
Topics in Applied Probability

Collection Editor:
Paul E Pfeiffer

Topics in Applied Probability

Collection Editor:
Paul E Pfeiffer

Authors:
Paul E Pfeiffer

Daniel Williamson

Online:
< http://cnx.org/content/col10964/1.2/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Paul E Pfei�er. It is licensed under the

Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/).

Collection structure revised: September 4, 2009

PDF generated: February 3, 2011

For copyright and attribution information for the modules contained in this collection, see p. 65.

Table of Contents

Preface . 1

Cost with Price Breaks . 3

Order Statistics . 5

1 Martingale Sequences

1.1 Martingale Sequences: The Concept, Examples, and Basic Patterns . 7
1.2 Martingale Sequences: Examples and Further Patterns . 13

2 Markov Procedures for Markov Decision Processes
2.1 A Reorder problem� Electronic Store . 21
2.2 Markov Decision � Type 3 Gains . 28
2.3 MATLAB Calculations for Decision Models . 35
2.4 Matlab Procedures for Markov Decision Processes . 39

3 Queues with Poisson Arrivals, Exponential Servers . 57
Index . 64
Attributions . 65

iv

Preface1

Topics in Applied Probability is meant to supplement the collection Applied Probability2 with examples,
further problems, and m-�les. This collection is not meant to stand alone but rather serve as a miscellany of
further content not included in the original collection. Topics discussed in this collection include Martingale
Sequences and Markov Procedures as well as a few others. In addition, the collection of m-�les contains both
the user-de�ned programs and a collection of m-�les for speci�c problems with properly formatted data.
MATLAB Files
These �les can be entered into MATLAB by calling the appropriate �le. These m-�les come from a variety
of sources (e.g., exams or problem sets, hence the odd names) and may be useful for examples and exercises.
In order to allow for easy access to the helpful m-�les, a supplementary link has been placed in the upper
right side of each module in the "Topics in Applied Probability" collection. Selecting this link will launch
the download of a zip document containing a suite of m-�les. Unzipping this �le and saving its contents to
your local system will allow for easy and reliable access when working with MATLAB.

1This content is available online at <http://cnx.org/content/m31871/1.2/>.
2Applied Probability <http://cnx.org/content/col10708/latest/>

1

2

Cost with Price Breaks3

Let D be the demand random variable. Suppose there is

A �at fee of C for D ≤ a1

A cost of c1 per unit for a1 < D ≤ a2

A cost of c2 per unit for a2 < D ≤ a3

A cost of c3 per unit for a3 < D

Then (see �gure)

g (t) = C + c1IM1 (t) (t− a1) + (c2 − c1) IM2 (t) (t− a2) + (c3 − c2) IM3 (t) (t− a3) where Mi = [ai,∞) (1)

note: Since (t− ai) = 0 at t = ai, we could as well have Mi = (ai, ∞).

Special Case. If D is Poisson (µ), we may obtain an exact solution for E [g (D)] by using the fact that
E
[
I[m,∞) (D)

]
= P (D ≥ m) and

E
[
I[m,∞) (D)D

]
= e−µ

∞∑
k=m

k
µk

k!
= µe−µ

∞∑
k=m−1

µk

k!
= µP (D ≥ m− 1) (2)

As an alternate approach, we approximate D by an appropriate number of values.

Exercise 1: Example
A residential College is planning a camping trip over Spring Recess. The number D of persons
planning to go is assumed to be Poisson (15). Arrangements for transportation and food have been
made as follows:

If D ≤ 4, a minimal �at fee of $450 will be charged.
If 4 < D ≤ 19, the additional charge is $100 for each person more than 4 (but less than 20).
If 19 < D, the charge is $80 for each person more than 19.

Thus, C = 450, a1 = 4, a2 = 19, c1 = 100, and c2 = 80. The distribution for D is Poisson (15).
Then

Y = g (D) = 450 + 100I[4,∞) (D) (D − 4) + (80− 100) I[19,∞) (D) (D − 19) (3)

= 450 + 100I[4,∞) (D)D − 20I[19,∞) (D)D − 400I[4,∞) (D) + 380I[19,∞) (D) (4)

a. Obtain the �exact� solution to E [g (D)].
b. Approximate D by terms up to 40 and obtain E [g (D)] and P (g (D) ≥ v) for v = 1000, 1500,

2000, 2500.

3This content is available online at <http://cnx.org/content/m31064/1.4/>.

3

4

Order Statistics4

In sampling statistics (see Sec 18.7), we deal with an iid class {Xi : 1 ≤ i ≤ n} of random variables, where
n is a prescribed positive integer known as the sample size. An observation of this class gives an n-tuple of
numbers (t1, t2, · · · , tn). As an extension of the extreme values in the case of two variables (Ex 2.11), it is
often useful to de�ne a random variable Y1 whose value for any ω is the smallest of the Xi (ω); a second
random variable Y2 whose value at ω is the next smallest of the Xi (ω), and so on through Yn whose value
at ω is the largest of the Xi (ω). We would like to be able to obtain the distributions for these new random
variables in terms of the common distribution for the Xi. We formulate the problem as follows.

Example : Order Statistics
Suppose {Xi : 1 ≤ i ≤ n} is iid, with common distribution function F. Let

• Y1 = smallest of X1, X2, ..., Xn

• Y2 = next larger of X1, X2, ..., Xn

• . . .
• Yn = largest of X1, X2, ..., Xn

Then Yk is called the kth order statistic for the class {Xi : 1 ≤ i ≤ n}. We wish to determine
the distribution functions Fk (t) = P (Yk ≤ t) 1 ≤ k ≤ n. Now, Yk ≤ t i� k or more of the Xi have
values no greater than t. We may view the process as a Bernoulli sequence of n trials. There is a
success on the ith trial i� Xi ≤ t. The probability p of a success is p = P (X ≤ t) = F (t). Hence

Fk (t) = P (Yk ≤ t) = P (k or more of the Xi lie in (−inf, t]) =
n∑
j=k

C (n, j)F j (t) [1− F (t)]n−j (1)

Remark. Once the common distribution function F for the Xi is known, then the Fk are calculated in a
straightforward manner. For that purpose we may use the MATLAB function cbinom.

Example
Suppose the Xi are exponential (2). Then FX (t) = 1 − e−2t for positive t. Suppose n = 5. We
calculate Fk (t) for t = 0.1, 0.3, 0.5, 0.7, 0.9.

n = 5;

t = 0.1:0.2:0.9;

m = length(t);

F = 1 - exp(-2*t);

for i = 1:m

FK(i,:) = cbinom(n,F(i),1:n);

end

disp([t' F' FK]) % k = 1 k = 2 k = 3 k = 4 k = 5

0.1000 0.1813 0.6321 0.2249 0.0445 0.0046 0.0002

4This content is available online at <http://cnx.org/content/m31071/1.3/>.

5

6

0.3000 0.4512 0.9502 0.7456 0.4091 0.1324 0.0187

0.5000 0.6321 0.9933 0.9354 0.7364 0.3946 0.1009

0.7000 0.7534 0.9991 0.9852 0.9000 0.6400 0.2427

0.9000 0.8347 0.9999 0.9968 0.9653 0.8064 0.4052

The following special case is important in characterizing the Poisson process (see Sec 21.1).

Example
Order statistics for uniformly distributed random variables

Suppose {Ui : 1 ≤ i ≤ n} is iid, uniform on (0, T]. Determine the distribution functions for the
order statistics.

SOLUTION
The common distribution function for the Ui is given by F (t) = t/T, 0 ≤ t ≤ T . According

to the result in Ex 2.16, the kth order statistic Yk has the distribution function

Fk (t) = P (Yk ≤ t) =
n∑
j=k

C (n, j)
(
t

T

)j(
T − t
T

)n−j
0 < t < T (2)

Chapter 1

Martingale Sequences

1.1 Martingale Sequences: The Concept, Examples, and Basic
Patterns1

1.1.1 The concept, examples, and basic patterns

1.1.1.1 A classical example

The notion of martingales and related concepts seem to have originated in studies of games of chance similar
to the following. Suppose

Yn = a gambler's �gain� on the nth play of a game
Y0 = the original capital or �bankroll�

Set Xn = 0 for n < 0, Xn =
∑n
k=0 Yk∀n ≥ 0. Thus, Xn is the capital after n plays, and

Y0 = X0 Yn = Xn −Xn−1 ∀ n ≥ 0 (1.1)

Put Un = (X0, X1, · · · , Xn) and Vn = (Y0, Y1, · · · , Yn). For any n ∈ N, Un = gn (Vn) and Vn = hn (Un)
or, equivalently, σ (Un) = σ (Vn). Hence E [H|Un] = E [H|Vn] a.s.

If YN is an independent class with E [Yn] = 0∀n ≥ 1, the game is considered fair. In this case, we have
by (CE5), (CE7), and hypothesis

E [Xn+1|Un] = E [Yn+1|Vn] + E [Xn|Un] = E [Yn+1] +Xn = Xn a.s. (1.2)

Also E [Xn+1 −Xn|Un] = E [Yn+1|Vn] = 0 a.s.
Gamblers seek to develop a �system� to improve expected earnings. We examine some typical approaches

and show their futility. To keep the analysis simple, consider a simple coin-�ipping game. Let

Hk = event of a �head� on the kth component trial
Tk = Hc

k = event of a �tail� on the kth component trial

The player has a system. He decides how much to bet on each play from the pattern of previous events.
Let Bn [IHn − ITn] = BnZn be the result of the nth play, where |Bn| is the amount of the bet; Bn > 0
indicates a bet on a head; Bn < 0 indicates a bet on a tail; B = 0 indicates a decision not to bet.

Systems take various forms; here we consider two possibilities.

1This content is available online at <http://cnx.org/content/m31076/1.3/>.

7

8 CHAPTER 1. MARTINGALE SEQUENCES

1. The amount of the bet is determend by the pattern of outcomes of previous tosses

Bn = gn−1

(
IH1 , IH2 , · · · , IHn−1

)
Yn = BnZn Zn = IHn − ITn = 2IHn − 1 (1.3)

2. The amount bet is determined by the pattern of previous payo�s

Bn = gn−1 (Y1, Y2, · · · , Yn−1) = hn−1

(
B1, IH1 , · · · , Bn−1IHn−1

)
Yn = BnZn (1.4)

Let Y0 = X0 = C, a constant. Since C is independent of any random variable, E [H|C] = E [H]. In either
scheme, by (CE8), (CI5), and the fact E [Zk] = 0

E [Yn+1|Vn] = E [Bn+1Zn+1|φn (B1, IH1 , · · · , BnIHn)] = Bn+1E [Zn+1] = 0 a.s. (1.5)

It follows that

E [Xn+1|Un] = E [Yn=1|vn] + E [Xn|Un] = 0 +Xn a.s. (1.6)

The �fairness� of the game is not altered by the betting scheme, since decisions must be based on past
performance. In spite of simple beginnings, the extension and analysis of these patterns form a major
thrust of modern probability theory.

1.1.2 Formulation of the concept

In the following treatment,

XN = {Xn : n ∈ N} is the basic sequence N = {0, 1, · · · }
YN = {Yn : n ∈ N} is the incremental sequence

Yn = Xn −Xn−1 Xn =
n∑
k=0

Yk n ≥ 0, [Xn = 0 n < 0] (1.7)

We suppose ZN is a decision sequence and XN ∼ ZN; that is, Xn = gn (Wn) = gn (Z0, Z1, · · · , Zn).

• XN ∼ ZN i� YN ∼ ZN

• If XN ∼ HN and HN ∼ ZN, then XN ∼ ZN. In particular, if Hn = kn (Un) = kn (X0, X1, · · · , Xn),
then XN ∼ HN.

De�nition. If XN is integrable and ZN is a decision sequence, then

1. XN is a martingale (MG) relative to ZN i�

XN ∼ ZN and E [Xn+1|Wn] = Xn a.s. ∀ n ∈ N (1.8)

2. XN is a submartingale (SMG) relative to ZN i�

XN ∼ ZN and E [Xn+1|Wn] ≥ Xn a.s. ∀ n ∈ N (1.9)

3. XN is a supermartingale (SRMG) relative to ZN i�

XN ∼ ZN and E [Xn+1|Wn] ≤ Xn a.s. ∀ n ∈ N (1.10)

9

Notation. When we write (XN, ZN) is a martingale (submartingale, supermartingale), we are asserting XN

is integrable, ZN is a decision sequence, XN ∼ ZN, and XN is a MG (SMG, SRMG) relative to ZN.
De�nition. If YN is integrable and ZN is a decision sequence, then

1. YN is absolutely fair relative to ZN i�

YN ∼ ZN and E [Yn+1|Wn] = 0 a.s. ∀ n ∈ N (1.11)

2. YN is favorable relative to ZN i�

YN ∼ ZN and E [Yn+1|Wn] ≥ 0 a.s. ∀ n ∈ N (1.12)

3. YN is unfavorable relative to ZN i�

YN ∼ ZN and E [Yn+1|Wn] ≤ 0 a.s. ∀ n ∈ N (1.13)

Notation. When we write (YN, ZN) is absolutely fair (favorable, unfavorable), we are asserting YN is
integrable, ZN is a decision sequence, YN ∼ ZN, and YN is absolutely fair (favorable, unfavorable) relative
to ZN. IXA2-2

Theorem 1.1: IXA2-1
If XN is a basic sequence and YN is the corresponding incremental sequence, then

1. (XN, ZN) is a martingale i� (YN, ZN) is absolutely fair.
2. (XN, ZN) is a submartingale i� (YN, ZN) is favorable.
3. (XN, ZN) is a supermartingale i� (YN, ZN) is unfavorable.

Proof:
Let * be any one of the symbols =, ≥, or ≤. Then by linearity and (CE7)

E [Xn+1|Wn] = E [Yn+1|Wn] + E [Xn|Wn] = E [Yn+1|Wn] + Xn ∗
Xn a.s. iff E [Yn+1|Wn] ∗ 0 a.s.

(1.14)

Remarks

1. (XN, ZN) is a SMG i� (−XN, ZN) is a SRMG
2. We write (S)MG to indicate the same statement can be made for a MG or a SMG with the appropriate

choice of = or ≥
3. We write (≥) to indicate simultaneously two cases:

• (≥) read as = in all places (for a MG)
• (≥) read as ≥ in all places (for a SMG)

1.1.3 Some Basic Patterns

Theorem 1.2: IXA3-1
If (XN, ZN) is a (S)MG and XN ∼ HN, with HN ∼ ZN, then (XN, HN) is a (S)MG.
Proof:
Let Kn = (H0, H1, · · · , Hn). By (CE9), the (S)MG de�nition, monotonicity, and (CE7)

E [Xn+1|Kn] = E{E [Xn+1|Wn] |Kn} (≥) E [Xn|Kn] = Xn a.s. (1.15)

10 CHAPTER 1. MARTINGALE SEQUENCES

Theorem 1.3: IXA3-2
For integrable XN ∼ ZN, the following are equivalent

a (XN, ZN) is a (S)MG

b E [Xn+k|Wn] (≥) Xn a.s. ∀ n, k ∈ N

c E [ICXn+1] (≥) E [ICXn] ∀ C ∈ σ (Wn)

∀ n ∈ N

d E [ICXn+k] (≥) E [ICXn] ∀ C ∈ σ (Wn)

∀ n, k ∈ N
Proof:

b ⇒ a: as a special case
a ⇒ b: By (CE9), (a), and monotonicity

E [Xn+k|Wn] = E{E [Xn+k|Wn+k−1] |Wn} (≥) E [Xn+k−1|Wn] a.s. (1.16)

k − 1 iterations yield E [Xn+k|Wn] (≥) Xn a.s.
d ⇒ c: as a special case
c ⇒ a: By (CE1) and (c), E [ICXn+1] = E{ICE [Xn+1|Wn]} (≥) E [ICXn] a.s. . Since

Xn ∼Wn a.s. and E [Xn+1|Wn] ∼Wn a.s. , the result follows from the uniqueness property
(E5)

b ⇒ d: By (CE1), (b), and monotonicity E [ICXn+k] = E{ICE [Xn+k|Wn]} (≥) E [ICXn]

We thus have d⇒ c⇒ a⇔ b⇒ d

Corollary 1.1: IXA3-3
If (XN, ZN) is a (S)MG, then E [Xn+k] (≥) E [Xn] (≥) E [X0]
Theorem 1.4: IXA3-4
(XN, ZN) is a (S)MG i� E [Xq −Xp|Wn] (≥) 0 a.s. ∀ n ≤ p < q ∈ N
Proof:
EXERCISE. Note Xq −Xp = Yp+1 + · · · + Yq

IXA3-2

Theorem 1.5: IXA3-5
If (XN, ZN) is an L2 MG, then

E [Xq −Xp] = 0 ∀ p < q ∈ N

E [Xn (Xq −Xp)] = 0 ∀ n ≤ p < q ∈ N

E [(Xn −Xm) (Xq −Xp)] = 0 ∀ m < n ≤ p < q ∈ N

E [XpXq] = E
[
X2
p∧q
]

∀ p, q ∈ N

E
[
(Xq −Xp)

2
]

= E
[
X2
q

]
− E

[
X2
p

]
≥ 0 ∀ p < q ∈ N

E
[
X2
p

]
=
∑p
k=0E

[
Y 2
k

]
∀ p ∈ N

Proof:

a. E [Xq −Xp] = E{E [Xq −Xp|Wn]} = 0 by (CE1b) and Thm IXA3-4
b. E [Xn (Xq −Xp)] = E{XnE [Xq −Xp|Wn]} = 0 by (CE1b), (CE8), and Thm IXA3-4
c. As in b, since Xn −Xm ∼Wn

11

d. Suppose p < q. Then, since Xp ∼Wp, E [XpXq] = E{XpE [Xq|Wp]} = E
[
X2
p

]
by de�nition

of MG. For q < p, interchange p, q in the argument above.

e. E
[
(Xq −Xp)

2
]

= E
[
X2
q

]
− 2E [XpXq] +E

[
X2
p

]
= E

[
X2
q

]
− 2E

[
X2
p

]
+E

[
X2
p

]
by d, above

f. By c, E [YjYk] = 0 for j 6= k. Hence, E
[
X2
p

]
= E

[
(
∑p
k=0 Yk)2

]
=
∑
j

∑
k E [YjYk] =∑p

k=0E
[
Y 2
k

]
A variety of weighted sums of increments are useful.

Theorem 1.6: IXA3-6
Suppose (XN, ZN) is a (S)MG and YN is the incremental sequence. Let H0 be a (nonnegative)
constant and let Hn ∼Wn−1, n ≥ 1, be bounded (nonnegative). Set

X∗n =
n∑
k=0

HkYk =
n∑
k=0

Y ∗k ∀ n ∈ N (1.17)

Then (X∗N, ZN) is a (S)MG.
Proof:
E
[
Y ∗n+1|Wn

]
= E [Hn+1Yn+1|Wn] = Hn+1E [Yn+1|Wn] a.s. by (CE8)

For MG case: E
[
Y ∗n+1|Wn

]
= 0 a.s. for arbitrary bounded Hn

For SMG case: E
[
Y ∗n+1|Wn

]
≥ 0 a.s. for Hn ≥ 0, bounded

The conclusion follows from Theorem 1.1, IXA2-1, p. 9

Remark. This result extends the pattern in the introductory gambling example. Theorem 1.4, IXA3-4,
p. 10 IXA3-3

Theorem 1.7: IXA3-7
In Theorem IXA3-6 (Theorem 1.6, IXA3-6, p. 11), if E [X0] ≥ 0 and 0 ≤ Hn ≤ 1a.s.∀n ∈ N, then

0 ≤ E [X∗n] ≤ E [Xn]∀n ∈ N
Proof:
E [Yn+1|Wn] ≥ Hn+1E [Yn+1|Wn] (≥) 0 a.s. , by hypothesis, and Hn+1E [Yn+1|Wn] =

E
[
Y ∗n+1|Wn

]
a.s. , by (CE8). Thus, by monotonicity and (CE1b)

E [Yn+1] (≥) E
[
Y ∗n+1

]
(≥) 0 ∀ n ∈ N and E [Y0] = E [X0] ≥ H0E [Y0] = E [Y ∗0] (1.18)

Hence

E [Xn] =
n∑
k=0

E [Yk] ≥
n∑
k=0

E [Y ∗k] = E [X∗n] ≥ 0 (1.19)

Some important special cases

Theorem 1.8: IXA3-8
Suppose integrable XN ∼ ZN. If Xn+1 −Xn (≥) 0a.s.∀n ∈ N, then (XN, ZN) is a (S)MG.
Proof:
Apply monotonicity and Theorem IXA3-4 (Theorem 1.4, IXA3-4, p. 10)

Theorem 1.9: IXA3-9
Suppose XN has independent increments.

a. If E [Xn] = c, invariant with n, then XN is a MG.
b. If E [Xn+1 −Xn] (≥) 0,∀n ∈ N, then (XN is a (S)MG.

12 CHAPTER 1. MARTINGALE SEQUENCES

Proof:

b. For any n, consider any C ∈ σ (Un). By independent increments, {IC , (Xn+1 −Xn)}
is independent. Hence, E [ICXn+1] − E [ICXn] = E [IC (Xn+1 −Xn)] =
E [IC]E [(Xn+1 −Xn)] (≥) 0. The desired result follows from Theorem IXA3-2(c) (Theo-
rem 1.3, IXA3-2, p. 10).

Theorem 1.10: IXA3-10
Suppose g is a convex Borel function on an interval I which contains the range of all Xn and
E [|g (Xn) |] <∞∀n ∈ N, Let Hn = g (Xn)∀n ∈ N,

a. If (XN, ZN) is a MG, then (HN, ZN) is a SMG.
b. If g is nondecreasing and (XN, ZN) is a SMG, then so is (HN, ZN)

Proof:

a. : By Jensen's inequality and the de�nition of a MG

E [g (Xn+1) |Wn] ≥ g (E [Xn+1|Wn]) = g (Xn) a.s. (1.20)

b. : By Jensen's inequality

E [g (Xn+1) |Wn] ≥ g (E [Xn+1|Wn]) a.s. (1.21)

Since E [Xn+1|Wn] ≥ Xn a.s. and g is nondecreasing, we have

g (E [Xn+1|Wn]) ≥ g (Xn) a.s. (1.22)

Some commonly utilized convex functions

1. g (t) = |t|
2. g (t) = t2g is increasing for t ≥ 0
3. g (t) = u (t) t g (Xn) = X+

n g nondecreasing for all t
4. g (t) = − u (−t) tg (Xn) = X−n g nonincreasing for all t
5. g (t) = eat, a > 0g is increasing for all t

Theorem 1.11: IXA3-11
Consider integrable XN ∼ ZN.

a. If E [Xn+1|Wn] = aXna.s.∀n and X∗n = 1
anXn∀n, then (X∗N, ZN) is a MG

b. If E [Xn+1|Wn] ≥ aXna.s., a > 0,∀n and X∗n = 1
anXn∀n, then (X∗N, ZN) is a SMG

Proof:

E
[
X∗n+1|Wn

]
=

1
an+1

E [Xn+1|Wn] (≥)
1

an+1
aXn = X∗n a.s. (1.23)

The restrictionl a > 0 is needed in the ≥ case.

13

1.2 Martingale Sequences: Examples and Further Patterns2

1.2.1 Examples and further patterns

Theorem 1.12: A4-1 Sums of Independent Random Variables
Suppose YN is an independent, integrable sequence. Set Xn =

∑n
k=0 Yk ∀ n ≥ 0.

If E [Yn] (≥) 0 ∀ n ≥ 1, then XN is a (S)MG.

Theorem 1.13: A4-2 Products of nonnegative random variables
Suppose YN ∼ ZN, Yn ≥ 0a.s.∀n. Consider XN : Xn = c

∏n
k=0 Yk, c > 0.

If E [Yn+1|Wn] (≥) 1 a.s. ∀ n, then (XN, ZN) is a (S)MG
Proof:
Xn ∼Wn and Xn+1 = Yn+1Xn. Hence, E [Xn+1|Wn] = Xn E [Zn+1|Wn] (≥) Xn a.s. ∀ n

Theorem 1.14: A4-3 Discrete random walk
Consider Y0 = 0 and {Yn : 1 ≤ n} iid. Set Xn =

∑n
k=0 Yk∀n ≥ 0. Suppose P (Yn = k) = pk. Let

gY (s) = E
[
sYn
]

=
∑
k

pks
k, s > 0 (1.24)

Now gY (1) = 1, g'Y (1) = E [Yn] , g''Y (s) =
∑
k k (k − 1) pksk−2 > 0 for s > 0. Hence, gY (s) = 1

has at most two roots, one of which is s = 1.

a. s = 1 is a minimum point i� E [Yn] = 0, in which case XN is a MG (see A4-1 (Theorem 1.12,
A4-1 Sums of Independent Random Variables, p. 13))

b. If gY (r) = 1 for 0 < r < 1, then E
[
rYn
]

= 1∀n ≥ 1. Let Z0 = 1, Zn = rXn =
∏n
k=1 r

Yk . By
A4-2, ZN is a MG

For the MG case in Theorem IXA3-6, the Yn are centered at conditional expectation; that is
E [Yn+1|Wn] = 0 a.s. The following is an extension of that pattern.

Theorem 1.15: A4-4 More general sums
Consider integrable YN ∼ ZN and bounded HN ∼ ZN. LetWn = a constant for n < 0 and Hn = 1
for n < 0. Set

Xn =
n∑
k=0

{Yk − E [Yk|Wk−1]}Hk−1 ∀ n ≥ 0 (1.25)

Then (XN, ZN) is a MG.
Proof:
Xn ∼Wn;∀n ≥ 0 and E [Xn+1|Wn] = Xn +HnE{Yn+1 − E [Yn+1|Wn] |Wn} = Xn + 0a.s.

IXA4-2

Theorem 1.16: A4-5 Sums of products
Suppose YN is absolutely fair relative to ZN, with E

[
|Yn|k

]
<∞∀n, �xed k > 0. For n ≥ k, set

Xn =
∑

0≤i1<···≤n

Yi1Yi2 · · ·Yik ∼ Gn (1.26)

Then (XNk
, ZNk

) Nk = {k, k + 1, k + 2, · · · } is a MG,

2This content is available online at <http://cnx.org/content/m31067/1.3/>.

14 CHAPTER 1. MARTINGALE SEQUENCES

Proof:
Xn+1 = Xn +Kn+1, where

Kn+1 = Yn+1

∑
0≤i1<···≤n

Yi1Yi2 · · ·Yik−1 = Yn+1K
∗
n K∗n ∼Wn (1.27)

E [Kn+1|Wn] = K∗nE [Yn+1|Wn] = 0 a.s. ∀ n ≥ k (1.28)

We consider, next, some relationships with homogeneous Markov sequences.
Suppose (XN, ZN) is a homogeneous Markov sequence with �nite state space E = {1, 2, · · · , M}

and transition matrix P = [p (i, j)]. A function f on E is represented by a column matrixf =
[f (1) , f (2) , · · · , f (M)]T . Then f (Xn) has value f (k) when Xn = k. Pf is an m × 1 column matrix
and Pf (j) is the jth element of that matrix. Consider E [f (Xn+1) |Wn] = E [f (Xn+1) |Xn] a.s. . Now

E [f (Xn+1) |Xn = j] =
∑
k∈E

f (k) p (j, k) = Pf (j) so that E [f (Xn+1) |Wn] = Pf (Xn) (1.29)

A nonnegative function f on E is called (super)harmonic for P i� Pf (≤) f .
Theorem 1.17: A4-6 Positive supermartingales and superharmonic functions.
Suppose (XN, ZN) is a homogeneous Markov sequence with �nite state space E = {1, 2, · · · , M}
and transition matrix P = [p (i, j)]. For nonnegative f on E, let Yn = f (Xn) ∀ n ∈ N. Then
(YN, ZN) is a positive (super)martingale P(SR)MG i� f is (super)harmonic for P.
Proof:
As noted above E [f (Xn+1) |Wn] = Pf (Xn).

1. If f is (super)harmonic Pf (Xn) (≤) f (Xn) = Yn, so that

E [Yn+1|Wn] (≤) Yn a.s. (1.30)

2. If (YN, ZN) is a P(SR)MG, then

Yn = f (Xn) (≥) E [f (Xn+1) |Wn] = Pf (Xn) a.s. , so that f is (super)harmonic (1.31)

IX A4-3
An eigenfunction f and associated eigenvalue λ for P satisfy Pf = λf (i.e., (λI − P) f = 0). In most

cases, |λ| < 1. For real λ, 0 < λ < 1, the eigenfunctions are superharmonic functions. We may use the
construction of Theorem IXA3-12 to obtain the associated MG.

Theorem 1.18: A4-7 Martingales induced by eigenfunctions for homogeneous Markov sequences
Let (YN, ZN) be a homogenous Markov sequence, and f be an eigenfunction with eigenvalue λ.
Put Xn = λ−nf (Yn). Then, by Theorem IAXA3-12, (XN, ZN) is a MG.

Theorem 1.19: A4-8 A dynamic programming example.
We consider a horizon of N stages and a �nite state space E = {1, 2, · · · , M}.

• Observe the system at prescribed instants
• Take action on the basis of previous states and actions.

Suppose the observed state is j and the action is a ∈ A. Two results ensue:

1. A return r (j, a) is realized

15

2. The system moves to a new state

Let:
Yn = state in nth period, 0 ≤ n ≤ N − 1
An = action taken on the basis of Y0, A0, · · · , Yn−1, An−1, Yn
[A0 is the initial action based on the initial state Y0]
A policyπ is a set of functions (π0, π1, · · · , πN−1), such that

An = πn (Y0, A0, · · · , Yn−1, An−1, Yn) 0 ≤ n ≤ N − 1 (1.32)

The expected return under policy π, when Y0 = j0 is

R (π, j0) = E

[
N−1∑
k=0

r (Yk, Ak)

]
(1.33)

The goal is to determine π to maximize R (π, j0).
Let Zk = (Yk, Ak) and Wn = (Z0, Z1, · · · , Zn). If {Yk : 0 ≤ k ≤ N − 1} is Markov, then use

of (CI9) and (CI11) shows that for any policy the Z-process is Markov. Hence

E [IM (Yn+1) | Wn] = E [IM (Yn+1) | Zn] a.s. ∀ n : 0 ≤ n ≤ N − 1, ∀ Borel setsM (1.34)

We assume time homogeneity in the sense that

P (Yn+1 = j|Yn = i, An = a) = p (j|i, a) , invariant with n, ∀ i, j ∈ E, ∀ a ∈ A (1.35)

We make a dynamic programming approach

De�ne recursively fN , fN−1, · · · , f0 as follows:
fN (j) = 0,∀j ∈ E. For n = N,N − 1, · · · , 2, 1, set

fn−1 (j) = max {r (j, a) +
∑
k∈E

fn (k) p (k|j, a) : a ∈ A} (1.36)

Put

Xn =
n∑
k=1

{fk (Yk)− E [fk (Yk) |Wk−1]} (1.37)

Then, by A4-2 (Theorem 1.13, A4-2 Products of nonnegative random variables, p. 13), (XN, ZN)
is a MG, with E [Xn] = 0, 0 ≤ n ≤ N and

fn−1 (Yn−1) ≥ r (Yn−1 , An−1) +
∑
k∈E

fn (k) p (k|Zn−1) = r (Yn−1 , An−1) + E [fn (Yn) |Wn−1] (1.38)

IX A4-4
We may therefore assert

0 = E [XN] = E
(∑N

k=1{fk (Yk)− E [fk (Yk) |Wk−1]}
)

≥

E
(∑N

k=1{fk (Yk) + r (Yk−1, Ak−1)− fk−1 (Yk−1)}
) (1.39)

= E

[
N−1∑
k=0

r (Yk, Ak) + fN (YN)− f0 (Y0)

]
= E

[
N−1∑
k=0

r (Yk, Ak)

]
− E [f0 (Y0)] (1.40)

16 CHAPTER 1. MARTINGALE SEQUENCES

Hence, R (π, Y0) ≤ E [f0 (Y0)]. For Y0 = j0, R (π, j0) ≤ f0 (j0). If a policy π* can be found
which yields equality, then π* is an optimal policy.

The following procedure leads to such a policy.

• For each j ∈ E, let π∗n−1 (Y0, A0, Y1, A1, · · · , An−2, j) = π∗n−1 (j) be the action which maximizes

r (j, a) +
∑
k∈E

fn (k) p (k|j, a) = r (j, a) + E [fn (Yn) |Yn−1 = j, An−1 = a] (1.41)

Thus, A∗n = π∗n (Yn).
• Now, fn−1 (Yn−1) = r

(
Yn−1, A

∗
n−1

)
−E

[
fn (Yn) |Z∗n−1

]
, which yields equality in the argument above.

Thus, R (π∗, j) = f0 (j) and π* is optimal.

Note that π* is a Markov policy, A∗n = π∗n (Yn). The functions fn depend on the future stages, but once
determined, the policy is Markov.

Theorem 1.20: A4-9 Doob's martingale
Let X be an integrable random variable and ZN an arbitrary sequence of random vectors. For each
n, let Xn = E [X|Wn]. Then (XN, ZN) is a MG.
Proof:

E [|Xn|] = E{|E [X|Wn] |} ≤ E{E [|X| |Wn]} = E [|X|] <∞ (1.42)

E [Xn+1|Wn] = E{E [X|Wn+1] |Wn} = E [X|Wn] = Xn a.s. (1.43)

Theorem 1.21: A4-9a Best mean-square estimators
If X ∈ L2, then Xn = E [X|Wn] is the best mean-square estimator of X, given Wn =

(Z0, Z1, · · · , Zn). (XN, ZN) is a MG.

Theorem 1.22: A4-9b Futures pricing
Let XN be a sequence of �spot� prices for a commodity. Let t0 be the present and t0 + T be a
�xed future. The agent can be expected to know the past history Ut0 = (X0, X1, · · · , Xt0), and
will update as t increases beyond t0. Put Yk = E [Xt0+T |Ut0+k], the expected futures price, given
the history up to t0 + k. Then {Yk : 0 ≤ k ≤ T} is a Doob's MG, with Y = Xt0+T , relative to
{Zk : 0 ≤ k ≤ T}, where Z0 = Ut0 and Zk = Xt0+k for 1 ≤ k ≤ T .
Theorem 1.23: A4-9c Discounted futures
Assume rate of return is r per unit time. Then α = 1/ (1 + r) is the discount factor. Let

Vk = E
[
αT−kXt0+T |Ut0+k

]
= αT−kYk (1.44)

Then

E [Vk+1|Ut0+k] = αT−kE [Yk+1|Ut0+k] = αT−k−1Yk > αT−kYk = Vk a.s. (1.45)

Thus {Vk : 0 ≤ k ≤ T} is a SMG relative to {Zk : 0 ≤ k ≤ T}.
Implication from martingale theory is that all methods to determine pro�table patterns of prediction

from past history are doomed to failure.
IX A4-5

17

Theorem 1.24: A4-10 Present discounted value of capital
If α = 1/ (1 + r) is the discount factor, Xn is the dividend at time n, and Vn is the present value,
at time n, of all future returns, then

Vn =
∞∑
k=1

αkXn+k so that Vn+1 =
∞∑
k=1

αkXn+k+1 =
∞∑
k=2

αk−1Xn+k (1.46)

=
1
α

∞∑
k=1

αkXn+k − Xn+1 = (1 + r)Vn − Xn+1 (1.47)

Note that Vn+1 (≥) Vn i� r (≥) Xn+1/Vn. Set Yn = E [Vn|Un]. Then Yn+1 =
(1 + r)E [Vn|Un+1]−Xn+1 a.s. so that

E [Yn+1|Un] = (1 + r)Yn − E [Xn+1|Un] (1.48)

Thus, (YN, XN) is a (S)MG i�

r (≥)
E [Xn+1|Un]
E [Vn|Un]

=
Expected return next period, given Un

Expected present value, given Un
(1.49)

1.2.2 Summary: Convergence of Submartingales

The submartingale convergence theorem

Theorem 1.25:
If (XN, ZN) is a SMG with lim

n
E [X+

n] <∞, then there existsX∞ ∼W∞ such thatXn → X∞ a.s.

Uniform integrability and some convergence conditions
De�nition. The class {Xt : t ∈ T} is uniformly integrable i�

sup{E
[
I{|Xt|>a}|Xt|

]
: t ∈ T} → 0 as a→∞ (1.50)

Theorem 1.26:
Any of the following conditions ensures uniform integrability:

1. The class is dominated by an integrable random variable Y.
2. The class is �nite and integrable.
3. There is a u.i. class {Yt : t ∈ T} such that |Xt| ≤ |Yt| a.s. for all t ∈ T .
4. X integrable implies Doob's MG {Xn = E [X|Wn] : n ∈ N} is u.i.

De�nition. The class {Xt : t ∈ T} is uniformly absolutely continuous i� for each ε > 0 there is a δ > 0
such that P (A) < δ implies sup

T
{E [IA|Xt|] : t ∈ T} < ε.

Theorem 1.27:
XT = {Xt : t ∈ T} is u.i. i� both (i) XT is u.a.c., and (ii) sup

T
{E [|Xt|]} <∞.

De�nition. Xn
P→ X i� P (|Xn −X| > ε)→ as n→∞ for all ε > 0.

Xn
Lp→ X i� E [|Xn −X|p]→ 0 as n→∞ (1.51)

Theorem 1.28:
Xn → X a.s. implies Xn

P→ X

18 CHAPTER 1. MARTINGALE SEQUENCES

Theorem 1.29:
If (i) Xn

Lp→ X, (ii) Xn → X a.s. and (iii) lim
n
E [Xn|Z] exists a.s., then

lim
n
E [Xn|Z] = E [X|Z] a.s. (1.52)

Theorem 1.30:
Suppose (XN, ZN) is a (S)MG. Consider the following

(A) : lim
n
E [X+

n] <∞ or, equivalently, sup
n
E [|Xn|] <∞ - - - - - - - - - - - -

(a) : XN is uniformly integrable.
(a+) : X+

N is uniformly integrable.

(b) : Xn
L1

→ X.

(b+) : X+
n

L1

→ X.
(c) : There is an integrable X∞ ∼W∞ such that

Xn → X∞ a.s. and E [X∞|Wn] (≥) Xn a.s. ∀ n ∈ N (1.53)

(c') : Condition (c) with ≥ even for a MG.
(d) : There is an integrable X with E [X|Wn] (≥) Xn a.s. ∀ n ∈ N
(d') : Condition (d) with ≥ even for a MG.

Then

1. Each of the propositions (a) through (d') implies (A), hence SMG convergence.
2. (a) ⇒ (a+)
3. (a) ⇔ (b) ⇒ (c) ⇒ (d)
4. (a+) ⇔ (b+) ⇔ (c') ⇔ (d')
5. For a MG, (d) ⇒ (a), so that (a) ⇔ (b) ⇔ (c) ⇔ (d)

The notion of regularity is characterized in terms of the conditions in the theorem.
De�nition. A martingale (XN, ZN) is said to be martingale regular i� the equivalent conditions (a),

(b), (c), (d) in the theorem hold.
A submartingale (XN, ZN) is said to be submartingale regular i� the equivalent conditions (a+),

(b+), (c'), (d') in the theorem hold.
Remarks

1. Since a MG is a SMG, a martingale regular MG is also submartingale regular.
2. It is not true, in general that a submartingale regular SMG is martingale regular. We do have for SMG

(a) ⇔ (b) ⇒ (c) ⇒ (d).
3. Regularity may be viewed in terms of membership of X∞ in the (S)MG. The condition
E [X∞|Wn] (≥)Xna.s. is indicated by saying X∞ belongs to the (S)MG or by saying the (S)MG
is closed (on the right) by X∞.

Summary
For a martingale(XN, ZN)

1. If martingale regular, then Xn → X∞ ∼ W∞a.s. and Xn = E [X∞|Wn] a.s.∀n ∈ NE [Xn+k|Wn] =
E{E [X∞|Wn+k] |Wn} = E [X∞|Wn] = Xna.s. and E [X0] = E [Xn] = E [X∞]∀n ∈ N

2. If submartingale regular, but not martingale regular, then Xn → X∞ ∼ W∞a.s. but E [X∞|Wn] ≥
Xna.s.∀n ∈ N and E [X0] = E [Xn] ≤ E [X∞] <∞∀n ∈ N

19

For a submartingale(XN, ZN)
Either martingale regularity or submartingale regularity implies
Xn → X∞ ∼W∞ a.s. and Xn ≤ E [Xn+1|Wn] ≤ E [X∞|Wn] a.s. ∀ n ∈ N
and E [X0] ≤ E [Xn] ≤ E [X∞] <∞ ∀ n ∈ N
If XN is uniformly integrable, then E [Xn]→ E [X∞].
Theorem 1.31:
If (XN, ZN) is a MG with E

[
X2
n

]
< K∀nßN, then the proceess is MG regular, with

Xn → X∞ a.s. E
[
(X∞ −Xn)2

]
→ 0 and E [Xn] = E [X∞] ∀ n ∈ N (1.54)

20 CHAPTER 1. MARTINGALE SEQUENCES

Chapter 2

Markov Procedures for Markov Decision

Processes

2.1 A Reorder problem� Electronic Store1

2.1.1 A reorder problem

Example 2.1
An electronic store stocks a certain type of DVD player. At the end of each week, an order is placed
for early delivery the following Monday. A maximum of four units is stocked. Let the states be the
number of units on hand at the end of the sales week: E = {0, 1, 2, 3, 4}. Two possible actions:

• Order two units, at a cost of $150 each
• Order four units, at a cost of $120 each

Units sell for $200. If demand exceeds the stock in hand, the retailer assumes a penalty of $40
per unit (in losses due to customer dissatisfaction, etc.). Because of turnover, return on sales is
considered two percent per week, so that discount is α = 1/1.02 on a weekly basis.

In state 0, there are three possible actions: order 0, 2, or 4. In states 1 and 2 there are two
possible actions: order 0 or 2. In states 3 and 4, the only action is to order 0. Customer demand
in week n+ 1 is represented by a random variable Dn+1. The class is iid, uniformly distributed on
the values 0, 1, 2, 3, 4. If Xn is the state at the end of week n, then {Xn, Dn+1} is independent
for each n.

Analyze the system as a Markov decision process with type 3 gains, depending upon current
state, action, and demand. Determine the transition probability matrix PA (properly padded) and
the gain matrix (also padded). Sample calculations are as follows:

State 0, action 0: p00 (0) = 1(all otherp0k (0) = 0

State 0, action 2: p00 (2) = P (D ≥ 2) = 3/5, p01 (2) = P (D = 1) = 1/5, etc.

State 2, action 2: p2j (k) = 1/5, k = 0, 1, 2, 3, 4
For state = i, action = a, and demand = k, we seek g (i, a, k)

g (0, 0, k) = −40k 0 -40 -80 -120 -160

g (0, 2, k) = −300 + 200min{k, 2} − 40max{k − 2, 0} -300 -100 100 60 20

g (0, 4, k) = −480 + 200k -480 -280 -80 120 320

1This content is available online at <http://cnx.org/content/m31073/1.4/>.

21

22
CHAPTER 2. MARKOV PROCEDURES FOR MARKOV DECISION

PROCESSES

1. Complete the transition probability table and the gain table.
2. Determine an optimum in�nite-horizon strategy with no discounting.
3. Determine an optimum in�nite-horizon strateby with discounting (alpha = 1/1.02).
4. The manager decides to set up a six-week strategy, after which new sales conditions may be

established. Determine an optimum strategy for the six-week period.

Data �le

% file orderdata.m

% Version of 4/5/94

% Data organized for computation

type = 3;

states = 0:4;

= [0 2 4 ... % Actions (padded)

0 2 02 ...

0 2 02 ...

0 00 00 ...

0 00 00];

C = [0 -300 -480 ... % Order costs (padded)

0 -300 -300 ...

0 -300 -300 ...

0 0 0 ...

0 0 0];

SP = 200; % Selling price

BP = 40; % Backorder penalty

PD = 0.2*ones(1,5); % Demand probabilities

2.1.2 Transition Probabilities and Gains

The procedure

% file reorder.m

% Version of 4/11/94

% Calculates PA and GA for reorder policy

states = input('Enter row vector of states ');

A = input('Enter row vector A of actions (padded) ');

C = input('Enter row vector C of order costs (padded) ');

D = input('Enter row vector D of demand values ');

PD = input('Enter row vector PD of demand probabilities ');

SP = input('Enter unit selling price SP ');

BP = input('Enter backorder penalty cost BP ');

m = length(states');

q = length(A);

na = q/m;

N = length(D);

S = ones(na,1)*states;

S = S(:)';

[d,s] = meshgrid(D,S);

a = A'*ones(1,N);

ca = C'*ones(1,N);

TA = (s + a - d).*(s + a - d >= 0);

23

for i = 1:q

PA(i,:) = tdbn(states,TA(i,:),PD);

end

PA

GA = ca + SP*d - (SP + BP)*(d -s -a).*(d > s+a)

The calculations

orderdata

reorder

Enter row vector of states states

Enter row vector A of actions (padded) A

Enter row vector C of order costs (padded) C

Enter row vector D of demand values D

Enter row vector PD of demand probabilities PD

Enter unit selling price SP SP

Enter backorder penalty cost BP BP

PA =

1.0000 0 0 0 0

0.6000 0.2000 0.2000 0 0

0.2000 0.2000 0.2000 0.2000 0.2000

0.8000 0.2000 0 0 0

0.4000 0.2000 0.2000 0.2000 0

0.4000 0.2000 0.2000 0.2000 0

0.6000 0.2000 0.2000 0 0

0.2000 0.2000 0.2000 0.2000 0.2000

0.2000 0.2000 0.2000 0.2000 0.2000

0.4000 0.2000 0.2000 0.2000 0

0.4000 0.2000 0.2000 0.2000 0

0.4000 0.2000 0.2000 0.2000 0

0.2000 0.2000 0.2000 0.2000 0.2000

0.2000 0.2000 0.2000 0.2000 0.2000

0.2000 0.2000 0.2000 0.2000 0.2000

GA =

0 -40 -80 -120 -160

-300 -100 100 60 20

-480 -280 -80 120 320

0 200 160 120 80

-300 -100 100 300 260

-300 -100 100 300 260

0 200 400 360 320

-300 -100 100 300 500

-300 -100 100 300 500

0 200 400 600 560

0 200 400 600 560

0 200 400 600 560

0 200 400 600 800

0 200 400 600 800

0 200 400 600 800

In�nite-horizon strategy (no discounting)

polit

24
CHAPTER 2. MARKOV PROCEDURES FOR MARKOV DECISION

PROCESSES

Data needed:

- - - - - - - - - - - - - - -

Enter case number to show gain type case

Enter row vector of states states

Enter row vector A of possible actions A

Enter value of alpha (= 1 for no discounting) 1

Enter matrix PA of transition probabilities PA

Enter matrix GA of gains GA

Enter row vector PD of demand probabilities PD

Index Action Value

0 -80

2 2 -44

3 4 -80

4 0 112

5 2 52

6 2 52

7 0 256

8 2 100

9 2 100

10 0 352

11 0 352

12 0 352

13 0 400

14 0 400

15 0 400

Initial policy: action numbers

2 1 1 1 1

Policy: actions

2 0 0 0 0

New policy: action numbers

3 2 2 1 1

Policy: actions

4 2 2 0 0

Long-run distribution

0.2800 0.2000 0.2000 0.2000 0.1200

Test values for selecting new policy

Index Action Test Value

1.0000 0 -248.0000

2.0000 2.0000 -168.8000

3.0000 4.0000 -41.6000

4.0000 0 -48.8000

5.0000 2.0000 -5.6000

6.0000 2.0000 -5.6000

7.0000 0 131.2000

8.0000 2.0000 138.4000

9.0000 2.0000 138.4000

10.0000 0 294.4000

11.0000 0 294.4000

12.0000 0 294.4000

13.0000 0 438.4000

25

14.0000 0 438.4000

15.0000 0 438.4000

Optimum policy

State Action Value

0 4.0000 -168.0000

1.0000 2.0000 -132.0000

2.0000 2.0000 12.0000

3.0000 0 168.0000

4.0000 0 312.0000

Long-run expected gain per period G

126.4000

In�nite-horizon strategy (with discounting)

polit

Data needed:

- - - - - - - - - - - - - - -

Enter type number to show gain type

Enter row vector of states states

Enter row vector A of possible actions A

Enter value of alpha (= 1 for no discounting) 1/1.02

Enter matrix PA of transition probabilities PA

Enter matrix GA of gains GA

Enter row vector PD of demand probabilities PD

Index Action Value

1 0 -80

2 -44

3 -80

4 0 112

5 2 52

6 2 52

7 0 256

8 2 100

9 2 100

10 0 352

11 0 352

12 0 352

13 0 400

14 0 400

15 0 400

Initial policy: action numbers

2 1 1 1 1

Policy: actions

2 0 0 0 0

New policy: action numbers

3 2 2 1 1

Policy: actions

4 2 2 0 0

Test values for selecting policy

Index Action Test Value

26
CHAPTER 2. MARKOV PROCEDURES FOR MARKOV DECISION

PROCESSES

1.0e+03 *

0.0010 0 6.0746

0.0020 0.0020 6.1533

0.0030 0.0040 6.2776

0.0040 0 6.2740

0.0050 0.0020 6.3155

0.0060 0.0020 6.3155

0.0070 0 6.4533

0.0080 0.0020 6.4576

0.0090 0.0020 6.4576

0.0100 0 6.6155

0.0110 0 6.6155

0.0120 0 6.6155

0.0130 0 6.7576

0.0140 0 6.7576

0.0150 0 6.7576

Optimum policy

State Action Value

1.0e+03 *

0 0.0040 6.2776

0.0010 0.0020 6.3155

0.0020 0.0020 6.4576

0.0030 0 6.6155

0.0040 0 6.7576

Finite-horizon calculations

dpinit

Initialize for finite horizon calculations

Matrices A, PA, and GA, padded if necessary

Enter case number to show gain type case

Enter vector of states states

Enter row vector A of possible actions A

Enter matrix PA of transition probabilities PA

Enter matrix GA of gains GA

Enter row vector PD of demand probabilities PD

Call for dprog

dprog

States and expected total gains

0 1 2 3 4

-44 112 256 352 400

States Actions

0 2

1 0

2 0

3 0

4 0

dprog

States and expected total gains

0 1.0000 2.0000 3.0000 4.0000

135.2000 178.4000 315.2000 478.4000 615.2000

States Actions

0 4

27

1 2

2 2

3 0

4 0

dprog

States and expected total gains

0 1.0000 2.0000 3.0000 4.0000

264.4800 300.4800 444.4800 600.4800 744.4800

States Actions

0 4

1 2

2 2

3 0

4 0

dprog

States and expected total gains

1.0000 2.0000 3.0000 4.0000

390.8800 426.8800 570.8800 726.8800 870.8800

States Actions

0 4

1 2

2 2

3 0

4 0

dprog

States and expected total gains

0 1.0000 2.0000 3.0000 4.0000

517.2800 553.2800 697.2800 853.2800 997.2800

States Actions

0 4

1 2

2 2

3 0

4 0

dprog

States and expected total gains

1.0e+03 *

0 0.0010 0.0020 0.0030 0.0040

0.6437 0.6797 0.8237 0.9797 1.1237

States Actions

0 4

1 2

2 2

3 0

4 0

28
CHAPTER 2. MARKOV PROCEDURES FOR MARKOV DECISION

PROCESSES

2.2 Markov Decision � Type 3 Gains2

Example 2.2
An electronic store stocks a certain type of VCR. At the end of each week, an order is placed for
early delivery the following Monday. A maximum of four units is stocked. Let the states be the
number of units on hand at the end of the sales week: Eb = {0, 1, 2, 3, 4} . Two possible actions:

• Order two units, at a cost of $150 each
• Order four units, at a cost of $120 each

Units sell for $200. If demand exceeds the stock in hand, the retailer assumes a penalty of $40
per unit (in losses due to customer dissatisfaction, etc.). Because of turnover, return on sales is
considered two percent per week, so that discount is α = 1/1.02 on a weekly basis.

In state 0, there are three possible actions: order 0, 2, or 4. In states 1 and 2 there are two
possible actions: order 0 or 2. In states 3 and 4, the only action is to order 0. Customer demand
in week n+ 1 is represented by a random variable Dn+1. The class is iid, uniformly distributed on
the values 0, 1, 2, 3, 4. If Xn is the state at the end of week n, then {Xn, Dn+1} is independent for
each n.

Analyze the system as a Markov decision process with case 3 gains, depending upon current
state, action, and demand. Determine the transition probability matrix PA (properly padded) and
the gain matrix (also padded). Sample calculations are as follows:

• State 0, action 0: p00 (0) = 1 (all other p0k (0) = 0)
• State 0, action 2: p00 (2) = P (D ≥ 2) = 3/5, p01 (2) = P (D = 1) = 1/5, etc.
• State 2, action 2: p2j (k) = 1/5, k = 0, 1, 2, 3, 4

For state = i, action = a, and demand = k, we seek g (i, a, k)

g (0, 0, k) = −40k 0 −40 −80 −120 −160

g (0, 2, k) = −300 + 200min{k, 2} − 40max{k − 2, 0} −300 −100 100 60 20

g (0, 4, k) = −480 + 200k −480 −280 −80 120 320

1. Complete the transition probability table and the gain table.
2. Determine an optimum in�nite-horizon strategy with no discounting.
3. Determine an optimum in�nite-horizon strateby with discounting (alpha = 1/1.02).
4. The manager decides to set up a six-week strategy, after which new sales conditions may be

established. Determine an optimum strategy for the six-week period.

Data �le

% file orderdata.m

% Version of 4/5/94

% Data organized for computation

type = 3;

states = 0:4;

A = [0 2 4 ... % Actions (padded)

2This content is available online at <http://cnx.org/content/m31065/1.3/>.

29

0 2 02 ...

0 2 02 ...

0 00 00 ...

0 00 00];

C = [0 -300 -480 ... % Order costs (padded)

0 -300 -300 ...

0 -300 -300 ...

0 0 0 ...

0 0 0];

SP = 200; % Selling price

BP = 40; % Backorder penalty

PD = 0.2*ones(1,5); % Demand probabilities

2.2.1 Transition Probabilities and Gains

The procedure

% file reorder.m

% Version of 4/11/94

% Calculates PA and GA for reorder policy

states = input('Enter row vector of states ');

A = input('Enter row vector A of actions (padded) ');

C = input('Enter row vector C of order costs (padded) ');

D = input('Enter row vector D of demand values ');

PD = input('Enter row vector PD of demand probabilities ');

SP = input('Enter unit selling price SP ');

BP = input('Enter backorder penalty cost BP ');

m = length(states');

q = length(A);

na = q/m;

N = length(D);

S = ones(na,1)*states;

S = S(:)';

[d,s] = meshgrid(D,S);

a = A'*ones(1,N);

ca = C'*ones(1,N);

TA = (s + a - d).*(s + a - d >= 0);

for i = 1:q

PA(i,:) = tdbn(states,TA(i,:),PD);

30
CHAPTER 2. MARKOV PROCEDURES FOR MARKOV DECISION

PROCESSES

end

PA

GA = ca + SP*d - (SP + BP)*(d -s -a).*(d > s+a)

The calculations

orderdata

reorder

Enter row vector of states states

Enter row vector A of actions (padded) A

Enter row vector C of order costs (padded) C

Enter row vector D of demand values D

Enter row vector PD of demand probabilities PD

Enter unit selling price SP SP

Enter backorder penalty cost BP BP

PA =

1.0000 0 0 0 0

0.6000 0.2000 0.2000 0 0

0.2000 0.2000 0.2000 0.2000 0.2000

0.8000 0.2000 0 0 0

0.4000 0.2000 0.2000 0.2000 0

0.4000 0.2000 0.2000 0.2000 0

0.6000 0.2000 0.2000 0 0

0.2000 0.2000 0.2000 0.2000 0.2000

0.2000 0.2000 0.2000 0.2000 0.2000

0.4000 0.2000 0.2000 0.2000 0

0.4000 0.2000 0.2000 0.2000 0

0.4000 0.2000 0.2000 0.2000 0

0.2000 0.2000 0.2000 0.2000 0.2000

0.2000 0.2000 0.2000 0.2000 0.2000

0.2000 0.2000 0.2000 0.2000 0.2000

GA =

0 -40 -80 -120 -160

-300 -100 100 60 20

-480 -280 -80 120 320

0 200 160 120 80

-300 -100 100 300 260

-300 -100 100 300 260

0 200 400 360 320

-300 -100 100 300 500

-300 -100 100 300 500

0 200 400 600 560

0 200 400 600 560

0 200 400 600 560

0 200 400 600 800

0 200 400 600 800

0 200 400 600 800

2.2.2 In�nite-horizon strategy (no discounting)

31

polit

Data needed:

- - - - - - - - - - - - - - -

Enter type number to show gain type type

Enter row vector of states states

Enter row vector A of possible actions A

Enter value of alpha (= 1 for no discounting) 1

Enter matrix PA of transition probabilities PA

Enter matrix GA of gains GA

Enter row vector PD of demand probabilities PD

Index Action Value

1 0 -80

2 2 -44

3 4 -80

4 0 112

5 2 52

6 2 52

7 0 256

8 2 100

9 2 100

10 0 352

11 0 352

12 0 352

13 0 400

14 0 400

15 0 400

Initial policy: action numbers

2 1 1 1 1

Policy: actions

2 0 0 0 0

New policy: action numbers

3 2 2 1 1

Policy: actions

4 2 2 0 0

Long-run distribution

0.2800 0.2000 0.2000 0.2000 0.1200

Test values for selecting new policy

Index Action Test Value

1.0000 0 -248.0000

2.0000 2.0000 -168.8000

3.0000 4.0000 -41.6000

4.0000 0 -48.8000

5.0000 2.0000 -5.6000

6.0000 2.0000 -5.6000

7.0000 0 131.2000

8.0000 2.0000 138.4000

9.0000 2.0000 138.4000

10.0000 0 294.4000

32
CHAPTER 2. MARKOV PROCEDURES FOR MARKOV DECISION

PROCESSES

11.0000 0 294.4000

12.0000 0 294.4000

13.0000 0 438.4000

14.0000 0 438.4000

15.0000 0 438.4000

Optimum policy

State Action Value

0 4.0000 -168.0000

1.0000 2.0000 -132.0000

2.0000 2.0000 12.0000

3.0000 0 168.0000

4.0000 0 312.0000

Long-run expected gain per period G

126.4000

2.2.3 In�nite-horizon strategy (with discounting)

polit

Data needed:

- - - - - - - - - - - - - - -

Enter case number to show gain type type

Enter row vector of states states

Enter row vector A of possible actions A

Enter value of alpha (= 1 for no discounting) 1/1.02

Enter matrix PA of transition probabilities PA

Enter matrix GA of gains GA

Enter row vector PD of demand probabilities PD

Index Action Value

1 0 -80

2 2 -44

3 4 -80

4 0 112

5 2 52

6 2 52

7 0 256

8 2 100

9 2 100

10 0 352

11 0 352

12 0 352

13 0 400

14 0 400

15 0 400

Initial policy: action numbers

2 1 1 1 1

Policy: actions

2 0 0 0 0

New policy: action numbers

3 2 2 1 1

Policy: actions

33

4 2 2 0 0

Test values for selecting policy

Index Action Test Value

1.0e+03 *

0.0010 0 6.0746

0.0020 0.0020 6.1533

0.0030 0.0040 6.2776

0.0040 0 6.2740

0.0050 0.0020 6.3155

0.0060 0.0020 6.3155

0.0070 0 6.4533

0.0080 0.0020 6.4576

0.0090 0.0020 6.4576

0.0100 0 6.6155

0.0110 0 6.6155

0.0120 0 6.6155

0.0130 0 6.7576

0.0140 0 6.7576

0.0150 0 6.7576

Optimum policy

State Action Value

1.0e+03 *

0 0.0040 6.2776

0.0010 0.0020 6.3155

0.0020 0.0020 6.4576

0.0030 0 6.6155

0.0040 0 6.7576

2.2.4 Finite-horizon calculations

dpinit

Initialize for finite horizon calculations

Matrices A, PA, and GA, padded if necessary

Enter type number to show gain type type

Enter vector of states states

Enter row vector A of possible actions A

Enter matrix PA of transition probabilities PA

Enter matrix GA of gains GA

Enter row vector PD of demand probabilities PD

Call for dprog

dprog

States and expected total gains

0 1 2 3 4

-44 112 256 352 400

States Actions

0 2

1 0

2 0

3 0

4 0

dprog

34
CHAPTER 2. MARKOV PROCEDURES FOR MARKOV DECISION

PROCESSES

States and expected total gains

0 1.0000 2.0000 3.0000 4.0000

135.2000 178.4000 315.2000 478.4000 615.2000

States Actions

0 4

1 2

2 2

3 0

4 0

dprog

States and expected total gains

0 1.0000 2.0000 3.0000 4.0000

264.4800 300.4800 444.4800 600.4800 744.4800

States Actions

0 4

1 2

2 2

3 0

4 0

dprog

States and expected total gains

0 1.0000 2.0000 3.0000 4.0000

390.8800 426.8800 570.8800 726.8800 870.8800

States Actions

0 4

1 2

2 2

3 0

4 0

dprog

States and expected total gains

0 1.0000 2.0000 3.0000 4.0000

517.2800 553.2800 697.2800 853.2800 997.2800

States Actions

0 4

1 2

2 2

3 0

4 0

dprog

States and expected total gains

1.0e+03 *

0 0.0010 0.0020 0.0030 0.0040

0.6437 0.6797 0.8237 0.9797 1.1237

States Actions

0 4

1 2

2 2

3 0

4 0

35

2.3 MATLAB Calculations for Decision Models3

2.3.1 Data

There are three types. In all types, we need the following:

A = the vector of actions (1×m) m = the number of actions

PH : PH (i) = P (H = ui) (1× s) s = the number of values of H

PXH : PXH (i, j) = P (X = xj |H = ui) (s× q) q = the number of values of X

Type 1: The usual type. In addition to the above, we need

L = [L (a, yk)] (m× n) m = the number of actions

PY H : PY H (i, k) = P (Y = yk|H = ui) (s× n) n = the number of values of Y

Type 2: The matrix RH = [r (a, i)] is given. L and PY H are not needed.
Type 3: Sometimes Y = H. In this case RH = L, which we need, in addition to the above.

2.3.2 Calculated quantities

1. RH = [r (a, i)] (m× s) [Risk function = expected loss, given H] r (a, i) =
E [L (a, Y) |H = ui] =

∑
k L (a, k)P (Y = yk|H = ui) MATLAB: RH = L*PYH'

2. PX (1× q) PX (j) = P (X = xj) =
∑
i P (H = ui)P (X = j|H = ui) MATLAB:

PX = PH*PXH

3. PHX (q × s) PHX (i,) = P (H = uj |X = xi) =
P (X = xi|H = ui)P (H = uj) /P (X = Xi) MATLAB: [a,b] = mesh-
grid(PH,PX) PHX = PXH'.*a./b

4. RX = [R (a, j)] (m× q) [Expected risk, given X] R (a, j) = E [r (a, H) |X = xj] =∑
i r (a, i)P (H = ui|X = xj) MATLAB: RX = RH*PHX'

5. Select d* from RX: d∗ (j) is the action a (row number) for minimum expected loss, given X = j. Set
D = [d∗ (1) , d∗ (2) , · · · d∗ (q)].

6. Calculate the Bayesian risk BD for d*. BD = E [R (d∗ (X) , X)] =
∑
j RX (D (j) , j)PX (j)

MATLAB: RD*PX'

note: Actions are represented in calculations by action number (position in the matrix). In some
cases, each action has a value other than its position number. The actual values can be presented
in the �nal display.

�le dec.m

%~file~dec.m

%~Version~of~12/12/95

disp('Decision~process~with~experimentation')

disp('There~are~three~types,~according~to~the~data~provided.')

disp('In~all~types,~we~need~the~row~vector~A~of~actions,')

disp('the~row~vector~PH~with~PH(i)~=~P(H~=~u_i),')

disp('the~row~vector~X~of~test~random~variable~values,~and')

disp('the~matrix~PXH~with~PXH(i,j)~=~P(X~=~x_j|H~=~u_i).')

disp('Type~1.~~Loss~matrix~L~of~L(a,k)')

disp('~~~~~~~~~Matrix~PYH~with~PYH(i,k)~=~P(Y~=~y_k|H~=~u_i)')

disp('Type~2.~~Matrix~RH~of~r(a,i)~=~E[L(a,Y)|H~=~u_i].')

3This content is available online at <http://cnx.org/content/m31068/1.4/>.

36
CHAPTER 2. MARKOV PROCEDURES FOR MARKOV DECISION

PROCESSES

disp('~~~~~~~~~L~and~PYH~are~not~needed~for~this~type.')

disp('Type~3.~~Y~=~H,~so~that~only~RH~=~L~is~needed.')

c~~~=~input('Enter~type~number~~');

A~~~=~input('Enter~vector~A~of~actions~');

PH~~=~input('Enter~vector~PH~of~parameter~probabilities~~');

PXH~=~input('Enter~matrix~PXH~of~conditional~probabilities~~');

X~~~=~input('Enter~vector~X~of~test~random~variable~values~~');

s~=~length(PH);

q~=~length(X);

if~c~==~1

~L~~~=~input('Enter~loss~matrix~L~~');

~PYH~=~input('Enter~matrix~PYH~of~conditional~probabilities~~');

~RH~~=~L*PYH';

elseif~c~==~2

~RH~~=~input('Enter~matrix~RH~of~expected~loss,~given~H~~');

else

~L~~~=~input('Enter~loss~matrix~L~~');

~RH~~=~L;

end

PX~~~=~PH*PXH;~~~~~~~~%~(1~x~s)(s~x~q)~=~(1~x~q)

[a,b]~=~meshgrid(PH,PX);

PHX~=~PXH'.*a./b;~~~~~%~(q~x~s)

RX~~=~RH*PHX';~~~~~~~~%~(m~x~s)(s~x~q)~=~(m~x~q)

[RD~D]~=~min(RX);~~~~~%~determines~min~of~each~col

~~~~~~~~~~~~~~~~~~~~~ %~and~row~on~which~min~occurs

S~=~[X;~A(D);~RD]';

BD~=~RD*PX';~~~~~~~~~~%~Bayesian~risk

h~~=~['~~Optimum~losses~and~actions'];

sh~=~['~~Test~value~~Action~~~~~Loss'];

disp('~')

disp(h)

disp(sh)

disp(S)

disp('~')

disp(['Bayesian~risk~~B(d*)~=~',num2str(BD),])

Example 2.3: General case

%~file~dec1.m

%~Data~for~Problem~22-11

type~=~1;

A~=~[10~15];~~~~~~~~~~%~Artificial~actions~list

PH~=~[0.3~0.2~0.5];~~~%~PH(i)~=~P(H~=~i)

PXH~=~[0.7~0.2~0.1;~~~%~PXH(i,j)~=~P(X~=~j|H=~i)

~~~~~~0.2~0.6~0.2;

~~~~~~0.1~0.1~0.8];

X~=~[-1~0~~1];

L~=~[1~~0~-2;~~~~~~~~~%~L(a,k)~=~loss~when~action~number~is~a,~outcome~is~k

~~~~3~-1~-4];

PYH~=~[0.5~0.3~0.2;~~~%~PYH(i,k)~=~P(Y~=~k|H~=~i)

~~~~~~0.2~0.5~0.3;

~~~~~~0.1~0.3~0.6];


37

~

dec1

dec

Decision~process~with~experimentation

There~are~three~types,~according~to~the~data~provided.

In~all~types,~we~need~the~row~vector~A~of~actions,

the~row~vector~PH~with~PH(i)~=~P(H~=~i),

the~row~vector~X~of~test~random~variable~values,~and

the~matrix~PXH~with~PXH(i,j)~=~P(X~=~j|H~=~i).

Type~1.~~Loss~matrix~L~of~L(a,k)

~~~~~~~~Matrix~PYH~with~PYH(i,k)~=~P(Y~=~k|H~=~i)

Type~2.~~Matrix~RH~of~r(a,i)~=~E[L(a,Y)|H~=~i].

~~~~~~~~L~and~PYH~are~not~needed~in~this~case.

Type~3.~~Y~=~H,~so~that~only~RH~=~L~is~needed.

Enter~type~number~~type

Enter~vector~A~of~actions~A

Enter~vector~PH~of~parameter~probabilities~~PH

Enter~matrix~PXH~of~conditional~probabilities~~PXH

Enter~vector~X~of~test~random~variable~values~~X

Enter~loss~matrix~L~~L

Enter~matrix~PYH~of~conditional~probabilities~~PYH

~

~Optimum~losses~and~actions

~Test~value~~Action~~~~~Loss

~~-1.0000~~~15.0000~~~-0.2667

~~~~~~~~0~~~15.0000~~~-0.9913

~~~1.0000~~~15.0000~~~-2.1106

~

Bayesian~risk~~B(d*)~=~-1.3

Intermediate steps in solution of Example 1, to show results of various operations

RH

RH~~=~~0.1000~~~-0.4000~~~-1.1000

~~~~~~0.4000~~~-1.1000~~~-2.4000

PX

PX~~=~~0.3000~~~~0.2300~~~~0.4700

a

a~~~=~~0.3000~~~~0.2000~~~~0.5000

~~~~~~0.3000~~~~0.2000~~~~0.5000

~~~~~~0.3000~~~~0.2000~~~~0.5000

b

b~~~=~~0.3000~~~~0.3000~~~~0.3000

~~~~~~0.2300~~~~0.2300~~~~0.2300

~~~~~~0.4700~~~~0.4700~~~~0.4700

PHX

PHX~=~~0.7000~~~~0.1333~~~~0.1667

~~~~~~0.2609~~~~0.5217~~~~0.2174

~~~~~~0.0638~~~~0.0851~~~~0.8511

RX

RX~~=~-0.1667~~~-0.4217~~~-0.9638

~~~~~-0.2667~~~-0.9913~~~-2.1106


38
CHAPTER 2. MARKOV PROCEDURES FOR MARKOV DECISION

PROCESSES

Example 2.4: RH given

%~file~dec2.m~~

%~Data~for~type~in~which~RH~is~given

type~=~2;

A~=~[1~2];

X~=~[-1~1~3];

PH~=~[0.2~0.5~0.3];

PXH~=~[0.5~0.4~0.1;~~~%~PXH(i,j)~=~P(X~=~j|H~=~i)

~~~~~~0.4~0.5~0.1;

~~~~~~0.2~0.4~0.4];

RH~=~[-10~~~5~-12;

~~~~~~~5~-10~~-5];~~~~%~r(a,i)~=~expected~loss~when

~~~~~~~~~~~~~~~~~~~~~~%~~~action~is~a,~given~H~=~i

~

dec2

dec

Decision~process~with~experimentation

-------------------~Instruction~lines~edited~out

Enter~type~number~~type

Enter~vector~A~of~actions~A

Enter~vector~PH~of~parameter~probabilities~~PH

Enter~matrix~PXH~of~conditional~probabilities~~PXH

Enter~vector~X~of~test~random~variable~values~~X

Enter~matrix~RH~of~expected~loss,~given~H~~RH

~

~Optimum~losses~and~actions

~Test~value~~Action~~~~~Loss

~~-1.0000~~~~2.0000~~~-5.0000

~~~1.0000~~~~2.0000~~~-6.0000

~~~3.0000~~~~1.0000~~~-7.3158

~

Bayesian~risk~~B(d*)~=~-5.89

Example 2.5: Example 3
Carnival example (type in which Y = H)

A carnival is scheduled to appear on a given date. Pro�ts to be earned depend heavily on the
weather. If rainy, the carnival loses $15 (thousands); if cloudy, the loss is $5 (thousands); if sunny,
a pro�t of $10 (thousands) is expected. If the carnival sets up its equipment, it must give the
show; if it decides not to set up, it forfeits $1,000. For an additional cost of $1,000, it can delay
setup until the day before the show and get the latest weather report.

Actual weather H = Y is 1 rainy, 2 cloudy, or 3 sunny.
The weather report X has values 1, 2, or 3, corresponding to predictions rainy, cloudy, or sunny

respectively.
Reliability of the forecast is expressed in terms of P (X = j|H = i)� see matrix PXH
Two actions: 1 set up; 2 no set up.
Possible losses for each action and weather condition are in matrix L.

%~file~dec3,m

%~Carnival~problem

type~=~3;~~~~~~~~~~~~~%~Y~=~H~~(actual~weather)

39

A~=~[1~~2];~~~~~~~~~~~%~1:~setup~~2:~no~setup

X~=~[1~~2~~3];~~~~~~~~%~1;~rain,~~2:~cloudy,~3:~sunny

L~=~[16~6~-9;~~~~~~~~~%~L(a,k)~=~loss~when~action~number~is~a,~outcome~is~k

~~~~~2~2~~2];~~~~~~~ ~%~--with~premium~for~postponing~setup

PH~=~0.1*[1~3~6];~~~~~%~P(H~=~i)

PXH~=~0.1*[7~2~1;~~~~~%~PXH(i,j)~=~P(X~=~j|H~=~i)

~~~~~~~~~~2~6~2;

~~~~~~~~~~1~2~7];

~

dec3

dec

Decision~process~with~experimentation

-------------------~Instruction~lines~edited~out

Enter~case~number~~case

Enter~vector~A~of~actions~A

Enter~vector~PH~of~parameter~probabilities~~PH

Enter~matrix~PXH~of~conditional~probabilities~~PXH

Enter~vector~X~of~test~random~variable~values~~X

Enter~loss~matrix~L~~L

~

~Optimum~losses~and~actions

~Test~value~~Action~~~~~Loss

~~~1.0000~~~~2.0000~~~~2.0000

~~~2.0000~~~~1.0000~~~~1.0000

~~~3.0000~~~~1.0000~~~-6.6531

~

Bayesian~risk~~B(d*)~=~-2.56

2.4 Matlab Procedures for Markov Decision Processes4

In order to provide the background for Matlab procedures for Markov decision processes, we �rst summarize
certain essentials in the analysis of homogeneous Markov chains with costs and rewards associated with states,
or with transitions between states. References are to Pfei�er: PROBABILITY FOR APPLICATIONS.

1. Some cost and reward patterns
Consider a �nite, ergodic (i.e., recurrent, positive, aperiodic, irreducible) homogeneous Markov chain
XN, with state space E = {1, 2, · · · ,M}. To facilitate use of matrix computation programs, we number
states from one, except in certain examples in which state zero has a natural meaning. Associated with
this chain is a cost or reward structure belonging to one of the three general classes described below.
The one-step transition probability matrix is P = [p (i, j)], where p (i, j) = P (Xn+1 = j|Xn = i).
The distribution for Xn is represented by the row matrix π (n) = [p1 (n) , p2 (n) , · · · , pM (n)], where
pi (n) = P (Xn = i). The long-run distribution is represented by the row matrix π = [π1, π2, · · · , πM].

a. Type 1. Gain associated with a state. A reward or gain in the amount g (i) is realized in
the next period if the current state is i. The gain sequence{Gn : 1 ≤ n} of random variables
Gn+1 = g (Xn) is the sequence of gains realized as the chain XN evolves. We represent the gain

function g by the column matrix g = [g (1) g (2) · · · g (M)]T .

4This content is available online at <http://cnx.org/content/m31095/1.7/>.

40
CHAPTER 2. MARKOV PROCEDURES FOR MARKOV DECISION

PROCESSES

b. Type 2. One-step transition gains. A reward or gain in the amount g (i, j) = gij is realized
in period n + 1 if the system goes from state i in period n to state j in period n + 1. The
corresponding one-step transition probability is p (i, j) = pij . The gain matrix is g = [g (i, j)].
The gain sequence{Gn : 1 ≤ n} of random variables Gn+1 = g (Xn, Xn+1) is the sequence of
gains experienced as the chain XN evolves.

c. Type 3. Gains associated with a demand. In this case, the gain random variables are of the
form

Gn+1 = g (Xn, Dn+1) (2.1)

If n represents the present, the random vector Un = (X0, X1, · · · , Xn) represents the �past� at
n of the chain XN. We suppose {Dn : 1 ≤ n} is iid and each {Dn+1, Un} is independent. Again,
the gain sequence{Gn : 1 ≤ n} represents the gains realized as the process evolves. Standard
results on Markov chains show that in each case the sequence GN = {Gn : 1 ≤ n} is Markov.

A recurrence relation. We are interested in the expected gains in future stages, given the present

state of the process. For any n > 0 and any m > 1, the gain G(m)
n in the m periods following period n

is given by
G(m)
n = Gn+1 +Gn+2 + · · ·+Gn+m (2.2)

If the process is in state i, the expected gain in the next period qi is

qi = v
(1)
i = E [Gn+1|Xn = i] (2.3)

and the expected gain in the next m periods is

v
(m)
i = E

[
G(m)
n |Xn = i

]
(2.4)

We utilize a recursion relation that allows us to begin with the transition matrix P and the next-period

expected gain matrixq = [q1q2 · · · qm]T and calculate the v
(m)
i for any m > 1. Although the analysis is

somewhat di�erent for the various gain structures, the result exhibits a common pattern. In each case

v
(m)
i = E

[
G(m)
n |Xn = i

]
= E [Gn+1|Xn = i] +

m−1∑
k=1

E [Gn+k+1|Xn = i] (2.5)

= qi +
m−1∑
k=1

∑
j∈E

E [Gn+k+1|Xn+1 = j] p (i, j) (2.6)

= qi +
∑
j∈E

E

[
m−1∑
k=1

Gn+k|Xn = j

]
p (i, j) (2.7)

We thus have the fundamental recursion relation

(∗) v(m)
i = qi +

∑
j∈E

v
(m−1)
j p (i, j) (2.8)

The recursion relation (∗) shows that the transition matrix P = [p (i, j)] and the vector of next-period

expected gains, which we represent by the column matrix q = [q1, q2, · · · , qM]T , determine the v
(m)
i .

The di�erence between the cases is the manner in which the qi are obtained.

Type 1: . qi = E [g (Xn) |Xn = i] = g (i)
Type 2: . qi = E [g (Xn, Xn+1) |Xn = i] = E [g (i,Xn+1) |Xn = i] =

∑
j∈Eg (i, j) p (i, j)

Type 3: . qi = E [g (Xn, Dn+1) |Xn = i] = E [g (i,Dn+1)] =
∑
kg (i, k)P (D = k)

41

Matrix form: . For computational purposes, we utilize these relations in matrix form. If

v (n) =
[
v
(n)
1 v

(n)
2 · · · v(n)

M

]T
and q = [q1q2 · · · qM]T (2.9)

then
(∗) v (m+ 1) = q + Pv (m) for all m > 0, with v (0) = 0 (2.10)

Examination of the expressions for qi, above, shows that the next-period expected gain matrix q takes
the following forms. In each case, g is the gain matrix. In case c, pD is the column matrix whose
elements are P (D = k).

Type 1: q = g
Type 2: q = the diagonal of PgT

Type 3: q = gpD
2. Some long-run averages

Consider the average expected gain for m periods

E

[
1
m
G(m)
n

]
=

1
m

m∑
k=1

E [Gn+k] =
1
m

m∑
k=1

E{E [Gn+k|Xn−1]} (2.11)

Use of the Markov property and the fact that for an ergodic chain

1
m

m∑
k=1

pk (i, j)→ πj as m→∞ (2.12)

yields the result that,

lim
m→∞

E

[
1
m
G(m)
n

]
=
∑
i

P (Xn−1 = i)
∑
j

qjπj =
∑
j

qjπj = g (2.13)

and for any state i,

lim
m→∞

E

[
1
m
G(m)
n |Xn = i

]
= lim
m→∞

1
m
v
(m)
i = g (2.14)

The expression for g may be put into matrix form. If the long-run probability distribution is repre-
sented by the row matrix π = [π1π2 · · ·πM] and q = [q1q2 · · · ; qM]T , then

g = πq (2.15)

3. Discounting and potentials
Suppose in a given time interval the value of money increases by a fraction a. This may represent
the potential earning if the money were invested. One dollar now is worth 1 + a dollars at the end
of one period. It is worth (1 + a)n dollars after n periods. Set α = 1/ (1 + a), so that 0 < α ≤ 1.
It takes α dollars to be worth one dollar after one period. It takes αn dollars at present to be worth
one dollar n periods later. Thus the present worth or discounted value of one dollar n periods in
the future is αn dollars. This is the amount one would need to invest presently, at interest rate a per
unit of time, to have one dollar n periods later. If f is any function de�ned on the state space E, we
designate by f the column matrix [f (1) f (2) · · · f (M)]T . We make an exception to this convention in
the case of the distributions of the state probabilities π (n) = [p1 (n) p2 (n) · · · pM (n)], their generating
function, and the long-run probabilities π = [π1π2 · · ·πM], which we represent as row matrices. It
should be clear that much of the following development extends immediately to in�nite state space
E = N = {0, 1, 2, · · · }. We assume one of the gain structures introduced in Sec 1 and the corresponding
gain sequence {Gn : 1 ≤ n}. The value of the random variable Gn+1 is the gain or reward realized

42
CHAPTER 2. MARKOV PROCEDURES FOR MARKOV DECISION

PROCESSES

during the period n+ 1. We let each transition time be at the end of one period of time (say a month
or a quarter). If n corresponds to the present, then Gn+k is the gain in period n + k. If we do not
discount for the period immediately after the present, then αk−1Gn+k is the present value of that gain.
Hence

∞∑
k=1

αk−1Gn+k is the total discounted future gain (2.16)

De�nition. The α-potential of the gain sequence {Gn : 1 ≤ n} is the function φ de�ned by

φ (i) = E

[∞∑
n=0

αnGn+1|X0 = i

]
∀i ∈ E (2.17)

Remark. φ (i) is the expected total discounted gain, given the system starts in state i. We next de�ne
a concept which is related to the α-potential in a useful way. De�nition. The α-potential matrixRα

for the process XN is the matrix

Rα =
∞∑
n=0

αnPn with P0 = I (2.18)

Theorem 2.1: 3.1
Let XN be an ergodic, homogeneous Markov chain with state space E and gain sequence
{Gn : 1 ≤ n}. Let q = [q1q1 · · · qM]T where qi = E [Gn+1|Xn = i] fori ∈ E. For α ∈ (0, 1), let
φ be the α-potential for the gain sequence. That is,

φ (i) = E

[∞∑
n=0

αnGn+1|X0 = i

]
∀i ∈ E (2.19)

Then, if Rα is the α-potential matrix for XN, we have

φ = Rαq (2.20)

� �

Theorem 2.2: 3.2
Consider an ergodic, homogeneous Markov chain XN with gain sequence {Gn : 1 ≤ n} and
next-period expected gain matrix q. For α ∈ (0, 1), the α-potential φ and the α-potential
matrix Rα satisfy

[I− αP] Rα = Iand [I− αP]φ = q (2.21)

If the state space E is �nite, then

Rα = [I− αP]−1
andφ = [I− αP]−1q = Rαq (2.22)

� �

Example 2.6: A numerical example
Suppose the transition matrix P and the next-period expected gain matrix q are

P =


0.2 0.3 0.5

0.4 0.1 0.5

0.6 0.3 0.1

 and q =


2

5

3

 (2.23)

43

For α = 0.9, we have

R0.9 = (I− 0.9P)−1 =


4.4030 2.2881 3.3088

3.5556 3.1356 3.3088

3.6677 2.2881 4.0441

 and φ = R0.9q =


30.17

32.72

30.91

 (2.24)

� �

The next example is of class c, but the demand random variable is Poisson, which does not have �nite
range. The simple pattern for calculating the qi must be modi�ed.

Example 2.7: Costs associated with inventory under an (m,M) order policy.
If k units are ordered, the cost in dollars is

c (k) = {
0 k = 0

10 + 25k 0 < k ≤M
(2.25)

For each unit of unsatis�ed demand, there is a penalty of 50 dollars. We use the (m, M)
inventory policy described in Ex 23.1.3. X0 = M , and Xn is the stock at the end of period
n, before restocking. Demand in period n is Dn. The cost for restocking at the end of period
n+ 1 is

g (Xn, Dn+1) = {
10 + 25 (M −Xn) + 50max{Dn+1 −M, 0} 0 ≤ Xn < m

50max{Dn+1 −Xn, 0} m ≤ Xn ≤M
(2.26)

For m = 1,M = 3, we have

g (0, Dn+1) = 85 + 50I[3,∞) (Dn+1) (Dn+1 − 3) (2.27)

g (i,Dn+1) = 50I[3,∞) (Dn+1) (Dn+1 − i) 1 ≤ i ≤ 3 (2.28)

We take m = 1,M = 3 and assume D is Poisson (1). From Ex 23.1.3 in PA, we obtain

P =


0.0803 0.1839 0.3679 0.3679

0.6321 0.3679 0 0

0.2642 0.3679 0.3679 0

0.0803 0.1839 0.3679 0.3679

 (2.29)

The largest eigenvalue |λ| ≈ 0.26, so n ≥ 10 should be su�cient for convergence. We use
n = 16.
Taking any row of P16, we approximate the long-run distribution by

π = [0.2858 0.2847 0.2632 0.1663] (2.30)

We thus have

q0 = 85+50E
[
I[3,∞) (Dn+1) (Dn+1 − 3)

]
= 85+50

∞∑
k=4

(k − 3) pk (the term for k = 3 is zero) (2.31)

For the Poisson distribution
∑∞
k=n kpk = λ

∑∞
k=n−1 pk.

Hence q0 = 85 + 50 [
∑∞
k=3 pk − 3

∑∞
k=4 pk] ≈ 85 + 50 [0.0803− 3× 0.0190] = 86.1668 q1 =

44
CHAPTER 2. MARKOV PROCEDURES FOR MARKOV DECISION

PROCESSES

50
∑∞
k=3 (k − 1) pk = 50 [

∑∞
k=2 pk −

∑∞
k=3 pk] = 50p2 = 9.1970 q2 = 50

∑∞
k=3 (k − 2) pk =

50 [0.2642− 2× 0.0803] = 5.1809 q3 = q0 − 85 = 1.1668 so that

q =


86.1668

9.1970

5.1809

1.1668

 (2.32)

Then, for α = 0.8 we have

R0.8 = (I − 0.8P)−1 =


1.9608 1.0626 1.1589 0.8178

1.4051 2.1785 0.8304 0.5860

1.1733 1.2269 2.1105 0.4893

0.9608 1.0626 1.1589 1.8178

 and φ = R0.8q =


185.68

146.09

123.89

100.68


(2.33)

Recall that we are dealing with expected discounted costs. Since we usually consider starting
with a full stock, the amount φ (M) = φ (3) = 100.68 is the quantity of interest. Note that
this is smaller than other values of φ (j), which correspond to smaller beginning stock levels.
We expect greater restocking costs in such cases.

4. Evolution of chains with costs and rewards

a. No discounting A generating function analysis of

(∗) v (m+ 1) = q + Pv (m) for all m > 0, with v (0) = 0 (2.34)

shows
v (n) = ng1 + v + transients, where v = B0q (2.35)

Here g = πq, is a column matrix of ones, P0 = P∞, and B0 is a matrix which analysis also shows
we may approximate by

B0 = B (1) ≈ I + P + P2 + · · ·+ Pn − (n + 1) P0 (2.36)

The largest |λi| < 1 gives an indication of how many terms are needed.

Example 2.8: The inventory problem (continued)
We consider again the inventory problem. We have

P =


0.0803 0.1839 0.3679 0.3679

0.6321 0.3679 0 0

0.2642 0.3679 0.3679 0

0.0803 0.1839 0.3679 0.3679

 and q =


86.1668

9.1970

5.1819

1.1668

 (2.37)

The eigenvalues are 1, 0.0920 + i0.2434, 0.0920 − 0.2434 and 0. Thus, the decay of the

transients is controlled by |λ∗| =
(
0.09202 + 0.24342

)1/2 = 0.2602. Since |λ∗|4 ≈ 0.0046,

45

the transients die out rather rapidly. We obtain the following approximations

P0 ≈ P16 ≈


0.2852 0.2847 0.2632 0.1663

0.2852 0.2847 0.2632 0.1663

0.2852 0.2847 0.2632 0.1663

0.2852 0.2847 0.2632 0.1663

 so that π ≈ [0.2852 0.2847 0.2632 0.1663]

(2.38)
The approximate value of B0 is found to be

B0 ≈ I + P + P2 + P3 + P4 − 5P0 ≈


0.4834 −0.3766 −0.1242 0.0174

0.0299 0.7537 −0.5404 −0.2432

−0.2307 −0.1684 0.7980 −0.3989

−0.5166 −0.3766 −0.1242 1.0174

 (2.39)

The value g = πq ≈ 28.80 is found in the earlier treatment. From the values above, we
have

v = B0q ≈


37.6

6.4

−17.8

−47.4

 so that v (n) ≈


28.80n+ 37.6

28.80n+ 6.4

28.80n− 17.8

28.80n− 47.4

+ transients (2.40)

The average gain per period is clearly g ≈ 28.80. This soon dominates the constant
terms represented by the entries in v.

b. With discounting Let the discount factor be α ∈ (0, 1). If n represents the present period, then
Gn+1 = the reward in the �rst succeeding period Gn+k = the reward in the kth succeding period.
If we do not discount the �rst period, then

G(m)
n = Gn+1 + αGn+2 + α2Gn+3 + · · ·+ αm−1Gn+m = Gn+1 + αG

(m−1)
n+1 (2.41)

Thus

v
(m)
i = E

[
G(m)
n |Xn = i

]
= qi + α

M∑
j=1

p (i, j) v(m−1)
j (2.42)

In matrix form, this is
v (n) = q + αPv (n− 1) (2.43)

A generating function analysis shows that

v
(n)
i = vi + transients 1 ≤ i ≤M (2.44)

Hence, the steady state part of

v
(m)
i = qi + α

M∑
j=1

p (i, j) v(m−1)
j is vi = qi + α

M∑
j=1

p (i, j) vj1 ≤ i ≤M (2.45)

In matrix form,
v = q + αPv which yields v = [I − αP]−1 q (2.46)

46
CHAPTER 2. MARKOV PROCEDURES FOR MARKOV DECISION

PROCESSES

Since the qi = E [Gn+1|Xn = i] are known, we can solve for the vi. Also, since v
(m)
i is the present

value of expected gain m steps into the future, the vi represent the present value for an unlimited
future, given that the process starts in state i.

5. Stationary decision policies
We suppose throughout this section that XN is ergodic, with �nite state space E = {1, 2, · · · , M}.
For each state i ∈ E, there is a class Ai of possible actions which may be taken when the process is
in state i. A decision policy is a sequence of decision functions d1, d2 · · · such that

The action at stage n is dn (X0, X1, ..., Xn) . (2.47)

The action selected is in Ai whenever Xn = i. We consider a special class of decision policies.
Stationary decision policy

dn (X0, X1, · · · , Xn) = d (Xn) with d invariant with n (2.48)

The possible actions depend upon the current state. That is d (Xn) ∈ Ai whenever Xn = i. Analysis
shows the Markov character of the process is preserved under stationary policies. Also, if E is �nite and
every stationary policy produces an irreducible chain, then an optimal stationary policy is optimal. We

suppose each policy yields an ergodic chain. Since the transition probabilities from any state depend
in part on the action taken when in that state, the long-run probabilities will depend upon the policy.
In the no-discounting case, we want to determine a stationary policy that maximizes the gain g = πq
for the corresponding long-run probabilities. We say �a stationary policy,� since we do not rule out the
possibility there may be more than one policy which maximizes the gain. In the discounting case, the
goal is to maximize the steady state part vi in the expressions

v
(n)
i = vi + transients 1 ≤ i ≤M (2.49)

In simple cases, with small state space and a small number of possible actions in each state, it may be
feasible to obtain the gain or present values for each permissible policy and then select the optimum
by direct comparison. However, for most cases, this is not an e�cient approach. In the next two
sections, we consider iterative procedures for step-by-step optimization which usually greatly reduces
the computational burden.

6. Policy iteration method� no discounting
We develop an iterative procedure for �nding an optimal stationary policy. The goal is to determine a
stationary policy that maximizes the long run expected gain per period g. In the next section, we extend
this procedure to the case where discounting is in e�ect. We assume that each policy yields an ergodic

chain. Suppose we have established that under a given policy (1) v
(n)
i = qi +

∑
j p (i, j) v(n−1)

j , where

qi = E [Gn+1|Xn = i] In this case, the analysis in Sec 4 shows that for large n, (2) v
(n)
i ≈ ng + vi,

where g =
∑
i πiqi We note that vi and g depend upon the entire policy, while qi and p (i, j) depend

on the individual actions ai. Using (1) and (2), we obtain

ng + vi = qi +
∑
i

p (i, j) [(n− 1) g + vj] = qi + (n − 1) g +
∑
j

p (i, j) vj (2.50)

From this we conclude (3) g + vi = qi +
∑
j p (i, j) vj for all i ∈ E Suppose a policy d has been

used. That is, action d (i) is taken whenever the process is in state i. To simplify writing, we drop
the indication of the action and simply write p (i, j) for pij (d (i)), etc. Associated with this policy,
there is a gain g. We should like to determine whether or not this is the maximum possible gain, and
if it is not, to �nd a policy which does give the maximum gain. The following two-phase procedure
has been found to be e�ective. It is essentially the procedure developed originally by Ronald Howard,
who pioneered the treatment of these problems. The new feature is the method of carrying out the
value-determination step, utilizing the approximation method noted above.

47

a. Value-determination procedure We calculate g =
∑
i πiqi = πq. As in Sec 4, we calculate

v = B0q ≈
[
I + P + P2 + · · ·+ Ps − (s+ 1) P0

]
q where P0 = lim

n
Pn (2.51)

b. Policy-improvement procedure We suppose policy d has been used through period n. Then,
by (3), above,

g + vi = qi +
∑
j

p (i, j) vj (2.52)

We seek to improve policy d by selecting policy d*, with d∗ (i) = a∗ik, to satisfy

q∗i +
∑
j

p∗ijvj = max{qi (aik) +
∑
j

pij (aik) vj : aik ∈ Ai}, 1 ≤ i ≤M (2.53)

Remarks

• In the procedure for selecting d*, we use the �old� vj.
• It has been established that g∗ ≥ g, with equality i� g is optimal. Since there is a �nite number

of policies, the procedure must converge to an optimum stationary policy in a �nite number of
steps.

We implement this two step procedure with Matlab. To demonstrate the procedure, we consider the
following

Example 2.9: A numerical example
A Markov decision process has three states: State space E = {1, 2, 3}.
Actions: State 1: A1 = {1, 2, 3} State 2: A2 = {1, 2} State 3: A3 = {1, 2}
Transition probabilities and rewards are:

p1j (1): [1/3 1/3 1/3] g1j (1): [1 3 4]

p1j (2): [1/4 3/8 3/8] g2j (2): [2 2 3]

p1j (3): [1/3 1/3 1/3] g3j (3): [2 2 3]

p2j (1): [1/8 3/8 1/2] g2j (1): [2 1 2]

p2j (2): [1/2 1/4 1/4] g2j (2): [1 4 4]

p3j (1): [3/8 1/4 3/8] g3j (1): [2 3 3]

p3j (2): [1/8 1/4 5/8] g3j (2): [3 2 2]

Table 2.1

Use the policy iteration method to determine the policy which gives the maximum gain g.
A computational procedure utilizing Matlab We �rst put the data in an m-�le. Since
we have several cases, it is expedient to include the case number. This example belongs to
type 2. Data in �le md61.m

type = 2

PA = [1/3 1/3 1/3; 1/4 3/8 3/8; 1/3 1/3 1/3; 0 0 0;

1/8 3/8 1/2; 1/2 1/4 1/4; 0 0 0;

3/8 1/4 3/8; 1/8 1/4 5/8]

GA = [1 3 4; 2 2 3; 2 2 3; 0 0 0; % Zero rows are separators

48
CHAPTER 2. MARKOV PROCEDURES FOR MARKOV DECISION

PROCESSES

2 1 2; 1 4 4; 0 0 0;

2 3 3; 3 2 2]

A = [1 2 3 0 1 2 0 1 2]

md61

type = 2

PA = 0.3333 0.3333 0.3333

0.2500 0.3750 0.3750

0.3333 0.3333 0.3333

0 0 0

0.1250 0.3750 0.5000

0.5000 0.2500 0.2500

0 0 0

0.3750 0.2500 0.3750

0.1250 0.2500 0.6250

GA = 1 3 4

2 2 3

2 2 3

0 0 0

2 1 2

1 4 4

0 0 0

2 3 3

3 2 2

A = 1 2 3 0 1 2 0 1 2

Once the data are entered into Matlab by the call for �le �md61,� we make preparation for
the policy-improvement step. The procedure is in the �le newpolprep.m

% file newpolprep.m

% version of 3/23/92

disp('Data needed:')

disp(' Matrix PA of transition probabilities for states and actions')

disp(' Matrix GA of gains for states and actions')

disp(' Type number to identify GA matrix types')

disp(' Type 1. Gains associated with a state')

disp(' Type 2. One-step transition gains')

disp(' Type 3. Gains associated with a demand')

disp(' Row vector of actions')

disp(' Value of alpha (= 1 for no discounting)')

c = input('Enter type number to show gain type ');

a = input('Enter value of alpha (= 1 for no discounting) ');

PA = input('Enter matrix PA of transition probabilities ');

GA = input('Enter matrix GA of gains ');

if c == 3

PD = input('Enter row vector of demand probabilities ');

end

if c == 1

QA = GA';

elseif c ==2

49

QA = diag(PA*GA'); % (qx1)

else

QA = GA*PD';

end

A = input('Enter row vector A of possible actions '); % (1xq)

m = length(PA(1,:));

q = length(A);

n = input('Enter n, the power of P to approximate P0 ');

s = input('Enter s, the power of P in the approximation of V ');

QD = [(1:q)' A' QA]; % First col is index; second is A; third is QA

DIS = [' Index Action Value'];

disp(DIS)

disp(QD)

if a == 1

call = 'Call for newpol';

else

call = 'Call for newpold';

end

disp(call)

newpolprep % Call for preparatory program in file npolprep.m

Data needed:

Matrix PA of transition probabilities for states and actions

Matrix GA of gains for states and actions

Type number to identify GA matrix types

Type 1. Gains associated with a state

Type 2. One-step transition gains

Type 3. Gains associated with a demand

Row vector of actions

Value of alpha (= 1 for no discounting)

Enter type number to show gain type 2

Enter value of alpha (=1 for no discounting) 1

Enter matrix PA of transition probabilities PA

Enter matrix GA of gains GA

Enter row vector A of possible actions A

Enter n, the power of P to approximate P0 16

Enter s, the power of P in the approximation of V 6

Index Action Value

1.0000 1.0000 2.6667

2.0000 2.0000 2.3750

3.0000 3.0000 2.3333

4.0000 0 0

5.0000 1.0000 1.6250

6.0000 2.0000 2.5000

7.0000 0 0

8.0000 1.0000 2.6250

9.0000 2.0000 2.1250

Call for newpol

50
CHAPTER 2. MARKOV PROCEDURES FOR MARKOV DECISION

PROCESSES

The procedure has prompted for the procedure newpol (in �le newpol.m)

% file: newpol.m (without discounting)

% version of 3/23/92

d = input('Enter policy as row matrix of indices ');

D = A(d); % policy in terms of actions

P = PA(d',:); % selects probabilities for policy

Q = QA(d',:); % selects next-period gains for policy

P0 = P^n; % Display to check convergence

PI = P0(1,:); % Long-run distribution

G = PI*Q % Long-run expected gain per period

C = P + eye(P);

for j=2:s

C = C + P^j; % C = I + P + P^2 + ... + P^s

end

V = (C - (s+1)*P0)*Q; % B = B0*Q

disp(' ')

disp('Approximation to P0; rows are long-run dbn')

disp(P0)

disp('Policy in terms of indices')

disp(d)

disp('Policy in terms of actions')

disp(D)

disp('Values for the policy selected')

disp(V)

disp('Long-run expected gain per period G')

disp(G)

T = [(1:q)' A' (QA + PA*V)]; % Test values for determining new policy

DIS =[' Index Action Test Value'];

disp(DIS)

disp(T)

disp('Check current policy against new test values.')

disp('--If new policy needed, call for newpol')

disp('--If not, use policy, values V, and gain G, above')

newpol

Enter policy as row matrix of indices [2 6 9] % A deliberately poor choice

Approximation to P0; rows are long-run dbn

0.2642 0.2830 0.4528

0.2642 0.2830 0.4528

0.2642 0.2830 0.4528

Policy in terms of indices

2 6 9

Policy in terms of actions

2 2 2

Long-run expected gain per period G

2.2972

51

Index Action Test Value

1.0000 1.0000 2.7171

2.0000 2.0000 2.4168

3.0000 3.0000 2.3838

4.0000 0 0

5.0000 1.0000 1.6220

6.0000 2.0000 2.5677

7.0000 0 0

8.0000 1.0000 2.6479

9.0000 2.0000 2.0583

Check current policy against new test values.

--If new policy needed, call for newpol

--If not, use policy and gain G, above % New policy is needed

newpol

Enter policy as row matrix of indices [1 6 8]

Approximation to P0; rows are long-run dbn

0.3939 0.2828 0.3232

0.3939 0.2828 0.3232

0.3939 0.2828 0.3232

Policy in terms of indices

1 6 8

Policy in terms of actions

1 2 1

Values for selected policy

0.0526

-0.0989

0.0223

Long-run expected gain per period G

2.6061

Index Action Test Value

1.0000 1.0000 2.6587

2.0000 2.0000 2.3595

3.0000 3.0000 2.3254

4.0000 0 0

5.0000 1.0000 1.6057

6.0000 2.0000 2.5072

7.0000 0 0

8.0000 1.0000 2.6284

9.0000 2.0000 2.1208

Check current policy against new test values.

--If new policy needed, call for newpol

--If not, use policy, values V, and gain G, above

52
CHAPTER 2. MARKOV PROCEDURES FOR MARKOV DECISION

PROCESSES

Since the policy selected on this iteration is the same as the previous one, the procedure has
converged to an optimal policy. The �rst of the �rst three rows is maximum; the second of
the next two rows is maximum; and the �rst of the �nal two rows is maximum. Thus, we
have selected rows 1, 5, 6, corresponding to the optimal policy d∗ ∼ (1 2 1). The expected
long-run gain per period g = 2.6061.
The value matrix is

v =


v1

v2

v3

 =


0.0527

−0.0989

0.0223

 (2.54)

We made a somewhat arbitrary choice of the powers of P used in the approximation of
P0 and B0. As we note in the development of the approximation procedures in Sec 4, the
convergence of Pn is governed by the magnitude of the largest eigenvalue other than one. We
can always get a check on the reliability of the calculations by checking the eigenvalues for P
corresponding to the presumed optimal policy. For the choice above, we �nd the eigenvalues
to be 1, -0.1250, 0.0833. Since 0.1254 ≈ 0.0002, the choices of exponents should be quite
satisfactory. In fact, we could probably use P8 as a satisfactory approximation to P0, if that
were desirable. The margin allows for the possibility that for some policies the eigenvalues
may not be so small. � �

7. Policy iteration� with discounting
It turns out that the policy iteration procedure is simpler in the case of discounting, as suggested by
the evolution analysis in Sec 4. We have the following two-phase procedure, based on that analysis.

a. Value-determination procedure. Given the qi and transition probabilities p (i, j) for the
current policy, solve v = q + αPv to get for the corresponding vi

v = [I− αP]−1q (2.55)

b. Policy-improvement procedure Given {vi : 1 ≤ i ≤ M} for the current policy, determine a
new policy d*, with each d∗ (i) = ai∗ determined as that action for which

q∗i + α

M∑
j=1

p∗ (i, j) vj = max
k
{qi (aik) +

M∑
j=1

pij (aik) vjaik ∈ Ai} (2.56)

We illustrate the Matlab procedure with the same numerical example as in the previous case, using
discount factor a = 0.8. The data �le is the same, so that we call for it, as before.

Example 2.10
Assume data in �le md61.m is in Matlab; if not, call for md61. We use the procedure
newpolprep to prepare for the iterative procedure by making some initial choices.

newpolprep

Data needed:

Matrix PA of transition probabilities for states and actions

Matrix GA of gains for states and actions

Type number to identify GA matrix types

Type 1. Gains associated with a state

Type 2. One-step transition gains

Type 3. Gains associated with a demand

Row vector of actions

Value of alpha (= 1 for no discounting)

53

Enter type number to show gain type 2

Enter value of alpha (= 1 for no discounting) 0.8

Enter matrix PA of transition probabilities PA

Enter matrix GA of gains GA

Enter row vector A of possible actions A

Enter n, the power of P to approximate P0 16

Enter s, the power of P in the approximation of V 6

Index Action Test Value

1.0000 1.0000 2.6667

2.0000 2.0000 2.3750

3.0000 3.0000 2.3333

4.0000 0 0

5.0000 1.0000 1.6250

6.0000 2.0000 2.5000

7.0000 0 0

8.0000 1.0000 2.6250

9.0000 2.0000 2.1250

Call for newpold

The procedure for policy iteration is in the �le newpold.m.

% file newpold.m (with discounting)

% version of 3/23/92

d = input('Enter policy as row matrix of indices ');

D = A(d);

P = PA(d',:); % transition matrix for policy selected

Q = QA(d',:); % average next-period gain for policy selected

V = (eye(P) - a*P)\Q; % Present values for unlimited future

T = [(1:q)' A' (QA + a*PA*V)]; % Test values for determining new policy

disp(' ')

disp('Approximation to P0; rows are long-run dbn')

disp(P0)

disp(' Policy in terms of indices')

disp(d)

disp(' Policy in terms of actions')

disp(D)

disp(' Values for policy')

disp(V)

DIS =[' Index Action Test Value'];

disp(DIS)

disp(T)

disp('Check current policy against new test values.')

disp('--If new policy needed, call for newpold')

disp('--If not, use policy and values above')

newpold

Enter policy as row matrix of indices [3 5 9] % Deliberately poor choice

Approximation to P0; rows are long-run dbn

54
CHAPTER 2. MARKOV PROCEDURES FOR MARKOV DECISION

PROCESSES

0.3939 0.2828 0.3232

0.3939 0.2828 0.3232

0.3939 0.2828 0.3232

Policy in terms of indices

3 5 9

Policy in terms of actions

3 1 2

Values for policy

10.3778

9.6167

10.1722

Index Action Test Value

1.0000 1.0000 10.7111

2.0000 2.0000 10.3872

3.0000 3.0000 10.3778

4.0000 0 0

5.0000 1.0000 9.6167

6.0000 2.0000 10.6089

7.0000 0 0

8.0000 1.0000 10.7133

9.0000 2.0000 10.1722

Check current policy against new test values.

--If new policy needed, call for newpold

--If not, use policy and values above

newpold

Enter policy as row matrix of indices [1 6 8]

Approximation to P0; rows are long-run dbn

0.3939 0.2828 0.3232

0.3939 0.2828 0.3232

0.3939 0.2828 0.3232

Policy in terms of indices

1 6 8

Policy in terms of actions

1 2 1

Values for policy

13.0844

12.9302

13.0519

Index Action Test Value

1.0000 1.0000 13.0844

2.0000 2.0000 12.7865

55

3.0000 3.0000 12.7511

4.0000 0 0

5.0000 1.0000 12.0333

6.0000 2.0000 12.9302

7.0000 0 0

8.0000 1.0000 13.0519

9.0000 2.0000 12.5455

Check current policy against new test values.

--If new policy needed, call for newpold

--If not, use policy and values above

Since the policy indicated is the same as the previous policy, we know this is an optimal
policy. Rows 1, 6, 8, indicate the optimal policy to be d∗ ∼ (1, 2, 1). It turns out in this
example that the optimal policies are the same for the discounted and undiscounted cases.
That is not always true. The v matrix gives the present values for unlimited futures, for each
of the three possible starting states.

56
CHAPTER 2. MARKOV PROCEDURES FOR MARKOV DECISION

PROCESSES

Chapter 3

Queues with Poisson Arrivals,

Exponential Servers1

A standard model of a queueing system with a single waiting line and one or more servers assumes that
�customers� arrive according to a Poisson process with rate (λ). The customer at the head of the line goes
to the �rst available server, if there are more than one, or to the single server as soon as available, if there is
only one. The servers operate independently (of each other and the arrival process), each with exponential
service time. We suppose each server has the same distribution, exponential (µ). Such a system may be
analyzed as a Markov birth-death process. An analysis of the long-run probabilities and expectations of
various quantities after the system has settled down to equilibrium yields the results below.

Calculation of these quantities is straightforward, but somewhat tedious if various cases are considered.
Matlab procedures for single-server and two-server systems are utilized to make these calculations quickly
and to present them in a useful way.

Notation

• Nt = number in system (in service and waiting) at time t
• Qt = number waiting to be served at time t
• πj = lim

t→∞
pij (t) = long-run probability of being in state j

• Wt = waiting time for service for customer who arrives at time t
• Dt = waiting time plus service time for customer who arrives at time t

• A = random variable with distribution of interarrival times
• S = random variable with distribution of service times

Long-run probabilities πj = P (Nt = j) for large t, s servers, E [A] = 1/λ,E [S] = 1/µ
For s = 1,

• ρ = E [S] /E [A] = λ/µ
• π0 = 1− ρπn = (1− ρ) ρn

• Nt is approximately geometric (1− ρ)

For s > 1,

• ρ = E [S] /sE [A] = λ/sµ

• πn = {
π0 (sρ)n/n! = π0 (λ/µ)n/n! 0 ≤ n ≤ s

π0 (ss/s!) ρn = π0 [(sρ)s/s!] ρn−s s < n

1This content is available online at <http://cnx.org/content/m31072/1.3/>.

57

58
CHAPTER 3. QUEUES WITH POISSON ARRIVALS, EXPONENTIAL

SERVERS

For s = 2

• π0 = 1−ρ
1+ρ = 2µ−λ

2µ+λ

For s = 3

• π0 = 1−ρ
1+2ρ+ 3

2 ρ
2

For s = 4

• π0 = 1−ρ
1+3ρ+8ρ2+ 8

3 ρ
3

For large t, with the system in equilibrium

E [Dt] = E [A]E [Nt] and E [Wt] = E [A]E [Qt] ≈ E [S]E [Nt] (3.1)

For s = 1

• E [Nt] = ρ
1−ρ = λ

µ−λ
• E [Qt] = ρE [Nt]P (Nt > 0) = ρ

• E [Wt] = E [S]E [Nt] = λ/µ
µ−λ

• Dt is approximately exponential (µ− λ)

For s > 1

• C = P (Wt > 0) = π0
(sρ)s

s!(1−ρ) = E [Qt] 1−ρ
ρ = sµ (1− ρ)E [Wt]

• P (Wt > v) = Ce−(µs−λ)vv ≥ 0
• P (Dt > v) = e−µv

[
1 + Cµ1−e−[µ(s−1)−λ]v

µ(s−1)−λ

]
for λ 6= µ (s− 1)

• P (Dt > v) = e−µv [1 + µCv] for λ = µ (s− 1)
• E [Qt] = π0

(sρ)s

s!
ρ

(1−ρ)2

• E [Nt] ≈ E [Qt] + λ
µ = E [Qt] + sρ

3.1 Matlab calculations for single server queue (in �le queue1.m)

L = input('Enter lambda '); % Type desired value, no extra space

M = input('Enter mu '); % Type desired value, no extra space

a = [' lambda mu'];

b = [L M];

disp(a)

disp(b)

r = L/M; % Rho

EN = r/(1 - r); % E[N]

EQ = r*EN; % E[Q]

EW = EQ/L; % E[W]

ED = EN/L; % E[D]

59

A = [' rho EN EQ EW ED']; % Identifies entries in B

B = [r EN EQ EW ED];

disp(A)

disp(B)

v = input('Enter row matrix of values v '); % Type matrix of desired values

PD = exp(-M*(1 - r)*v); % Calculates P(Dt > v)

S = [' v P(D>v)'];
s = [v; PD]';

disp(S)

disp(s)

Example 3.1

queue1

Enter lambda 0.1

Enter mu 0.2

lambda mu

0.1000 0.2000

rho EN EQ EW ED

0.5000 1.0000 0.5000 5.0000 10.0000

Enter row matrix of values v [8 16 24]

v P(D>v)
8.0000 0.4493

16.0000 0.2019

24.0000 0.0907

3.2 Matlab calculations for two-server queue (in �le queue2.m)

Note that the procedure will not calculate P (D > v) if λ = µ.

L = input('Enter lambda '); % Type desired value, no extra space

M = input('Enter mu '); % Type desired value, no extra space

a = [' lambda mu'];

b = [L M];

disp(a)

disp(b)

r = L/(2*M);

EQ = (2*r^3)/(1 - r^2);

EN = EQ + 2*r;

EW = EQ/L;

ED = EN/L;

60
CHAPTER 3. QUEUES WITH POISSON ARRIVALS, EXPONENTIAL

SERVERS

A = [' rho EN EQ EW ED']; % Identifies entries in B

B = [r EN EQ EW ED];

disp(A)

disp(B)

v = input('Enter row matrix of values v ');

t = 2*M*EW*(1 - r)/(1 - 2*r);

PD2 = exp(-M*v).*(1 + t.*(1 - exp(-M*v + L*v))); % Calculates P(D > v) for L not equal M

S = [' v P(D>v)'];
s = [v; PD2]';

disp(S)

disp(s)

Example 3.2

queue2

Enter lambda 0.1

Enter mu 0.2

lambda mu

0.1000 0.2000

rho EN EQ EW ED

0.2500 0.5333 0.0333 0.3333 5.3333

Enter row matrix of values v [4 8 16]

v P(D>v)
4.0000 0.4790

8.0000 0.2241

16.0000 0.0473

3.3 Comparison of single-server and two-server queues

A queueing system has Poisson arrivals, rate λ and exponential (µ) service times.

a. In system one, there is one server, with expected service time 1/µ = 1 minute. Determine

[E [N] , E [Q] , E [W] , E [D] , and P (D > v) , v = 1, 3, 5, 10(3.2)

for expected arrival rates λ = 0.6, 0.9, 0.99 customers per minute.
b. In system two there are two servers, each with expected service time 1/µ = 2 minutes. Calculate the

same quantities as for system one and compare the results for the two systems.

queue1

Enter lambda 0.6

Enter mu 1

lambda mu

61

0.6000 1.0000

rho EN EQ EW ED

0.6000 1.5000 0.9000 1.5000 2.5000

Enter row matrix of values v [1 3 5 10]

v P(D>v)
1.0000 0.6703

3.0000 0.3012

5.0000 0.1353

10.0000 0.0183

Ov = ones(1,length(v));

R = r*Ov; % Row vector with all terms = r

r1 = R;

E11 = B;

v11 = PD;

queue1

Enter lambda 0.9

Enter mu 1

lambda mu

0.9000 1.0000

rho EN EQ EW ED

0.9000 9.0000 8.1000 9.0000 10.0000

Enter row matrix of values v v % Calls for previously entered v

v P(D>v)
1.0000 0.9048

3.0000 0.7408

5.0000 0.6065

10.0000 0.3679

R = r*Ov;

r2 = R;

E12 = B;

v12 = PD;

queue1

Enter lambda 0.99

Enter mu 1

lambda mu

0.9900 1.0000

rho EN EQ EW ED

0.9900 99.0000 98.0100 99.0000 100.0000

Enter row matrix of values v v

v P(D>v)
1.0000 0.9900

3.0000 0.9704

62
CHAPTER 3. QUEUES WITH POISSON ARRIVALS, EXPONENTIAL

SERVERS

5.0000 0.9512

10.0000 0.9048

R = r*Ov;

r3 = R;

E13 = B;

v13 = PD;

queue2 % Begin calculations for second system

Enter lambda 0.6

Enter mu 0.5

lambda mu

0.6000 0.5000

rho EN EQ EW ED

0.6000 1.8750 0.6750 1.1250 3.1250

Enter row matrix of values v v

v P(D>v)
1.0000 0.7501

3.0000 0.3988

5.0000 0.2019

10.0000 0.0328

E21 = B; % Not necessary to determne r1, r2, r3, since

v21 = PD2; % they are the same as for system one.

queue2

Enter lambda 0.9

Enter mu 0.5

lambda mu

0.9000 0.5000

rho EN EQ EW ED

0.9000 9.4737 7.6737 8.5263 10.5263

Enter row matrix of values v v

v P(D>v)
1.0000 0.9245

3.0000 0.7749

5.0000 0.6410

10.0000 0.3916

E22 = B;

v22 = PD2;

queue2

Enter lambda 0.99

Enter mu 0.5

lambda mu

0.9900 0.5000

rho EN EQ EW ED

63

0.9900 99.4975 97.5175 98.5025 100.5025

Enter row matrix of values v v

v P(D>v)
1.0000 0.9920

3.0000 0.9743

5.0000 0.9557

10.0000 0.9094

E23 = B;

v23 = PD2;

C = [E11; E21; zeros(E11); E12; E22; zeros(E11); E13; E23]; % Zeros are spacers

disp(A)

rho EN EQ EW ED

disp(C)

0.6000 1.5000 0.9000 1.5000 2.5000

0.6000 1.8750 0.6750 1.1250 3.1250

0 0 0 0 0

0.9000 9.0000 8.1000 9.0000 10.0000

0.9000 9.4737 7.6737 8.5263 10.5263

0 0 0 0 0

0.9900 99.0000 98.0100 99.0000 100.0000

0.9900 99.4975 97.5175 98.5025 100.5025

H = [' rho v P(D1>v) P(D2>v)'];
PDV = [r1 r2 r3; v v v; v11 v12 v13; v21 v22 v23]';

disp(H)

rho v P(D1>v) P(D2>v)
disp(PDV)

1.0000 1.0000 0.6703 0.7501

1.0000 3.0000 0.3012 0.3988

1.0000 5.0000 0.1353 0.2019

1.0000 10.0000 0.0183 0.0328

0.9000 1.0000 0.9048 0.9245

0.9000 3.0000 0.7408 0.7749

0.9000 5.0000 0.6065 0.6410

0.9000 10.0000 0.3679 0.3916

0.9900 1.0000 0.9900 0.9920

0.9900 3.0000 0.9704 0.9743

0.9900 5.0000 0.9512 0.9557

0.9900 10.0000 0.9048 0.9094

64 INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A Absolutely fair, � 1.1(7)
Alpha potential, � 2.4(39)
Alpha-potential matrix, � 2.4(39)
Applied Probability, � (1)
Approximation of D, � (3)

B Basic patterns, � 1.1(7)
Basic sequence, � 1.1(7)

C Costs and rewards, � 2.4(39)

D Decision policy, � 2.4(39)
Decision sequence, � 1.1(7)
Demand random variable, � (3)
Discounting and potentials, � 2.4(39)

E Exact solution, � (3)

F Favorable, � 1.1(7)

G Gain patterns, � 2.4(39)

I Incremental sequence, � 1.1(7)

L Long run averages, � 2.4(39)

M Markov, � (1)
Markov chain, � 2.4(39)
Martigale, � (1)
Martingale, � 1.1(7)
Matlab policy procedures, � 2.4(39)
Matlab procedures w discounting, � 2.4(39)

N Next period gains, � 2.4(39)

P Paul Pfei�er, � (1)
Pfei�er, � (1)
Poisson demand, � (3)
Policy iteration, � 2.4(39)
probability, � (1)

R Recurrence relation, � 2.4(39)

S Special cases, � 1.1(7)
State space, � 2.4(39)
Submartingale, � 1.1(7)
Supermartingale, � 1.1(7)

U Unfavorable, � 1.1(7)

ATTRIBUTIONS 65

Attributions

Collection: Topics in Applied Probability

Edited by: Paul E Pfei�er
URL: http://cnx.org/content/col10964/1.2/
License: http://creativecommons.org/licenses/by/3.0/

Module: "Preface to "Topics in Applied Probability""
Used here as: "Preface"
By: Daniel Williamson, Paul E Pfei�er
URL: http://cnx.org/content/m31871/1.2/
Page: 1
Copyright: Daniel Williamson, Paul E Pfei�er
License: http://creativecommons.org/licenses/by/3.0/

Module: "Cost with Price Breaks"
By: Paul E Pfei�er
URL: http://cnx.org/content/m31064/1.4/
Page: 3
Copyright: Paul E Pfei�er
License: http://creativecommons.org/licenses/by/3.0/

Module: "Order Statistics"
By: Paul E Pfei�er
URL: http://cnx.org/content/m31071/1.3/
Pages: 5-6
Copyright: Paul E Pfei�er
License: http://creativecommons.org/licenses/by/3.0/

Module: "Martingale Sequences: The Concept, Examples, and Basic Patterns"
By: Paul E Pfei�er
URL: http://cnx.org/content/m31076/1.3/
Pages: 7-12
Copyright: Paul E Pfei�er
License: http://creativecommons.org/licenses/by/3.0/

Module: "Martingale Sequences: Examples and Further Patterns"
By: Paul E Pfei�er
URL: http://cnx.org/content/m31067/1.3/
Pages: 13-19
Copyright: Paul E Pfei�er
License: http://creativecommons.org/licenses/by/3.0/

Module: "A Reorder problem� Electronic Store"
By: Paul E Pfei�er
URL: http://cnx.org/content/m31073/1.4/
Pages: 21-27
Copyright: Paul E Pfei�er
License: http://creativecommons.org/licenses/by/3.0/

66 ATTRIBUTIONS

Module: "Markov Decision � Type 3 Gains"
By: Paul E Pfei�er
URL: http://cnx.org/content/m31065/1.3/
Pages: 28-34
Copyright: Paul E Pfei�er
License: http://creativecommons.org/licenses/by/3.0/

Module: "MATLAB Calculations for Decision Models"
By: Paul E Pfei�er
URL: http://cnx.org/content/m31068/1.4/
Pages: 35-39
Copyright: Paul E Pfei�er
License: http://creativecommons.org/licenses/by/3.0/

Module: "Matlab Procedures for Markov Decision Processes"
By: Paul E Pfei�er
URL: http://cnx.org/content/m31095/1.7/
Pages: 39-55
Copyright: Paul E Pfei�er
License: http://creativecommons.org/licenses/by/3.0/

Module: "Queues with Poisson Arrivals, Exponential Servers"
By: Paul E Pfei�er
URL: http://cnx.org/content/m31072/1.3/
Pages: 57-63
Copyright: Paul E Pfei�er
License: http://creativecommons.org/licenses/by/3.0/

Topics in Applied Probability
This collection includes some m-�les for problems supplementary to Pfei�er: Applied Probability. In addition,
the text �le collection New Prob m�les contains both the user de�ned programs for that work and a collection
of m�les for speci�c problems with properly formatted data which can be entered into the workspace by
calling the appropriate �le. These m-�les come from a variety of sources (e.g., exams or problem sets, hence
the odd names) and may be useful for examples and exercises.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

