
Waves and Optics

Collection Editor:
Paul Padley





Waves and Optics

Collection Editor:
Paul Padley

Authors:
Paul Padley

Daniel Suson

Online:
< http://cnx.org/content/col10279/1.33/ >

C O N N E X I O N S

Rice University, Houston, Texas



This selection and arrangement of content as a collection is copyrighted by Paul Padley. It is licensed under the

Creative Commons Attribution 2.0 license (http://creativecommons.org/licenses/by/2.0/).

Collection structure revised: November 17, 2005

PDF generated: February 4, 2011

For copyright and attribution information for the modules contained in this collection, see p. 174.



Table of Contents

1 Oscillations in Mechanical Systems

1.1 Simple Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Simple and Compound Pendula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Adding Harmonic Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Energy in the Simple Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Damped Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 The Driven Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Mechanical Waves

3.1 Vibrations on a String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Superposition of Mechanical Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Energy in a mechanical wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Re�ection and Transmission of Mechanical Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 32
3.6 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Div, Grad, Curl

4.1 Scalar Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Vector Multiplication Reminder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Divergence, Gradient, and Curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Gauss' Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 Stokes' Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Electromagnetism Review

5.1 Gauss' Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Faraday's Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Ampere's Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Electromagnetic Waves

6.1 The Electromagnetic Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Plane Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Spherical Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4 Transverse Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.5 Energy Density of an Electromagnetic Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.6 Electromagnetic Wave Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.7 Poynting Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.8 Irradiance and Radiation Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Optics

7.1 The Huygens-Fresnel Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 71
7.2 Fermat's Principle of Least Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.3 Electromagnetism at an Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.4 Snell's Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.5 The Fresnel Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.6 Some Consequences of the Fresnel Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.7 Evanescent Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.8 Phase Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.9 Re�ectance and Transmittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.10 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



iv

8 Geometric Optics

8.1 Refraction at a Spherical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2 Thin Lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.3 Mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 108
8.4 Eyeglasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9 Interference

9.1 Two Source Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.2 Thin Film Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.3 Double Plate Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 123
9.4 Newton's Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 124
9.5 Multi Source Inteference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 125

10 Di�raction

10.1 Single Slit Di�raction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
10.2 Double Slit Di�raction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.3 Di�raction Grating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 141
10.4 Di�raction from a Rectangular Aperture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
10.5 Babinet's Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
10.6 Di�raction from a Circular Aperture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
10.7 Di�raction from an Array of Apertures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

11 Fourier Optics

11.1 Fourier Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
11.2 Dirac Delta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
11.3 The Convolution Theorem and Di�raction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 164
11.4 An Array of Apertures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Attributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174



Chapter 1

Oscillations in Mechanical Systems

1.1 Simple Harmonic Oscillator1

1.1.1 The Simple Harmonic Oscillator

1.1.1.1 Simple Harmonic Motion

For SHM to occur we require stable equilibrium, about a point. For example, at the origin we could have:∑ →
F (0) = 0,

which would describe a system in equilibrium. This however is not necessarily stable equilibrium.

Figure 1.1: A simple cartoon of stable and unstable equilibrium. The lower part of the �gure shows
the case of unstable equilibrium. The upper part shows the case of stable equilibrium. These situations
often occur in mechanical systems.

1This content is available online at <http://cnx.org/content/m12774/1.6/>.
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2 CHAPTER 1. OSCILLATIONS IN MECHANICAL SYSTEMS

The lower part of the �gure shows the case of unstable equilibrium. The upper part shows the case of
stable equilibrium. These situations often occur in mechanical systems.

For example, consider a mass attached to a spring:

Figure 1.2

In general, in a case of stable equilibrium we can write the force as a polynomial expansion:

F (x) = −
(
k1x+ k2x

2 + k3x
3 + . . .

)
where the ki are positive constants. There is always a region of x small enough that we can write:

F = −kx

F = −kx
ma = −kx
mẍ = −kx
ẍ+ k

mx = 0



3

This is satis�ed by an equation of the form

x = Asin (ωt+ φ0)

where A and φ0 are constants that are determined by the initial conditions. Draw a diagram of a sinusoid
and mark on it the period T and Amplitude A

Figure 1.3

φ0 Is an arbitrary phase which shifts the sinusoid.This is also satis�ed by an equation of the form

x = Asin (ωt) +Bcos (ωt)

Lets show this:

x = Asin (ωt) +Bcos (ωt)

ẋ = ω (Acos (ωt)−Bsin (ωt))

ẍ = −ω2 (Asin (ωt) +Bcos (ωt))

ẍ = −ω2x

Again there are two constants determined by the initial conditions A and B The equation can be rewritten

ẍ+ ω2x = 0

Thus if

ω2 =
k

m

then the equation is identical to the SHM equation.
So another way to write the equation of Simple Harmonic Motion is

ẍ+ ω2x = 0
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or
ẍ = −ω2x

It is also important to remember the relationships between freqency, angular frequency and period:

ω = 2πν

T = 2π
ω

ν = 1
T

Another solution to the SHM equation is

x̃ = Acos (ωt+ φ0) + iAsin (ωt+ φ0)

Recall Taylor's expansions of sine and cosine

sinθ = θ − θ3

3!
+
θ5

5!
. . .

cosθ = 1− θ2

2!
+
θ4

4!
. . .

Then

cosθ + isinθ = 1 + iθ − θ2

2! − i
θ3

3! + θ4

4! . . .

= 1 + iθ + (iθ)2

2! + (iθ)3

3! + (iθ)4

4! . . .

= eiθ

(an alternative way to show this is the following)

z ≡ cosθ + isinθ

dz = (−sinθ + icosθ) dθ = izdθ∫
dz
z =

∫
idθ

lnz = iθ

z = eiθ

Thus we can write
x̃ = Acos (ωt+ φ0) + iAsin (ωt+ φ0)

as
x̃ = Aei(ωt+φ0)

x̃ = Aei(ωt+φ0)

˙̃x = iωAei(ωt+φ0)

¨̃x = (iω)2
Aei(ωt+φ0) = −ω2x̃

note: We will use the complex representation a lot, so you need to become familiar with it. It is
used a lot in Optics, Classical and Quantum Mechanics and Electrical Engineering so it is a good
thing to know.
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Now for physical systems we are interested in just the real part so

x = Re
[
Aei(ωt+φ0)

]
This will be implicitly understood. In physics we just write

x = Aei(ωt+φ0)

One thing that will seem to be confusing is that there are all these di�erent solutions. They are all just
di�erent forms of the same thing. Which form is used in a particular circumstance is simply a matter of
convenience. Some forms lend themselves to to solutions of certain problems more easily than others. Also
the most convenient form can depend upon the initial conditions. For example if x is at its maximum
displacement at time t = 0 then a cos form may be the most convenient. As a general rule I like using the
complex representation because natural logarithms are so easy to work with. For example

dex

dx
= ex

deax

dx
= aeax

∫
eaxdx =

1
a
eax

which is all pretty simple to remember
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1.2 Simple and Compound Pendula2

1.2.1 The Simple Pendulum

Figure 1.4: A simple pendulum.

Shown is a simple pendulum which has a mass m that is displaced by an angle θ. There is tension (
→
T ) in

the string which acts from the mass to the anchor point. The weight of the mass is m
→
g and the tension

in the string is T = mgcosθ. There is a tangential restoring force = −mgsinθ. If we approximate that θ is
small (we have to make this approximation or else we can not solve the problem analytically) then sinθ ≈ θ
and x = lθ. (note that sinθ is only approximately equal to x

l because x is the distance along the x axis) so

2This content is available online at <http://cnx.org/content/m12778/1.2/>.
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that we can write:

F = ma = mẍ

= −mgsinθ

≈ −mgθ
≈ −mg xl

or
ẍ+

g

l
x = 0

(Note that We should immediately recongnize that this is the equation for simple harmonic motion (SHM)
with

ω =
√
g

l
.

We could take another approach and use angular momentum to solve the problem. Recall that:

L = Iω = Iθ̇

I = ml2.

Also recall that the torque is the time derivative of the angular momentum so that:

→
τ =
→
r ×

→
F= d

→
L
dt

−lmgθ = Iθ̈

θ̈ +
g

l
θ = 0

Again we would recognize that this is simple harmonic motion with

ω =
√
g

l
.
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1.2.2 The Compound Pendulum

Figure 1.5: A compound pendulum.

The compound pendulum is another interesting example of a pendulum that undergoes simple harmonic
motion. For an extended body then one uses the center of mass and the moment of inertia. Use the center

of mass, the moment of inertia and the Torque (angular force)
→
τ =
→
r ×

→
F

τ = r × F
Iθ̈ = −lmgsinθ ≈ −lmgθ

θ̈ + lmg
I θ = 0

So again we get SHM now with

ω2 =
lmg

I

One sees that this formalism can be applied to the simple pendulum (ignore the string and one can consider
the ball a point mass). The moment of inertia is ml2. So we get

ω2 =
lmg

ml2
=
g

l

which is just what we got before for the simple pendulum. We could write the equation of motion for a
simple pendulum as:

θ = Aei(ωt+φ0)
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where φ0 is determined by initial conditions.
A discussion of the Pendulum and Simple Harmonic Oscillator can be found at
http://monet.physik.unibas.ch/∼elmer/pendulum/index.html3

1.3 Adding Harmonic Motions4

1.3.1 Same Frequency, di�erent phase

One of the most important concepts we encounter in vibrations and waves is the principle of superposition.
Lets look at a couple of cases starting with adding two motions with the same frequency but di�erent phases.
It is easiest to calculate this if you use complex notation

x1 = A1e
i(ωt+α1)

x2 = A2e
i(ωt+α2)

x = x1 + x2 = A1e
i(ωt+α1) +A2e

i(ωt+α2)

x = ei(ωt+α1)
[
A1 +A2e

i(α2−α1)
]

This comes up all the time in real life: For example noise canceling headphones use this technique. In
headphones there is a membrane vibrating with the frequency of the sound you are listening two. In a noise
canceling headphone there is also a microphone "listening" to the noice coming from outside the headphone.
This oscillation is inverted and then added to membrane producing the sound you listen to. The net result
is a signal that contains the desired sound and subtracts the noise resulting in quieter operation.

1.3.2 Di�erent Frequency

One can also consider the case of two oscillations with the same phase but di�erent frequencies:

x1 = A1e
i(ω1t)

x2 = A2e
i(ω2t)

x = x1 + x2 = A1e
i(ω1t) +A2e

i(ω2t)

x = ei(ω1t)
[
A1 +A2e

i(ω2−ω1)t
]

In an acoustical system, this gives beats, which is more easily seen if we take the case where A1 = A2 ≡ A,
then:

x = x1 + x2 = Aei(ω1t) +Aei(ω2t)

= Aei(
ω1+ω2

2 +
ω1−ω2

2 )t +Aei(
ω1+ω2

2 −ω1−ω2
2 )t

= Aei(
ω1+ω2

2 )t
[
ei(

ω1−ω2
2 )t + e−i(

ω1−ω2
2 )t

]
= 2Aei(

ω1+ω2
2 )tcos

[(
ω1−ω2

2

)
t
]

Where the last step used

cosθ =
eiθ + e−iθ

2
So in an acoustical system we will get a dominant sound that has the average of the two frequencies and and
envelope of amplitude that slowly oscillates. This will be looked at more closes in the context of mechanical
waves.

3http://monet.physik.unibas.ch/∼elmer/pendulum/index.html
4This content is available online at <http://cnx.org/content/m12779/1.1/>.
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1.4 Energy in the Simple Harmonic Oscillator5

1.4.1 Energy in SHO

Recall that the total energy of a system is:

E = KE + PE = K + U

We also know that the kinetic energy is

K =
1
2
mv2

But what is U? For a conservative Force (
∮ →
F d

→
x= 0) - eg. gravity, electrical... (no friction) we know that

the work done by an external force is stored as U . For the case of a mass on a spring, the external force is
opposite the spring Force (That is it has the opposite sign from the spring force).:

Fext = kx

(i.e. This is the force you use to pull the mass and stretch the spring before letting go and making it oscillate.)
Thus

U =
∫ x

0

kxdx =
1
2
kx2

This gives:

E = 1
2mv2 + 1

2kx
2

= 1
2m
(
dx
dt

)2
+ 1

2kx
2

It is important to realize that any system that is represented by either of these two equations below represents
oscillating system

m
d2x

dt2
+ kx = 0

1
2
m

(
dx

dt

)2

+
1
2
kx2 = E

To calculate the energy in the system it is helpful to take advantage of the fact that we can calculate the
energy at any point in x. For example in the case of the simple harmonic oscillator we have that:

x = Aei(ωt+α)

We can choose t such that
x = A

Now remember that when I write
x = Aei(ωt+α)

I "really" (pun intended) mean

x = Re
[
Aei(ωt+α)

]
Likewise then

ẋ = Re
[
iωAei(ωt+α)

]
At the point in time where x = A this gives us

ẋ = Re [iωA] = 0
5This content is available online at <http://cnx.org/content/m12780/1.3/>.
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Thus at that point in time we have ẋ = 0. We can now substitute that and x = A into

E =
1
2
m

(
dx

dt

)2

+
1
2
kx2

we obtain

E =
1
2
kA2

This is an important point. The energy in the oscillator is proportional to the amplitude squared!

1.5 Damped Oscillations6

1.5.1 Damped Oscillations

Consider a simple harmonic oscillator that has friction, then the equations of motion must be changed with
the addition of a friction term. So we write

m
d2x

dt2
= −kx− bdx

dt

where bdxdt is the friction term. Rearranging we obtain:

m
d2x

dt2
+ b

dx

dt
+ kx = 0

or
d2x

dt2
+ γ

dx

dt
+ ω2

0x = 0

Where γ = b
m and ω2

0 = k
m Assume a solution of form

x = Aei(pt+α)

substitute into equation and get (
−p2 + ipγ + ω2

0

)
Aei(pt+α) = 0

so
−p2 + ipγ + ω2

0 = 0

p must have real and imaginary parts, so rewrite: p = ω + is

p2 = ω2 + 2iωs− s2

So the equation
−p2 + ipγ + ω2

0 = 0

becomes upon substitution:
−ω2 − 2iωs+ s2 + iωγ − sγ + ω2

0 = 0

This equation implies that the real and imaginary parts are each zero.Separate the real and imaginary
partsImaginary parts give:

−2ωs+ ωγ = 0

s = γ
2

From Real parts get
−ω2 + s2 − sγ + ω2

0 = 0
6This content is available online at <http://cnx.org/content/m12781/1.1/>.
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or

−ω2 +
γ2

4
− γ

2
γ + ω2

0 = 0

−ω2 − γ2

4
+ ω2

0 = 0

Which rearranges to

ω2 = ω2
0 −

γ2

4
Thus the solution becomes

x = Ae−γt/2ei(ωt+α)

where

ω =

√
ω2

0 −
γ2

4
Note that this has assumed a frictional damping force. For a more complicated damping force, the result
would be di�erent.

1.6 The Driven Oscillator7

1.6.1

Lets consider a case with a driven or forced oscillator. We now have

mẍ+ kx = F0e
iωt

or

ẍ+ ω2
0x =

F0

m
eiωt.

Try
x = Aei(ωt+α)

then
ẋ = iωAei(ωt+α)

and
ẍ = −ω2Aei(ωt+α).

So now get

−ω2Aei(ωt+α) + ω2
0Ae

i(ωt+α) =
F0

m
eiωt

(
ω2

0 − ω2
)
Aei(ωt+α) =

F0

m
eiωt

(
ω2

0 − ω2
)
A =

F0

m
e−iα

(
ω2

0 − ω2
)
A =

F0

m
cosα− iF0

m
sinα

Next you spearate the Real and Imaginary parts. The Imaginary part gives

0 = −F0

m
sinα

7This content is available online at <http://cnx.org/content/m12783/1.1/>.
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so α = 0, π . . . implies cosα = ±1 The Real part gives(
ω2

0 − ω2
)
A =

F0

m
cosα

(
ω2

0 − ω2
)
A = ±F0

m

A =
±F0
m

(ω2
0 − ω2)

So a solution is

x =
F0
m

(ω2
0 − ω2)

ei(ωt+α)

where α = 0, π . . .
This is an extremely important result, this is the phenomenum of resonance. When you drive an oscillator

at its resonant frequency then the amplitude of the oscillation will become huge. In the equation above, it
becomes in�nite, but in practice there will be some damping that prevents that. You have known this since
your childhood, this is how you swing on a swing. If you live in a snowy climate, you know (or at least should
know) that a trick to get your car out of a snow bank is is to rock it back and forth - if you get the frequency
right you will make the car oscillate with a large amplitude and dislodge it. The electrical analogue is used
to tune a radio.

A driven damped oscillator will be given as a homework problem.
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Chapter 2

Partial Derivatives1

2.1 Partial Derivatives

A Partial derivative is de�ned as the derivative of the function w.r.t. one of the variables while holding the
others constant

∂f

∂x
= lim

∆x→0

f (x+ ∆x, t)− f (x, t)
∆x

∂f

∂t
= lim

∆t→0

f (x, t+ ∆t)− f (x, t)
∆t

Some examples:
f (x, t) = 3x2 + xt2

∂f

∂x
= 6x+ t2

∂f

∂t
= 2xt

∂2f

∂x2
= 6

∂2f

∂t2
= 2x

∂2f

∂x∂t
=

∂2f

∂t∂x
= 2t

1This content is available online at <http://cnx.org/content/m12784/1.2/>.
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Chapter 3

Mechanical Waves

3.1 Vibrations on a String1

3.1.1 Vibrations on a String

Figure 3.1

1This content is available online at <http://cnx.org/content/m12785/1.1/>.
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Consider the forces on a short fragment of string

Fy = T sin (θ + ∆θ)− T sinθ

Fx = T cos (θ + ∆θ)− T cosθ

Assume that the displacement in y is small and T is a constant along the stringthus θ and θ + ∆θ are
smallthen Fx ≈ 0 we can see this by expanding the trig functions

Fx ≈ T

[
1− (θ + ∆θ)2

2
− 1 +

θ2

2
+ . . .

]
or

Fx ≈ Tθ∆θ

which is very small.On the other hand

Fy ≈ T [θ + ∆θ − θ + . . . ]

or
Fy ≈ T∆θ

which is not nearly as small. So we will consider the y component of motion, but approximate there is no x
component

Fy = T sin (θ + ∆θ)− T sinθ

≈ T tan (θ + ∆θ)− T tanθ

= T
(
∂y(x+∆x)

∂x − ∂y
∂x

)
= T ∂2y

∂x2 ∆x

Also we can write:
Fy = may

m = µ∆x where µ is the mass density

ay =
∂2y

∂t2

now have

T
∂2y

∂x2
∆x = µ∆x

∂2y

∂t2

∂2y

∂x2
=
µ

T

∂2y

∂t2

Note dimensions, get a velocity
T

µ
= v2

∂2y

∂x2
=

1
v2

∂2y

∂t2

The second space derivative of a function is equal to the second time derivative of a function multiplied by
a constant.
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3.1.2 Normal Modes on a String

Before considering traveling waves, we are going to look at a special case solution to the wave equation. This
is the case of stationary vibrations of a string.

For example here, lets consider the case where both ends of the string are �xed at y = 0. Now we vibrate
the string. Every point along the string acts like a little driven oscillator. So lets assume that every point on
string has a time dependence of the form cosωt and that the amplitude is a function of distance Assume

y (x, t) = f (x) cosωt

then
∂2y

∂t2
= −ω2f (x) cosωt

∂2y

∂x2
=
∂2f

∂x2
cosωt

Substitute into wave equation
∂2y

∂x2
=

1
v2

∂2y

∂t2

∂2f

∂x2
cosωt = −ω

2

v2
f (x) cosωt

Then every f (x) that satis�es:
∂2f

∂x2
= −ω

2

v2
f

is a solution of the wave equation
A solution is (requiring f (0) = 0 since ends �xed)

f (x) = Asin
(ωx
v

)
Another boundary condition is f (L) = 0 so get

Asin
(
ωL

v

)
= 0

Thus
ωL

v
= nπ

ω =
nπv

L

Be careful with the equations above: v is the letter vee and is for velocity. now we introduce the frequency
ν which is the Greek letter nu.

recall ν = ω/2π so

νn =
nv

2L
=

n

2L

(
T

µ

) 1
2

This is a very important feature of wave phenomena. Things can be quantized. This is why a musical
instrument will play speci�c notes. Note, that we must have an integral number of half sine waves

λn =
2L
n

end up with

fn (x) = Ansin
(

2πx
λn

)
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leading to

yn (x, t) = Ansin
(

2πx
λn

)
cosωnt

where ωn = nπ
L

(
T
µ

) 1
2

= nπ
L v = nω1 ω1 is the fundamental frequency

3.2 Waves2

3.2.1 Waves

3.2.1.1 The Wave Equation

In deriving the motion of a string under tension we came up with an equation:
∂2y
∂x2 = 1

v2
∂2y
∂t2 which is known as the wave equation. We will show that this leads to waves below, but

�rst, let us note the fact that solutions of this equation can be added to give additional solutions.

3.2.1.2 Waves Add

Say you have two waves governed by two equations Since they are traveling in the same medium, v is the
same

∂2f1

∂x2
=

1
v2

∂2f1

∂t2

∂2f2

∂x2
=

1
v2

∂2f2

∂t2

add these
∂2f1

∂x2
+
∂2f2

∂x2
=

1
v2

∂2f1

∂t2
+

1
v2

∂2f2

∂t2

∂2

∂x2
(f1 + f2) =

1
v2

∂2

∂t2
(f1 + f2)

Thus f1 + f2 is a solution to the wave equation
Lets say we have two functions, f1 (x− vt) and f2 (x+ vt). Each of these functions individually satisfy

the wave equation. note that
y = f1 (x− vt) + f2 (x+ vt)

will also satisfy the wave equation. In fact any number of functions of the form f (x− vt) or f (x+ vt)
can be added together and will satisfy the wave equation. This is a very profound property of waves. For
example it will allow us to describe a very complex wave form, as the summation of simpler wave forms.
The fact that waves add is a consequence of the fact that the wave equation

∂2f

∂x2
=

1
v2

∂2f

∂t2

is linear, that is f and its derivatives only appear to �rst order. Thus any linear combination of solutions of
the equation is itself a solution to the equation.

2This content is available online at <http://cnx.org/content/m12787/1.4/>.
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3.2.1.3 General Form

Any well behaved (ie. no discontinuities, di�erentiable) function of the form

y = f (x− vt)

is a solution to the wave equation. Lets de�ne

f ′ (a) =
df

da

and

f ′′ (a) =
d2f

da2
.

Then using the chain rule
∂y
∂x = ∂f

∂(x−vt)
∂(x−vt)
∂x

= ∂f
∂(x−vt) = f ′ (x− vt) ,

and
∂2y

∂x2
= f ′′ (x− vt) .

Also
∂y
∂t = ∂f

∂(x−vt)
∂(x−vt)

∂t

= −v ∂f
∂(x−vt)

= −vf ′ (x− vt)

∂2y

∂t2
= v2f ′′ (x− vt) .

We see that this satis�es the wave equation.
Lets take the example of a Gaussian pulse.

f (x− vt) = Ae−(x−vt)2/2σ2

Then
∂f

∂x
=
−2 (x− vt)

2σ2
Ae−(x−vt)2/2σ2

and
∂f

∂t
=
−2 (x− vt) (−v)

2σ2
Ae−(x−vt)2/2σ2

or
∂2f (x− vt)

∂t2
= v2 ∂

2f (x− vt)
∂x2

That is it satis�es the wave equation.
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3.2.1.4 The velocity of a Wave

Figure 3.2

To �nd the velocity of a wave, consider the wave:

y (x, t) = f (x− vt)

Then can see that if you increase time and x by ∆t and ∆x for a point on the traveling wave of constant
amplitude

f (x− vt) = f ((x+ ∆x)− v (t+ ∆t)) .

Which is true if
∆x− v∆t = 0

or

v =
∆x
∆t

Thus f (x− vt) describes a wave that is moving in the positive x direction. Likewise f (x+ vt) describes a
wave moving in the negative x direction.

note: Lots of students get this backwards so watch out!
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Another way to picture this is to consider a one dimensional wave pulse of arbitrary shape, described by
y′ = f (x′), �xed to a coordinate system O′ (x′, y′)

Figure 3.3

Now let the O′ system, together with the pulse, move to the right along the x-axis at uniform speed v
relative to a �xed coordinate system O (x, y).

Figure 3.4

As it moves, the pulse is assumed to maintain its shape. Any point P on the pulse can be described by
either of two coordinates x or x′, where x′ = x − vt. The y coordinate is identical in either system. In the
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stationary coordinate system's frame of reference, the moving pulse has the mathematical form

y = y′ = f (x′) = f (x− vt)

If the pulse moves to the left, the sign of v must be reversed, so that we may write

y = f (x± vt)

as the general form of a traveling wave. Notice that we have assumed x = x′ at t = 0.

Figure 3.5

note: Waves carry momentum, energy (possibly angular momentum) but not matter

3.2.1.5 Wavelength, Wavenumber etc.

We will often use a sinusoidal form for the wave. However we can't use

y = Asin (x− vt)

since the part in brackets has dimensions of length. Instead we use

y = Asin
2π
λ

(x− vt) .

Notice that
y (x = 0, t) = y (x = λ, t)
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which gives us the de�nition of the wavelength λ.
Also note that the frequency is

ν =
v

λ
.

The angular frequency is de�ned to be

ω ≡ 2πν =
2πv
λ

.

Finally the wave number is

k ≡ 2π
λ
.

So we could have written our wave as
y = Asin (kx− ωt)

Note that some books say k = 1
λ

3.2.1.6 Normal Modes on a String as an Example of Wave Addition

Lets go back to our solution for normal modes on a string:

yn (x, t) = Ansin
(

2πx
λn

)
cosωnt

yn (x, t) = Ansin
(

2πx
λn

)
cos
(

2π
λn

vt

)
.

Now lets do the following: make use of sin (θ + φ) + sin (θ − φ) = 2sinθcosφ Also lets just take the �rst
normal mode and drop the n's Finally, de�ne A ≡ A1/2 Then

y (x, t) = 2Asin
(

2πx
λ

)
cos
(

2π
λ
vt

)
becomes

y (x, t) = Asin
[

2π
λ

(x− vt)
]

+Asin
[

2π
λ

(x+ vt)
]

These are two waves of equal amplitude and speed traveling in opposite directions. We can plot what happens
when we do this. The following animation was made with Mathematica using the command

Figure 3.6
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Figure 3.7

3.3 Superposition of Mechanical Waves3

3.3.1 Superposition

Suppose we have two waves, with the same amplitude but di�erent wavelengths and velocities and we add
them

y1 = Asin
[

2π
λ1

(x− v1t)
]

y2 = Asin
[

2π
λ2

(x− v2t)
]
.

Then

y1 + y2 = A

(
sin
[

2π
λ1

(x− v1t)
]

+ sin
[

2π
λ2

(x− v2t)
])

.

Lets rewrite using wave number and angular frequency

y1 + y2 = y = A (sin [(k1x− ω1t)] + sin [(k2x− ω2t)]) .

Now we will use sin (θ + φ) + sin (θ − φ) = 2sinθcosφ and set

θ + φ = k1x− ω1t

3This content is available online at <http://cnx.org/content/m12786/1.3/>.
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θ − φ = k2x− ω2t.

We can rearrange to get
2θ = (k1 + k2)x− (ω1 + ω2) t

2φ = (k1 − k2)x− (ω1 − ω2) t.

By substituting we can then see that

y = 2A
(

cos
[
k1 − k2

2
x− ω1 − ω2

2
t

]
× sin

[
k1 + k2

2
x− ω1 + ω2

2
t

])
.

Now set
∆k = k1 − k2

∆ω = ω1 − ω2

k =
k1 + k2

2

ω =
ω1 + ω2

2
and we can rewrite the wave as

y = 2Acos
(
x

∆k
2
− t∆ω

2

)
sin (kx− ωt) .

The above equation shows beats. For example you can set t = 0 and see that you get

y = 2Acos
(
x

∆k
2

)
sin (kx) .

Likewise you could pick x = 0 and get the same �gure, but now the horizontal axis is time

y = 2Acos
(
−t∆ω

2

)
sin (−ωt)

or

y = 2Acos
(
t
∆ω
2

)
sin (−ωt) .

You get a traveling wave that has an oscillating amplitude.
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Figure 3.8: Adding two waves of similar frequency together, gives rise to beats.

3.3.2 Phase and Group Velocities

When we look at

y = 2Acos
(
x

∆k
2
− t∆ω

2

)
sin (kx− ωt)

we see that there are two velocities. One, referred to as the phase velocity, is the speed of the individual
wave crests:

vp =
ω

k
= νλ.

The group velocity is the velocity of the envelope

vg =
∆ω
∆k
→ dω

dk

Energy and momentum normally move with the group velocity.
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3.4 Energy in a mechanical wave4

3.4.1 Energy Transport

Figure 3.9

Lets calculate the energy in a wave of a string:
Consider a fragment of string so small it can be considered straight, as is shown in the �gure
The the kinetic energy is K = 1

2mv2 for the string fragment m = µdx

note: Why is this dx and not ds? Lets consider that the string is not perturbed, then it is
horizontal and has mass as given. When the string is perturbed it stretches a little bit - but the
mass does not increase.

So we have

K =
1
2
µdx

(
∂y

∂t

)2

and using this we can de�ne the energy per unit length, ie. the kinetic energy density:

dK

dx
=

1
2
µ

(
∂y

∂t

)2

4This content is available online at <http://cnx.org/content/m12793/1.2/>.
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When the string segment is stretched from the length dx to the length ds an amount of work = T (ds− dx)
is done. This is equal to the potential energy stored in the stretched string segment. So the potential energy
in this case is:

U = T (ds− dx)

Now

ds =
(
dx2 + dy2

)1/2
= dx

[
1 +

(
∂y
∂x

)2
]1/2

Recall the binomial expansion

(1 +A)n = 1 + nA+
n (n− 1)A2

2!
+
n (n− 1) (n− 2)A3

3!
+ . . .

so

ds ≈ dx+
1
2

(
∂y

∂x

)2

dx

U = T (ds− dx) ≈ 1
2
T

(
∂y

∂x

)2

dx

or the potential energy density

dU

dx
=

1
2
T

(
∂y

∂x

)2

To get the kinetic energy in a wavelength, lets start with

y = Asin
(

2πx
λ
− ωt

)
∂y

∂t
= −ωAcos

(
2πx
λ
− ωt

)
Lets evaluate it at time 0.

∂y

∂t
|
t=0

= −ωAcos
(

2πx
λ

)
so

dK

dx
=

1
2
µω2A2cos2

(
2πx
λ

)
now integrate

K =
∫ λ

0
dK
dx dx

= 1
2µω

2A2
∫ λ

0
cos2

(
2πx
λ

)
dx

In order to do this integral we use the following trig identity:

cos2A =
cos2A+ 1

2

so we get

K = 1
2µω

2A2
[
x
2 + λ

8π sin 4πx
λ

]
|λx=0

= 1
4µλω

2A2

In similar fashion the potential energy can be found to be

U =
1
4
µλω2A2.
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Deriving this will be assigned as a homework problem
So

E = K + U =
1
2
µλω2A2

Power

P = ∆E
∆t =

1
2µλω

2A2

τ

= 1
2µω

2A2v

Where I have used τ = 1/ν and λν =v thus τ = λ/v

3.5 Re�ection and Transmission of Mechanical Waves5

3.5.1 Re�ection and Transmission

Figure 3.10: Four possible cases for the re�ection and transmission of a wave on a string.

5This content is available online at <http://cnx.org/content/m12794/1.2/>.
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The �rst �gure shows the 4 possible cases for re�ection and transmission at an interface. Lets solve the
problem, which is shown in the next �gure

Figure 3.11

since µ1 6= µ2 it must be that v1 6=v2.

note: Note that we are assuming that Young's Modulus is constant across the boundary.

So we get
yinc = Acos (k1x− ωt)

yref = Bcos (k1x+ ωt)

ytrans = Ccos (k2x− ωt)

(note the re�ected wave goes the other direction).
On the left side of the junction we have

yl = yinc + yref

= Acos (k1x− ωt) +Bcos (k1x+ ωt)

and on the right side of the junction we have

yr = ytrans = Ccos (k2x− ωt) .

At the boundary x = 0 the wave must continuous, that is there are no kinks in it. Thus we must have

yl (0, t) = yr (0, t)

∂yl (x, t)
∂x

|
x=0

=
∂yr (x, t)

∂x
|
x=0

So from the �rst equation
Acos (ωt) +Bcos (ωt) = Ccos (ωt)

A+B = C

∂yl (x, t)
∂x

|
x=0

=
∂yr (x, t)

∂x
|
x=0
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−Ak1sin (−ωt)− k1Bsin (ωt) = −k2Csin (−ωt)

(A−B) k1sinωt = Ck2sinωt

A−B =
k2

k1
C

now solve for B and C
A+B = C

A−B =
k2

k1
C

2A =
(

1 +
k2

k1

)
C

Thus we can de�ne the transmission coe�cient

tr ≡ C/A =
2k1

k1 + k2

and the refection coe�cient

r ≡ B/A =
C

A
− 1 =

k1 − k2

k1 + k2

note how the amplitudes can change at the boundary
If µ2 < µ1then we must have k2 < k1 since

v = ω/k =
√
T/µ

and ω andT must be �xed. We see that k ∝ √µ In this case we see that the amplitude of the wave gets
bigger when it moves into a less dense medium. We have probably all experienced this in real life. As waves
come ashore they become bigger. This is because shallower water is e�ectively less dense. A tsumami in
open ocean may have an imperceptable amplitude but when it comes ashore it can be tremendous. This
seems almost counter intuitive, but in any closed system the energy and power are conserved but there is no
rule saying amplitude has to be conserved.

Lets look at the re�ected and transmitted power. Recall Power:

P =
1
2
µω2A2v

For the incident and re�ected waves µ and ν are the same so the re�ected power coe�cient (re�ected power
/ incident power)

PR = (B/A)2 =
(
k1 − k2

k1 + k2

)2

To do transmitted power lets �rst rewrite the power equation. Recall

v = νλ

= 2πν
k

= ω
k

Also

v =

√
T

µ
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so

µ = T
v2

= T

(ωk )2

= Tk2

ω2

so now

P =
1
2
µω2A2v

becomes

P =
1
2
Tk2

ω2
ω2A2ω

k
or

P =
1
2
TkωA2.

note: Watch out, in the above lines A was used to denote amplitude in general and in the following
line it speci�cally refers to the incoming wave.

The transmission power coe�cient is thus:

PT =
1
2Tk2ωC

2

1
2Tk1ωA2

Note that ω and T are the same for both waves

PT =
k2C

2

k1A2

earlier we showed

C/A =
2k1

k1 + k2

so

PT =
(

2k1

k1 + k2

)2
k2

k1

PT =
4k1k2

(k1 + k2)2

Note that PR + PT = 1 which means that energy is conserved.
Now lets look at the 4 speci�c cases we have:
Rigid wall
µ→∞ so k2 →∞

r = k1−k2
k1+k2

=
k1
k2
−1

k1
k2

+1

r → −1

Also PR → +1 PT → 0 So wave is re�ected and inverted, but has same power
Free end
µ→ 0 so k2 → 0

r = k1−k2
k1+k2

= k1
k1

r → +1
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Also PR → +1 PT → 0 So wave is re�ected and has same power
Moving to higher density
µ2 > µ1[U+F57A]k2 > k1 so r < 0 tr > 0
Moving to lower density
µ2 < µ1[U+F57A]k2 < k1 so r > 0 tr > 1 Note the transmitted wave's amplitude is larger than the

original.

3.6 Fourier Series6

3.6.1 Fourier Analysis

3.6.1.1 Fourier Series

Lets go back to the case of a string �xed at 0 and L, its nth harmonic is

yn (x, t) = Ansin
(nπx
L

)
cos (ωnt− δn)

In fact all the modes could be permitted, and so any possible motion of the string can be completely speci�ed
by:

y (x, t) =
∞∑
n=1

Ansin
(nπx
L

)
cos (ωnt− δn) .

This has been rigorously shown by mathematicians but the complete proof is beyond our scope in this course.
Lets accept the mathematicians word on this. We could take a snapshot of this function at a time t = t0.
Then we could write

y (x) =
∞∑
n=1

Bnsin
(nπx
L

)
where

Bn = Ancos (ωnt0 − δn) .

Likewise we could look at one point at space and look at the oscillations as a function of time. In that case
we would get.

y (t) =
∞∑
n=1

Cncos (ωnt− δn)

Lets work with the time snapshot,

y (x) =
∞∑
n=1

Bnsin
(nπx
L

)
We need to �gure out what the Bn factors are and this is what Fourier �gured out. We can multiply both
sides by the sin of a particular harmonic

y (x) sin
(niπx

L

)
=
∞∑
n=1

Bnsin
(nπx
L

)
sin
(niπx

L

)
and now we can integrate both sides

Recall
cos (θ − φ) = cosθcosφ+ sinθsinφ

6This content is available online at <http://cnx.org/content/m12795/1.2/>.
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cos (θ + φ) = cosθcosφ− sinθsinφ

So

sinθsinφ =
1
2

[cos (θ − φ)− cos (θ + φ)]

Thus

This is equal to zero at the limits 0, L except for the particular case when n = ni. In that case∫
sin
(nπx
L

)
sin
(niπx

L

)
dx =

∫
sin2

(nπx
L

)
dx

So you get

After all that we should see that for

each term in the sum is zero, except the case where ni = n. Thus we can simplify the equation:∫ L

0

y (x) sin
(nπx
L

)
dx =

L

2
Bn.

or

Bn =
2
L

∫ L

0

y (x) sin
(nπx
L

)
dx

The above is a very speci�c form of the Fourier Series for a function spanning an interval from 0 to L and
passing through zero at x = 0.

3.6.1.1.1 More General Case

One could write a more general case for the Fourier Series which applies to an interval spanning −L to L
and not constrained to pass through zero. In that case one can write

y (x) =
a0

2
+
∞∑
n=1

[
ancos

(nπx
L

)
+ bnsin

(nπx
L

)]
where

An =
1
L

∫ L

−L
y (x) cos

(nπx
L

)
dx n = 0, 1, 2, 3, . . .

and

Bn =
1
L

∫ L

−L
y (x) sin

(nπx
L

)
dx n = 1, 2, 3, . . .

You can then look at the symmetry of the problem and see if just sin or cos can be used. For example if
y (−x) = y (x) then use cosines. If y (−x) = −y (x) use the sines.
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3.6.1.2 Fourier Integral Theorem

In fact Fourier's theorem can be taken to a next step. This is Fourier's integral theorem. That is any function
(even if it is not periodic) can be represented by

f (x) =
1
π

∫ ∞
0

[A (k) cos (kx) +B (k) sin (kx)] dk

where

A (k) =
∫ ∞
−∞

f (x) cos (kx) dx

B (k) =
∫ ∞
−∞

f (x) sin (kx) dx

A and B are called the Fourier transforms of f (x) Lets look at an example.

Figure 3.12
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f (x) = Eo |x| < L/2

f (x) = 0 |x| > L/2

right away you can set
B (x) = 0

from symmetry arguments

A (k) =
∫∞
−∞ f (x) cos (kx) dx

=
∫ L/2
−L/2E0cos (kx) dx

= Eo
k sin (kx) |L/2−L/2

= Eo
k

[
sin
(
kL
2

)
− sin

(−kL
2

)]
= 2Eo

k sin
(
kL
2

)
= E0L

sin( kL2 )
kL
2

Figure 3.13
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3.6.1.3 Closing word

Up until now in the course we have been dealing with very simple waves. It turns out that any complicated
wave that can possibly exist can be constructed from simple harmonic waves. So while it may seem that an
harmonic wave is an over simpli�cation, it can be used in even the most complex cases.



Chapter 4

Div, Grad, Curl

4.1 Scalar Field1

4.1.1 Scalar Fields

One of the more di�cult concepts we encounter in physics is the notion of a �eld. However it is an extremely
useful concept. A scalar �eld is a map over some space of scalar values. That is it is a map of values with
no direction. A simple example of a scalar �eld is a map of the temperature distribution in a room. In
this course the most important example is the electromagnetic potential �eld. Below are a few examples of
graphical representations of one particular scalar �eld.

Figure 4.1

4.2 Vector Fields2

4.2.1 Vector Fields

A vector �eld can be considered a map of vectors over some space. . For example if one were to show wind
vectors on a weather map; that would be a vector �eld. The electric �eld surrounding a charge is a vector
�eld (were is the potential around the charge is a scalar �eld).

The �ux of a vector �eld through a closed surface is the average outward normal component of the vector
times the area of the surface�ux = (average normal component )·(surface area)

1This content is available online at <http://cnx.org/content/m12854/1.1/>.
2This content is available online at <http://cnx.org/content/m12855/1.2/>.
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Three vector �elds are shown below. Which represents the electric �eld eminating from a positive point
charge in the middle? (Note that vectors of similar magnitude are colored similarly in these plots)

Figure 4.2

4.3 Vector Multiplication Reminder3

It is presumed that you are familiar with vector multiplication.
Here are some questions to ask yourself as a refresher:
→
A ·

→
B. Is it a vector or a scalar?

Answer: scalar →
A ·

→
B= AxBx +AyBy +AzBz

→
A ×

→
B. Is it a vector or a scalar?

Answer: Vector (→
A ×

→
B
)
x

= AyBz −AzBy(→
A ×

→
B
)
y

= AzBx −AxBz(→
A ×

→
B
)
z

= AxBy −AyBx

What is
→
A ×

→
A

Answer: 0
What is

→
A ·
(→
A ×

→
B
)

Answer: 0
Another useful thing to remember

→
A ·
(→
B ×

→
C
)

=
(→
A ×

→
B
)
·
→
C

=
(→
C ×

→
A
)
·
→
B

This is the scalar triple product which is the volume of a parallelopiped whose edges are given by
→
A,

→
B,

→
C.

3This content is available online at <http://cnx.org/content/m12856/1.1/>.
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4.4 Divergence, Gradient, and Curl4

4.4.1 Divergence, Gradient and Curl

Assume we have measured the temperature in a room along an axis x. If we wanted to �nd the temperature
change as we move to postion (x+ ∆x) then from the fundamental de�nition of a derivative we know that
is:

∆T =
dT

dx
∆x

We can easily extend this concept to 3 dimensions At position (x, y, z) there is a temperature T (x, y, z).
Suppose we then want to �nd the temperature at

→
R +∆

→
R= (x+ ∆x, y + ∆y, z + ∆z). Then we can use:

∆T =
∂T

∂x
∆x+

∂T

∂y
∆y +

∂T

∂z
∆z

We could de�ne a vector (
∂T

∂x
,
∂T

∂y
,
∂T

∂z

)
and then say

∆T =
(
∂T

∂x
,
∂T

∂y
,
∂T

∂z

)
·∆

→
R

so let's de�ne an operator
→
∇=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
Then we can write

∆T =
→
∇ T ·∆

→
R

→
∇ is a vector operator that can be used in other situations involving scalars and vectors. It is often named
"del" or "nabla". Operating on a scalar �eld with this operator is called taking the "gradient" of the �eld.

We could also operate on a vector �eld with del. There are two di�erent ways to do this, by taking the
dot and the cross products. To operate on a vector �eld by taking its dot product with del is referred to as
taking the divergence. ie.

f =
→
∇ ·

→
h

where
→
h is some vector �eld and f is the resulting scalar �eld.

Similarly one could take the cross product:

→
g=
→
∇ ×

→
h

where
→
g is the resulting vector �eld.

gx =
(→
∇ ×

→
h
)
x

= ∂hz
∂y −

∂hy
∂z

gy =
(→
∇ ×

→
h
)
y

= ∂hx
∂z −

∂hz
∂x

gz =
(→
∇ ×

→
h
)
z

= ∂hy
∂x −

∂hx
∂y

This is referred to as taking the curl of a �eld.
These operations, Gradient, Divergence and Curl are of fundamental importance. They have been pre-

sented above as operations using some newly de�ned operator but they in fact have deep physical signi�cance.

4This content is available online at <http://cnx.org/content/m12857/1.1/>.
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When using these operators to express Maxwell's equations in di�erential form, the meaning of these oper-
ations will hopefully become more clear. Gradient is the easiest to understand, it can be thought of as a
three dimensional slope.

Having de�ned these operations we can go on to second derivative type things

→
∇ ·
(→
∇ T

)
= ∇2T = a scalar field

Note that ∇2 occurs so often that is has its own name, Laplacian

→
∇ ×

(→
∇ T

)
= 0

→
∇
(→
∇ ·

→
h
)

= a vector field

→
∇ ·
(→
∇ ×

→
h
)

= 0

→
∇ ×

(→
∇ ×

→
h
)

=
→
∇
(→
∇ ·

→
h
)
−∇2

→
h

→
∇ ·

→
∇
→
h= ∇2

→
h= a vector field

Here is an example of taking a divergence that will be extremely useful. If

→
r= xß̂ + y̂+ zk̂

and →
k= kxß̂ + ky ̂+ kz k̂

and

→
E= Exß̂ + Ey ̂+ Ez k̂

then lets �nd (for
→
E is a constant vector)

→
∇ ·

→
E ei

→
k ·
→
r = ∂

∂xExe
i
→
k ·
→
r + ∂

∂yEye
i
→
k ·
→
r + ∂

∂zEze
i
→
k ·
→
r

= Exe
i
→
k ·
→
r ∂
∂x

(
i
→
k ·
→
r
)

+ . . .

= iExe
i
→
k ·
→
r ∂
∂x (kxx+ kyy + kzz) + . . .

= ikxExe
i
→
k ·
→
r + ikyEye

i
→
k ·
→
r + ikzEze

i
→
k ·
→
r

= i
→
k ·
→
E ei

→
k ·
→
r

4.5 Gauss' Theorem5

4.5.1 Gauss' Theorem

Consider the following volume enclosed by a surface we will call S.

5This content is available online at <http://cnx.org/content/m12858/1.4/>.
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Figure 4.3

Now we will embed S in a vector �eld:
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Figure 4.4

We will cut the the object into two volumes that are enclosed by surfaces we will call S1 and S2.
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Figure 4.5

Again we embed it in the same vector �eld.
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Figure 4.6

It is clear that �ux through S1 + S2 is equal to �ux through S.This is because the �ux through one side
of the plane is exactly opposite to the �ux through the other side of the plane:
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Figure 4.7

So we see that ∮
S

→
F ·d

→
a=

∮
S1

→
F ·d

→
a1 +

∮
S2

→
F ·d

→
a2 .

We could subdivide the surface as much as we want and so for n subdivisions the integral becomes:∮
S

→
F ·d

→
a=

n∑
i=1

∮
Si

→
F ·d

→
ai .

What is
∮
Si

→
F ·d

→
ai.? We can subdivide the volume into a bunch of little cubes:
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Figure 4.8

To �rst order (which is all that matters since we will take the limit of a small volume) the �eld at a point
at the bottom of the box is

Fz +
∆x
2
∂Fz
∂x

+
∆y
2
∂Fz
∂y

where we have assumed the middle of the bottom of the box is the point
(
x+ ∆x

2 , y + ∆y
2 , z

)
. Through the

top of the box
(
x+ ∆x

2 , y + ∆y
2 , z + ∆z

)
you get

Fz +
∆x
2
∂Fz
∂x

+
∆y
2
∂Fz
∂y

+ ∆z
∂Fz
∂z

Through the top and bottom surfaces you get Flux Top - Flux bottom

Which is

∆x∆y∆z
∂Fz
∂z

= ∆V
∂Fz
∂z

Likewise you get the same result in the other dimensionsHence∮
Si

→
F ·d

→
ai= ∆Vi

[
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

]
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or ∮
Si

→
F ·d

→
ai=

→
∇ ·

→
F ∆Vi

∮
S

→
F ·d

→
a=

∑n
i=1

∮
Si

→
F ·d

→
ai

=
∑n
i=1

→
∇ ·

→
F ∆Vi

So in the limit that ∆Vi → 0 and n→∞∮
S

→
F ·d

→
a=

∮
V

→
∇ ·

→
F dV

This result is intimately connected to the fundamental de�nition of the divergence which is

→
∇ ·

→
F≡ lim

V→0

1
V

∮
S

→
F ·d

→
a

where the integral is taken over the surface enclosing the volume V . The divergence is the �ux out of a
volume, per unit volume, in the limit of an in�nitely small volume. By our proof of Gauss' theorem, we have
shown that the del operator acting on a vector �eld captures this de�nition.

4.6 Stokes' Theorem6

4.6.1 Stokes' theorem

This is derived in a similar fashion to Gauss' theorem, except now, instead of considering a volume and
taking a surface integral, we consider a surface and take a line integral around the edge of the surface. In
this case the surface does not enclose a volume. A good picture that describes what is being done is �gure
2.23 in Berkeley Physics Course Volume 2. (Unfortunately it is copyrighted, and so it can not be shown on
the web - If somebody reading this can provide some suitable drawings I would incorporate them with an
acknowledgment). The following �gures are not as good as in the book, but will have to do for now. We
have some surface with a vector �eld passing through it:

6This content is available online at <http://cnx.org/content/m12866/1.1/>.



52 CHAPTER 4. DIV, GRAD, CURL

Figure 4.9

We can take the line integral around the edge of the surface and evaluate that. We can also slice the
surface into two parts
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Figure 4.10

The line integral along the common edge will have opposite signs for each half and so the sum of the two
individual line integrals will equal the line integral of the complete surface. We can subdivide as much as
we want and we will always have: ∮

C

→
F ·d

→
s=

N∑
i=1

∮
Ci

→
F ·d

→
si .

Since we can subdivide as much as we want we can break the surface down into a collection of tiny squares,
each of which lies in the {x, y}, {y, z} or {x, z} planes.

Consider asquare in the x y plane and lets �nd the line integral Let us �nd the line integral of
→
F . First

consider the x component at the center of the bottom of the square

Fx = Fx (x, y) +
∆x
2
∂Fx
∂x

and then at the center of the top

Fx = Fx (x, y) +
∆x
2
∂Fx
∂x

+ ∆y
∂Fx
∂y

So multiplying by ∆x and subtracting the top and bottom to get the Fx contribution to the line integral
gives

−∆x∆y
∂Fx
∂y

Minus sign comes about from the integration direction (if at the top Fx is more positive this results in a
negative contribution)Similarly in y we get the contribution

∆x∆y
∂Fy
∂x
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because Fy is more positive in the right you get a positive contribution
So for this simple example ∮

Ci

→
F ·d

→
si= ∆x∆y

[
∂Fy
∂x
− ∂Fx

∂y

]
which is just

(→
∇ ×

→
F
)
z
or if we de�ne ∆

→
A such that it has the area ∆x∆y and a direction perpendicular

to the xy plane it is ∮
Ci

→
F ·d

→
si= ∆

→
A ·
(→
∇ ×

→
F
)

We have shown the above is true for a square in the {x, y} plane. Similarly we would look at the other
possible planes and in {xz} plane would get

∆x∆z
[
∂Fx
∂z
− ∂Fz

∂x

]
which is

(→
∇ ×

→
F
)
y
. In the {yz} plane we get

∆y∆z
[
∂Fz
∂y
− ∂Fy

∂z

]
which is

(→
∇ ×

→
F
)
x

So in the 3d case we see that

Now ∮
C

→
F ·d

→
s=

N∑
i=1

∮
Ci

→
F ·d

→
si

becomes ∮
C

→
F ·d

→
s=

N∑
i=1

∆
→
Ai·

→
∇ ×

→
F

which in the in�nitesimal limit is ∮
C

→
F ·d

→
s=

∫
S

d
→
A ·

→
∇ ×

→
F .

This is the fundamental de�nition of curl. We have shown that the del operator "crossed" into the vector
�eld captures the de�nition of the operation.

As a side note, Physicists uniformly refer to the above as Stoke's theorem but in fact that is a more
general theorem and the above can correctly be called the "curl theorem". This is a physics course though,
so we will call it Stoke's theorem.
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Electromagnetism Review

5.1 Gauss' Law1

5.1.1 Gauss' Law

Now recall that �ux is the scalar product of a vector �eld and a bit of surface

Flux =
→
F ·

→
a

where
→
F is some vector �eld and

→
a is a surface with the direction de�ned by the normal to the surface.

For a series of connected surfaces
→
a j the total �ux through the combined surface would be the sum of the

individual elements. For a vector �eld
→
E passing through the surface this leads to

Φ =
∑→

Ej ·
→
a j

or when we go to in�nitesimal areas

Φ =
∫
surface

→
E ·d

→
a

Now lets consider a charge q in the middle of a sphere

Φ =
∮ →
E ·d

→
a=

∮
E · da

= E
∮
da

= E
(
4πr2

)
but

E =
kq

r2

then
Φ = 4πkq

ε0 ≡
1

4πk
So for this case we get ∮

→
E ·d

→
a=

q

ε0

1This content is available online at <http://cnx.org/content/m12867/1.1/>.
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We can generalize this to any closed surface. It is clear that for an arbitrary closed source, we can draw a
sphere around the source within the arbitrary surface.. Think of bullets being �red from a gun, it is clear
that the bullets originating in the inner sphere all pass through the outer surface and so one would expect

that the �ux would be the same. For example consider
→
a to be a patch on the inner sphere and

→
A to be its

projection onto the outer arbitrary surface (with its normal making an angle θ with respect to the normal

to
→
a .
On the inner patch

Φr =
→
Er·

→
a= Era

and at the outer patch

ΦR =
→
ER·

→
A

= ERAcosθ

=
[
Er
(
r
R

)2] [
a
(
R
r

)2 1
cosθ

]
cosθ

= Era

= Φr
So the two have equivalent �uxes.

Any electric �eld is the sum of �elds of its individual sources so we can write

Φ =
∮ →
E ·d

→
a=

∮ ∑
i

→
Eid

→
a

= 1
ε0

∑
i qi

or for charge distributed throughout the volume∮
→
E ·d

→
a=

1
ε0

∫
ρdV

Now we can apply Gauss' Theorem∮
→
E ·d

→
a=

∫
→
∇ ·

→
E dV =

1
ε0

∫
ρdV

The equation ∫
→
∇ ·

→
E dV =

1
ε0

∫
ρdV

must be true for any volume of any size, shape or location. The only way that can be true is if:

→
∇ ·

→
E=

ρ

ε0
Initially one may think that this is a much less clear way of posing Gauss' Law. In practice it is much more
useful than the integral form. Given an arbitrary distribution of charge we can calculate the electric �eld
anywhere in space.

5.1.2 Gauss' Law for Magnetism

We can consider the same arguments for magnetic �elds however there is one major di�erence! There are
no isolated source of magnetism. That is there are no magnetic monopoles. This is an experimental fact. In
fact people continue to search for them but they have never been found. (Finding one would almost certainly
be a discovery worthy of a Nobel Prize). So we have∮

→
B ·d

→
a= 0

or →
∇ ·

→
B= 0.
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5.2 Faraday's Law2

5.2.1 Faraday's Law

The magnetic �ux is

ΦM =
∫
→
B ·d

→
A

A device that can maintain a potential di�erence, despite the �ow of current is a source of electromotive
force. (EMF) The de�nition is mathematically

ε =
∮
→
E ·d

→
s

Faraday's law states that

ε = −∂ΦM
∂t

This is simply an experimental fact.
Faraday's law could also be written ∮

→
E ·d

→
s= − ∂

∂t

∫
→
B ·d

→
A

I will leave it as a problem to show that this can also be written

→
∇ ×

→
E= −∂

→
B

∂t
.

5.3 Ampere's Law3

5.3.1 Ampere's Law (with displacement current)

For a steady current �owing through a straight wire, the magnetic �eld at a point at a perpendicular distance
r from the wire, has a value

B =
µ0I

2πr
If we integrate around the wire in a circle, then clearly we get∮ →

B ·d
→
l = µ0I

2πr

∮
dl

= µ0I
2πr2πr

= µ0I

This is true for irregular paths around the wire∮
→
B ·d

→
l =

∮
B · dlcosθ

but for small dl dlcosθ = rdφ ∮ →
B ·d

→
l =

∮
Brdφ

= µ0I
2π

∮
dφ

= µ0I

2This content is available online at <http://cnx.org/content/m12869/1.1/>.
3This content is available online at <http://cnx.org/content/m12883/1.1/>.



58 CHAPTER 5. ELECTROMAGNETISM REVIEW

In fact instead of current we use the surface integral of the current density J , which is the current per unit
area ∮

→
B ·d

→
l = µ0

∫
S

→
J ·d

→
A

Maxwell's great insight was to realize that this was incomplete. He reasoned that dφB
dt gives a

→
E �eld so we

should expect that dφE
dt gives a

→
B �eld.

Figure 5.1

Figure 5.2
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Figure 5.3

Think of a capacitor in a simple circuit. We can draw a surface such as shown in the �gure, with "surface
1" and take the line integral around the edge of the surface. Now look at surface 2, this will have the
same line integral, but now the surface integral will be di�erent. Clearly there is something incomplete with
Ampere's law as formulated above. Maxwell re wrote Ampere's law∮

→
B ·d

→
l = µ0

∫
S

(
→
J +ε0

∂
→
E

∂t

)
· d
→
A

which solves the problem.
Again it is left as an exercise to show that

→
∇ ×

→
B= µ0

(
→
J +ε0

∂
→
E

∂t

)

5.3.2 Maxwell's equations

Lets recall Maxwell's equations (in free space) in di�erential form

→
∇ ×

→
E= −∂

→
B
∂t

→
∇ ×

→
B= µ0

(→
J +ε0 ∂

→
E
∂t

)
→
∇ ·

→
E= ρ

ε0→
∇ ·

→
B= 0
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Chapter 6

Electromagnetic Waves

6.1 The Electromagnetic Wave Equation1

6.1.1 The E&M Wave Equation

Lets recall Maxwell's equations in di�erential form

→
∇ ×

→
E= −∂

→
B
∂t

→
∇ ×

→
B= µ0

(→
J +ε0 ∂

→
E
∂t

)
→
∇ ·

→
E= ρ

ε0→
∇ ·

→
B= 0

In free space there are no charges or currents these become:

→
∇ ×

→
E= −∂

→
B
∂t

→
∇ ×

→
B= µ0ε0

∂
→
E
∂t

→
∇ ·

→
E= 0

→
∇ ·

→
B= 0

Lets take the time derivative of
→
∇ ×

→
E= −∂

→
B

∂t

→
∇ ×

∂
→
E

∂t
= −∂

2
→
B

∂t2

→
∇ ×

→
∇ ×

→
B= −µ0ε0

∂2
→
B

∂t2

but recall →
∇ ×

→
∇ ×

→
C=
→
∇
(→
∇ ·

→
C
)
−
(→
∇ ·

→
∇
) →
C

so using that and
→
∇ ·

→
B= 0 we get

∇2
→
B= µ0ε0

∂2
→
B

∂t2

1This content is available online at <http://cnx.org/content/m12884/1.1/>.

61



62 CHAPTER 6. ELECTROMAGNETIC WAVES

This is the 3d wave equation! Note that is a second time derivative on one side and a second space derivative
on the other side It is left as an exercise to show that

∇2
→
E= µ0ε0

∂2
→
E

∂t2

we also see from this equation that the speed of light in vacuum is

c =
1

√
µ0ε0

6.2 Plane Waves2

6.2.1 Plane Waves

We want to �nd the expression for a plane that is perpendicular to
→
k , where

→
k is a vector in the direction of

propagation of the wave.The plane is the set of points that has the same projection onto the vector
→
k That

is any point
→
r that satis�es

→
k ·
→
r= constant

is a point on the planeNow consider the function

ψ
(→
r
)

= Aei
→
k ·
→
r

we see that the magnitude of ψ
(→
r
)
is the same over every plane that is de�ned by

→
k ·
→
r= constant we want

to construct harmonic waves, ie. they should repeat every wavelength along the direction of propagation so
they should satisfy

ψ
(→
r
)

= ψ

(
→
r +

λ
→
k

k

)
where λ is the wavelengththen we must have

Aei
→
k ·
→
r = Ae

i
→
k ·
„
→
r+λ

→
k
k

«

= Aei
→
k ·
→
r ei
→
k ·
→
k λ/k

= Aei
→
k ·
→
r eikλ

This is true if
eiλk = 1 = ei2π

or
λk = 2π

k =
2π
λ

This should have a familiar look to it! Finally we want these waves to propagate in time so you should be
able to guess the answer from our work on mechanical waves

ψ (r) = Ae
i
“→
k ·
→
r∓ωt

”

2This content is available online at <http://cnx.org/content/m12885/1.1/>.
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6.3 Spherical Waves3

6.3.1 Spherical Waves

To �nd spherical solutions to the wave equation it is natural to use spherical coordinates.

x = rsinθcosφ

y = rsinθsinφ

z = rcosθ

There is a very nice discussion of Spherical Coordinates at:
http://mathworld.wolfram.com/SphericalCoordinates.html4

There is also a nice discussion of Cylindrical coordinates at the same site
http://mathworld.wolfram.com/CylindricalCoordinates.html5

Beware the confusion about θ and φ. We are calling the polar angle θ. All other mathematical disciplines
get it wrong and call it φ.

The Laplacian can be written in spherical coordinates, but where does that come from?looking at just
the x term

∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
+
∂φ

∂x

∂

∂φ

Then you take the second derivative to get ∂2

∂x2 which as you can imagine is a tremendously boring and tedious
thing to do.Since this isn't a vector calculus course lets just accept the solution.In the case of spherical waves
it is not so di�cult since the θ and φ derivative terms all go to 0.

∇2ψ (r) = 1
r2

∂
∂r

(
r2 ∂ψ

∂r

)
= ∂2ψ

∂r2 + 2
r
∂ψ
∂r

= 1
r
∂
∂r

(
ψ + r ∂ψ∂r

)
= 1

r
∂2(rψ)
∂r2

Thus for spherical waves, we can write the wave equation:

1
r

∂2 (rψ)
∂r2

=
1
v2

∂2ψ

∂t2

Now we can multiply both sides by r and since r does not depend upon t write

∂2 (rψ)
∂r2

=
1
v2

∂2

∂t2
(rψ)

This is just the one dimensional wave equation with a harmonic solution

rψ (r, t) = Aeik(r∓vt)

or

ψ (r, t) =
A

r
eik(r∓vt)

3This content is available online at <http://cnx.org/content/m12886/1.2/>.
4http://mathworld.wolfram.com/SphericalCoordinates.html
5http://mathworld.wolfram.com/CylindricalCoordinates.html
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6.4 Transverse Waves6

6.4.1 Transverse Waves

A plane wave solution to the electromagnetic wave equation for the
→
E �eld is

→
E
(→
r , t
)

=
→
E0 e

i
“→
k ·
→
r−ωt

”

In vacuum with no currents present we know that:
→
∇ ·

→
E= 0. Recall that earlier we showed

→
∇ ·

→
E= i

→
k ·

→
E0 e

i
“→
k ·
→
r−ωt

”

So
→
∇ ·

→
E= i

→
k ·

→
E0 e

i
“→
k ·
→
r−ωt

”
= 0

implies that the
→
E associated with our plane wave is perpendicular to its direction of motion.

Likewise
→
∇ ·

→
B= 0 implies that the

→
B �eld is also perpendicular to the direction of motion Lets pick a

speci�c simple case:
→
E= ̂Ey (x, t)

Then Faraday's law

→
∇ ×

→
E= −∂

→
B

∂t

tells us that (since
∂Ey
∂z = 0)

∂Ey
∂x

k̂ = −∂Bz
∂t

k̂

That is the
→
B �eld is at Right angles to the

→
E �eld.Also

Bz = −
∫ ∂Ey

∂x dt

= −
∫

∂
∂xE0e

i(kx−ωt)dt

= −
∫

∂
∂xE0e

ikxe−iωtdt

= − ∂
∂xE0e

ikx
∫
e−iωtdt

= −ikE0e
ikx
∫
e−iωtdt

= −ikE0e
ikx e−iωt

−iω

= 1
cE0e

ikxe−iωt

= 1
cEy

I leave as an exercise showing k
ω = 1

c
A movie demonstrating a plane wave can be seen at
http://www.cs.brown.edu/stc/outrea/greenhouse/nursery/physics/gfx/emwave.mov7

An applet can be viewed at
http://www.phy.ntnu.edu.tw/java/emWave/emWave.html 8

6This content is available online at <http://cnx.org/content/m12887/1.1/>.
7http://www.cs.brown.edu/stc/outrea/greenhouse/nursery/physics/gfx/emwave.mov
8http://www.phy.ntnu.edu.tw/java/emWave/emWave.html
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6.5 Energy Density of an Electromagnetic Wave9

6.5.1 Energy Density

The electric and magnetic �elds have energy and hence have an energy density. We can see this for a
capacitor:The energy stored in a capacitor is

U =
1
2
CV 2

where C is the capacitance and V the potential drop (voltage) across the capacitor. For a parallel plate
capacitor C = ε0A

d and V = Ed where A is the area of the plates d the distance between them and E the
electric �eld strength.note that Ad is the volumeThus

U =
1
2
ε0A

d
(Ed)2 =

1
2
ε0AdE

2

So we can write the energy density (Energy per Unit volume) of the �eld as

uE =
U

Ad
=

1
2
ε0E

2

Likewise by calculating the energy stored by a B-�eld in a current carrying solenoid one can derive:

uB =
B2

2µ0

Since we know E = cB

uE = 1
2ε0E

2

= 1
2ε0c

2B2

= 1
2ε0

1
ε0µ0

B2

= 1
2

1
µ0
B2

= uB

In an EM wave u = uE + uB which is u = ε0E
2 or equivalently u = B2/µ0

6.6 Electromagnetic Wave Review10

6.6.1 Review

Lets take some time to review what we have learned so far. We have derived Maxwell's equations in
di�erential form.

→
∇ ×

→
E= −∂

→
B
∂t

→
∇ ×

→
B= µ0

(→
J +ε0 ∂

→
E
∂t

)
→
∇ ·

→
E= ρ

ε0→
∇ ·

→
B= 0

These, in general are much more useful than the integral form you learned in Freshman Physics. These allow
one to understand the relationship between �elds, charges and currents as a function of position. This point
by point understanding of what is happening is not obvious in the integral form of the equations.

9This content is available online at <http://cnx.org/content/m12888/1.1/>.
10This content is available online at <http://cnx.org/content/m12889/1.1/>.
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Another interesting point is that if everything is static, that is nothing is changing with time, then they
become

→
∇ ×

→
E= 0

→
∇ ×

→
B= µ0

→
J

→
∇ ·

→
E= ρ

ε0→
∇ ·

→
B= 0

Notice that for static �elds, there is no interplay between electricity and magnetism. If there was just
electrostatics, then we would have separate electric and magnetic �elds. Maxwell was able to show that the
electricity and magnetism are intimately related, and the theory is uni�ed in that you need both. (To this
day the uni�cation of forces is one of the driving principles of a lot of physics research - I would say the only
interesting physics research but that is perhaps because I do it for a living.)

In free space Maxwell's equations become:

→
∇ ×

→
E= −∂

→
B
∂t

→
∇ ×

→
B= µ0ε0

∂
→
E
∂t

→
∇ ·

→
E= 0

→
∇ ·

→
B= 0

We then showed that one can take time derivatives and end up with

∇2
→
B= µ0ε0

∂2
→
B

∂t2

which is the 3d wave equation! Note that is a second time derivative on one side and a second space derivative
on the other side, the hallmarks of a wave equation.

It was left as an exercise to show that

∇2
→
E= µ0ε0

∂2
→
E

∂t2

We also see from this equation that the speed of light in vacuum is

c =
1

√
µ0ε0

A plane wave solution to the electromagnetic wave equation for the
→
E �eld is

→
E
(→
r , t
)

=
→
E0 e

i
“→
k ·
→
r−ωt

”

In vacuum with no currents present we know that:
→
∇ ·

→
E= 0. Recall that earlier we showed

→
∇ ·

→
E= i

→
k ·

→
E0 e

i
“→
k ·
→
r−ωt

”
So

→
∇ ·

→
E= i

→
k ·

→
E0 e

i
“→
k ·
→
r−ωt

”
= 0

implies that the
→
E associated with our plane wave is perpendicular to its direction of motion.

Likewise
→
∇ ·

→
B= 0 implies that the

→
B �eld is also perpendicular to the direction of motion

The electric and magnetic �elds have energy and hence have an energy density. In an EM wave u =
uE + uB which is u = ε0E

2 or equivalently u = B2/µ0.This is all very amazing when you think about it.
Maxwell's equations tell us that we can have waves in the electric and magnetic �elds. These waves carry
energy. That is they are a mechanism to transport energy through free space (or a medium). This is why
the sun warms us, which is pretty important.
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6.7 Poynting Vector11

6.7.1 Poynting Vector

Now we want to calculate the power crossing a given area A. During a time ∆t an EM wave will pass an
amount of energy through A of uc∆tA where u is the energy density of the wave. If we want the power/m2

then we must divide by ∆tA. Thus we get
S = uc∆tA

∆tA

= uc

= 1
µ0
B2c

= 1
µ0
BE

c c

= 1
µ0
BE

Now we make the reasonable assumption that the energy �ows in the direction of the wave, ie. perpendicular

to
→
E and

→
B so we can de�ne a vector that has the power per unit area:

→
S=

1
µ0

→
E ×

→
B

or →
S= c2ε0

→
E ×

→
B

This is the Poynting vector. Thus for a plane EM wave we have three useful things

→
E
(→
r , t
)

=
→
E0e

i
“→
k ·
→
r−ωt

”

→
B
(→
r , t
)

=
→
B0e

i
“→
k ·
→
r−ωt

”

and
→
S= c2ε0

→
E0 ×

→
B0e

i2
“→
k ·
→
r−ωt

”

6.8 Irradiance and Radiation Pressure12

6.8.1 Irradiance

The frequency of optical light is ≈ 1015Hz and so the Poynting vector varies extremely quickly. So it is useful
to determine an time averaged quantity. So lets de�ne the irradiance as

I = < S >T

where the symbol < >T means �nd the average over a time T . For T we want to use an integer multiple of
periods (such as 1). (What would you end up with otherwise? It wouldn't really make sense to me) This is
a case where it is easier to use a trig function for the wave. Let's consider the wave

→
E
(→
r , t
)

=
→
E0cos

(→
k ·
→
r −ωt

)
.

Then
S = c2ε0E0B0cos2

(→
k ·
→
r −ωt

)
11This content is available online at <http://cnx.org/content/m12890/1.1/>.
12This content is available online at <http://cnx.org/content/m12891/1.1/>.



68 CHAPTER 6. ELECTROMAGNETIC WAVES

Now we need to �nd
< S >T = c2ε0E0B0< cos2

(→
k ·
→
r −ωt

)
>
T

< S >T = c2ε0E0B0
1
T

∫ T

0

cos2
(→
k ·
→
r −ωt

)
dt

we make a coordinate transformation x =
→
k ·
→
r −ωt. Then

< S >T = c2ε0E0B0
1
T

∫ T
0

cos2
(→
k ·
→
r −ωt

)
dt

= c2ε0E0B0
1
T

∫→k ·→r−ωT
→
k ·
→
r

cos2xdx dtdx

= c2ε0E0B0
−1
ωT

∫→k ·→r−ωT
→
k ·
→
r

cos2xdx

= c2ε0E0B0
−1
ωT

∫→k ·→r−ωT
→
k ·
→
r

[
1+cos2x

2

]
dx

= c2ε0E0B0
−1
ωT

[
x
2 + sin2x

4 |
→
k ·
→
r−ωT

→
k ·
→
r

= c2ε0E0B0
−1
ωT

→
k ·
→
r−ωT
2 −

→
k ·
→
r

2 +
sin2

“→
k ·
→
r−ωT

”
4 −

sin2
“→
k ·
→
r
”

4

= c2ε0E0B0
−1
ωT

[−ωT
2

]
= c2ε0E0B0/2

Note that above I assume that I can pick T to be an integer multiple of the period.
Now we have just gone through a rather involved derivation of something that should of been intuitively

obvious to us. The time average of a harmonic function is zero. The time average of its square is 1/2. Small
digression. For a harmonic function, a useful quantity is the Root Mean Square: RMS. For example look at
the power rating on a stereo, they have to specify whether it is peak, or RMS power that they are referring
to.

6.8.2 Momentum and Radiation Pressure

Remember that < S > is the average power per unit area in the wave. So the Power in the wave is < S > A
where A is the area crossed. The force of the wave when it hits something is Power/velocity or

F =
< S > A

c

So the electromagnetic wave can exert a pressure (on a black object)

pressure =
F

A
=
< S >

c

If it hits a re�ective surface then it is

pressure = 2
< S >

c

Also we can write:

F =
dp

dt
=
power

c
=

1
c

dE

dt

(here E is the energy). So the momentum in a unit volume of the EM �eld is the Energy in unit volume of
the EM �eld/c. The direction of the momentum is the direction of propagation of the wave. That is:

u =
B2

µ0
=
EB

cµ0
=
S

c
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and

momentum/unit volume ≡
→
g=

u

c
k̂ =

→
S

c2

6.8.3 Radiation

A stationary charge or a uniformly moving charge can not produce an EM wave (or radiation). This is

obvious when you consider a stationary charge. You would see a time independent
→
E �eld around it but no

→
B �eld. Thus there would not be a Poynting vector and no photons would be emitted.

What if you were driving by the charge at a constant speed. Then you would measure an
→
E and

→
B �eld

but the irradience would integrate to zero. If you stopped moving with respect to the charge this can't make
photons appear or disappear. The photons don't know what you are doing! If a charge moves nonuniformly
though it will radiate.

Suppose you have an oscillating dipole
→
℘=

→
℘0cosωt When you get far from the dipole you get a wave

with a �xed wavelength

E =
℘0k

2sinθ
4πε0

cos (kr − ωt)
r

Here E is the electric �eld intensity, θ is with respect to the dipole moment (see �gure 3.33 in Hecht Fourth
Edition or �gure 3.31 in the Third edition).The irradiance from this is given by

< S> T = I (θ) =
℘2

0ω
4

32π2c3ε0

sin2θ

r2

one can integrate over the angle (at any radius) and get the total energy radiated∫
< S> T dΩ =

℘2
0ω

4

12πc3ε0
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Chapter 7

Optics

7.1 The Huygens-Fresnel Principle1

7.1.1 The Huygens-Fresnel Principle

In order to proceed with the discussion we have to de�ne two terms. A wave front is the surface of constant
phase. In a plane wave these are planes and in a spherical wave these are spheres. A ray travels perpendicular
to the fronts.

Huygens postulated that as a wave propagates through a medium each point on the advancing wavefront
acts as a new point source of the wave. This is correct physics for the water waves but not for light
waves. However the Helmholtz equation for di�raction of EM waves gives a solution identical to that give
by Huygens' principle.

Look at the �gure which shows a wavefront AB coming to a surface and is re�ected creating the front
CD. The point A hits the surface �rst. The point B hits a time vt later. During that time a spherical wave
is emitted from A and travels a distance vt. In fact this happens for every point along the wavefront. The
next �gure attempts to show how a number of waves line up along the line DC and that this is perpendicular
to the line AD.

Figure 7.1

1This content is available online at <http://cnx.org/content/m12892/1.1/>.
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Figure 7.2

From this we see that

sinθi =
vt

AC

and

sinθr =
vt

AC

so θi = θr
For refraction a similar thing happens. See �gure (geometric optics / Huygens refraction.vsd )
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Figure 7.3

In this case the velocities are di�erent in the two media and so one obtains:

sinθi =
vit

AC

and

sinθt =
vtt

AC

which then can be rearranged
sinθi
vit

=
sinθt
vtt

or rearranging some more
sinθi
sinθt

=
vit

vtt

or
sinθi
sinθt

=
nt
ni

�nally
ntsinθt = nisinθi

which is Snell's law. Now note that normally one uses rays, in which case the angles are measured w.r.t. the
normal to the surface.
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7.2 Fermat's Principle of Least Time2

7.2.1 Fermat's principle of least time

Fermat postulated that rays of light follow the path that takes the least time. This is a very profound
idea! There is something very deep in it. It also gives the experimentally observed results! Lets apply it to
re�ection and see what results:

Figure 7.4

2This content is available online at <http://cnx.org/content/m12895/1.2/>.
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We want to �nd the length (which is the same as time times the speed) AEB. To do this we construct a
fake point B' which is on the other side of the surface the same perpendicular distance from the surface such
that the line BB' is a perpendicular to the surface. Then clearly the length AEB equals the length AEB'.
So which point on the surface gives the shortest path to B, the one that gives the shortest path to B' and
that clearly lies on the straight line AB'. I have labeled this point C.

Now clearly θr = θ′r and also θ′r = θi so we get θr = θi
Now lets apply Fermat's principle to refraction. Look at the next �gure:
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Figure 7.5

We want the shortest time from A to B. Clearly that is

t =
√
h2 + x2

vi
+

√
b2 + (a− x)2

vt
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To �nd the minimum we want to solve for x such that dt
dx = 0 Thus

dt

dx
=

x

vi
√
h2 + x2

+
− (a− x)

vt

√
b2 + (a− x)2

= 0

which is obviously
sinθi
vi

=
sinθt
vt

or Snell's law
ntsinθt = nisinθi

If light travels via many di�erent media then the time is

t =
d1

v1
+
d2

v2
+
d3

v3
+ · · ·+ dm

vm
+

or we can rewrite this as

t =
1
c

m∑
i=1

nidi

The quantity
∑m
i=1 nidi is the optical path length (OPL). For a continuously varying medium then the

summation becomes (for light traveling from S to P )

OPL =
∫ P

S

n (s) ds

Fermat's principle could be restated that we minimize the OPL In fact this is inadequate, for example one
can construct an example where the optical path length is not the minimum.(See for example �gure 4.37 in
the book "Optics" by Hecht (Fourth Edition).The correct statement of Fermat's principle is that there is a
stationary point in the optical path length. (Ie. its derivative is zero).

7.3 Electromagnetism at an Interface3

7.3.1 EM at an interface

We want to understand with Electromagnetism what happens at a surface. From Maxwell's equations we

can understand what happens to the components of the
→
E and

→
B �elds: First lets look at the

→
E �eld using

Gauss' law. Recall ∮
ε
→
E ·d

→
s=

∫
ρdV

3This content is available online at <http://cnx.org/content/m12901/1.2/>.
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Figure 7.6

Consider the diagram, the �eld on the incident side is
→
Ei +

→
Er. On the transmission side, the �eld is

→
Et.

We can collapse the cylinder down so that it is a pancake with an in�nitely small height. When we do this
there are no �eld lines through the side of the cylinder. Thus there is only a �ux through the top and the
bottom of the cylinder and we have;∮

ε
→
E ·d

→
s=

∮
[εi (Ei⊥ + Er⊥)− εtEt⊥] ds = 0.

I have set
∫
ρdV = 0 since we will only consider cases without free charges. So we have

εiEi⊥ + εiEr⊥ = εtEt⊥

if ûn is a unit vector normal to the surface this can be written

εiûn ·
→
Ei + εiûn ·

→
Er = εtûn ·

→
Et

Similarly Gauss' law of Magnetism ∮
→
B ·d

→
s= 0

gives
Bi⊥ +Br⊥ = Bt⊥

or
ûn ·

→
Bi + ûn ·

→
Br = ûn ·

→
Bt

Amperes law can also be applied to an interface.Then
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Figure 7.7

∫ →
B

µ
· d
→
l =

∫
→
j ·d →s +

d

dt

∫
ε
→
E ·d

→
s

(note that in this case d
→
s is perpendicular to the page)

Now we will not consider cases with surface currents. Also we can shrink the vertical ends of the loop so

that the area of the box is 0 so that
∫
ε
→
E ·d

→
s= 0. Thus we get at a surface

Bi‖ +Br‖

µi
=
Bt‖

µt

or

ûn ×
→
Bi

µi
+
ûn ×

→
Br

µr
=
ûn ×

→
Bt

µt

Similarly we can use Faraday's law ∫
→
E ·d

→
l = − d

dt

∫
→
B ·d

→
s

and play the same game with the edges to get

Ei‖ + Er‖ = Et‖

or
ûn ×

→
Ei + ûn ×

→
Er = ûn ×

→
Et

(notice ε does not appear)

In summary we have derived what happens to the
→
E and

→
B �elds at the interface between two media:

εiûn ·
→
Ei + εiûn ·

→
Er = εtûn ·

→
Et
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ûn ·
→
Bi + ûn ·

→
Br = ûn ·

→
Bt

ûn ×
→
Bi

µi
+
ûn ×

→
Br

µi
=
ûn ×

→
Bt

µt

ûn ×
→
Ei + ûn ×

→
Er = ûn ×

→
Et

7.4 Snell's Law4

7.4.1 Snell's Law

Consider an electromagnetic wave impinging upon an interface:

ûn ×
→
E0ie

i
“→
k i·
→
r+ωit

”
+ ûn ×

→
E0re

i
“→
k r·
→
r+ωrt+δr

”
= ûn ×

→
E0te

i
“→
k t·
→
r+ωtt+δt

”

Where

(
→
ki, ωi

)
describes the incoming wave,

(
→
kr, ωr, δr

)
the re�ected wave, and

(
→
kt, ωt, δt

)
the transmit-

ted wave. At the interface (ie. at points where the vector
→
r points to the plane of the interface), all the

waves must be in phase with each other. This means that the frequencies must all be equal and there can be
no arbitrary phase between the waves. The net result of this is that we must have (for an interface passing
through the origin):

→
k i·
→
r=

→
k r·

→
r=

→
k t·

→
r

from which we get
kisinθi = krsinθr.

It is important to note now that we are doing this at the interface. We have chosen a coordinate system

so that the interface is at y = 0 and contains the origin. This implies that the vector
→
r is lying in the plane

of the interface at the point where we say that the above is true.
Finally, since the incident and re�ected waves are in the same medium we must have ki = kr and thus

θi = θr

Also, we get that
→
k i,
→
k r, û all line in a plane (because

(→
k i −

→
k r

)
· →r= 0 de�nes a plane). We also have

û×
(→
k i −

→
k t

)
= 0

and following the same arguments �nd that
→
k i,
→
k r,
→
k t, û all line in a plane and that

kisinθi = ktsinθt.

Now we know that ωi = ωt so we can multiply both sides by c/ωi and get

nisinθi = ntsinθt

4This content is available online at <http://cnx.org/content/m12903/1.2/>.
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7.4.1.1 Digression, further justifying the above

At the interface, which we will set to y = 0 for convenience (you can always switch back to any coordinate
system afterwards. It is good practice to choose the coordinate system that makes your problem easy)[→

k i·
→
r +ωit

]
|
y=0

=
[→
k r·

→
r +ωrt+ δr

]
|
y=0

=
[→
k t·

→
r +ωtt+ δt

]
|
y=0

now this must be true for all
→
r on the surface and for all t so we must have

ωi = ωr = ωt

So now we have [→
k i·
→
r +ωit

]
|
y=0

=
[→
k r·

→
r +ωit+ δr

]
|
y=0

=
[→
k t·

→
r +ωit+ δt

]
|
y=0

which can be written [→
k i·
→
r
]
|
y=0

=
[→
k r·

→
r +δr

]
|
y=0

=
[→
k t·

→
r +δt

]
|
y=0

So now we can write [(→
k i −

→
k r

)
· →r
]
|
y=0

= δr

Since the interface passes through the origin, one of the allowed values of
→
r is 0. So this is only true if

δr = 0. (If the interface does not include the origin then you can not make this simpli�cation, but clearly
we can always choose a coordinate system such that this is true and thereby simplify our lives) likewise we
could have written [(→

k i −
→
k r

)
·
→
t
]
|
y=0

= δt

and applied the same argument to get δt = 0. Lets just use this henceforth and thus write:[→
k i·
→
r
]
|
y=0

=
[→
k r·

→
r
]
|
y=0

=
[→
k t·

→
r
]
|
y=0

7.5 The Fresnel Equations5

7.5.1 The Fresnel Equations

Snell's law, and the law of re�ection are very useful for describing what happens to a ray of light at an
interface. However we want to acheive a deeper understanding of what is happening to the electric �eld at

the interface. We want to derive the relationships between the
→
E's and

→
B's. Hence we derive the Fresnel

equations.
At an interface Any polarization of the �elds can be broken down into simple components (which we will

see later). Thus there are just two cases that we have to treat. Both of these cases are drawn at the science-
world description of the Fresnel Equations http://scienceworld.wolfram.com/physics/FresnelEquations.html6

. We will �rst treat the case where the
→
E �eld is perpendicular to the plane of incidence. This corresponds

to �gure 20.1 in the book "Introduction to Optics" by Pedrotti and Pedrotti (second edition) and to �gure
4.39 in the book "Optics" by Hecht (fourth edition). It is the second �gure on the scienceworld web page.

5This content is available online at <http://cnx.org/content/m12904/1.2/>.
6http://scienceworld.wolfram.com/physics/FresnelEquations.html
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(It is important to note that while these three sources use similar conventions there are others, for example

in this case we could have chosen to have the incoming
→
B �eld pointing upwards in the drawing. This would

lead to di�erent signs in the resulting equations.). We have in this case (
→
E perpendicular):

k̂×
→
E= v

→
B

k̂·
→
E= 0

Also we know that
Ei‖ + Er‖ = Et‖

(as was shown earlier) but since in this case the
→
E �eld is parallel to the interface we can write;

→
E0i +

→
E0r =

→
E0t.

Also we showed before that
Bi‖ +Br‖

µi
=
Bt‖

µt

(where the ‖ is w.r.t. the surface). Note in the �gure how the
→
B �eld changes direction and that the positive

x direction is to the right in the �gure. It is important to point out here, that we are evaluating things at

the interface. At the interface the vector
→
r points to the plane of the interface. We have chosen a coordinate

system so that the interface that lies at z = 0 and contains the origin.
Then we rewrite the equation as

Bi
µi

cosθi −
Br
µi

cosθr =
Bt
µt

cosθt

You may ask, why cosine for a cross product? The cross product uses the complements of θi and θt which
why it ends up being a cosine and not a sine. Using the law of re�ection to subsitute for θr

Bi
µi

cosθi −
Br
µi

cosθi =
Bt
µt

cosθt

use B = E/v
Ei
viµi

cosθi −
Er
vrµi

cosθi =
Et
vtµt

cosθt

use vi = vr
1
µivi

(Ei − Er) cosθi =
1

µtvt
Etcosθt

Now at the interface (using the arguments we have used before) we can write

1
µivi

(E0i − E0r) cosθi =
1

µtvt
E0tcosθt

ni
µi

(E0i − E0r) cosθi =
nt
µt
E0tcosθt

now we can substitute in E0i + E0r = E0t

ni
µi

(E0i − E0r) cosθi =
nt
µt

(E0i + E0r) cosθt

Then rearrange



83

or (
E0r

E0i

)
⊥

=
ni
µi

cosθi − nt
µt

cosθt
ni
µi

cosθi + nt
µt

cosθt

For the transmission we again start with

ni
µi

(E0i − E0r) cosθi =
nt
µt
E0tcosθt

and eliminate E0r using E0i + E0r = E0t or E0r = E0t − E0i

ni
µi

(2E0i − E0t) cosθi =
nt
µt
E0tcosθt

2
ni
µi
E0icosθi =

(
ni
µi

cosθi +
nt
µt

cosθt

)
E0t(

E0t

E0i

)
⊥

=
2niµi cosθi

ni
µi

cosθi + nt
µt

cosθt

Now usually we only consider materials where µi ≈ µt ≈ µ0 so these equations simplify to:

r⊥ ≡
(
E0r

E0i

)
⊥

=
nicosθi − ntcosθt
nicosθi + ntcosθt

t⊥ ≡
(
E0t

E0i

)
⊥

=
2nicosθi

nicosθi + ntcosθt

If the
→
E �eld is in the plane of incidence (the �rst �gure on the scienceworld web page, �gure 4.40 in Hecht,

�gure 20.2 in Pedrotti and Pedrotti) then the same sort of procedure can be followed (Pedrotti and Pedrott
pages 409,410). It is left as a homework problem to show that in this case:

r‖ ≡
(
E0r

E0i

)
‖

=
ntcosθi − nicosθt
ntcosθi + nicosθt

t‖ ≡
(
E0t

E0i

)
‖

=
2nicosθi

ntcosθi + nicosθt

7.6 Some Consequences of the Fresnel Equations7

7.6.1 The Fresnel Equations

r⊥ ≡
(
E0r

E0i

)
⊥

=
nicosθi − ntcosθt
nicosθi + ntcosθt

t⊥ ≡
(
E0t

E0i

)
⊥

=
2nicosθi

nicosθi + ntcosθt

r‖ ≡
(
E0r

E0i

)
‖

=
ntcosθi − nicosθt
ntcosθi + nicosθt

t‖ ≡
(
E0t

E0i

)
‖

=
2nicosθi

ntcosθi + nicosθt

7This content is available online at <http://cnx.org/content/m12905/1.1/>.
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7.6.2 Why Polaroid sunglasses work

Lets put these equations to work and �gure out something practical. Consider light re�ecting o� a surface,
such as the road in front of you when you are driving a car. The light hitting the road surface can have any

polarization but that will be some addition of light that has
→
E ⊥ and ‖ to the plane of incidence. From

r‖ ≡
(
E0r

E0i

)
‖

=
ntcosθi − nicosθt
ntcosθi + nicosθt

and

r⊥ ≡
(
E0r

E0i

)
⊥

=
nicosθi − ntcosθt
nicosθi + ntcosθt

we see there is an angle where there is no ‖ and only ⊥ light, namely

ntcosθi − nicosθt = 0

or
ntcosθi = nicosθt.

Now we can use Snell's law rewritten as
sinθi
nt

=
sinθt
ni

and multiply both sides to get
ntcosθi = nicosθt

ntcosθi
sinθi
nt

= nicosθt
sinθt
ni

cosθisinθi = cosθtsinθt

which can only be true if
θt = π/2− θi.

In this case Snell's law can be written
nt
ni

= sinθi
sinθt

= sinθi
sin(π/2−θi)

= tanθi

The angle that gives this e�ect is known as Brewster's angle

θi ≡ θBrewster = tan−1nt
ni

At this angle light is completely polarized, it only has
→
E ⊥ to the plane of incidence (or parallel to the

surface). Thus the glare you get from re�ected light tends to be polarized in this way. In 1929 Edwin
Land invented a method for making celluoid �lters to �lter out light with given polarizations. He then
manufactured sunglasses with these polarizers lined up to �lter out the E⊥ light and thereby reduce glare.
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7.6.3 Other cases

Look at the Fresnel equations again and examine what happens when θi approaches 90 degrees. The re�ection
approaches 1 (ignore the signs) Thus at Glancing incidence you get lots of re�ection. In fact X-ray telescopes
use this to focus the x-rays onto their detector.

Another e�ect, if ni > nt then there is an angle of incidence beyond which light is only re�ected. That
is the angle where θt = 90 degrees.

ntsinθt = nisinθi

θt → π/2

sinθt → 1

sinθi →
nt
ni

The critical angle at which this occurs is

θc = sin−1nt
ni

7.7 Evanescent Wave8

We saw that when the index of refraction of the incident material is greater than the transmitting material
we can get total internal re�ection at the critical angle. An interesting question is "what happens at larger
angles of incidence?" This actually is somewhat subtle. From simple trigonometry we know that

cosθt =
√

1− sin2θt.

We also know from Snell's law that
sinθt =

ni
nt

sinθi

so we have

cosθt =

√
1− n2

i

n2
t

sin2θi.

So we see that if ni > nt cosθt can become an imaginary number! For convenience we will write this as

cosθt = i

√
n2
i

n2
t

sin2θi − 1

Now lets write down the expression for the transmitted wave:

Et = E0te
i

„
→
Kt·
→
r−ωt

«

For simplicity we will assume that the interface lies in the y = 0 plane and thus the y direction is normal to
the interface. Also, we assume the z = 0 plane de�nes then plane of incidence. Then we can write

→
Kt= (Ktx,Kty, 0)

or →
Kt= (Ktsinθt,Ktcosθt, 0) .

8This content is available online at <http://cnx.org/content/m13075/1.1/>.
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Also
→
r= (x, y, 0) .

So now we can write that the wave as

Et = E0te
i

„
→
Kt·
→
r−ωt

«

Et = E0te
iKtsinθtxeiKtcosθtye−iωt

or

Et = E0te
iKtsinθtxe

−
r
n2
i
n2
t

sin2θi−1y
e−iωt.

It is interesting to note the e�ect of the term

e
−
r
n2
i
n2
t

sin2θi−1y

in that expression. This is an exponential decay. The amplitude of the wave drops rapidly to zero.
So there is a transmitted wave but its amplitude drops precipitously. This is referred to as the evanescent

wave.

7.8 Phase Changes9

r⊥ ≡
(
E0r

E0i

)
⊥

=
nicosθi − ntcosθt
nicosθi + ntcosθt

t⊥ ≡
(
E0t

E0i

)
⊥

=
2nicosθi

nicosθi + ntcosθt

r‖ ≡
(
E0r

E0i

)
‖

=
ntcosθi − nicosθt
ntcosθi + nicosθt

t‖ ≡
(
E0t

E0i

)
‖

=
2nicosθi

ntcosθi + nicosθt

We can rewrite these equations using Snell's Law to eliminate the cosθt term. From simple trigonometry we
know that

cosθt =
√

1− sin2θt.

We also know from Snell's law that
sinθt =

ni
nt

sinθi

so we have

cosθt =

√
1− n2

i

n2
t

sin2θi.

We can substitute this into

r⊥ =
nicosθi−nt

r
1−

n2
i
n2
t

sin2θi

nicosθi+nt

r
1−

n2
i
n2
t

sin2θi

= nicosθi−
√
n2
t−n2

i sin
2θi

nicosθi+
√
n2
t−n2

i sin
2θi

=
cosθi−

r
n2
t
n2
i

−sin2θi

cosθi+

r
n2
t
n2
i

−sin2θi

9This content is available online at <http://cnx.org/content/m13076/1.1/>.
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Similarly we can derive that

r‖ =
n2
t

n2
i
cosθi −

√
n2
t

n2
i
− sin2θi

n2
t

n2
i
cosθi +

√
n2
t

n2
i
− sin2θi

t⊥ =
2cosθi

cosθi +
√

n2
t

n2
i
− sin2θi

t‖ =
2ntni cosθi

n2
t

n2
i
cosθi +

√
n2
t

n2
i
− sin2θi

This form allows us to easily plot the coe�cients for di�erent values of θi. For example,here are the
coe�cients for the case where nt

ni
= 1.5.

Figure 7.8: The transmmission and re�ection coe�cients for the case where the ratio of transmitted
to incident indices of refraction is 1.5. The top two curves are transmission. The lower two are re�ection,
with red being for the E �eld transverse to the plane of incidence.

It is interesting to note that the sign of the coe�cient can change on re�ection.

Er = −|r|E = eiπ|r|E0e
i
“→
K·
→
r−ωt

”
= |r|E0e

i
“→
K·
→
r−ωt+π

”

This corresponds to a phase change by π upon re�ection.
We can also look at what happens to the re�ection coe�cients when ni

nt
= 1.5.
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Figure 7.9: The re�ection coe�cients for the case where the ratio of the incident to the transmitted
incidence of re�ection is 1.5.

That is going from a high index of refraction material to a lesser. In this case we see at the critical angle
we get total internal re�ection. What happens to the phase here is complicated.

When we have ni
nt
> 1 (or nt

ni
< 1 it is convenient to write

r⊥ =
cosθi − i

√
sin2θi − n2

t

n2
i

cosθi + i
√

sin2θi − n2
t

n2
i

Now to understand what this implies we need to digress a little. Recall that

eiα = cosα+ isinα.

We could have written this as
eiα = a+ ib

then we see that

α = tan−1 b

a
.

Now consider
cosα− isinα
cosα+ isinα

=
e−iα

eiα
= e−2iα

Now looking back at r⊥ we see that
r⊥ = e−iφ
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where

tan
φ

2
=

√
sin2θi − n2

t

n2
i

cosθi
.

We could go through a similar excersize for r‖and get the same result with

tan
φ

2
=

√
sin2θi − n2

t

n2
i

n2
t

n2
i
cosθi

.

Figure 20-8 in Pedrotti and Pedrotti summarizes all the possible phase changes.

7.9 Re�ectance and Transmittance10

7.9.1 Re�ectance and Transmittance

Lets remember what Irradiance is: We have the Poynting vector

→
S= c2ε0

→
E0 ×

→
B0e

i2
“→
k ·
→
r−ωt

”

But the problem is that this varies rapidly in time. So we de�ne the Irradiance

I = < S >T

which has units Watts per meter squared and can also be called the radiant �ux density. We showed in
lecture that this is (where I drop the T because it is tiresome to write)

< S > = c2ε0E0B0/2

which can also be written
< S > = cε0E

2
0/2

We need to make one minor modi�cation though, the above presumes we are in free space. So we modify the
irradiance to take into account that di�erent media have di�erent speeds of light. (Now we write v instead
of c because we are not assuming free space)

I =< S > =
vε

2
E2

0

The re�ectance is the ratio of the re�ected power to the incident power is

R =
IrAcosθr
IiAcosθi

A is the area illuminated by the electomagnetic radiation and θr, θi are the re�ected and incident angles.
But we know that θr = θi so

R =
vrεr

2 E2
0r

viεi
2 E2

0i

and the media are the same so

R =
(
E0r

E0i

)2

= r2.

10This content is available online at <http://cnx.org/content/m12906/1.2/>.
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Likewise the transmittance (using µ0 ≈ µt ≈ µi) is

T = ItAcosθt
IiAcosθi

= Itcosθt
Iicosθi

=
vtεt

2 E2
0tcosθt

viεi
2 E2

0icosθi

= µ0vtεtE
2
0tcosθt

µ0viεiE2
0icosθi

.

Now note

µ0εv = µεv

= µε 1√
µε

c
c

=
√
µε√
µ0ε0

1
c

= n
c .

So now we can write

T = µ0vtεtE
2
0tcosθt

µ0viεiE2
0icosθi

= ntE
2
0tcosθt

niE2
0icosθi

= ntcosθt
nicosθi

(
E0t
E0i

)2

= ntcosθt
nicosθi

t2.

This is a more complicated expression than R because1)The speed of energy transmission is a�ected by the
medium2) θi 6= θt so the projected areas normal to the propagation direction are di�erent.

7.10 Polarization11

7.10.1 Polarization

Recall that we can add waves so lets take a plane wave traveling in the z direction and break it into
components.

→
Ex = E0xcos (kz − ωt) ß̂

→
Ey = E0ycos (kz − ωt+ δ) ̂

Where δ is some arbitrary phase between the two components. The electric �eld for the wave is

→
E=

→
Ex +

→
Ey

Now there are a number of di�erent cases that arise.
If δ = 0, 2π, 4π, . . . Then we can write the �eld as

→
E=

(
E0xß̂ + E0y ̂

)
cos (kz − ωt)

11This content is available online at <http://cnx.org/content/m12908/1.1/>.
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Figure 7.10

Polarization of light for the case
→
E=

(
E0xß̂ + E0y ̂

)
cos (kz − ωt)

The �eld is linearly polarized, that is the E �eld lies along a straight line.
Likewise If δ = π, 3π, 5π, . . . Then again it is linearly polarized, but is now "�ipped"

→
E=

(
E0xî− E0y ĵ

)
cos (kz − ωt)
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Figure 7.11

Polarization of light for the case
→
E=

(
E0xß̂− E0y ̂

)
cos (kz − ωt)

Circularly polarized light is a particularly interest example. Let δ = −π/2 and E0x = E0y = E0

Then →
Ex = E0cos (kz − ωt) ß̂

→
Ey = E0cos (kz − ωt− π/2) ̂

→
Ey = E0sin (kz − ωt) ̂

or →
E= E0

[
cos (kz − ωt) ß̂ + sin (kz − ωt) ̂

]
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The direction of
→
E is changing with time. For example consider the case at z = 0. Then

→
E= E0

[
cos (−ωt) ß̂ + sin (−ωt) ̂

]
→
E= E0

[
cos (ωt) ß̂− sin (ωt) ̂

]
In this case the electric �eld undergoes uniform circular rotation. For light coming out of the page, it

will have the motion shown in the �gure

Figure 7.12

Polarization of light for the case
→
E= E0

[
cos (ωt) ß̂− sin (ωt) ̂

]
. I, and most physicists would call the

Left Hand Circular polarization (LHC). The thumb points in the direction of the light ray and the �ngers
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curve in the direction of rotation. (This is known as the Angular momentum convention, optical scientists
will use the "Optical" convention which is opposite - we will stick to the angular momentum convention.)

Suppose δ = π/2 then you get

→
E= E0

[
cos (kz − ωt) ß̂− sin (kz − ωt) ̂

]
This now has the opposite rotation, it is Right Handed.

The most general case of polarization has δ arbitrary and E0x 6= E0y and is elliptically polarized.

Figure 7.13

Elliptical polarization
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7.10.1.1 Natural light

Natural light is emitted with the
→
E �eld in a mixture of random directions. This in unpolarized light. At

any particular instant
→
E has a particular direction, but that direction changes rapidly and randomly.

7.10.1.2 Malus' Law

A polarizer is a device that takes incident natural light and transmits polarized light. For example a linear

polarizer will take incident light and select only that component of the light that has its
→
E �eld lined up

along the transmission axis. Suppose there is a linear polarizer that transmits light along a particular axis.
This is followed by a second linear polarizer that has its transmission axis at a di�erent angle with θ being
the angle between the transmission axes. Since I ∼ E2 then at the second polarizer

I (θ) = I (0) cos2θ

where I (0) is the Irradiance of the light hitting the second polarizer.
Lets consider unpolarized light hitting a linear polarizer. Then half the Irradiance will get through. If

this is followed by a second polarizer at 900 then no light will pass through the second polarizer. Now what
happens if a third polarizer is placed between them?
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Chapter 8

Geometric Optics

8.1 Refraction at a Spherical Interface1

Figure 8.1: Refraction at a spherical interface. Click on image for larger version.

1This content is available online at <http://cnx.org/content/m13083/1.1/>.
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Look at the �gure showing refraction at a sphere.In this �gure:

• C is the center of curvature of the spherical surface
• R is the radius of curvature
• O is the position of the Object
• I is the position of the Image
• So is the distance of the object from the surface along the optical axis
• Si is the distance from the surface to the Image
• n1 < n2

There is a ray that strikes the surface at height h. In general rays hitting the surface at di�erent points will
be bent to di�erent points along the optical axis. However for small angles we will show they all converge
at the same point.So lets use the small angle approximation

tanα =
h

so
≈ α

tanβ =
h

si
≈ β

tanγ =
h

R
≈ γ

Now from trigonometry we can see that:
θi = α+ γ

γ = θt + β

or
θt = γ − β

now Snell's law says
n1sinθi = n2sinθt

or
n1θi ≈ n2θt

n1 (α+ γ) = n2 (γ − β)

γ (n2 − n1) = n2β + n1α

h

R
(n2 − n1) = n2

h

si
+ n1

h

so

Now all the h's cancel so there is no dependence on point on surface. That is:

n2 − n1

R
=
n2

si
+
n1

so

Now lets consider the case of a concave surface. The picture is
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Figure 8.2: Click to get larger image.

Again we use the small angle approximation and thus we have

n1θ1 = n2θ2

In this case we also see that
α = θ1 + γ

and
β = θ2 + γ

so we can write
n1 (α− γ) = n2 (β − γ)

or

n1

(
h

so
− h

R

)
= n2

(
h

si
− h

R

)
or

n1

so
− n2

si
=
(
n1 − n2

R

)
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However we can make the equation identical to the previous one if we adopt the following sign convention:

• so is positive to the left of the interface
• si is positive to the right of the interface
• R is positive when the center of the sphere is to the right of the interface

Then the equation becomes as before
n2 − n1

R
=
n2

si
+
n1

so

In this case note that the image is imaginary (whereas in the �rst case it was real). Note that the actual
rays pass through a real image.

The focal point is the object point which causes the image to occur at in�nity.

Figure 8.3

That is all the rays end up traveling parallel to each other. In this case si goes to∞ so

n1

so
+
n2

si
=
n2 − n1

R

becomes
n1

fo
=
n2 − n1

R

or

fo =
n1R

n2 − n1
.

Now we can �nd a focal point to the right of the of the surface by considering parallel rays coming in
from the left.
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Figure 8.4

Then we get

fi =
n2R

n2 − n1

But we do have to expand our sign conventionfor light incident from the left

• so is positive to the left of the interface
• si is positive to the right of the interface
• R is positive when the center of the sphere is to the right of the interface
• fo is positive to the left of the interface
• fi is positive to the right of the interface

With the de�nition of focal points, we also have a natural way to graphically solve optical problems. Any
ray drawn horizontally from the left side of the interface will pass through the focal point on the right. Any
ray going through the focal point on the left will go horizontally on the right. The following �gure illustrates
this.
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Figure 8.5

The magni�cation of the image is the ratio of the heights ho to hi.

Figure 8.6

Since we are using the small angle approximation, we have Snell's law

n1θ1 = n2θ2

which can be rewritten

n1

(
ho
so

)
= n2

(
hi
si

)
.
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So we write that the magni�cation is

m =
hi
ho

= −n1si
n2so

.

The negative sign is introduced to capture the fact that the image is inverted. It is worth pointing out that
in our diagram above, the image is real, because the actual light rays pass through it.

8.2 Thin Lens2

Now we can turn to the case of lenses. A lens can be considered the combination of two spherical interfaces.
To solve an optical problem using multiple interfaces or lenses, one considers each one by one. For example
one �nds the image created by the �rst surface and then uses it as the object of the second surface.

Figure 8.7

Consider a lens of thickness d as shown in the drawing. At interface 1 (coloured red in the drawing) we
have

n1

so1
+
n2

si1
=
n2 − n1

R1

For surface 2 (coloured blue) the image of the the �rst surface becomes the object of the second. Note the
sign of so2 is negative so that

so2 = d− si1
2This content is available online at <http://cnx.org/content/m13084/1.2/>.
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Thus
n2

so2
+
n3

si2
=
n3 − n2

R2

becomes
n2

d− si1
+
n3

si2
=
n3 − n2

R2

Now add the equations
n1

so1
+
n2

si1
+

n2

d− si1
+
n3

si2
=
n2 − n1

R1
+
n3 − n2

R2

Now we take the thin lens case,that is d→ 0

n1

so
+
n3

si
=
n2 − n1

R1
+
n3 − n2

R2

That equation would work for making prescription swim goggles for example, however most of the time
n1 = n3 (namely air for eyeglasses). So making that the case we get

n1

so
+
n1

si
= (n2 − n1)

[
1
R1
− 1
R2

]
which in the case of air (n=1) is

1
so

+
1
si

= (nl − 1)
[

1
R1
− 1
R2

]
.

That is The lensmaker's formula(where nl is the index of refraction of the lens material)Now we can �nd
the foci

fi = lim
si→∞

fo = lim
so→∞

Which we see from the lensmaker's formula must be the same so lets drop the subscripts:

1
f

= (nl − 1)
[

1
R1
− 1
R2

]
and

1
so

+
1
si

=
1
f

which is the Gaussian Lens Formula
A convex lens will have a positive focal length f .
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Figure 8.8

We can use the same equation as before for the magni�cation,

m =
hi
ho

= −n1si
n2so

.

but now note that n1 = n2 so the equation becomes

m =
hi
ho

= − si
so
.

You can examine the �gure above to verify that this is true.
We can also consider a concave lens which has a negative focal length. Notice that in this case the image

is upright and virtual. Notice that in this case si is negative.
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Figure 8.9
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8.3 Mirrors3

Figure 8.10

Notice that in Mirrors we get a virtual image to the right of the surface. Thus for mirrors we say that si
is positive to the left of the mirror. This allows to retain correspondence between si being negative and an
image being virtual.

Again we use the small angle approximation. By inspection of the �gure we see that

2θi = α+ β

and
θi = α+ γ.

Now we multiply the second equation by two and subtract the �rst equation from it and we get:

2α+ 2γ − α− β = 0
3This content is available online at <http://cnx.org/content/m13087/1.2/>.
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or
α− β = −2γ.

Using the small angle approximation we see that this is

h

so
+
h

si
=
−2h
r

where I have used the fact that si is negative to the right of the mirror. So I can write the mirror equation
as

1
so

+
1
si

=
−2
R

or
1
so

+
1
si

=
1
f

where for a mirror 1/f = −2/R

8.4 Eyeglasses4

First a little nomenclature. Optometrists (and opthamologists) use the dioptric power measured in diopters.
A diopter is 1/f where f is measured in meters. The focal length of lenses in contact is

1
f

=
1
f1

+
1
f2

or using dioptric power
D = D1 +D2

A "normal" eye will focus an object at in�nity onto the retina with the lens relaxed. As objects come closer
the lens of the eye is made to bulge to keep the object in focus. A nearsighted person (such as certain Phys
201 prof's) has an eye that focuses the object at in�nity in front of the retina. This person has a far point
beyond which things are focused incorrectly. By using a lens that casts the object at in�nity onto the far
point this problem can be corrected. Say someone's far point is at 2m. In this case we want

1
f

=
1
so

+
1
si

1
f

=
1
∞

+
1
−2

a corrective lens with f = −2m or D = − 1
2Diopters. Notice that the desired focal length is the far point

(with the correct choice of sign)Of course in practice we need to take into account the distance between the
glasses and the eye, but the above is valid for a contact lens. In the case of eyeglasses you need to subtract
o� the distance between the lense and the eye. For example if the distance between the eye and the glasses
is 2cm then the above becomes

1
f

=
1
∞

+
1

−1.98
A far sighted person focuses objects at in�nity behind the retina. Their eye can accommodate the object

at in�nity but they have trouble with nearby points. A normal eye should be able to focus objects as close
as 25cm. A far sighted person can focus to a near point that is greater than 25cm and so we need to take
the 25cm point and make it look like it is at the near point. Say some one has a near point of 125cm then

1
f

=
1

−1.25
+

1
.25

4This content is available online at <http://cnx.org/content/m13088/1.1/>.
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which is +3.2Diopters. Of course again we should correct for the distance between the glasses and the eye,
which if that is 2cm makes the equation:

1
f

=
1

−1.23
+

1
.23

Finally their are old guys like me who need bifocals. As one ages, the eye lens becomes more rigid and it is
harder and harder for it to deform and focus on close in objects. Then if you are also nearsighted, then you
have to resort to bifocals.



Chapter 9

Interference

9.1 Two Source Interference1

9.1.1 Interference

9.1.1.1 Waves on a pond:

Think of when you drop a pebble into a pond, you will see circular waves eminate from the point where you
dropped the pebble.

1This content is available online at <http://cnx.org/content/m12909/1.5/>.
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Figure 9.1

When you drop two pebbles side by side you will see a much more complicated pattern:
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Figure 9.2

Likewise with electromagnetic waves, you can get interesting interference phenomena when waves eminate
from two point sources.

9.1.1.2 Two Point Sources

Lets take a particular example of two point sources separated by a distance d. The waves emitted by point
source are spherical and thus can be written

→
E=

→
E0

r
cos (kr − ωt)
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To make the problem easier we will make the k's the same for the two sources. Also lets set the E0's to be
the same as well.

Figure 9.3

The the only di�erence in the waves will be the r's, that is

→
E1 =

→
E0

r1
cos (kr1 − ωt)

→
E2 =

→
E0

r2
cos (kr2 − ωt)
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Now there is a slightly subtle point here that is important to understand. In the denominator it is su�cient
to say that r1 ≈ r2 and just call it r. We assume that we are far enough away that the di�erences between r1

and r2 are too small to matter. However this is not true in the argument of the harmonic function. There,
very small di�erences between r1 and r2 can have a big e�ect. So lets de�ne r1 = r2 = R

I ∝ <
(
E0
R cos (kr1 − ωt) + E0

R cos (kr2 − ωt)
)2
>
T

= <
E2

0
R2 cos2 (kr1 − ωt) >T +<

E2
0

R2 cos2 (kr2 − ωt) >T
+< 2E

2
0

R2 cos (kr1 − ωt) cos (kr2 − ωt) >T
= 1

2
E2

0
R2 + 1

2
E2

0
R2 +

+< 2E
2
0

R2 cos (kr1 − ωt) cos (kr2 − ωt) >T

Now to evaluate the �nal term we use

cos (θ − φ) = cosθcosφ+ sinθsinφ

and write

So we have

I ∝ 1
2
E2

0
R2 + 1

2
E2

0
R2 + 2E

2
0

R2
1
2cosk∆r

= 1
R2

(
E2

0 + E2
0cosk∆r

)
= 1

R2E
2
0 (1 + cosk∆r)

Clearly I will be a maximum when the cosine is = +1

k∆r = 2nπ n = 0, 1, 2 . . .

2π
λ

∆r = 2nπ

∆r = nλ

There will be a minimum when the cosine is = -1

k∆r = nπ n = 1, 3, 5 . . .

∆r =
nλ

2
n = 1, 3, 5 . . .

So you get light and dark bands which are called interference fringes.To reiterate; we have two rays of light
eminating from two point sources. We have looked at the combined wave at some point, a distance r1

from the �rst source and a distance from the second source. In that case we �nd that the intensity is
proportional to 1

R2E
2
0 (1 + cosk∆r) . To make things easier we can rede�ne E0 to be the amplitude of the

waves at the point under consideration, that is I = ε0cE
2
0 (1 + cosk∆r) . Or we can say I0 = εcE2

0/2 and
write I = 2I0 (1 + cosk∆r) .
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Figure 9.4

Say we place a screen a distance S away from the two sources:
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Figure 9.5

In this case we see that
∆r = dsinθ

So we have maxima at
∆r = nλ = dsinθ.

The angle between two maxima is given by

sinθn+1 − sinθn =
λ

d

or for small θ

∆θ =
λ

d

Notice how when the sources are moved far apart the e�ect maxima become very close together so the screen
appears to be uniformly illuminated. If a screen is placed a distance S away the maxima on the screen will
occur such that

dsinθ = nλ

but in the small angle limit

sinθ = tanθ =
y

S
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which implies

y =
nλS

d

likewise minima will occur at

y =
nλS

2d
n = 1, 3, 5 . . .

using cosθ = 2cos2 θ
2 − 1 we can rewrite

I = 2I0 (1 + cosk∆r)

as

I = 4I0cos2 k∆r
2

9.1.1.3 Young's Double Slit

Young's double slit.is an excellent example of two source interference. The equations for this are what we
worked out for two sources above. Interference is an excellent way to measure �ne position changes. Small
changes in ∆r make big observable changes in the interference fringes.

9.1.1.4 Michelson Interferometer

A particularly useful example of using interference is the Michelson interferometer. This can be used to
measure the speed of light in a medium, measure the �ne position of something, and was used to show that
the speed of light is a constant in all directions.
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Figure 9.6

When ∆r, the path length di�erence in the two arms is ∆r = nλ then the rays of light in the traveling
down the center of the apparatus will interfere constructively. As you move o� axis the light travels slightly
di�erent lengths and so you get rings of interference patterns. If you have set up the apparatus so that
∆r = nλ and then move one of the mirrors a quarter wavelength then ∆r = nλ+ 1

2λ and you get destructive
interference of the central rays. Thus you can easily position things to a fraction of a micron with such a set
up.

What really matters is the change in the optical pathlength. For example you could introduce a medium
in one of the paths that has a di�erent index of refraction, or di�erent velocity of light. This will change the
optical pathlength and change the interference at the observer. Thus you can measure the velocity of the
light in the introduced medium.

Michelson and Morely used this technique to try to determine if the speed of light is di�erent in di�erent



120 CHAPTER 9. INTERFERENCE

directions. They put the whole apparatus on a rotating table and then looked for changes in the interference
fringes as it rotated. They saw no changes. In fact they went so far as to wait to see what happened as
the earth rotated and orbited and saw no changes. They thus concluded that the speed of light was the
same in all directions (which nobody at the time believed, even though that is the conclusion you draw from
Maxwell's equations.)

9.1.1.5 Ring Gyroscope

Another application of interference is a a gyroscope, ie. as device to measure rotations.

Figure 9.7

If the apparatus is rotating, then the pathlengths are di�erent in di�erent directions and so you can use
the changes in the interference patterns to measure rotations. This is in fact how gyroscopes are implemented
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in modern aircraft.

9.2 Thin Film Interference2

9.2.1 Interference

9.2.1.1 Thin Films

Suppose there is a very thin �lm of dielectric and light is incident on it normally. Lets consider single
re�ections. (We make the small angle of incidence approximation)

Figure 9.8

We will assume n3 > n2 > n1. The physical path length di�erence of the re�ected light is ∆r = 2d. We
will get maxima in the interference when:

∆r = 2d = mλ2 m = 1, 2, 3 . . .
2This content is available online at <http://cnx.org/content/m12910/1.2/>.
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where λ2 is the wavelength in the �lm. Now

λiνi = c/ni.

In our example we have ν1 = ν2 = ν3, that is the frequency does not change moving between the media. So
we have

λ1n1 = λ2n2 = λ3n3.

Thus constructive interference will happen when

λ2 = λ1
n1
n2

2d = mλ2 m = 1, 2, 3..

2d = mλ1
n1
n2

2d = mλair
nair
nfilm

2d = mλ1
1

nfilm

(2d)nfilm = mλair m = 1, 2, 3 . . .

where nfilm = n2. Destructive interference will happen when

(2d)nfilm = mλair/2 m = 1, 3, 5 . . .

When destructive interference occurs then that value of λ is not re�ected. Note that this is a function
of both d and λ. The next e�ect is that di�erent colours of light get re�ected at di�erent thicknesses of the
�lm. This is why soap �lms or oil �lms on water give rainbow e�ects.

Note I have assumed that n3 > nfilm > nair in the above, where n3 is the material that the �lm sits
upon.

Consider an interface between two materials with indices of refraction n1and n2. If n2 > n1. Then lets
examine what happens to the phase of an electromagnetic wave upon re�ection. For a transverse electric
�eld, there is a phase change of π. For the transverse magnetic �eld (or E‖ ) there is not, if the light ray is
close to the normal. However if n1 > n2 then and the situation is reversed and the transverse electric �eld
does not undergo a phase change and the transverse magnetic �eld does. In the example above, their will
be no relative phase change between the rays in either case. Either both will change by π or neither will
change, depending on the orientation of the E �eld.



123

9.3 Double Plate Interference3

9.3.1 Double Plate Interference

Figure 9.9

Assume that the normally incident light bounces o� the bottom of the top glass and the top of the bottom
glass. In this case there is a phase change between the two cases and the conditions of constructive and
destructive interference �ip.

So constructive interference occurs when

2d = nλ/2 n = 1, 3, 5 . . .

2xα = nλ/2

or the position of the maxima are

xmax =
nλ

4α
n = 1, 3, 5 . . .

Destructive interference will occur at

2d = nλ n = 1, 2, 3, . . .

xmin =
nλ

2α
n = 1, 2, 3 . . .

3This content is available online at <http://cnx.org/content/m12911/1.1/>.
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9.4 Newton's Rings4

9.4.1 Newton's Rings

Consider a �at surface in contact with a spherical surface.

Figure 9.10

x2 + l2 = R2

d = R− l

d2 = R2 + l2 − 2Rl

= R2 +R2 − x2 − 2Rl

= 2R2 − x2 − 2R (R− d)

= 2R2 − x2 − 2R2 + 2Rd

4This content is available online at <http://cnx.org/content/m12912/1.1/>.
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or
x2 = 2Rd− d2

For small d we have d2 → 0 so
x2 ≈ 2Rd

In this case there is no phase change at the spherical surface but there is at the �at surface. So again
there is an o�set in the phase and the condition of constructive interference is

2d = nλ/2 n = 1, 3, 5, . . .

or
2d = x2/R = nλ/2 n = 1, 3, 5, . . .

For a spherical interface one observes rings of light and dark. This in fact is used to check the sphericity
of the lenses.

9.5 Multi Source Inteference5

9.5.1 N-Source Interference

Lets look back at two source interference again, this time using exponential notation: We will consider both
sources to be in phase with the same amplitude. Also, just like before we de�ne E0 to be at the point where
the interference is occurring, and approximate that it is the same for both waves. We have

→
E1=

→
E0 e

i(kr1−ωt)

→
E2=

→
E0 e

i(kr2−ωt)

or →
E2=

→
E0 e

i(k(r1+∆r)−ωt)

where
∆r = dsinθ

5This content is available online at <http://cnx.org/content/m12914/1.2/>.
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Figure 9.11

So I could write →
E2=

→
E0 e

i(kr1−ωt)eik∆r

or if δ = k∆r = kdsinθ →
E2=

→
E0 e

i(kr1−ωt)eiδ

→
E2=

→
E1

(
eiδ
)

So when we add the E �elds together we get

→
E=

→
E1 +

→
E2

=
→
E0 e

i(kr1−ωt)
(
1 + eiδ

)
Now if I consider the case of not 2 but N sources, all separated by a distance d, then this simply extends

→
E1=

→
E0 e

i(kr1−ωt)

→
E2=

→
E0 e

i(kr2−ωt)

→
E3=

→
E0 e

i(kr3−ωt)

.

.

.



127

→
EN=

→
E0 e

i(krN−ωt)

then r2 = r1 + dsinθ
r3 = r1 + 2dsinθ
and so on,
or r2 = r1 + ∆r
r3 = r1 + 2∆r
So now when we add the E �elds up we get

→
E=

→
E0 e

i(kr1−ωt)
(

1 + eiδ + e2iδ + e3iδ + · · ·+ e(N−1)iδ
)

or rewriting

Now following is a general property of geometric series:

N−1∑
n=0

xn =
1− xN

1− x

So now we get
→
E=

→
E0 e

−iωteikr1
1− eiδN

1− eiδ
or

→
E=

→
E0 e

−iωteikr1
eiδN − 1
eiδ − 1

or
→
E=

→
E0 e

−iωteikr1
eiδN/2

(
eiδN/2 − e−iδN/2

)
eiδ/2

(
eiδ/2 − e−iδ/2

)
or

→
E=

→
E0 e

−iωtei(kr1+(N−1)δ/2) sin (δN/2)
sin (δ/2)

Now we can de�ne kR ≡ kr1 + (N − 1) δ/2, which makes sense, this rephrases the equation in terms of the
distance from the middle of the array of sources. So the equation becomes

→
E=

→
E0 e

i(kR−ωt) sin (δN/2)
sin (δ/2)
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Figure 9.12

Interference pattern from three point sources
To �nd the irradiance, lets simplify things by taking the real part of this

→
E=

→
E0 cos (kR− ωt) sin (δN/2)

sin (δ/2)

Then

I = εc < E2 > = εc
E2

0

2
sin2 (δN/2)
sin2 (δ/2)

or

I = I0
sin2 (δN/2)
sin2 (δ/2)



129

Figure 9.13

Plot of sin2(δ50)
sin2(δ/2)
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Figure 9.14

Plot of sin2(δ10)
sin2(δ/2)
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Figure 9.15

Plot of sin2(δ10)
sin2(δ/2)

Look at the plots, which show what the function sin2(δN/2)
sin2(δ/2)

looks like for N = 100 and N = 20. The

height of the �rst principle maximum is equal to N2. This is because as
θ → 0 then δ → 0 (recall δ = kdsinθ) Then

lim
δ→0

sin2 (δN/2)
sin2 (δ/2)

→ (δN/2)2

(δ/2)2 = N2

or at θ = 0
I = N2I0

It is also interesting to note that the �rst maxima become narrower as N becomes larger.
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Figure 9.16

Plot of sin2(δ4)
sin2(δ/2)

Principle maxima occur when
δ/2 = nπ

or
kdsinθmax = 2nπ n = 0, 1, 2, 3

or
2π
λ
dsinθmax = 2nπ

or

sinθmax =
nλ

d

Minima occur when the numerator vanishes but the denominator does not:

Nδ/2 = nπ n = 1, 2, 3 . . .
n

N
6= integer

kdsinθ = 2nπ/N

2π
λ
dsinθ = 2nπ/N

or minima occur at

sinθ =
nλ

Nd
n = 1, 2, 3 . . .

n

N
6= integer

There are secondary maxima between the minima that are away from a principle maximum.
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This gives us an insight into phase array radar and interferometric radio telescopes. Suppose you have a
series or radar antennas in a row. Then you introduce a phase shift ε between each oscillator, then you get

δ = kdsinθ + ε

and principle maxima will occur at
dsinθmax = nλ− ε/k

Concentrating on the principal maximum we see that we can adjust the direction of the principle maximum
simple by adjusting ε. In a modern phase array radar in fact a dome of antennas are used and the situation
is a bit more complicated but certainly a tractable problem with the help of a computer. So these radars
have computers adjusting the phases of the various antennas to point the radar beam where desired - which
can be much more rapidly scanned than a rotating parabolic antenna for example. We can see that if you
increase the number of antennas, then you will get a more narrowly collimated beam.

Figure 9.17

Get a bigger version of this animation.6

6http://phys201.rice.edu/phys201/images/sweep.gif
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Chapter 10

Di�raction

10.1 Single Slit Di�raction1

10.1.1 Di�raction

Di�raction is an important characteristic of waves. It can be said to one of the de�ning characteristics of
a wave. It occurs when part of a wavefront is obstructed. The parts of the wavefronts that propagate past
the the obstacle interfere and create a di�raction pattern. Di�raction and interference are essentially the
same physical process, resulting from the vector addition of �elds from di�erent sources. By convention
interference refers to only a few sources and di�raction refers to many sources or a continuous source.

Figure 10.1

1This content is available online at <http://cnx.org/content/m12915/1.1/>.
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When a plane wave hits an aperture, Huygens principle says that each point in the aperture acts as a
source of spherical wavelets. The maximum path length di�erence of all these sources is between the top
and the bottom.

∆rmax = asinθ

The waves start out in phase. If a < < λ then the slit acts as a point source and you get a spherical wave
coming out. If a > > λ then the aperture simply casts a bright spot the size of the aperture shadow. But if
λ ≈ a then an interference pattern is set up.When the resulting pattern is viewed close to the aperture, the
pattern can be very complex, and this is call Fresnel di�raction. As the the pattern is viewed from further
and further away, it eventually stops changing shape and only grows in size. This is Fraunho�er di�raction.
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10.1.1.1 Single Slit Di�raction

Figure 10.2

Consider the contribution to the �eld
→
E at a P due to a small element of the slit dy at y. It is a distance r

from P. R is the distance from the center of the slit to P.
lets de�ne εL which is the source strength per unit length, which is a constant.
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then
dE =

εL
r
dyei(kr−ωt)

Now from the drawing

r2 = (R− ysinθ)2 + (ycosθ)2

= R2 + y2sin2θ − 2Rysinθ + y2cos2θ

= R2 + y2 − 2Rysinθ

= R2
[
1− 2y

R sinθ + y2

R2

]
Now assume that y < < R (which gives us the Franhaufer condition) and

r = R

[
1− 2y

R
sinθ

] 1
2

now expand the square root

r = R
[
1− y

R
sinθ + . . .

]
and neglect higher terms so that

r = R− ysinθ

thus
dE =

εL
R
ei(k(R−ysinθ)−ωt)dy

where now we have used R in the denominator since it is much bigger than y

dE =
εL
R
ei(kR−ωt)e−ikysinθdy

now integrate assuming that θ is a constant over the slit

E = εL
R e

i(kR−ωt) ∫ a/2
−a/2 e

−ikysinθdy

= εL
R e

i(kR−ωt) e−ikysinθ
−iksinθ |

a/2
−a/2

= εL
R e

i(kR−ωt) e−i
ka
2 sinθ−ei

ka
2 sinθ

−iksinθ

= εL
R e

i(kR−ωt)−2isin( ka2 sinθ)
−iksinθ

= εL
R e

i(kR−ωt) 2sin( ka2 sinθ)
ksinθ

= εLa
R ei(kR−ωt)

sin( ka2 sinθ)
ka
2 sinθ

now we de�ne

β =
ka

2
sinθ

and see that we can rewrite our expression as

E =
εLa

R

sinβ
β

ei(kR−ωt)

or equivalently

E =
εLa

R
sincβei(kR−ωt)

The intensity will go like the square of this so

I = I0sinc
2β
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Figure 10.3

Plot of sin2β
β2

The Intensity has a maximum at β = 0 or θ = 0. there are minima when sinβ = 0 or

β =
ka

2
sinθ = nπ

2π
λ

a

2
sinθ = nπ

sinθ =
nλ

a

in the case of small θ we see that

∆θ =
λ

a

is the distance between adjacent minima.
As a becomes large, we see that the minima will merge together. This is consistent with what we said at

the beginning, that if
a > > λ

then you just get shadowing but not di�raction.
Finding the secondary maxima is more di�cult. (Take the derivative of I and then look for zeros.) This

can not be done analytically.
Note that wee have been considering only one dimension. If the length of the slit is L then we have only

considered the case that L > > λ and so di�raction occurs only in the other dimension.
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10.2 Double Slit Di�raction2

10.2.1 Two Slit Di�raction

Now we consider the case of two slit di�raction.

Figure 10.4

Notice that the x axis has been drawn through the lower slit. Then the �eld at the distant point is just
the sum of the �eld from the two slits. Thus we can use our solution to single slit di�raction for each slit
and add them together

E =
εLa

R1
sincβei(kR1−ωt) +

εLa

R2
sincβei(kR2−ωt)

Now we we will de�ne R = R1 and use R2 = R− dsinθ

E =
εLa

R
sincβei(kR−ωt) +

εLa

R− dsinθ
sincβei(kR−kdsinθ−ωt)

Now we can ignore the dsinθ in the denominator, as it will not have a signi�cant e�ect on that. However
in the exponent, we can not ignore it, since it could signi�cantly a�ect the phase of the harmonic function.

2This content is available online at <http://cnx.org/content/m12916/1.1/>.
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Lets de�ne α = (kdsinθ) /2 so now we can write:

E =
εLa

R
sincβei(kR−ωt) +

εLa

R
sincβei(kR−2α−ωt)

and start rearranging:

E =
εLa

R
sincβ [2cosα] ei(kR−α−ωt)

This is very similar to the case of single slit di�raction except that you now get a factor 2cosα included and
a phase shift in the harmonic function.

So we can see immediately the intensity is

I = 4I0cos2αsinc2β

recall
α = (kdsinθ) /2

and
β = (kasinθ) /2

If d goes to 0 then expression just becomes the expression for single slit di�raction. If a goes to 0 then the
expression just becomes that for Youngs double slit. The double slit di�raction is just the product of these
two results. (Hey cool!)

10.3 Di�raction Grating3

10.3.1 Di�raction Grating

Consider the case of N slit di�raction, We have

E1 =
εLa

R

sinβ
β

ei(kR1−ωt)

E2 =
εLa

R

sinβ
β

ei(kR2−ωt)

.

.

.

EN =
εLa

R

sinβ
β

ei(kRN−ωt)

3This content is available online at <http://cnx.org/content/m12917/1.1/>.
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So we can just follow the steps of the two slit case and extend them and get (using RN = R−(N − 1) dsinθ)

E =
∑N
n=1EN

=
∑N
n=1

εLa
R

sinβ
β ei(kR−2(n−1)α−ωt)

= εLa
R

sinβ
β

∑N
n=1 e

i(kR−2(n−1)α−ωt)

= εLa
R

sinβ
β ei(kR−ωt)

∑N
n=1 e

−i2(n−1)α

= εLa
R

sinβ
β ei(kR−ωt)

∑N−1
j=0 e−i2jα

This is the same geometric series we dealt with before

N−1∑
n=0

xn =
1− xN

1− x
so

E = εLa
R

sinβ
β ei(kR−ωt)

∑N−1
j=0 e−i2jα

= εLa
R

sinβ
β ei(kR−ωt) 1−e−i2Nα

1−e−i2α

= εLa
R

sinβ
β ei(kR−ωt) e

−iNα

e−iα
eiNα

eiα
1−e−i2Nα
1−e−i2α

= εLa
R

sinβ
β ei(kR−ωt) e

−iNα

e−iα
eiNα−e−iNα
eiα−e−iα

= εLa
R

sinβ
β ei(kR−(N−1)α−ωt) sinNα

sinα

Notice that this just ends up being multisource interference multiplied by single slit di�raction.
Squaring it we see that:

I (θ) = I0
sin2β

β2

sin2Nα

sin2α

Figure 10.5
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Interference with di�raction for 6 slits with d = 4a

Figure 10.6

Interference with di�raction for 6 slits with d = 4a
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Figure 10.7

Interference with di�raction for10 slits with d = 4a



145

Figure 10.8

Interference with di�raction for10 slits with d = 4a
Principal maxima occur when

sinNα
sinα

= N

or since α = kd (sinθ) /2
kdsinθ = 2nπ n = 0, 1, 2, 3

or
2π
λ
dsinθ = 2nπ

or

sinθ =
nλ

d

and just like in multisource interference minima occur at

sinθ =
nλ

Nd
n = 1, 2, 3 . . .

n

N
6= integer

A di�raction grating is a repetitive array of di�racting elements such as slits or re�ectors. Typically with
N very large (100's). Notice how all but the �rst maximum depend on λ. So you can use a grating for
spectroscopy.
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10.4 Di�raction from a Rectangular Aperture4

10.4.1

We consider di�raction from apertures other than a slit. For example consider a rectangular aperture as
shown below. If

→
εA is the source strength per unit area (assumed to be constant over the entire area in this

example) and dS = dydz is an in�nitesmal area at a point in the aperture then we have:

Figure 10.9

d
→
E=

→
εA
r
ei(kr−ωt)dydz

We see from the �gure that

r =
[
x2 + (Y − y)2 + (Z − z)2

]
4This content is available online at <http://cnx.org/content/m13096/1.2/>.
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and that
R2 = x2 + Y 2 + Z2.

Thus we use
x2 = R2 − Y 2 − Z2

to write
r =

[
R2 − Y 2 − Z2 + Y 2 + y2 − 2yY + Z2 + z2 − 2zZ

]1/2
or

r =
[
R2 − 2Y y − 2Zz + y2 + z2

]1/2
r = R

[
1− 2Y y/R2 − 2Zz/R2 +

(
y2 + z2

)
/R2

]1/2
.

We are only considering Fraunhofer di�raction so R,Z, Y are much larger than y and z and we can rewrite

r ≈ R
[
1− 2 (Y y + Zz) /R2

]1/2
and then �nally expanding using the binomial theorem and taking only the most signi�cant terms

r ≈ R
[
1− (Y y + Zz) /R2

]
.

So we have

d
→
E=

→
εA
r
ei(kr−ωt)dydz

or using the fact that R is large

d
→
E=

→
εA
R
ei(kr−ωt)dydz

which we integrate to get the �eld

→
E=

∫ +b/2

−b/2
∫ +a/2

−a/2

→
εA
R e

i(kr−ωt)dzdy

=
→
εAe

i(kR−ωt)

R

∫ +a/2

−a/2 e
−ikyY/Rdy

∫ +b/2

−b/2 e
−ikzZ/Rdz

=
→
εAe

i(kR−ωt)

R

[
e−ikyY/R

−ikY/R |
+a/2
−a/2

[
e−ikzZ/R

−ikZ/R |
+b/2
−b/2

=
→
εAe

i(kR−ωt)

R

[
e−ikaY/2R−eikaY/2R

−ikY/R

] [
e−ikbZ/2R−eikbZ/2R

−ikZ/R

]
Now lets de�ne α = kaY/2R β = kbZ/2R and β = kbZ/2R and we see that

→
E=

→
εA e

i(kR−ωt)

R

[
eiα − e−ikα

ikY/R

] [
eiβ − e−iβ

ikZ/R

]
or rearranging

→
E=

→
εA e

i(kR−ωt)

R

[
eiα − e−iα

2iα/a

] [
eiβ − e−iβ

2iβ/b

]
→
E=

→
εA e

i(kR−ωt)ab

R

[
eiα − e−iα

2iα

] [
eiβ − e−iβ

2iβ

]
→
E=

→
εA e

i(kR−ωt)ab

R

[
sinα
α

] [
sinβ
β

]
So �nally we can write the intensity as
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I (Y,Z) = I (0, 0)
[

sinα
α

]2[ sinβ
β

]2

Below is a plot of
[

sinβ
β

]2[
sinα
α

]2

Figure 10.10

Below is a plot of
[

sinβ
β

] [
sinα
α

]
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Figure 10.11

10.5 Babinet's Principle5

10.5.1 Babinet's Principle

Say you have a slit with light passing through it. You will get a di�raction pattern, lets call it
→
Es. If you

cover the slit with a piece of material that �ts just inside the slit, then there is no
→
E �eld in the Fraunhofer

limit. The is means that the
→
E �eld of the blocker, lets call it vecEb, must exactly cancel

→
Es. The only way

this can happen is if
→
Eb = −

→
Es

. Now if you take the slit away the
→
E �eld of the blocker must still remain and then irradiance must be

Ib = (−Es)2 = Is

5This content is available online at <http://cnx.org/content/m13100/1.1/>.
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The interference pattern looks the same. You can verify this yourself by taking a strand of your hair and a
laser pointer. Shine the laser pointer at a wall and then put a strand of your hair in front of the light beam.
The resulting interference pattern is the exact same as one would obtain from a slit with the same width as
your hair.

We can use Babinet's Principle to solve complex problems. For example, say you have square aperture
with sides of length L. The the di�raction pattern for light passing through it is

→
E=

→
εAe

i(kr−ωt)L
2

R

[
sinβL
βL

] [
sinαL
αL

]
where (assuming the aperture lies in the y − z plane)

βL = kLY/2R

α = kLZ/2R.

Now put an opaque square of length d in the middle of the aperture. Now the resulting
→
E �eld is

→
E=

→
εA
R
ei(kr−ωt)

[
L2 sinβL

βL

sinαL
αL

− d2 sinβd
βd

sinαd
αd

]
or

I = I0

[
L2 sinβL

βL

sinαL
αL

− d2 sinβd
βd

sinαd
αd

]2

βL = kLY/2R

αL = kLZ/2R.

βd = kdY/2R

αd = kdZ/2R.

10.6 Di�raction from a Circular Aperture6

10.6.1 Circular Aperture

The circular aperture is particularly important because it is used a lot in optics. A telescope typically has
a circular aperture for example.

We can use the same expression for the E �eld that we had for the rectangular aperture for any possible
aperture, as long as the limits of integration are appropriate. So we can write

→
E=

→
εA
R
ei(kR−ωt)

∫ ∫
aperture

e−iK(Y y+Zz)/Rdydz

For a circular aperture this integration is most easily done with cylindrical coordinates. Look at the
�gure

6This content is available online at <http://cnx.org/content/m13097/1.1/>.



151

Figure 10.12

Then we have
z = ρcosφ

y = ρsinφ

Z = qcosΦ

Y = qsinΦ

Then
Y y + Zz = ρqcosφcosΦ + ρqsinφsinΦ

or
Y y + Zz = ρqcos (φ− Φ)
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and the integral becomes

→
E=

→
εA
R
ei(kR−ωt)

∫ a

0

∫ 2π

0

e−iKρqcos(φ−Φ)/Rρdρdφ

In order to do this integral we need to learn a little about Bessel functions.

J0 (u) =
1

2π

∫ 2π

0

eiucosvdv

Is the de�nition of a Bessel function of the �rst kind order 0.

Jm (u) =
1

2π

∫ 2π

0

ei(mv+ucosv)dv

Is the de�nition of a Bessel function of the �rst kind order m.
They have a number of interesting properties such as the recurrence relations

d

du
[umJm (u)) = umJm−1 (u)

so that for example when m = 1 ∫ u

0

u′J0 (u′) du′ = uJ1 (u) .

In order to numerically calculate the value of a Bessel function one uses the expansion

Jm (x) =
∞∑
s=0

(−1)s

s! (m+ s)!

(x
2

)m+2s

.

Now we want to evaluate the integral

→
E=

→
εA
R
ei(kR−ωt)

∫ a

0

∫ 2π

0

e−iKρqcos(φ−Φ)/Rρdρdφ

which we can do at any value of Φ since the problem is symmetric about Φ. So we can simplify things greatly
if we do the integral at Φ = 0

→
E=

→
εA
R
ei(kR−ωt)

∫ a

0

∫ 2π

0

e−iKρqcos(φ)/Rρdρdφ

which becomes
→
E=

→
εA
R
ei(kR−ωt)2π

∫ a

0

J0 (−Kρq/R) ρdρ

Now J0 is an even function so we can drop the minus sign and rewrite the expression as

→
E=

→
εA
R
ei(kR−ωt)2π

∫ a

0

J0 (Kρq/R) ρdρ

To do this integral we change variables
w = kρq/R

ρ =
wR

kq

dρ =
R

kq
dw
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so that ∫ a
0
J0 (Kρq/R) ρdρ =

∫ kaq/R
0

(
R
kq

)2

J0 (w)wdw

=
(
R
kq

)2 (
kaq
R

)
J1 (kaq/R)

= a2
(
R
kaq

)
J1 (kaq/R)

= a2 J1(kaq/R)
kaq/R

So �nally we have the result
→
E=

→
εA

ei(kR−ωt)

R
2πa2 J1 (kaq/R)

kaq/R

Or recognizing that πa2 is the area of the aperture A and squaring to get the intensity we write

I = I0

[
2J1 (kaq/R)
kaq/R

]2

If you want to write this in terms of the angle θ then one uses the fact that q/R = sinθ

I (θ) = I (0)
[

2J1 (kasinθ)
kasinθ

]2

Figure 10.13

Above is a plot of the function J1 (x) /x. Notice how it peaks at 1/2 which is why there is the factor
of two in the expression for the irradiance. Below is a 3D plot of the same thing (ie. J1 (r) /r). Notice the
rings.
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Figure 10.14
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Figure 10.15

Above is a plot of (J1 (r) /r)2
which corresponds to the irradiance one sees. The central peak out to the

�rst ring of zero is called the Airy disk. This occurs at J1 (r) /r = 0 which can be numerically evaluated to
give r = 3.83 for the �rst ring.

For our circular aperture above this means the �rst zero occurs at

kaq1/R = 3.83

or
2π
λ

aq1

R
= 3.83

q1 =
1.22Rλ

2a
In our case a is the radius of the aperture and we can rewrite the expression using the diameter D = 2a

q1 = 1.22λR/D

Light passing through any circular aperture is going to be di�racted in this manner and this sets the
limit of resolution on an optical device such as a telescope. Say one is trying resolve two sources, we can say
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the limit of resolution is when the central spot of one Airy disk is on the zero of the other Airy disk. This is
known as the Raleigh critereon. While it is possible to de�ne other crtieria, this is the most commenly used.
See for example the plots below

Figure 10.16

In the above plot, the two sources can clearly be resolved. In the plot below, the two sources are going
to be di�cult to resolve.
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Figure 10.17

So we say that the limit of our resolution occurs when the distance ∆q between two sources is

∆q = 1.22Rλ/D

or in the small angle limit ∆θ = ∆q/R
∆θ = 1.22λ/D

10.7 Di�raction from an Array of Apertures7

10.7.1 An array of rectangular apertures

Say we have an array of rectangular apertures sitting in the x−y plane and light hits this aperture traveling
in the positive z direction. There are N apertures arranged vertically (in the y direction). Each aperture
has a width in the x direction of a and a height in the y direction of b. For convenience, the apertures are
aligned with their centers at x = 0. The apertures are equally spaced by a distance d.

7This content is available online at <http://cnx.org/content/m13111/1.3/>.
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Figure 10.18
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The electric �eld at some point P away from the array is

E =
N∑

ny=1

Eny (a, b)

where Eny (a, b) is the �eld from the ny slit at that point. The y position of the center of the aperture is
(ny − 1) d so we write y = (ny − 1) d + y′ and (x, y′) is the position of a point in the aperture with respect
to the center of the aperture. We can write

Eny (a, b) =
∫ b/2

−b/2
dy′
∫ a/2

−a/2
dx
εA
R
e−i(krny−ωt)

If the point of observation is (xP , yP , zP ) then

rny =
[
(xP − x)2 + (yP − y)2 + (zP − z)2

]1/2
but we take z to be zero at the aperture so

rny =
[
(xP − x)2 + (yP − y)2 + z2

P

]1/2
=
[
x2
P − 2xxP + x2 + y2

P − 2yyP + y2 + z2
P

]1/2
= R

[
1− 2xxP /R2 − 2yyP /R2 +

(
x2 + y2

)
/R2

]1/2
where R2 = x2

P + y2
P + z2

P , the distance from the origin. In the far �eld approximation
(
x2 + y2

)
/R2 = 0

and we can write:
rny ≈ R

[
1− 2xxP /R2 − 2yyP /R2

]1/2
.

We use the �rst two terms in the binomial expansion and get

rny ≈ R
[
1− xxP /R2 − yyP /R2

]
= R− xxP /R− yyP /R

= R− xxP /R− [(ny − 1) d+ y′] yP /R

= R− xxP /R− (ny − 1) dyP /R− y′yP /R

so now we have

Eny (a, b) =
∫ b/2

−b/2
dy′
∫ a/2

−a/2
dx
εA
R
e−i(k(R−xxP /R−(ny−1)dyP /R−y′yP /R)−ωt).

We rearrange to get

Eny (a, b) =
εA
R
e−i(kR−ωt)eik(ny−1)dyP /R

∫ b/2

−b/2
dy′eiky

′yP /R

∫ a/2

−a/2
dxeikxxP /R.

We de�ne kxP /R = kx and kyP /R = ky so that

Eny (a, b) =
εA
R
e−i(kR−ωt)eiky(ny−1)d

∫ b/2

−b/2
dy′eikyy

′
∫ a/2

−a/2
dx′eikxx

′

E =
εA
R
e−i(kR−ωt)

N∑
ny=1

eiky(ny−1)d

∫ b/2

−b/2
dy′eikyy

′
∫ a/2

−a/2
dxeikxx.
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We see that each piece of this is something we did before

E =
εA
R
e−i(kR−ωt)eiky(N−1)d/2 sin (Nkyd/2)

sin (kyd/2)
bsinc (kyb/2) asinc (kxa/2)

or if we de�ne
kRc = kR− (N − 1) dky/2

E =
εAab

R
e−i(kRc−ωt)

sin (Nkyd/2)
sin (kyd/2)

sinc (kyb/2) sinc (kxa/2)



Chapter 11

Fourier Optics

11.1 Fourier Optics1

11.1.1 Fourier Transforms

The Fourier Transform can be used to represent any well behaved function f (x) .

f (x) =
1
π

∫ ∞
0

[A (k) cos (kx) +B (k) sin (kx)] dk

where

A (k) =
∫ ∞
−∞

f (x) cos (kx) dx

B (k) =
∫ ∞
−∞

f (x) sin (kx) dx

I can now substitute for A and B in the original expression and write:

f (x) = 1
π

∫∞
0

coskx
∫∞
−∞ f (x′) coskx′dx′dk+

+ 1
π

∫∞
0

sinkx
∫∞
−∞ f (x′) sinkx′dx′dk

and then use
cos (x′ − x) = coskxcoskx′ + sinkxsinkx′

f (x) =
1
π

∫ ∞
0

∫ ∞
−∞

f (x′) cos (k [x′ − x]) dx′dk

Since the inner integral is an even function we can write

f (x) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

f (x′) cos (k [x′ − x]) dx′dk

Now consider the fact that
i

2π

∫ ∞
−∞

∫ ∞
−∞

f (x′) sin (k [x′ − x]) dx′dk = 0

because sin is an odd function, ie. ∫ ∞
−∞

sin (k [x′ − x]) dk = 0

1This content is available online at <http://cnx.org/content/m13101/1.2/>.
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So we could have written

f (x) = 1
2π

∫∞
∞
∫∞
−∞ f (x′) cos (k [x′ − x]) dx′dk+

+ i
2π

∫∞
−∞

∫∞
−∞ f (x′) sin (k [x′ − x]) dx′dk

or

f (x) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

f (x′) eik(x
′−x)dx′dk

or

f (x) =
1

2π

∫ ∞
−∞

g (k) e−ikxdk

where

g (k) =
∫ ∞
−∞

f (x) eikxdx

is the Fourier transform of f (x).
Symbolically we write

g (k) = z{f (x)}

f (x) = z−1{g (k)} = z−1{z{f (x)}}

Now these concepts are easily extended to two dimensions:

f (x, y) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

g (kx, ky) e−i(xkx+yky)dkxdky

where

g (kx, ky) =
∫ ∞
−∞

∫ ∞
−∞

f (x, y) ei(xkx+yky)dxdy.

This tells us is that any nonperiodic function of two variables f (x, y) can be synthesized from a distri-
bution of plane waves each with amplitude g (kx, ky).

Lets consider Fraunhofer di�raction through an aperture again. For example consider a rectangular
aperture as show in the �gure. If

→
εA is the source strength per unit area (assumed to be constant over the

entire area in this example) and dS = dxdz is an in�nitesmal area at a point in the aperture then we have:

Figure 11.1

We can de�ne a source strength per unit area

d
→
E=

→
εA
R
ei(ωt−kr)

Notice that I �ipped the sign in the exponential from what I used in the earlier lectures on di�raction.
This does not change the physics content of what we are doing in any way, however it allows our notation
to follow standard convention.

→
E=

∫ ∫
Aperture

→
εA
R e

i(ωt−kr)dzdy

=
→
εAe

i(ωt−kR)

R

∫ ∫
Aperture

eikyY/RdyeikzZ/Rdz
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If we de�ne ky = kY/R and kz = Z/R and we see that

→
E=

→
εAe

i(ωt−kR)

R

∫ ∫
Aperture

eiykyeizkzdydz
→
E=

→
εAe

i(ωt−kR)

R

∫ ∫
Aperture

ei(yky+zkz)dydz

That is, it is equal to the Fourier transform. In fact one can de�ne an "Aperture Function" A (y, z) .Such
that

→
E=

∫ ∞
−∞

∫ ∞
−∞

A (y, z) ei(yky+zkz)dydz

For a rectangular aperture A (y, z) =
→
εAe

i(ωt−kR)

R inside the aperture and zero outside it. The aperture
function can be much more complex (literally) allowing for changes in source strength and phase through
the aperture. The resulting E �eld is the Fourier transform of the aperture function.

11.2 Dirac Delta Function2

11.2.1

The above allows us to relate the Fourier transform of an Aperture and the resulting E �eld from di�raction
through that aperture. To extend this to an array of apertures, requires that one introduce a new concept,
the Dirac delta function.

The fundamental de�nition of the Dirac delta function is

δ (x) = 0 if x 6= 0

f (0) =
∫∞
−∞ f (x) δ (x) dx

As a special case if f (x) = 1 ∫ ∞
−∞

δ (x) dx = 1

This function has some important properties:

f (x′) =
∫ ∞
−∞

f (x) δ (x− x′) dx

which follows direction from the de�nition ie. de�ne a new coordinate

a = x− x′

, then
x = a+ x′

and
da = dx.

Then ∫∞
−∞ f (x) δ (x− x′) dx =

∫∞
−∞ f (a+ x′) δ (a) da

= f (x′)

We also note that δ (x) = δ (−x) .

2This content is available online at <http://cnx.org/content/m13102/1.2/>.
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It gets even more interesting. Recall

f (x) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

f (x′) eik(x
′−x)dx′dk

which we rearrange suggestively

f (x) = 1
2π

∫∞
−∞

∫∞
−∞ f (x′) eik(x

′−x)dx′dk

=
∫∞
−∞

[
1

2π

∫∞
−∞ eik(x

′−x)dk
]
f (x′) dx′

we also have

f (x) =
∫ ∞
−∞

f (x′) δ (x′ − x) dx′

so we must have

δ (x′ − x) =
1

2π

∫ ∞
−∞

eik(x
′−x)dk

or

δ (x) = δ (−x) =
1

2π

∫ ∞
−∞

e−ikxdk

That is the Dirac delta function is the inverse Fourier transform of 1. This is a very useful property that
allows us to do problems like Young's double slit. Consider the aperture function:

A = E0 (δ (y − a/2) + δ (y + a/2))

where we have represented the slits by Dirac delta functions. Then we obtain

E =
∫∞
−∞E0δ (y − a/2) eiyky +

∫∞
−∞E0δ (y + a/2) eiyky

= E0

(
eiaky/2 + e−iaky/2

)
= E02cos (kya/2)

= E02cos
(
kasinθ

2

)
which is exactly what we obtained before. Well that was a lot easier than what we did earlier in the course!

11.3 The Convolution Theorem and Di�raction3

To handle more complex cases of di�raction using Fourier transforms we need to know the convolution
theorem. Say g (x)is the convolution of two other functions f and h. Then

g (x) = f ⊗ h =
∫ ∞
−∞

f (x′)h (x− x′) dx′

It is probably best to illustrate convolution with some examples. In each example, the blue line represents
the function h (x− x′), the red line the function f (x) and the green line is the convolution. In the animation;
follow the vertical green line that is the point where the convolution is being evaluated. Its value is the area
under the product of the two curves at that point.

3This content is available online at <http://cnx.org/content/m13106/1.2/>.
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Figure 11.2

It might be easier to picture what is going on if we capture a couple of frames.
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Figure 11.3
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Figure 11.4

Here is a slightly more complicated example
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Figure 11.5

Finally it is interesting to note what happens when we spread out a few functions, that is in this case, f
is a step function in a couple of places.
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Figure 11.6

The convolution theorem states that if

G (k) = z{g (x)}

F (k) = z{f (x)}

and
H (k) = z{h (x)}

and if
g (x) = f ⊗ h

then
G (k) = F (k)H (k) .

We can easily show this

G (k) =
∫∞
−∞ g (x′) eikx

′
dx′

=
∫∞
−∞ eikx

′ ∫∞
−∞ f (x)h (x′ − x) dxdx′

=
∫∞
−∞

∫∞
−∞ h (x′ − x) eikx

′
dx′f (x) dx

now set w = x′ − x then x′ = w + x

G (k) =
∫∞
−∞

∫∞
−∞ h (w) eikwdweikxdx

=
∫∞
−∞ h (w) eikwdw

∫∞
−∞ f (x) eikxdx

= H (k)F (k)
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Now say we want to consider the case of two long slits with width a. This can be described by the
convolution of one slit with two delta functions. Unfortunately it is not possible to animate this since the
delta function is in�nitely narrow. However an extremely narrow Gaussian is a good approximation to the
Dirac delta function and I have used that for the animation below.

Figure 11.7

So two slits of a �nite width can be described by the convolution of two delta functions and rectangular
aperture function. Then the Fraunhofer di�raction pattern is just the product of the two Fourier transforms.

To sumarize: Fraunhofer di�raction patterns are the Fourier transform of the aperture function. The
Fourier transform of the convolution of functions is the product of the Fourier transforms of the individual
functions. each of our complex di�raction cases could be considered the convolution of simpler cases, hence
the resulting patterns were the products of those simpler cases.

11.4 An Array of Apertures4

Consider an array of rectangular slits of widths a and b with spacing d in the y direction, illuminated by
a plane wave. We want to derive the Fraunhofer di�racted �eld E (kx, ky). The simplest way to do this
problem is to use Fourier optics: The array is a convolution of a single rectangular slit with an array of Dirac
delta functions.

That is the aperture function can be written

A = A0 (f ⊗ h)

4This content is available online at <http://cnx.org/content/m13107/1.2/>.
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where the symbol ⊗ represents convolution and

f = 1 when |x| ≤ a/2 and |y| ≤ b/2
= 0 otherwise

h =
N−1∑
ny=0

δ (y − nyd) .

We now have that
E =

εA
R
e−i(kR−ωt)z{f}z{h}

where R is the distance from the origin to the point of measurement. and F{} represents a Fourier transform.
Now we have

z{f} =
∫ b/2

−b/2

∫ a/2

−a/2
ei(kxx

′+kyy
′)dx′dy′

or rearranging,

z{f} =
∫ b/2

−b/2
dy′eikyy

′
∫ a/2

−a/2
dx′eikxx

′
.

These are integrals we have done a number of times already:

z{f} = bsinc (kyb/2) asinc (kxa/2)

Next we transform the sums of the delta functions

z{h} =
N−1∑
ny=0

∫ ∞
−∞

eikyyδ (y − nyd) dy,

which upon integration becomes

z{h} =
N−1∑
ny=0

eikynyd.

We have also performed this sum before and it gives

F{h} = eiky(N−1)d/2 sin (Nkyd/2)
sin (kyd/2)

.

So we have

E =
εA
R
e−i(kR−ωt)eiky(N−1)d/2 sin (Nkyd/2)

sin (kyd/2)
bsinc (kyb/2) asinc (kxa/2)

or if we de�ne
kRc = kR− (N − 1) dky/2

E =
εAab

R
e−i(kRc−ωt)

sin (Nkyd/2)
sin (kyd/2)

sinc (kyb/2) sinc (kxa/2) .
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