Formulae Sheet

Learning curve

 $Y = ax^{b}$

- Where Y = cumulative average time per unit to produce x units
 - a = the time taken for the first unit of output
 - x = the cumulative number of units
 - b = the index of learning (log LR/log 2)
 - LR = the learning rate as a decimal

Regression analysis

y=a+bx
$b = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$
$a = \frac{\sum y}{n} - \frac{b\sum x}{n}$
$r = \frac{n\sum xy - \sum x\sum y}{\sqrt{(n\sum x^2 - (\sum x)^2)(n\sum y^2 - (\sum y)^2)}}$

Demand curve

P =	a – bQ
b =	change in price
	change in quantity
a =	price when $Q = 0$
MR :	= a – 2bQ