Food preservation techniques

Edited by Peter Zeuthen and Leif Bøgh-Sørensen

CRC Press Boca Raton Boston New York Washington, DC

WOODHEAD PUBLISHING LIMITED

Cambridge England

Published by Woodhead Publishing Limited Abington Hall, Abington Cambridge CB1 6AH England www.woodhead-publishing.com

Published in North America by CRC Press LLC 2000 Corporate Blvd, NW Boca Raton FL 33431 USA

First published 2003, Woodhead Publishing Limited and CRC Press LLC © 2003, Woodhead Publishing Limited The authors have asserted their moral rights.

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. Reasonable efforts have been made to publish reliable data and information, but the authors and the publishers cannot assume responsibility for the validity of all materials. Neither the authors nor the publishers, nor anyone else associated with this publication, shall be liable for any loss, damage or liability directly or indirectly caused or alleged to be caused by this book.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming and recording, or by any information storage or retrieval system, without permission in writing from the publishers.

The consent of Woodhead Publishing Limited and CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from Woodhead Publishing Limited or CRC Press LLC for such copying.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library.

Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress.

Woodhead Publishing Limited ISBN 1 85573 530 X (book); 1 85573 714 0 (e-book) CRC Press ISBN 0-8493-1757-6 CRC Press order number: WP1757

Cover design by The ColourStudio Project managed by Macfarlane Production Services, Markyate, Hertfordshire (e-mail: macfarl@aol.com) Typeset by MHL Typesetting Limited, Coventry, Warwickshire Printed by TJ International Limited, Padstow, Cornwall, England

Contributor contact details

Chapter 2

Professor P. M. Davidson and Dr S. Zivanovic
Department of Food Science and Technology
University of Tennessee
2509 River Drive
Knoxville
TN 37996-4539
USA

Tel: 865-974-0098 Fax: 865-974-7332 E-mail: pmdavidson@utk.edu

Chapter 3

Professor J. Pokorný
Department of Food Chemistry and Analysis
Faculty of Food and Biochemical Technology
Institute of Chemical Technology
Technicka 5 CZ-166 28 Prague 6 Czech Republic

Tel +4202 2435 3264 Fax +4202 3333 9990 E-mail jan.pokorny@vscht.cz

Chapter 4

Dr A.S. Meyer BioCentrum-DTU Technical University of Denmark DK-2800 Lyngby Denmark

E-mail: am@biocentrum.dtu.dk

Chapter 5

Dr P. Paulsen and Professor F. J. M. Smulders Institute of Meat Hygiene University of Veterinary Medicine Vienna A1210 Vienna Austria Tel 43-1-25077-3318 E-mail: peter.paulsen@vu-wien.ac.at

Chapter 6

Dr H. Park Graduate School of Biotechnology Korea University 5-Ka Anam-Dong Sungbuk-Ku Seoul 136-701 Korea

Fax: 82 2 3290 3450 E-mail: hjpark@korea.ac.kr E-mail: hjpark@clemson.edu

Chapter 7

Professor F.-K. Lücke
Department of Household Management, Nutrition, Food Quality (FB OE)
University of Applied Sciences (Fachhochschule)
Marquardstr. 35
D-36039 Fulda
Germany

E-mail: Friedrich-Karl.Luecke@he. fh-fulda.de

Chapter 8

Professor S.M. Alzamora Department of Industry, FCEyN Universidad de Buenos Aires Ciudad Universitaria 1428 Buenos Aires Argentina

E-mail: alzamora@ciudad.com.ar

Chapter 9

Dr Graham Bown Retort Product Manager, Food Flexibles Europe Alcan Packaging PO Box 3 Nightingale Way Midsomer Norton Radstock BA3 4AA UK

E-mail: graham.bown@alcan.com

Chapter 10

Dr L. Beney, Dr J. Perrier-Cornet, Dr F. Fine, Professor P. Gervais ENSBANA 1 Esplanade Erasme 21000 Dijon France

Tel: 03 80 39 66 54 Fax: 03 80 39 66 11 E-mail: gpab@u-bourgogne.fr

Chapter 11

Dr V.K. Juneja Food Safety Research Unit USDA-ARS-ERRC 600 E. Mermaid Lane Wyndmoor PA 19038 USA Tel: 215-233-6500 Fax: 215-233-6406 E-mail: vjuneja@arserrc.gov

Chapter 12

Dr C. J. Kennedy Nutrifreeze Ltd 8 Roland Court Huntington Road York, YO32 9PW UK

Tel: +44 (0)1904 767675 Fax: +44 (0)1904 767505 E-mail: chris.kennedy@nutrifreeze.com

Chapter 13

Associate Professor J. Botella Department of Botany University of Queensland Brisbane Qld 4072 Australia

Tel: 61-7-3365 1128 Fax: 61-7-3365 1699 E-mail: j.botella@botany.uq.edu.au

Chapter 14

Dr A. Grandison School of Food Biosciences The University of Reading PO Box 226 Reading, RG6 6AP UK

Tel: + 44 (0)1189 316724 Fax: +44 (0)1189 316649 E-mail: a.s.grandison@reading.ac.uk

Chapter 15

S. Green, N. Basaran and Professor B. G. Swanson
Food Science & Human Nutrition
Washington State University
106K FSHN Building
PO Box 646376
Pullman
WA 99164-6376
USA

Tel: 509 335 3793 Fax: 509 335 4815 E-mail: swansonb@wsu.edu

Chapter 16

Professor T. J. Mason and Dr L. Paniwynk School of Science and the Environment Coventry University Priory Street Coventry CV1 5FB UK

Tel: +44 (0)24 7688 7688

Dr. F. Chemat Faculté des Sciences Université de la Réunion 15 Avenue René Cassin – BP 7151 F-97715 St Denis Messag. Cedex 9 France

Tel: +33 262 93 81 82

Chapter 17

Professor B. Ooraikul Dept of Agricultural, Food and Nutritional Science University of Alberta Edmonton AB Canada T6G 2P5

Fax: 780 492 8914 E-mail: ooraikul@ualberta.ca

Chapter 18

Dr L. Picart and Professor J-C. Cheftel Unité de Biochimie et Technologie Alimentaires Université des Sciences et Techniques du Languedoc F-34095 Montpellier CDX05 France

Tel: +33 (0)4 67 14 33 51 Fax: +33 (0)4 67 63 33 97 E-mail: c.cheftel@univ-montp2.fr

Chapter 19

Dr Indrawati, Dr A. Van Loey, Dr C. Smout and Professor M. Hendrickx Dept of Food and Microbial Technology Katholieke Universiteit Leuven Kasteelpark Arenberg 22 B-3001 Leuven Belgium

Fax: +32 16 321960 E-mail: indrawati.hartono@agr. kuleuven.ac.be

Chapter 20

Dr J. P. Sutherland Department of Health and Human Sciences London Metropolitan University 166–220 Holloway Road London N7 8DB UK

Tel: +44 (0)207 133 2571 Fax: +44 (0)207 133 2571 E-mail: j.sutherland@londonmet. ac.uk

Chapter 21

Dr E. Dens and Professor J. Van ImpeDepartment of Chemical EngineeringBioTeC-Bioprocess Technology and ControlKatholieke Universiteit LeuvenW. de Croylaan 46B-3001 LeuvenBelgium

Tel: +32-16-321466 Fax: +32-16-322991 E-mail: jan.vanimpe@cit.kuleuven. ac.be

Chapter 22

Professor M. Peleg Department of Food Science Chenoweth Laboratory University of Massachusetts Amherst MA 01003-1410 USA

Tel: (413) 545-5852 Fax: (413) 545-1262 E-mail: Micha.peleg@foodsci.umass. edu

Chapter 23

Professor S. Brul, Dr F. Klis, Professor D. Knorr, Dr T. Abee and Dr S. Notermans
Food Processing Group
Unilever Research
Olivier van Noortlaan 120
3133 AT Vlaardingen
The Netherlands

Tel: 31-10-4604151 Fax: 31-10-4605188 E-mail: Stanley.brul@unilever.com

Chapter 24

Dr P. Zeuthen* Hersegade 7 G, DK-4000 Roskilde Tel/ Fax: 46355665 E-mail: peter.zeuthen@image.dk

Dr Leif Bøgh-Sørensen Danish Veterinary and Food Administration Morkhoj Bygade 19 DK-2860 Soborg Denmark

E-mail: lbs@fdir.dk

Contents

Со	ntribut	or Contact Details	xiii
1.	Introd	luction	1
Ра	rt I. Ing	gredients	
2.	The U	Jse of Natural Antimicrobials	5
	2.1	Introduction	5
	2.2	Natural Antimicrobials from Animal Sources	7
	2.3	Natural Antimicrobials from Plant Sources	10
	2.4	Natural Antimicrobials from Microbial Sources	15
	2.5	Evaluating the Effectiveness of Antimicrobials	18
	2.6	Key Issues in Using Natural Antimicrobials	19
	2.7	Future Trends	23
	2.8	Sources of Further Information and Advice	23
	2.9	References	23
3.	Natur	al Antioxidants	31
	3.1	Introduction	31
	3.2	Classifying Natural Antioxidants	32
	3.3	Antioxidants from Oilseeds, Cereals and Grain	
		Legumes	34
	3.4	Antioxidants from Fruits, Vegetables, Herbs and	
		Spices	35
	3.5	Using Natural Antioxidants in Food	37
	3.6	Improving Antioxidant Functionality	41
	3.7	Combining Antioxidants with Other Preservation	
		Techniques	43
	3.8	Future Trends	44
	3.9	Sources of Further Information and Advice	45

vi Contents

	3.10	References	45
4.	Antim	icrobial Enzymes	49
	4.1	Introduction	49
	4.2	Lysozymes and Other Lytic Enzyme Systems	51
	4.3	Lactoperoxidase	56
	4.4	Glucose Oxidase and Other Enzyme Systems	59
	4.5	Combining Antimicrobial Enzymes with Other Preservation Techniques	61
	4.6	Future Trends	64
	4.7	Sources of Further Information and Advice	66
	4.8	References	66
5.	Comb	ining Natural Antimicrobial Systems with Other	
	Prese	rvation Techniques: the Case of Meat	71
	5.1	Introduction	71
	5.2	Microbial Contamination of Meat	72
	5.3	Using Organic Acids to Control Microbial Contamination	75
	5.4	Regulatory and Safety Issues	80
	5.5	Combining Organic Acids with Other	
	••••	Preservation Techniques	82
	5.6	Conclusion	84
	5.7	References	85
6.	Edible	Coatings	90
	6.1	Introduction: the Development of Edible Coatings	90
	6.2	How Edible Coatings Work: Controlling Internal	
		Gas Composition	92
	6.3	Selecting Edible Coatings	92
	6.4	Gas Permeation Properties of Edible Coatings	92
	6.5	Wettability and Coating Effectiveness	95
	6.6	Determining Diffusivities of Fruits	97
	6.7	Measuring Internal Gas Composition of Fruits	100

	6.8	Future Trends	100
	6.9	References	102
Pai	rt II. Tra	aditional Preservation Technologies	
7.	The C	ontrol of pH	109
	7.1	Introduction	109
	7.2	The Effect of pH on Cellular Processes	110
	7.3	Combining pH Control with Other Preservation Techniques	112
	7.4	The Effect of pH on the Growth and Survival of Foodborne Pathogens	113
	7.5	The Use of pH Control to Preserve Dairy, Meat and Fish Products	114
	7.6	The Use of pH Control to Preserve Vegetable, Fruits, Sauces and Cereal Products	118
	7.7	Future Trends	121
	7.8	References	122
8.	The C	ontrol of Water Activity	126
	8.1	Introduction	126
	8.2	The Concept of Water Activity	127
	8.3	Water Activity, Microbial Growth, Death and Survival	129
	8.4	Combining Control of Water Activity with Other Preservation Techniques	134
	8.5	Applications: Fully Dehydrated, Intermediate and High Moisture Foods	135
	8.6	Measurement and Prediction of Water Activity in	142
	8.7	Future Trends	149
	8.8	Sources of Further Information and Advice	149
	8.9	References	149

Contents vii

viii Contents

Develo	opments in Conventional Heat Treatment	154
9.1	Introduction	154
9.2	Thermal Technologies: Cookers	154
9.3	Thermal Technologies: Retorts	157
9.4	Using Plastic Packaging in Retort Operations	162
9.5	Dealing with Variables during Processing	167
9.6	The Strengths and Weaknesses of Batch Retorts	173
9.7	Future Trends	175
9.8	Sources of Further Information and Advice	176
9.9	References	178
Combi Pressi	ning Heat Treatment, Control of Water Activity and	179
10.1		179
10.2	The Thermal Destruction of Microorganisms	179
10.2	The Effects of Dehydration and Hydrostatic	
1010	Pressure on Microbial Thermotolerance	182
10.4	Temperature Variation and Microbial Viability	187
10.5	Combining Heat Treatment, Hydrostatic	
	Pressure and Water Activity	191
10.6	Conclusions	197
10.7	References	198
Combi	ning Traditional and New Preservation	
Techni	iques to Control Pathogens: the Case of <i>E. coli</i>	204
11.1	Introduction	204
11.2	Pathogen Growth Conditions: the Case of E. coli	205
11.3	The Heat Resistance of <i>E. coli</i>	209
11.4	Problems in Combining Traditional Preservation	212
11.5	Combining Traditional and New Preservation	_ · _
	Techniques	216
11.6	Conclusions and Future Trends	219
	Develo 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 Combi Pressu 10.1 10.2 10.3 10.4 10.5 10.6 10.7 Combi Techn 11.1 11.2 11.3 11.4 11.5 11.6	Developments in Conventional Heat Treatment 9.1 Introduction 9.2 Thermal Technologies: Cookers 9.3 Thermal Technologies: Retorts 9.4 Using Plastic Packaging in Retort Operations 9.5 Dealing with Variables during Processing 9.6 The Strengths and Weaknesses of Batch Retorts 9.7 Future Trends 9.8 Sources of Further Information and Advice 9.9 References Combining Heat Treatment, Control of Water Activity and Pressure to Preserve Foods 10.1 Introduction 10.2 The Thermal Destruction of Microorganisms 10.3 The Effects of Dehydration and Hydrostatic Pressure on Microbial Thermotolerance 10.4 10.4 Temperature Variation and Microbial Viability 10.5 Combining Heat Treatment, Hydrostatic Pressure and Water Activity 10.6 10.7 References Combining Traditional and New Preservation Techniques to Control Pathogens: the Case of <i>E. coli</i> 11.1 Introduction 11.2 Pathogen Growth Conditions: the Case of <i>E. coli</i> 11.3

	11.7	References	221
12.	Develo	pments in Freezing	228
	12.1	Introduction	228
	12.2	Pre-Treatments	229
	12.3	Developments in Conventional Freezer	
		Technology	232
	12.4	The Use of Pressure in Freezing	233
	12.5	Developments in Packaging	234
	12.6	Cryoprotectants	235
	12.7	References	236

Part III. Emerging Preservation Techniques

13.	Biotech	nnology and Reduced Spoilage	243
	13.1	Introduction: Mechanisms of Post-Harvest Spoilage	
		in Plants	243
	13.2	Methods for Reducing Spoilage in Fruits	244
	13.3	Methods for Reducing Spoilage in Vegetables	249
	13.4	Enhancing Plant Resistance to Diseases and	
		Pests	251
	13.5	Future Trends	255
	13.6	Sources of Further Information and Advice	256
	13.7	References	257
14.	Membr	ane Filtration Techniques in Food Preservation	263
	14.1	Introduction	263
	14.2	General Principles of Membrane Processing	264
	14.3	Filtration Equipment	271
	14.4	Using Membranes in Food Preservation	276
	14.5	Future Trends	281
	14.6	Sources of Further Information and Advice	282
	14.7	References	282
	14.8	Acknowledgement	283

x Contents

15.	High-Ir	ntensity Light	284
	15.1	Introduction	284
	15.2	Process and Equipment	287
	15.3	Microbial Inactivation	289
	15.4	Inactivation of Pathogens and Spoilage Bacteria	292
	15.5	Applications, Strengths and Weaknesses	296
	15.6	Sources of Further Information and Advice	299
	15.7	References	301
16.	Ultrasc	ound as a Preservation Technology	303
	16.1	Introduction	303
	16.2	Principles: Acoustic Cavitation	305
	16.3	Ultrasound as a Preservation Technology	311
	16.4	Ultrasonic Inactivation of Microorganisms, Spores	
		and Enzymes	317
	16.5	Ultrasound in Combination with Other Preservation	
		Techniques	323
	16.6	Ultrasonic Equipment	328
	16.7	Conclusions	332
	16.8	References	333
17.	Modifie	ed Atmosphere Packaging (MAP)	338
	17.1	Introduction	338
	17.2	The Use of MAP to Preserve Foods	339
	17.3	MAP Gases	344
	17.4	Packaging Materials	347
	17.5	Quality Assurance	348
	17.6	Using MAP and Other Techniques to Preserve	
		Fresh and Minimally Processed Produce	349
	17.7	Using MAP and Other Techniques to Preserve	
		Processed Meat, Bakery and Other Products	351
	17.8	Future Trends	354
	17.9	References	355

18.	Pulsed	Electric Fields	360
	18.1	Introduction	360
	18.2	Principles and Technology	361
	18.3	Mechanisms of Microbial Inactivation	370
	18.4	Critical Factors Determining Microbial	
		Inactivation	377
	18.5	Combinations with Other Preservation	
		Techniques	388
	18.6	Effects on Enzymes	394
	18.7	Effects on Food Proteins	401
	18.8	Effects on Vitamins and Other Quality Attributes	
		of Foods	403
	18.9	Strengths and Weaknesses as a Preservation	
		Technology	406
	18.10	Applications	411
	18.11	Acknowledgements	415
	18.12	References	415
	18.13	Patents	425
19.	High H	ydrostatic Pressure Technology in Food	
	Preser	vation	428
	19.1	Introduction	428
	19.2	Principles and Technologies	429
	19.3	Effects of High Pressure on Microorganisms	433
	19.4	Effects of High Pressure on Quality-Related	
		Enzymes	434
	19.5	Effects of High Pressure on Nutritional Value and	
		Colour Quality	437
	19.6	Effects of High Pressure on Water-Ice Transition	
		of Foods	438
	19.7	Future Trends	440
	19.8	Sources of Further Information and Advice	441

19.9Acknowledgements4419.10References44 Part IV. Assessing Preservation Requirements 4520.Modelling Food Spoilage4520.1Introduction: Spoilage Mechanisms4520.2Approaches to Spoilage Modelling4520.3Developing Spoilage Models4520.4Measurement Techniques4520.5Constructing Models4620.6Applications of Spoilage Models4620.7Limitations of Models4620.8Future Trends46	41 41 51
19.10 References 44 Part IV. Assessing Preservation Requirements 20. Modelling Food Spoilage 48 20.1 Introduction: Spoilage Mechanisms 48 20.2 Approaches to Spoilage Modelling 48 20.3 Developing Spoilage Models 48 20.4 Measurement Techniques 48 20.5 Constructing Models 48 20.6 Applications of Spoilage Models 48 20.7 Limitations of Models 48 20.8 Future Trends 48	41 51
Part IV. Assessing Preservation Requirements 20. Modelling Food Spoilage 48 20.1 Introduction: Spoilage Mechanisms 48 20.2 Approaches to Spoilage Modelling 48 20.3 Developing Spoilage Models 48 20.4 Measurement Techniques 48 20.5 Constructing Models 46 20.6 Applications of Spoilage Models 46 20.7 Limitations of Models 46 20.8 Future Trends 46	51
20. Modelling Food Spoilage4820.1 Introduction: Spoilage Mechanisms4820.2 Approaches to Spoilage Modelling4820.3 Developing Spoilage Models4820.4 Measurement Techniques4820.5 Constructing Models4820.6 Applications of Spoilage Models4820.7 Limitations of Models4820.8 Future Trends48	51
20.1Introduction: Spoilage Mechanisms4820.2Approaches to Spoilage Modelling4820.3Developing Spoilage Models4820.4Measurement Techniques4820.5Constructing Models4820.6Applications of Spoilage Models4820.7Limitations of Models4820.8Future Trends48	
20.2Approaches to Spoilage Modelling4820.3Developing Spoilage Models4820.4Measurement Techniques4820.5Constructing Models4820.6Applications of Spoilage Models4820.7Limitations of Models4820.8Future Trends48	51
20.3Developing Spoilage Models4820.4Measurement Techniques4820.5Constructing Models4820.6Applications of Spoilage Models4820.7Limitations of Models4820.8Future Trends48	52
20.4Measurement Techniques4820.5Constructing Models4620.6Applications of Spoilage Models4620.7Limitations of Models4620.8Future Trends46	53
20.5Constructing Models4620.6Applications of Spoilage Models4620.7Limitations of Models4620.8Future Trends46	58
20.6Applications of Spoilage Models4620.7Limitations of Models4620.8Future Trends46	62
20.7Limitations of Models4620.8Future Trends46	64
20.8 Future Trends 46	65
	67
20.9 Sources of Further Information and Advice 46	69
20.10 References 47	70
21. Modelling Applied to Foods: Predictive Micobiology for Solid Food Systems 4	75
21.1 Introduction 4	75
21.2 Microbial Growth in Solid Food Systems: Colony	
Dynamics	76
21.3 Factors Affecting Microbial Growth 47	78
21.4 Microbial Growth Dynamics: Cell Level 48	82
21.5 Microbial Growth Dynamics: Colony Level 48	86
21.6 Evaluating Types of Model 48	89
21.7 Selecting the Right Modelling Approach 49	96
21.8 Conclusions and Future Trends 49	99
21.9 Sources of Further Information and Advice	01
21.10 References 50	02
22. Modelling Applied to Processes: the Case of Thermal Preservation 50	07
22.1 Introduction	07

	22.2	Understanding Thermal Inactivation	509
	22.3	Modelling Microbial Death and Survival	510
	22.4	Simulating Thermal Processes	513
	22.5	Using Models to Improve Food Safety and	
		Quality	517
	22.6	Conclusions	521
	22.7	References	522
23.	Food F	Preservation and the Development of Microbial	
	Resist	ance	524
	23.1	Introduction	524
	23.2	Methods of Food Preservation	527
	23.3	Preservation Techniques and Food Safety	531
	23.4	Understanding Microbial Adaptation to Stress	534
	23.5	Future Trends	540
	23.6	Sources of Further Information and Advice	543
	23.7	Acknowledgements	544
	23.8	References	544
24.	Monito	ring the Effectiveness of Food Preservation	552
	24.1	Introduction	552
	24.2	HACCP and Other Monitoring Systems	553
	24.3	Instrumentation for Monitoring the Effectiveness	
		of Food Preservation during Processing	556
	24.4	Monitoring the Effectiveness of Food Preservation	
		during Storage and Distribution	559
	24.5	Future Trends	565
	24.6	References	565
Ind	ex		567
	•^		501

Introduction

1

One of the major advances in human history was the ability to preserve food. It was the prerequisite to man settling down in one place, instead of moving from place to place in the never ending hunt for fresh food. The earliest preservation technologies developed were drying, smoking, chilling and heating. Later on the art of controlling these technologies was developed. The work of Pasteur in the nineteenth century then made it possible to understand the real mode of operation of preservation techniques such as heating, chilling and freezing, providing the basis for more systematic monitoring and control.

The use of various compounds such as salt and spices to preserve foods was also used in ancient times. Unfortunately, the gradual use of a wider range of chemicals for preservation such as boron or cumarine sometimes led to misuse. Consumers have developed some suspicion of the use of chemical additives, sometimes with good reason in such cases as antibiotics and materials such as hexamethyltetramine (which during processing and storage develops into formaldehyde).

Consumers have fewer reservations about physical treatments, although one of the oldest technologies, smoking, is now suspected of being carcinogenic. Another more recent physical treatment which is also much under debate is irradiation. Many studies have shown it to be safe and it has been approved for use in food processing in several countries, e.g., the USA, because it has proved to be the best way to kill *Salmonella* and other pathogenic bacteria. However, irradiation of foods is not used in practice in most countries in Europe because of continuing consumer concerns about the safety of the technology.

Recent debate about preservation techniques has focused on ways of preserving foods in a way that is both safe but also preserves the intrinsic nutritional and sensory qualities present in raw and fresh food by minimising the

2 Food preservation techniques

amount and severity of subsequent processing operations. This is why minimally processed foods have gained such great popularity, although they raise new safety risks. As an example, they often rely on an effective cold chain during storage and distribution to prevent microbial growth. This book describes both established and new preservation methods which embrace biotechnology and physics. Both methods offer the possibility of preserving food safely with a minimal impact on quality. The book describes the principles behind individual preservation methods, the foods to which they can be applied, their impact on food safety and quality, their strengths and limitations. It also shows how individual techniques have been combined to achieve the twin goals of food safety and quality. The book tries to describe a *status quo* of where we are in the development of food preservation techniques at the beginning of a new millennium, and some of the things we still need to do.

Index

Index terms Links Α ACC deaminase 246 ACC oxidase (ACO) 245 250 acetic acid 76 82 111 117 salts of 79 acid adaptation (acid tolerance response) 81 113 214 acid fluid foods 412 acoustic cavitation 305 312 active packaging 234 active pH homeostasis 110 activity spectra 19 activity validation methods 21 adenylate pool 483 agar diffusion method 18 Ageless 346 air drying 229 alanine 391 alkaline phosphatase (ALP) 322 397 399 436 allicin 11 Allium 10 allyl isothiocyanate (AIT) 12 467 α_0 Alstom semi-continuous system 433 Alta 17 alternating current (AC) 219

568

Index terms Links amidase enzymes 53 55 anaerobic MAP 340 anchovies 118 animals live animal and microbial contamination 73 natural antimicrobials from animal sources 7 36 anthocyanins antibacterial enzymes 49 combined techniques 61 future trends 64 glucose oxidase and other enzyme systems 59 lactoperoxidase see lactoperoxidase lysozyme see lysozyme lytic enzyme systems 51 mechanisms of antibacterial activity 50 antibiotics 324 antifreeze proteins (AFPs) 235 antimicrobials 298 natural see natural antimicrobials regulatory-approved 5 6 antioxidants see natural antioxidants antisense gene activation 245 525 Appert, N. application 19 data technology of 78 testing 19

arcing argon

Arrhenius equation

artificial intelligence 174

This page has been reformatted by Knovel to provide easier navigation.

364

344

463

407

507

175

508

<u>Index terms</u>	<u>Links</u>			
artificial neural networks (ANN)	464			
ascorbic acid	403	437		
Aspergillus niger	59	294		
atmosphere modifiers	346			
atmospheric retort systems	160			
ATP agreement	560			
autolysins	53			
automating monitoring and control systems	555			
avirulence (Avr) genes	254			
В				
b(T)	510			
Bacillus	319			
cereus	293	295	319	
subtilis	319	488	534	535
Bacillus thuringiensis (Bt) toxins	252			
BacSim	501			
bacterial load	78			
bacterial resistance	254			
bactericides	324			
bacteriocins	17	62	298	
Bactocatch system	278			
bakery products	342	343	352	
basil	14			
batch sterilizers see retorts				
batch systems				
cookers	156	157		
membrane filtration	273	277		
PEF	364	365		
ultrasound	328	329		

Index terms]	Links	-
bath-type ultrasonic systems	306	329		
beefburgers	530			
Belehradec models	463			
benzoic acid	111			
biochemical differentiation	482			
biochemical stress	537			
biofilms	60	493		
bioflavonoids	35			
biotechnology	243	530		
enhancing plant resistance	251			
future trends	255			
reducing spoilage in fruits	244			
reducing spoilage in vegetables	249			
Bollgard cotton	253			
botulism	292			
Bradyrhizobium japonicum	194	195		
breads	121			
broccoli	250			
Brocothrix thermosphacta	456	457	459	460
broth dilution assays	18			
Brunauer, Emmett and Teller (BET) formula	148			
bulk processing	432			
Burst Test	172			
butter	38			
С				
caffeic acid	32			
calibration curve	145			
Campden and Chorleywood Food Research				

Association (CCFRA)

570

155 177 470

<u>Index terms</u>]	<u>Links</u>
capacitors	361	362	363
carbon dioxide			
MAP	340	345	347
permeabilities of edible coatings	92	93	
carotenoids	34	36	40
carvacrol	538		
Case History Series	299		
casein micelles	280		
catalase	59		
cavitation, acoustic	305	312	
cell lysis	313		
cell membrane	183		
damage	186	188	
electropermeabilisation	370		
phase transition	193		
cell strategies for growth	482		
cellular automaton (CA)	494	495	499
cellular processes	110		
cellular structure	182		
central composite design	454		
cereals			
antioxidants from	35		
pH control of cereal products	121		
cheese	280		
antibacterial enzymes	54	55	58
pH control	115		
chelating agents	33	42	
chemical changes	342		
chemical decontamination procedures	74		

572					
<u>Index terms</u>]	Links		
chemical preservation	1	528			
see also salting; smoking					
chemotactic signalling	486				
chemotaxis	484	492			
chicken	58				
chilling	74				
chitin	91				
chitinases	254				
chitosan	7	91	539		
cilantro, oil of	15				
cinnamon	13	389			
citric acid	76	111			
cleaning					
membrane filtration	276				
ultrasound and surface cleaning	324				
climacteric fruits	244				
Clostridium					
botulinum	154	192	292	293	340
stearothermophilus	192				
clove	13				
coat-protein-mediated resistance (CPMR)	251				
coatings, edible see edible coatings					
coaxial PEF continuous flow chambers	364	365			
Codex Alimentarius	553	555			
co-field PEF continuous flow chambers	364				
cold storage	43				
see also freezing					
cold water washes	82				
colonies					
development in solid foods	476				

<u>Index terms</u>]	Links	
colonies (Continued)				
factors affecting growth	478			
growth distribution	486			
morphology	487			
colour				
change in fruits	102			
effects of high pressure	437			
effects of PEF	404			
combined techniques	85	205	530	
antibacterial enzymes	61			
antimicrobials	20	23		
antioxidants	43			
E. coli	210	212		
problems in combining traditional techniques	212			
traditional and new preservation techniques	216			
heat treatment, water activity control and				
pressure	182			
high-intensity light	296			
MAP	354			
organic acids	82			
PEF	388			
pH control	112	326	384	
ultrasound	323			
water activity	112	134	191	198
come-up	158			
commercial sterility	161			
communication, intercellular	485	489	490	
compatible solutes	133			
competitive micro-organisms	81	496		
concavity	509	513		

574

<u>Index terms</u>

<u>Links</u>

concentration			
by membranes	279		
polarization	268		
conductance	461		
conductivity	383		
contact angle	95		
containers	162		
filling	168		
geometry	163	166	
headspace control prior to sealing	170		
heat seal integrity and retorting	171		
internal pressure	165		
seals	165	169	171
monitoring	558		
variations in volume	168		
see also packaging			
continuous field approach	489	496	498
continuous flow systems			
cookers	156		
high pressure technology	432		
membrane filtration	273	277	
PEF	364		
ultrasound	329		
control, process see process control			
controlled atmosphere packaging (CAP) see			
modified atmosphere packaging			
controlled atmosphere storage (CAS)	339	343	349
see also modified atmosphere packaging			
cookers	154		
cooling	159		
plastic packaging and pressure considerations	166		

<u>Index terms</u>]	Links
cooling (Continued)			
ultrasound combined with	327		
cosmetics	41		
cost	21	414	
cotton	253		
Cravendale 'Purfiltre' milk	278		
critical surface tension	96		
crossflow filtration	270		
cryogenic freezing	232		
cryoprotectants	235		
cryosectioning	486		
Cryptosporidium	320		
crystallization	308		
cucumber mosaic virus (CMV)	252		
culture products	17		
CYTED Program	137	139	141
cytokinins	249		
D			
D values	181	507	508
dairy products	343		
pH control	114		
see also cheese; milk			
dead-end filtration	270		
decontamination processes	74		
Defect Action Point (DAP)	555	556	
defensins	254		
degassing	307		
dehydration see drying/dehydration			
dehydrofreezing	229		

576			
<u>Index terms</u>		i	<u>Links</u>
delicatessen salads	120		
desiccation see drying/dehydration			
dew point hygrometers	143		
diafiltration	264	268	
dialysis	264		
dielectric breakdown	364	407	
dielectric rupture theory	371		
diffusion			
coefficient	490		
on a lattice	495		
substrate diffusion and colony growth	481		
diffusion cell	97	99	
diffusivities of fruits	97		
dill seed	309	310	
dilution assays	18		
discrete approach	493	497	498
disease resistance	251		
display cabinets	561		
dissociation constant	111		
distribution	559		
DLA-like (diffusion limited aggregation) colony			
morphology	488		
DNA	289		
dosimetry	559		
downward concavity	509	513	
dried products	135	344	353
dry infusion	145		
drying/dehydration	1	126	527
air drying	229		
effect on cellular structures and constituents	183		

Index terms

<u>Links</u>

drying/dehydration (Continued)			
freeze-drying	528		
low temperatures enhance resistance to	193		
osmotic	146	229	
dual purpose systems	554		
dudh churpi	142		
Durand, Mr	525		
dynamic dispersion medium (DDM)	232		
Ε			
Eden colony morphology	488		
edible coatings	90	235	
diffusivities of fruits	97		
future trends	100		
gas permeation properties	92		
historical view	90		
internal gas composition	92	100	
predicting	100		
optimal thickness	101	102	
problems associated with	91		
selecting	92		
wettability and coating effectiveness	95		
EDTA	55	62	63
egg	279		
electric field strength	366	378	
electric hygrometers	144		
electrochemical reactions	409		
see also oxidation			
electrodialysis	264		
electromagnetic spectrum	285		
electropermeabilisation (electroporation)	370	413	

578				
<u>Index terms</u>]	Links	
empirical experimental design	454			
emulsions	303	311	475	
endoglucanase gene	248			
endopeptidases	56			
energy density input	367	378		
Enterobacteriaceae	456	457	463	464
environmental conditions				
colony growth	489	490		
modeling food spoilage	467			
enzymes	44			
antibacterial see antibacterial enzymes				
high pressure	434			
measurement of enzyme synthesis and activity	462			
PEF	394			
ultrasound	313	314	316	320
see also under individual names				
equilibrium, themodynamic	127			
equipment				
high-intensity light	287			
high pressure	432			
membrane filtration	271			
PEF	361	414		
source of microbial contamination	73			
ultrasonic	328			
Escherichia coli (E. coli)	204	317	534	
beefburger	530			
combining heat treatment, high pressure and				
water activity	194	195	196	
combining traditional and new preservation				
techniques	216			
future trends	219			

Index terms

<u>Links</u>

Escherichia coli (E. coli) (Continued)					
heat resistance	209				
pathogen growth conditions	205				
problems in combining traditional preservation					
techniques	212				
essential oils	13	41			
Ethicap	346				
ethylene	244	249	250		
biosynthetic pathway	245				
ethylene oxide	327				
European Union					
FAIR CT98-4083 project	453	455	456	459	460
	461	470			
legislation	64	80	553		
eutectic temperature	230	231			
existing publications	458				
expansin	248				
experimental design	454	463			
exponential decay pulses	362				
extrinsic factors	489	490	499	501	
F					
<i>F</i> value	507	508			
fat globules	405				
feed and bleed system	273	277			
fermentation	116	528			
control and predictive models	469				
vegetables	118				
fermented dairy products	114				
Fermi's equation	387				
fibre hygrometer	144				

580				
<u>Index terms</u>]	Links	
Fick's laws of diffusion	93	98		
filling	168			
firmness, fruit	102	246		
fish (and fish products)	55			
MAP	341	343	350	
natural antioxidants	39			
pH control	116	117		
fish oil	39			
flat sheet membrane configurations	273	274		
flavonoids	32			
flavour	31	404		
flexible pouches	163	166	168	172
Flow Pressure semi-continuous system	432			
flow systems see continuous flow systems				
flower vegetables	250			
fluorescence ratio imaging	480			
FMC	161			
Food-borne illnesses	525			
Food and Drug Administration (FDA)	20	80	299	326
food inoculation studies	455	456	457	
Food MicroModel	114	470		
food preservation	524			
evolution	1	525		
in a food processing context	526			
methods	527			
techniques and food safety	531			
Food Safe Series	299			
Food Spoilage Predictor (FSP)	470			
fouling	271	276		
Fourier-Transform Infra-Red (FTIR) spectroscopy	460			

Index terms		Links			
fractal dimensions	488				
fractionation	279				
free radicals	42	43	308	409	410
freeze-drying	528				
freezing	228	528			
cryoprotectants	235				
developments in freezer technology	232				
developments in packaging	234				
pre-treatments	229				
use of pressure	233	438			
freezing point depression	143				
fresh produce	349				
see also fish; fruits; meat; vegetables					
freshness indicators	564				
fruit juices	411				
fruits	243				
antioxidants from	35				
edible coatings	90				
MAP	341	349			
methods for reducing spoilage	244				
pH control	119				
water activity control	138				
functional genomics	540	542			
fungal resistance	254				
see also moulds; yeasts					
furocoumarins	11				
G					
galactosidase	247				
gallic acid	32				
gamma rays	526				

<u>Index terms</u>]	Links	,
gases	408			
diffusivities of fruits	97			
internal gas composition	92	100		
predicting	100			
MAP	340	344		
gas concentration indicators	563			
permeabilities	92	347		
gel cassette system	480			
gel layer	269			
Gelderse Rookwurst	117			
gels	475			
gene-for-gene model	254			
general stress response	113	134	215	535
Generally Regarded As Safe (GRAS)	37	64		
generic models	455			
genetic engineering see biotechnology				
genetic mutations	220			
genome sequencing	534			
genomics	540	542		
geometry, package	163	166		
glass transitions	230			
global stress response	113	134	215	535
glucanases	254			
gluconic acid	111	116		
glucono-δ-lactone (GdL)	116			
glucose oxidase	50	59	61	
glucosinolates	434			
glutamyltranspeptidase	322			
glutaraldehyde	326			
glycine	62	63		

582

					583							
<u>Index terms</u>	<u>Links</u>			<u>Links</u>			<u>Links</u>			Links		
Gompertz curve	463											
Good Manufacturing Practice (GMP)	340	348										
grain legumes, antioxidants from	35											
Gram-negative bacteria	52	62	295	296								
Gram-positive bacteria	52	61	295	296	318							
growth/no-growth interface	469											
Growth Predictor	470											
Guggenheim, Anderson and de Boer (GAB)												
equation	148											
Н												
Hagen-Poiseuille equation	268											
Hazard Analysis Critical Control Point (HACCP)	159	162	553	556								
dual purpose systems	554											
and MAP	340	348										
principles	531	554										
headspace pressure	171											
headspace volume	170											
heat inactivation kinetics predictive models	211	507										
microbial death and survival	510											
simulating thermal processes	513											
using models to improve food safety and quality	517											
heat seal integrity	171	558										
heat shocks	187											
heat treatment	154	179	298	525	528							
combined techniques	44	216	218	434								
PEF	388	406										
pressure and water activity	191	198										
ultrasound and pressure	316											
controlling kinetics of heating	190											
cookers	154											

584

<u>Index terms</u>

<u>Links</u>

heat treatment (Continued)				
effects of dehydration and pressure on microbial				
thermotolerance	182			
effects on different microorganisms	518			
improved heat transfer with ultrasound	328			
inactivation of microorganisms	179	509		
microbial heat stress resistance	209	535		
modeling <i>see</i> heat inactivation kinetics predictive models				
retorts see retorts				
temperature variation and microbial validity	187			
heating curves	514	518		
heavy metals	33	42		
helicid	309	310		
hen egg white lysozyme	51	54	62	65
herbs	36			
heterogeneous liquid-liquid reactions	311			
heterogeneous particle-liquid reactions	309			
heterogeneou solid surface-liquid reactions	308			
high hydrostatic pressure (HHP) see high pressure				
treatment				
high-intensity light	284			
applications	296			
future research needs	299			
improving effectiveness	298			
inactivation of pathogens and spoilage bacteria	292			
microbial inactivation	289			
process and equipment	287			
high moisture foods (HMF)	135	147		

Index terms		Links			
high pressure treatment	64	83	298	389	428
	529				
combined techniques	218				
heat treatment and water activity	191	198			
ultrasound and heat	316	317			
commercial food products	429	430			
enzymes	434				
equipment	432				
future trends	440				
microorganisms	433				
adaptation to stress	536				
nutritional value and colour quality	437				
principles and technologies	429				
water-ice transition	438				
high-protein foods	353				
high temperature-short time (HTST)	529				
hollow fibre membrane configurations	273	275			
hollow sphere model	100				
homeostasis mechanisms	132	134	213	219	
homogeneous liquid-phase reactions	307				
hop extract	390				
host-microbe interaction	533				
hurdle technology see combined techniques					
hydrolases	50	51			
hydrolyzed lactoferrin (HLF)	9				
hydroperoxides	31				
hydroxycinnamic acids	11				
hygiene	276				
hygrometers	143	144			
hyperfiltration (reverse osmosis)	264	265	272	279	
hypersensitive response (HR)	255				

586			
<u>Index terms</u>		Li	<u>nks</u>
hypothiocyanite	56		
hypothiocyanous acid	56	57	
Iberoamerican IMF project	137	139	
I			
ice crystallization	228		
see also freezing			
ice polymorphs	438	439	
ignitron	361		
image analysis techniques	486		
immersion	77		
immersion chilling and freezing (ICF)	233		
impedance	461		
impingement freezing	232		
in-container processing			
heat treatment	154		
high pressure	432		
in vitro testing	18		
individual based model (IBM)	494	499	
inductors	361	362 3	363
inhibition curves	18		
insect pests	286		
plant resistance	252		
instant reversal pulses	363	364	
Institute for Food Technologists	534		
instrumentation, monitoring	556		
Integrated Fly Management	300		
integrated process design concept	542	543	
intelligent (smart) packaging	235	561	
intercellular communication	485	489 4	190

					587
<u>Index terms</u>		<u>Links</u>			
intermediate moisture foods (IMF)	135	147	344		
internal gas composition	92				
measuring	100				
predicting	100				
interpeptide bridges	52	56			
intrinsic factors	489	490	499	501	
ion leakage	188	189			
irradiation	1	217	350	526	
isopentenyl transferase (IPT)	249				
ISO 9000 system	554				
isothiocyanates	12				
К					
ketchups	120				
Koch, R.	525				
Kyoto Accord	354				
L					
lactate dehydrogenase	397	401			
lactic acid	75	76	77	82	111
	117				
pH control for dairy products	114				
salts of	79				
lactic acid bacteria (LAB)	114	296	350	469	
Lactobacillus plantarum	190	192	193		
lactoferricin B	9				
lactoferrin	8				
lactoperoxidase	9	50	56	61	437
system (LPS)	9	57	64		

5	0	0
э	o	0

<u>Index terms</u>]	Links		
lag phase	18				
investigations	468				
predictions	466				
lard	38				
lattice gas CA	495				
leafy vegetables	249				
legislation/regulation	552				
antibacterial enzymes	64				
natural antimicrobials	20	21			
organic acids	80				
legumes, grain	35				
lethal heat	159				
light intensity	559				
see also high-intensity light					
lipase	397	398	462		
lipid oxidation	342	437			
lipophilicity	111				
lipoxygenase (LOX)	44	322	394	396	434
liquid whistle	329				
liquids	475				
PEF	408	411			
ultrasound					
heterogeneous liquid-liquid reactions	311				
heterogeneous particle-liquid reactions	309				
heterogeneous solid surface-liquid reactions	308				
homogeneous liquid-phase reactions	307				
Listeria monocytogenes	62	63	292	295	318
listeriosis	293				
local growth limiting factor	492				
logistic regression models	208				

					589
Index terms		Links			
luciferin/luciferase reaction	461				
luminescence techniques	461				
lux genes	462				
lysozyme	9	50	51	65	390
effect in real food product trials	54				
factors that improve efficiency of	61				
non-enzymatic action	53				
lysozyme conjugates	63				
lytic enzymes	50	51	254	539	
Μ					
magnetic resonance imaging (MRI)	558				
Maillard reaction	342				
maize	253				
malic acid	76	111			
mangoes	349				
manometers, vapour pressure	143				
manosonication	316				
manothermosonication (MTS)	316				
marinated fish	117				
markers	452				
Martin Walter tubular insert	331	332			
master temperature indicator (MTI)	557				
mayonnaise	120				
meat (and meat products)	55	71	142		
combined techniques	82				
MAP	341	343	351		
microbial contamination	72				
natural antioxidants	38				
organic acids to control microbial contamination	75				

590

<u>Index terms</u>

<u>Links</u>

meat (and meat products) (Continued)				
pathogenic and spoilage microorganisms	71			
pH control	116			
regulation and safety	80			
Meidi-Ya	429			
membrane, cell see cell membrane				
membrane filtration	263	559		
equipment	271	277		
future trends	281			
general principles	264			
using membranes in food preservation	276			
membrane inlet mass spectrometry (MIMS)	479			
membranes	271			
configurations and modules	272	274		
metabolic exhaustion	113			
metabolism	489	490		
metabolites				
measurement of increases in	459			
spoilage indicators	564			
metabolomics	540			
micro-architectures	475			
micro-electrodes	479	480		
Micro-Facts	300			
microfiltration (MF)	264	265	267	272
removal of microorganisms	278			
separation of food components	279			
Microgard	17			
microorganisms				
antibacterial enzymes see antibacterial enzymes				
antimicrobials see antimicrobials; natural				
antimicrobials				

Index terms

microorganisms (Continued)		
colonies see colonies		
effect of pH		
acid adaptation	113	
acid inactivation	113	
combined techniques	112	
on cellular processes	110	
on growth and survival	113	
enhancing plant resistance to	254	
enumeration of	458	
factors affecting growth	84	478
food-borne disease	525	
heat treatment see heat treatment		
high-intensity light	289	
pathogens	292	
spoilage bacteria	296	
high pressure and	433	536
intelligent packaging	564	
MAP	339	
meat		
contamination	72	
initial bacterial load and reduction by organic		
acids	78	
maximum reduction achievable with organic		
acids	79	
organic acids to control contamination	75	
pathogenic and spoilage microorganisms	71	
modeling growth in solid foods see solid foods		
modeling		
natural antimicrobials from microbial sources	15	
PEF see pulsed electric fields		
physiological condition	467	

<u>Links</u>

592

Index terms

<u>Links</u>

microorganisms (Continued)			
preservation techniques and food safety	532		
removal by microfiltration	278		
spoilage mechanisms	451		
spoilage modeling see spoilage modeling			
strain selection	454		
stress adaptation see stress adaptation			
ultrasound see ultrasound			
water activity	129		
see also under individual organisms			
microprocessor-based control systems	160		
microstreaming	313		
microwave heating	529		
milk	55	181	
lactoperoxidase system	9	57	64
microfiltration	278	280	
sterilized and pasteurized	526		
ultrasound and anti-oxidant activity	323		
millericin B	56		
minimal convex polyhedron	463	464	
minimal processing	1		
MAP and fruits and vegetables	349		
minimum inhibitory concentration (MIC)	18		
model food systems	19		
modeling	213		
and combined techniques	220		
food spoilage see spoilage modeling			
freezing	233		
growth kinetic models for E. coli	208		
PEF microbial inactivation	386		
predicting internal gas composition of fruits	100		

Index terms

<u>Links</u>

modeling (Continued)			
solid foods see solid foods modeling			
stress adaptation	540		
thermal preservation see heat inactivation			
kinetics predictive models			
modified atmosphere packaging (MAP)	298	338	558
bakery products	342	343	352
fresh and minimally processed produce	349		
future trends	354		
gas concentration indicators	563		
gases	340	344	
meat products	341	343	351
packaging materials	347	354	
quality assurance	348		
use of MAP to preserve foods	339		
moist infusion	145		
momentary semi-logarithmic survival rate	511		
monitoring	552		
automating monitoring and control systems	555		
during processing	556		
during storage and distribution	559		
future trends	565		
HACCP and other systems	553		
morphology, colony	487		
motility			
high-intensity light and loss of	290		
mechanisms	483		
modeling colony growth	489	490	494
moulds	294	296	352
moving boundary mechanism	493		
multi-stage membrane filtration	276	277	

Index terms]	Links	
muscle foods	116			
see also fish; meat; poultry				
Mycobacterium tuberculosis	181			
mycotoxins	294			
myrosinase (MYR)	434			
Ν				
n(T)	510	513		
N-acetylmuramoyl-L-alanine amidases	53	55		
nanofiltration	264			
natamycin (pimaricin)	15			
natural antimicrobials	5	142	298	530
from animal sources	7			
combined with other techniques for meat	71			
evaluating effectiveness	18			
future trends	23			
key issues in using	19			
and microbial resistance	538			
from microbial sources	15			
from plant sources	10			
regulatory-approved	5			
natural antioxidants	31			
classifying	32			
combined techniques	43			
from fruits, vegetables, herbs and spices	35			
future trends	44			
improving functionality	41			
mixtures of	41			
mixtures of antioxidants and synergists	42			
from oilseeds, cereals and grain legumes	34			
using in food	37			

594

<u>Index terms</u>	<u>Links</u>				
neural networks	464				
nisin	16	64	83	345	389
	538				
nitrogen	345				
nitrous acid	112				
non-acid fluid foods	412				
non-climacteric fruits	244	248			
non-frozen storage under pressure	438				
nutritional value	437				
0					
object oriented programming languages	501				
ohmic heating	175	529			
Ohm's law	366	408			
oilseeds, antioxidants from	34				
operating costs	414				
optical density (OD) methods	458				
optimal edible coating thickness	101	102			
oregano	13				
organic acids	5	71			
combined techniques	82				
effects on sensory traits	79				
factors influencing antibacterial efficacy	77				
mode of action	76				
modes of application	77				
pK _a values and lipophilicity	111				
regulation and safety	80				
salts of lactic and acetic acid	79				
see also under individual names					
osmoregulation	132				

Index terms]	Links
osmosis	265	266	
osmotic dehydration	146	229	
osmotic pressure	265		
osmotic stress	132	536	
ovalbumin	401		
overpressure	157	160	164
oxidation			
lipids	342	437	
PEF	409		
pigments	342		
oxygen	112		
MAP	344	347	
permeabilities of edible coatings	92	94	
profiles and microbial growth	478		
oxygen indicators	563		
oxygen radicals	290	409	410
ozone	326	391	
Р			
packaging			
active	234		
antioxidants and	43		
developments and freezing	234		
intelligent	235	561	
materials and MAP	347	354	
plastic packaging in retort operations	162		
dealing with variables during processing	167		
paneer	142		
papain	397	401	
parallel plate electrodes	364	365	
partial differential equations	489	496	498

596

<u>Index terms</u>]	Links	
particles	309			
passive pH homeostasis	110			
Pasteur, L.	525			
pasteurization	64	156	179	525
milk	181	526		
Pathogen Modeling Program	114	470		
pathogen-derived resistance (PDR)	251			
pathogenesis-related proteins (PRPs)	254			
pathogens	155			
combining traditional and new preservation				
techniques	204			
effect of pH	113			
growth conditions	205			
high-intensity light inactivation	292			
meatborne	71			
plant resistance	251			
thermal destruction	181			
see also microorganisms				
papaya ring spot virus (PRSV)	252			
pattern formation	482	485	486	
pectin	100	323		
pectinases	435			
pectate liase gene	248			
pectinmethylesterase (PME)	247	322	394	435
peptidoglycan	51			
perishability	339			
Perlac	17			
permeabilities, gas	92	347		
permeate flux	268	270	271	281
permeate stream	263			

598				
<u>Index terms</u>]	Links	
peroxidase (POD)	322	394	396	436
personnel	74			
pervaporation	264			
pest resistance	252			
pH control	109			
cellular processes	110			
combined techniques	112	326	384	
dairy products	114			
E. coli	206	210		
future trends	121			
growth and survival of pathogens	113			
measurement of pH	559			
meat, poultry and fish products	116			
pH gradients and colony growth	480			
vegetables, fruits, sauces and cereal products	118			
see also organic acids				
pH homeostasis	110			
phase diagram	230	439		
phenolic acids	32			
phospholipids	40	184	185	
photosensitizers	34			
physical characteristics	342			
physical decontamination procedures	74			
physico-chemical stresses	535			
physiological changes	340			
physiological condition (readiness to grow)	467			
phytates	33			
pimaricin (natamycin)	15			
pK _a value	111			
plant foods	40			

Index terms

<u>Links</u>

plants				
biotechnology see biotechnology				
natural antimicrobials from	10			
resistance to diseases and pests	251			
plastic packaging	162			
dealing with variables during processing	167			
plate-and-frame membrane configurations	273	274		
polygalacturonase (PG)	247	435		
polymer science approach	128			
polynomial equations	463			
polyphenol oxidase (PPO)	322	394	396	436
polysaccharide hydrolyzing enzyme preparation	61			
post-harvest spoilage	243			
methods for reducing	244			
potato	253			
pouches, flexible	163	166	168	172
poultry	58	116	324	
powder decontamination	190			
predictions, conservativeness of	467			
pressure				
effects of hydrostatic pressure on cellular				
structures and constituents	185			
headspace	171			
high see high pressure treatment				
interaction with temperature	164			
measurement	559			
osmotic	265			
pressure assisted freezing	438			
pressure induced thawing	438			
pressure shells	158			

600

Index terms

<u>Links</u>

pressure shift freezing	233	438	
pressure vessels	432		
pressurized retort systems	160		
pre-treatments			
freezing	229		
pre-heating	158		
probe-type ultrasonic systems	306		
process control	160		
automating monitoring and control systems	555		
and optimization using spoilage models	465		
process modeling	541		
thermal preservation see heat inactivation			
kinetics predictive models			
process parameters	366	378	
process risk model	466		
processing			
meat and microbial contamination	73		
monitoring during	556		
product development and modification	464		
product formulation	530		
product parameters	383		
production line variables	167		
prooxidants	33	43	
propionic acid	111		
proteases	397	400	462
proteins			
effect of heat and pressure	185		
effect of PEF	401	407	
protein-phospholipid interaction mechanism	53		
proteomics	540		

Index terms Lin			Links	<u>nks</u>		
protons	76					
protozoans	294					
pseudomonads	456	457				
psoralen	11					
public health	81					
pulse-forming networks (PFN)	361	363				
pulse repeat frequency	381					
pulse shape	362	381				
pulse waveforms	362	380				
pulse width	380					
pulsed broad-spectrum white light see high-						
intensity light						
pulsed electric fields (PEF)	360	529	537	559		
applications	411					
combined techniques	388					
critical factors determining microbial						
inactivation	377					
microbial characteristics	382					
microbial inactivation models	386					
product parameters	383					
treatment parameters	378					
dielectric breakdown	364	407				
E. coli	217					
electrochemical reactions	409					
enzymes	394					
mechanisms of microbial inactivation	370					
principles and technology	361					
strengths and weaknesses as a preservation						
technology	406					
treatment parameters	366	378				
vitamins and other quality attributes	403					

602					
Index terms		<u>Links</u>			
pulsed vacuum osmotic dehydration	141				
PurePulse Technologies Inc.	294	411			
purification	20				
pustulan	539				
Q					
quality					
change in fruits	102				
monitoring systems	554	556			
PEF and quality attributes of foods	403				
sensory	22	79	404		
using models to improve	517				
quality assurance	348	465			
quercetine	32				
quinones	44				
R					
rabbit meats	142				
radicals, free	42	43	308	409	410
radio frequency heating	529				
rancid flavour notes	31				
random walk	494	496			
reactive oxygen species	290	409	410		
records, process	161				
rectified diffusion	305				
redox potential	212				
reduction	409				
regulation see legislation/regulation					
rejection	267				
characteristics of membranes	272				

<u>Index terms</u>]	Links	
reporter constructs	539			
resistance factor	97			
resistance (R) genes	254			
resistors	361	362	363	
resonating bar inserts	331			
resonating tube reactors	330			
retentate stream	263			
retorts	157			
atmospheric and pressurized systems	160			
batch retort system suppliers	176			
commercial sterility	161			
dealing with variables during processing	167			
future trends	175			
heating and cooling cycles	158			
process control and process records	160			
strengths	174			
using plastic packaging	162			
weaknesses	174			
reuterin	83			
reverse osmosis (RO)	264	265	272	279
rinsing/washing	116			
ripening	244			
rosemary	14	37	39	
rule based modeling	493	497		
S				
Saccharomyces cerevisiae	317	534		
heat treatment	187	190		
combined with high pressure and water				
activity	193	194	195	196

<u>Index terms</u>]	Links	
safety	339			
monitoring systems and	553	556		
organic acids	80			
preservation techniques and	531			
using models to improve	517			
sage	14	37		
sakacin	83			
salad dressings	120			
salads, delicatessen	120			
Salmonella	325			
typhimurium	317			
salting	126	528		
SAM hydrolase	246			
saturated salt solutions	145	146		
saturated steam pressure	164			
sauces	120	527		
sausages	116			
Seafood Spoilage Predictor (SSP)	470			
seals	165			
integrity and retorting	171			
monitoring	558			
sealing conditions	169			
semi-continuous systems	432			
semi-rigid containers	163	166	168	172
Semperfresh	91			
sensory quality	22	79	404	
senescence	243	249		
separation processes	279			
shelf life	102			
determination and spoilage models	466			

604

<u>Index terms</u>]	Links	
shelf life (Continued)				
extension and MAP	343			
shelf-stable products (SSP)	138			
sigma B	535			
slaughtering process	73			
smart (intelligent) packaging	235	561		
smoking	1	126	528	
sodium chloride	63	207	210	215
sodium pyrophosphate (SPP)	210	211		
software environments	501			
solid foods modelling	475			
cell strategies for growth	482			
colony dynamics	476	486		
colony morphology	487			
continuous field approach	489	496	498	
discrete approach	493	497		
evaluating types of model	489			
factors affecting microbial growth	478			
future trends	499			
microbial growth distribution	486			
PEF	408	413		
selecting right kind of model	496			
solid-state semiconductor switches	361			
solids				
ultrasound				
heterogeneous particle-liquid reactions	309			
heterogeneous solid surface-liquid reactions	308			
see also solid foods modeling				
solutes	128	129	132	
compatible	133			
moist and dry infusion	145			

000	6	0	6
-----	---	---	---

Index terms

<u>Links</u>

sorbic acid	111	537		
sourdoughs	121			
specific models	455			
specific spoilage organisms (SSO)	453			
spectrophotometers	19			
spices	13	36		
spin traps	410			
spiral-wound membrane configurations	273	274		
spoilage	243			
mechanisms	451			
in plants	243			
methods for reducing	244			
fruits	244			
vegetables	249			
spoilage indicators	564			
spoilage microorganisms				
high-intensity light inactivation	296			
meat	71			
see also microorganisms				
spoilage modeling	451			
applications of spoilage models	464			
approaches to	452			
constructing models	463			
developing spoilage models	454			
future trends	468			
limitations of models	466			
measurement techniques	458			
spores				
high pressure	433			
PEF	382			
ultrasound inactivation	313	314	316	319

<u>Index terms</u>]	Links	
spraying	77			
SQF 2000 (Safe Quality Food)	554			
square root models	463			
square wave pulses	362			
stable acoustic cavitation	312			
staining	486			
Staphylococcus aureus	293	295	317	
steam treatment	44	156		
combined with organic acids for meat	82			
modeling steam interruptions	517	519		
sterilization	156	179	526	
storage	559			
stress adaptation	20	533		
acid adaptation	81	113	214	
biochemical stresses	537			
heat stress resistance	209	535		
heterogeneity in stress resistance at the				
molecular level	539			
physico-chemical stresses	535			
predictive modeling	540			
preservation process modeling	541			
stress responses	213			
general stress response	113	134	215	535
strict interpolation region	463	464		
sub-lethal injury	376			
submerged colonies	476	477	478	
submersible transducer	329			
substrate				
antibacterial efficacy of organic acids	77			
diffusion and colony growth	481			
sucrose	63			

607

<u>Index terms</u>]	Links
sucrose fatty acid esters (SFAE)	91		
sunlight	43		
surface cleaning	324		
surface colonies	476		
surface tension	95		
surfaces	475		
high-intensity light and nature of	297		
surfactants	484		
survival curves	508		
heat treatment	180	509	
modeling	510	514	518
swarming	484		
sweet basil	14		
swimming	483		
switches	361		
synergism	42	135	
synergists	33	39	42
system parameters	366		
Т			
TAL Pro-long	91		
tartaric acid	76	111	
tea	36		
Telsonic tubular insert	331	332	
temperature			
during PEF processing	367		
glass transition temperature	230		
interaction with pressure	164		

608

112

132

low temperature and pH control

and microorganisms

Index terms

<u>Links</u>

temperature (Continued)				
growth of E. coli	205	211		
temperature variation and microbial validity	187			
temperature variation and modeling food				
spoilage	467			
monitoring	557			
during transport and storage	560			
tolerance for temperature control	161			
see also heat treatment				
temperature control packaging	235			
temperature indicators (TIs)	235	562		
temperature profiles	514	518		
thawing	234	438		
thermal processing see heat treatment				
thermodynamic equilibrium	127			
thermometers	557			
thermosonication	216	316		
thiocyanate	56			
thyme	13			
thyratron	361			
time				
between sealing and retorting	172			
treatment time for PEF	367	378		
time constant	367			
time-kill curves	18			
time lag	98			
time-temperature indicators (TTIs)	235	562		
tobacco mosaic virus (TMV)	251			
tocopherols	33	34	39	40
tocotrienols	33			

609

610					
<u>Index terms</u>		<u>Links</u>			
tomato pectin enzymes	323				
tomatoes	97				
toxicology					
natural antimicrobials	6	21			
organic acids	82				
traceability	564				
traditional preservation techniques	1	126	142	204	
combining with new preservation techniques	216				
problems in combining	212				
transcriptomics	540				
transient acoustic cavitation	312				
transmembrane potential (TMP)	371				
transport/distribution	559				
transport theory	264				
concentration polarization	268				
fouling	271				
reverse osmosis	265				
ultrafiltration and microfiltration	267				
treatment chambers	361	364	408		
treatment media	384				
treatment time	367	378			
Trichinella spiralis	294				
tubular membrane configurations	273	275			
U					
ultrafiltration (UF)	264	265	267	272	279
ultrasound	216	234	303	529	558
	559				
acoustic cavitation	305	312			
combined techniques	323				
effect on anti-oxidant activity of milk	323				

<u>Index terms</u>		Links		
ultrasound (Continued)				
enzyme inactivation	313	314	316	320
equipment	328			
mechanisms for causing cell damage	312			
microorganism inactivation	317			
as a preservation technology	311			
spore inactivation	319			
ultraviolet light (UV)	325	530		
United States (US)	20			
FDA	20	80	299	326
GRAS	64	80		
unstable processes	518			
upward concavity	509	513		
V				
vacuum cooling	234			
vacuum impregnation (VI)	141			
vacuum packaging (VP)	339			
see also modified atmosphere packaging				
validation, model	456			
vanillin	15			
Van't Hoff equation	265			
vapour pressure manometers	143			
vegetable oils	40			
vegetables	244			
antioxidants from	35			
MAP	341	349		
methods for reducing spoilage	249			
pH control	118			
vegetative cells				
high pressure	433			

612			
Index terms]	Links
vegetative cells (Continued)			
PEF	382		
ultrasound	312	316	318
venting	158		
verification, model	456		
viable counting techniques	458		
virus resistance	251		
vitamins	182	403	437
volatile compounds	297	451	459
volume			
container	168		
headspace	170		
W			
water			
disinfection using PEF	414		
washes	82		
water activity	126	384	
applications	135		
combined techniques	112	134	
heat treatment and pressure	191	198	
concept	127		
effects of dehydration on cellular structures and			
constituents	183		
future trends	148		
measurement	559		
direct measurement	142		
indirect measurement	144		
microbial growth, death and survival	129		
prediction in practical applications	145		
water-ice transition	438		

<u>Index terms</u>]	Links
water sorption isotherms	127	148	
water vapour permeabilities	92	94	
watermelon mottle virus, 2 (WMV-2)	252		
wax	90	91	
weak acid preservatives	112	121	
weak acid theory	76		
Weibull distribution function	509		
wettability	95		
whey	280		
whey protein	280		
wines	54		
WVQMS (Woolworths Vendor Quality			
Management Standard)	554		
Y			
yeasts	296	353	382
Yersinia enterocolitica	318		
yoghurt	115		
Young's equation	95		
Z			
Z value	181	507	
zein	91		
zucchini yellow mosaic virus (ZYMV)	251		