different states of water	
		Α				В		С	
	Whi	ch of these	diagra	ams, A ,	B or C , sho	ows water in	a solid	state?	
						***************************************			[1]
(e)		am reacts v reaction.	with etl	hene in t	he presend	ce of a cataly	/st. Con	nplete the word equation	for
	ethe	ene	+	steam	\rightarrow				[1]
(f)	Pota	assium rea	cts vio	lently wi	th water. C	omplete the	word ed	uation for this reaction.	
	pota	assium	+	water	\rightarrow			+	
								ni i	[2]

3


	eased.				ct with hydro				_
	CaCO ₃ (s)	+	2HC <i>l</i> (aq)	\rightarrow	CaCl ₂ (aq)	+	$CO_2(g)$	+	$H_2O(I)$
(a)			tical method fe of reaction.	or inve	estigating this	reactio	n, which w	ould e	nable you to
							***************************************		[4]
(b)			he following h		n the rate of the	e react	ion?		
	(ii) addin	g wate	r to the acid						
1	(iii) using	powde	ered calcium o	carbona	ate instead of	lumps			[3]
									[9]
(c)	Describe a	a test f	or calcium ior	ıs.					
	result								
	test								
									[3]

(d)	Cal	cium can be obtained by the electrolysis of molten calcium chloride.	
	(i)	Suggest why calcium must be extracted by electrolysis rather than by reduction with carbon.	on
			[1]
	(ii)	Draw the electronic structure of an atom of calcium.	

[2]

[3]

- 4 Organic substances have many uses.
 - (a) Match the substances in the boxes on the left with the descriptions in the boxes on the right. The first one has been done for you.

(b) Which one of the following would be least likely to be obtained from the fractional distillation of petroleum? Put a ring around the correct answer.

bitumen ethane ethanol methane [1]

(c) Some reactions of organic compounds are shown below.

A
$$n CH_2=CH_2 \longrightarrow (-CH_2-CH_2-)_n$$

B
$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

C
$$C_6H_{12}O_6$$
 \longrightarrow $2CO_2 + 2C_2H_5OH$ glucose

D
$$C_8H_{18}$$
 \longrightarrow $C_6H_{14} + C_2H_4$

(i)	Which one of the reactions, A , B , C or D , shows fermentation?	

(ii)	Which one of the reactions, A , B , C or D , shows polymerization?	

(1111)	Which one of the reactions, A, B, C of D, shows combustion?

[4

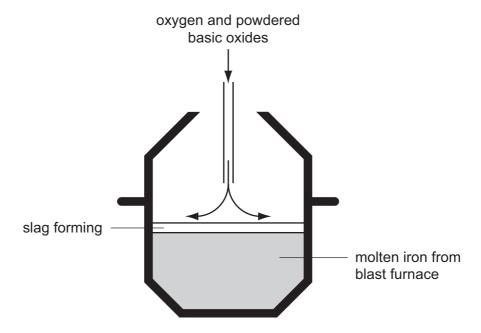
- (d) The hydrocarbon C₈H₁₈ is an alkane.
 - (i) What is meant by the term *hydrocarbon*?

(ii) Explain why this hydrocarbon is an alkane.

[2]

5 Look at the list of five elements below.

argon bromine chlorine iodine potassium


		potassium	
(a)	Put	these five elements in order of increasing proton number.	
		[1]
(b)	Put	these five elements in order of increasing relative atomic mass.	
		[1]
(c)		e orders of proton number and relative atomic mass for these five elements are erent. Which one of the following is the most likely explanation for this?	е
	Tick	c one box.	
	The	e proton number of a particular element may vary.	
	The	presence of neutrons.	
	The	atoms easily gain or lose electrons.	
		e number of protons must always equal the number of trons.	
		[1	1]
(d)	Wh	ich of the five elements in the list are in the same group of the Periodic Table?	
		[1]
(e)	(i)	From the list, choose one element which has one electron in its outer shell.	
			1]
	(ii)	From the list, choose one element which has a full outer shell of electrons.	
		[1]

(f)	Which two of the following statements about argon are correct?	
	Tick two boxes.	
	Argon is a noble gas.	
	3 3	
	Argon reacts readily with potassium.	
	Argon is used to fill weather balloons.	
	Argon is used in light bulbs.	
		[2]
(g)	Potassium chloride can be made by reacting potassium with ch	lorine The bonding in
(9)	potassium chloride is ionic.	iorino. The bonding in
	What does this information tell you about	
	(i) the boiling point of potassium chloride,	
		[1]
	(ii) the electrical conductivity of molten potassium chloride?	
		[1]
(h)	Describe the change in the electronic structure of potassium and	d chlorine atoms when
(,	they combine to make potassium chloride.	
	change in potassium atom	
	change in chlorine atom	
	change in chiorne atom	
		[2]
		[~]

6

	is extracte a source of		n its ore in a	a blast fu	irnace using	carbon (d	coke) as a red	ucing agent a	and
(a)	The coke	burns	in hot air. T	he equa	tion for this	reaction is	;		
	2C(s)	+	O ₂ (g)	\rightarrow	2CO(g)				
	State the	name	of the gas p	roduced	in this reac	tion.			
									[1]
(b)	Near the t	op of	the blast fur	nace, the	e iron(III) ox	ide in the	iron ore gets r	educed to irc	n.
	$Fe_2O_3(s)$	+	3CO(g)	\rightarrow	2Fe(I)	+	3CO ₂ (g)		
	Use the ereaction.	equatio	on to expla	in why tl	he change	of iron(III) oxide to iror	n is a reduct	ion
								***************************************	[1]
(c)			gions of the quation for t			ide is redu	iced by carbor	1.	
	Fe ₂ O ₃ (s)	+	C(s)	\rightarrow	Fe(I) +	3CO(g)		[2]

(d) The iron from the blast furnace contains up to 10% by mass of impurities. The main impurities are carbon, silicon and phosphorus. The diagram below shows one method of making steel from iron.

A mixture of oxygen and basic oxides is blown onto the surface of the molten iron.

(i)	What is the purpose of blowing oxygen onto the molten iron?	
(ii)		[1]
iii)		
iv)		[1]
	calcium oxide carbon dioxide sulphur dioxide water	[1]
(v)	Why is steel rather than iron used for constructing buildings and bridges?	
		[1]

(e)	Special steels contain added elements such as vanadium, chromium, cobalt or r These are all transition metals.	iickel.
	State three properties of transition metals which are not shown by non-tran metals.	sition
	1	
	2.	
	3	[3]
(f)	What is the name given to metals which are mixtures of more than one metal?	
		[1]

The Periodic Table of the Elements **DATA SHEET**

	0	4 He Helium	20 Neon 10	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon Xenon 54	Rn Radon		175 Lu Lutetium
	=		19 Fluorine	35.5 C1 Chlorine	1		At Astatine 85		173 Yb
	5		16 Oxygen	32 S Sulphur		128 Te Tellurium	Po Polonium 84		169 T m
	>		14 N Nitrogen 7	31 Phosphorus	75 As Arsenic	122 Sb Antimony 51	209 Bi Bismuth		167 Er bium
	2		12 C Carbon	28 Si Silicon	73 Ge Germanium	30 Tin 119	207 Pb Lead		165 Holmium
	≡		11 Boron 5	27 A1 Aluminium 13		115 In Indium	204 T 1 Thallium		162 Dy Dysprosium
					65 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercury 80		159 Tb
					64 Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium
Group					59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium
Gre					59 Co Cobalt 27	Rhodium 45	192 Ir Irdium		150 Sm Samarium
		T Hydrogen			56 Fe Iron	Ruthenium 44	190 Os Osmium 76		Pm Promethium
					Mn Manganese	Tc Technetium 43	186 Re Rhenium 75		Neodymium
					52 Cr Chromium	96 Mo Molybdenum 42	184 W Tungsten 74		141 Praseodymium
					51 V Vanadium 23	93 Nb Nobium	181 Ta Tantalum		140 Ce
					48 T Titanium	91 Zr Zirconium 40	178 Hf Hafnium 72		
					45 Sc Scandium 21	89 Yttrium 39	139 La Lanthanum 57 *	Actinium Actinium 89	series eries
	=		9 Be Beryllum	24 Mg Magnesium	40 Ca Calcium 20	88 Sr Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series 90-103 Actinoid series
	_		7 Lithium	23 Na Sodium	39 K Potassium 19	85 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 L _€ 90-103 A

800														
מסיים טיס	140	141	4		150	152	157		162	165	167	169	173	
old selles I sprips	ဝီ	Ą	PΝ	Pm	Sm	En	gg	₽	٥	운	ш	Ę	Υb	
00000	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
a = relative atomic mass	232		238											
X = atomic symbol	T	Ра	-		Pu	Am	Cm	Ř	ర్	Es		Md		۲
b = proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	6	Curium 96	Berkelium 97		Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103

٩

Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES) which is itself a department of the University of Cambridge.