
Tap That: A Virtual Drum Kit

By:
Tanwee Misra
Janice Chow
Kriti Charan

Tap That: A Virtual Drum Kit

By:
Tanwee Misra
Janice Chow
Kriti Charan

Online:
< http://cnx.org/content/col10502/1.1/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Tanwee Misra, Janice Chow, Kriti Charan.

It is licensed under the Creative Commons Attribution 2.0 license (http://creativecommons.org/licenses/by/2.0/).

Collection structure revised: December 19, 2007

PDF generated: February 4, 2011

For copyright and attribution information for the modules contained in this collection, see p. 29.

Table of Contents

1 Introduction to the Virtual Drum Kit . 1
2 A General Approach to Building Your Own Virtual Drum Kit . 4
3 Colors, Images and Videos in Matlab . 7
4 Determining when and which drum was hit through velocity computation 11
5 Using Thresholds to locate the LEDs in a frame . 15
6 Producing Drum Sounds and Displaying the Drum . 19
7 The code . 21
8 Results of the Virtual Drum Kit . 23
9 Future Work for the Virtual Drum Kit . 25
10 Team Members and Acknowledgments . 27
Index . 28
Attributions . 29

iv

Chapter 1

Introduction to the Virtual Drum Kit1

Imagine This:
Having your own invisible and portable drum kit that not only takes up far less space, but also costs ten

times less than a real one. With virtual reality no longer a distant dream and technology headed towards
its implementation in all applications, a virtual interface for musical instruments is inevitable. This is the
focus of �Tap That� � creating a cost-e�ective, compact and enjoyable drumming experience by means of a
virtual drum kit.

1.1 Past Work

The �rst virtual drum kit was created by a French group (www.virtual-drums.com2). Their implementation
uses two webcams for 3D spatial analysis and extensive C++ coding. There are several other virtual drum
kits available on the internet, but they must be controlled with either a mouse or a keyboard, which detracts
from the drumming experience. The drum kits developed by the French group and our group give the user
a real feeling of playing the drums while actually being virtual.

1.2 Our Goal

This project aims at creating an a�ordable virtual drum kit for amateur drummers using readily available
materials. Music enthusiasts can �Tap That� with this cost-e�ective replacement of a real drum kit. This
instrument requires a web camera, Matlab 6.0 or higher, two LED lights (mounted on drumsticks for a more
authentic experience) and a computer.

1.3 Summary

This project is based on a 2-dimensional tracking system. It tracks the LEDs in two dimensions and uses
velocity computations to determine when and where the drum was hit. The user positions himself or herself
on a chair in front of the webcam and runs the program. An animated image on the screen gives the user
the approximate positions of the drums. As the user moves the LEDs in the air, pretending to hit real
drums, Matlab calculates the position of the LEDs by carrying out a frame-by-frame analysis of the video
in real-time. The velocities of the LEDs are calculated, and when the LED starts moving upwards instead
of downwards, it means that a drum has been hit. Based on the position of the strike, the corresponding
drum's sound will be produced while the animation gives the user feedback about which drum they hit.

1This content is available online at <http://cnx.org/content/m15698/1.1/>.
2http://www.virtual-drums.com/

1

2 CHAPTER 1. INTRODUCTION TO THE VIRTUAL DRUM KIT

3

4
CHAPTER 2. A GENERAL APPROACH TO BUILDING YOUR OWN

VIRTUAL DRUM KIT

Chapter 2

A General Approach to Building Your

Own Virtual Drum Kit1

2.1 Flow Chart

Figure 2.1

1This content is available online at <http://cnx.org/content/m15695/1.1/>.

5

2.2 The LED Drum Sticks

Figure 2.2

The LED drumsticks consist of a simple LED circuit mounted on narrow pipes. Instead of using a battery
holder and a switch, we attached a pen �ashlight to the circuit. The program also requires that one of the
LEDs be red, and the other green. The circuit consisted of a super-bright LED, 9.11 ohm of resistance and
a 3 V source. A lower resistance will make the LED brighter, making its detection better. Alternatively,
the user can obtain LED sticks on the internet for $5 each. When the switch at the end of the �ashlight
is turned on, the LEDs will light up and serve as detection points of the drumsticks. The program stops
running if you switch o� the LED drum sticks.

The only limitation posed by the LED drumsticks is that they have to be used in a dimly lit area to be
detected without errors.

Now that you have your drumsticks, you are all set on the hardware and need to implement the software!

6
CHAPTER 2. A GENERAL APPROACH TO BUILDING YOUR OWN

VIRTUAL DRUM KIT

Figure 2.3

Chapter 3

Colors, Images and Videos in Matlab1

3.1 Back ground: Image Processing in Matlab

3.1.1 What composes an image?

Each image is composed of an array of M*N pixels (contraction of �picture element�) with M rows and N
columns of pixels. Each pixel contains a certain value for red, green and blue. Varying these values for red,
green, blue (RGB) we can get almost any color.

1This content is available online at <http://cnx.org/content/m15696/1.2/>.

7

8 CHAPTER 3. COLORS, IMAGES AND VIDEOS IN MATLAB

Image Storage in Matlab

Figure 3.1

3.1.2 Color Detection

The RGB format is a practical method to represent color images. Matlab creates three matrices (or three
M x N arrays) with each matrix representing normalized components of red, green or blue to read and store
each of the frames of the video. Any pixel's color is determined by the combination of Red, Green and Blue
values stored in the three matrices at that pixel's location. This is how Matlab reads and manipulates .jpg
�les.

Images:
picture (row, column, rgb value)

For example, picture (12, 78, 1) corresponds to the red component of the pixel at row 12 and column 78;
picture(12, 78, 2) corresponds to the green component of the pixel and picture(12, 78, 3) gives us the blue
component of the pixel at that location.

Videos:
frames(row, column, rgb value, frame)

Videos have an extra dimension for the frame number. So frames(12,78,1,5) would correspond to the red

9

component of the pixel in the 12th row and 78th column of the 5th frame. To get the entire frame, we could
just say frames(:,:,:,5).

3.2 Acquiring Images From The Webcam in Matlab

Digitization of the Images

Figure 3.2

How you acquire the images from the camera depends a lot on what software you are using to implement
it. Creating the interface between the computer and the drum using a lower level language like C or C++
will give you a lot of �exibility, but it will also involve a lot of work and background knowledge. Fortunately
for us, Matlab's Image Acquisition Toolbox has a variety of simple functions that can be used to create the
interface. The next few paragraphs will describe these functions and how we used them in some detail.

For Matlab to recognize the video camera you have to create it as an object using the command
obj=videoinput(`winvideo'). Matlab will automatically �nd the webcam connected to your computer.
Once it is an object in your workspace you can edit its settings, such as the number of frames per second,
to optimize it for your project. preview() and getframe() are two useful functions for determining if the
camera has been positioned properly. The �rst allows you to see what the camera sees, without collecting
any data from it, and the second acquires a single snapshot and stores it as in image.

Now we can start recording the video. With the start(obj) command, the camera will be triggered
and will start to collect as many frames as speci�ed by the FramesPerTrigger property. These frames are
stored in the camera's bu�er memory. These frames are stored in the 4D array as described above.

To retrieve them from the bu�er you could use either the getdata() function or the peekdata() function.

3.2.1 getdata(obj);

When this statement is encountered, the program retrieves all the frames acquired at the last trigger and
then empties the bu�er.

3.2.2 peekdata(obj,M);

This function allows us to �peek� at the last M frames collected by the camera. The frames are copied, but
not cleared, from the camera's bu�er into Matlab's workspace.

10 CHAPTER 3. COLORS, IMAGES AND VIDEOS IN MATLAB

Both functions take about the same amount of time to run. Interestingly, the number of frames acquired
at a time does not a�ect the execution time much. It takes about as long to acquire 1 frame as it does to
acquire 50. Therefore, to make the program more e�cient, we should collect large chunks of data at a time.

To make sure that we don't miss any of the action while the user is waving the drumsticks around in
front of the camera, we should also make sure that we can get all the frames from when the program starts
running till the user turns of the LEDs. Due to memory limitations, our computer could collect maximum of
240 frames, or about 8 seconds of the video, which is clearly not enough. It is unlikely that your computer
could do much better.

Chapter 4

Determining when and which drum was

hit through velocity computation1

4.1 Hitting the Drums: A Velocity Computational Approach

You now have the positions of the LEDs in every frame. Our goal here is to detect when and which drums
were hit so that the corresponding drums can produce their sounds.

4.1.1 Determining when a drum was hit

There are various innovative ways of tracking when the drums are hit. We chose to use a velocity compu-
tational approach due to its speed. Using this approach, you can look at the displacement of the LEDs in
consecutive frames and calculate the velocity. Using basic physics, if the velocity changes from positive to
negative (note that our coordinate system has the positive side of the y-axis pointing downwards) it implies a
change in direction of the drumstick, or that a drum was hit. You should be able to �gure out approximately
which frame the drum was hit in. Since the hit point is returned in terms of two-dimensional coordinates,
you can �gure out which drum(s) are hit.

1This content is available online at <http://cnx.org/content/m15714/1.1/>.

11

12
CHAPTER 4. DETERMINING WHEN AND WHICH DRUM WAS HIT

THROUGH VELOCITY COMPUTATION

Variation in velocity with the movement of the LEDs

Figure 4.1: See if you can guess when drums were hit.

13

4.1.2 Determining which drum was hit

Position of the Drums

Figure 4.2: [1: Cymbal; 2: BigTom; 3: Small Tom; 4: Floor Tom; 4: Snare]

The frame should be broken down into rectangles with assigned x and y coordinates where the drums are
positioned. Our drum kit consists of the Crash Cymbal, the Big Tom, the Small Tom, the Floor Tom and
the Snare. We check to see if the hit-point falls in the space assigned for any of the drums, and if it does,
we move on to producing the sound and displaying the image on the computer screen. However, if the hit
point is outside the frame, it is taken as a missed hit.

14
CHAPTER 4. DETERMINING WHEN AND WHICH DRUM WAS HIT

THROUGH VELOCITY COMPUTATION

Chapter 5

Using Thresholds to locate the LEDs in

a frame1

5.1 RGB in Each Individual Frame

Given the acquired frames, the �rst step is to locate the LEDs. The color of the LEDs can be described by
the intensity of red, green and blue. These are represented by values between 0 and 255 (going from null
intensity to full intensity) in the RGB matrices for each image. We can detect the LEDs by setting threshold
values for Red, Green and Blue. For example, to �nd the Red LED, you are looking for the part of the
frame with high Red values and low Blue and Green values. We would recommend using the data cursor to
analyze RGB values of the LED in the colormap. Play around with threshold values until you get the right
thresholds, i.e., only the LED you are trying to detect shows up.

1This content is available online at <http://cnx.org/content/m15699/1.1/>.

15

16 CHAPTER 5. USING THRESHOLDS TO LOCATE THE LEDS IN A FRAME

A Sample Frame

Figure 5.1

17

Spy Plots of the LEDs

(a) (b)

Figure 5.2: (a) Red LED (b) Green LED

In our project, we used the �nd function to look at the red, green and blue matrices separately and set
ones wherever the conditions were satis�ed. We multiply the three matrices of ones and zeros to produce
one �nal matrix with ones where all three color thresholds are satis�ed and the LED is detected.

5.2 Turn O� the LEDs

If the LEDs are not detected for 75% of the frames, it means that the LEDs are either turned o� or not in
the frame at all, and the program stops running. However, if the LEDs have been found, you can move on
to detecting when the drums are hit.

18 CHAPTER 5. USING THRESHOLDS TO LOCATE THE LEDS IN A FRAME

Chapter 6

Producing Drum Sounds and Displaying

the Drum1

6.1 Producing Drum Sounds and Displaying the Drum

Once we have determined which drum has been hit, we play the appropriate sound and display the corre-
sponding image. The drum sounds and images are preloaded in separate .mat �les at the beginning of the
program using the load command to expedite execution.

load drumsounds

load drumpics

6.1.1 Drum Sounds:

drumpics.mat was created by importing drum samples in the wav format using wavread() and wavadd().
wavread(`wavfile') is a Matlab function that stores wav �les as an Nx2 matrix. wavadd(sound1,sound2)
is a function that we created to allow the simultaneous play of two di�erent sounds. For example, if both the
snare and the crash cymbal were hit at the same time, we zero pad the shorter matrix and combine them as
one sound matrix. In the main program, the Matlab function soundsc(sound, fs) plays the corresponding
sound �le, where `fs' is the sampling rate. Our wav �les were sampled at 22 kHz to allow for smaller sound
variables without a�ecting the sound quality too much. All of our drum samples were obtained free online
from a Yamaha 9000 drum kit.

6.1.2 Drum Pictures:

drumsounds.mat was created by importing jpeg �les using the imread() Matlab command to store the
images as variables. The images were created from Google SketchUp, a free 3D modeling program available
online. Di�erent views were created to simulate the feel of animation.

1This content is available online at <http://cnx.org/content/m15697/1.1/>.

19

20 CHAPTER 6. PRODUCING DRUM SOUNDS AND DISPLAYING THE DRUM

Figure 6.1: Main view

Figure 6.2: Crash cymbal and snare were hit

Chapter 7

The code1

To get a better understanding for how we implemented the drum kit, you might want to have a look at our
Matlab code.

The code is available at: http://www.geocities.com/tapthat_virtualdrum/tapthat.html

7.1 Essential Files:

proj_301.m- This is a wrapper function to set up video acquisition and collect frames from the camera.
detectcolor.m- This function checks for presence of the LED.
coord.m- This function �nds the position of the LED in each frame, computes its velocity and hit-point.
drumdet.m- This function determines which drum was hit.
drumdisp.m- It produces the sound and displays the image corresponding to the drum that was hit.

7.2 Files for debugging and setting up the system:

adjust.m- This is mainly for the user's convenience. It helps adjust the position of the user with respect to
the drums.

checkframe.m- This can be used to verify that the color detection works properly for a particular frame.

1This content is available online at <http://cnx.org/content/m15704/1.1/>.

21

22 CHAPTER 7. THE CODE

Chapter 8

Results of the Virtual Drum Kit1

8.1 Results

While there are many ways to approach the virtual drum kit, we are pleased with the outcome of our
implementation using one webcam and velocity computation. We found that users enjoyed the drum kit
more after familiarizing themselves with the set-up.

8.1.1 Advantages

• High precision in detecting where the drums are hit. Our results showed that less than two hits were
missed in a minute's worth of playing.

• A�ordable solution for drumming enthusiasts.
• Easily Transportable.
• Runs in real time without a signi�cant delay with Matlab set to high priority.
• Easy to modify the Matlab code to make the system customizable.
• Animated interface gives a visual representation of drums as feedback hit instead of just bare audio.
• Absence of physical drums makes the drummer visible to the audience.

8.1.2 Limitations

• Slight delay due to processing power of the computer.
• Requires a dimly lit area for easy LED detection.

1This content is available online at <http://cnx.org/content/m15711/1.1/>.

23

24 CHAPTER 8. RESULTS OF THE VIRTUAL DRUM KIT

Chapter 9

Future Work for the Virtual Drum Kit1

9.1 Conclusion

While the virtual drum kit is not advanced enough to replace a real drum kit for a professional drummer, it
is an enjoyable alternative for anyone aspiring to learn how to play the drums or amateur music enthusiasts
looking for an a�ordable solution.

Further improvements in our implementation could lead to a drum kit that is almost as good as a real
drum kit.

9.1.1 Room for Improvement

• Addition of the bass drum, hi hat, ride cymbals for a fuller drum kit.
• Incorporation of a change in volume based on the acceleration with which drums are hit.
• Higher frame rate and more powerful machines to overcome the delay and visual latency.
• Adding customizability to allow the user to modify the positions of the drums, and the sounds that

are played.

9.2 Future Work

The concept of LED tracking forms the base of many useful implementations. More speci�cally, our Matlab
code can be easily modi�ed to implement a virtual whiteboard or any other percussion instrument.

With a sense of adventure and some degree of technological innovation and creativity, virtual musical
instruments can replace expensive physical musical instruments while delivering comparable results.

1This content is available online at <http://cnx.org/content/m15709/1.1/>.

25

26 CHAPTER 9. FUTURE WORK FOR THE VIRTUAL DRUM KIT

Chapter 10

Team Members and Acknowledgments1

�Tap That� was brought to you by Janice Chow, Tanwee Misra and Kriti Charan.
Kriti Charan maintained the ca�einated group's sanity and ensured that we stuck to the cynical 6-

point project plan as outlined in Mr. Dye's o�ce. She connected the webcam to the computer. Not just by
plugging the USB cord in, but by writing proj_301.m. She also channeled her fear of insects into debugging
the code. Basically she was the project guru.

Janice Chow supplied us with free co�ee and was responsible for deciding where the user had to hit
to make the program react in a certain way, and what those reactions should be. In other words she wrote
drumdisp.m and drumdet.m, and by nefarious means, obtained all the images and sounds that were required.
She was also a great test subject to see if our program was working or not and tremendously enjoyed playing
with Google's ketchup.

Tanwee Misra kept us entertained with her French and was responsible for the program's ability to see
color and use that to �gure out what the test subject was doing with the drumsticks. In other words she
wrote coord.m and detectcolor.m. She also encouraged group projects by working with Janice to make the
poster, and Kriti to make the drumsticks.

We are grateful to Mr. Michael Dye and Dr. James Young for all the help they provided as we
made and repaired the drumsticks. We are also grateful to Dr. Kronister for unknowingly providing us
with so much.

We would also like to thank Dr. B (aka RichB) and Mr. D (aka Mark Davenport) for all the
help, support and guidance that they have provided at every step along the way.

Special thanks to all our rock star fans who tried our drum kit on the day of the presentation.

1This content is available online at <http://cnx.org/content/m15713/1.1/>.

27

28 INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

C code, � 7(21)

D Detect LED, � 5(15)
drum, � 3(7)
Drum display, � 6(19)
drum kit, � 4(11), � 8(23), � 9(25), � 10(27)
Drum sounds, � 6(19)
drums, � 4(11), � 7(21), � 8(23), � 9(25),
� 10(27)

F FramesPerTrigger, 9

G Google SketchUp, � 6(19)

L LEDs, � 5(15)

M matlab, � 7(21)

R RGB thresholds, � 5(15)

V velocity, � 4(11)
virtual, � 3(7), � 4(11), � 7(21), � 8(23),
� 9(25), � 10(27)

ATTRIBUTIONS 29

Attributions

Collection: Tap That: A Virtual Drum Kit

Edited by: Tanwee Misra, Janice Chow, Kriti Charan
URL: http://cnx.org/content/col10502/1.1/
License: http://creativecommons.org/licenses/by/2.0/

Module: "Introduction to the Virtual Drum Kit"
By: Janice Chow, Kriti Charan, Tanwee Misra
URL: http://cnx.org/content/m15698/1.1/
Page: 1
Copyright: Janice Chow, Kriti Charan, Tanwee Misra
License: http://creativecommons.org/licenses/by/2.0/

Module: "A General Approach to Building Your Own Virtual Drum Kit"
By: Janice Chow, Kriti Charan, Tanwee Misra
URL: http://cnx.org/content/m15695/1.1/
Pages: 4-6
Copyright: Janice Chow, Kriti Charan, Tanwee Misra
License: http://creativecommons.org/licenses/by/2.0/

Module: "Webcam Color Tracking in Matlab"
Used here as: "Colors, Images and Videos in Matlab"
By: Janice Chow, Kriti Charan, Tanwee Misra
URL: http://cnx.org/content/m15696/1.2/
Pages: 7-10
Copyright: Janice Chow, Kriti Charan, Tanwee Misra
License: http://creativecommons.org/licenses/by/2.0/

Module: "Implementation: Detecting a Hit"
Used here as: "Determining when and which drum was hit through velocity computation"
By: Janice Chow
URL: http://cnx.org/content/m15714/1.1/
Pages: 11-13
Copyright: Janice Chow
License: http://creativecommons.org/licenses/by/2.0/

Module: "Implementation: Detecting the LEDs"
Used here as: "Using Thresholds to locate the LEDs in a frame"
By: Tanwee Misra, Kriti Charan, Janice Chow
URL: http://cnx.org/content/m15699/1.1/
Pages: 15-17
Copyright: Tanwee Misra, Kriti Charan, Janice Chow
License: http://creativecommons.org/licenses/by/2.0/

Module: "Producing Drum Sounds and Displaying the Drum"
By: Tanwee Misra, Kriti Charan, Janice Chow
URL: http://cnx.org/content/m15697/1.1/
Pages: 19-20
Copyright: Tanwee Misra, Kriti Charan, Janice Chow
License: http://creativecommons.org/licenses/by/2.0/

30 ATTRIBUTIONS

Module: "Implementation: Code"
Used here as: "The code"
By: Tanwee Misra, Kriti Charan, Janice Chow
URL: http://cnx.org/content/m15704/1.1/
Page: 21
Copyright: Tanwee Misra, Kriti Charan, Janice Chow
License: http://creativecommons.org/licenses/by/2.0/

Module: "Results of the Virtual Drum Kit"
By: Kriti Charan, Tanwee Misra, Janice Chow
URL: http://cnx.org/content/m15711/1.1/
Page: 23
Copyright: Kriti Charan, Tanwee Misra, Janice Chow
License: http://creativecommons.org/licenses/by/2.0/

Module: "Future Work for the Virtual Drum Kit"
By: Kriti Charan, Tanwee Misra, Janice Chow
URL: http://cnx.org/content/m15709/1.1/
Page: 25
Copyright: Kriti Charan, Tanwee Misra, Janice Chow
License: http://creativecommons.org/licenses/by/2.0/

Module: "Team Members and Acknowledgments"
By: Kriti Charan, Tanwee Misra, Janice Chow
URL: http://cnx.org/content/m15713/1.1/
Page: 27
Copyright: Kriti Charan, Tanwee Misra, Janice Chow
License: http://creativecommons.org/licenses/by/2.0/

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

