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Chapter 1

Introduction1

1.1 Project Introduction

The project detailed in this collection describes an exploration of the uniqueness and variability of the human
vocal tract across di�erent speakers and, by extension, the potential for speaker identi�cation based on their
voicing characteristics (that is, the frequency signatures of their vowels).

This group recognizes the existence of more robust voice recognition systems based on theory of greater
complexity (e.g. autoregression, Gaussian mixture models) that look at more elements of the subject's speech
such as pacing and speed, consonants, etc. However, the scheme detailed below was developed solely based
on the characteristics of a speaker's vowels with the hypothesis that a system based on such an approach,
if reliable, would potentially be computationally less intense and comparatively simpler to implement in
hardware and apply.

The sections below detail, respectively: some of the theoretical concepts relevant to this project; the �ner
points of the recognition scheme we developed; the experiments carried out to evaluate the scheme, as well
as the data and conclusions we obtained from the tests.

1This content is available online at <http://cnx.org/content/m41854/1.2/>.
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Chapter 2

Background1

2.1 Background

2.1.1 Formants

In speech science, formants are de�ned as the regions of concentrated power in the frequency representation
of a vowel. These speci�c peaks of power are a re�ection of a speci�c con�guration of the di�erent parts of
the vocal tract; humans produce di�erent kinds of vowels, each one characterized by its pattern of formants,
by vibrating their vocal chords and changing the con�guration of their articulators (e.g. positioning of the
lips, tongue, and jaw). Most vowels across a single person's speech can be completely described by their
F1 and F2, the formants with the lowest and second-lowest frequency centers; notable exceptions to this
are the "rhotacized" or "r-colored" vowels, which depending on the speaker's vocal tract may often feature
overlapping F1 and F2 with other non-rhotacized members of the vowel space and must also be identi�ed
by their F3, and a few lip-rounded vowels as distinguished from their unrounded counterparts, which have
lowered high-level formants in general but may still overlap with other vowels in F1 and F2.

1This content is available online at <http://cnx.org/content/m41768/1.3/>.
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4 CHAPTER 2. BACKGROUND

Figure 2.1: Example formant plot of subject. Note the closeness between [] and [u].

However, the actual frequencies of the formants are obviously not constant across di�erent people; in
fact, the relationship between the formant patterns of di�erent speakers saying the same vowel is highly
erratic. This can be attributed to the high degree of variability found in the physical characteristics of the
human vocal tract; males often have larger and longer vocal tracts than females, two people may not have
the same jaw size or shape, etc. This variability a�ects the resonant frequencies of the vocal tract's various
components, so that even if two people are making the same articulatory gestures their formants will not only
be di�erent, but di�erent in a decidedly nonlinear way for each vowel; that is, physical di�erences between
speakers make their formants for multiple vowels di�er in di�erent ways. For example, pertaining to the
features of rhotacized vowels mentioned above: both F1 and F2 of the rhotacized vowel [] (as in "herd")
overlap with those of either [] (as in "hood") and/or [u] (as in "who'd) for many speakers; however, short
preliminary measurements of our subjects (all speakers of standard American English, though with slight
and di�erent dialectical in�uences of his own) taken for testing purposes before running any actual trials
revealed that in one there was only slight F1 overlap between [] and [], in another there was F1 overlap
between [] and [u], and in a third there was no clear overlap at all. Larger studies in the ream of Linguistics
on this particular kind of overlap do report that it is rather commonly found, but in varying degrees: a
testament to the amount of vocal tract diversity that exists in the human population.

This variability makes it highly unlikely that two people will have anything close to a nearly identical set
of formant frequencies across a large set of vowels; more topically, this means that a voice-recognition system
that knows the average formants of a speci�c person's vowels would be di�cult to dupe for other people
solely on the basis of their vowel characteristics. For all intents and purposes, the more vowels used in the
trials the more speci�c and rigorous the trials become (our project ended up utilizing all twelve members of
the English vowel space).
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2.1.2 "hVd" words

The "hVd" words are a class of monosyllabic English words with a single vowel nucleus that follow the speci�c
pattern of beginning with an [h] and ending with a [d]. This set is particularly interesting because of the
uninvasive nature of the word-initial and word-�nal consonants; for the most part they do not interfere with
the frequency characteristics of whatever vowel is in between them. In contrast, most of the other consonants
in the English language will, in some way or another, alter or bend the formants of the surrounding vowels
(e.g. vowels with adjacent nasals like [n] or [m] may become nasalized, changing their formants considerably;
formants of vowels next to approximants like [l] will "drift" toward those of the approximant targets instead
of remaining steady; etc.). It is for this reason that these hVd words were used in our trials; they provide a
clear picture of what a speaker's uncorrupted vowels look like and they represent a middle ground of sorts
between saying pure vowels and normal speech with other, more complicated words.

Figure 2.2: Example waveform and spectrogram of the word "had." Note the stability of the formants
(centers approximated by red lines).

2.1.3 Windowing

It is quite commonplace in the realm of Fourier analysis (especially spectrum analysis of sound waveforms)
to obtain a time-domain-based view of the frequency content of a signal. This is addressed by "windowing"
the data in question in order to obtain a series of segments of the original waveform, each representing
a particular segment in time of the (discrete-time, naturally) signal; the process of creating each of these
segments is, in short, taking the product of a windowing function of speci�c length and the signal at that
particular time.
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Figure 2.3: Example plot of a length 64 Hamming window (magnitude vs. discrete-time index).

The windowing function is zero outside its interval, and is usually tapered down to zero or near zero
to reduce the erroneous high-frequency content that would be introduced by sharp cuto�s at the window
ends; in addition, the windows are staggered in steps of half the window length to help mitigate potential
information loss due to the attenuated ends of the window function. The window of choice for this project
was the Hamming window, a "raised cosine" shape (see the above �gure). To be brutally honest, this window
function was not the optimal choice for this particular application; however, the window choice is not a large
issue for us because the core of this project does not depend much on factors like high side lobe attenuation
and fallo� for the window function (we are only concerned with locating the positions of peaks within a
certain frequency range for each window of the signal, and in fact we bandpass-�lter out all the content
outside the normal human range for the two formants in question).
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Figure 2.4: Example plot of the FFT of a length 1024 window of the vowel [i] in "heed," spoken by a
test subject. Clear formant spikes observed at ∼400 Hz and ∼2500 Hz in this particular window.

A window length of 1024 samples was chosen for this project with consideration given to the nature of
the time-frequency tradeo� inherent to the windowing process; with increasing time resolution (i.e. more
windows for a given signal, more bins of time information) comes less frequency information, and with
increasing frequency resolution comes less temporal information (i.e. less windows for a given signal, less bins
of time information). The standard accepted window length used widely in linguistic analysis applications is
0.025 seconds, an interval that balances time and frequency resolutions for the windowed signal reasonably
well. With sampling frequency of 44100 Hz for our waveforms, we chose the nearest power of 2 that would
give us the necessary time interval (1024 samples is slightly under 0.025 seconds, but the margin is so small
that it does not a�ect our results at all).
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Chapter 3

Methodology1

3.1 Methodology

3.1.1 Purpose

To uniquely identify a speaker based on their vowel formants using frequency domain analysis of a speaker's
voice.

1This content is available online at <http://cnx.org/content/m41762/1.14/>.
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3.1.2 Method

Figure 3.1: Block diagram of our system's processing of a single-word input. Explained in detail below.

3.1.3 Overview

The �rst step in doing Fourier analysis on the speaker's voice is to �rst split the signal into windows(see
background for more info) such that the FFT(Fast Fourier Transform) algorithm can be used to �nd the
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Fourier transform of the signal. This usually just requires that the number of windows is a power of 2, so we
chose a window size of 1024 which translates to about .025 seconds in the time domain. This choice allowed
us to capture substantial but not excessive information in the time domain. Moreover, we chose to use the
hamming window, which has a slower cuto�, to avoid the various negative e�ects(see background section)
that a window with a sharp cuto� can cause. After this process is done on every window we are essentially
left with an Array of Fourier transforms, with each transform representing the speaker voicing at di�erent
moments in time.

To �lter out any excessive noise in frequency ranges where we know vowel information cannot exist (as
no human could have a vocal tract that produces vowels with formants in these ranges), we next apply a
bandpass �lter to our signal in the ranges of 0-100Hz and frequencies above 3500Hz.

Once this is done, the formants and their magnitudes are found in each window by �nding the peaks (see
Finding Peaks) within two frequency ranges i.e. where the two formants are known to lie from Tuning.

Then a Decision Rule (explained below in more detail) is used to remove all the windows that are sure
not to contain a vowel. Using those windows, we calculate a percent error based on where the speaker's
formants lie with respect to the template speaker's formants, which the system is tuned to (See Tuning).
This process is repeated for every vowel in the English language (each subject wishing to access the system
must input in sequence the set of "hVd" words described in the Background section for our trials); once that
is complete an average percent error is calculated based on the subject's performance across all vowels and
a �nal decision is made based on this percent error.

3.1.3.1 Decision Rule

To determine which windows possible contain vowels, the decision rule essentially removes any windows
whose formant one or formant two magnitudes di�er by more than 2 standard deviations away from the
formant one and formant two maximum magnitudes (across windows). It also removes any false positives i.e
formants that were detected outside of the possible formant range(above 100Hz and below 3500Hz). What is
left are all the windows in which the vowel is being voiced. This essentially �lters out all non-vowel windows
and to remove any additional noise that wasn't removed from the band pass �lter.

3.1.3.2 Tuning

To `tune' our system to the template speaker, we �rst had to �nd where the speaker's frequencies generally
lie. This would form the basis for our percent error calculation when checking against another speaker's
formants. To do this we had the user voice every vowel multiple times in which we recorded where we
found the �rst and second formants. These trials were then used to �nd the range in which the �rst and
second vowel formants lie and the average �rst and second formant frequencies for each vowel. These were
hardcoded into our code for comparison against the formants of the speaker.

3.1.3.3 Finding Peaks

Finding peaks involved �rst �nding the maximum magnitude in the window and then checking that it's a
peak(increasing on the lefts side and decreasing on the right side of the maximum). This prevented false
positives, for example detecting a magnitude that may be the highest in the window but is not a peak. To
do this we simply have have a sieve that is centered around the maximum magnitude. We then check that
values to the left and the right of the maximum magnitude are lower than the maximum magnitude. If this
is not the case the sieve moves to the right and a new maximum is found in the window and repeats the
process until a peak is found.

3.1.4 Code

Download our code here2

2http://dl.dropbox.com/u/13097644/code.zip
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Chapter 4

Experiments, Results, Conclusions,

Future Work1

Adrian A. Galindo Experimental Methodology, Conclusions, and Future Work

4.1 Experimental Methodology, Conclusions, and Future Work

We now turn our attention to the work that went into testing our model to ensure it worked as designed.

4.1.1 Experimental Methodology

In order to test if our system works we had to ensure that the algorithm would produce the correct result
(allow, deny) regardless of which recording of the template speaker or the two intruders we used.

1. The Template User records a series of just vowels from the English language in order to train the
algorithm. This recording is done on a separate day to better simulate the common variability in vocal
resonance found in day to day speech. See the results for our template speaker in Figure 4.2.

2. Each of the 3 users (template, intruder 1, intruder 2) records each of the 12 HVD words(see Figure 4.1
which encapsulate the entirety of the English vowel space.

3. We run the algorithm, comparing each of the 3 recordings against the originally stored vowels of the
template user. A percent error is computed for each user (even the template speaker) and a decision
of allow or deny is made based on the minimum error.

4. Steps 2 through 3 are repeated a total of 3 times to ensure some measure of repeatability.

1This content is available online at <http://cnx.org/content/m41764/1.4/>.
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Figure 4.1: HVD Words

Figure 4.2: Our Template Speaker's Average Formant Frequencies

4.1.2 Results

When we ran our experiments we found that while the template speaker was occasionally not the person
with the lowest percent error on a per-vowel basis he had the lowest percent error across the entire vowel
space. We found this result to be consistent across several di�erent trials. In each a trial a new recording
of the same three people was made - often on di�erent days, in order to allow for maximum day to day
variability in voice and recording positioning. We wanted to make sure that it was not just a particular set
of data that looked good against the template speaker. In addition we wanted the template speaker to make
several recordings to ensure that the system could cope with di�erences in both the template speaker and
in the potential intruders.
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Subject Average % Error Trial 1 Average % Error Trial 2 Average % Error Trial 3

Template Speaker 7.673 8.902 7.747

Speaker A 11.787 11.301 11.102

Speaker B 20.676 16.933 12.389

Table 4.1: Experimental Results

More detail on each of the trials can be found in Figures Figure 4.3, Figure 4.4, Figure 4.5

Figure 4.3: Trial 1 Note: the X-Axis all 3 trials is labeled according to the HVD listings in Figure 4.1

Figure 4.4: Trial 2



16 CHAPTER 4. EXPERIMENTS, RESULTS, CONCLUSIONS, FUTURE WORK

Figure 4.5: Trial 3

4.1.3 Conclusions

In conclusion we found that the system we built does exactly as we intended: it is able to tell the di�erence
between the user it was tuned to and everybody else. There were a few caveats to the system we built. In
particular we noticed that when the template speaker got a little sick the system was no longer able to grant
him access. Due to the newfound resonant characteristics of the template speaker's vocal tract caused no
doubt by the addition of mucous and swelling, it was quite di�cult for the system to match it to the stored
template formants. This is a bit of a sticky problem because we want to tune the system as sharply as we
can to the template speaker's resonant characteristics so that even a slight change would cause the system
to revoke the user. These slight changes seen through a security lens are an added opportunity to take
advantage of the entire variability space to increase "passphrase" entropy and make the entire system more
secure. The same slight changes seen through a usability perspective however are seen as a rather formidable
annoyance for the sick template user attempting to gain access to his environment. This balance between
lenience and security is one that most biometric security systems must weigh. Anyone who has attempted
to use a �ngerprint reader after a long shower (raisined �ngers) knows which way the company that made
that biometric system choose to lean towards. In the same manner we �gured that while the balance could
de�nitely use some �ne tuning we �gured it would be best to produce a false negative than to produce a
false positive and allow a rouge user access to the secure environment. Of interesting note we noticed that
when a user changed the pitch of his voice in order to try to match the template speaker the position of the
formants in the frequency domain changed very little. This result shows that the system is indeed tuned
to a user's resonant characteristics and not just the pitch of the voice. This result also makes it extremely
di�cult for a would be attacker to gain access to the system even if he did know the exact passphrase and
what the secured template user sounds like.

4.1.4 Future Work

In its current state the formant detection system makes use of several very convenient MATLAB features
such as the �lter design tool to rapidly create a computable �lter. It also leverages the rather large amount
of computational power available to modern computer platforms to make some rather sharp �lters and
decisions. While it is true that we did not set out to make the most e�cient mechanism by which to identify
a user based on formants, we would truly like to see this system implemented in an embedded hardware
environment. This would require that we trim the program and its requisite �lters considerably just to
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get the algorithm to �t within the con�nes of the restricted memory space available in most embedded
environments. In addition this type of embedded security system is of little use if it cannot be run at real
or near-real time speeds. Use of a powerful embedded environment such as an FPGA could see this type of
implementation without a drastic reduction in the �lter sharpness; however such an implementation would
also require considerable e�ort in order to port the �lter and surrounding decision rules into the hardware
recon�gurable languages of Verilog or VHDL.

4.1.4.1 Hidden Feature: Vowel Recognition

In order to accurately guess whether the right vowel is even being spoken before attempting to compute a
percent error from a potentially wrong vowel to the template speaker we had to build in some sort of vowel
recognition feature. The recognition implementation is rather crude but we found it to be quite accurate
in our tests. We never tested the vowel recognition alone but rather saw the results of it in the streaming
debug statements our program can output. Based solely on this we believe that the subsystem could be
expanded and re�ned to both aide in the voice recognition process and to increase security by fully checking
the phrase spoken.
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